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Abstract: Chikungunya virus disease (chikungunya) is a mosquito-borne infectious disease reported
in at least 50 countries, mostly in the tropics. It has spread around the globe within the last two
decades, with local outbreaks in Europe. The vector mosquito Aedes albopictus (Diptera, Culicidae)
has already widely established itself in southern Europe and is spreading towards central parts of the
continent. Public health authorities and policymakers need to be informed about where and when a
chikungunya transmission is likely to take place. Here, we adapted a previously published global
ecological niche model (ENM) by including only non-tropical chikungunya occurrence records and
selecting bioclimatic variables that can reflect the temperate and sub-tropical conditions in Europe
with greater accuracy. Additionally, we applied an epidemiological model to capture the temporal
outbreak risk of chikungunya in six selected European cities. Overall, the non-tropical ENM captures
all the previous outbreaks in Europe, whereas the global ENM had underestimated the risk. Highly
suitable areas are more widespread than previously assumed. They are found in coastal areas of
the Mediterranean Sea, in the western part of the Iberian Peninsula, and in Atlantic coastal areas of
France. Under a worst-case scenario, even large areas of western Germany and the Benelux states are
considered potential areas of transmission. For the six selected European cities, June–September (the
22th–38th week) is the most vulnerable time period, with the maximum continuous duration of a
possible transmission period lasting up to 93 days (Ravenna, Italy).

Keywords: chikungunya; mosquito-borne disease; dengue; ecological niche model; epidemiological
model; Aedes albopictus

1. Introduction

Chikungunya virus disease (chikungunya) is a mosquito-borne infectious disease,
reported in at least 50 countries all over the world [1]. The disease manifests itself in
a sudden rise in fever, myalgia, arthralgia, headaches, rashes, and chronic arthritis [2].
Chikungunya is caused by the chikungunya virus (CHIKV), a single-stranded positive
RNA-enveloped virus (Alphavirus, Togaviridae), which was first isolated in a Tanzanian
outbreak in 1952 [3]. In the urban transmission cycle, which occurs in Africa, America,
Asia, and Europe, CHIKV is mainly transmitted from human to human by the mosquitoes
Aedes aegypti (yellow fever mosquito) and Ae. albopictus (Asian tiger mosquito) [4]. Vertical
transmission during childbirth (perinatal) also occurs regularly, often leading to severe
central nervous system disease that can be fatal [5,6]. Vertical transmission has also been
reported among mosquitoes [7]. In Africa, the transmission is maintained in a sylvatic
cycle involving Aedes mosquitoes as vectors and primates (and probably also rodents) as
hosts [4].

After the first isolation of the chikungunya virus during the 1952–53 epidemic in
today’s Tanzania [3], chikungunya was mostly restricted to local outbreaks in Africa and
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southeastern Asia, with Ae. aegypti acting as the main vector [8]. Within the past two
decades, however, chikungunya has spread around the globe, increasing its geographical
range particularly in sub-Saharan Africa, southern and south-eastern Asia, the Western
Pacific regions, and most recently in Latin America, including the Caribbean [8–10]. In
addition to spatially limited local outbreaks, large and long-lasting epidemics are emerging
as well [11,12]. In the 2005–06 outbreak in India, nearly 1.4 million cases were reported [13].
In 2006–07, about one-third of the population of La Reunion (i.e., approx. 250,000 people)
were affected [14] by a new variant of CHIKV. This variant showed a mutation that led to
more efficient dissemination in Ae. albopictus, enabling the species to act as the main vector
in an outbreak situation for the first time [15]. After CHIKV arrived in the Caribbean in 2013,
at least 2.6 million suspected chikungunya cases were reported from this region until the
end of 2017 [16], and CHIKV has subsequently spread to large parts of South America [17].
Outbreaks followed, for example, in Kenya [18], Bangladesh [19], Pakistan [20], Sudan [21],
and Nepal [22]. The geographic range and frequency of epidemics and outbreaks are
globally increasing [23].

In Europe, the first local outbreak of chikungunya was reported in 2007 in Italy
(Emilia-Romagna region), with 205 cases (either confirmed in the laboratory or defined
clinically) [24]. Since then, chikungunya outbreaks have occurred repeatedly at the local
scale. In France, two confirmed cases were recorded in 2010 (Var department) [25], and an-
other 12 cases were confirmed in 2014 (Montpellier) [24–27]. The first known transmissions
of the chikungunya virus in central and southern Italy (in the regions Lazio and Calabria)
were documented in 2017, with 270 confirmed and 229 suspected cases overall [28–32]. In
the same year, two transmission clusters in France (Var department) led to 15 confirmed
and two suspected cases [28,33,34].

The primary vector species in mainland Europe is Aedes albopictus, as Ae. aegypti is
currently only found on the island of Madeira (Portugal) and in the Black Sea region [35].
Ae. albopictus originated in southeast Asia. Since it was introduced to southern Europe
by human-mediated long-distance travel (e.g., transport of used tires and ornamental
plants) about three decades ago, it has considerably expanded its range there [36]. At
present, Ae. albopictus has established populations in large areas in southern Europe, and
its range expansion is ongoing. Medium-distance travel (e.g., trucking, private tourism) is
relocating individuals towards the central parts of Europe [37]. This leads to increasingly
frequent introductions into previously Ae. Albopictus-free regions, followed by instant
population establishments [38]. Climate change also affects the distributional range of
mosquitoes. For instance, with increasing minimum temperatures or extended warm
seasons, some currently unsuitable areas may turn into suitable climatic conditions for
mosquitoes [39–41].

In the face of the globally increasing transmission of CHIKV and the expanding spatial
range of mosquito vectors, prevention measures need to be undertaken before an outbreak
occurs. To prevent an outbreak, it is important to know where and when a chikungunya
outbreak could potentially occur. One common approach for the creation of spatial risk
maps is the application of ecological niche models (ENMs). These correlation-based models
estimate the geographic distribution of a disease based on known locations of disease
occurrence and the prevailing environmental conditions at those locations [42,43]. The
ENM approach has been successfully applied for several mosquito-borne diseases, such as
dengue [44], Zika [45], and Japanese encephalitis [46]. For chikungunya, two global ENMs
have previously been published [47,48]. These two global models generally predict the
observed large-scale spatial distribution patterns of chikungunya well. However, neither
of them adequately reflects the situation at the borders of the current spatial distribution.
In Europe, they both dramatically underestimate the potential for chikungunya outbreaks.
The same is true for dengue, where the global model [44] fails to predict real-life outbreaks
in Europe [49]. These three global models for chikungunya and dengue were all built upon
occurrence locations that are predominantly located in the tropics. Consequently, it is not
surprising that they do not perform well in temperate or Mediterranean climates, because
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seasonal dynamics differ vastly, with tropical climates being dominated by precipitation
patterns rather than temperature seasonality. Factors such as extreme frost events that can
affect the survival of mosquito eggs [39] do not play a major (if any) role in the tropics. To
obtain meaningful chikungunya risk maps for non-tropical regions like Europe, models
need to be calibrated with data from regions that have a more similar climate compared
with the target area.

To assess where chikungunya can be transmitted in Europe with greater accuracy,
we present a new, “non-tropical” ENM, built upon the global distribution of CHIKV
transmission outside of the tropics. We directly compare this model with a previously
published global ENM for chikungunya [48]. We further employ an epidemiological (i.e.,
processes-based) model that was recently proposed for Canada [50] to a series of European
cities to evaluate the correlative model and add the temporal dimension for CHIKV risk
assessment in non-tropical climates.

The new non-tropical model predicts real-life CHIKV transmission in Europe with
greater accuracy than the previous global ENMs that were based on predominantly tropical
occurrence locations. It also shows that areas at risk of CHIKV transmissions in Europe are
much more widespread than previously anticipated.

2. Materials and Methods
2.1. Ecological Niche Models

Ecological niche models (ENMs) are widely used in ecology, biogeography, and con-
servation biology to assess the potential spatial distribution of species or other taxa [51–54].
In epidemiology, ENMs are often used to model the distribution of disease vectors or
vector-borne disease transmission [42,43]. Building upon a previously published global
chikungunya model [48], we have created an ENM for CHIKV transmission outside the
tropical zones. For this task, we applied the most commonly used ENM approach [43],
Maxent (version 3.3.3.k [55]). Maxent is a maximum entropy-based machine-learning
approach, which relates species occurrence records to spatial representations of relevant
environmental predictor variables. Based on this, a map of relative “environmental suit-
ability” (ranging from 0 to 1) was created, in which higher values indicate more favorable
environmental conditions, and thus a higher probability of occurrence.

2.1.1. Occurrence Records

The global database of geo-referenced locations of CHIKV transmission described
by Tjaden et al. [48] was updated to include a total of 845 records. Each of these records
represents a local disease event with at least one case of autochthonous transmission. As
infectious diseases are typically reported for entire administrational units, the coordinates
of the geographic centroid of these units were used as records unless a more precise
description of the place of transmission was provided. These records were then refined
through a series of filters. Firstly, records located in any of the tropical climate zones
(Köppen–Geiger classification Af, As, Am, or Aw) were discarded (see Figure S1). For
this, the Köppen–Geiger climate classification was obtained from [56] (representative of
the 36 years between 1980–2016). Secondly, 15 more records from the Andean region were
removed manually. These were centroids of large (provincial-level) administrational units
located in a highly heterogeneous environment, and were thus likely to negatively affect
the model’s performance [57]. Finally, the spThin package version 0.2.0 [58] for R 3.6.1 [59]
was used to spatially rarefy the occurrence records. A basic assumption of ENMs is that
the study area is sampled evenly. The unrarefied data set violates this assumption due
to variations in international reporting patterns. For the thinning parameter of the thin
function, values between 5 and 20 were considered and the resulting spatial clustering was
visually assessed. Ultimately, the package’s default value of 10 was used, as this setting
resolved obvious clusters without removing valuable occurrence records elsewhere. For
model evaluation, the final 160 occurrence records (Figure S1) were randomly split into a
10-fold cross-validation.
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2.1.2. Environmental Data

The standard set of 19 bioclimatic variables was used in this study to ensure compa-
rability with the 2017 global model [48]. However, the data source of those variables was
updated to use Worldclim version 2.1 [60] at a spatial resolution of 2.5′ instead of the now-
outdated version 1.4. Like the occurrence records, the environmental raster layers were
clipped by climate zone, discarding all data located in the tropical regions (Köppen–Geiger
classification Af, As, Am, or Aw [56], Figure S1).

2.1.3. Calibration Area

In addition to occurrence locations, Maxent also allocates background (or: “pseudo-
absence”) locations within a defined geographical range of the environmental data. In the
default setting, the geographical range is the whole available area. The geographical range,
the area from which Maxent is allowed to draw background locations, can affect model
performance and results [61]. Consequently, it needs to be defined carefully. Following
VanDerWal (2009) [61], we opted for a buffer-based approach that was successfully em-
ployed in other studies with similarly large geographic extents [48,62]. A series of buffers
with increasing radii (from 1 to 5000 km) drawn around the occurrence records was used,
and the environmental data were cropped accordingly. Based on these differently sized
calibration areas, we ran a series of test Maxent models, and evaluated model performance
with true skill statistics (TSS) [63]. Model performance increased with the buffer size, but
the gain in TSS considerably slowed down when the buffer reached a radius of 1500 km.
Consequently, a 1500-km buffer was used to delineate the study region for the subsequent
model runs (see Figure S1).

2.1.4. Model Selection

Model selection, i.e., selecting the environmental predictor variables to be used as well
as the model settings (choice of regularization multiplier and feature types for Maxent [64]),
was performed following an incremental approach. First, a reference model using the whole
suite of bioclimatic variables available in the Worldclim 2.1 dataset was built. The optimum
calibration area was determined as described above. The model settings were optimized
based on Akaike’s information criterion (AIC) scores using ENMEval version 0.3.0 [65] for
R 3.6.1. Afterwards, a series of candidate models with different sets of variables was built
in the same way, and their performance was evaluated based on AIC, TSS [63], area under
the receiver operating characteristic curve (AUC), and their ability to predict the European
outbreak locations as “environmentally suitable”.

Candidate variable sets were constructed by dropping variables from the full set
based on the following criteria. (1) It has been shown that the influence of precipitation
on mosquito populations is anything but straightforward. For instance, the container-
breeder Ae. albopictus frequently uses artificial habitats, such as flowerpots and vases,
that are independent of precipitation [66]. In addition, although precipitation is generally
considered beneficial, heavy rainfall events can have adverse effects on larval mosquito
populations [67,68]. Hence, we considered a variable set without any precipitation-related
variables. (2) Variables that refer to the wettest or driest month or quarter of the year do
not translate well across different regions. For instance, preliminary analyses showed that
the variable “temperature of the wettest quarter” refers to temperatures in summer and
winter at different locations in Europe. A variable that bears different meanings in different
places needs to be considered as potentially problematic. Hence, we investigated whether
dropping these variables would improve the model. (3) Variables such as the “mean diurnal
temperature range” or “precipitation seasonality” do not strictly represent temperature
or precipitation, but rather represent values derived from them. We considered dropping
these variables, as they add another potentially detrimental layer of complexity to the
model (compare, e.g., [69,70]). (4) Additionally, we used the built-in jackknife procedure
in Maxent to remove variables that did not contribute useful information to any of the
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models [71]. For reference, the variable set from the 2017 global model was reproduced
as well.

The final model was based on the combination of criteria (3) and (4), using the annual
mean temperature, minimum temperature of the coldest month, annual temperature range,
mean temperatures of the warmest and coldest quarters, annual precipitation sum, as well
as the precipitation of the warmest quarter (see Table S1 for details). It uses linear, quadratic,
and hinge features, with a regularization multiplier of 4. This final model configuration
was evaluated using partial ROC testing [72] as implemented in the ENMGadgets package
version 0.1.0.1 [73] for R 3.6.1. This was based on a 10-fold cross-validation run of Maxent,
using 1000 bootstrapping iterations with an expected error rate of 5%. All AUC ratios
were larger than 1. Together with an average test AUC of 0.89 and a TSS value of 0.814,
this suggests good model performance. The transferability of the model into new regions
outside the calibration area was evaluated using the multivariate environmental similarity
surface functionality available in Maxent [74]. No areas of strict extrapolation occurred
across Europe (Figure S2), suggesting good transferability in space.

2.1.5. Thresholds

The relative environmental suitability predicted by Maxent is a series of continuous
values. These raw values alone are not sufficient to decide whether a place should be
considered unsuitable for disease transmission. To achieve a map of suitable vs. unsuitable
areas, a threshold that can classify the raw values into binary results is needed. For this
purpose, several methods have been proposed [75,76]. As there is no single best-practice
method (and to facilitate comparisons across different studies), we applied a series of
commonly used thresholds.

The “minimum training presence” threshold was used to show a worst-case scenario.
This simple method is also called the “lowest presence threshold” and focuses on the
values of environmental suitability predicted for the locations where CHIKV transmission
occurred [77]. Among these locations, the one with the lowest predicted suitability is
identified, and this lowest suitability value is used as the threshold. A more conservative
approach is first to discard the 5 or 10 percent of occurrence records that have the lowest pre-
dicted environmental suitability and use the minimum of the remainder as a threshold [77].
These are referred to as the 5- or 10-percentile thresholds, respectively. Finally, the “equal
sensitivity and specificity” threshold aims for a balance in the trade-off between sensitivity
and specificity [78]. It presents the most conservative estimate of CHIKV transmission for
our models, highlighting the areas of highest risk.

2.2. Epidemiological Model

To assess the temporal dynamics of chikungunya transmission, as well as the credi-
bility of the non-tropical ENM, we applied a process-based disease transmission model.
We chose the chikungunya model developed by Ng et al. [50], as it was developed for the
non-tropical climate of Canada and does not require external calibration through local
field data. In summary, the stochastic model of [50] calculates the basic reproduction
number R0 as:

R0 = ϕ · α2 · βHM · βMH · L · V · γ. (1)

From a theoretical point of view, R0 represents the typical number of secondary
infections that arise from a single infected individual throughout its infectious period
in a completely susceptible population. This is a threshold quantity: when R0 > 1, the
disease can spread, otherwise it will die out. The daily biting rate (α), human-to-mosquito
and mosquito-to-human transmission probabilities (βHM, βMH), and the duration of the
human infectious period (V) are static parameters that are estimated based on a probability
distribution for each iteration of a model run. Adult mosquito life span (L), the fraction of
mosquitoes surviving the extrinsic incubation period (γ), and the mosquito density per
human (ϕ) additionally depend on temperature (see Table S2 for full parameterization).
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The model was implemented in R 3.6.1 [59] and run at 50,000 iterations to account for
uncertainties in the parameter estimations.

We selected a series of reference locations across the study area for which the model
was run. Aiming for a small but representative sample, we included areas of previous
CHIKV transmission, as well as areas with different levels of climatic suitability as predicted
by the non-tropical ENM. Daily mean temperature data for these locations (see Figure S3
for an overview) were obtained from nearby weather stations, using the blended European
Climate Assessment (ECA) data set [79]. For each reference location, three time series of
daily mean temperature data were extracted for three model runs: (1) the year 2018, as an
extreme example with an unusually hot summer in large parts of Europe; (2) 2017, a year
with outbreaks in Italy and France; and (3) the long-term average of the years 1970–2000,
which corresponds to the reference period used in the Worldclim data set upon which
the non-tropical ENM was built. Small gaps in the data (≤5 days) were filled through
cubic spline interpolation [80]. Larger gaps were filled by extracting additional data
from E-OBS, a spatio-temporally interpolated version of the ECA data set [81] (Figure S3).
This way, a complete time series of daily mean temperature was available for all but one
reference locations.

The estimated R0 values of the 50,000 iterations per model run were aggregated into
a single average value per day. After the number of days with an average R0 ≥ 1 was
determined, values were further aggregated into weekly averages for plotting.

3. Results

The non-tropical ENM predicts large parts of southern and western Europe and
the coastal regions of south-eastern Europe to be suitable for chikungunya transmission
(Figure 1). In areas where the vector is known to be established, the highest climatic
suitability for chikungunya transmission is projected along with the northern and eastern
coastal areas of the Mediterranean Sea and the Atlantic-influenced areas. This primarily
affects mainland Portugal, Spain, France, Italy, Croatia, Albania, and Greece; several
touristic islands, including the Baleares, Corse, Sardinia, and Crete; as well as the southern
coastal areas of the Black Sea. The coasts of northern Italy, Turkey, Israel, and Lebanon
show a medium risk, only passing the minimum training or 5-percentile thresholds.

Large areas with the highest climatic suitability for chikungunya transmission can
also be found in areas where Ae. albopictus is currently not known to be established (large
parts of Portugal, Ireland, and southern England) or not monitored (northern parts of Spain
and large parts of the African coastal areas of the Mediterranean Sea).

It is noteworthy that even areas that are considered to be at low risk for chikungunya
have seen local outbreaks in the past. For example, the Emilia-Romagna region, in Italy,
in which the first CHIKV transmission in Europe took place, only passes the minimum
training gain threshold. This means that transmission may potentially occur in other
regions with low climatic suitability, such as central Spain, northern France, the Benelux
states, Germany, Croatia, Montenegro, Albania, and Greece.

When compared with the global model [48], the non-tropical model predicts all
European outbreaks with greater accuracy (Figure 2; see also Figure S3 for place names).
The global model fails to project the later outbreaks in 2014 (Var, France) and 2017 (Lazio
and Calabria regions, Italy), whereas the non-tropical model covers both outbreaks. Both
global and non-tropical models correctly predict Montpellier (France) and Ravenna (Italy)
as areas at risk for CHIKV transmission. For Bologna (Italy), however, only the global
model projects it as at risk.

Overall, the global model only predicts a few small and scattered patches to be suitable
for CHIKV transmission in Europe. The largest area predicted to be suitable by this model
is located in northeastern Italy. In several small patches in southern Italy, Montpellier
(southern France), Mallorca, southern Spain, and the Marmara Region (Turkey), the global
model overlaps with the non-tropical model, which shows considerably more continuous
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predictions. There are small regions in Georgia and Azerbaijan that are classified as suitable
in the global model that are not considered suitable in the non-tropical model.

The epidemiological model provides a different perspective on the CHIKV transmis-
sion potential in Europe (Figure 3 and Figure S5; see also Figure S1 for locations). For
short-term risk fluctuations, Freiburg (Germany, (d)) displays one high-risk peak, with
a total of 21 days at risk in 2018. Amsterdam (the Netherlands, (a)) shows a low risk for
this year, with 9 days with R0 ≥ 1. For 2017, Freiburg (but not Amsterdam) shows a short
period of outbreak risk, of 18 days. The EM suggests no potential for transmission in
Dublin for both years. For the three southern European cities, i.e., Barcelona (Spain, (b)),
Montpellier (France, (e)), and Ravenna (Italy, (f)), it appears that all have a risk of chikun-
gunya transmission that persists up to 10 to 12 weeks during summer. It should be noted
that in both Montpellier and Ravenna the autochthonous transmission of chikungunya has
occurred in the past [24].
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confirmed establishment).
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Figure 3. Potential chikungunya outbreak risk in six cities in Europe, based on the epidemiological model (EM) as
assessed through the temporal development (weekly averages) of the basic reproduction number, R0. The thick gray line
represents calculations based on long-term average values of daily mean temperature during the Worldclim reference
period (1970–2000). The thin red and pink lines show single-year values for 2017 and 2018, respectively. The individual
cities reflect different classes of spatial risk projections in the non-tropical ecological niche model (ENM) and temporal risk
assessment based on the EM: (a) Amsterdam is located in an area at risk according to both of the ENMs, but the EM shows a
few days of R0 ≥ 1 in 2018; (b) Barcelona is at risk according to both models, with a high transmission potential predicted
by the EM; (c) Dublin is at risk according to the non-tropical model, but the EM suggests no potential for transmission; (d)
Freiburg is not in an area at risk in either ENM, but shows a temporal risk in both years; (e) Montpellier and (f) Ravenna are
at risk according to all applied models.

4. Discussion

In this study, a non-tropical ENM was applied to assess the spatial outbreak risk of
chikungunya in Europe. The results were compared with those of a global model [48]
and validated against an epidemiological model that was applied for six representative
cities within the study area. In addition, this epidemiological model captures the temporal
outbreak risk.

The non-tropical model projects all past outbreaks in Europe. It thus reflects real-life
transmission much more accurately than either of the previously published ENMs for
chikungunya, which predicted very small [48] or no [47] climatically suitable areas in Eu-
rope. Compared with those previous models, the non-tropical model predicts considerably
larger at-risk areas of chikungunya transmission in western and central Europe (eastern
France, southern England, and Ireland), regions in southern Europe (western Spain and
northern Italy), and south-eastern Europe (Greece and western Turkey). Using the sensitive
“minimum training presence” threshold as a worst-case scenario, even large areas of west-
ern Germany and the Benelux states may be considered potential areas of transmission.
The temporal risk assessments for 2003 and 2019, given by the epidemiological model for
cities in these areas, indeed indicates 23–60 days of R0 ≥ 1 for Freiburg in south-western
Germany, but only a very short time-window of transmission for Amsterdam (7–9 days
of R0 ≥ 1). This confirms that relying on a single type of model is not sufficient for the
risk-assessment of vector-borne diseases (compare, e.g., [43,62]). At this point, it is again
important to mention that the ENM includes both temperature- and precipitation-based
variables, whereas the EM is purely based on daily mean temperatures. This dichotomy
between the ENM and the epidemiological model is very pronounced in Ireland. There, the
non-tropical ENM predicts high climatic suitability for CHIKV transmission, whereas the
epidemiological model estimates 0 days of R0 ≥ 1 for all the time series under consideration.
This can be explained, at least partially, through Ireland’s oceanic climate. The absence
of frost events in the mild winters facilitates mosquito survival [39], whereas summer
temperatures are not high enough to facilitate disease transmission. Further factors, such
as salinity or wind speed, that could affect vector distribution [83,84] were not included in
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the ENM either. The epidemiological model, on the other hand, currently assumes a fixed
probability distribution for the vector-to-host ratio, not accounting for spatial differences in
human population density and mosquito abundance.

Especially for temperate and subtropical regions, further epidemiological models have
been developed for outbreaks in Italy [85–88], Japan [89], and the US [90]. Coupling an
epidemiological model with a temperature-dependent population model of Ae. albopictus,
Poletti et al. [85] found the same at-risk time period for the Italian provinces of Ravenna,
Cesena-Forli, Rimini, and Bologna. However, since information on the actual number
of breeding sites was lacking, precise estimates of the density of mosquitoes over time
were not possible. For the outbreak in 2017 in Italy, Manica et al. [86] predicted the risk of
chikungunya transmission in the Lazio region up until mid-November as a consequence of
favorable climatic conditions. The identification of virus dispersion from outbreak foci was
supported by indicators based on voluminous and velocious data in Italy and France [87],
but the specificity of risk maps can be further improved by including factors such as
land use and vector flight activity and biting behavior. A global model for chikungunya,
dengue, and Zika transmission was established by Ryan et al. [91]. This spatio-temporal,
temperature-dependent, empirically parameterized model of disease transmission by
Ae. albopictus shows similar spatial patterns of areas at risk compared to the 5-percentile
threshold of the non-tropical ENM, but misses large areas in northern parts of the Iberian
Peninsula and western parts of France. In contrast, large areas of southeastern Europe are
classified as seasonal (1–3 months) risk areas for chikungunya by Ryan et al. [91], which
are not classified as risk areas in the ENM under any threshold.

For the ENM, one of the basic assumptions is that the target species already occupies
the entirety of its environmental niche [92]. For a mosquito-borne disease, the niche consists
of the joint environmental niches of its vectors, in combination with thermal effects on
epidemiological parameters (such as vectorial capacity and the duration of the extrinsic
incubation period; cf. [42,43]). As mentioned above, in many parts of the world, the
invasive vector species Ae. albopictus has not yet reached its distributional boundaries. It
cannot be excluded that Ae. albopictus either has not yet reached full niche occupancy or is
currently in the process of shifting its niche [93]. In addition, global underreporting due to
a lack of accurate reporting and diagnostic facilities in developing countries is a known
complication when working with chikungunya case data [94–96]. This means that the
actual niche size of chikungunya could be larger than that estimated by the ENM, resulting
in an underestimation of risk. Furthermore, it needs to be kept in mind that climate change
affects not only the potential at-risk region, but also the at-risk time period and the duration
of the transmission season.

Climate change will further amplify the chikungunya transmission risk in Europe [91,97].
The vector Ae. albopictus is projected to spread further north of its current distribution [98].
Furthermore, under high carbon emission scenarios, Ae. aegypti is projected to invade large
parts of southern Europe up to the end of this century [41,99].

The models presented here estimate the risk of chikungunya transmission based
on several environmental and biological factors. Recently, it was also found that the
demographic history of the invasive vector Ae. albopictus and co-evolution with different
CHIKV strains play a specific role in the possible occurrence of autochthonously acquired
chikungunya virus disease in Europe [100]. To date, all autochthonous transmissions in
Europe have been caused by strains that belonged exclusively to the East/Central/South
African ECSA lineage [101].

Further research is needed to elucidate the impact of biodiversity patterns (e.g., func-
tional, species, and genetic diversity) on mosquito-borne disease transmission. Little is
known, for example, about mosquito genetics, which seems to play a crucial role in CHIKV
transmission [100]. Vector competence for CHIKV is suggested to be more dependent on
mosquito genetics than for the dengue virus [100]. Conversely, the effects of temperature
on transmission are stronger for dengue than for chikungunya [102]. The non-tropical
model for Europe can be transferred to other temperate and subtropical regions which have
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already experienced single outbreak events to further validate the model’s results. The
integration of human population density and mosquito abundance data can further narrow
down areas at risk, where mosquito–host ratios are high [48]. Although the monitoring of
mosquito abundance is very time-intensive, these data will be crucial in the development of
abundance models which can serve as early-warning systems for mosquito-borne diseases.

5. Conclusions

The non-tropical model presented here expresses the real-life transmission of CHIKV
in Europe with greater accuracy than the comparable previous approaches. Based on this,
the estimated spatial extent of chikungunya transmission in Europe is larger than previous
models have suggested. The non-tropical ENM, specifically adapted to non-tropical areas,
clearly shows the areas in Europe where continuous vector monitoring is advisable, and
the surveillance and reliable diagnosis of febrile illnesses should be ensured by providing
information to physicians. For areas classified as high-risk, the establishment of regionally
adapted early warning systems is recommended as an important means of proactive
public health management. Our study proves once more that there are no “silver bullet”
approaches to modeling vector-borne diseases. In practice, as all models necessarily need
to simplify certain parameters of disease transmission, a single model cannot cover every
aspect equally well. Consequently, it is essential to consider a variety of models, keeping in
mind their strengths and weaknesses.
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.3390/v13061024/s1, Figure S1: Overview of the occurrence records used for the final model, regions
identified as tropical, and definition of the calibration area. Figure S2: multivariate environmental
similarity surface (MESS) analysis for the ecological niche model. Figure S3: Locations of weather
stations used for the epidemiological models. Figure S4: Data sources and data completeness for
temperature time series. Figure S5: Potential chikungunya outbreak risk in additional cities in
Europe. Table S1: Variable selection for the ecological niche model. Table S2: Parameters of the
epidemiological model.
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