
MuLE
A Multi-Paradigm Language for Education

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von
Nikita Dümmel
aus Karaganda

1. Gutachter: Prof. Dr. Bernhard Westfechtel
2. Gutachter: Prof. Dr. Wolfram Haupt

Tag der Einreichung: 15. Dezember 2021
Tag des Kolloquiums: 23. Mai 2022

Acknowledgements

First and foremost, I want to thank my doctoral supervisor Prof. Dr. Bernhard
Westfechtel for giving me this opportunity, mentoring me throughout the entire
process and helping me make decisions which had a long lasting effect both on
this work and on my personal attitude.
Speaking of opportunity, initially the work on this thesis was financed by the

project Qualitätsoffensive Lehrerbildung of the Federal Ministry of Education and
Research of Germany before I was employed directly by Prof. Dr. Westfechtel.
This project has made it possible to start working on this thesis.
I would also like to thank Prof. Dr. Wolfram Haupt for his assessment of this

thesis, and Dr. Matthias Ehmann, who has helped designing the implemented
language and the programming course where it was used, as well as for the help
with the subsequent statistical analysis of the gathered results. Additionally, my
thanks goes to Dr. Michael Ebert who worked on another federal project called
EVELIN and whose tool we have used in the initial iterations of our programming
course.
Of course, I also want to thank my colleagues Dr. Thomas Buchmann, Monika

Glaser, Sandra Greiner, Bernd Schlesier, and Johannes Schröpfer, as well as my
former colleague Dr. Felix Schwägerl for helping me organize my work, provid-
ing helpful tips and technical support, finding an acronym for the implemented
language which turned out to be more difficult than initially imagined, as well as
for interesting discussions and conversations both related and unrelated to work.
My thanks goes also to the students, who have directly contributed to this

work by providing implementation of certain modules or testing ideas, as well as
all the students who have participated in the programming course and especially
those who had the patience to give feedback.
And last but not least, I would like to thank all the people close to me for their

support, but also for reminding me that there are other important things in life
and shaping me into the person I am.

You have my sincerest gratitude!

Zusammenfassung

Über eine lange Zeit wurde in der Lehre die Programmiersprache Pascal einge-
setzt, die speziell dafür konzipiert wurde. Sie wurde jedoch durch professionelle
objektorientierte Sprachen wie Java abgelöst. Diese Entscheidung ist insofern
verständlich, als Studierende in der beruflichen Praxis mit professionellen Sprachen
konfrontiert sein werden. Die Komplexität dieser Sprachen kann jedoch für
Progammieranfänger überwältigend sein. Daher wird im Kontext der Lehre für
Programmieranfänger eine Sprache benötigt, die spezielle für diesen Zweck ent-
worfen wurde.
Ein großer Teil dieser Arbeit besteht aus einer Analyse der Programmier-

sprachen, die aktuell in der Lehre eingesetzt werden. Dabei werden sowohl speziell
für diesen Kontext, sowie für den industriellen Einsatz, entwickelte Sprachen be-
trachtet. Die gewonnenen Erkenntnisse werden dazu verwendet, die Anforderun-
gen an eine neue Sprache für die Lehre zu formulieren, sowie diese Sprache zu
entwerfen und zu implementieren. Die daraus entstandene multiparadigmatische
Sprache für die Lehre MuLE (engl.: a Multi-paradigm Language for Education)
unterstützt folgende Programmierparadigmen: prozedural, objektorientiert und
funktional, wobei der Fokus der Sprache auf dem prozeduralen Programmier-
paradigma liegt. Die Sprache wird aktuell durch die Entwicklungsumgebung
Eclipse und deren Werkzeugen unterstützt.
MuLE wurde im Rahmen eines Vorkurses für die Erstsemestervorlesung

”
Kon-

zepte der Programmierung“, die auf Java basiert, an der Universität Bayreuth
eingesetzt. Durch das Feedback der Studierenden wurde die Sprache und die da-
rauf basierende Programmierumgebung kontinuierlich verbessert. Zur Evaluation
wurden die Klausurergebnisse der Studierenden, die am Vorkurs teilgenommen
bzw. nicht teilgenommen haben, miteinander verglichen. Abgesehen von der
ersten Iteration des Kurses, waren die Leistungen der teilnehmenden Studieren-
den besser. Dies lässt vermuten, dass MuLE effektiv in der Programmierlehre
eingesetzt werden kann.

i

Abstract

Since the emergence of object-oriented programming, the educational facilities
have stopped using programming languages specifically designed for the purpose
of education and are relying on professionally used languages instead. Even
though it is understandable why this is the case, after all, sooner or later the stu-
dents will be confronted with these languages, we are arguing that using complex
professional languages in introductory programming education can be detrimen-
tal. These languages are designed with different priorities in mind than what is
really important at the start of education. Furthermore, their complexity can
act overwhelming for beginner programmers and the tendency towards implicit
behaviour among some of these languages can be a cause for unnecessary mis-
conceptions. Thus, it is our opinion that a language specifically designed with
education in mind is required when teaching programming.
In this thesis, we analyse existing professional and educational languages and

tools and use the gained information to summarize requirements, design, specify
and implement an educational language that we have called MuLE – a Multi-
paradigm Language for Education. As the name suggests, the language supports
several programming paradigms, i.e. procedural, object-oriented and functional.
We have chosen procedural programming as a platform upon which the other
paradigms are implemented. The language is currently supported by the Eclipse
IDE with its range of powerful tools.
MuLE was utilized for its intended purpose in a preliminary programming

course, which is performed prior to the start of the CS1 lecture at the University
of Bayreuth, where Java is used as the programming language. We have used
the course to gather feedback from the target audience to improve the language.
Additionally, we have compared the performance in the final exam of the CS1
lecture of those who have participated in the course to the performance of those
who have not. Except for the very first iteration of the course, the performance
of course participants was better than the performance of non-participants which
leads to the assumption that MuLE can be effectively used to teach programming
concepts to beginner students.

iii

Table of Contents

1. Introduction 1
1.1. Background and Motivation . 1
1.2. A Multi-Paradigm Language for Education 3
1.3. Overview . 4

2. Programs and Programming Paradigms 5
2.1. From Algorithms to Programs . 5
2.2. Procedural . 10
2.3. Object-Oriented . 18
2.4. Functional . 25
2.5. Logic . 34
2.6. Conclusion – Multi-Paradigm Languages 44

3. Programming Languages in Education 46
3.1. The Purpose of Programming Education 47
3.2. Choosing a Language . 50

3.2.1. Professional Languages . 50
3.2.2. Educational Languages . 58

3.3. Tools . 67
3.4. Summary . 70

4. Requirements and Design Decisions 72
4.1. Requirements . 72
4.2. Design Decisions . 75

4.2.1. General Decisions . 75
4.2.2. Procedural Programming 87
4.2.3. Object-Oriented Programming 92
4.2.4. Functional Programming 96

4.3. Multi-Paradigm Programming with MuLE 99
4.4. Discussion . 103

5. Specification of MuLE 105
5.1. Identifiers, Namespaces and Scoping 105

5.1.1. Namespaces and Scope Rules 105
5.1.2. Qualified Names . 110
5.1.3. Visibility Modifiers . 112

5.2. Grammar Notation . 115
5.3. Lexical Units . 117

5.3.1. Comments . 117
5.3.2. Identifiers . 118
5.3.3. Keywords . 120

v

5.3.4. Separators . 122
5.3.5. Operators . 122
5.3.6. Brackets . 123
5.3.7. Value Literals . 124

5.4. Compilation Unit . 126
5.5. Type System and Values . 127

5.5.1. Typed Elements . 128
5.5.2. Definition of MuLE’s Data Types 129
5.5.3. Integer . 129
5.5.4. Rational . 130
5.5.5. String . 131
5.5.6. Boolean . 131
5.5.7. Enumeration Type . 132
5.5.8. Compositions . 133
5.5.9. Lists . 139
5.5.10. References . 141
5.5.11. Operations . 144
5.5.12. Type Compatibility and Conversion Rules 146
5.5.13. Value Copying Semantics and Equality Rules 149

5.6. Expressions . 155
5.7. Blocks . 162
5.8. Statements . 163

5.8.1. Variable Declaration Statement 164
5.8.2. Assignment Statement . 165
5.8.3. Operation Invocation . 166
5.8.4. if Statement . 171
5.8.5. loop and exit Statements 172
5.8.6. let Statement . 173
5.8.7. return Statement . 175

5.9. Operations and their Parameters 176
5.9.1. Operation Parameters . 176
5.9.2. Named Operations . 178
5.9.3. Anonymous Operations . 182
5.9.4. Returning References to Local Values 185
5.9.5. Validation Checks in the Context of Operations 185

5.10. Main Procedure . 186
5.11. Conclusion . 187

6. Libraries 188
6.1. IO . 188
6.2. Mathematics . 191
6.3. Strings . 192
6.4. Lists . 194

vi

6.5. Turtle . 196
6.6. UBTMicroworld . 198
6.7. GUIFactory . 205
6.8. Conclusion . 213

7. Tool Support 214
7.1. Eclipse IDE . 214
7.2. Execution . 221
7.3. Conclusion . 221

8. Implementation 222
8.1. The Eclipse Modelling Project . 223
8.2. The Xtext Framework . 226
8.3. Plug-in Project Structure . 230
8.4. Language Specific Modules . 231

8.4.1. Grammar and the Resulting Metamodel 232
8.4.2. Scope Provider . 243
8.4.3. Type Provider . 245
8.4.4. Compile Time Validation 247
8.4.5. Code Generation to Java 251
8.4.6. Implementation of Standard Libraries 263
8.4.7. Utility Package . 264

8.5. UI Modules . 265
8.5.1. Launch Shortcuts and Debug Support 266
8.5.2. Syntax Highlighting . 269
8.5.3. Outline Tree Provider . 270
8.5.4. Proposal Provider . 272
8.5.5. Quickfix Provider . 272
8.5.6. Automatic Formatting . 273
8.5.7. Project and File Creation Wizards 274

8.6. Testing Procedure . 275
8.7. Conclusion . 276

9. Evaluation and Related Work 277
9.1. Practical Application and Students’ Feedback 277

9.1.1. Preliminary Programming Course 277
9.1.2. Students’ Feedback and Performance 283
9.1.3. Conclusion and Threats to Validity 293

9.2. Related Work . 294

10.Conclusion 300

vii

Appendix A. Installation Instructions 304

Appendix B. Grammar Definitions 306

Appendix C. IO Library API 311

Appendix D. Mathematics Library API 313

Appendix E. Strings Library API 315

Appendix F. Lists Library API 317

Appendix G. Turtle Library API 319

Appendix H. UBTMicroworld Library API 321

Appendix I. GUIFactory Library API 324

Appendix J. Implementation of the Universal Turing Machine 329

List of Figures 335

List of Listings 338

List of Tables 343

Referenced Books 344

Referenced Articles 346

Referenced Conference Proceedings 349

Referenced Online Sources 352

Students’ Contributions 354

Own Publications 355

viii

1. Introduction

Learning and teaching programming is not an easy undertaking. These words, or
at least semantically close variations, were often encountered when researching
for this thesis, leading to the rising suspicion that it has become a sort of tradition
to begin a paper, an article or a book focusing on programming education with
these words. And why not, after all, during the learning process the students are
overwhelmed by a set of new and unfamiliar concepts, conventions, algorithms
and problems which have their roots in everyday life, however, follow slightly
different rules and require them first to adapt to the new world of programming.
Teaching these students is, as already said, not easy either. Every student is
different and may show better results if a different approach is used. However,
time constraints, the number of students, limitations of used tools and a plethora
of various other reasons require the designer of a programming course to find an
optimal solution, which would most likely not suit every student.
At the same time, the demand for programmers and software-engineers on the

market is continuously rising. In the middle of the 20th century, computers were
large machines located in specialized rooms and operated by teams of scientists
used for scientific and military purposes. In the 1970s, many people working in
the information industry assumed that at large, people are not and never will be
interested in personal computers. However, by the turn of the millennium due to
the triumphant success of the internet, emergence of new medial platforms and
overall increasing reliance on computers by broad sections of the population and
in the industry, these assumptions have been proved wrong.
Today, everyone who owns a smartphone carries a personal computer in her

pocket, a very complex device which looks like something out of a science fiction
movie by the standards of the previous century. Many people own a computer at
home and have to operate one at work. Companies are continuously transferring
to digitally assisted work to raise their productivity, starting with assembly line
robots and diagnosis software and ending with computer assisted graphic design
and accounting. Certain events, such as the ongoing Covid-19 pandemic, have
forced the humanity to even further accelerate the process of digitalization.

1.1. Background and Motivation

Without software, a computer is just an electronic device lacking its intended
practical functionality. Starting with the operating system, which keeps the de-
vice running, and ending with various applications, every piece of software must
be implemented by a programmer. The ever increasing demand, rising complex-
ity and continuous evolution of software systems create an ever present need for
competent programmers, which in turn leads us back to the problem of their
education.
The rising interest for computer scientists on the market has led to an increas-

1

ing amount of students enrolling in the corresponding subjects. A large amount
of them do this not out of a year long passion for computer science related disci-
plines and hobbies, but simply hoping for a better chance at future employment.
Usually, these students have no prior programming experience and lack an intrin-
sic understanding of how algorithms work. Exactly these people are the target
audience of this thesis. When starting to learn programming, students are often
confronted by several unfamiliar concepts and problems at once. At the core
of each program lies an algorithm, the logic of this program which has to be
translated using a programming language into a piece of software, which will run
on a computer. Depending on the chosen programming language and tools, the
problems encountered by the students may range in their severity and include:

� Bridging the gap between abstraction and concrete implementation. Ab-
straction has multiple meanings in this case, i.e. problems are often formu-
lated using natural language, which is abstract by its nature. Furthermore,
abstraction also plays an integral role in computer science, be it different
abstraction levels of programming languages, data abstraction, control ab-
straction, etc.

� Problem solving, i.e. understanding what has to be done and designing
an appropriate algorithm. Studies [1][2] as well as own observations prove
that problem solving is usually the more difficult task for beginners. Under-
standing how a loop works is less difficult than realizing that an iteration
is required to solve a specific problem, which is usually just a small part of
a much bigger problem.

� Application of the correct language constructs and programming concepts
for the problem at hand, e.g. a loop or recursion if a certain process is
repeated. This is aggravated when closely related yet still slightly different
constructs can be used in certain cases.

� Knowing specific hardware and software limitations which may lead to un-
stable behaviour of the program. For example, languages without tail recur-
sion optimization are less suitable for algorithms which rely on this feature
and may lead to the stack overflowing at runtime.

� Knowing how to operate the programming environment. Although a simple
text editor and a compiler are sufficient to start programming, it is arguably
not the best choice of tools in teaching programming. An IDE with syntax
highlighting and debugging support can be very helpful, however, more
complex professional development environments may require more time for
the students to get acquainted with.

� And, finally, how to use the computer itself as well as its operating system.
Although basic computer skills are pretty much guaranteed today, as we

2

have mentioned almost everyone owns some sort of a personal computer,
same can not be said about the operating systems. The most commonly
used OS in the computer labs and by the instructors of the University of
Bayreuth is currently Windows 10. However, some students are using other
operating systems such as macOS, which follows slightly different conven-
tions regarding the display and the placement of specific menus, which has
led to time consuming issues in several cases in the preliminary program-
ming course, which we will discuss in chapter 9.

The less experience a student has in any or all of these fields, the more prob-
lems are encountered in the process which may accumulate to a really frustrating
experience leading to students failing and quitting as a result. However, matters
can be made even worse by using a complex programming language. Therefore, a
comparably simple language must be used when teaching programming to abso-
lute beginners. Simplicity does not, however, imply a lack of support for complex
programming concepts, after all, this language is meant to prepare the students
for their inevitable confrontation with a complex professionally used language.

1.2. A Multi-Paradigm Language for Education

Initially, the language MuLE was developed as a part of the Qualitätsoffensive
Lehrerbildung [3] program financed by the Federal Ministry of Education and
Research of Germany. The goal of this program is to improve the education of
teacher students, thus the universities around Germany were given specific fields
to focus on. Our topic was the knowledge heterogeneity and cultural diversity
among the students. In the Computer Science department, we have chosen to
focus on the knowledge heterogeneity, i.e. differences in the background knowl-
edge of our first semester students. After less than a year, we have split from the
federal project but have still continued working on MuLE. After all, the reasons
why we have started working on it in the first place have not disappeared.
MuLE (Multi-Paradigm Language for Education)1 is a multi-paradigm lan-

guage that is designed to be both beginner friendly and at the same time as an
effective educational tool. Finding the acronym was a lengthy task by itself, ini-
tially the language was called Athena, an arguably uninspired name with at least
several other software systems sharing the same label. In its current state the
language supports the three currently most important programming paradigms:
procedural, object-oriented and functional.
To reduce the amount of concepts initially confronted by beginner students,

MuLE provides a certain level of abstraction. Manual memory management is
in our opinion not a required skill for beginner programmers and is rather an
obstacle for beginner students at the initial state of programming education.

1http://www.ai1.uni-bayreuth.de/de/projects/MuLE/index.html

3

Therefore, MuLE offers implicit memory management and garbage collection. It
provides a minimal set of orthogonal language constructs which are expressive
enough to avoid obscure syntax. Speaking of which, MuLE offers a clear syntax
which is easy to read, understand and learn. The orthogonality of provided
language constructs should mitigate doubts at deciding which construct to use
when confronted with a specific situation, i.e. by offering a single type of a loop
the students will only have to decide between this loop and recursion instead
of additional variations of a loop. Although not every problem which we have
described in the previous subsection can be solved by such a language directly,
using it alleviates some of these problems thus helping students to cope with
other issues facilitating the entire process of learning how to program.
The language is designed in a way, that its constructs can be easily introduced

incrementally in a programming course. It should be possible to use MuLE at
both secondary and tertiary educational institutions. We have tested the lan-
guage in a course designed around the “procedural-first” approach. Nevertheless,
an “objects-first” approach should also be feasible.

1.3. Overview

We will start by analysing programming as a process itself as well as various pro-
gramming paradigms in chapter 2. We will use various programming examples to
demonstrate different approaches at implementations of the same algorithm ac-
cording to the specific paradigms and the corresponding languages adhering to the
these paradigms. Chapter 3 concentrates on the purpose of programming educa-
tion and gives an overview over a selection of professional programming languages
currently used in education as well as specifically designed educational languages
and tools. Based on the knowledge gained from these chapters, the requirements
that we have formulated for MuLE and the consequent design decisions are sum-
marized in chapter 4. Subsequently, chapter 5 contains the specification of MuLE
including the namespaces, its grammar, type system, definitions and semantics
of its language constructs, etc. Chapter 6 gives a brief overview of the standard
libraries distributed with MuLE and gives short examples of their usage. In its
current implementation, MuLE is supported by the Eclipse IDE, the range of the
offered tools is discussed in chapter 7. The implementation of MuLE itself as well
as that of its tool support is presented in chapter 8, including a description of
used tools. Finally, chapter 9 presents an evaluation of MuLE based mostly on its
practical application in a non-mandatory preliminary programming course, the
subsequent feedback by the students, as well as a comparison to other languages
currently used in education. The appendix contains the installation instructions,
APIs of the standard libraries, the complete Xtext grammar of the language as
well as the implementation of the Universal Turing machine as a proof of Turing
completeness of the language.

4

2. Programs and Programming Paradigms

This chapter is meant to clarify our understanding of programming in general, as
well as look deeper into a selection of programming practices called paradigms.
Therefore, in the first section we start by giving a brief explanation of algorithms
and how they transfer into programs and general programming concepts. The
subsequent sections focus on the specific programming paradigms, i.e. procedural,
object-oriented, functional, and logic programming. We are using a dictionary
algorithm as a running example over the course of this entire chapter.

2.1. From Algorithms to Programs

Every day people are confronted with problems they have to deal with. A lot of
them are rather trivial and we are capable to solve them without really having
to think about HOW we solve them. The problems in question are not the kind
of finding a cure for a decease but, for example, how to tie shoes or cook a meal.
Yet even these problems are not as trivial as we might think. As a child we have
to learn not only how to tie shoes but also which shoe has to be put onto which
foot. And our parents or guardians have to patiently teach us these procedures.
When we have to write a text in a foreign language, we often have to look up
words in a dictionary, a skill we usually acquire during our primary or secondary
education.
The procedures that we use to solve specific problems are called algorithms.

So what is an algorithm? It can be described as a general approach to solve
a group of related problems [4]. Once we learn how to tie shoes, we can tie
any existing shoe, it does not matter if those are sports or winter shoes. Since
different non-related problems, e.g. cooking or looking up a word in a dictionary,
require different sets of skills, there is no single algorithm to solve all problems.
Technological evolution, while striving to make such problems easier to solve or
offer new opportunities, brings a whole set of new problems which require new
skills in order to be solved. As an example, we now have web based dictionaries
in addition to classic ones in book format, meaning that different algorithms can
exist to solve seemingly the same problem depending on available tools, skills,
preferences, etc.
This leads us to computers, the tools that help us to solve immensely complex

mathematical problems which, for example, allowed us to send humans into space.
When we have to explain a solution of a problem to another human being we
use natural language, hand gestures and additional resources like texts, images,
models, etc. A computer is like a child, so screaming and hitting it will not lead to
a positive outcome. Instead, we must use a programming language to explain how
an algorithm works. An algorithm written down in a programming language is a
program. Programs can be used to teach the computer how to interpret numbers,
texts, images, models and all the other resources that a machine is capable to

5

work with to provide the required results.
Today the programmers use higher level programming languages, which are

easy to read (for a programmer) and are very expressive, but are not directly
“spoken” by a computer. So first we actually have to teach it how to understand
such languages. Depending on the architecture of the processor, each computer
has its own machine language, which is not human readable as it consists of only
ones and zeroes [5]. Above that are the assembly languages which are also depen-
dent on the architecture, but are at least human readable. Assembly languages
support basic operations, like storing a value in a register or adding two values,
thus programming in such languages is quite tedious, even if sometimes neces-
sary if the program has be optimised for a specific architecture. Therefore, most
programmers mostly use higher level programming languages to write programs,
which then have to be translated into machine code or other languages by specific
programs called compilers. The other possibility is to execute whole programs
or even separate statements and expressions in an interpreter. A hybrid solution
may exist in case of some languages, where the program is compiled and executed
on a virtual machine [6].
Now that we have created a rough overview over algorithms and programs,

let us take a look at an example of paper based dictionaries. In the following
scenario we formulate an algorithm on how to find a translation of a word. To
achieve this we could follow these steps:

1. Look at the first letter of the word that needs to be translated.

2. Scroll through the pages to find the words starting with that letter.

3. Search though these words until the required word is found.

4. The result is the translation of this word.

This is a rather abstract definition of this algorithm, which is enough for a
human being, but lacks depth to be used by a machine. Let us create a more
in-depth version of the same algorithm:

1. The input is a word, that needs to be translated (we will call it the WORD).

2. Get the first letter of the WORD (the LETTER).

3. Navigate to the section of the dictionary containing words starting with
that LETTER.

4. Get the first word which starts with the LETTER and compare it with our
WORD.

5. If both words are equal, go to step 8.

6. If there is no next word starting with the LETTER, go to step 9.

6

7. Get the next word that starts with the LETTER, go to step 5.

8. The result is the translation of that word.

9. The result is the fact that the dictionary does not contain the WORD.

This is a more detailed algorithm and most steps can be easily translated into
a program by using a higher level programming language. Step 3 requires us to
navigate to a certain section in the dictionary but does not specify how. This
action can be further described in detail as another algorithm with its own input
and output. In fact, even such actions as looking up the next word and comparing
two words with each other can be further specified as their own algorithms. If the
programmer is using a lower level programming language, an in-depth definition
of these actions is most certainly unavoidable. We could also remove step 3
entirely and just look at each word until we find the word that we are looking
for. This would make our algorithm simpler, but also potentially require more
time to get a result.
This brings us to the next topic: abstraction. This is a very important concept

in computer science as it allows to simplify rather complex problems and lead
to more elegant solutions. As already mentioned, computers “speak” machine
language which is not easily understood by humans. Assembly languages require
the programmers to explicitly describe each step. And while we need professionals
who can work with such languages for specific tasks, the majority of programmers
will work with higher level languages which allow to write very complex programs
by using far less instructions compared to a lower level language, leading to a
faster and less error prone development process. Such languages work at a higher
level of abstraction, for example, most contemporary high level programming
languages do not offer manual memory management mechanisms reducing the
amount of work that has to be done by the programmer but also taking away some
level of control. We will encounter other examples of abstraction, e.g. control
abstraction and data abstraction [6], in programming languages in subsequent
sections. In summary abstraction means simplification by reducing the amount
of details.
Since the goal of this work is to implement a higher level educational language,

we will not be further discussing low level languages. Instead we will analyse
which program elements are unavoidable if we want to implement specific algo-
rithms. This information will be imperative in chapter 5, where we will explain
the design decisions behind MuLE.
Since programs are algorithms written down with a programming language, all

such languages are required to support specific concepts. Writing a program is
an evolutionary process that can be summarized into following steps [4]:

7

1. Formulate a functioning algorithm.

2. Refine the algorithm under consideration of the capacities of a specific ma-
chine.

3. Optimize the algorithm.

Usually, when we execute an algorithm, we have some resources that we want to
work with and we expect some sort of result. In our dictionary lookup algorithm
the starting resources are a word and the dictionary and the result is either the
translation of the word or the knowledge, that this word is not included in that
specific dictionary.
Thus, the very first important concept that we have to consider is the concept

of data, i.e. the input of our program, any information required, modified or
produced during the execution of the program as well as the output. In our
dictionary lookup algorithm we have marked the words WORD and LETTER
because these words represent memorized pieces of information which play an
important role in our algorithm. Furthermore, the WORD is compared with
other words, other pieces of information which are structured in a specific way,
which allows us to navigate through them with relative ease. So not only do we
need to understand what data is, we also need a way to store and access it.
So to define and use data, a programming language must support following

concepts:

� Data types – specific operations may be performed only with specific data,
for example we may divide one number by another but we cannot perform
the same operation with two words. Data types allow us to distinguish
between various kinds of information. Furthermore, since, in case of pro-
gramming, we are working with hardware and its limitations, e.g. limited
memory, data types have also the function of deciding the range of a value
and therefore how much memory such a value will require when needed.

� Data representation – the machine representation of values is binary, which
is not easily readable by humans. Thus, a high-level programming language
must include a way to represent data in human readable form, e.g. decimal
representation of numbers, words consisting of alphabet characters, etc.

� Data storage and referencing mechanism – in order to work with data, a
language needs a mechanism to store and access it. Most high-level pro-
gramming languages have automatic memory management, i.e. the user is
not required to manually allocate enough memory for specific data before
using it, and deallocate it to free up memory space after it is no longer
needed. Data may be stored in different locations in memory, i.e. stack
and heap, which vary in space and the speed of access. Programming lan-
guages rely on the concept of variables, which may represent a value (in

8

mathematical sense) or a named container which may contain a value or a
reference to a specific value in memory, this depends on the paradigm of a
specific language.

� Data structures – more often than not, information is stored in a specific
way that allows quick access to data or a meaningful structure. In case of
our dictionary example, rather than storing each word of a dictionary in its
own variable, it is far simpler to store the collection of all words and access
it via a single variable.

Such actions as comparing two words with each other and returning the cor-
responding translation are operations with data, i.e. we can evaluate and ma-
nipulate existing data or produce new pieces of information by executing such
operations. These operations can be written down as elementary instructions.
For example get the first LETTER of a WORD is such an instruction, which
takes a string as a parameter and returns the first character which can then be
stored in a variable.
Such instructions are executed in a specific sequence, usually one after the

other. However, there are specific instructions which evaluate a condition and
may skip some steps or return to a previous step. This allows to implement
conditional branching and repetition contributing to the control flow of an al-
gorithm or a program. For example step five of our algorithm evaluates the
condition two words must be equal, and if this condition is true, jumps to step
eight which ultimately leads to a successful termination of our algorithm. Step
seven instructs the algorithm to jump to a previous step leading to a repetition.
Modern high level languages lack a jump (goto) instruction for good reasons [6]
and usually offer various language constructs which simulate the following three
control structures, which are enough to solve any computable task [7]:

� Sequence – the steps in an algorithm and, therefore, the instructions in a
program are executed one after the other, unless told otherwise by specific
control structures.

� Conditional branching – depending on the condition, specific parts of a
program may be executed while other parts may be skipped.

� Repetition – a set of instructions may be executed several (a potentially
infinite number of) times, until a specific condition is met.

These concepts are more or less common amongst existing high level program-
ming languages, nevertheless, these languages may exhibit significant differences
in the implementation of these concepts. Different languages are built with dif-
ferent purpose and different programming paradigms in mind. A programming
paradigm is: “A way of approaching a programming problem. A way of restrict-
ing the solution set” [8]. As a result, a single algorithm may be implemented

9

differently with languages which adhere to different programming paradigms,
however implementations of varying algorithms using the same paradigm will
display many similarities in their general approach. In the following section we
will see how our previously defined dictionary algorithm can be implemented in
various programming languages which represent four different paradigms.
The first high-level programming languages that emerged in the 1950s were

built around two different ideas of programming. Imperative programming relies
upon state altering instructions that tell the machine exactly how to proceed
whereas the declarative programming is more focused around telling the program
what the outcome should be. Over time, due to constant evolution of hardware,
change of standards and requirements, as well as the emergence of new challenges,
these initial paradigms have evolved spawning new sub-paradigms and as a result
thousands of new programming languages and dialects [5]. This is also one of the
reasons, why there is no single universal programming language. The number of
programming paradigms is a lot smaller, the authors of [9] mention 27 different
paradigms which are used in praxis in their article. All of them offer some unique
concepts but also have a lot in common, therefore, we will not discuss all of
them but will focus on the four most important ones instead: procedural, object-
oriented, functional and logic [10].

2.2. Procedural

As already mentioned, imperative programming was one of the two major ap-
proaches which emerged with the first high level programming languages in 1950s,
i.e. FORTRAN [11], COBOL [12] and ALGOL [13]. These languages were devel-
oped with a specific purpose in mind, e.g. FORTRAN (Formula Translator) was
meant to assist with complex numerical computations, which for example would
occur in simulations of nuclear reactions, while COBOL (Common Business Ori-
ented Language) was designed to deal with huge datasets that are prevalent in
banking as well as big governmental and business organisations. Finally ALGOL
(Algorithmic Language) was developed to represent algorithms as close as pos-
sible. This language was far less successful than the other two and was mostly
used in the field of research and academia. Nevertheless, it was far ahead of its
time, e.g. it included block delimiters, for and while loops, etc., and has greatly
influenced the designers of both Pascal and C, two very successful procedural
languages [5].

Concepts of Procedural Programming

The general idea of imperative programming (and therefore of procedural pro-
gramming) is to work closely with the principles of the functionality of a com-
puter, i.e. the von Neumann architecture, and not to be based on the mathemat-
ical model of computation. For instance, a variable in mathematics represents a

10

value, which does not change during the process of computation. However, vari-
ables changing their values is a usual practice used in imperative and procedural
programming. The general principle of this paradigm is the change of state
controlled by basic instructions called statements.
In the previous section we have discussed concepts of data, operations with

data and control flow. In our dictionary lookup algorithm we see several steps
with jumps to other steps. This behaviour was initially supported in imperative
languages (and is still available in assembly languages) by the goto statement,
which allowed not only to jump to another statement in a subroutine (for example
simulating a loop) but also to exit a subroutine and jump to an outer context.
This was later criticized [14] which has led to structured programming, a sub-
paradigm which evolved from imperative programming.
Structured languages include language constructs which offer almost the same

level of control as the goto statement but also enforce a clear and structured
style of writing a program. Such languages include loops as well as statements
which allow to exit a loop (exit, continue) or a subroutine at any place (return).
Some languages allow to throw exceptions which is another way to modify control
flow.
The subroutines, that we have already mentioned several times, represent

the core concept of procedural programming, another sub-paradigm of impera-
tive programming. The step three of our dictionary lookup algorithm tells us to
navigate to a specific section in a dictionary which contains all words beginning
with a specific letter. This by itself is a complex operation which requires an
input and produces some sort of result. Instead of specifying each step in that
sub-algorithm we have simply invoked it implying that it is already implemented
somewhere else. Such operations are called subroutines and act as control ab-
straction [6]. The caller may not even be aware of the implementation details of
a subroutine, which is usually the case when we use subroutines provided by a
library. Here we see another advantage of subroutines, once implemented, they
can be distributed via libraries to be reused, greatly reducing the amount of effort
put into implementing new complex software.
Subroutines are usually parameterized, i.e. they can accept value parameters

which alter the behaviour of the subroutine. The previously mentioned sub-
algorithm to navigate to a specific section in a dictionary may, for example,
accept the fist letter of a word and the dictionary (or alternatively a pointer or
a reference to it) as a parameter. Subroutines that return a value are called
functions, e.g. our sub-algorithm could return a subset of the dictionary with
only the specific words or a pointer to the first word in the required section. A
procedure is a subroutine which does not return a value, e.g. if our sub-algorithm
accepts a pointer to the first word in the dictionary, this pointer could be set
to the first word in the specific section of the dictionary, thus altering the state
of the pointer in the outer context without actually returning a value. These
subroutines are eponymous to the whole procedural paradigm.

11

Example of a Procedural Program

Now let us finally translate our algorithm into a procedural program. For this
task we will use the programming language Pascal [15], which was developed as
an evolution of ALGOL and was used as the primary educational programming
language around the world until the rise of object-oriented programming. The
source code of the program is given in listings 1, 2 and 3.
Before we can start implementing our dictionary lookup algorithm, we must

first define what a dictionary is. Real world dictionaries are collections of words
which are arranged alphabetically and the purpose of a dictionary is, for exam-
ple, to give a definition or a translation of a word. Therefore, we define a type
Dictionary as a record – a composite type – which contains the purpose (sim-
ply as a string) and an array of Sections. A Section is a also a record, which
contains a string (which should be the first letter of contained word, sadly our im-
plementation lacks any validation mechanisms) and an array of WordPairs, again
a record consisting of two strings: a word and its translation. Then we declare
the global variables for our dictionary and three sections, this implementation
is just an example and is not meant to be used as a fully functional dictionary
program. These global variables are exemplary for the imperative style of pro-
gramming, they represent the state of our dictionary which is shared between all
subroutines as well as the main body of the program. A change performed in one
subroutine on such variables will have side effects on the entire program.

1 program DictionaryProceduralExample;

2 uses sysutils;

3

4 type WordPair = record

5 word : string;

6 translation : string;

7 end;

8

9 type Section = record

10 letter : string;

11 words : array [1..100] of WordPair;

12 end;

13

14 type Dictionary = record

15 purpose : string;

16 sections : array [1..100] of Section;

17 end;

18

19 var

20 sectionA, sectionB, sectionC : Section;

21 dict : Dictionary;

Listing 1: Declarations of types and global variables in our procedural program.

12

Now that we have mentioned them, let us talk about subroutines of our pro-
gram (listing 2). These subroutines represent the actual implementation of the
behaviour defined by our dictionary lookup algorithm.
The procedure lookupTranslation accepts a formal string parameter named

word, which is mapped to an actual parameter when this procedure is called
(examples are given in listing 3). Afterwards, we declare a number of local
variables which we will use in our procedure, such as the first letter of our word
or the section in which we will look for our word. The keyword begin marks the
beginning of the body of our subroutine, in Pascal the keyword pair begin-end is
generally used to denote blocks of statements, a central characteristic of structured
programming.

1 function getTargetSection(letter : string) : Section;

2 var

3 counter : integer;

4 begin

5 for counter := 1 to 100 do

6 if AnsiCompareText(dict.sections[counter].letter, letter) = 0 then

7 begin

8 getTargetSection := dict.sections[counter];

9 exit;

10 end;

11 end;

12

13 procedure lookupTranslation(word : string);

14 var

15 lookupSection : Section;

16 letter : string;

17 counter : integer;

18 begin

19 letter := LeftStr(word, 1);

20 lookupSection := getTargetSection(letter);

21 matchFound := false;

22 for counter := 1 to 100 do

23 begin

24 if AnsiCompareText (lookupSection.words[counter].word, word) = 0 then

25 begin

26 writeln (word + ’ : ’ + lookupSection.words[counter].translation);

27 exit;

28 end;

29 end;

30 writeln (word + ’ : no matches found’);

31 end;

Listing 2: Subroutines implementing the dictionary lookup algorithm.

The body of the procedure contains the actual functionality, i.e. the imple-
mentation of our algorithm. Here is a recollection of the algorithm as well as the

13

explanation how it was implemented:

1. The input is a word, that needs to be translated (we will call it
the WORD) – this is represented by the string parameter word in the
procedure lookupTranslation.

2. Get the first letter of the word (the LETTER) – first we need a
variable where we store the LETTER, the variable letter is declared in
the variable declaration section of the procedure. In order to obtain the first
letter of our word, we call the function LeftStr from the built in library
sysutils for this task. The returned value, i.e. the first letter of our word,
is then assigned to the variable letter.

3. Navigate to the section of the dictionary containing words start-
ing with that LETTER – here we invoke the other subroutine that we
have implemented in this program: the function getTargetSection which
accepts a string parameter letter and returns a value of type Section.
Since our dictionary is a collection of sections, we simply iterate with a for
loop over this collection until we find the section with the respective letter.
In that case, the section is assigned as the result of our function, meaning
that it will be returned after the execution, which is terminated with the
exit statement. Pascal lacks an explicit return statement.

4. Get the first word which starts with the LETTER and compare
it with our WORD – this step as well as the steps six and seven are
connected with each other and are represented by a for loop in our imple-
mentation. The loop is repeated the same number of times as the maximal
amount of words in a section.

5. If both words are equal, go to step 8 – we use another library sub-
routine AnsiCompareText, which returns a 0 if two strings are equal (case
insensitive), to compare the parameter word with the current word in the
section. This step is represented by the head of the if-statement. The body
of the if-statement, which is executed if the condition is true, represents
the step eight.

6. If there is no next word starting with the LETTER, go to step 9
– the loop has run to its end.

7. Get the next word that starts with the LETTER, go to step 5 –
the loop is not yet finished.

8. The result is the translation of that word – this step is executed if
the condition in the step five is true. This is represented by the body of
the if-statement. Here we print the word as well as its translation and exit
the procedure.

14

9. The result is the fact that the dictionary does not contain the
WORD – if the loop ran all the way through without terminating the pro-
cedure, meaning that the word we are looking for is not in the section, the
message no matches found is printed next to that word on the console and
the procedure is terminated normally since there are no other statements.

This is only one of the many possible implementations of our dictionary lookup
algorithm. For example, we could have used a linked list instead of an array as
our data structure for storing word pairs and sections. This would require the
use of pointers and while-loops instead of for-loops and it would make the
implementation more dynamic.

1 begin

2 sectionA.letter := ’A’; sectionB.letter := ’B’; sectionC.letter := ’C’;

3

4 sectionA.words[1].word := ’Alphabet’; sectionA.words[1].translation := ’alphabet’;

5 sectionA.words[2].word := ’Anweisung’; sectionA.words[2].translation := ’statement’;

6 sectionA.words[3].word := ’Ausdruck’; sectionA.words[3].translation := ’expression’;

7 sectionB.words[1].word := ’bauen’; sectionB.words[1].translation := ’build’;

8 sectionB.words[2].word := ’Baum’; sectionB.words[2].translation := ’tree’;

9 sectionB.words[3].word := ’Bedingung’; sectionB.words[3].translation := ’condition’;

10 sectionC.words[1].word := ’Chip’; sectionC.words[1].translation := ’chip’;

11 sectionC.words[2].word := ’Code’; sectionC.words[2].translation := ’code’;

12 sectionC.words[3].word := ’Computer’; sectionC.words[3].translation := ’computer’;

13

14 dict.purpose := ’German - English’;

15 dict.sections[1] := sectionA;

16 dict.sections[2] := sectionB;

17 dict.sections[3] := sectionC;

18

19 lookupTranslation(’Alphabet’);

20 lookupTranslation(’Anweisung’);

21 lookupTranslation(’Ausdruck’);

22 lookupTranslation(’bauen’);

23 lookupTranslation(’Baum’);

24 lookupTranslation(’Bedingung’);

25 lookupTranslation(’Chip’);

26 lookupTranslation(’Code’);

27 lookupTranslation(’Computer’);

28

29 lookupTranslation(’Algorithmus’);

30 lookupTranslation(’Programm’);

31 lookupTranslation(’Sprache’);

32 end.

Listing 3: Main body of our procedural program.

Finally, listing 3 shows the main block of our program. This is the part of
every Pascal program (and many other languages, such as C or Java), which is

15

executed first, meaning that this is where we are initially calling our subroutines
in order to get the desired results. But first, we have to initialize our dictionary.
Since it consists of sections, we need to initialize them too. Thus, we fill them
with a couple of words, assign them their respective letters, and then fill our
dictionary with the newly initialized sections.
Since we now have a dictionary that we can use for a test case, we start calling

our lookupTranslation procedure. We use both words that are contained in our
dictionary and words that are missing in order to test both successful and failed
runs of our program.

The produced output is as follows:

Alphabet : alphabet

Anweisung : statement

Ausdruck : expression

bauen : build

Baum : tree

Bedingung : condition

Chip : chip

Code : code

Computer : computer

Algorithmus : no matches found

Programm : no matches found

Sprache : no matches found

Summary

Based on the structure of the Pascal program above, we can give a rough
example of a procedural program structure:

1. Program name.

2. Import or include instructions.

3. Type declarations, which may include records, enumerations (type RGB

= (red, green, blue)), range types (type Number = 1 ... 100) and
user defined basic types (type Age = integer). Other languages may have
other variants of type declarations.

4. Declarations of constants and global variables.

5. Subroutine declarations.

6. Main block.

16

Let us finally summarize the hallmarks of procedural programming, including
those inherited from structured and imperative programming, as well as language
constructs (not based on any specific language) that support them:

� A statement is the most basic language construct which may cause side
effects. The assignment statement is the most prominent example here.

� Statements are structured in blocks, which may be parts of other state-
ments, subroutines and other language constructs. Blocks are delimited
by pairs of keywords (ALGOL, Pascal, Ada), brackets (C) or indentations
(Python). Blocks can be nested, e.g. a subroutine may include loops and
conditional statements. Blocks also represent namespaces for identifiers,
more details in section 5.1.

� Subroutines are essentially blocks of statements with an identifier, which
can be used to call the subroutine from different places in a program. Sub-
routines may accept parameters and may return values.

� Control structures decide in which sequence the statements are executed.
We differentiate between three types of control flow:

1. Sequence – is the basic way of executing statements if no other control
structure is involved.

2. Conditional branching – blocks of statements may be skipped or exe-
cuted only if specific conditions are met. Examples of statements that
support such behaviour are if ... then ... else and switch ...

case statements.

3. Repetition – allows to execute blocks of statements several times. We
differentiate between infinite (while ... do, do ... while) and finite
(for ... do, foreach ... do) repetition. Another way to implement
repetition is via recursion, in which case a subroutine calls itself.

� The behaviour of control flow may be further altered by specific state-
ments, that may terminate the entire loop (break), terminate the current
iteration of the loop and begin instantly with the next iteration (continue)
and terminate the execution of a subroutine (return, exit in Pascal).

� Procedural languages offer records or structs as a mechanism to de-
fine composite datatypes, which may combine data items with different
types.

� Furthermore, such languages usually include type homogeneous data
structures like arrays and sets.

� Dynamic and recursive data structures and relations can be implemented
with pointers or references. Pointer variables store an adress to a loca-
tion in the memory instead of a value.

17

2.3. Object-Oriented

In the previous section we have discussed how procedural programming has evolved
from imperative by introducing subroutines, which are essentially meant to per-
form actions on data, i.e. subroutines are the active element in a procedural
program while data plays a more passive role. Now what if those roles were re-
versed? What if the data would perform the active role and would provide its
own behaviour? In object-oriented programming this role is taken over by the ob-
jects. Moreover, in pure object-oriented languages everything is an object, even
elementary values such as integer numbers [16].
SIMULA (Simulation Language) was developed as an extension of ALGOL,

a procedural language we have mentioned in the previous section. The first
version of this language, SIMULA 1 [17], was originally intended to simulate
quasi-parallel execution of several processes contained in a single activity. A
process can be a full fledged ALGOL program or merely include passive data
structures [18]. Each process is given a local time variable which simulates the
passing of time when the processes are executed. It was, however, the next
iteration of this language called SIMULA 67 [19] which marked the birth of object-
oriented programming by introducing many of the concepts we know today, such
as objects, classes, inheritance, virtual procedures (i.e. abstract methods) and a
safe referencing mechanism.
Whereas SIMULA has evolved from ALGOL and thus contains both object-

oriented and procedural concepts, Smalltalk [20] was developed to be a pure
object-oriented language. As already mentioned, everything is an object in such
a language. A programmer can send messages to objects in order to achieve some
sort of behaviour. Let us take a look at the following example:

(x>0) ifTrue:[x:=x+1.] ifFalse:[x:=0].

This line of code is Smalltalk’s way of writing an if-statement. Here we send
the messages ifTrue and ifFalse, each with a corresponding code block, to the
object (x>0). Unlike in procedural languages, where an if ... then ... else

statement consists of keywords which are part of the grammar of the language,
ifTrue and ifFalse are actions, that can be executed by Boolean objects. Such
actions, which can be performed by objects and are therefore defined in a class,
are called methods in more modern object-oriented languages like C++ and Java.
These two languages are not considered as pure object-oriented languages.

C++ [21] was developed as an evolution of C, a procedural language, and thus
includes most of its language constructs and allows to program in an entirely pro-
cedural way. Java [22], although heavily inspired by the syntax of C, is however
not related to this language. Unlike Smalltalk, both languages offer statements
as the most basic independent unit in a program, similar to procedural languages.
In contrast to C++, it is not possible to program in a purely procedural way in
Java. Many modern languages support object-oriented programming due to the

18

fact that this paradigm is very efficient at modelling complex systems leading to
implementations which are easer to understand and maintain.

Concepts of Object-Oriented Programming

The following three concepts are integral for the object-oriented programming
paradigm [23][6].
As previously mentioned, unlike in procedural programming, data plays a more

active role in object-oriented programming by providing its own behaviour. We
no longer have separate subroutines that perform actions with chunks of data
that are defined as global variables or were passed to them as parameters. Now
our data objects can actively execute such operations by themselves, potentially
changing their internal state in the process. To achieve this, the declaration of the
type and the operations on the instances of that type should be contained in the
same syntactic unit. Thus the first major concept of object-oriented programming
is encapsulation, i.e. grouping of data and operations in a single syntactic unit.
This leads to the emergence of the class concept, a blueprint for an object which
defines the attributes and functionality of that object and acts as a type. The
data and subroutines are often called fields or data members and methods or
member functions respectively. Some languages like Java allow to define nested
types, i.e. classes within classes, further encapsulating and hiding implementation
details, that are not relevant outside of a specific class.
An abstraction of various entities is a generalized view with the most significant

attributes of these entities. Thus, in regards to object-oriented programming
we often talk about data abstraction and abstract data types. An abstract
data type should allow the possibility to declare variables with that type but
hide the underlying implementation details. In fact, an abstract data type may
completely lack any implementation details and serve only as a sort of a blueprint
for inheriting non-abstract types enforcing them to implement specific behaviour.
This brings us to the concept of inheritance which allows to define subtypes
of an existing type. A subtype inherits the implementation details of its super
type and can add new features as well as redefine the inherited operations. An
instance of a subtype is automatically an instance of its super types. A super
type may be either abstract or non-abstract, both kinds of types can be used to
declare variables. However, only non-abstract types may be used to instantiate
objects since abstract types may lack implementation details.
There are two distinct approaches to inheritance: single and multiple inheri-

tance. Single inheritance is less complex and easier to explain. It is however more
restricted compared to multiple inheritance since it always results in a tree like
hierarchy. Therefore it is not possible to implement a class inheriting the func-
tionality of two independent classes without introducing some redundancy to the
code by using single inheritance. Multiple inheritance, on the other hand, allows

19

to design more natural solutions. However, it comes with a range of problems
which require their own workarounds [24].

While most object-oriented languages offer abstract classes, some languages
like Java or C# [25] include an additional construct called interface. Both con-
structs represent abstract types, i.e. you may declare a variable of such types,
but you have to use an inheriting non-abstract type to instantiate that variable.
The difference lies in their intended goal, i.e. an abstract class is a generalization
of several classes while an interface can provide several super types which may
act as interfaces to a single system for various clients with different access rules.
Additionally interfaces offer a way to implement multiple inheritance in Java,
albeit somewhat restricted. Some languages like Java allow only single inheri-
tance on classes, while others, for example C++, allow multiple inheritance and
implement specific mechanisms to counter the issues that come with it.

Other than by using abstract types to hide implementation details, many lan-
guages offer additional mechanisms for information hiding such as visibility
modifiers. For example, there is no need for abstract types for a specific class,
yet it still includes some internal operations which should not be called from
outside. Such methods could be hidden by setting their visibility to private or
other alternatives offered by a specific language. Fields are usually declared as
private and specific access methods are implemented if needed.

Having several related yet still different types in a single inheritance hierarchy,
and especially abstract types which can be used in variable declarations but not
for initialization of the same variables, means that we now have variables which
may have two different types at once as long as we are talking about languages
with static typing. The static type is given at the time of the declaration and
is used for compile time checks while the dynamic type is the one with which
the variable is initialized. This way we may have collections of related objects
with different implementations of the same method. For example if a class Car
redefines a method drive() which was inherited from the class Wheeled, in-
stances of Car will execute the redefining method regardless of the static type
of the variable. The concept of dynamic binding is responsible for calls of the
corresponding methods on objects at runtime depending on its dynamic type.

Another important aspect of object-oriented programming is the referencing
mechanism. While an object is technically a chunk of data in the memory and
can therefore be considered a value of a variable, semantically it makes no sense
to use objects as values the same way they are used in procedural programming,
e.g. by copying the value in assignments or return statements. Therefore most
of the object-oriented languages, that were originally designed as object-oriented
languages (unlike C++), offer either only reference types (e.g. Python) or a mix
of value and reference types, whereby value semantics are reserved for primitive
types only (e.g. Java).

20

Example of an Object-Oriented Program

In the following example we are going to implement the dictionary lookup
algorithm in an object-oriented way by using Java. Unlike in the procedural imp-
lementation of the same algorithm in the previous section, in this example the
implementation is separated into three compilation units: the interface (listing
4), its implementation (listing 5) and the test file (listing 6).

1 package dictionary;

2

3 public interface Dictionary {

4 String getPurpose();

5 void lookupTranslation(String word);

6 }

Listing 4: The interface to our implementation.

First we have to specify what our dictionary does, i.e. we can look up the trans-
lation of a word and we can ask our dictionary what its purpose is. We use an
interface for this task, which is one of the two ways to define abstract types in
Java, the other would be by using abstract classes. The interface in question is
called Dictionary and is displayed in listing 4. It includes merely the method
heads for our operations that we intend to perform on our dictionary instances
as a user. The methods are not implemented, in fact Java interfaces were not
meant to provide any implemented methods until Java 8 was released. This is
not a problem, even though we can declare a Dictionary variable we are not
allowed to instantiate a Dictionary object. To be able to do this, we must first
implement this interface by a non-abstract class which will force us to implement
these methods.
The class DictionaryImpl in listing 5 implements our Dictionary interface.

DictionaryImpl is a non-abstract subtype of Dictionary, which means that we
can now declare Dictionary variables and initialize them as DictionaryImpl

objects. Specific design patterns like the factory pattern [26] rely on this be-
haviour by internally creating objects and returning them only by their interface
type effectively hiding any internal details of these objects from the user.

1 package dictionary;

2

3 import java.util.LinkedList;

4 import java.util.List;

5

6 public class DictionaryImpl implements Dictionary {

7 private class WordPair {

8 public String word;

9 public String translation;

10 }

11

21

12 private class Section {

13 public char letter;

14 public List<WordPair> wordPairs = new LinkedList<WordPair>();

15 }

16

17 private String purpose;

18

19 private List<Section> sections = new LinkedList<DictionaryImpl.Section>();

20 public DictionaryImpl(String purpose, String[][] wordPairs) {

21 this.purpose = purpose;

22 for (String[] wordPair : wordPairs) {

23 WordPair wp = new WordPair();

24 wp.word = wordPair[0];

25 wp.translation = wordPair[1];

26 char letter = wp.word.charAt(0);

27 Section section = getTargetSection(letter);

28 if (section == null) {

29 section = new Section();

30 section.letter = letter;

31 section.wordPairs.add(wp);

32 sections.add(section);

33 } else {

34 section.wordPairs.add(wp);

35 }

36 }

37 }

38

39 private Section getTargetSection(char letter) {

40 for (Section s : sections)

41 if (s.letter == letter)

42 return s;

43 return null;

44 }

45

46 @Override

47 public void lookupTranslation(String word) {

48 char letter = word.charAt(0);

49 Section section = getTargetSection(letter);

50 if (section != null)

51 for (WordPair wp : section.wordPairs)

52 if (wp.word.equals(word)) {

53 System.out.println(word + " : " + wp.translation);

54 return;

55 }

56 System.out.println(word + " : no matches found");

57 }

58

22

59 @Override

60 public String getPurpose() {

61 return purpose;

62 }

63 }

Listing 5: The object oriented implementation of the dictionary lookup algorithm.

Our implementation is mostly similar to the procedural example in the previous
section, however there are some key differences. First and foremost, the types
WordPair and Section are no longer separate from our Dictionary, but are now
contained within our DictionaryImpl class and are both set as private. These
types represent data structures which are relevant for the internal functioning of
our dictionary and are not of any interest for the user.
Our dictionaries have a purpose and are implemented as a list of sections,

both are private fields in our class. After the field declarations we see the con-
structor of the class, a specific language construct which is meant to initialize
the fields of our objects. Constructors are called once when we instantiate an
object basically providing means to initialize private fields, which are meant to
be initialized once and it is otherwise not possible to change their state from the
outside. Therefore, the constructor is set to public, otherwise we could not access
it and it would not be possible to create instances of this class. The constructor
relies on the method getTargetSection(char letter), which is not relevant to
the user and is therefore set to private in this example .
Finally, we have two public methods lookupTranslation(String word) and

getPurpose() which provide implementation to each inherited method from the
interface and therefore must be declared as public. The latter method basically
provides read only access to the field purpose of our dictionary since Java Strings
are immutable [27].

1 package dictionary;

2

3 public class Main {

4 public static void main(String[] args) {

5 Dictionary dict = new DictionaryImpl(

6 "German - English", new String[][] {

7 {"Alphabet", "alphabet"},

8 {"Anweisung", "statement"},

9 {"Ausdruck", "expression"},

10 {"bauen", "build"},

11 {"Baum", "tree"},

12 {"Bedingung", "condition"},

13 {"Chip", "chip"},

14 {"Code", "code"},

15 {"Computer", "computer"}

16 }

17);

23

18 dict.lookupTranslation("Alphabet");

19 dict.lookupTranslation("Anweisung");

20 dict.lookupTranslation("Ausdruck");

21 dict.lookupTranslation("bauen");

22 dict.lookupTranslation("Baum");

23 dict.lookupTranslation("Bedingung");

24 dict.lookupTranslation("Chip");

25 dict.lookupTranslation("Code");

26 dict.lookupTranslation("Computer");

27 dict.lookupTranslation("Algorithmus");

28 dict.lookupTranslation("Programm");

29 dict.lookupTranslation("Sprache");

30 }

31 }

Listing 6: The main class, which tests the implementation of the algorithm.

Let us finally take a look at the Main class in listing 6. This class contains the
main method which has similar function to the main body of a Pascal program in
listing 3, i.e. it is the first operation that is executed when we run our program,
therefore, this is where we initialize and test our dictionary.

The dictionary variable is declared as Dictionary and initialized as Diction-
aryImpl with the corresponding parameters in the constructor call. Unlike in our
procedural example, we can no longer change the internal state of our dictionary
variable. We can neither add new sections or word pairs, nor can we change the
values of the existing ones. We are only able to access the methods which are
defined in our interface Dictionary.

Summary

So let us give a compact overview of the important features of object-oriented
programming:

� The state is carried by objects, i.e. an object saves information similar
to a record, however it can also execute actions called methods, i.e.
subroutines reserved to specific objects. Most contemporary object-oriented
languages rely on statements to implement behaviour of the methods.

� Classes represent non-primitive data types that define objects.

� Many object-oriented languages support primitive data types common to
procedural and functional languages.

� Abstraction and information hiding are important, implementation
details are often hidden by specific language constructs.

24

� Inheritance allows to specify related classes, which may still show differ-
ences among each other. Commonalities are specified in super types while
differences are kept within each specific subtype.

� Some languages support multiple inheritance, while other offer only single
inheritance. There are also languages that offer a mix of both versions,
e.g. Java with single inheritance on classes and a possibility to implement
multiple interfaces.

� Abstract types allow to specify abstract methods enforcing non-abstract
subtypes to implement these methods. Such types are not instantiable.

� Referencing mechanisms are used to reference objects since value copy
semantics of procedural languages make no sense in object-oriented context.

Therefore, a program written with this style would usually consist of class
declarations, which reference each other and contain all the information about
the functionality of the program. The internal structure of a class is quite similar
to that of a procedural or a functional program, i.e. it may include nested type
declarations, global variables (fields) and subroutines (methods).

2.4. Functional

Previously we have discussed the procedural and object-oriented programming
paradigms and their evolution based on imperative way of thinking. The main
idea of imperative programming is to tell the machine what to do exactly by
using statements, i.e. state altering instructions. The alternative to this kind
of programming is represented by the declarative programming paradigms, e.g.
functional and logic, wherein instead of instructing the machine what to do step
by step, the programmer writes down what the result of a program should be and
most of the heavy lifting is then taken over by the implementation of the chosen
programming language (this is especially apparent in logic programming with
Prolog). Compared to imperative languages, such languages work at a higher
level of abstraction and the programs tend to be shorter and more elegant.
In this section we will focus on functional programming, which has emerged

in parallel to imperative programming in the late 1950s. The first functional
programming language was Lisp (List processing) [28] which originally was spec-
ified as a mathematical notation for computer programs based on the lambda
calculus by Alonso Church [29]. Many dialects of Lisp were developed since its
introduction, some Lisp dialects like Common Lisp [30], Scheme [31] and Clo-
jure [32] are still used today both in education and in industry. According to [30]
Common Lisp is one of two most used programming languages in AI development
(the other one being Prolog, more in the next section) due to its flexibility and

25

powerful libraries. Meanwhile Scheme, which offers only a minimal set of pow-
erful features, is rather used in education. Functional programming languages
offer elegant solutions to deal with large data sets [33]. In general, functional
programs tend to be shorter and more elegant compared to programs written in
an imperative way and are therefore easier to read and maintain. Furthermore,
known mathematical definitions can be more easily translated into a program by
using a functional language, instead of requiring to find an algorithmic solution
when using an imperative one, thus reducing the amount of work that has to be
done writing and verifying a program in such a case.
Before we dive into details, let us first outline what contributes to the functional

programming paradigm. According to [34] “Functional programming is a style of
programming that emphasizes the evaluation of expressions, rather than execution
of commands. The expressions in these languages are formed by using functions
to combine basic values. A functional language is a language that supports and
encourages programming in a functional style.” The authors continue by giving
an example calculating the sum of integers from 1 to 10 written in an imperative
way:

total = 0;

for (i=1; i<=10; ++i)

total += i;

In this example we have a variable total intended to store the result. The
result is calculated via a for loop, which iterates over the range of integers
using an internal variable whose value is added to the variable total. When
programming in an imperative style, we are using statements to change the state
of our variables.
The authors follow up with an example of the same program written with

Haskell [35], a pure functional programming language.

sum [1..10]

In this example the expression [1..10] is evaluated to a list of integers defined
by the given range, and sum is a library function which adds all values of a list and
returns the result. However, not every functional language offers such extensive
libraries as Haskell or language constructs to define lists by integer ranges. Here
is the same example written with Scheme, a minimalistic dialect of Lisp:

(define sum

(lambda (from total)

(if (= 0 from)

total

(sum (- from 1) (+ total from)))))

(sum 10 0)

26

In this example, we define a function sum as a lambda expression which accepts
two parameters: from and total. The function returns the value of total if
from equals 0, otherwise the function is called recursively with a value of from
reduced by 1 and the value of total aggregated by the current value of from.
The values of the arguments are not changed during the execution, however, each
recursive call is initiated with new values until the required conditions are met.
The whole program is a list of computations which is ultimately evaluated to a
single value. Such behaviour is typical for functional programming, but is not
exclusive to functional languages since it can be reproduced in procedural and
object-oriented languages.

Concepts of Functional Programming

We have already mentioned the lambda calculus and the lambda expressions
but before we discuss them, let us first take a look at functions. “A function is
a rule of correspondence by which when anything is given (as argument) another
thing (the value of the function for that argument) may be obtained” [29]. It
is further specified that a function may not necessarily be applied to any kinds
of arguments, i.e. in case of programming a specific function may be applied
to specific types and their subtypes. A function is basically a subroutine, which
accepts one or more arguments and returns a value depending on those arguments.
Since functional programming languages strive to be free of any side effects,
meaning that the use of state altering constructs like mutable variables or pointers
to memory are not desirable (and not available in pure functional languages), any
function is always guaranteed to return exactly the same value if called with the
same arguments.
Lambda calculus was introduced by Alonso Church in 1932 as an attempt to

formalize every mathematical construct by using functions [33]. A mathematical
function usually has a name, e.g. f(x) = x + x is a function called f . When
everything is supposed to be a function, having named functions everywhere, es-
pecially for functions that are only used once, might be impractical. So a specific
notation was introduced to represent functions without a name. The previously
defined function f is written as (λx.x + x) using this notation. Applying this
function to the value 5 will give us a 10 as a result.
The interesting part about lambda calculus however, is that it allows us to

pass other functions as an argument. Let us take a look at the following lambda
expression: (λop.λx.(op x x)).
It defines a function which accepts two parameters op and x, wherein op is

another function and x is a value. The body of the function is the application of
op on two occurrences of x, so basically op acts as a binary operator. We can now
use this function, for example, to apply the (+) operator on any applicable value:
(λop.λx.(op x x)) (+) 5 = (λx.((+) x x)) 5 = (+) 5 5 = 10. We can now use
any other binary function as a parameter and get a different result, depending

27

on the used function. Moreover a function can return not only values, but other
functions as well. This concept is called higher order functions, an integral
concept to functional programming languages. In such languages, functions are
often represented by lambda expressions and handled as data, i.e. a function is
a value in itself and the lambda expression is the lexical representation of that
value.
The next important concept is that functional programming languages usu-

ally work with immutable values and data structures instead of mutable
variables that are common in imperative programming languages. Functional
programs are not written as a sequence of statements the way an imperative pro-
gram is, but rather as a list of definitions and expressions, or even a single nested
expression which evaluates to a single value. So instead of, for example, accessing
data in memory and altering it via pointers or references, a functional program
computes and returns a value. Therefore, there is no need for variables which
change their state, just as there is no need to change the contents of a list. In a
functional program a list is “altered” by creating a new list containing values of
the old one plus some modifications and returning it. Same concept applies to
composite types.
As previously said, functional programs are not a sequence of statements, but

are rather a list of definitions and expressions which use these definitions. We will
see this in our functional implementation of the dictionary lookup algorithm in
listings 7 and 8. This also means that, unlike in imperative languages, sequence
is not used as a control structure in functional programming. Functional
programming languages can be usually executed in a REPL (Read-Evaluate-
Print-Loop) environment, in fact Lisp was the first language to introduce such
an environment. The machine reads user input, evaluates it, prints the result
on console and loops to the initial state, i.e. waits for further user input. The
user may write down the whole program as a single expression or define separate
functions which are then invoked in an expression later on. Of course, such
programs can also be written down in a text file and then compiled or interpreted
similar to other languages [23].
Like with any other language constructs in functional programming, condi-

tional branching is represented by expressions. In the previous Scheme
example in which we added all integer values in a specific range, we have an if ex-
pression which either evaluates to the value of total if the value of from equals
0 or leads to a recursive call of the containing function, which will ultimately
evaluate to a value.
Since a functional program is usually a list of definitions and an expression

which uses them, or even just a single expression, there is no need for a loop-like
control structure. Such programs usually rely heavily on recursion to re-
peat specific computations, which is also the way it is in mathematical func-
tions. This does not mean that functional languages lack a loop construct, Lisp
and its dialects for example include loop constructs, which however break away

28

from a purely functional way of thinking. For example (loop (print "Hello,

world!")) is an endless loop which prints "Hello, world!". Haskell, on the
other hand, does not offer such constructs and is considered a pure functional
language. Some form of repetition without recursion can be reached by using
list iteration functions, which evaluate to new lists, like the takeWhile function,
which accepts a predicate and a list and returns list elements starting with the
first one as a new list as long as that predicate is true.
Data structures like lists are usually defined recursively in functional languages,

leading to potentially endless data structures, which leads to the necessity of
delayed or lazy evaluation. That means that even if we define an endless
list, for example we can simply write lst = [1..] in Haskell, it should not be
evaluated right away which would lead to its initialization, hence we would never
get any further and instead would get stuck in an endless initialization process.
However, by means of delayed or lazy evaluation we still have got an endless list
declared and bound to an identifier lst, we can now use this list, for example, to
get first 10 integer numbers (take 10 lst in Haskell) or something in between.
Of course, we can still call a function that iterates over the entire list, leading to
an endless repetition, e.g. we could call filter even lst in Haskell which would
endlessly print even numbers on the terminal until the program is terminated by
other means, yet so can we do the same with an endless loop in an imperative
language.
Another way to optimize such languages is by implementing tail call optimiza-

tion, meaning that when the last expression that is evaluated in a function call is
the recursive call of that function, the previous stack frame is replaced by the new
one instead of adding the new stack frame on top of the previous, thus mitigating
the stack overflow problem.

Example of a Functional Program

Now that we know what the ideas and concepts of functional programming
are, let us implement our dictionary lookup algorithm in a functional way by
using Haskell. Listing 7 contains the actual implementation of the algorithm, the
test code is shown in listing 8, both listings are actually contained in a single
compilation unit file.
The first thing we see in listing 7 is the explicit import of the module Data.Char

which is required to use the function toUpper later in the code. Some modules
are implicitly imported while others are not. After the import, we define the data
types which represent our dictionary. A Dictionary has a purpose and consists
of a list of Sections, each Section has a corresponding letter and consists of a
list of WordPairs, each WordPair consists of a word and its translation. Each
data type derives from the type class Show, meaning it can be printed on the
terminal. These type declarations include named functions which can be applied
to a value of that data type, e.g. if wp is a value of type WordPair, then applying

29

(word wp) will return the String value stored as word in wp.

1 import Data.Char

2

3 data WordPair = WordPair { word :: String, translation :: String } deriving (Show)

4 data Section = Section { letter :: Char, wordPairs :: [WordPair] } deriving (Show)

5 data Dictionary = Dictionary { purpose :: String, sections :: [Section] } deriving (Show)

6

7 head2 :: [a] -> Maybe a

8 head2 [] = Nothing

9 head2 (x:xs) = Just x

10

11 getTargetSection :: Dictionary -> Char -> Maybe Section

12 getTargetSection dict letter2 =

13 let dictSections = sections dict

14 in head2 (filter (\sec -> letter sec == letter2) dictSections)

15

16 lookUpTranslation :: Dictionary -> String -> String

17 lookUpTranslation dict word2 =

18 let targetSection = getTargetSection dict (toUpper (head word2))

19 in case targetSection of

20 Nothing -> word2 ++ " : no matches found"

21 Just targetSection ->

22 let maybePair = head2 [x | x <- wordPairs targetSection, word x == word2]

23 in case maybePair of

24 Nothing -> word2 ++ " : no matches found"

25 Just maybePair -> word2 ++ " : " ++ translation maybePair

Listing 7: Haskell implementation of the dictionary lookup algorithm.

Before we can continue with the implementation of our algorithm, we must
take a look at our own implementation of the head function. We have already
mentioned that lists are defined recursively in functional programming languages,
usually a list is defined as a head and a tail, with the head being the first element
and the tail is a list of the remaining elements. Thus the function head, which is
meant to return the first element of a list, is implemented like this:

head :: [a] -> a

head [] = error "empty list"

head (x:_) = x

So if we call Haskell’s own function head on an empty list, a runtime error will
occur. Since runtime errors are harder to fix, we define our own function head2

(in listing 7), which returns a Maybe a out of a list of as instead of an a. The
a stands for a type parameter, which can be anything in this case, since we are
not restricting it to a specific type class. Maybe is a data type which can act as
a wrapper for functions which may go wrong and not return anything. Thus a
value of type Maybe a represents either the value of type a (wrapped as Just a)

30

or Nothing. So our head2 function returns Nothing if applied to an empty list,
or Just the first element if applied to a non-empty list. Unlike when using the
original function head, using this function forces us to differentiate between the
two possible outcomes in the source code, the program will not compile otherwise.
In both cases we have two function definitions for the same declaration, which
definition is called depends on the passed value. This is called pattern matching
in functional languages.
Now let us examine the function getTargetSection. It accepts two param-

eters, a Dictionary and a Char, and returns a Maybe Section value. In the
function we first define a value dictSections by calling the function sections

on the passed Dictionary parameter dict, which returns us the list of all sections
of that dictionary. We then filter this list for all sections whose assigned letter

is equal to the passed Char parameter letter2, this should return a list with
only one section, assuming the dictionary was initialized correctly and does not
contain several sections with the same letter. Since we want a Maybe Section

and not a list of Sections we call our function head2 on that list, which will give
us a Just Section if a section with a corresponding letter was found or Nothing
if not.
Let us take a closer look at the application of the filter function in this

example. The filter function accepts a predicate and a list as arguments,
and returns a list of elements for which this predicate is true, in our case those
are all sections which have the corresponding letter. The predicate here is
passed as a lambda expression, an anonymous function (sec -> letter sec ==

letter2). This function accepts a parameter sec, which is a section since we use
this predicate together with a list of sections, and returns the result of an equality
check between the letter of that section with the Char letter2, which is an
argument of the function getTargetSection. This is an example how a lambda
expression or an anonymous function can be used in a functional programming
language.
The function lookUpTranslation is the one that actually implements our al-

gorithm. It accepts a Dictionary dict and a String word2 as parameters and
returns a String as a result. Unlike in previous functions, there is no Maybe

this time, meaning that this function is guaranteed to return something. First,
we navigate to our target section by applying the getTargetSection function
to the passed Dictionary argument and the first character of the passed String

argument. To get the first character, we apply the Haskell’s own head function to
keep it short, since there shouldn’t be any empty words in a dictionary anyway,
and then apply toUpper from the imported module Data.Char to ensure that
it is an upper case character. Now we have two cases, either there is no section
which begins with the first letter of the passed String argument, in that case we
return the passed word combined with the message that no match could be found,
or the target section was found. In that case we search through the wordPairs

of the targetSection and filter all words which are equal to our passed word2

31

and get the first element of that list by using our function head2. This time we
use Haskell’s mechanism of list comprehension, however, we could have used the
filter function just as well. If there is no such word in the list of wordPairs,
then there is no such word in the entire dictionary. In this case we return the
passed word2 with the message that no match could be found. Otherwise we
return the word with its translation as a String.

Listing 8 shows the test code of the program. Our dictionary is defined as a
separate value which is then used in the main function of our program which
returns an IO action. Lazy evaluation of Haskell means that the dictionary
definition is not evaluated right away, but only when it is required to perform
other evaluations, i.e. each time the lookUpTranslation function is called in the
main program of our example.

IO actions are somewhat of a departure from the “no side effects” ideology of
Haskell, since reading from and printing on a terminal are side effects, however,
we wouldn’t be able to get programs with which we can interact otherwise. The
output is the same as that of the previous implementations of that algorithm.

1 initTestDictionary :: Dictionary

2 initTestDictionary =

3 Dictionary {

4 purpose = "German-English", sections = [

5 Section {

6 letter = ’A’, wordPairs = [

7 WordPair { word = "Alphabet", translation = "alphabet"},

8 WordPair { word = "Anweisung", translation = "statement"},

9 WordPair { word = "Ausdruck", translation = "expression"}

10]

11 },

12 Section {

13 letter = ’B’, wordPairs = [

14 WordPair { word = "bauen", translation = "build"},

15 WordPair { word = "Baum", translation = "tree"},

16 WordPair { word = "Bedingung", translation = "condition"}

17]

18 },

19 Section {

20 letter = ’C’, wordPairs = [

21 WordPair { word = "Chip", translation = "chip"},

22 WordPair { word = "Code", translation = "code"},

23 WordPair { word = "Computer", translation = "computer"}

24]

25 }

26]

27 }

28

29

32

30 main :: IO()

31 main =

32 putStrLn (

33 (lookUpTranslation d "Alphabet") ++ "\n" ++

34 (lookUpTranslation d "Anweisung") ++ "\n" ++

35 (lookUpTranslation d "Ausdruck") ++ "\n" ++

36 (lookUpTranslation d "bauen") ++ "\n" ++

37 (lookUpTranslation d "Baum") ++ "\n" ++

38 (lookUpTranslation d "Bedingung") ++ "\n" ++

39 (lookUpTranslation d "Chip") ++ "\n" ++

40 (lookUpTranslation d "Code") ++ "\n" ++

41 (lookUpTranslation d "Computer") ++ "\n" ++

42 (lookUpTranslation d "Algorithmus") ++ "\n" ++

43 (lookUpTranslation d "Programm") ++ "\n" ++

44 (lookUpTranslation d "Sprache") ++ "\n"

45)

46 where d = initTestDictionary

Listing 8: The test code of our dictionary implementation in listing 7.

Summary

We conclude this section with a brief summary of the important aspects of
functional programming:

� The expression is the main language construct which is evaluatedwithout
causing side effects. The program consists of a list of definitions and
an expression which uses those definitions and results in a value. Some
programs may be written entirely in a single expression.

� Functions specify the functionality of the expressions, some are distributed
with the languages (arithmetic, list functions, etc.) others can be defined
by the user. A function accepts arguments and returns a value, a function
without arguments is just a value.

� Lambda expressions represent anonymous functions, and can be passed
as arguments or returned as a result of another function.

� Control structures play a different role in functional programming lan-
guages:

1. Sequence – is not present. We may have a list of defined functions,
but they are not executed in the sequential order the way statements
are executed in imperative languages.

2. Conditional branching – functions and conditional expressions are eval-
uated to a certain value depending on specific conditions.

33

3. Repetition – is usually implemented via recursion, however, some func-
tional languages offer loop-like language constructs.

� Primitive data types are the same as in imperative languages. Addi-
tionally functions are handled as data, so the return type of a function
may be another function.

� Lists and other dynamic data structures are commonly used instead of ar-
rays. Composite types similar to records are available in some languages.

� Values and data structures are immutable, i.e. values cannot be
reassigned, they are basically constants, and contents of data structures
cannot be altered.

� Functional languages do not offer explicit memory management mecha-
nisms, since that would contradict the “no side effects” policy of such
languages.

� Functional languages prefer lazy or delayed evaluation, meaning that
expressions are not evaluated right away, but only when it is absolutely
necessary to do so. This allows to define potentially endless data structures,
segments of which can later be used to perform specific calculations.

Other than that, the structure of a functional program is similar to that of a
procedural program. A functional program consists of import instructions, type
and function definitions as well as a main function or an expression which acts
as one.

2.5. Logic

While the three previously discussed programming paradigms are indeed quite
distinct from each other, there are still some overlapping concepts, e.g. all three
paradigms offer some sort of subroutines and the general structure of the pro-
grams is similar among the paradigms, i.e. we usually have a program name,
import statements, type declarations, subroutines and some sort of a main sub-
routine. This does not apply to the paradigm which stands in the focus of this
section: logic programming, which is sometimes also called non-procedural pro-
gramming since there are no user defined subroutines in this style of programming
[36].
Prolog [37] (French: programmation en logique) is the most used logic program-

ming language today. That being said, the entire paradigm is not that widely
utilised compared to previously discussed paradigms. It is mostly used in very
specific fields, for example AI development, expert systems, relational databases
and natural-language processing [23]. The declarative nature of Prolog allows to

34

define a set of facts and rules in a very concise and readable way, which are then
used to get an answer. That answer might be a true or false, or a set of values
which fulfil specific constraints.

Concepts of Logic Programming

The previous three paradigms use boolean logic which is based around three
basic operators AND, OR and NOT and two values TRUE and FALSE. The entire logic
programming paradigm is based on the first-order predicate calculus with some
limitations [6], similar to how functional programming is based on the lambda
calculus. However instead of using functions to represent mathematical relations,
logic programming relies on logical terms.

Let us take a look at a simple set of such terms written using the programming
language Prolog in listing 9. What we have here is a set of atomic propositions,
i.e. terms that consist of two parts, a functor which gives a name to a relation (e.g.
mother or man) and an ordered list of atoms, which represent the objects in that
relation. For example the term mother(alice, charlie) states that there are
two atoms alice and charlie and mother is their relation, it does not explicitly
state that alice is the mother of charlie, it could also mean that charlie is
the mother of alice or something else entirely, the actual semantics should be
known to the user. These terms represent a set of facts which we can now use to
get some sort of information. For example, we can ask if a relation woman(alice)

exists and the answer will be true. We can also ask for atoms which fulfil specific
relations by replacing them with variables, for example querying man(X) would
list bob, charlie and david as valid solutions for the variable X. The value of the
variable is inferred from facts and other rules, meaning that sufficient information
must be present, otherwise the value of a variable cannot be inferred. In a similar
way we can ask who is the mother of charlie (assuming that this is the meaning
of this relation) with the query mother(X, charlie) which will result in X =

alice. This way, we can use atomic propositions to both state facts, and check
them.

1 woman(alice).

2 man(bob).

3 man(charlie).

4 man(david).

5 mother(alice, charlie).

6 father(bob, charlie).

7 father(david, bob).

Listing 9: Prolog facts of the family relations example.

35

Working with facts only is not feasible in the long term. As we see, david
is the grandfather of charlie. We could add this as a fact, however, we can
also infer this information from already existing facts that david is the father
of bob and bob is the father of charlie. Using rules instead of facts whenever
possible reduces the overall amount of definitions and therefore results in a shorter
program. So let us add some rules to the previously stated facts:

1 child(X, Y) :- mother(Y, X).

2 child(X, Y) :- father(Y, X).

3 parent(X, Y) :- mother(X, Y).

4 parent(X, Y) :- father(X, Y).

5 grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

6 grandfather(X, Y) :- grandparent(X, Y), man(X).

7 grandmother(X, Y) :- grandparent(X, Y), woman(X).

Listing 10: Prolog rules of the family relations example.

To define rules we may combine several atomic propositions into compound
propositions by using logical operators. Using all operators of the predicate
calculus allows to define propositions in many different ways [23], which is not
desirable for a programming language. The more complex our relations and,
consequently, rules become, the more variations of such rules appear. Most logic
programming languages rely therefore on the Horn clauses, which are capable to
represent almost any logical statement, as the standard notation for rules [6]. A
Horn clause is composed of a head and a body of terms linked with a logical AND
operator: the clause H ← B1, B2, ..., Bn (in Prolog the← is replaced by :- and a
. is placed after each fact, rule or query) means that H is true if all propositions
on the right side are true. Since the AND operator is the only one allowed, there
is no need to explicitly write it out and it is replaced by a comma instead. Horn
clauses without a head are called headless Horn clauses and can be used to state
facts (in case of an atomic proposition) or as queries (both atomic and compound
propositions). All facts written in listing 9 are headless Horn clauses.
For example, the rules parent(X, Y) :- mother(X, Y) and parent(X, Y)

:- father(X, Y) mean that X is a parent of Y if X is either a mother or a father
of Y. By using these rules we can now check whether alice is a parent of charlie
by querying parent(alice, charlie) and the answer will be true. We can also
ask “Who are the parents of Charlie?” with parent(X, charlie) resulting in
alice and bob. The rule child(X, Y) works in a similar way, however we swap
the variables X and Y when we check the queries mother and father. Querying
child(X, alice) or child(X, bob) will yield charlie as a result while the
query child(charlie, X) will return both alice and bob.
Another example is the definition of the grandparent(X, Z) rule as a conjunc-

tion of parent(X, Y) and parent(Y, Z), meaning that X is a grandparent of Z if

36

X is a parent of Y and Y is a parent of Z. We can now specify what a grandfather
or a grandmother is by combining the grandparent rule with either the man or
the woman relation using the logical AND operator. The query grandfather(X,

charlie) will now tell us that david is the grandfather of charlie, however
grandmother(X, charlie) will not give us any positive results since we haven’t
got any objects in our facts database that fulfil all required relations.

The process of inferring of a proposition from other given propositions is called
resolution. Let’s say P ← Q and Q ← R, we can resolve this to P ← R. In
other words, if we assume that C1 and C2 are Horn clauses and the head of C1

matches one of the terms in C2, then we can replace the matched term in C2 with
the body of C1.

There are two distinct approaches to resolve queries in logic programming.
Forward chaining attempts to find a sequence of matches starting with the facts
and rules and leading to the query. Prolog follows the alternative approach –
backward-chaining – wherein the execution environment attempts to find a chain
of propositions starting with the original query and leading to the facts and
rules in the database. Furthermore, Prolog follows the depth-first search pattern
when analysing compound propositions, i.e. it tries to prove the first proposition
completely before moving to the next one, thus if the current proposition cannot
be proven, there is no need to prove the propositions that follow it. The final
feature of Prolog that should be mentioned is backtracking. When a compound
proposition is analysed and the system fails to prove a term it abandons it and
attempts to find alternative solutions for the previous term, if there is one. Once
an alternative solution for the previous term was found, the system attempts to
prove the formerly abandoned term again. This continues until either the whole
query is proven, leading to some sort of a positive answer, or all possibilities are
exhausted and the process fails, meaning that there are no facts and rules in the
database that can prove that query.

Let us take a look at how this process works by resolving the query “Who is
the grandfather of Charlie?”, i.e. grandfather(X, charlie):

1. The query grandfather(X, charlie) is associated with the head of the
rule grandfather(X, Y) :- grandparent(X, Y), man(X). The variable
Y is instantiated as charlie, X is not instantiated. Basically, we now have
the following query:
grandfather(X, charlie) :- grandparent(X, charlie), man(X).

2. grandparent(X, charlie) is the next sub-query that has to be proven. To
do so, we have to find a match for parent(X, Y), parent(Y, charlie).

3. The first attempt is made with mother(X, Y), which is associated with the
fact mother(alice, charlie).

37

4. We have found a match and return to the previous query, which currently
looks like that: grandparent(alice, charlie) :- true, parent(char-

lie, charlie), meaning that we now have to prove that charlie is a
parent of charlie which will fail. Once it does so, the system tracks back
to the previous sub-query, which was parent(X, Y) and tries to find an
alternate solution.

5. The next attempt will be made with the match father(bob, charlie)

which will also lead to parent(charlie, charlie), so again that query
has to be re-evaluated.

6. Once the sub-query parent(X, Y) is matched to father(david, bob), X is
instantiated as david and Y as bob in the context of the current query. The
next sub-query becomes therefore parent(bob, charlie) which is true,
thus proving the entire query grandparent(X, charlie) instantiating the
variable X as david in the context of the query grandfather(X, charlie)

:- grandparent(X, charlie), man(X).

7. Which means that we now have to prove man(david) which is true proving
the entire original query and giving us the answer X = david.

Example of a Logic Program

Since we now have gained some insight into logic programming and the pro-
gramming language Prolog, let us implement our dictionary lookup algorithm
using this language. The word algorithm might be a bit misleading in this case,
since, as we have already seen, we are not implementing algorithms per se in
logic programming. We do not perform any arithmetic calculations or searches
through collections directly, instead we state facts, define rules and try to prove
specific queries. All calculations, searches and pattern matching is performed in
the background by the implementation of the language.

First and foremost, we have to define what is a dictionary. In the previous
examples we would define data structures for the dictionary first, then the func-
tionality as subroutines and only at the end feed our program with data and test
it. Here we define our dictionary as a fact right away, as demonstrated in listing
11. To achieve this, we use the Prolog data structure which is ironically called
dict. A Prolog dict is a map like data structure which stores key-value pairs,
values can be accessed by their keys later on. In a similar way to our previous
implementations, we define a dict germanEnglishDictionary with its purpose
and a list of sections, which store a letter and a list of wordpairs, and state a
fact that it is a dictionary.

38

1 dictionary(germanEnglishDictionary{

2 purpose:"German - English", sections: [

3 section{

4 letter:"A",

5 wordPairs:[

6 wordPair("Alphabet", "alphabet"),

7 wordPair("Anweisung", "statement"),

8 wordPair("Ausdruck", "expression")

9]

10 },

11 section{

12 letter:"B",

13 wordPairs:[

14 wordPair("bauen", "build"),

15 wordPair("Baum", "tree"),

16 wordPair("Bedingung", "condition")

17]

18 },

19 section{

20 letter:"C",

21 wordPairs:[

22 wordPair("Chip", "chip"),

23 wordPair("Code", "code"),

24 wordPair("Computer", "computer")

25]

26 }

27]

28 }).

Listing 11: Facts database of our prolog dictionary example.

Now that we know what a dictionary is, we must define rules to get data from
that dictionary (see listing 12). Our goal is to get a translation of a word, to do
that, we must first get the section in which the corresponding word pair is located.
In order to get this section, we first need the first letter of the word that we want
to translate. Words are stored as strings which can be converted to lists, which is
the approach that we have used in the rule firstLetterInWord(Letter, Word).
Here we map the passed Word to a corresponding list X by using the internal rule
string codes. Furthermore we state that the list X is equal to [H|] binding the
variable H to the first element in the list X. The in [H|] just tells that the tail
of the list is of no interest to us. By using string codes again we transform that
element back into a string and map it to Y. Finally, we map Y to Letter as an
upper case string. This way we can find out the first letter in a given word, for
example, if we type the query firstLetterInWord(X, "bauen"). the answer
will be X = "B". We can also use this rule to check if a letter is in fact the first
letter in a word by typing firstLetterInWord("B", "bauen")., which is true
in this case.

39

The next rule – sectionInDictionary(Section, Letter, Dictionary) –
proves that a Section with a given Letter is in fact in the Dictionary, so
when we know the Letter and the Dictionary, we can infer the correspond-
ing Section. To achieve this, we first map the variable Sections to the list
of sections in our Dictionary. Furthermore, we state that Section must be
a member of that list and finally that the letter attribute of that Section

must be equal to the passed Letter of the rule. If we now enter the query
dictionary(X), sectionInDictionary(Y, "A", X)., we will get all sections
which have the letter "A" in all dictionaries that we know about. In this case X

will be our German-English dictionary and Y will be its section "A".

1 firstLetterInWord(Letter, Word) :-

2 string_codes(Word, X),

3 X = [H|_],

4 string_codes(Y, [H]),

5 string_upper(Y, Letter).

6

7 sectionInDictionary(Section, Letter, Dictionary) :-

8 Sections = Dictionary.get(sections),

9 member(Section, Sections),

10 Section.get(letter) = Letter.

11

12 translation(Word, Translation, TypeOfDictionary) :-

13 dictionary(Dictionary),

14 Dictionary.get(purpose) = TypeOfDictionary,

15 firstLetterInWord(Letter, Word),

16 sectionInDictionary(Section, Letter, Dictionary),

17 member(X, Section.get(wordPairs)),

18 X = wordPair(Word, Translation).

Listing 12: Translation lookup rules of our prolog dictionary example.

The rule translation(Word, Translation, TypeOfDictionary) is meant to
prove that Translation is a translation of Word in a specific dictionary. First
we introduce the variable Dictionary, ensure that it is in fact a dictionary

and that its purpose is the one that we have given in our rule. Then we get
the first letter of the given Word mapping it to the variable Letter, which is
then used to get the correct section of our Dictionary. Then we tell that the
variable X is one of the wordPairs of that Section and that both Word and
Translation are included in that wordPair. Therefore, if we leave the variable
Translation uninitialized when calling the rule, it will be initialized now. Calling
translation("bauen", X, "German - English"). will yield X = "build" as
a result. Again, we may, for example, use this rule to prove that "build" is the
translation of "bauen" by calling translation("bauen", "build", "German -

English"). which is true.

40

1 printTranslation(Word, Translation, TypeOfDictionary) :-

2 translation(Word, Translation, TypeOfDictionary),

3 write(Word), write(" : "), write(Translation), write("\n").

4

5 printTranslation(Word, Translation, TypeOfDictionary) :-

6 not(translation(Word, Translation, TypeOfDictionary)),

7 write(Word), write(" : no matches found\n").

8

9 test() :-

10 printTranslation("Alphabet", _, "German - English"),

11 printTranslation("Anweisung", _, "German - English"),

12 printTranslation("Ausdruck", _, "German - English"),

13 printTranslation("bauen", _, "German - English"),

14 printTranslation("Baum", _, "German - English"),

15 printTranslation("Bedingung", _, "German - English"),

16 printTranslation("Chip", _, "German - English"),

17 printTranslation("Code", _, "German - English"),

18 printTranslation("Computer", _, "German - English"),

19 printTranslation("Algorithmus", _, "German - English"),

20 printTranslation("Programm", _, "German - English"),

21 printTranslation("Sprache", _, "German - English").

Listing 13: Print rules and test code of our prolog dictionary example.

Listing 13 contains the print rules and the test code necessary to achieve the
same output as with previous examples. The print rules cover two cases, either the
translation is successfuly found and the results are printed, or the lookup fails for
some reason (no word in the dictionary, wrong dictionary, etc.) and the message
no matches found is printed after the word that we have tried to translate. The
test rule ist calling the print rules leaving the variable Translation uninitialized
as an anonymous variable, since we do not need a named variable in this rule.
The resulting output is basically the same as with the previous examples with
one slight difference:

?- test().

Alphabet : alphabet

Anweisung : statement

Ausdruck : expression

bauen : build

Baum : tree

Bedingung : condition

Chip : chip

Code : code

Computer : computer

Algorithmus : no matches found

Programm : no matches found

41

Sprache : no matches found

true ;

false.

We see true; false. at the end, which means that we have successfully found
the translations, i.e. the rules were proven on the first run, but additional tries
failed. This shows how Prolog may try to satisfy the given goals after they have
been already proven once, after all, maybe we could have gotten other results
with a bigger database. In our case, we have a pretty simple relation: one word
has only one translation. But if we add more translations for certain words, for
example as a new wordPair("Ausdruck", "printout") in the section "A" in
our dictionary in addition to the already existing ones, we now have two matches
for the same word. So if we call the test() rule now, we will get the following
(shortened) output:

?- test().

Alphabet : alphabet

Anweisung : statement

Ausdruck : expression

bauen : build

...

Sprache : no matches found

true ;

Ausdruck : print

bauen : build

...

Sprache : no matches found

true ;

false.

So basically, the initial attempt succeeds with the same output as before, but
now we also have a successful second attempt to validate this rule with a different
translation for the word "Ausdruck". Furthermore, the print rules prior to the
rule that produced "Ausdruck" are not printed again, meaning that Prolog has
backtracked to the rule with different possible outcomes and re-evaluated it and
all the following rules. And again, we can see a false at the end meaning that
no other possibilities exist.
Of course, we could have implemented this example in a different way, for ex-

ample just as a set of facts wordPair("bauen", "build"), wordPair("Baum",
"tree"), etc. This would make our rules less complex, a mere translation(X)

:- wordPair(X, Y), write(Y). would be enough, or we could just enter the
query wordPair("build", X). and get the results. However we have tried
to keep the implementations of this example consistent among the discussed

42

paradigms while still trying to show their features. In fact we could have pro-
vided simpler implementations for all of these paradigms, for example by relying
on data structures internally supported by the languages such as maps. This
would, however, result in some rather boring examples.

Summary

As we can see, logic programming follows an even more abstract approach
compared to functional programming. Therefore, programs written with such
languages tend to be even more declarative and less algorithmic in nature re-
quiring a good understanding of the execution semantics of the language. Such
programs consist of a set of facts and logical rules which are required to solve
specific problems. Users can enter queries which are then attempted to be val-
idated by the program based on rules and facts. While other paradigms share
quite a lot of similar concepts, logic programming stands aside from the others
in many ways.
To sum it up:

� Logic programs consist of facts, rules and queries.

� Horn clauses are the standard notation to write them. A Horn clause
consists of an atomic proposition on the left side and an atomic or a com-
pound proposition on the right side, which corresponds to a rule in a logic
program. Headless horn clause do not have a left side and are used as
queries or to state facts.

� The propositions are combined with a logical operator AND, meaning
that if all propositions are true, the entire query is true.

� Data in represented by constants and variables.

� Constants may not have a specific value bound to them the way it is in
the previously discussed paradigms. They are used to represent rela-
tions between objects, e.g. mother(alice, charlie) where alice and
charlie are constants and mother is their relation. Actual values are also
constants, such as the string words in our dictionary example as well as the
dictionary itself.

� Variables are instantiated when a rule is evaluated, either directly as
a parameter, or via mapping this variable to values and constants stated in
facts or inferred from other rules. This way, entering the query mother(X,

charlie) will instantiate X to alice assuming mother(alice, charlie)

is stated as a fact or can be inferred by other means.

� X = Y means that X is bound with Y, or in other words that they are equal,
so X = X + 1 does not make sense. It is, however, possible to manually
assign variables in Prolog with the is operator, e.g. X is X + 1.

43

2.6. Conclusion – Multi-Paradigm Languages

In this chapter we have discussed what programming is and what are the four
main programming paradigms. We have seen the implementation of the same
algorithm with four different programming languages, each representing their re-
spective paradigm. All of them are general purpose languages, meaning that
they should be capable to implement any program which can be executed by a
machine. So if all of them, as well as many other existing languages, are capable
to solve any problem, why do we have so many? Hundreds of programming lan-
guages exist today, some are no longer used, others are used and are still getting
active support. If we count all dialects, esoteric and domain specific program-
ming languages, we may easily get numbers reaching several thousands [5]. A lot
of these languages are used for a short time in small communities for some very
specific tasks. A comparatively small number of general purpose languages is,
however, widely employed both in the industry and education around the world.
So if there are languages capable to do everything, why don’t we agree to use
just one of them.

As we have seen in the previous sections, even if these languages are capable to
do (almost) everything, each language excels at some specific tasks while being
overshadowed by other languages in other fields of application. C for example is
a procedural language that is capable to address memory directly, allowing the
programmers to write potentially more efficient programs as long as they know
what they are doing. Other languages are, on the other hand, capable to pro-
vide more elegant solutions for tasks, where C would either produce unnecessary
complex code or even reach its limits.

Prolog offers an elegant way to implement decision making programs, which
would require more complex code in a language like Java. At the same time, the
Prolog user has much less control over the execution of the program [23] compared
to less abstract languages, meaning that decision making programs written with
such languages might be far more complex, but potentially more efficient.

Ultimately, there is no such language which would excel at any problem. While
some languages provide more readable programs for specific tasks, others might
be able to implement slightly more efficient solutions at the cost of code which
is very hard to read and maintain. Therefore, software systems today may be
implemented with different programming languages glued together by yet another
programming language.

Procedural programming allows to easily translate algorithms into programs
which can be then executed step by step and are therefore easy to debug. Func-
tional programming is suited well to work with big data sets. Both functional
and logic styles of programming usually result in programs that are easy to read
due to their declarative nature. Object-oriented programming excels at repre-
senting real world entities and their relations among each other, furthermore it
is well suited to implement graphical user interfaces. However, most currently

44

employed object-oriented languages rely on procedural and functional concepts
to provide functionality for the objects. Therefore, we can observe a certain
tendency amongst currently employed languages which were originally centered
around a specific paradigm to adopt styles and language constructs typical to
other paradigms. C++ was developed as an evolution of C and borrows most
of its language constructs to describe functionality. Java developers have imple-
mented lambda expressions in Java version 8 introducing a language construct
rather common among functional languages. Similarly, arrow functions, which
is another name for lambda expressions, were introduced in JavaScript about 20
years after its initial release.
Languages that “support two or more conventional programming paradigms”

[8] or represent “a linguistic framework which does not force the programmer into
thinking or working in only one model” [38] are called multi-paradigm languages.
Usually, these languages support a range of procedural, object-oriented and func-
tional concepts. Still, such languages might have a bigger focus on a specific
paradigm or have certain limitations which do not allow to program in a specific
paradigm with its full potential. Logic programming can be implemented by using
constructs from other paradigms in addition to providing libraries with necessary
semantics and data types to a certain degree [39], however it will most certainly
not result in Prolog like code. Multi-paradigm general purpose languages are
capable to effectively perform a wide range of tasks. Nevertheless, specialized
languages are usually better suited to solve problems they were specifically de-
signed for. Finally, a paradigm is first and foremost a way of thinking or solving
a problem and not a set of language constructs of a language. Even if a language
does not officially support a specific paradigm, it does not mean that it is not
possible to program in that way with this language. But it is certainly easier to
do so with a language that supports it.
The goal of this chapter was to give a brief overview over programming itself

as well as four different styles of programming. In the next chapter we will take
a look at a selection of programming languages and tools used in the context of
education.

45

3. Programming Languages in Education

In the previous chapter we have discussed what defines programming. We have
observed, that there are many different ways to write programs, resulting from
the various approaches and requirements. We finally have come to conclusion,
that many programming languages used today are multi-paradigm languages,
meaning that they can support different styles of programming which should
enable the language to be used more broadly. Still, there is no such thing as a
universal programming language.

According to the TIOBE index [40], which tracks the popularity of the pro-
gramming languages by evaluating search statistics of various search engines, C
Python and Java make up the top three most popular programming languages
worldwide in the year 2021. Search queries for the languages and correspond-
ing tutorials, book purchases, job requirements, available courses and so on can
contribute to the rating of a language in that index.

Language 2021 2016 2011 2006 2001 1996 1991 1986
C 1 2 2 2 1 1 1 1
Java 2 1 1 1 3 26 - -
Python 3 5 6 8 27 19 - -
C++ 4 3 3 3 2 2 2 8
C# 5 4 5 7 13 - - -
Visual Basic 6 13 - - - - - -
JavaScript 7 8 10 9 10 32 - -
PHP 8 6 4 4 11 - - -
SQL 9 - - - - - - -
R 10 17 31 - - - - -
Lisp 34 27 13 14 17 7 4 2
Ada 36 28 17 16 20 8 5 3
Basic + dialects - - 7 6 4 3 3 5

Table 1: Long term TIOBE index [40].

Table 1 displays a long term summary of that index over the course of several
years. Until 2010 the authors have tracked the rating of Basic and all of its
dialects as a single entity, therefore the separation into two categories Basic
+ dialects and Visual Basic in the table. Furthermore, the authors have only
recently started to track SQL, although the language is widely used and has been
so for a very long time.

Most of the listed languages are multi-paradigm general-purpose languages
(GPL). Exceptions are C and Basic, both are procedural GPLs, Lisp, a functional
GPL, and domain-specific languages R and SQL, the first being used for statis-
tical analysis while the latter is designed to work with relational databases. The

46

GPLs in the table, while capable of solving any algorithmic problem, are either
restricted by specific environments (JRE, Microsoft .NET) or by their originally
envisioned fields of use (e.g. web development). Therefore, the choice of a lan-
guage depends on many factors, amongst other things are project requirements,
platform limitations and company policies.
The intentions of a potential programming student can be inferred from look-

ing at such statistics. Most students want to acquire a specific set of skills which
will guarantee their employment. In case of computer science this set encom-
passes programming languages, especially those in high demand. As we see, a
lot of different languages are employed in the industry and while some are built
around very specific concepts, e.g. R and SQL, justifying the need to teach them
separately, others share numerous commonalities meaning that teaching one of
such languages to the students should be enough to convey the most important
programming concepts which is realistically possible in a beginner programming
course. Therefore, while a student is rather interested in a language heavily used
in the industry [41], educators might look for a language better suited to teach
specific concepts [42]. In the next section we will discuss what is the general
intention of introductory programming education.

3.1. The Purpose of Programming Education

What is programming education? In general, teaching programming is an integral
part of the much wider computer science education. Computer science theory,
programming language theory, algorithms, robotics, artificial intelligence, com-
puter graphics, data base managements systems, object-oriented modelling, etc.
are just a few topics of computer science education and programming as a process
is a necessary part of most of them [43][44]. Therefore, programming courses are
usually offered at the beginning of a computer science study [45][46][47]. Tradi-
tionally, these courses are designated CS1 and CS2, however, as written in [48],
there is no universal standard on what contents these courses should include,
especially considering that several decades have passed since the introduction of
these designations and the world of computer science being a subject of constant
evolution during that time. Usually, CS1 covers basic programming concepts
while CS2 focuses on data structures and algorithms based on them. Knowledge
gained in these courses is required in most other, more specialized, computer sci-
ence lectures, which, however, might rely on other programming languages more
suited to the contents of the respective courses.
As discussed in the previous chapter, programming is a process of finding an

algorithm to solve an abstract problem and translating it into a program by
using a programming language. Thus, a programming language is merely a tool,
albeit a very important one [49], to achieve a goal in the same way as pencil and
paper are used, for example, to solve a mathematical equation or write an essay.
Therefore, one of the goals of a CS1 course is to teach students how to use a

47

programming language, a tool that they will be using over the course of their
entire studies as well as in their future careers. Since there are many different
programming languages, the language used in such a course should be of a general
nature in order to facilitate switching to other languages used in other courses or
in the industry. Ultimately, while teaching how to use a programming language is
necessary in a CS1 course, the focus is put into teaching the underlying concepts,
which should be more or less universal to all programming languages, meaning
that the language employed in such a course should be capable to demonstrate
these concepts. To put it simply, the goal of the introductory programming
education is to teach students how to program, not to teach them a specific
language.

Figure 1: Dale’s Cone of Experience [50].

A CS1 course is usually separated into a lecture and a practical part. If we look
at the top and the middle sections of the Cone of Experience (figure 1), these
are the contents covered in the lecture. Abstract concepts are explained to the
students supported by code examples and demonstrations. The practical part of
a CS1 course covers the bottom part of the cone, i.e. learning by doing. Both
parts are important, without the practical part the students will never learn how
to program, even if they perfectly understand the concepts taught in the lecture.
Without the lecture, the students might learn how to program by imitating the
actions of the instructor, however, they will not truly understand why they are

48

doing something the way they are doing. This way, students may tend to copy
solutions from other resources and modify them until the program compiles and
does more or less what is asked and will have difficulties when confronted with a
different programming language.

The Cone of Experience was designed to demonstrate the importance of media
in the process of teaching and learning. The Berlin model of education [44] also
recognises this importance. According to this model, educators have to meet
specific decisions based on specific conditions when designing a course. One of
such decisions is: “How is the information carried to the students?”. To be
precise, the decisional factors of the Berlin model are:

1. Intention – what is the objective of a course? A CS1 course should teach
the students fundamental concepts of programming required to understand
contents of other lectures.

2. Contents – what information is taught in the course? The main contents of
a CS1 course are algorithms, data types, control flow, static and dynamic
data structures, recursion, object-oriented concepts, concepts of functional
programming. As we have already mentioned, there is no universal standard
for the structure of a CS1 course, therefore, the contents may vary among
educational institutions.

3. Methods – how are these contents conveyed? As previously explained, a
CS1 course is usually separated into two parts, a lecture and a practical
part.

4. Media – what media is used to present the information to the students?
Presentation slides, diagrams, example programs, etc. can be used for this
task. A programming language can be put into this category, since it is a
tool to write programs, i.e. it is a medium used to carry information. Social
economic factors may play an important role here.

5. Consequences – which socio-cultural as well as anthropological and psycho-
logical effects will be the result from participating in a course? In case of a
CS1 course, students should be capable to use the gained knowledge when
confronted with programming languages previously unknown to them.

As we can see, the choice of a programming language plays an important role in
an introductory programming course, some would even argue this choice is crucial
to the students’ subsequent performance in computer science studies [41]. In the
following section, we will take a look at notable languages employed currently or
in the past in the field of education.

49

3.2. Choosing a Language

In some areas of computer science education, the selection of the programming
languages is rather limited and the choice is simple [51]. For example, SQL is
a traditionally used domain-specific language in the courses teaching relational
database management systems. HTML, CSS and JavaScript are the trio of com-
mon languages used in conjunction in web development [52]. However, choosing
a specific general-purpose programming language is not a simple task, neither in
education nor in any other field of application and many different factors have
to be considered when making such a decision. In the industry that choice may
be decided upon factors that are irrelevant in the context of education, such as
successful marketing campaigns or company policies. The practical use of a lan-
guage in the industry has, however, a substantial impact on the choice of the
languages in education, i.e. languages are often selected not by their suitabil-
ity as an educational language, but based on the demand in the labour market
[53], even if those languages are not entirely suitable for the purpose of teaching
programming [42].

Generally speaking, the deployed language should be capable to demonstrate
the contents of the course in a clear and non-confusing way. The students should
not struggle understanding the language which would distract them from focus-
ing on the actual contents of a course [54]. Furthermore, the chosen language
should keep the students motivated and interested in the practice of program-
ming in general [49][53]. The syntax and semantics of the language should not
be too different from other commonly employed languages to facilitate students
switching to other languages in other courses or in their professional occupation.
A language that is too different in nature to other “popular” languages might
cause aversion amongst students directed to that language and, consequently, to
the course in which it is employed leading to a higher drop-out rate. Finally, the
language should provide sufficient tool support [51]. We will give a more in-depth
summary of criteria that have to be considered when choosing an introductory
programming language and, therefore, in the design of our own educational lan-
guage in chapter 4, but before that, let us take a look at the programming
languages used for the purpose of education.

3.2.1. Professional Languages

The first programming languages used in education were, not surprisingly, as-
sembly languages. They were succeeded by the first higher level languages FOR-
TRAN and COBOL, which were both developed for specific tasks that were
already discussed in section 2.2. The rise of structured programming has ulti-
mately led to their replacement by Pascal, a language specifically designed for
education, until the emergence of object-oriented programming and the subse-
quent retirement of Pascal. Since then, C/C++ and Java were the prominent

50

languages in education. [41]
C was initially developed for system programming and thus supports an explicit

memory management mechanism to facilitate resource efficient programming.
This, however, is a rather difficult concept for beginner programmers, who are
confronted already with two different problems at the same time: designing an
algorithm for an abstract problem and finding the right language constructs to
translate it into a program. Throwing manual memory management into the
mix might confuse them even more. When handled poorly, programs may lead
to unexpected behaviour and a beginner student will have a hard time to trace
its origin. Listing 14 demonstrates an example of a dangling pointer problem
in C. Function foo returns an address of a local variable, which is deallocated
as soon as the function is terminated, resulting in a program which seemingly
does nothing when it is executed. This also demonstrates another issue of C and
C++: cryptic error messages or complete lack thereof.

1 #include <stdio.h>

2

3 int *foo() {

4 int a = 42;

5 return &a;

6 }

7

8 int main(void) {

9 int *dp = foo();

10 printf("%d", *dp);

11 return 0;

12 }

Listing 14: An example of a dangling pointer in C.

C++ [21] was developed as an extension of C by introducing object-oriented
constructs. Due to its popularity, the language has grown over time introducing
language constructs which can be used interchangeably, which also might lead to
confusion amongst beginner programmers. On the other hand, both languages
are supported by a huge amount of literature and documentation, reliable devel-
opment environments (which may not exactly be easily approachable by begin-
ners) and have the popularity factor. C++ can be used to teach both procedural
and object-oriented programming and, since version C++11 and the inclusion
of lambda expressions, it can be used to teach functional programming as well.
However, the problem shown in listing 14 can happen in C++ as well. C and
C++, while being more complex compared to Java or Python and thus harder to
understand, especially at the beginning, are better suited than those languages to
teach lower level concepts, while still being high-level general-purpose languages.
Therefore, they are better suited for advanced specialized courses rather than for
CS1 and CS2 [55].
At the time of its introduction, Java [56] was a smaller and a more manageable

51

language compared to C++. Combined with the increasing popularity of object-
oriented programming and a successful marketing campaign by Sun, Java quickly
became the most prominent programming language in programming education
[57][58]. It follows a more abstract approach compared to C/C++ dropping point-
ers and explicit memory management. Furthermore, it is platform independent
and is utilized in a wide range of domains, e.g. web and mobile app development.
Due to its success, users can rely on a wide range of documentation and powerful
libraries.
However, being a professionally used language, it has grown tremendously since

its introduction an can no longer be considered a “simple” language. Further-
more, although it supports procedural and functional programming to a certain
extent, it is centered around the object-oriented paradigm making it impossible to
program in other styles without constantly relying on object-oriented constructs.
The example shown in listing 15 demonstrates a "Hello, world!" program writ-
ten with Java. When choosing a procedural first approach, which goes hand in
hand with explaining how algorithms work at the beginning of a course, top-
ics like classes, objects and visibility modifiers should not be covered in order
to reduce the amount of information presented to the students at once. Thus,
when using Java, a course instructor is confronted by a dilemma: either handle
these concepts as a black box, which may lead to some students believing that
methods are always declared as static as we can observe every year at the final
exam of our CS1 course, or explain everything at the beginning overwhelming
the students with the amount of information which most of them will struggle to
process.

1 class HelloWorldExample {

2 public static void main (String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

Listing 15: A “Hello, world!” program written with Java.

Since version 8, Java supports functional programming, however, again cen-
tered around object-oriented concepts. Lambda expressions are mapped to types
defined by functional interfaces. Some of the generic interfaces included in the
standard library are:

� Function<T, R> – represents a function which accepts one parameter and
returns a value.

� BiFunction<T,U,R> – a function with two parameters.

� Predicate<T> – is a function which accepts one parameter and return a
boolean value. A BiPredicate variant is provided too.

� Supplier<T> – returns a value.

52

� Consumer<T> – represents a procedure which accepts one parameter, a
BiConsumer is also provided.

The standard library also includes non-generic variants of the above interfaces.
The number of provided interfaces and the slight differences between them will
not be easy to understand for beginner programmer students, especially the fact
that these types, which they previously have learned are abstract types to be
used as blueprints for objects, are now representing subroutines. Furthermore,
the standard library lacks functional interfaces for subroutines with more than
two parameters. Should the necessity for such a function arise, a functional
interface has to be defined first, as demonstrated in listing 16. In this example,
we attempt to implement a simple weather messenger using lambda expressions,
but before we can do that, we have to define a functional interface which specifies
a function with three parameters. We would have to define additional interfaces
for a different number of parameters. Specifying a custom interface each time
we need a function with more that two arguments is, in our opinion, a rather
inflexible solution.

1 public class CustomFunctionalInterfaceExample {

2 public static interface TriFunction<T1, T2, T3, R> {

3 R apply(T1 t1, T2 t2, T3 t3);

4 }

5 public static void main(String[] args) {

6 TriFunction<String, Integer, Boolean, String>

7 weatherMessenger = (location, temperature, celsius) -> {

8 if (celsius)

9 return "Temperature in " + location + ": " + temperature + "◦C";

10 else

11 return "Temperature in " + location + ": " + temperature + "◦F";

12 };

13 System.out.println(weatherMessenger.apply("Bayreuth", 14, true));

14 System.out.println(weatherMessenger.apply("New York City", 68, false));

15 }

16 }

Listing 16: An example of a custom functional interface in Java.

An alternative solution to that is to use currying, a common technique in func-
tional programming, as demonstrated in listing 17. In this example, we use the
already mentioned Java interface Function, which accepts only one parameter.
However, if we return a function as a result, we can pass another parameter to
the returned function, and so on. This way we can chain several functions and
pass as many parameters as we like. However, this concept could be hard to
understand for beginner students, especially if they are used to passing several
arguments to a single subroutine at once.

53

1 import java.util.function.*;

2

3 public class CurryingExample {

4 public static void main(String[] args) {

5 Function<String, Function<Integer, Function<Boolean, String>>>

6 weatherMessenger = location -> temperature -> celsius -> {

7 if (celsius)

8 return "Temperature in " + location + ": " + temperature + "◦C";

9 else

10 return "Temperature in " + location + ": " + temperature + "◦F";

11 };

12 System.out.println(weatherMessenger.apply("Bayreuth").apply(14).apply(true));

13 System.out.println(weatherMessenger.apply("New York City").apply(68).apply(false));

14 }

15 }

Listing 17: Function currying in Java.

Yet again, both examples demonstrate the object-centric approach of Java. A
functional interface may contain only one single abstract method [56] so that a
lambda expression can be mapped to a variable of that type overriding the ab-
stract method, i.e. functions are objects. In our opinion, Java is not a suitable
language to teach functional programming and may even lead to false under-
standing of the core concepts of this paradigm. The output of both examples
is:

Temperature in Bayreuth: 14°C

Temperature in New York City: 68°F

Since the establishment of Java, newer truly multi-paradigm general-purpose
languages were developed like Scala and C#. They, however, have some of the
same problems as Java, i.e. they are complex industrial grade programming lan-
guages with a large number of language constructs which can be overwhelming
for beginner students. Furthermore, they allow to implement very different so-
lutions for one problem which can impede the post assignment discussion if the
explained solution and students’ solutions are all different from each other.
In recent years, Python seems to be taking over as the leading educational

programming language both in schools and at universities [59] due to its simplicity
and attractiveness to students. Compared to the Java "Hello, world!" example
in listing 15, the same program written in Python 3 looks like that:

print("Hello, world!")

Studies [60] have shown, that students in general tend to make less errors (syn-
tax, run-time and logical) using Python compared to Java. Python was designed
with readability in mind [61] enforcing students to write well structured pro-
grams, which is not always the case with beginner programs written with C/C++

54

or Java. However, this may also lead to logical errors due to false indentation as
demonstrated in an example in listing 18, an error often made by beginner stu-
dents which we have observed first-hand in an introductory programming course
performed with Python at our university [62].

1 i = 0

2 while(i <= 5):

3 print(i)

4 i = i + 1

Listing 18: An indentation error in Python.

Another issue of this language is the use of dynamic typing. While some con-
sider static typing as redundant [63], it does help preventing type related runtime
errors and demonstrates the importance of type systems, an important concept
of an introductory programming course, on a lexical level. Furthermore, the au-
thors of [64] have made negative observations regarding the dynamic behaviour
of Ruby, a dynamically typed scripting language, when used as an introductory
programming language. In our opinion dynamic typing is not suited for teaching
programming. Not only can it lead to an increase of difficulty to find type related
runtime errors, it could also cause students to underestimate the importance of
type systems.

1 class Person:

2 def __init__(self, name, age):

3 self.name = name

4 self.age = age

5

6 p1 = Person("Alice", 20)

7 p1.aeg = 25

8 print(p1.age)

Listing 19: Semantic field error caused by typographical mistake in Python.

Listing 19 demonstrates another source of errors that can be caused by the
dynamic behaviour of Python and similar languages. In this example, we define
a class Person with fields name and age. We follow on with initializing a Person

object p1 with the name Alice and age 20. Then, we want to change the attribute
age to 25, however, we make a typographical error and write aeg instead of age.
This adds a new field aeg with the value 25 to the object p1, the value of age
remains 20. Such dynamic behaviour might be practical for experienced users, but
beginners will struggle to understand why their program behaves not as intended
due to such errors which are rather hard to find for inexperienced programmers.

In its core, Python is an object-oriented language with reference semantics.
Listing 20 shows a small Python program with a simple two dimensional list.
The list is initialized and one of its values is then set to 1. The produced output
is [[1, 0], [1, 0]] resulting from the underlying reference copy semantics. An

55

inexperienced programmer would most likely expect [[1, 0], [0, 0]] in this
case, which can be achieved by using Python’s list comprehension mechanism.

1 lst = [[0] * 2] * 2

2 lst[0][0] = 1

3 print(lst)

Listing 20: Example of Python reference semantics.

Python is a simple language that supports procedural, object-oriented and
functional programming [55], hence its raise in popularity in educational institu-
tions. However, its dynamic type system, use of indentations to define blocks and
reliance on implicit behaviour may lead to unnecessary errors and hide important
concepts under a layer of implicity. Therefore, Python is in our opinion not that
well suited as an educational language.
All of these languages are primarily based on the imperative style of pro-

gramming and are therefore more suited to teach procedural and object-oriented
paradigms. Recursion is one of the more difficult topics for the students, espe-
cially when it is used to implement repetition via loops. A lot of difficulties expe-
rienced by programming students can be attributed to a paradigm shift during a
course [65], i.e. students have to abandon previously established mental models
and have to learn alternative solutions. Some even consider teaching loops as
harmful and rely on recursion instead, pointing out that students develop the
ability to write code that can be automatically used in parallel infrastructures
[66]. Thus the alternative approach to the usual procedural-first or objects-first
is to teach functional-first.
Lisp, or rather its minimalistic dialects, e.g. Scheme or Racket, are usually

used in programming courses utilizing this approach. Another reason to teach a
functional language is the fact that a CS1 course is usually visited by a vastly
heterogeneous group of students with a wide range of background knowledge,
i.e. while some students have absolutely no programming experience, some have
learned to program at school or as their hobby. These students are mostly fa-
miliar with imperative oriented languages like C and Java, meaning that using a
functional programming language may slightly mitigate the discrepancy among
the knowledge of the participating students.
As we can see, professionally used programming languages have some or all of

the following limitations in the context of education:

� They were not developed with education in mind, some choices regarding
the syntax and semantics of the language might be confusing to students.

� They include a large amount of non-orthogonal language constructs over-
whelming the students.

� Some languages are designed for writing programs quickly with short but
obscure syntax.

56

� They have evolved over time leading to language constructs with non-
consistent syntax and deprecated features.

� Some languages may include cryptic error messages.

� Even though they are general-purpose languages, some of them were ini-
tially designed for rather specific tasks, limiting their usability as an edu-
cational language meant to teach a broad range of basic abstract concepts.

On the other hand, there are several points, which may or may not be consid-
ered as advantages when talking about these languages in the context of educa-
tion:

� Students may be rather motivated to visit a programming course if the used
language is relevant outside of that course [41].

� A professionally used language is usually supported by powerful IDEs,
which are usually equipped with such helpful tools like debugging and
syntax highlighting. However, professionally used IDEs are, just as the
languages, not designed for the task of education and tend to be rather
complex with an overwhelming amount of features. Furthermore, not all
IDEs are provided free of charge, which is another important factor in the
context of education.

� They are supported by a wide range of professionally written literature and
documentation. A motivated student will have a good amount of informa-
tion to tap into. A less motivated student will be most likely frightened by
the amount of information and will instead rely purely on the filtered data
presented in the programming course.

� Users may rely on a vast amount of standard and third-party open-source
libraries. This increases the range of possible assignment scenarios: i.e. a
language supported by a graphical library allows to design tasks concerned
with the implementation of graphical user interfaces. This is however lim-
ited by the scope of the introductory course, which is usually centered on
basic algorithmic problems which can be solved with available language
constructs and a minimal amount of operations provided by standard li-
braries.

� Finally, such languages usually have a big follower community. Therefore,
students can easily find a large amount of community created content in
the context of a specific language: e.g. open-source projects and libraries,
programming tutorials, blogs, forums, etc. However, by relying too much on
the help from community, students may start to develop counter-productive
habits like copying assignment solutions from the internet.

57

Figure 2: Scratch programming environment with a sample program.

3.2.2. Educational Languages

Whereas professionally used languages covered in the previous section are all text
based languages, we will cover both visual and text based language in this section,
since both types are heavily represented in the field of programming education.

Visual Languages

Scratch [67] and similar block based visual programming languages, e.g. Alice
[68] and Blockly [69], are widely used in programming education at schools. As
demonstrated in figure 2, Scratch is supported by an online platform, which not
only consists of the execution environment, but also contains countless sample
projects, tutorials and guides targeted both at programmers and teachers. The
language offers the possibility to quickly assemble simple programs without syn-
tactic errors, which is in our opinion one of its problems. An educational language
should be capable to demonstrate common mistakes and ways to fix them to the
students and, therefore, prepare them to some realities of working with industrial
grade general-purpose languages. Scratch and similar languages are rather lim-
ited to be used as an effective tool at university level computer science education.
Scratch is primarily focused on building algorithms from blocks, i.e. while it does
certainly teach algorithmic thinking and specific programming patterns, it will
not prepare students for advanced courses utilizing regular text based languages.
Furthermore, these languages are not well suited to teach functional and object-
oriented programming. Finally, it is impossible to write syntactically incorrect
programs using these environments, however, error handling is an important part
of programming education. Nevertheless, they can be effectively used at earlier
stages of education. Furthermore, they may draw interest from students, who
would otherwise find programming a rather boring practice.
A less colourful but perhaps a more useful tool in the context of a CS1 course

is RAPTOR [70], a visual programming environment which uses executable flow
charts. Figure 3 demonstrates a GCD program written with this tool. It should

58

be noted, that RAPTOR’s flow charts do not fully represent hand drawn control
flow diagrams, i.e. the constructs in RAPTOR flowcharts have a rigid structure
and strongly resemble the blocks of block based languages. The environment
highlights each node in the chart and tracks the values of the variables during
the execution giving immediate visual feedback. Furthermore, it allows to pause
and execute the program step by step. This tool can be used at the beginning
of a CS1 course when introducing algorithms which would create a more visible
link between abstract algorithms and actual programs.
This tool also offers an object-oriented mode which relies on UML class dia-

grams [71] to represent object-oriented constructs and flow charts to implement
method functionality, an example is given in figure 4. However, this mode re-
quires knowledge of Java or C# syntax. Furthermore, while RAPTOR’s flow
charts rely on type inference, users are required to enter data types for fields,
methods and parameters in the UML class diagrams resulting in a mix of static
and dynamic typing. Similarly to previously mentioned block based teaching
environments, this environment does not prepare students to work with text
based programming languages. Nevertheless, it can be used as an entry tool to
demonstrate specific concepts before moving on to a text based language or as a
complementary tool in a course which is mainly using Java or C#.
There are studies [72][73] which prove that visual languages improve perfor-

mance of weaker students and keep them motivated. However, the focus on these
languages lies on procedural programming, support for object-oriented and func-
tional programming is rather limited. While block based and other languages
with a strong focus on visual representation may not be feasible in a CS1 course
due to certain limitations, they offer interesting concepts which may be imple-
mented in form of libraries in a classic textual based programming language.
These languages are better reserved to schools or as introductory tools at the
universities, however not as the main language in a CS1 lecture.

Text Based Languages

As already mentioned, Pascal was one of the first programming languages in-
tentionally developed for education and also one of the most successful. One of
its main advantages is that it is a simple language specifically designed to teach
structured programming [41], its syntax was designed to be intuitively clear [55].
Supported by well documented development environments at the time it had a
massive success not only in educational, but also as a professionally used language,
which led to a development of complex dialects, since the base language was not
sufficient for this task. However, the emergence of object-oriented programming
has led to the decline of Pascal’s popularity and its subsequent retirement [41].
Standard version of Pascal was purely procedural, its dialects could not compete
with C++ and Java and the supporting tools were becoming obsolete. Section
2.2 includes an example program written with Pascal.

59

Figure 3: RAPTOR programming environment with a sample procedural program.

60

Figure 4: Example of a RAPTOR object-oriented program.

61

Figure 5: Logo programming environment with a sample program.

Logo [74] is another educational programming language, which has actually
appeared three years prior to Pascal, but is based on Lisp and is centered around
Turtle Graphics, which has been successfully used in education [75] and has
been since ported to other languages, e.g. Python and Java. In our opinion, it
is well suited to teach topics like control flow, subroutines and recursion while
keeping the students motivated at the same time. In a sense, Logo is not merely
a language, but rather an educational environment. It consists of a command
view, where the user is supposed to write the program, and a drawing view with
the graphical representation of Turtle’s movements (see figure 5). One of the
design goals of Logo were informative error messages which should reduce the
frustration amongst beginner programmers when confronted with programming
errors. However, the strong focus on the Turtle Graphics system and the more
abstract and declarative nature compared to Pascal may have been the reasons,
why this language has not gained as much popularity at the time. Similarly to
block based educational languages it is too limited to be effectively used as the
main programming language throughout an entire CS1 course.

One of the more recently developed educational programming languages is
Grace [76]. The principles of this language [58] are similar to the requirements
which we have defined for our own language in many aspects (see chapter 4). For
instance, this language is using garbage collection and is designed to be platform
independent. It is meant to offer clear and easy-to-understand syntax and se-
mantics, its constructs can be introduced incrementally according to the current

62

progression in the corresponding course. The language supports the three main
programming paradigms: procedural, functional, and object-oriented. Grace,
however, is object-oriented first and foremost, i.e. everything is an object. For
example, true.not is a valid expression which is evaluated to false, same as !

true. The language offers both static and dynamic typing. Grace uses the oper-
ator = in declarations to initialize variables, := in assignment statements and ==

in equality check expressions.
Listing 21 demonstrates Grace methods, which represent subroutines in this

language whether they are contained in a class or not. As we can see, no explicit
return statement is required, furthermore, the language allows rather unorthodox
subroutine declarations, e.g. the method divide(a) by(b), which might be
misleading, since the call of this operation looks like two subsequent method
calls to a person with prior programming experience in other languages.

1 def x = multiply(5,7)

2 print "{x}"

3 def y = divide(48) by(6)

4 print "{y}"

5 print "{pi}"

6

7 // declared with multiple parameters

8 method multiply(a, b) {

9 a * b

10 }

11

12 // declared with multiple names

13 method divide(a) by(b) {

14 a / b

15 }

16

17 // declared with no parameters

18 method pi {

19 3.141593

20 }

Listing 21: An example of a Grace program taken from [77].

While the language does have less constructs compared to Java or C++, some
of them are not orthogonal to each other, e.g. the language offers normal if
and match ... case statements, as well as while and for loops. Mixing static
with dynamic type systems will produce inconsistent solutions amongst students.
If it is not absolutely necessary to do something, e.g. specify types in variable
declarations in a mixed static/dynamic type system, students will not do it and
therefore will not understand its meaning. Finally, using brackets to specify
blocks is not optimal in our opinion, missing brackets is a common beginner
mistake [78] which requires a time consuming “bracket counting procedure” to fix
it.

63

Quorum [79] is another language specifically developed to be easily understand-
able for beginners and to be used in education. One of the authors’ goals was to
design a programming language which could also be used by visually impaired
students. Therefore, the syntax of the language is oriented on naturally spo-
ken languages which should make it easier to understand compared to C-style
syntax. The loop construct, for example, can be formulated as repeat while

CONDITION, repeat until CONDITION or repeat N times. The authors prop-
agate the use of static typing based on knowledge gained from empiric studies
[80], however, their language offers both static and dynamic typing. The authors
have chosen = as both equality check and assignment operator as demonstrated in
listing 22, which is a rather questionable design decision in our opinion. Quorum
supports procedural and object-oriented programming paradigms. The language
can be executed both in an online browser based runtime environment as well as
in a specifically developed desktop IDE.
Allowing to use both static and dynamic typing, using operators with different

meanings depending on their context, such as = for assignments and equality
checks and + for numeric additions and string concatenations, as well as lack of
support for functional programming are, in our opinion, problem of this languages
when talking about programming education.

1 integer i = -1

2 repeat while i < 2

3 if i = 0

4 output "zero"

5 elseif i < 0

6 output "less than zero"

7 else

8 output "greater than zero"

9 end

10 i = i + 1

11 end

Listing 22: An example of a Quorum program.

Pyret [81] is a declarative educational programming language still in develop-
ment, but already in a quite advanced state. An online interpreter facilitates
accessibility to this language. The syntax of the language is partly inspired by
Python, e.g. for functions and lists, however, blocks are terminated with a key-
word end, which should eliminate errors due to wrong indentation while keeping
the overall readability of Python. Another interesting decision is the different use
of operators for variable initialization, equality checks and assignments. Listing
23 demonstrates the use of these operators in a check block, another interesting
feature of this language. When a variable is declared, it is assigned a value with
an operator =, however, := must be used for later assignments. The is state-
ment is used to test assertions in a check block, i.e. Pyret natively supports a
testing environment which could be used to teach testing practices of software

64

development right from the beginning. The authors even encourage to write tests
along with the actual code. At the time of writing, this language offers dynamic
typing only, however, authors are working on the implementation of a static type
checking system. Pyret does not differentiate between integer and floating point
numerical representations and uses a single type Number instead.
Testing the program while writing it is a good programming practice, and one

that has to be encouraged. But in our opinion, testing behaviour can be im-
plemented simply via if-statements or as a separate library if a more powerful
solution is required. Including entire language constructs with several keywords
reserved to testing code introduces complexity to the language which could oth-
erwise be avoided. Furthermore, it introduces language constructs that are not
present in other common languages, which might lead to problems in the future
when transitioning to these languages. Dynamic type system is not well suited
for beginner programming education, however, according to the authors static
typing is in development. Finally, Pyret is more functional in nature and is, in
our opinion, less suited to teach object-oriented programming.

1 check:

2 var x = 10

3 x is 10

4 x := 15

5 x is 15

6 end

Listing 23: Pyret check blocks and variables.

Another language specifically developed for education is RESOLVE [82]. One
of its interesting features is the built in verifier which should improve software
reliability. It allows to define pre- and postconditions when declaring operations,
as demonstrated in listing 24, wherein the operation Increment is declared with
a precondition which states that the passed parameter must be less than the max-
imum value supported by the type Integer and the postcondition which states
that the value of i after the execution of the operation is its initial value plus
1. The language provides various parameter modes, e.g. the keyword reassigns

in listing 24 implies that the parameter will be reassigned to a new value. How-
ever, the differences between parameter modes are not entirely clear, e.g. the
modes reassigns, alters, replaces and updates essentially all mean that the
value of the parameter will be changed in one way or another. Similarly, the
modes evaluates and preserves indicate that the values of the parameters are
not changed after the execution. The language allows to use shorter versions of
keywords, e.g. Oper instead of Operation.

1 Operation Increment(reassigns i: Integer);

2 requires i + 1 <= max_int;

3 ensures i = #i + 1;

Listing 24: An operation declaration in RESOLVE [82].

65

An example of a Main procedure in shown in listing 25. Here we can see that
the language is relying on keyword pairs to delimit blocks similarly to most other
educational languages presented in this section. The while loop includes various
clauses in addition to its condition: i.e. the maintaining clause specifies an
additional condition while the decreasing clause decrements the value of the
variable temp.

1 Facility Example4;

2 uses Std_Integer_Fac;

3

4 Operation Main();

5 Procedure

6 Var temp, temp2, temp3: Integer;

7 temp2 := 2;

8 temp3 := temp2;

9 temp := 5;

10 While(temp > 0)

11 maintaining temp3 = temp2;

12 decreasing temp;

13 do

14 Write_Line(temp3);

15 Write_Line(temp2);

16 Write_Line(temp);

17 end;

18 end Main;

19 end Example4;

Listing 25: An example of a Main-procedure in RESOLVE [82].

This language is using a static type system. It is translated to Java and can
be executed in the Eclipse IDE or in the command line, in the latter case the
user has to manually translate the RESOLVE program first. The language can
be used to teach procedural and object-oriented programming, but lacks support
for functional programming. However, the biggest issue of this language, is in
our opinion its verification mechanism and additional constructs similar to those
demonstrated in the While loop in listing 25. For example maintaining defines
an additional condition, which could just as well be put into the condition of
the loop, while the decreasing clause is normally implemented via a manual
decrement of a variable. It should also be noted, that the language does not
specify a complementary increasing clause, which further adds to the overall
confusion.

As we can see, several attempts have been made to implement an educational
programming language. Let us summarize their advantages and commonalities:

� These languages offer less language constructs compared to professionally
used languages.

66

� Some languages are supported by easily accessible and simplistic execution
environments and tutorials.

� Most text based languages use keyword pairs (if ... end) instead of
curly brackets (if { ... }) common in languages inspired by the C syn-
tax.

� The assignment operator is usually := instead of =.

� Using such languages may bridge the gap between students with prior pro-
gramming experience and absolute beginners.

However, since these languages, except for maybe Pascal and Scratch, are far
less popular around the world, the amount of provided literature, examples and
tutorials is rather limited compared to professional languages. Furthermore, using
an unknown language may deter some students from participating in a course.

3.3. Tools

When choosing a programming language, course designers have to consider whether
this language is sufficiently supported by tools that are qualified to be used in
education, the chosen programming environment can either facilitate or impede
students’ learning process [44]. In the previous section we have already mentioned
visual programming environments like Scratch, which are oriented towards be-
ginner programmers. These environments as well as the languages are, however,
rather limited to be effectively used in a CS1 or CS2 course and will not be dis-
cussed any further. The focus of this section lies on tools designed to complement
text based programming languages.
When teaching procedural or functional programming a simple text editor and

a compiler or interpreter may suffice. Some text editors, e.g. Notepad++ [83],
may even have rudimentary programming support tools like syntax highlight-
ing and automatic formatting. Web based execution environments offer the best
availability, they do not require an installation and are easy to use, however,
they are rather limited in regards to the provided tools similarly to text editors.
Therefore, when dealing with object-oriented programming, multiple source files
or when additional tools like a debugger are required, an IDE (integrated devel-
opment environment) becomes a necessity [84].
The programming environment used in education must fulfil following criteria

[84][55]:

� Easy to use – a difficult environment takes more time to explain prior
to starting programming as well as during exercises when problems caused
by its complexity will inevitably arise. The beginner students are already
confronted with the two problems of finding an algorithm and translating
it into a program. Adding an environment which is difficult to understand

67

and use may further discourage them from continuing their programming
training. A difficult environment may be a professionally used IDE with
an overwhelming amount of functionality or a simple combination of a text
editor and a command line compiler which, although it needs the bare min-
imum of tools and therefore installation and configuration steps, requires
students to perform manual compilation steps each time they need to test
their program as well as an input of a more complex execution command
compared to the activation of a single “run” button.

� Available – proprietary environments must be provided by the educational
institutions, otherwise most of the students may not be able to effectively
take part in a programming course. Free IDEs have therefore a huge ad-
vantage from this point of view, especially if they can be installed on the
majority of operating systems.

� Integrated tools – this criteria eliminates the use of a text editor combined
with command line compilers or interpreters as well as web based execution
environments. At the very least, an educational IDE should include a text
editor with syntax highlighting, helpful error messages, a console interface,
a debugging tool, and a project manager. The user should be able to
run and debug the program directly in the environment. Additional tools
like automatic formatting, refactoring, shortcuts and quick-fix providers for
compiler errors may be helpful but not necessary. It is important to keep
the IDE simple while providing all the necessary functions.

� Code reuse – the environment should provide a browser for standard li-
braries as well as libraries written by the user to encourage users to use
libraries and reuse their own code.

� Learning support – the IDE should support specific learning techniques,
e.g. stepwise execution of code or allow interaction with objects. Additional
visualization of code by means other than text (e.g. diagrams, tree-like
program overview providers) may enhance understanding of a program.

� Object-support – objects should be represented as independent entities
within an IDE enabling the users to interact with them unlike in traditional
programming environments where interaction with objects is reserved en-
tirely to the source code of the program.

The authors of [84] mention an additional criteria: group-support which
should allow groups of students to work on separate parts of a single project which
is, in our opinion, irrelevant in the context of CS1 and CS2 courses, therefore, we
do not consider this criteria as essential in our case.
The programming environment BlueJ [85] which is specifically designed to

teach object-oriented programming with Java, was developed in concordance to

68

Figure 6: BlueJ educational IDE.

these criteria. This tool offers a very simple, intuitive, and at the same time
informative graphical user interface shown in figure 6. The project view shows
classes and other user defined types as a simplified class diagram. The classes are
edited in the text editor, users do not actually see the corresponding Java source
files unless they open the project folder in the file system browser. The blocks are
marked with different colours in the editor helping to locate potential parenthesis
errors. Static methods can be executed by right clicking a class in the diagram
view. Objects can be created in the same way. Users may inspect created objects
to check on their current state as well as execute non-static methods directly
interacting with the objects. The IDE also offers tools not demonstrated in figure
6, for example a debugger, a content assist provider and an automatic formatter.

Professionally used IDEs can also be employed in education, depending on
the language the only choice may sometimes be between an industry grade IDE
or text editors, in which case an IDE is preferable. Such environments have
mostly the same advantages and disadvantages as professionally used program-
ming languages, i.e. they are rather complex and have an overwhelming amount
of features but at the same time are well documented and have a large community
built around them.

Figure 7 shows the Java perspective of the Eclipse IDE [86], a free open-source
development environment with a large amount of plug-ins enabling support for
other programming languages and tools. Compared to BlueJ, the user interface
of Eclipse is filled with a much bigger number of menus, tabs and buttons, whose
functionality is not understandable on the first glance. This may lead to students
being overwhelmed by the sheer amount of advanced features and options. This
IDE does not offer an interactive mode like the one provided by BlueJ since

69

Figure 7: Eclipse IDE with the Java perspective.

programs written with Java (as well as in most other languages) do require a main
subroutine which acts as an entry point into the program. In this specific case,
Eclipse actually enforces students to learn the correct way of writing programs,
which can then be executed on the Java virtual machine outside of the Eclipse
environment. Furthermore, using a professionally used IDE may raise students’
confidence and sense of purpose [87]. Eclipse is highly customizable, it allows to
design custom perspectives which contain only the views and buttons that are
necessary in an introductory course reducing the amount of features presented
to the students. While it is not the optimal solution, we have decided to use
Eclipse as the IDE meant to support MuLE for the time being. It allowed us
to concentrate more on the implementation of the language and quickly deliver
a working prototype which we could test with the target audience and reuse
Eclipse’s infrastructure to provide tool support for MuLE.
Other professionally used IDEs, such as Visual Studio, have similar advantages

and disadvantages as Eclipse. However, in case of proprietary IDEs the question
of costs and licensing must also be considered when choosing a programming
environment for an introductory course.
The information discussed in this section will be further relevant in chapters 4

and 7.

3.4. Summary

The choice of an introductory programming language depends on a lot of different
factors. The intention of the programming course is definitely one of the most
important ones: if the course is built around algorithmic or mathematical con-

70

cepts, then a language of choice should be suited to teach procedural or functional
paradigm respectively. Object-oriented programming should be taught using an
object-oriented language. Multi-paradigm languages make this choice much eas-
ier, however, even in their case some are better suited for specific tasks than
others. Some languages are more complex (C++ or Java) than others (Python).
Using easier languages may help students to learn basic programming concepts,
however, such languages may hide important concepts under a layer of abstrac-
tion. Using a language specifically designed for education may facilitate learning
process, however, the use of such languages is mostly limited to CS1 and CS2
[45]. Finally, the language should have sufficient tool support.
In this chapter we have given an overview over the purpose of introductory

programming education as well as programming languages and tools used in this
context, their advantages and shortcomings. We use this information to define the
requirements as well as the resulting design decisions for MuLE in the subsequent
chapter. Additionally, a comparison of the text based languages discussed in this
chapter to MuLE according to these requirements is presented in section 9.2.

71

4. Requirements and Design Decisions

In the previous chapters we have discussed what programming is and which lim-
itations are present in the programming languages used in education. Based
on this information, we will summarize the requirements for MuLE in the next
section. Section 4.2 presents the design decisions that were derived from these
requirements and demonstrates program snippets concentrating on specific lan-
guage constructs and small programming examples based on specific paradigms.
Finally, section 4.3 demonstrates multi-paradigm programming with MuLE based
on the implementation of a dictionary lookup algorithm that was already preva-
lent in section 2.

4.1. Requirements

This section presents the general requirements for MuLE [88].

Requirement 1 [Easy to learn] Students without prior programming experience
should have no difficulties understanding and learning how to use MuLE.

The focus of the language is on teaching programming [54], i.e. it should be
capable to convey important programming concepts in a clear and comprehen-
sible way without relying on unnecessary information. Important concepts, e.g.
type system or referencing mechanism, should be clearly represented in a non-
implicit way. At the same time, the language should avoid low-level concepts that
represent direct interactions with the machine such as explicit manual memory-
management [55][65]. Finally, the language should not be difficult to use, students
should develop a feeling of competence and liking towards programming [49].

Requirement 2 [Non-cryptic syntax] The syntax of the language should be clear
and easy to read.

The focus of the language should not be on short syntax with convenient short-
cuts, the ability to write programs quickly or on performance [54]. The statements
and expressions should be structured in such a way, which would facilitate ver-
balizing them [42], i.e. the pronounced form of the language construct should not
deviate far from the written form making it easier to build a mental connection
between the information spoken by the instructor and the program code seen by
the students. The structure and the syntax of the language should not be too
different from modern high-level GPLs to facilitate future transitioning to these
languages [55][53].

Requirement 3 [Minimal number of language constructs] MuLE should offer
only the minimal number of necessary language constructs.

72

The smaller number of language constructs implies less effort to learn how to
handle the language. This includes built in data types, constructs for type and
subroutine declarations, control flow, statements, expressions, operators, etc.

Requirement 4 [Orthogonality] The language constructs should be orthogonal
[89] to each other.

Orthogonal constructs mean that the students should know exactly when to
use which construct. At the same time, the language should not suffer from a
lack of constructs in which case users may have to rely on complex workarounds,
i.e. there should be a balance between orthogonality and a reasonable supply of
functionality. Reducing the number of constructs to a bare minimum will result in
programs that are hard to read and understand and will require a larger number
of standard library functions [90].
Redundant or synonymous constructs such as various kinds of loops or con-

ditional statements can be confusing to novices [91]. Feature multiplicity, for
example several different syntactical ways to increment a variable, should be
avoided in order to prevent confusion amongst students caused by examples with
same semantics but different syntax [23]. Syntactic homonyms, e.g. operators
and keywords with different meanings depending on the context or overloading
of operators and subroutines in general, should also be avoided [90].

Requirement 5 [Incremental introduction] It should be possible to introduce the
programming concepts incrementally [55].

Basic language constructs should not require knowledge of the more advanced
concepts. This way constructs can be introduced one by one without risking to
overwhelm students with an unnecessary large amount of information.

Requirement 6 [Build upon present knowledge] MuLE should build upon al-
ready present knowledge of programmer novices [91], such as known mathematical
notations and operations.

Any knowledge that can be reused does not require students to process and
learn new information allowing to concentrate on new concepts [54]. Moreover,
language constructs should not contradict already present knowledge which would
require students to unlearn it before assimilating new facts [90].

Requirement 7 [Multi-paradigm language] MuLE should include the three main
programming paradigms: procedural, functional and object-oriented [92].

All main programming concepts of these paradigms (see chapter 2) should be
represented in the language. Logic programming should not be included, at least
not directly, due to its very different, non-procedural, nature compared to the
other three paradigms. It’s constructs will not interact well with the constructs
of the other paradigms resulting in a language built within another language
which may as well be simulated by a library.

73

Requirement 8 [No forced object-orientation] It should be possible to write pro-
cedural or functional programs without relying on concepts of object-oriented pro-
gramming.

Java represents a negative example for this requirement, as demonstrated
in section 3.2.1. Furthermore, relying on complex object-oriented concepts to
demonstrate more basic procedural or functional concepts contradicts the re-
quirement of incremental introduction.

Requirement 9 [Clear execution semantics] The language should have clear
logic and semantics.

The students should know exactly what will happen when a specific statement
is executed or an expression is evaluated. Implicit behaviour and silent state
alterations should be avoided. Error messages should be easy to understand and
not rely on technical or scientific jargon [54]. When possible, error messages
should offer advices or solutions to the problem [91].

Requirement 10 [Explicit static type system] The language should rely on ex-
plicit static typing to prevent type related runtime errors.

Runtime errors are more difficult to fix than compile time errors. Furthermore,
dynamic type systems can lead to unexpected behaviour, e.g. semantic errors
resulting from implicit type conversions or from missing explicit type checks,
that may not be perceived by novices during the execution of a program.

Requirement 11 [Data abstraction] MuLE should include mechanisms of data
abstraction.

The language should allow to abstract certain implementation details, e.g. in-
ternal functionality of a library or a specific type. This may range from ab-
stracted representations of basic primitive types, e.g. decimal representation of
numbers (which is standard in high-level programming languages anyway), to ex-
plicit abstract data types acting as super types in object-oriented programming
and explicit visibility modifiers.

Requirement 12 [Polymorphism] Polymorphic operations can be applied to data
with varying types.

While this concept is inherently present in dynamically typed languages, spe-
cific mechanisms must be used to apply this concept in statically typed program-
ming languages. There are two distinct approaches to polymorphism. Subtype-
polymorphism allows an operation to be used with a specific type and any of its
subtypes. Another approach is parametric polymorphism wherein a type or an
operation declaration is parameterized by an unspecified formal type which can
be substituted by any actual type at a later stage.

74

Requirement 13 [Modularity] MuLE should offer mechanisms to separate pro-
grams into reusable units [51][91].

Users should be able to write and import their own libraries. It should be
therefore possible to separate programs into several compilation units.

Requirement 14 [Standard libraries] The language should provide standard li-
braries with a manageable number of necessary operations.

Operations such as input and output are required from the very beginning,
for example in a simple "Hello, world!" program. The intention and the se-
mantics of the provided operations should be easily understandable by novice
programmers.

Requirement 15 [Tool support] The language should be assisted by adequate
tool support [91].

An IDE with a debugger which allows stepwise execution of the program can
facilitate explanation and understanding of imperative concepts. The program-
ming environments should be appropriate for the target audience, i.e. beginner
programmers who have no experience with such tools. Both the language and the
environment should be easy to install and be platform independent [53]. More
on the requirements for the provided tools in section 3.3.

4.2. Design Decisions

In the previous section we have laid out the general requirements for our lan-
guage. This section presents the concrete design decisions we have made when
implementing MuLE, as well as short code examples to demonstrate these deci-
sions. The actual rules and implementation of these design decisions are given in
chapter 5.

4.2.1. General Decisions

Before we focus on paradigm specific constructs we have to discuss the funda-
mental design of MuLE.

Language Architecture

Procedural programming was chosen as the base platform for MuLE, upon
which the language was then expanded with object-oriented and functional lan-
guage constructs which also allows incremental introduction of these concepts in
a programming course based on procedural-first approach (requirement 5 – In-
cremental introduction). This has allowed us to test this language fairly early

75

in the development in a live environment with the target audience. Since the
language has to offer a minimal number of orthogonal constructs (requirement
4), this also means that procedural constructs are reused when programming in
an object-oriented or functional way (see figure 8). It is, therefore, not possible to
write pure object-oriented or functional programs the way Smalltalk or Haskell
do.

Figure 8: Abstract representation of MuLE’s architecture.

In a nutshell, functional and object-oriented language constructs are relying on
procedural constructs. Functional and object-oriented constructs can be used in
conjunction with each other facilitating a multi-paradigm style of programming.
An example of a multi-paradigm program implemented with MuLE is presented
in section 4.3. An explanation of the constructs mentioned in figure 8 will be
given in the following subsections.

Program Structure

A simple program can be contained in a single compilation unit stored in a file.
However, larger programs can be separated into several compilation units with
one of them being the main one. The main unit must contain the entry point while
the others must be explicitly imported in the main unit so that their contents can
be accessed. Therefore, an import instruction is required and the imported units,
let us call them libraries, have to be identifiable by their name. For the sake
of consistency, all units, both the main unit and the libraries, are given explicit

76

keywords (program and library respectively) followed by identifiers in the source
code. The identifiers must be equal to the file name in order to minimize the effort
to locate and open the necessary file in the programming environment.
Implicit imports are not allowed. By default, only those program elements can

be used, that are defined within the same compilation unit. As already mentioned,
users have to explicitly import libraries with an import instruction. Imported
elements can then be accessed via their qualified names, e.g. IO.writeString-

("Hello, world!") represents invocation of the operation writeString(arg :

string) from the library IO. For the sake of consistency, we have allowed to use
qualified names to refer to program elements from within the same compilation
unit, e.g. we can refer to a type declaration in a program unit from the main
procedure via its qualified name, which is optional. Finally, declarations of types
and operations can be hidden in a library by using the explicit visibility modifier
private allowing to prohibit user access to elements that are only relevant for the
internal functionality of a library. This is again optional, declarations without
the modifier private are exported by default.
The entry point is a structured block of statements, i.e. a main procedure,

meaning that loose statements interspersed between subroutines and type decla-
rations are not allowed. Arguments which could be passed to a main procedure
are rarely used in the context of introductory programming, moreover, they are
often confusing to the beginner programmers since they do not understand where
the values should come from, therefore, we have decided not to include them. As
already mentioned, libraries are not allowed to have a main procedure.
Separating a program into several importable compilation units fulfils the re-

quirement 13 – Modularity and allows to fulfil the requirement 14 – Standard
libraries (more on that in chapter 6). Explicit import mechanism of standard
and custom libraries as well as having a single entry point in a program contribute
to the requirements 9 – Clear execution semantics and 1 – Easy to learn.
Preventing export of specific type and operation declarations via an explicit visi-
bility modifier allows to abstract implementation details of a library (requirement
11 – Data abstraction), furthermore, the optionality of that modifier allows
to introduce the concept of information hiding at a later stage (requirement 5 –
Incremental introduction).

Syntax

MuLE’s syntax should be readable, able to clearly convey the intended mean-
ing and at the same time not deviate far from the syntax of other contemporary
programming languages (requirement 2 – Non-cryptic syntax). We have de-
cided to introduce each declaration with a corresponding keyword: program,
library, type (further specified as composition or enumeration), operation,
attribute, parameter, variable, and finally main. MuLE has three separate
declaration types for data containers, since they are representing three different

77

concepts. There are no shortened versions of keywords. This might sound im-
practical, but that is not the focus of this language. In a similar fashion, primitive
types are written as: integer, rational, boolean and string.
In earlier imperative programming languages such as COBOL a semicolon is

used to separate statements, i.e. a semicolon has be to placed between statements
but it is not required after the last statement. C and some languages based on
its syntax rely on the semicolon to terminate each statement, i.e. a semicolon is
required after each statement [93]. More modern programming and scripting lan-
guages, such as Scala, Python or JavaScript, offer an optional use of a semicolon.
For example, a semicolon is required to separate statements written in the same
line, however, a line break is also used to terminate a statement, which leads to
inconsistent syntax [94] and to confusion among beginner students, meaning that
an optional semicolon should be avoided at all costs. Semicolons are a common
source of mistakes among beginner programmers [95][78], therefore, we have de-
cided not to use semicolons to separate statements at all. Several statements can
be written in a single line and are correctly identified by the compiler as long as
white spaces separate keywords.
Similarly to C-based languages, commas are used to separate enumerated el-

ements, such as value literals in enumeration types, parameters in operation
declarations and invocations, and elements in value constructors for lists and
composite types.
All kinds of brackets have a very narrow field of use (requirement 4 – Orthog-

onality). Parentheses (()) are used in their usual role to manipulate operator
precedence in expressions and to pass parameters to operations (both in dec-
larations and invocations). Curly brackets ({}) are used to represent values of
composite types (Point2D{x = 2, y = 3}). Square brackets ([]) are used to
represent list values ([1, 2, 3, 4]) and indexed access to a list (myList[0]).
Angle brackets (<>) are used to define type parameters of user defined composite
types (type MyList<Type> : composition) and to pass actual type parame-
ters to parameterized types (reference<MyList<integer>>).

Type System

According to requirement 10, MuLE supports only explicit strict static typ-
ing. Data containers and functions are assigned a type upon their declaration.
In concordance with the requirement 3 – Minimal number of language con-
structs, MuLE should also offer a minimal number of data types. This does
not imply that MuLE should follow the approach of Lisp, which offers lists as its
single data type. Instead, MuLE should offer a range of orthogonal types which
would cover the different kinds of data encountered in introductory programming
courses.
In general, the language offers a limited number of types: e.g. two kinds of

numeric types for integers and floating point numbers, a boolean type instead

78

of relying on other types to simulate boolean values [23], a type to represent
strings, a single flexible collection type, an enumeration type, a parameterizable
composite type, a type to represent functions as data and the possibility to use
each of these types as a reference type.
We have decided against a single numeric type to be able to demonstrate dif-

ferent numeric representation systems as well as their features and limitations.
Rational numbers are a familiar concept to beginner students unlike their floating
point representation on the hardware, therefore we have decided to name this type
rational according to the requirement 6 – Build upon present knowledge.
Nevertheless, it should be noted that not every mathematically computable num-
ber can be represented by this type as these numbers can only be approximated
on the machine.
Lists, composite types, references and function types are parameterized types,

i.e. they accept type parameters that define which values can be stored by these
wrapper types. For example, a list of integers may only store integer values, a
reference to string can reference string values, a user defined composition can
be used to implement generic data structures, and operation types define which
types of arguments can be passed to lambda expressions as well as their return
type.
A composite type can be declared as a subtype of another composite type

inheriting all features of the super type (more on the topic of inheritance in section
4.2.3). Subtyping in MuLE is reflexive, meaning that any type is a subtype of
itself, and transitive, e.g. if T1, T2 and T3 are composite types and T3 is a
subtype of T2 and T2 is a subtype of T1 then T3 is a subtype of T1. Formal
type parameters of parameterized composition declarations can be restricted to
a specific composite type, allowing only the subtypes of this type to be used as
actual type parameters. Regarding the basic types, integer type is effectively a
subtype of the floating point type.
Implicit type conversions are allowed only in case of a subtype being converted

into a super type or an integer into a floating point number. Specific operations
are provided to convert values of other types into strings. These semantics adhere
to the requirement 9 – clear execution semantics.
Since MuLE has strong static typing, type checking is performed on each ex-

pression at compile time. The context of the expression provides the expected
type and the expression itself the actual type. The actual type must be compat-
ible with the expected type, i.e. it must be either equal to or be a subtype of
the expected type in most cases. In case of parameterized types, the correspond-
ing type parameters must also be compatible. The program will not compile
otherwise. More details are given in section 5.5.12.
In case of non-numeric primitive types, i.e. boolean, string and enumeration

types, two values are equal when they have the same type and content. Numeric
primitive types are equal if they represent the same numeric value, e.g. 42.0

is equal to 42 and 1.0E2 is equal to 100. Two lists are equal, if they have the

79

same number of elements, the order of the elements is equal in both lists and
each respective element is equal. Two references are equal if the stored addresses
are equal. Two compositions are equal if the value on one side of the equation
expression is a reflexive or a transitive subtype of the value on the other side and
the values of the shared attributes are equal.

Basic Types

As mentioned previously, MuLE offers a small set of primitive types, which can
be represented by a single value literal. Here is the list of these types:

� integer – Integer values are represented by the 32bit two’s complement
system. Any arithmetic and comparative operator can be applied.

0, 42, 1337

� rational – This data type represents floating point numbers by using the
64bit IEEE 754 standard [96]. Scientific notation is supported. Any arith-
metic and comparative operator can be applied.

0.0, 3.14, 1.25E10

� string – The only type to represent strings in MuLE, a character type is
not included. MuLE offers a standard library with operations specific to
this type. Equality check and string concatenation operators can be applied.

"", "Hello, world!"

� boolean – This type represents logical Boolean values, thus Boolean oper-
ators and equality checks can be used in conjunction with this type.

true, false

� enumeration – Users may declare enumerations, which define a limited
range of value literals. The literals are accessed by their qualified names.
Only equality check operators can be applied.

RGB.RED, RGB.GREEN, RGB.BLUE

The corresponding type declaration is:

type RGB : enumeration

RED, GREEN, BLUE

endtype

Type Constructors

In addition to the primitive types discussed in the previous section, MuLE offers
several types which are constructed by combining values of primitive types:

80

� list<Type> – Represents a list of values with the same (super) type. The
list is ordered, the entries are accessed via their indices beginning at 0. A
built-in standard library offers a range of functions working with this type.
Multidimensional lists can be simulated as lists of lists.

[], [3, 1, 6], [1..10], [[1, 2], [3, 4]], [8**[8**"-"]]

� reference<Type> – References are required to implement procedures with
side effects, data structures and object relations in object-oriented program-
ming. The reference expression stores a value in memory and returns the
address of that value, which is then stored in a variable. In order to access
the referenced value, the referencing variable must be dereferenced with the
corresponding operator. Examples are given in sections 4.2.3 and 4.3.

null, reference 42, reference Point{}

� composition – Compositions are another user defined type which repre-
sents structures in procedural programming and classes in object-oriented
programming. Compositions may accept type parameters allowing to de-
fine custom parameterized types. Examples are given in sections 4.2.3 and
4.3.

Point{}, Point{x = 2, y = 3}
MyList{}, MyList{head = reference 42, tail = null}

The corresponding type declarations are:

type Point : composition

attribute x : integer

attribute y : integer

endtype

type MyList<Type> : composition

attribute head : reference<Type>

attribute tail : reference<MyList<Type>>

endtype

� operation(Type, ..., Type) : Type – This is the data type represen-
tative for named and anonymous operations (i.e. lambda expressions).
Types enclosed in parentheses define the data types of operation param-
eters, while the type after the colon is the return type of the operation.
Both parameter types and the return type are optional. The lambda ex-
pression is the lexical representation of the value with such a data type.
A variable with an operation type as well as the corresponding lambda
expression are displayed in the example below.

variable f : operation(integer) : integer

f := operation(parameter x : integer) : integer

return x * 2

endoperation

81

Default Values

Variables and attributes of compositions are automatically assigned a default
value upon the declaration of a variable in order to prevent issues caused by
uninitialized variables. Default values for specific types are:

� integer – 0

� rational – 0.0

� boolean – false

� string – "" which represents an empty string value.

� enumeration – first listed literal of the enumeration type declaration.

� reference – null

� list – [] which represents an empty list value.

� composition – all attributes of the composition are initialized with their
respective default values depending on their types.

� operation – a lambda expression with the expected parameter profile and
a default return value based on the return type of the operation type. If
the operation type has no return type, the lambda expression has no return
value.

Expressions

The operators should be easily accessible from the keyboard, students should
have no difficulty to find the required keys in order to type an operator, meaning
that Unicode shortcuts for specific characters like ← for assignment or × for
multiplication should be avoided. Therefore, we have decided to use := (“is
defined as”) and * respectively, other arithmetical operators follow the same
pattern and are similar to those used in most programming languages. Exceptions
are the exponential (C++ and Java do not have such operator, Python uses **),
modulo (the commonly used % is associated with percentage calculation) and
integer division (the operator / is reserved for rational division) operators, for
which we have used the keywords exp, mod and div.
We have chosen textual form for boolean operators, since this is mostly a

new concept for beginner programmers and keywords not, and and or are more
readable and meaningful compared to, for example, Java operators !, && and ||

(requirement 2 – Non-cryptic syntax).
The operator = implies equality and is therefore used for equality check opera-

tions in MuLE. We have decided to use the operator & for string concatenations

82

instead of the commonly used + operator according to the requirement 4 – Or-
thogonality which, amongst other things, states that syntactic homonyms and,
therefore, operator overloading should be avoided.
Requirement 6 states that MuLE should build upon already present knowledge,

therefore, infix notation is used for arithmetical operators. The operator prece-
dence follows the same rules as school mathematics, expressions are evaluated
from left to right. Section 5.3.5 includes a complete overview of operators as well
as their precedence and associativity. In most cases, an expression is evaluated
left to right, the types on both sides of binary expressions must be compatible
with each other

Value Copying Semantics

Value copying semantics, i.e. creating and passing a copy of a value each time
when a value is passed on, are easier to understand for beginner programmers
compared to referencing semantics (requirement 1 – Easy to learn). Moreover,
value copying is a more intuitive concept to students based in their prior math-
ematical knowledge (requirement 6 – Build upon present knowledge). In
order to understand how references work in a programming language, the pro-
cesses of memory usage have to be explained first, which is a difficult topic [97]
that may lead to unnecessary information overload when introduced right at the
beginning.
However, references are required to implement specific concepts, e.g. relations

between entities in object-oriented programming. Furthermore, references are
used in other programming languages. Therefore, it is still necessary to explain
how this concept works in an introductory programming course, for example at
a later stage prior to the discussion of topics like object-oriented programming
or dynamic data structures (requirement 7 – Multi-paradigm language).
Therefore, we have decided to offer value copying semantics as the standard

mechanism when evaluating expressions and implement an additional explicit
reference type, which can be used as a wrapper type for any other type, as
explained in the previous section. The value of the reference type is the address
to the value of the referenced type stored in heap. The reference type and the
corresponding semantics and language constructs can be explained after a solid
understanding of the basic value semantics is already present contributing to
the requirements 5 – Incremental introduction and 9 – Clear execution
semantics.
Any value is copied when passed to a data container (via an assignment or as

an operation parameter). If a reference type is used, the address to the stored
value is copied leading to several data containers referencing the same value in
the memory. Inherently, this means that the language supports only call-by-
value semantics for operation parameters. When a value is copied, a shallow
copy is created, i.e. in case of a list or a composite type the contained values

83

are copied over, however, the referenced values are not, only their references are
copied. The language design excludes dangling references, garbage collection is
used for automatic memory management (1 – Easy to learn). References must
be explicitly dereferenced in order to access the value (9 – Clear execution
semantics), null references cannot be dereferenced.

1 program Values

2

3 operation foo(parameter a : integer)

4 a := 5

5 endoperation

6

7 main

8 variable a : integer

9 variable b : integer

10

11 a := 42

12 b := a

13 b := 10

14 foo(a)

15 endmain

Listing 26: Example program for value copying semantics with basic types. The
corresponding memory states are shown in figure 9.

Figure 9: Depiction of the memory at various times during the execution of the program
in listing 26.

Listing 26 and figure 9 show a simple program and the corresponding memory

84

states at various times during the execution of the program. As we can see, the
variables are initialized with their default values, in this case zeroes, directly after
their declaration (state 1). When we assign the value of a to the variable b in line
12, the value of a is copied and the copy is stored in b (state 2). Both variables
are still two separate data containers and are not aliases for the same value even
if their values are equal. This means that subsequent altering of one of these
variables will not have any effect on the other variable (state 3). Same applies
to passing parameter values on operation calls, as demonstrated in line 14. The
value of the variable a is copied and stored in parameter a of the operation foo

(state 4). Changing the value of the parameter a inside the operation foo has no
effect on the value stored in the variable a in the main procedure (states 5 and
6).

1 program References

2

3 operation foo(parameter a : reference<integer>)

4 a@ := 5

5 endoperation

6

7 main

8 variable a : reference<integer>

9 variable b : reference<integer>

10

11 a := reference 42

12 b := a

13 b@ := 10

14 foo(a)

15 b := reference a@

16 b@ := 42

17 endmain

Listing 27: Example program for value copying semantics with reference types. The
corresponding memory states are shown in figure 10.

Listing 27 and figure 10 show a similar example program, however, this time
we use reference types instead. After their declaration the variables a and b are
initialized with their default values as usual, in case of reference types this value
is always null (state 1). We use a reference creation expression to initialize the
variable a in line 11, the referenced value is stored in the memory and the address
to this value is then stored in the variable a. We then assign the value of a to
the variable b, i.e. the stored address is copied and stored in b, meaning that
both variables are now referencing the same stored value in the memory (state
2). We can alter this value by manually dereferencing one of the variables, e.g.
b in line 13. Invoking an operation with a reference as a parameter will lead to
the parameter referencing the same value (state 3). Altering the referenced value
in the operation affects the state of the entire program in this case (state 4). If

85

we, however, dereference one of the variables first, and then use the reference
expression to assign a new value to the other variable (line 15), the dereferenced
value is copied, stored in a separate place in the memory and the new address
is stored in the variable (state 5). Even though the referenced values are equal
for both variables, the equality check a = b will yield false since the stored
addresses are different. Altering the stored value of one variable no longer has
any effect on the other variable (state 6).

Figure 10: Depiction of the memory at various times during the execution of the pro-
gram in listing 27.

Memory Management

As displayed in figures 9 and 10, the memory is separated into two parts,
the call stack and the heap. The memory on the stack is allocated whenever a
procedure or a function is invoked, starting with the main-procedure. The last
invoked procedure, i.e. the one that is currently executed, is located at the top of
the stack, as seen in states 4 and 5 in figure 9 and state 3 in figure 10. Memory for
values of operation parameters and variables are therefore also allocated on the
stack as a part of the encompassing operation. In both examples, the variables
a and b were allocated in the context of the main-procedure while the memory

86

for the parameter a was allocated when the operation foo was invoked. In the
example in figure 9 we are using non-reference types, the integer values are stored
directly on the stack. However, in the second example in figure 10 reference types
are used, meaning that the values that are stored on the stack are addresses to
the referenced values, which are allocated on the heap. Whenever a reference

expression is executed (lines 11 and 15 in listing 27), the value after the keyword
reference is copied onto the heap and its address is returned and can now be
stored in a variable with a reference type. Therefore, when using non-reference
types, memory is allocated on the stack only, however when references are used,
the referenced values are stored on the heap and their addresses are stored on the
stack. Values on the heap can not only be referenced by variables and parameters
from the stack, but also by other values from the heap.
When an operation finishes its execution and is terminated, all memory re-

served by that operation on the stack is automatically deallocated and the oper-
ation that was previously underneath the last operation becomes active. In both
examples, the operation foo is invoked by the main-procedure, which becomes
active again as soon as foo finishes its execution. The memory reserved on the
heap by referenced values is required as long as the values are actually referenced.
In the example figure 10 in state 3 the value 10 is referenced by three data con-
tainers from two different procedures, when the procedure foo is terminated, the
parameter a no longer exists and is thus not referencing the value, which is how-
ever still referenced from the main-procedure and thus will be deallocated when
the main-procedure, and thus the entire program, is terminated. Let us assume,
that the variables a and b in the main-procedure do not exist. This would mean
that as soon as the operation foo is terminated, the referenced value (which is
changed to 5 in foo) is no longer referenced anywhere. In this case, the memory
reserved by that value is deallocated by the garbage collector.
To sum it up, on the stack the memory is allocated for variables (on variable

declaration) and operation parameters (on operation invocation) in the context
of their respective procedures and functions including the main-procedure, and
deallocated when the operation is terminated. On the heap, the memory is
allocated when the reference expression is executed, and deallocated when the
reserved memory is no longer referenced.

4.2.2. Procedural Programming

As mentioned previously, procedural programming was chosen as the core para-
digm of MuLE which was then to be expanded by other paradigms [98]. This
means that procedural constructs discussed in this section are also reused in other
paradigms for the sake of orthogonality and keeping the number of language
constructs at a minimum.
Statements are the central construct of imperative and, therefore, procedural

programming. A statement is an instruction, that can change the state of the

87

program or manipulate the execution order of other statements. It should be
possible to easily identify the purpose of a statement based on its syntax and
differentiate it from other statements (requirement 2 – Non cryptic syntax).

Variables and Initialization

A variable declaration statement declares a named data container with a spe-
cific data type. Data of this data type or its subtypes can then be stored in
the variable. The name of the variable is used to identify it and must therefore
be unique within the given scope. The statement is introduced with a specific
keyword – variable – followed by the name of the variable and its type, for
example:

variable x : integer

When explaining the statement in the source code it can be pronounced as
“We declare a variable with the name x of type integer”. Upon declaration, each
variable is automatically assigned a specific default value in order to prevent
unexpected behaviour caused by uninitialized variables (requirement 9 – Clear
execution semantics).
To keep the concept of declaration orthogonal to assignment, the corresponding

statements are separated, i.e. manual assignment is not allowed in a declaration
statement. The question arises, whether the variable declarations should be kept
separate from other statements in a specific block similar to Pascal. Since variable
declarations are statements just like any other statement, we have decided to allow
users to declare variables at any place in the encompassing language construct.
Constants are similar in their functionality to variables, the only difference

is that their values can only be assigned once which can be simulated by using
variables just as well. They are thus not required.

Assignment

An assignment statement is necessary to assign values to data containers such
as variables, parameters, attributes of composite types and entries in a list. The
symbol := is used as the assignment operator. The left hand side of the statement
references the identifier while the right hand side consists of an expression which
represents the assigned value. The type of the value must be compatible with the
type of the data container. The statement can be pronounced as “x is defined as
42”.

x := 42

Control Structures

Blocks of statements are representative of structured programming and are,
therefore, a mandatory requirement in procedural and object-oriented program-
ming. To clarify, we are not talking about visual block based languages like

88

Scratch. A block can be a part of a main procedure, a subroutine or a specific
statement, e.g. a loop or a conditional statement. Statements in a block are
executed sequentially from top to bottom. Blocks are also used to specify the
scope of variables. There are three distinct approaches to specify blocks:

� Use indentations to define blocks, which enforces to write well structured
and readable code resulting in syntax similar to pseudo code. On the other
hand, this may lead to semantic errors caused by wrong indentation which
are harder to find.

� User brackets similar to languages like C and Java. This mitigates the issue
of wrong indentations and reduces the number of required keywords at the
cost of accumulated use of brackets. Missing opening or closing brackets
is one of the most common mistakes of beginner programmers [95][78],
however, such errors are recognised by the compiler and are therefore easier
to fix. One remaining issue of this approach is that the brackets do not carry
the information of the context, i.e. the language construct they belong to,
by themselves.

� Use pairs of keywords that can be associated with the context of a block,
for example if ... end, if ... fi, if ... endif. The first variant
results in less keywords in the grammar of the language, however, this has
the same issue of a lack of information regarding the context of the block as
when using brackets. One of the latter two variants is thus more preferable,
we have decided to use the variant if ... endif since its appearance is
more intuitive. Surveys performed at the end of our preliminary program-
ming course (see chapter 9) indicate that students also tend to prefer this
approach to brackets.

An if statement is required to implement conditional branching. Such a state-
ment could be pronounced as “If a condition is true then execute these statements,
otherwise do something else.” Switch-case statements have a similar function, i.e.
they are not orthogonal to an if-statement, and can not be as easily expressed
via natural language. They can be simulated by if-statements with multiple
conditional branches and are, therefore, not included in the language.

if x = 42 then

IO.writeString("The answer is correct!")

else

IO.writeString("Sorry, try again.")

endif

A loop statement is necessary when several statements have to be repeated until
a specific condition is met. Many different kinds of loops exist in various lan-
guages, examples are: while CONDITION do ..., do ... while CONDITION,
for each ELEMENT in a COLLECTION do ..., etc. In addition, many languages

89

include statements that allow to alter the behaviour of these loops such as the
break and continue statements in Java.
To keep it simple, the language includes a single endless loop construct, which

can be terminated with a single exit statement at any place in the loop if a
specific condition is met, which offers the highest flexibility since the terminating
condition can be placed anywhere in the loop. This comes, however, at the
cost of requiring at least one if-statement in each loop to check the termination
conditions. On the other hand, this behaviour does make sense for the sake
of orthogonality and from a semantic point of view (specific to the intended
behaviour of the respective constructs and their combinations).
A loop can be pronounced this way: “We execute these statements, here we

check if a specific condition is met and exit the loop if it is, if not, we continue
executing statements in the loop until none are left and start from the beginning
of the loop.”

loop

IO.writeInteger(x)

if x >= 42 then

exit

endif

x := x + 1

endloop

An exit statement is an absolute requirement if the loop construct is represent-
ing an endless loop by itself. This statement is used to terminate the containing
loop at any place of execution. A continue statement, which terminates the
current iteration and initiates the next one is not required and can be simulated
by placing the statements that would be skipped in an if-statement.

Operations and Operation Calls

Subroutines represent the main concept of procedural programming. We have
decided not to separate between procedures, functions and methods on the lex-
ical level, since it would imply three non-orthogonal language constructs with
slight differences. Instead, our subroutines are simply called operations, this
name implies functionality of some sort and is more familiar to novices than the
actual word subroutine (requirements 4 – Orthogonality and 6 – Build upon
present knowledge). Subroutines may accept value parameters and may return
one value. Call-by-value is the sole parameter passing mode in MuLE since it is
easier to understand as previously explained in this section.
Operations without a return type are procedures while those with a return type

are functions. Functions must have a return statement for each of its control flow
paths. Listing 28 demonstrates an example of a procedural MuLE program,
operation gcd is a function while lcm is a procedure.

90

1 program gcdAndLcm

2 import IO

3

4 operation gcd(parameter a : integer, parameter b : integer) : integer

5 loop

6 if a = b then

7 return b

8 elseif a < b then

9 b := b - a

10 else

11 a := a - b

12 endif

13 endloop

14 endoperation

15

16 operation lcm(parameter a : integer, parameter b : integer)

17 IO.writeInteger(a * b div gcd(a, b))

18 endoperation

19

20 main

21 IO.writeInteger(gcd(15, 21))

22 IO.writeLine()

23 lcm(15, 21)

24 endmain

Listing 28: Example of a procedural MuLE program.

Operation invocation – is necessary to call subroutines from the main procedure
or other subroutines. Functions can be invoked as a statement, however, this
way it will not be possible to use the returned value. Therefore, they are usually
invoked as a part of an expression. Procedures must be invoked as statements
since they do not return a value. The following example shows the invocation of
the standard output procedure.

IO.writeString("What is the answer to the ultimate question of life, the universe,

and everything?")

A return statement – is required to return values from a function or to terminate
a procedure with a specific condition before it is fully executed. In the latter case
the return statement is written simply as the keyword return without a specific
value.

operation foo() : integer

return 42

endoperation

91

4.2.3. Object-Oriented Programming

We have decided not to introduce a separate class declaration construct, but to
expand the already present composite type (requirement 3 – Minimal number
of language constructs) [99]. In its basic procedural form, the composite type
is similar to records or structs in other languages, i.e. it is a composition of
named values with potentially different types.

One of the principle concepts of object-oriented programming is encapsulation,
i.e. grouping of data and operations in a single syntactic unit. Therefore, we have
decided to allow to declare operations within compositions, meaning that a com-
position becomes semantically a class with fields and methods in such a case.
This approach also offers another advantage when following the procedural-first
methodology of teaching. The biggest issue with the procedural-first, objects later
approach is students struggling to accept new concepts due to a paradigm shift
[65]. By using a known language construct at a later stage in an introductory
course and slowly enhancing it with new features we can facilitate a slow gradual
change from the procedural to the object-oriented way of programming (require-
ment 5 – Incremental introduction).

The next logical step was to introduce inheritance relations by allowing a com-
position to extend another composition. Inheritance allows to reuse already im-
plemented algorithms and types by declaring subtypes and is a fundamental con-
cept of object-oriented programming. Both single and multiple inheritance have
been taken into consideration. Single inheritance is less complex and easier to
explain. It is however more restricted compared to multiple inheritance since it
always results in a tree hierarchy. Therefore, it is not possible to implement a
class inheriting the functionality of two independent classes without introducing
some redundancy to the code by using single inheritance. Multiple inheritance on
the other hand allows to design more natural solutions, comes, however, with a
range of problems which require their own workarounds [91][24]. We have decided
to implement single inheritance exactly for the reason of it being less complex
than multiple inheritance (requirement 1 – Easy to learn).

Some languages, while not naturally supporting multiple inheritance, make it
possible to simulate it by using some of its language constructs. For example, it is
possible to achieve some level of multiple inheritance in Java by using interfaces.
Interfaces have however another very important function, they act as an interface
to a complex system by making only specific functions of an implementing class
visible to the client. For example, this allows users to implement different access
rules for different user groups (guest, registered user, administrator, etc.) at
a single system. We have decided not to offer an interface construct since its
semantics can be represented by abstract compositions and visibility modifiers to
a certain extent and it allows us to keep the number of language constructs at a
minimum (requirement 3 – Minimal number of language constructs).

In listing 29 we show an example of an object-oriented program which also

92

demonstrates the use of references in MuLE, the summary of that program is
shown in figure 11. In this example we have a composition Person which has
a name and a reference to a Vehicle. On its own, this composition is not any
different from a simple structure and shows an example of how a composite type
is used in a purely procedural context.

1 program vehicles

2 import IO

3 import Lists

4

5 type Person : composition

6 attribute name : string

7 attribute myVehicle : reference<Vehicle>

8 endtype

9

10 abstract type Vehicle : composition

11 protected attribute manufacturer : string

12 protected attribute mileage : integer

13

14 operation drive(parameter distance : integer)

15 mileage := mileage + distance

16 endoperation

17

18 operation printData()

19 IO.writeString(manufacturer)

20 IO.writeLine()

21 IO.writeString("Mileage: ")

22 IO.writeInteger(mileage)

23 IO.writeLine()

24 endoperation

25 endtype

26

27 type Car : composition extends Vehicle endtype

28

29 type Truck : composition extends Vehicle

30 private attribute weight : rational

31 override operation printData()

32 super.printData()

33 IO.writeString("Total weight: ")

34 IO.writeRational(weight)

35 IO.writeLine()

36 endoperation

37 endtype

Listing 29: Example of an object-oriented MuLE program.

The type Vehicle, on the other hand, is declared as abstract and features
protected attributes and public operations. Abstract types can include ab-

stract operations which lack an operation body, meaning that such types can

93

not be instantiated. We have decided to use explicit visibility modifiers only if we
want to restrict visibility, meaning that they are not required in procedural pro-
grams (requirements 8 – No forced object-orientation and 5 – Incremental
introduction). Visibility modifiers can still be used in procedural context, e.g.
to hide type declarations and operations in libraries. The types Car and Truck

are both subtypes of Vehicle, whereby Truck includes an additional private
attribute and redefines the inherited operation printData().

Figure 11: Class diagram representing the example in listing 29.

The main procedure of this program is displayed in listing 30. Here we de-
clare two vehicles and instantiate them by using non abstract subtypes and their
corresponding composite type value constructors. Since the visibility of the at-
tributes is restricted, after the instantiation their values can only be printed to
the terminal via the printData() operation. All attributes are visible in the
value constructors, meaning that their values can be set regardless whether their
visibility is restricted or not. Otherwise it would be necessary to implement in-
terface or factory design patterns to demonstrate object initialization with read-
only access to its attributes. We have decided to provide two variants of a value
constructor for composite types, an empty constructor and a variant where all
attributes including inherited ones are listed. It should be noted, that these value
constructors are not comparable to constructors of languages like Java and C++,
whose constructors are implemented as special methods which create an object
and offer the full flexibility of a subroutine. Continuing with our example, we
declare and initialize two persons and finally call the printData() operation on
the public attribute myVehicle of both Person instances.

94

1 main

2 variable v1 : reference<Vehicle>

3 v1 := reference Car{manufacturer = "BMW", mileage = 0}

4 variable v2 : reference<Vehicle>

5 v2 := reference Truck{manufacturer = "Daimler", mileage = 0, weight = 18}

6

7 variable alice : reference<Person>

8 alice := reference Person{name = "Alice", myVehicle = v1}

9 IO.writeString("Alice’s vehicle:\n")

10 alice@.myVehicle@.printData() IO.writeLine()

11 variable bob : reference<Person>

12 bob := reference Person{name = "Bob", myVehicle = v2}

13 IO.writeString("Bob’s vehicle:\n")

14 bob@.myVehicle@.printData() IO.writeLine()

15

16 variable vehicles : list<reference<Vehicle>>

17 vehicles := [v1, v2]

18 variable i : integer

19 loop

20 if i >= Lists.lengthOf(vehicles) then exit endif

21 let variable truck : reference<Truck> be vehicles[i] do

22 IO.writeString("It’s a truck!\n")

23 endlet

24 i := i + 1

25 endloop

26 endmain

Listing 30: Main procedure of the program in listing 29.

The produced output is:

Alice’s vehicle:

BMW

Mileage: 0

Bob’s vehicle:

Daimler

Mileage: 0

Total weight: 18.0

It’s a truck!

As we see, we have a different output in case of Bob’s vehicle, the executed
operation depends on the dynamic type of the object, which is Truck in this case.
The language also offers a let-statement which is also shown in listing 30 where

we iterate over a list of Vehicles containing instances of each a Car and a Truck

and use the let-statement to execute code only when the corresponding list value

95

is a Truck. As we see in the output of the program, the message It’s a truck!

was printed only once. The let-statement performs an instance check and a
type conversion. The head of a let-statement includes a variable declaration
and an expression, if the type of the expression corresponds to the type of the
variable, i.e. it is equal or is a subtype, the value of the expression is stored in
the variable and the block of the let-statement, where this variable is visible,
is executed. This allows us to perform runtime-safe type conversions within an
inheritance hierarchy thus removing a source of type conversion related mistakes
(requirement 1 – Easy to learn).
Finally, as already mentioned in section 4.2.1, composition declarations can

accept type parameters allowing us to implement generic data structures.

4.2.4. Functional Programming

We have already discussed what functional programming is in section 2.4. Its
main idea is to use functions as data represented by lambda expressions, i.e.
functions may accept other functions as parameters or return them as values.
Furthermore, functional programming encourages stateless calculations, ideally, a
functional program is a single expression which returns a single value. State alter-
ing constructs, like variables and assignments are not present in purely functional
languages. However, since MuLE is a multi-paradigm language that supports pro-
cedural and object-oriented programming, this cannot be enforced. Keeping the
number of constructs small and orthogonal (requirements 3 – Minimal num-
ber of language constructs and 4 – Orthogonality) we have decided not
to introduce constants as data containers or specific modifiers that prevent more
than one assignment to variables such as final in Java.
Functional programming languages tend to have a shorter syntax compared to

imperative languages. Functional constructs in multi-paradigm languages follow
a similar pattern, for example the Java lambda expression (x, y) -> x + y;

would require far more keywords (return type, parameter types, return keyword,
brackets, etc.) if implemented as a common method while keeping the same
semantics. It may be a more elegant way to write programs, however, this will
confuse students. Using different syntax for rather familiar concepts, e.g. lambda
expressions and common subroutines, will not facilitate recognition of the simi-
larities between these concepts. Therefore, we have decided not to use shortened
syntax for lambda expressions (requirements 1 – Easy to learn, 3 – Minimal
number of language constructs, and 5 – Incremental introduction).
A MuLE lambda expression represents an anonymous operation, its syntactical

form is the same as that of a named operation except for the lack of an identifier.
It can accept an arbitrary number of arguments and may return a value, i.e. it can
represent both functions and procedures. It can be argued, that this is not the
originally intended way of using lambda expressions, i.e. as anonymous functions,
however, MuLE is not a pure functional language and this approach enables

96

a more flexible use of this construct. Moreover, it makes it easier to explain
the concept of lambda expressions if subroutines were already explained in a
procedural-first approach (requirement 5 – Incremental introduction). Thus,
the aforementioned lambda expression (x, y) -> x + y; has to be written the
following way in MuLE:

1 operation(parameter x : integer, parameter y : integer) : integer

2 return x + y

3 endoperation

Listing 31: Example of a lambda expression in MuLE.

1 program filterExample

2 import IO

3 import Lists

4 import Strings

5

6 operation filter(parameter l : list<integer>,

7 parameter f : operation(integer) : boolean) : list<integer>

8 return filterHelper(l, f, [], 0)

9 endoperation

10

11 operation filterHelper(parameter l : list<integer>,

12 parameter f : operation(integer) : boolean,

13 parameter lFiltered : list<integer>,

14 parameter i : integer) : list<integer>

15 if i = Lists.lengthOf(l) then

16 return lFiltered

17 elseif f(l[i]) then

18 return filterHelper(l, f, Lists.append(lFiltered, l[i]), i + 1)

19 else

20 return filterHelper(l, f, lFiltered, i + 1)

21 endif

22 endoperation

23

24 main

25 IO.writeString(Strings.genericToString(

26 filter([1 .. 10],

27 operation(parameter x : integer) : boolean

28 if x mod 2 = 0 then

29 return true

30 else

31 return false

32 endif

33 endoperation

34)

35) & "\n")

36 endmain

Listing 32: Example of higher order function in MuLE.

97

Since an expression represents a value, it must have a type. We have already
mentioned the operation type in section 4.2.1. The type of the lambda expres-
sion in listing 31 is operation(integer, integer) : integer which closely
represents the signature of the operation. Lambda expressions and named op-
erations (merely referenced by their names without the parameters) can be as-
signed to data containers with an operation type allowing to implement higher
order functions. Listing 32 demonstrates such an example, the operation filter

accepts a list l and an operation f which accepts an integer parameter and re-
turns a boolean value. This operation is meant as an interface for the operation
filterHelper which performs the actual filtering recursively and requires addi-
tional parameters which represent the filtered list and the current position in the
original list to do this. This operation appends values from the original list to
the filtered list if the index is within the list boundaries and the passed predicate
is true for the current value in the list, and returns the filtered list. We invoke
the operation filter in the main procedure with a list containing all integer
numbers between 1 and 10 and a lambda expression which returns true if the
passed integer parameter is even. The output of the program is [2, 4, 6, 8,

10].
Currying is also possible, to achieve this, a function must return another func-

tion, an example is shown in listing 33. The variable sum is declared as an
operation which accepts an integer and returns another operation, which also
accepts an integer and returns an integer. The corresponding lambda expression
returns another lambda expression with matching parameter and return types.
Therefore, we pass two parameters subsequently when invoking the operation
sum, the second parameter (3) is passed to the operation returned from invoking
sum(2). The output of the program is 5.

1 program curryingExample

2 import IO

3

4 main

5 variable sum : operation(integer) : operation(integer) : integer

6 sum := operation(parameter x : integer) : operation(integer) : integer

7 return operation(parameter y : integer) : integer

8 return x + y

9 endoperation

10 endoperation

11 IO.writeInteger(sum(2)(3))

12 endmain

Listing 33: Example of currying in MuLE.

MuLE does not offer lazy evaluation which is, for example, present in Haskell.
The built in list data structure does not allow to define potentially endless lists,
since it would lead to an endless initialization when assigning such a list to a
variable. Nevertheless, the standard library with list specific operations provides

98

a set of typical functions associated with this paradigm such as head, tail,
filter and forEach. Finally, users can implement recursive data structures
as well as related operations similar to those used in functional programming
languages using the reference type.

4.3. Multi-Paradigm Programming with MuLE

In the previous section we have seen short examples of procedural, object-oriented
and functional programs in MuLE. Let us now demonstrate all previously dis-
cussed concepts in a single bigger example by implementing the dictionary lookup
algorithm that we have previously discussed and implemented using various lan-
guages and paradigms in chapter 2.
The program is separated into two compilation units, the library dictionary

which contains all dictionary related implementation details and the program
test with the main procedure. Listing 34 shows the first part of the library with
the necessary standard library import instructions and two private composite
types WordPair and Section, meaning that these types are not exported and are
meant for internal use. Both types contain only attributes and are therefore not
meant to represent objects. Finally, it contains the abstract type Dictionary

which lacks a visibility modifier, i.e. this is the type that is meant to be used by
the users of this library. It contains only two abstract operations printPurpose()
and printTranslations(word : string).

1 library dictionary

2 import IO

3 import Strings

4 import Lists

5

6 private type WordPair : composition

7 attribute word : string

8 attribute translation : string

9 endtype

10

11 private type Section : composition

12 attribute letter : string

13 attribute wordPairs : list<WordPair>

14 endtype

15

16 abstract type Dictionary : composition

17 abstract operation printPurpose()

18 abstract operation printTranslations(parameter word : string)

19 endtype

Listing 34: First part of the dictionary library.

The Dictionary itself is abstract, it cannot be instantiated and acts merely
as an interface. Listing 35 shows the continuation of the dictionary library

99

unit. To be precise, it contains the composite type DictionaryImpl which ex-
tends the abstract type Dictionary. Since it is not abstract, it has to imple-
ment both inherited abstract operations. Additionally, it implements the op-
eration getTargetSection(letter : string), which is required for the in-
ternal working of our dictionary implementation. As a reminder, when looking
for a translation our dictionary algorithm first searches for the section where
the word is stored, and then through the word pairs in the section. Thus, the
operation printTranslations(word : string) must first invoke the opera-
tion getTargetSection(letter : string), letter being the first character
of word transformed into its upper case variant. If no section with the given let-
ter is found, a null reference is returned and a corresponding message is printed.
Otherwise, the operation searches for a matching word pair in the sections and
either prints the translation or a corresponding message if no match is found.
These lookup operations are implemented by using the function filter from
the standard library Lists. This functions returns a new list with copies of the
entries of the original list, which fulfil a specific condition that is defined in a
lambda expression. The iteration over the list of word pairs is performed in a
similar functional way with the Lists operation forEach, which accepts a list
and a lambda expression, which is subsequently applied to all entries in the list.
This type and, therefore, all its implementation details are hidden from the user
by the modifier private.

1 private type DictionaryImpl : composition extends Dictionary

2 attribute purpose : string

3 attribute sections : list<reference<Section>>

4

5 operation getTargetSection(parameter letter : string) : reference<Section>

6 variable targetSections : list<reference<Section>>

7 targetSections := Lists.filter(sections,

8 operation(parameter s : reference<Section>) : boolean

9 if s@.letter = letter then

10 return true

11 else

12 return false

13 endif

14 endoperation

15)

16 if Lists.lengthOf(targetSections) > 0 then

17 return targetSections[0]

18 endif

19 return null

20 endoperation

21

22 override operation printPurpose()

23 IO.writeString(purpose) IO.writeLine()

24 endoperation

100

25 override operation printTranslations(parameter word : string)

26 variable targetSection : reference<Section>

27 targetSection :=

28 getTargetSection(Strings.toUpperCase(Strings.subString(word, 0, 0)))

29 if targetSection = null then

30 IO.writeString(word & " : no matches found")

31 IO.writeLine()

32 else

33 variable legitWordPairs : list<WordPair>

34 legitWordPairs := Lists.filter(targetSection@.wordPairs,

35 operation(parameter wp : WordPair) : boolean

36 if wp.word = word then

37 return true

38 else

39 return false

40 endif

41 endoperation

42)

43 if Lists.isEmpty(legitWordPairs) then

44 IO.writeString(word & " : no matches found")

45 IO.writeLine()

46 endif

47 Lists.forEach(legitWordPairs,

48 operation(parameter wordPair : WordPair)

49 if (wordPair.word = word) then

50 IO.writeString(word & " : " & wordPair.translation)

51 IO.writeLine()

52 endif

53 endoperation

54)

55 endif

56 endoperation

57 endtype

Listing 35: Second part of the dictionary library.

In the final part of the dictionary library (listing 36) we see an operation
createDictionary, which accepts a string and a two dimensional list of strings
as parameters. The string is meant to be the purpose of the soon-to-be dictionary
while the list is meant to contain the words and their corresponding translations.
These parameters are used to initialize the dictionary as a reference<Dictio-

naryImpl>, which is then returned at the end of the operation as reference<Dic-
tionary>, i.e. the visible abstract type. Since the actually working type Dic-

tionaryImpl is hidden, users can only interact with the the library using the
abstract type Dictionary and this creation operation.

101

1 operation createDictionary(parameter p : string,

2 parameter wPs : list<list<string>>) : reference<Dictionary>

3 variable dict : reference<DictionaryImpl>

4 dict := reference DictionaryImpl{purpose = p, sections = []}

5 variable i : integer

6 loop

7 if i >= Lists.lengthOf(wPs) then exit endif

8 variable word2 : string

9 word2 := wPs[i][0]

10 variable translation2 : string

11 translation2 := wPs[i][1]

12 variable letter2 : string

13 letter2 := Strings.toUpperCase(Strings.subString(word2, 0, 0))

14 variable section : reference<Section>

15 section := dict@.getTargetSection(letter2)

16 if section = null then

17 dict@.sections := Lists.append(dict@.sections,

18 reference Section{letter = letter2, wordPairs = []})

19 endif

20 dict@.getTargetSection(letter2)@.wordPairs := Lists.append(

21 dict@.getTargetSection(letter2)@.wordPairs,

22 WordPair{word = word2, translation = translation2}

23)

24 i := i + 1

25 endloop

26 return dict

27 endoperation

Listing 36: Third part of the dictionary library.

The library dictionary does not contain a main procedure and can not be
executed by itself. It is meant to be imported and used somewhere else, for
example in the test program in listing 37. Here we declare a variable dict as a
reference<dictionary.Dictionary>. We must use a reference type, otherwise
we wouldn’t be able to create a default value (which is null for reference types)
since Dictionary is an abstract type. Furthermore it makes sense to use a
reference type since we are handling objects. The variable is then initialized by
using the operation createDictionary, with two different meanings for the word
Ausdruck. Finally we test it by calling the operation printTranslations with
various words, the produced output is:

German - English

Ausdruck : expression

Ausdruck : printout

bauen : build

Algorithmus : no matches found

Sprache : no matches found

102

The resulting program relies on all three supported paradigms (requirement
7 – Multi-paradigm language). The library dictionary provides the nec-
essary types and the functionality. It relies on object-oriented and functional
programming to implement the dictionary itself and on procedural programming
to provide the operation that is tasked with the creation of Dictionary instances.
Implementation details that are not relevant from the perspective of a user are
abstracted (requirement 11 – Data abstraction).

1 program test

2 import dictionary

3

4 main

5 variable dict : reference<dictionary.Dictionary>

6 dict := dictionary.createDictionary("German - English", [

7 ["Alphabet","alphabet"],

8 ["Anweisung","Anweisung"],

9 ["Ausdruck","expression"],

10 ["Ausdruck","printout"],

11 ["bauen","build"],

12 ["Baum","tree"],

13 ["Bedingung","condition"],

14 ["Chip","chip"],

15 ["Code","code"],

16 ["Computer","computer"]

17])

18 dict@.printPurpose()

19 dict@.printTranslations("Ausdruck")

20 dict@.printTranslations("bauen")

21 dict@.printTranslations("Algorithmus")

22 dict@.printTranslations("Sprache")

23 endmain

Listing 37: Test program for the MuLE dictionary example.

4.4. Discussion

The decision to use procedural programming as a platform and implement other
paradigms as expansions while keeping the number of language constructs at
a minimum has a strong influence on the implementation of these paradigms,
which is especially evident in the support of functional programming. The type
system is based on procedural programming with explicit strict static typing and
data types typical for this paradigm. Meanwhile, functional programming relies
usually on type inference which allows to write shorter and more elegant pro-
grams. State alteration is an integral concept of procedural programming which
stands in contrast to the side-effect free approach of functional programming and
is thus mostly absent from these languages. MuLE supports both styles but does

103

not enforce any of them. Other concepts typical for functional programming
such as lazy evaluation and recursive data structures can be simulated, but are
not natively integrated into the language. Keeping the textual representation of
lambda expressions in MuLE consistent to the syntax of named operations results
in a quite lengthy notation compared to lambda expressions in other functional
languages.
Object-oriented programming is supported via extensions to the composition

type thus allowing both stack and heap allocated objects, with only the lat-
ter making overall sense in the context of object-oriented programming. This
means that users have to manually wrap each composition type as a reference
type and use the dereferencing operator to access the stored values again result-
ing in less elegant code compared to the one written in Java or Python where
this operations are handled implicitly. Furthermore, this also means that MuLE
lacks a this reference which would lead to issues with dangling references when
using stack allocated objects. Finally, constructors as they are used in object-
oriented programming are not present in MuLE, the provided value constructors
for compositions merely allow to initialize attribute values, further constructor
functionality has to be simulated by operations.
As we can see, these decisions result in less elegant code compared to other

languages. However, as previously stated it is not our intention to implement a
language with a short syntax. MuLE is meant to teach programming concepts,
which is easier achieved when these concepts are not obscured by short syntax or
hidden behind a layer of implicit behaviour. Even though the number of language
constructs is kept small, the language is Turing complete, which it must be in
order to be a capable educational tool. The proof of the Turing completeness is
presented in appendix J.
In this chapter we have discussed the requirements that we have defined for

MuLE and the resulting design decisions. Furthermore, we have presented var-
ious programming examples utilizing our language focusing on each supported
paradigm as well as a larger example which utilizes language constructs and pro-
gramming concepts of all three paradigms. In the following chapter we will specify
concrete rules for MuLE which are based on the design decisions explained in this
chapter.

104

5. Specification of MuLE

By now we have defined the requirements for MuLE, explained our design deci-
sions and have already seen it in action as demonstrated in several programming
examples. This chapter will provide the specification of our language offering a
more precise definition of implemented language constructs based on grammar,
scoping and validation rules. Not following any of these rules will result in compi-
lation errors. Since this chapter contains the specification of MuLE based on the
design decisions explained in the previous chapter, there will be some overlapping
content between the two chapters.

5.1. Identifiers, Namespaces and Scoping

The topic of this section are identifiable program elements, namespaces and scop-
ing rules. The lexical composition of identifiers is presented later in section 5.3.2.
An identifier is used to reference a program element in language constructs, i.e.
it is a name or a label given to a program element. For example, an expression a

+ 2 is referencing a data container by its name a. Following program elements
can be referenced by their identifiers:

� Compilation units, i.e. MuLE programs and libraries.

� Declared types, i.e. enumerations, compositions and type parameters of
compositions.

� Literals of enumeration types.

� Attributes of compositions.

� Operations.

� Value parameters of operations and lambda expressions.

� Variables.

5.1.1. Namespaces and Scope Rules

A namespace is a section of a program in which a named element was declared.
Named program elements in the same namespace must have unique identifiers
in order to prevent ambiguity. Namespaces can be nested, identifiers declared in
outer namespaces are visible and can be referenced in inner namespaces. Shad-
owing of identifiers from an outer namespace is not permitted, meaning that the
identifiers must be unique not only in the same namespace, but also in all en-
closing namespaces. There are three types of namespaces in a single compilation
unit:

105

1. The namespace defined by the compilation unit itself represents the outer
most namespace. It includes itself, import instructions, type declarations
and operations. This means the identifiers that are visible in this namespace
are the name of the containing compilation itself, the names of imported
compilations units, as well as all types and operations declared directly in
the compilation unit.

2. The namespaces defined by enumerations and compositions. The names-
pace defined by an enumeration includes all enumeration literals while the
composition namespace may include identifiers of type parameters, nested
compositions, attributes and operations.

3. The namespaces of language constructs with a block of statements, such as
the main-procedure, operations and control flow defining statements (if,
loop and let). Similar to the previous type, these namespaces can be
nested. The difference is however is that since these namespaces are mainly
defined by blocks of statements, only the previously defined elements can be
referenced in the same encompassing namespace. This disallows referencing
variables which are declared at a later stage in the source code and are
thus not yet initialized. These namespaces include identifiers of variable
declarations (both as a variable declaration statement and as a part of a
let-statement clause) and operation parameters. Conditional if- and let-
statements, which may have several clauses with separate blocks, define
separate namespaces for each clause.

A scope is the region of the code where a named element can be referenced by
its name. Scope rules define which identifiers are allowed to be accessed within
a namespace from a concrete textual region in a program. Scopes are struc-
tured hierarchically in a compilation unit. The lowest tier is the area containing
the reference to an identifier. The container of this area represents the immedi-
ate containing scope area. The upper most scope area is the namespace of the
compilation unit where other compilation units are imported and the types and
operations are declared.

Whenever a named element is referenced in the source code, e.g. when a
declared type is used to declare a data container of a variable is used in an
expression, scoping rules check whether this named element is actually accessible
from the current context. We will use the term reference as the reference to a
named element from a specific context in the scoping rules in this section. The
left-hand side of the rule describes the context of the reference while the right-
hand side summarizes elements visible from this context. Scoping rules merely
compute elements visible from a specific context, whether these elements are
actually usable is checked by validation and type consistency rules (see further
sections of this chapter). The rules are:

106

Simple name – expressions are contained in statements, which are contained
in blocks. All kinds of previously mentioned named elements can be referenced
by an expression. If the reference is not a member call, i.e. its context is not part
of a qualified name, then the accessible named elements are as follows:

� All variables declared prior to the context statement in the same namespace
and all namespaces defined by encompassing block.

� If the containing block is assigned to a clause in a let-statement, then the
variable defined by this statement is included.

� If the containing block is assigned to an operation, then all parameters of
this operation are included. If the operation is included in a composition,
then the named elements defined in the namespace of the composition are
included.

� All named elements defined in the namespace of the encompassing compi-
lation unit are included.

Qualified name – the reference is part of a qualified name, e.g. a.b.reference,
wherein b is the context of the reference, i.e. the named elements accessible by
the reference are those visible in this context. Visibility modifiers private and
protected may further restrict the visibility depending on the context. Natu-
rally, the elements a and b must be visible too. More details on qualified names
and visibility modifiers are given in sections 5.1.2 and 5.1.3 respectively.

� Compilation unit – accessible named elements are those defined in the
namespace of the unit. If the reference is not contained within the same
compilation unit, then visibility modifiers are checked as well. Elements
marked as private are not visible.

� Declared enumeration type – accessible named elements are the enu-
meration literals.

� Declared composition type – accessible named elements are the nested
compositions. Visibility modifiers are checked as well.

� Instance of a composition type – accessible named elements are at-
tributes and operations defined in the namespace of the composition as
well as those that are inherited. Visibility modifiers are considered as well.

Figure 12 shows an example of a program with different namespaces, i.e. the
namespace defined by the unit itself, the namespaces defined by the declared
types and finally the namespaces defined by block based language constructs. The
figure also shows the different nesting levels coded by colours, blue representing

107

Figure 12: An example demonstrating namespaces.

the highest level of the compilation unit and orange is the lowest level in this
example.

The main-procedure represents the namespace for the variable x while the loop-

108

statement acts as the namespace for the variables y and z. The loop-statement
also represents a nested inner namespace of the outer main namespace which
means that variable x exists within the loop and no other named element can be
declared in the loop using the identifier x. The main-procedure is located in the
compilation unit NamespacesExample which acts as the outer most namespace,
which contains the identifiers of itself, the imported library IO, the declared types
RGB, List and User as well as the operation foo. Finally, the if-statement does
not include any variable declarations meaning that its namespace is empty, how-
ever since it is nested in the loop namespace, all declarations from this namespace
and its outer namespaces are visible in the if-statement. To summarize it, the
namespaces related to the main-procedure and their corresponding identifiers are
structured in the following order:

compilationUnit[NamespacesExample, IO, RGB, List, User, foo]

main[x]

loop[y, z]

if[]

The assignment references the variable x which means that this identifier, which
is located in an outer namespace, has to be visible, otherwise the program would
not compile. The actually visible identifiers for this assignment defined by scope
rules are following:

compilationUnit[NamespacesExample, IO, RGB, List, User, foo]

main[x]

loop[y]

The difference is that the variable z is not visible in the assignment since
forward references are only allowed in the outer most namespace and namespaces
defined by compositions. Types and operations defined in the compilation unit
can reference each other whereas in a local namespace, e.g. inside an operation,
an expression can reference only those variables that are declared prior to the
statement containing the referencing expression. Similarly the namespace of the
if-statement is not listed, since it is defined after the assignment.
As previously mentioned, all declarations must have unique identifiers in the

same namespace, otherwise the program is ambiguous and cannot be compiled.
The operation foo in figure 12 demonstrates an example for two variable dec-
larations which are located in separate namespaces. The if-statement includes
a then block, which is obligatory, as well as an optional else block. Only one
of these blocks can be executed at the same time, therefore only one of these
variables can exist at runtime resulting in a correct and unambiguous program.
The example in listing 38 on the other hand shows two program elements with
the same identifier within overlapping namespaces. The operation a is declared
within the outer namespace defined by the compilation unit. The variable a is

109

declared in the local namespace of the main procedure and is therefore nested
in the namespace of the compilation unit. This leads to a compile time error
message and the program can be neither compiled nor executed.

1 program NamespacesExample3

2

3 operation a()

4 endoperation

5

6 main

7 variable a : integer

8 endmain

Listing 38: Two elements with the same name in overlapping namespaces.

Continuing with the example in figure 12, as already mentioned, the identifiers
defined in the namespace of the compilation unit are: NamespacesExample, IO,
RGB, List, User and foo. All of them can reference each other, even those that
are declared later in the code, for example the composition List could reference
the composition User as its super type and invoke the operation foo in one of its
own operations. The named elements declared within the composition List are
T, Element, first and append. Yet again, all of them can reference each other,
for example we could invoke the operation append from within the composition
Element where it is visible.

5.1.2. Qualified Names

Import statements allow to reuse operations and types implemented in other
compilation units. It should be noted, that only compilation units marked as
libraries which lack a main procedure can be imported, otherwise a program
would have several entry points.

1 program QualifiedNames

2 import IO

3

4 operation writeString(parameter str : string)

5 IO.writeString("myWriteString: " & str)

6 endoperation

7

8 main

9 IO.writeString("Hello\n")

10 writeString("Hello, world!\n")

11 QualifiedNames.writeString("Hello, world!\n")

12 endmain

Listing 39: Referencing library operations by using qualified names.

In order to be used, an element contained in an imported library must be
referenced by its qualified name. Example given in listing 39 shows the use of the

110

writeString operation which is declared in the MuLE standard library IO. The
corresponding qualified name consists of the name of the containing library and
the name of the operation separated by a dot, i.e. the resulting qualified name
is IO.writeString.
The program in listing 39 also contains an operation with an identifier write-

String. Both operations are contained within separate namespaces defined
by their corresponding compilation units, meaning that no naming conflict ex-
ists and the program can be compiled. While the imported operation has to
be accessed via its qualified name, the operation writeString in the program
QualifiedNames can be accessed within the program either directly by its simple
name (as can be seen in line 10) or by its qualified name (line 11). Both variants
lead to the same result, the output of the program is:

Hello

myWriteString: Hello, world!

myWriteString: Hello, world!

Qualified names must also be used to access types, attributes and operations
defined in compositions as well as literals of enumeration types. An enumeration
RGB and a composition Color are defined in the program in listing 40. In the
main procedure of the program a variable color of type Color is defined and
its attributes are then accessed and initialized via their qualified names. In this
case the variable represents the data container for the compositions with the
corresponding attribute values, therefore, the identifier of the variable color is
used in the qualified name instead of the type Color followed by the name of an
attribute separated by a dot, for example color.rgbValue. Enumeration literals
are accessed in a similar way, an example is shown in line 14, the qualified name
for the value GREEN contained in the enumeration RGB is RGB.GREEN.

1 program QualifiedNames2

2

3 type RGB : enumeration

4 RED, GREEN, BLUE

5 endtype

6

7 type Color : composition

8 attribute rgbValue : RGB

9 attribute alphaValue : integer

10 endtype

11

12 main

13 variable color : Color

14 color.rgbValue := RGB.GREEN

15 color.alphaValue := 125

16 endmain

Listing 40: Referencing attributes and enumeration literals using their qualified names.

111

Let us assume that an enumeration RGB is contained in a library Colors which
is imported in a program. In this case the qualified name for the value GREEN

would be Colors.RGB.GREEN. Finally, if we once again take a look at our example
in figure 12, we see that the composition List has a nested type Element which
is not directly visible in the composition User. However, since its visibility is
not restricted to its containing type, we can still access it via its qualified name.
For example, we could define an attribute with the type NamespacesExample.-

List.Element<TYPE> or simply List.Element<TYPE> in the composition User.

5.1.3. Visibility Modifiers

As mentioned in the previous section, qualified names are used to access types
and operations declared in libraries as well as attributes and operations in com-
positions. By default, these elements have no visibility modifier and are thus
accessible. However, users may restrict their accessibility by using explicit visi-
bility modifiers private and protected.

Visibility of types and operations in libraries

Operations and type declarations within a library can be hidden by explicitly
adding the private modifier. Listing 41 demonstrates a library with two opera-
tions count and countHelper.

1 library VisibilityModifiersLibrary

2 import Lists

3

4 operation count(parameter numbers : list<integer>,

5 parameter number : integer) : integer

6 return countHelper(numbers, number, 0)

7 endoperation

8

9 private operation countHelper(parameter numbers : list<integer>,

10 parameter number : integer,

11 parameter pos : integer) : integer

12 if pos = Lists.lengthOf(numbers) then

13 return 0

14 else

15 if numbers[pos] = number then

16 return countHelper(numbers, number, pos + 1) + 1

17 else

18 return countHelper(numbers, number, pos + 1)

19 endif

20 endif

21 endoperation

Listing 41: Visibility modifiers in a library.

112

The second operation counts the occurrences of a specific integer value in a list
of integers recursively by passing the current position in the list as a parameter.
The first operation calls the second one and basically acts as the user interface for
that operation by hiding the parameter pos from the user. Thus, the operation
countHelper is hidden by the visibility modifier private and the only operation
that is visible from the outside is count. The program in listing 42 imports
the library VisibilityModifiersLibrary and calls the operation count from it
resulting in the output 4.

1 program VisibilityModifiers1

2 import VisibiliryModifiersLibrary

3 import IO

4

5 main

6 variable numbers : list<integer>

7 numbers := [3, 4, 1, 42, 0, 345, 2, 42, 42, 67, 0, 42]

8 IO.writeInteger(VisibilityModifiersLibrary.count(numbers, 42))

9 endmain

Listing 42: Program using the library in listing 41.

Should the user attempt to invoke the operation countHelper from the im-
ported library in this program an error message “Couldn’t resolve reference to
NamedElement ’countHelper’.” would be displayed. Although the called opera-
tion is contained in the namespace of the library and can theoretically be accessed
by its qualified name, it is marked by the visibility modifier private and is thus
ignored by the scoping mechanism.

Visibility of Composition Members

Accessibility of composition members can also be restricted by visibility modifiers.
Since compositions can inherit from other compositions, an additional modifier
protected allows to hide an element to the outside but still make it accessible
within the inheritance hierarchy. Listing 43 shows an example of a composition
Point3D inheriting from the composition Point2D. The attributes x, y and z are
hidden and therefore cannot be accessed in the main procedure by using their
qualified names. However Point3D is able to access the inherited attributes x

and y since they are marked as protected. Should another composition inherit
from Point3D it would still be able to access x and y but not z since it is private
and is therefore only visible inside Point3D.
MuLE lacks an explicit object constructor similar to those in Java, it offers

a simplified value constructors for compositions instead, where the user can as-
sign specific values to all attributes of the composition, including inherited ones,
regardless of their visibility (lines 26 and 30). This might contradict with the
concept of data abstraction, but on the other hand this offers a much simpler so-
lution while still allowing to implement single assignment semantics for attributes
(more in section 5.5.8).

113

The output of the program in listing 43 is:

Point:

x = 2

y = 3

Point:

x = 2

y = 3

z = 4

1 program VisibilityModifiers2

2 import IO

3

4 type Point2D : composition

5 protected attribute x : integer

6 protected attribute y : integer

7

8 operation print()

9 IO.writeLine() IO.writeString("Point:")

10 IO.writeLine() IO.writeString("\tx = ") IO.writeInteger(x)

11 IO.writeLine() IO.writeString("\ty = ") IO.writeInteger(y)

12 endoperation

13 endtype

14

15 type Point3D : composition extends Point2D

16 private attribute z : integer

17

18 override operation print()

19 super.print()

20 IO.writeLine() IO.writeString("\tz = ") IO.writeInteger(z)

21 endoperation

22 endtype

23

24 main

25 variable p2d : Point2D

26 p2d := Point2D{x = 2, y = 3}

27 p2d.print()

28

29 variable p3d : Point3D

30 p3d := Point3D{x = 2, y = 3, z = 4}

31 p3d.print()

32 endmain

Listing 43: Restricting visibility of composition members.

Validation Checks

Following error messages can appear in the context of visibility modifiers:

114

� The visibility modifier protected is not allowed in this context. You may
use private if you wish to prevent operations and type declarations to be
exported from the library.

� A visibility modifier is not allowed in this context. You must not restrict
visibility of operations and type declarations within a program unit.

� An overriding operation must have the same visibility modifier as the over-
ridden operation.

5.2. Grammar Notation

The grammar of the language is represented by a sequence of production rules
similar to the EBNF notation. The chosen notation is a simplified version of the
notation [100] used to define the grammar of a DSL in the Xtext framework (see
section 8.2), which was used to implement this language. Each rule is composed
of a non-terminal symbol on the left-hand side and a set of terminal and non-
terminal symbols on the right-hand side. Listing 44 is an excerpt of the actual
MuLE grammar which shows examples of grammar rules which demonstrate the
entire range of rules and operators used in this notation.

1 CompilationUnit:

2 (’program’|’library’) ID

3 Import*

4 ProgramElement*

5 MainProgram?;

6

7 Import: ’import’ [CompilationUnit];

8

9 INT: (’0’..’9’)+;

10

11 STRING: ’"’ (’\\’ . | !(’\\’|’"’))* ’"’ ;

12

13 ML_COMMENT: ’/*’ -> ’*/’;

Listing 44: Examples of grammar rules in the chosen notation used in this chapter.

Following rules apply to this grammar notation:

� Terminal and non-terminal symbols are written with typewriter styled
font.

� Terminal symbols are additionally denoted by ’blue color with single quo-
tation marks’.

� By convention, rules that represent tokens are written in uppercase char-
acters.

115

� : separates the left-hand from the right-hand side in a production rule.

� ; terminates a production rule.

� () are used for their usual parentheses function, e.g. if an operator has to
be applied to a set of operands.

� | is used to enumerate alternative elements, i.e. out of the listed elements,
exactly one must be present.

� ? represents an optional occurrence of an element, i.e. none or one element
must be present.

� * represents an optional multiple occurrence of an element, i.e. none to
infinite number of elements.

� + represents a multiple occurrence of an element, i.e. one to infinite number
of elements.

� x..y represents a range between x and y, which can be integer numbers as
well as lower or upper case alphabetical characters. The INT rule in listing
44 is represented as a multiple occurrence of a character defined by the
range ’0’..’9’, i.e. an integer literal consists of 1 to n digits ranging from
0 to 9 (both borders are included).

� [Element] represents a cross-reference to an existing element, for example
the import instruction is defined as a reference to an existing Compila-

tionUnit.

� . represents a wildcard, i.e. any possible character. For example, in the
STRING rule in listing 44, the wildcard is used to represent any character
preceded by a double backslash character, i.e. this combination represents
escaped characters in a string including an escaped double quotation mark
which would otherwise terminate the string literal.

� ! represents a negated character, i.e. any character that is not explicitly
stated after this operator. In the STRING rule in listing 44, this operator
is used to represent any character other than a double backslash (which
is covered by a combination with a wildcard) and the closing quotation
marks. Basically, this operator is used to represent non-escaped characters
in a string literal.

� -> means that every character between two tokens is consumed as a part
of this rule. The rule ML COMMENT is defined by this operator, wherein any
character between the characters specified in the rule is part of the multi-
line comment.

116

Subsequent sections will focus on specific language constructs and will therefore
contain short excerpts of the entire grammar of MuLE, which is additionally
located in appendix B in its full form. Additionally to the grammar, the language
is defined by scoping and validation rules. Scoping rules are explained in section
5.1 while validation rules are mentioned and explained whenever necessary for
each respective language construct.

5.3. Lexical Units

Semantically related groups of characters form lexical units, the so called tokens,
in the source code. In the process of tokenizing the longest legitimate sequence
of characters is evaluated to a lexical unit. Tokens represent the smallest inde-
pendent syntactic unit whose purpose is defined by the rules of the language.
Following tokens exist in MuLE:

� Identifiers

� Keywords

� Operators

� Separators

� Literals

� Comments

Identifiers and keywords are separated by white spaces. Space characters,
tabulators, line breaks and comments are all evaluated as white spaces.

5.3.1. Comments

Comments are ignored during compilation and have therefore no effect on the
functionality of a program. They are used to write comments explaining chunks
of code for the sake of maintainability and to temporarily disable lines of code
for various purposes. There are two types of comments:

� // (double forward slash) symbolizes a line comment. The entire content
of the line between this symbol and the following line break is treated as a
comment.

� /* (forward slash with a star) initiates a block comment which is closed by
*/. The entire content between these symbols, which can contain several
lines, is treated as a comment. It is not possible to nest block comments.

117

1 ML_COMMENT: ’/*’ -> ’*/’;

2 SL_COMMENT: ’//’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

Listing 45: Grammar rules used to define single- and multi-line comments.

Comments which are contained in a string literal are evaluated as a part of
that literal. Listing 46 demonstrates a program with examples for both types of
comments. The value of the variable is an empty string due to its default initial-
ization. The output of the program is: /* NO COMMENT */, // NO COMMENT.

1 program comments

2 import IO

3

4 /*

5 * block comment

6 */

7 main

8 variable var : string // line comment

9 // var := "Hello, world!"

10 IO.writeString(var & "/* NO COMMENT */, // NO COMMENT")

11 endmain

Listing 46: Examples for comments.

5.3.2. Identifiers

Identifiers are assigned to named elements in order to identify them in a names-
pace (section 5.1.1) . Identifiers may contain an arbitrary number of upper and
lower case characters of the English alphabet as well as digits and underscores.
There is however one restriction, identifiers can not begin with a digit. An identi-
fier represents a simple name of a named element. Additionally, a named element
can be referenced by its qualified name (see section 5.1.2), which must include
at least one identifier and may consist of several identifiers separated by a dot
(.) character. The last identifier in a qualified name is the simple name of the
referenced element, while the preceding identifiers are the elements containing
the referenced element (such as type declarations and compilation units).

1 ID : (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

2 QualifiedName : ID (’.’ ID)*;

Listing 47: The grammar rules for identifiers and qualified names.

When referencing an identifier, one must pay attention to the use of upper and
lower case characters. As an example Foo, foo and FOO would represent three
different identifiers in a program.

Validation Checks

Different elements must have unique identifiers in a single namespace in order

118

to prevent ambiguity. Furthermore, the name of the compilation unit must not
be the same as the name of an imported library. Finally, there is a number of
reserved keywords (section 5.3.3), which must not be used as identifiers. Reserved
keywords and types of the language Java [56] are also not allowed to be used since
MuLE is compiled into this language (see chapter 8 for implementation details).
Following error messages can be triggered in the context of an identifier:

� An element with such name already exists. Use a different name for this
element.

� Use of this name is not allowed. You are attempting to use a reserved word
as an identifier.

� Naming conflict, the names of the importing and imported compilation
units must not be equal.

Examples

Listing 46 contains following identifiers:

� comments is the name of the compilation unit. This name must be equal
to the name of the file, which is followed by the file extension .mule.

� IO is the name of the imported standard library.

� writeString is the name of the operation which is used to print a string
on the console. The operation is contained in the standard library IO.

� var is the name of the declared variable.

Following character strings are legitimate identifiers:

� variable

� var1

� MAX VALUE

Examples of illegal identifiers:

� 2variable – starts with a digit.

� Tür – uses a character ü that is not allowed.

� integer – is a reserved word in MuLE.

� int – is a reserved word in Java.

119

5.3.3. Keywords

Keywords are reserved words that fulfil a specific semantic function in the lan-
guage. They cannot be used as identifiers.

� program – specifies that the corresponding compilation unit is a program
unit, i.e. it must have a main procedure. This keyword is followed by the
name of the program, this name must be equal to the name of the containing
file.

� library – specifies that the compilation unit is a library, i.e. it can be
imported by other compilation units and must not include a main procedure.
This keyword is followed by the name of the program, this name must be
equal to the name of the containing file.

� import – initiates an import statement. Import statements must be con-
tained at the top level in a compilation unit.

� main – start of the main procedure.

� endmain – end of the main procedure.

� integer – primitive data type for integer numbers.

� rational – primitive data type for floating-point numbers.

� string – primitive data type for strings.

� boolean – primitive data type for boolean values.

� reference – has two meanings depending on its context. In a declaration
of a data container or an operation this represents the reference type and
must be parameterized by the type of the referenced value. In an expression
it is used as a prefix operator which creates a reference to a value.

� list – represents the built-in parameterized list data type.

� type – start of a type declaration.

� endtype – end of a type declaration.

� enumeration – the type declaration is an enumeration.

� composition – the type declaration is a composition.

� extends – the composition is extending another composition. Alternatively
it is used to restrict a type parameter to a specific type and its sub types.

� operation – start of an operation or of an operation type signature.

120

� endoperation – end of an operation.

� override – an operation is redefining another operation with the same name
inherited from an extended composition.

� super – access to an overridden operation in a super type.

� abstract – is used to denote abstract types and operations.

� private – is used to prevent export of types and operations in libraries and
restrict the visibility of attributes and operations in composite types to its
immediate containing type.

� protected – is used to restrict the visibility of attributes and operations
in composite types to its immediate containing type and its subtypes.

� attribute – declaration of an attribute in a composition.

� parameter – declaration of a parameter of an operation.

� variable – declaration of a variable.

� return – terminates an operation, may return a value if an operation has
a return type.

� exit – terminates the immediate loop in which it is contained.

� loop – start of a loop-statement.

� endloop – end of a loop-statement.

� if – start of an if-statement.

� then – denotes the beginning of the body of an if or an elseif clause.

� elseif – start of an elseif clause in an if-statement.

� else – start of an else clause in an if-statement or in a let-statement.

� endif – end of an if-statement.

� let – start of a let-statement.

� be – is used in a let-statement after a variable declaration and before an
expression, which is assigned to the declared variable.

� do – denotes the beginning of the body of a let or an elselet clause.

� elselet – start of an elselet clause in a let-statement.

121

� endlet – end of a let-statement.

� null – represents null-references.

� true – one of the literals for boolean values.

� false – one of the literals for boolean values.

5.3.4. Separators

Statements are separated by white spaces, i.e. spaces, tabulators and line breaks.
Commas (,) are used to separate value parameters in operations and value con-
structors for lists and compositions, as well as type parameters in parameterized
types. Examples are:

� operation foo(parameter x : integer, parameter y : integer) –
separation of parameters in an operation declaration. Same applies to
anonymous operations.

� operation(integer, integer) – type signature of the previous operation.

� foo(2, 3) – separation of parameters in an operation invocation.

� Pair<T, R> – separation of formal type parameters in a composition dec-
laration.

� variable p : Pair<integer, string> – separation of actual type pa-
rameters in the type signature used in a variable declaration.

� p := Pair{first = reference 42, second = reference "hello"} –
separation of attribute initialization instructions in a composition value
constructor.

� [1, 2, 3] – separation of values in the value constructor of the built-in
list type.

5.3.5. Operators

Operators are reserved tokens which apply an operation on one or two operands in
an expression. The assignment operator is used in assignment statements (section
5.8). In order to eliminate ambiguity when evaluating expressions, operators are
executed in a strict order. Table 2 shows all available MuLE operators, as well as
their precedence and associativity with level 1 representing the highest priority.

122

Level Operator Description Associativity

1

@
[]
.
()

dereferencing
indexed access to list values
member access
parentheses

left to right

2
not
+
-

negation of boolean expressions
unary plus
unary minus

none

3 reference creating a reference value none
4 exp exponentiation left to right

5

*
/
div
mod

multiplication
rational division
integer division
modulo

left to right

6
+
-
&

addition
subtraction
string concatenation

left to right

7

<
<=
>
>=

less than
less than or equal
greater than
greater than or equal

none

8
=
/=

equal
not equal

left to right

9 and logical AND left to right
10 or logical OR left to right

12
**
..

repetition operator, used in a list
range operator, used in a list

none

13 := assignment operator none

Table 2: Operator precedence and associativity

5.3.6. Brackets

MuLE uses all four common types of brackets, each type is mostly reserved for
specific language constructs (as explained in section 5).

� Round brackets () – are used as parentheses to manipulate operator
precedence in expressions (for example 2 * (3 + 4)) and to pass parame-
ters to operations. This is the only type of brackets used for two semanti-
cally different purposes.

123

� Square brackets [] – are reserved for the built-in list type. They are used
both to access stored values via their indices (e.g. list1D[0], list2D[1][4])
and in value constructors used to create values of this type.

� Curly brackets {} – are reserved solely for the value constructors of com-
positions.

� Angle brackets <> – are used to pass type parameters to parameterized
types. It should be noted, that a use of a single < or > character is seen as
comparison operators and not brackets, which are to be used in pairs.

5.3.7. Value Literals

A literal is the textual representation of a value of predefined basic types, the user
defined enumeration type as well as the null-literal representing null-references
(see chapter 5.5).

1 AtomicExpression:

2 StringConstant | IntegerConstant | RationalConstant |

3 BooleanConstant | Null | ... ;

4

5 StringConstant: STRING;

6 IntegerConstant: INTEGER;

7 RationalConstant: RATIONAL;

8 BooleanConstant: ’true’ | ’false’;

9 Null: ’null’

10

11 INT: (’0’ .. ’9’)+;

12 INTEGER: INT;

13 RATIONAL: INT ’.’ INT (’E’ (’+’ | ’-’)? INT)?;

14 STRING: ’"’ (’\\’ . | !(’\\’|’"’))* ’"’;

Listing 48: Simplified excerpt from the AtomicExpression rule demonstrating rules
for value literals.

Integer Literals

Integer literals are represented using the decimal system, meaning that digits in
the range [0 .. 9] can be used. Additional validation checks ensure that literals
with more than one digit can not start with a zero. Additional value range re-
strictions apply to integer literals as a result of the semantic representation of
the corresponding type (see section 5.5.3).

Valid integer literals: 0, 2147483647, -2147483648.
Invalid integer literals: 007, 2147483648, -2147483649.

124

Following error messages can be triggered in the context of an integer literal:

� Invalid literal, an integer literal with multiple digits must not start with a
zero.

� The value is out of the supported range (-2147483648..+2147483647).

Floating Point Number Literals

Floating point number literals are also represented by the decimal system. The
dot (.) acts as the separator between the integer and fractional parts. Scientific
notation can be used to express large numbers, e.g. the literal 2.5E10 is equiv-
alent to 2.5 * 1010. The integer part of the literal must not begin with a zero if
it contains more than one digit. Similar to integer literals, rational literals are
restricted by the underlying data type representation (section 5.5.4).

Valid rational literals: 0.0, 3.14, -0.25, 1.5E23, 0.5E-2.
Invalid rational literals: 00.2, .23, 1., 1.0E, 1E100.

Following error messages can be triggered in the context of a rational literal:

� Invalid literal, the integer part of a rational literal must not start with a
zero when having multiple digits.

� The value is out of the supported range.

Boolean Literals

Literals representing boolean values are true and false.

String Literals

String literals are denoted by double quotation marks ("). Any symbol can be
used between these marks, the backslash (\) symbol is used to represent escape
sequences. The symbols between the quotation marks are encoded by the CP1252
standard [101]. Keywords, operators and delimiters used within a string literal
do not have their reserved functionality and are thus recognised as a part of that
string literal.
Escape sequences are used in order to correctly depict special symbols (quo-

tation marks, backslash, line break, tabulator) within a string literal. Examples
for escape sequences are shown in listing 49, the output of the program is:

Hello, world!

"Hello", \world\

125

1 program stringLiterals

2 import IO

3

4 main

5 IO.writeString("Hello, world!\n")

6 IO.writeString("\"Hello\",\t\\world\\")

7 endmain

Listing 49: Examples of string literals and escape sequences.

Valid string literals: "", "Hello, world!", "a string with a line break\n".
Invalid string literals: ", "unfinished string\", "wr\ong e\scape".

Literals of Enumeration Types

Enumerations are the only user defined primitive types in MuLE. Enumeration
literals are identifiers and thus follow the same rules that are defined in section
5.3.2. They must begin with a lower or an upper case character of the English
alphabet or alternatively with an underscore. Non-starting characters may addi-
tionally be a digit from 0 till 9.

Literal for Null-References

The value of a null-reference is represented by the literal null. Other reference
values cannot be expressed by simple literals and must be represented by the
corresponding expressions (see section 5.5.10).

5.4. Compilation Unit

A MuLE compilation unit can be either a program or a library. Programs must
have a main procedure while libraries are not allowed to have one but can be
imported via an import statement. Import statements are then written in the
source code, the imported libraries are referenced by the name given to them.
Type and operation declarations are placed after the import statements. The
main procedure is always the last textual element in a MuLE program.

1 CompilationUnit:

2 (’program’ | ’library’) ID

3 Import*

4 ProgramElement*

5 MainProcedure?;

6

7 Import: ’import’ [CompilationUnit];

8

9 ProgramElement: TypeDeclaration | Operation;

10

11 MainProcedure: ’main’ Block ’endmain’;

Listing 50: Composition of a MuLE compilation unit.

126

Example

Listing 51 demonstrates an example of a simple compilation unit declared as a
program unit with the identifier HelloWorld. The unit imports the standard
library IO, declares the operation sayHello and includes a main procedure.

1 program HelloWorld

2 import IO

3

4 operation sayHello()

5 IO.writeString("Hello, world!")

6 endoperation

7

8 main

9 sayHello()

10 endmain

Listing 51: Example of a “Hello, World!” programm.

Validation Checks

Following error messages can be triggered in the context of a compilation unit:

� Program name must be equal to the file name.

� Naming conflict, the names of the importing and imported compilation
units must not be equal.

� A program must have a main operation.

� A library must not have a main operation.

� You can not import programs, only libraries are allowed to be imported.

� A visibility modifier is not allowed in this context. You must not restrict
visibility of operations and type declarations within a program unit.

� The visibility modifier protected is not allowed in this context. You may
use private if you wish to prevent operation and type declarations to be
exported from the library.

5.5. Type System and Values

This section focuses on the underlying type system in our language. MuLE sup-
ports strict static explicit typing. Data containers and operations which return
a value are explicitly given a type upon their declaration. Language constructs
are checked for type validity at compile time. The textual representation of value

127

literals for basic types is explained in section 5.3. This section includes textual
representation for value constructors for types, which cannot be represented by
single value literals.
As explained in section 4.2, each data type has a corresponding default value

which is assigned to variables and uninitialized attributes after their declaration.
For the sake of completeness of this section, we will mention the default value of
each type in the respective subsections.

5.5.1. Typed Elements

Any value has a type, therefore any language construct which stores (i.e. data
container) or otherwise yields (i.e. an expression or an operation) a value must
have the corresponding type. Data containers and operations which return a value
when invoked, are given types upon their declaration. It should be noted, that
each operation has an operation type, which describes its signature and allows
to pass operations as data. Literals for specific types are associated with their
corresponding types, e.g. a "Hello, world!" is types as a string while 42 is
an integer. Expressions (section 5.6) can combine several literals and references
to data containers and operations connected by operators. If the combination of
types and operators is legitimate, the expression returns a value, otherwise the
program cannot be compiled. A type provider mechanism computes the type of
an expression, that type is then used in compile time validation checks.
Following elements are considered typed elements:

� Expressions – in general, every expression is evaluated and a value is pro-
duced as a result. An expression can be a simple value (the type of the value
is the type of the expression) or a chain of computations including value
literals and constructors, data container references and operation invoca-
tions with various operators in between. In such cases, the operators are
the decisive factor for the resulting type of the entire expression. The types
of operands must be compatible to the types expected by the operators.

� Value literals – are lexical representations of values with basic types, i.e.
integer, rational, boolean, string and enumerations. The literal null is
a specific case for reference types representing the null-reference. Value
literals represent the simplest possible expressions.

� Value constructors – are specific expressions that produce values for more
complex types: compositions, lists, references and operations.

� Parameterized data types – parameterized types are basically are types
which accepts other data types as parameters, e.g. a reference<integer>

type is a reference with the type integer. Same applies to lists and pa-
rameterized compositions.

128

� Types with super types – Compositions and their type parameters can
have a super type. A formal type parameter with a super type represents
a restriction, i.e. only a type which is a subtype of the specified super type
can be used as an actual type parameter.

� Operations – any named and anonymous operation has an operation

type by itself which represents its signature, i.e. they can be passed as
parameters or returned as values in higher-order functions. Operations
with a return type produce a value when executed, meaning that they can
be used as a part of an arithmetic or logical expression or in other cases
when a non-operation type value is required.

� Data containers – such as variables, parameters and attributes are named
elements meant to store data. They can be referenced in expressions in
order to retrieve the previously stored values.

5.5.2. Definition of MuLE’s Data Types

As defined in listing 52, MuLE offers a set of four predefined basic types (integer,
rational, boolean and string), three user defined types (enumerations, composi-
tions and type parameters of parameterized compositions), a parameterized list
type, a parameterized reference type, and an operation type which represents
operations and lambda expressions.

1 DataType: BasicType | DeclaredType | ReferenceType | ListType | OperationType;

2

3 BasicType: ’integer’ | ’rational’ | ’string’ | ’boolean’;

4

5 DeclaredType: [TypeDeclaration] (’<’ DataType (’,’ DataType)* ’>’)?;

6

7 ReferenceType: ’reference’ ’<’ DataType ’>’;

8

9 ListType: ’list’ ’<’ DataType ’>’;

10

11 OperationType: ’operation’ ’(’ (DataType (’,’ DataType)*)? ’)’ (’:’ DataType)?;

12

13 TypeDeclaration: Composition | Enumeration | TypeParameter;

Listing 52: Grammar rules for MuLE’s data types.

Each type will be discussed in the following sections. Value literals for basic
types were already mentioned in section 5.3.7.

5.5.3. Integer

Integer is one of the two basic numeric types in MuLE, its values are represented
by the 32bit two’s complement format allowing us to represent any integer be-
tween −231 and 231 − 1. Literals that are not in that range are invalidated at

129

compile time resulting in a compiler error. An overflow may still occur at runtime.
The default value is 0.

Compatible Operators

Following operators can be used with this type:

� Binary (and unary in some cases) arithmetic operators +, -, *, /, exp, mod.
It should be noted that expressions using the operators / and exp always
result in a value with the type rational.

� Comparative operators <, <=, >, >=.

� Equality check operators =, /=.

Type Specific Operations

Furthermore, following operations are offered by the standard library Mathematics
(section 6) specifically for this data type:

� getMaxIntegerValue() : integer – returns the biggest supported value
(231 − 1).

� getMinIntegerValue() : integer – returns the smallest supported value
(−231).

5.5.4. Rational

The values of this type are represented by the 64bit IEEE 754 standard [96].
The smallest supported number is 4.9E − 324 whereas 1.7976931348623157E308
is the biggest. If a number is divided by zero, the resulting value is Infinity,
same applies in case of overflow. In some cases, for example when dividing zero
by zero or multiplying Infinity by zero, the result is NaN (Not a Number). In
case of an underflow the resulting value is 0.0, which is also the default value for
this type.

Compatible Operators

Following operators can be used with the values of this type:

� Binary (and in some cases unary) arithmetic operators +, -, *, /, exp, mod.

� Comparative operators <, <=, >, >=.

� Equality check operators =, /=.

130

Type Specific Operations

Furthermore following operations are offered by the standard library Mathematics
(section 6) specifically for this data type:

� getMaxRationalValue() : rational – returns the biggest supported float-
ing point number (1.7976931348623157E308).

� getMinRationalValue() : rational – returns the smallest supported
floating point number (4.9E-324).

5.5.5. String

The default value is an empty string. Following operators can be used with values
of this type:

� Equality check operators =, /=.

� string concatenation &.

The standard library Strings (section 6) offers a set of operations which allow
values of other basic types to be transformed into strings (section 5.5.12).
Listing 53 demonstrates the use of string concatenations, string comparisons

and a conversion of a boolean values to string. It should be noted, that the
values 42 and 5 are compared as strings in this example and are not equal. Using
comparative operators like < and >= would result in a compile time error. The
output of the program is: 42 = 42 and 42 /= 5 is true.

1 program stringsAndBooleans

2

3 import IO

4 import Strings

5

6 main

7 IO.writeString("42 = 42 and 42 /= 5 is "

8 & Strings.booleanToString("42" = "42" and "42" /= "5"))

9 endmain

Listing 53: Examples for operations with strings and boolean values.

5.5.6. Boolean

Logical truth values are represented by the data type boolean. These values can
be either true or false. The default value is false.
Following operators can be used with this type:

� Equality check operators =, /=.

� Logical operators and, or, not.

131

5.5.7. Enumeration Type

Enumerations are user defined primitive types which define a limited set of of
literals as eligible values of this type. User defined types must be declared within
a program or an imported library. The keyword type is used to initiate a type
declaration followed by the type’s name and its kind, i.e. enumeration in this
case. The body of the declaration contains the literals separated by commas. At
least one literal must be present in the body of the declaration.

1 Enumeration:

2 ’type’ ID ’:’ ’enumeration’

3 EnumerationValue (’,’ EnumerationValue)*

4 ’endtype’;

5

6 EnumerationValue: ID;

Listing 54: Grammar rules for enumerations and its values.

1 program Enumerations

2 import IO

3

4 type Figure : enumeration

5 PAWN, ROOK, KNIGHT, BISHOP, QUEEN, KING

6 endtype

7

8 main

9 variable figure : Figure

10 figure := Figure.KNIGHT

11 IO.writeBoolean(figure = Figure.KNIGHT)

12 IO.writeLine()

13 IO.writeBoolean(figure = Figure.PAWN)

14 endmain

Listing 55: Example of enumeration type.

An example is given in listing 55. When accessing an enumeration value users
must use its qualified name. Values of enumeration types can be compared using
= and /= with each other. The output of the program is:

true

false

The default value of an enumeration is the first literal in the corresponding type
declaration, in case of the program in listing 55, the default value is Figure.PAWN.

Validation Checks

Following error messages can be triggered in the context of an enumeration:

132

� An element with such name already exists. Use a different name for this
element.

� The visibility modifier protected is not allowed in this context. You may
use private if you wish to prevent operations and type declarations to be
exported from the library.

� A visibility modifier is not allowed in this context. You must not restrict
visibility of operations and type declarations within a program unit.

5.5.8. Compositions

Compositions are user defined types similar to enumerations (see 5.5.7). In its
basic form, compositions represent a structured collection of named values with
potentially different types called attributes. Additionally, compositions may be
used for object-oriented programming by including operations within a compo-
sition and supporting further concepts of this paradigm. The default value of a
composition is defined by the default values of its attributes depending on their
types.

1 Composition:

2 VisibilityModifier? (’abstract’)? ’type’ ID

3 (’<’ TypeParameter (’,’ TypeParameter)* ’>’)? ’:’ ’composition’

4 (’extends’ [Composition] (’<’ TypeParameter (’,’ TypeParameter)* ’>’)?)?

5 TypeDeclaration*

6 Attribute*

7 Operation*

8 ’endtype’;

9

10 TypeParameter: ID (’extends’ QualifiedName)?;

11

12 Attribute: VisibilityModifier? ’attribute’ ID ’:’ DataType;

Listing 56: Grammar rules for compositions, attributes and type parameters.

As shown in the grammar rule for compositions in listing 56, every composition
has an identifier and is marked by keywords type and composition. A visibility
modifier can be assigned to a composition declaration. A composition may be
abstract and it may extend other compositions. Formal type parameters can
be passed to compositions, every formal type parameter may be declared as a
subtype of another composition.
Composition members are nested type declarations (compositions and enu-

merations), attributes and operations. By default, every member can be ac-
cessed from the outside via its qualified name. Visibility modifiers private and
protected can restrict access to composition members strictly to the encompass-
ing type or additionally to its subtypes respectively.

133

Value Constructors and String Representation

Unlike values of primitive types, values of compositions cannot be represented by
a single literal. The grammar rule for value constructors for this type is shown
in listing 57. The value constructor is part of the SymbolReference rule. The
SymbolRefAccessModifier? part of this rule is of no interest to us in this section,
it is used for indexed access to list values, operation invocations and dereferencing,
validation rules prevent its usage in the context of composition value constructors.
SymbolReference is an expression which is used whenever a named element must
be referenced. In this case, a composition type is referenced as a part of the
corresponding value constructor, which consists of the type identifier followed
by an optional number of attribute initializations enclosed in curly brackets.
An attribute initialization references an existing attribute by its identifier and
initializes it with a value produced by the corresponding expression.

1 AtomicExpression: SymbolReference | ... ;

2

3 SymbolReference:

4 [NamedElement] (SymbolRefCompositionInit)? SymbolRefAccessModifier?

5 (’.’ SymbolReference)?;

6

7 SymbolRefCompositionInit:

8 ’{’ (SymbolRefCompositionAttribute

9 (’,’ SymbolRefCompositionAttribute)*)? ’}’;

10

11 SymbolRefCompositionAttribute: [Attribute] ’=’ Expression;

Listing 57: Grammar rules for value constructors of compositions.

All attributes are visible in the value constructor, regardless of their visibil-
ity modifiers, in order to allow correct initialization of hidden attributes. For
each composition with at least one attribute, two value constructors are al-
lowed: an empty constructor without attribute initialization instructions, and
a full constructor wherein every attribute of this type including the inherited
attributes is initialized. Listing 58 shows an example of a simple composition
with two attributes x and y. The allowed signatures for value constructors are
in this case: Vector2D{} and Vector2D{x = EXPRESSION, y = EXPRESSION}.
The empty constructor initializes the attributes with the default values for each
respective type, visible attributes may be manually accessed and their values
changed at a later stage. In the example in listing 58, we have used a non-empty
constructor Vector2D{x = 1, y = 5}. We have enhanced this example with
object-oriented constructs in listing 59, wherein we have added an additional com-
position Vector3D which acts as a subtype of Vector2D by adding an additional
dimension. The attributes in both types are now hidden. The corresponding
value constructor signatures remain the same for Vector2D, while for Vector3D
they are Vector3D{} and Vector3D{x = EXPRESSION, y = EXPRESSION, z =

134

EXPRESSION}.
Composition values can be transformed into string values by using the Strings

library operation genericToString(EXPRESSION). The string representation is
equivalent to the notation used in non-empty compositions value constructors.
Same representation is seen when inspecting variable values of composition types
in the debugger. The string representation for the default value of a Vector2D

type is Vector2D{x = 0.0, y = 0.0}, if we initialize the attributes x and y with
2 and 3 respectively, the representation becomes Vector2D{x = 2.0, y = 3.0}.

Compositions in Procedural Programming

Listing 58 shows an example of a composition type used in a procedural way. A
composition Vector2D with two attributes x and y as well as an operation which
accepts values of this type and prints the data in a readable way are defined
in the compilation unit. A variable with the type Vector2D is declared in the
main procedure an initialized by using the value constructor for compositions,
i.e. Vector2D{x = 1, y = 5} in this case.

1 program CompositionExample

2 import IO

3

4 type Vector2D : composition

5 attribute x : rational

6 attribute y : rational

7 endtype

8

9 operation print(parameter v : Vector2D)

10 IO.writeString("\nVector:")

11 IO.writeString("\n x = ") IO.writeRational(v.x)

12 IO.writeString("\n y = ") IO.writeRational(v.y)

13 endoperation

14

15 main

16 variable v : Vector2D

17 v := Vector2D{x = 1, y = 5}

18 print(v)

19 v.x := 2

20 v.y := 3

21 print(v)

22 endmain

Listing 58: An example of a composition type used in a procedural program.

After printing the value of the variable by using the previously defined proce-
dure, the values of the attributes are changed via their qualified names and the
print procedure is called again.

135

The output of the program is:

Vector:

x = 1.0

y = 5.0

Vector:

x = 2.0

y = 3.0

Compositions in Object-Oriented Programming

Following rules apply to compositions in accordance with the concepts of object-
oriented programming:

� A composition can include operations.

� A composition can include nested type declarations, i.e. other compositions
and enumerations.

� A composition can be abstract, in which case it is marked by the keyword
abstract and may include abstract operations.

� Abstract compositions cannot be instantiated and must be wrapped as a
reference type when used to declare variables and attributes.

� Compositions may inherit from another composition, only single inheritance
is allowed.

� Inherited operations may be overridden, in which case the redefining oper-
ation must be denoted by the keyword override.

� The keyword super can be used to access overridden methods from the
immediate super type.

� An operation can be abstract, in which case it is marked by the keyword
abstract and is not allowed to have an operation body. Such an operation
must be overridden in a non abstract subtype.

� Composition members, i.e. inner type declarations, attributes and opera-
tions, are per default visible to the outside. Their visibility can be restricted
by visibility modifiers (see section 5.1.3) private (the element is only visible
within the composition, e.g. the attribute z in Vector3D) and protected

(the element is visible within the composition and its subtypes, e.g. the
attributes x and y in Vector2D).

� Compositions may accept type parameters which are substituted with ac-
tual types at runtime enabling parametric polymorphism.

136

1 program Vectors

2 import IO

3

4 abstract type Vector : composition

5 abstract operation getLength() : rational

6 abstract operation print()

7 endtype

8

9 type Vector2D : composition extends Vector

10 protected attribute x : rational

11 protected attribute y : rational

12

13 override operation getLength() : rational

14 return (x exp 2 + y exp 2) exp 0.5

15 endoperation

16

17 override operation print()

18 IO.writeString("\nVector:")

19 IO.writeString("\n length = ") IO.writeRational(getLength())

20 IO.writeString("\n x = ") IO.writeRational(x)

21 IO.writeString("\n y = ") IO.writeRational(y)

22 endoperation

23 endtype

24

25 type Vector3D : composition extends Vector2D

26 private attribute z : rational

27

28 override operation getLength() : rational

29 return (x exp 2 + y exp 2 + z exp 2) exp 0.5

30 endoperation

31

32 override operation print()

33 super.print()

34 IO.writeString("\n z = ") IO.writeRational(z)

35 endoperation

36 endtype

37

38 type Client : composition

39 operation test(parameter v : reference<Vector>)

40 v@.print()

41 endoperation

42 endtype

43

44 main

45 variable v2d : reference<Vector2D> v2d := reference Vector2D{x = 2, y = 3}

46 variable v3d : reference<Vector3D> v3d := reference Vector3D{x = 2, y = 3, z = 4}

47

48 variable client : Client

49 client.test(v2d) client.test(v3d)

50 endmain

Listing 59: Vector example with additional OO concepts.

137

Listing 59 demonstrates how object-oriented concepts can be implemented in
MuLE by using compositions. The output of the program is:

Vector:

length = 3.605551275463989

x = 2.0

y = 3.0

Vector:

length = 5.385164807134504

x = 2.0

y = 3.0

z = 4.0

Validation Checks

Placeholders in error messages represented by [...] are replaced by context
specific information at runtime. Following error messages can be triggered in the
context of a composition, its members and type parameters:

� An element with such name already exists. Use a different name for this
element.

� The visibility modifier protected is not allowed in this context.
You may use private if you wish to prevent operations and type declarations
to be exported from the library.

� A visibility modifier is not allowed in this context.
You must not restrict visibility of operations and type declarations within
a program unit.

� Cyclic inheritance is not permitted.
Check the following type declarations and remove the cycle in the inheri-
tance: [TYPES CONTRIBUTING TO CYCLIC INHERITANCE].

� Composition inherits unimplemented abstract operations: [UNIMPLEMENTED
OPERATIONS].

� Composition declaration must include all inherited type parameters.
Inherited type parameters are: [INHERITED TYPE PARAMETERS].
Owned type parameters are: [OWNED TYPE PARAMETERS].

� Declaration of a nested composition must include all type parameters of its
outer composition.

� An attribute must not have the same type as the containing composition.
You can use a reference type instead.

138

� Cyclic referencing of compositions detected, use reference types.

� An abstract type is not allowed to be used directly in a feature declaration.
Either use a non-abstract type or wrap the abstract type as a reference
type.

� A type parameter is not allowed to be used directly in a feature declaration.
Either use a non-abstract type or wrap the type parameter as a reference
type.

� Incompatible type was used for type parameter.
Expected type: [EXPECTED TYPES]

Actual type: [ACTUAL TYPE]

5.5.9. Lists

MuLE offers a built in parameterized collection type called list. Both lexical
constructs and library operations are included with the language to facilitate a
flexible use of this data type. Upon declaration, a data container with a list type
must be given an actual type parameter which determines which elements are
allowed to be stored in the list. Passing another list as an actual type parameter
allows to create multi dimensional lists, i.e. lists of lists (example in listing 61,
line 21). The number of dimensions is not limited by the language.

1 ListType: ’list’ ’<’ DataType ’>’;

2

3 AtomicExpression: SymbolReference | ListInit | ... ;

4

5 SymbolReference:

6 [NamedElement] (SymbolRefCompositionInit)? SymbolRefAccessModifier?

7 (’.’ SymbolReference)?;

8

9 SymbolRefAccessModifier: ListAccess | ... ;

10

11 ListAccess: ’[’ Expression ’]’ SymbolRefAccessModifier?

12

13 ListInit: "[" (Expression (ListInitFunction | ListInitElements))? "]";

14

15 ListInitFunction: ("**" | "..") Expression;

16

17 ListInitElements: ("," Expression)*;

Listing 60: Grammar rules related to the list type and the corresponding expressions.

Stored values are accessed via their indices. The starting index is 0, the last
element has the index listlength−1. When accessing an entry in the list, the copy

139

of that entry is returned. It should be noted that it is not possible to access a list
entry via its index directly on a value constructor notation for lists, that means
that [1 .. 9][0] is not a legal expression and would lead to a compile error
instead of returning a 1 as a result. The default value of this type is an empty
list.

Value Constructors and String Representation

Three different value constructor notations can be used to initialize a list. Various
notations can be mixed when initializing multidimensional lists.

� List of elements – the corresponding elements are separated with commas.
An empty list represents a special case.

� Range of integer values – fills the list with the numbers in the range
of [min .. max], both min and max are included and must be integer
values, the increment is 1. If the value of max is lesser than that of min,
this expression results in an empty list.

� Repetition – has following syntax: [number ** element]. The list is
filled with the given number of elements, the number must be an integer
value. If the value of number is lesser than 1, this expression results in an
empty list.

String representation of list values displayed in the debug view or by converting
list values to string resembles the list of elements notation, i.e. all elements are
listed separated by commas and enclosed in square brackets. For example, a list
initialized as [1 .. 4] is represented by the string [1, 2, 3, 4].

Validation Checks

Placeholders in error messages represented by [...] are replaced by context
specific information at runtime. Most validation checks performed on list related
language constructs are concerned with type correspondence, i.e. error messages
are displayed if the type of an expression does not correspond to the expected
type of its context. Additionally, an error message may be displayed if the user
attempts to use indexed access in the wrong context.

� Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].

� Invalid access modifier, you must not use list access on a non-list type.

Example Program

Listing 61 shows examples for list declarations, standard notations and expres-
sions using list values. List values can be checked for equality, two lists are equal

140

if both lists have the same number of entries, all entries have the same type, the
corresponding entries have the same value and their order in the corresponding
lists is the same.

1 program lists

2 import IO

3 import Strings

4

5 main

6 variable empty : list<string>

7 empty := []

8 variable elements : list<string>

9 elements := ["a", "b", "c"] // ["a", "b", "c"]

10 elements[1] := "x" // ["a", "x", "c"]

11 variable repetition : list<rational>

12 repetition := [3 ** 3.14] // [3.14, 3.14, 3.14]

13

14 variable list1 : list<integer>

15 list1 := [0 .. 2] // [0, 1, 2]

16 variable list2 : list<integer>

17 list2 := [3, 4, 5] // [3, 4, 5]

18 variable lists : list<list<integer>>

19 lists := [list1, list2] // [[0, 1, 2], [3, 4, 5]]

20 lists := [[0, 1, 2], [2 ** 3], [4 .. 6]] // [[0, 1, 2], [3, 3], [4, 5, 6]]

21

22 IO.writeBoolean(list1 /= list2)

23 IO.writeLine()

24 IO.writeBoolean(list1 = lists[0])

25 IO.writeLine()

26 IO.writeString(Strings.genericToString(lists))

27 endmain

Listing 61: Examples for MuLE lists.

The output of the program is:

true

true

[[0, 1, 2], [3, 3], [4, 5, 6]]

5.5.10. References

MuLE reference types are parameterized types which allow to encapsulate any
value of any type as a reference. A variable with the type reference<integer>
will only accept references to integer values. Data containers with reference types
store the address of a value stored in the memory. A reference which does not
reference anything is a null-reference, which is also the default value for this type.

141

1 ReferenceType: ’reference’ ’<’ DataType ’>’;

2

3 AtomicExpression: SymbolReference | Null | Reference | ... ;

4

5 SymbolReference:

6 [NamedElement] (SymbolRefCompositionInit)? SymbolRefAccessModifier?

7 (’.’ SymbolReference)?;

8

9 SymbolRefAccessModifier: Dereference | ... ;

10

11 Dereference: ’@’ SymbolRefAccessModifier?

12

13 Reference: ’reference’ AtomicExpression;

14

15 Null: ’null’;

Listing 62: Grammar rules related to the reference type and the corresponding
expressions.

Value Constructors and String Representation

Null-references are represented by the literal null. Reference values are explic-
itly created with the reference creation expressions consisting of the keyword
reference combined with an expression. The value of the expression is stored in
the memory, the value of the reference creation expression is the address of the
stored value. To access this value, the data container with the stored reference
must be explicitly dereferenced with the postfix operator @. One must be aware
of null-references when dereferencing otherwise a runtime error may occur.
The string representation of a reference type consists of the stored value fol-

lowed by the identity hash code [102], which is used to uniquely identify elements
stored on the heap. An example representation of a value created by the expres-
sion reference 42 can be 42@404b9385.

Example Programs

An example of using reference types is given in listing 63. The variables a and b

are declared and initialized in the main procedure. Their values are then swapped
in the operation swap. This change is visible after the execution of the swap

operation in the main procedure. The output of the program is: 5 42.

1 program references

2 import IO

3

4 operation swap(parameter x : reference<integer>, parameter y : reference<integer>)

5 variable z : integer

6 z := x@ x@ := y@ y@ := z

7 endoperation

142

8 main

9 variable a : reference<integer>

10 variable b : reference<integer>

11 a := reference 42

12 b := reference 5

13 swap(a, b)

14 IO.writeInteger(a@) IO.writeString(" ")

15 IO.writeInteger(b@) IO.writeLine()

16 endmain

Listing 63: Example of a procedure using reference types.

Listing 64 demonstrates the behaviour for equality checks of references. The
output of the program is:

false

true

true

The values of references are addresses, which are compared in the equality check
in line 10 explaining why false is the result for the first case. Both references
address different memory objects whose values are, however, the same, which is
why ref1@ = ref2@ results in true. After reassigning ref2 to ref1, meaning
that both references now point to the same memory object, the expression ref1

= ref2 is evaluated as true. Additional details are presented in section 5.5.13.

1 program references2

2 import IO

3

4 main

5 variable ref1 : reference<integer>

6 variable ref2 : reference<integer>

7

8 ref1 := reference 42

9 ref2 := reference 42

10 IO.writeBoolean(ref1 = ref2) IO.writeLine()

11 IO.writeBoolean(ref1@ = ref2@) IO.writeLine()

12

13 ref2 := ref1

14 IO.writeBoolean(ref1 = ref2) IO.writeLine()

15 endmain

Listing 64: Equality checks with references.

Listing 65 shows the copy semantics when creating references. The integer

variable num is assigned the value 42. When creating a reference, this value is
copied first and the copy is then referenced by ref. Therefore changing the value
of num does not have any side effects on the value referenced by ref. The output
of the program is 42.

143

1 program references3

2 import IO

3

4 main

5 variable ref : reference<integer>

6 variable num : integer

7

8 num := 42

9 ref := reference num

10 num := 21

11

12 IO.writeInteger(ref@)

13 endmain

Listing 65: Copy semantics with references.

Validation Checks

Placeholders in error messages represented by [...] are replaced by context
specific information at runtime. Validation checks ensure that correct value is
passed to the reference creation expression depending on the expected type. Fol-
lowing error messages may be displayed in the context of reference types and the
corresponding expressions.

� Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].

� Cannot assign a null-reference to a non-reference type.

� Cannot compare a non-reference type to a null-reference.

� Invalid access modifier, you must not dereference a non-reference type.

5.5.11. Operations

Named and anonymous operations are represented by the operation type, which
resembles the operation signature, i.e. its parameters and the return type. This
type allows to handle operations as data in the context of functional program-
ming, meaning that operations can be stored as normal values in data containers.
The “value” of an operation is its semantics.

1 OperationType: ’operation’ ’(’ (DataType (’,’ DataType)*)? ’)’ (’:’ DataType)?;

2

3 Operation:

4 VisibilityModifier? (’abstract’)? (’override’)? ’operation’ ID

5 ’(’ (Parameter (’,’ Parameter)*)? ’)’ (’:’ DataType)?

6 (Block ’endoperation’)?;

7

8 AtomicExpression: SymbolReference | LambdaExpression | ... ;

144

9 LambdaExpression:

10 ’operation’ ’(’ (Parameter (’,’ Parameter)*)? ’)’ (’:’ DataType)?

11 Block ’endoperation’;

12

13 SymbolReference:

14 [NamedElement] (SymbolRefCompositionInit)? SymbolRefAccessModifier?

15 (’.’ SymbolReference)?;

16

17 SymbolRefAccessModifier: OperationInvocation | ... ;

18

19 OperationInvocation:

20 ’(’ (Expression (’,’ Expression)*)? ’)’ SymbolRefAccessModifier?

Listing 66: Grammar rules related to the operation type and the corresponding
language constructs.

Example Program

Listing 67 shows a simple example of using the operation type. The operation
foo and the variable bar have both the operation type operation(integer) :

integer, hence why foo can be assigned to bar, making bar effectively an alias
of foo. This allows us to pass named operations as parameters to higher-order
functions. The lambda expression assigned to bar in line 15 also has the same
type. The output of the program is: 4 4 4.
The operation type should not be confused with the return type of an operation.

For example, the type of the expression foo is operation(integer) : integer

while the type of foo(2) is integer.

1 program OperationTypes

2 import IO

3

4 operation foo(parameter x : integer) : integer

5 return x * x

6 endoperation

7

8 main

9 IO.writeInteger(foo(2)) IO.writeString(" ")

10

11 variable bar : operation(integer) : integer

12 bar := foo

13 IO.writeInteger(bar(2)) IO.writeString(" ")

14

15 bar := operation(parameter x : integer) : integer

16 return x * x

17 endoperation

18 IO.writeInteger(bar(2))

19 endmain

Listing 67: Operation types allow to use named and anonymous operations as data.

145

Validation Checks

The operation type is used to ensure that operations with correct signatures are
passed to data containers, therefore, the usual error message “Expected type is:
[DATA TYPE]. Actual type is: [DATA TYPE].” is displayed whenever incompatible
types are used in the same context. Other than that, section 5.9 covers opera-
tions as a language construct, thus the corresponding validation messages will be
discussed there.

5.5.12. Type Compatibility and Conversion Rules

This section covers rules concerned with the type compatibility and type conver-
sion.

Type Compatibility Rules

Whenever an expression is evaluated or a value is passed to a data container, the
type of the value has to be determined and then compared to the expected type
of the context in which it is used. For example, in the context of an assignment
statement, the type of the assigned value must be compatible with the type of
the data container. In an arithmetic expression, values on both sides of the
expression must have numerical types, etc. When the actual type is compatible
to the expected type, the program can be executed as long as no other rules
are broken. Otherwise, if the actual type of the value is not compatible with
the expected type of the context, the following compile time error message is
displayed and the program will not compile:

“Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].”

Let us assume T1 is the expected type and T2 is the actual type. In general,
T2 is compatible to T1 if it is a reflexive or transitive subtype of T1. Following
type compatibility rules apply, left-hand side shows the expected type while the
right-hand side lists compatible types and additional constraints:

� boolean – boolean.

� string – string.

� integer – integer.

� rational – rational, integer.

� enumeration – exact the same enumeration type contained in the same
compilation unit. Two enumeration types with the same name and same
literals but contained in different compilation units are not compatible.

146

� list<TYPE1> – list<TYPE2>, whereby TYPE1 and TYPE2 must be compat-
ible.

� reference<TYPE1> – reference<TYPE2>, whereby TYPE1 and TYPE2 must
be compatible, unless they are list types, in which case they must be equal
(explanation is given in section 5.5.13).

� composition1 – composition2, whereby composition2 is a transitive or
reflexive subtype of composition1. Let us assume that Point3D is a sub-
type of Point2D, p2d is a variable of type Point2D and p3d is a variable of
type Point3D. This means that the assignment p2d := Point3D{x = 1,

y = 2, z = 3} is a valid statement (more in section 5.5.13). However, the
assignment p3d := Point2D{x = 1, y = 2} will result in a compile time
error message since the expected type is Point3D which is inferred from the
left side. Since Point2D is not a subtype of Point3D, it is not a compatible
type in this case.

� formal type parameter – another formal type parameter with the same
name if used within the body of the same composition, where the expected
formal type parameter was declared. Outside of the body of that com-
position, formal type parameters are replaced by actual type parameters,
which have to follow the rules described above.

In case of equality check expressions, types on both sides must be compatible,
however, it does not matter whether the subtype is written on the right-hand or on
the left-hand side. Fir example, both Point2D{x = 1, y = 2} = Point3D{x =

1, y = 2, z = 3} and Point3D{x = 1, y = 2, z = 3} = Point2D{x = 1, y

= 2} as well as 42 = 42.0 and 42.0 = 42 are valid expressions which will all
evaluate to true.

Type Conversion Rules

MuLE’s mechanisms for type conversions are designed to prevent illegal type
conversions and resulting runtime errors. Subtypes may be implicitly converted
to super types. Rational is handled as a super type of integer, furthermore
compositions may have a super type via inheritance relations. Explicit type
conversions are supported by library operations which convert values of other
types to string values and rational values to integers.
Following library (section 6) operations are used for explicit type conversions:

� Strings – integerToString(integer) : string – converts an integer
value to a string value.

� Strings – rationalToString(rational) : string – converts a rational
value to a string value.

147

� Strings – booleanToString(boolean) : string – converts a boolean
value to a string value.

� Strings – genericToString(Expression) : string – converts values
of any type to a string value, which allows to conveniently convert values of
compositions and lists into their textual representations. Example is shown
in listing 68.

� Mathematics – floor(rational) : integer – converts a rational value
to integer by dropping the decimal expansion of the number.

� Mathematics – round(rational) : integer – converts a rational value
to integer by rounding it.

Furthermore, MuLE offers let-statements (section 5.8.6) which check if a value
is an instance of a specific type in an inheritance hierarchy and execute the
corresponding code if this is the case. These statements are meant to be used in
the context of object-oriented programming and reference types when the static
type of a declared value is not enough and dynamic type checks must be performed
by the user.

1 program LetStatements

2 import IO

3 import Strings

4

5 type Point2D : composition

6 attribute x : integer

7 attribute y : integer

8 endtype

9

10 type Point3D : composition extends Point2D

11 attribute z : integer

12 endtype

13

14 main

15 variable v1 : reference<Point2D> v1 := reference Point2D{}

16 variable v2 : reference<Point2D> v2 := reference Point3D{}

17

18 let variable v : reference<Point3D> be v1 do

19 IO.writeString(Strings.genericToString(v@) & "\n")

20 endlet

21

22 let variable v : reference<Point3D> be v2 do

23 IO.writeString(Strings.genericToString(v@) & "\n")

24 endlet

25 endmain

Listing 68: Explicit conversion with let-statements

148

Listing 68 demonstrates examples of explicit type conversion, let-statements
are used to check whether the dynamic types of the variables v1 and v2 are com-
patible to the type of the variable v which is declared in the scope of the respec-
tive let-statements. Both variables have the static type reference<Point2D>

but different dynamic types. In both statements the variable v is declared as
reference<Point3D>. In the first case, the dynamic type of v1 is the super type
of the expected type, meaning that we would need to convert the stored value
into a subtype with further attributes. This is not possible, therefore the body
of the first let-statement is not executed. However, even though the static type
of v2 is reference<Point2D>, the dynamic type matches the expected type in
the second let-statement, which is then executed.
The output of the program is: Point3D{x = 0, y = 0, z = 0}.

5.5.13. Value Copying Semantics and Equality Rules

We have already given an overview over value copying semantics in section 4.2 by
giving two examples when passing integer values and references to integer values.
As a reminder, whenever a value is passed to a data container, it is copied and
the copy is then stored. Therefore, all data containers are always storing different
data chunks, even if their values might be equal. For example, if we declare two
integer variables a and b, initialize a as 42 and then assign value of a to b, the 42
is copied and the copy is stored in b. Assigning a different value to one variable
will not alter the state of the other one. When we use reference types, a value
is stored in the memory and then the address to that value is copied and passed
over to data containers. In this case, we may have two variables referencing the
same value in the memory allowing us to change the state of one variable by
altering the other one.
In short, whenever data is passed to a data container, a shallow copy of the data

object is created and passed on, i.e. normal values are copied while referenced
values are not.

Value Copying Rules

Following rules apply when passing a value depending on its type:

� The actual type of the value must be compatible to the expected type.
Otherwise, the program will not compile. This rule applies to all types.

� Values of basic types, i.e. integer, rational, boolean, string and enumera-
tions, are copied as they are. In case of integer values, if the expected type
is rational, then the integer value is converted to rational without changing
its actual numerical value (i.e. a 42 becomes a 42.0).

� Values of compositions can be copied, if the type of the copied value is a
reflexive or transitive subtype of the data container. During the copying

149

process, first an empty value of the target type is created, then the values
of attributes of the actual value are copied recursively into the new value
according to the copying rules respective to the types of each value. If the
target type has less attributes than the source type (e.g. if a Point3D is
copied to a Point2D), then only the shared attributes are transferred.

� Values of reference types are addresses to actual values stored in the mem-
ory. A reference may be copied if the type of the source value is compatible
to the referenced target type. For example, a reference<Point3D> may be
copied to a reference<Point2D>. If a reference is dereferenced, than the
source type is the type of the actual value in the memory, i.e. normal value
copying semantics apply respective for that type. A null-reference does not
point to a data object in the memory. A null-reference can be assigned
to any reference, if no other reference addresses the previously referenced
value, the value is removed from the memory by the garbage collector.

� Values of the built-in list type are copied according to the type of listed
values. First, an empty list with the same type as that of the source list is
created, then it is filled with recursive copies of the values from the source
list.

� Values of operation types are semantically different from usual values, after
all, operations represent behaviour and not data. Thus, a copy of an opera-
tion can be described as a lambda expression with the exact same signature
and behaviour as the source operation.

Examples for Value Copying Semantics

For the sake of all code examples in this section, we will use the declarations of
Point2D and its subtype Point3D in listing 68. The first example (listing 69 and
figure 13) demonstrates a similar scenario to the one explained above, which was
a repetition of the example shown in section 4.2. However, this time we are using
the aforementioned compositions Point2D (variable v1) and Point3D (variable
v2).
Once declared, both variables are initialized with their default values based

on their types (state 1). We then initialize v2 using the value constructor for
composition types (state 2), and assign the now new value of v2 to v1 (state
3). Since the type of the value of v2 is a subtype of the expected type in the
assignment statement in line 6, this is a legitimate assignment. However the
entire value of v2 cannot be stored under v1, therefore, a value of type Point2D is
created under v1 and the values of the shared attributes are copied over. Finally,
if we alter the internal state of one of the variables (state 4), the state of the other
variable remains unchanged. Same would happen if the types of both variables
were equal, with the difference that values of all attributes would be carried over.

150

1 main

2 variable v1 : Point2D

3 variable v2 : Point3D

4

5 v2 := Point3D{x = 1, y = 2, z = 3}

6 v1 := v2

7 v2.x := 5

8 endmain

Listing 69: Value copying semantics with composition types

Figure 13: State of memory at different times of the execution of the program in listing
69.

Listing 70 and figure 14 demonstrate an example using reference types. Imme-
diately after their declaration, both variables v1 and v2 are initialized with their
standard values, which is a null-reference in both cases (state 1). We continue
by assigning these two variables values based on their types using the reference
expression, the values are stored in the memory and their referencing addresses
are stored in the variables (state 2). Since Point2D is a super type of Point3D,
reference<Point3D> is compatible to reference<Point2D>, meaning that we
can assign the value of v2 to v1 (state 3). Both variables are now addressing the
same value in the memory, i.e. v1 and v2 are equal. The static type of v1 is
still reference<Point2D> while its dynamic type is now reference<Point3D>,
meaning that we cannot access the attribute z via the variable v1 although it
does exist in the referenced value. The value Point2D{x = 1, y = 2} is no
longer referenced, the reserved memory will be freed by garbage collector. Alter-
ing the state of the referenced value via one of the variables will have an effect for
both variables (state 4). After the program will finish its execution, none of the
remaining values will be referenced any longer and their reserved memory will be
freed by the garbage collector.

151

1 main

2 variable v1 : reference<Point2D>

3 variable v2 : reference<Point3D>

4

5 v1 := reference Point2D{x = 1, y = 2}

6 v2 := reference Point3D{x = 1, y = 2, z = 3}

7

8 v1 := v2

9 v2@.x := 5

10 endmain

Listing 70: Value copying semantics with reference types and compositions

Figure 14: State of memory at different times of the execution of the program in listing
70.

152

1 main

2 variable l1 : list<reference<Point2D>>

3 variable l2 : list<reference<Point2D>>

4

5 l1 := [reference Point2D{}, reference Point2D{}]

6 l2 := l1

7 l2[0]@.x := 3

8 l1[1] := null

9 endmain

Listing 71: Example of a shallow copy.

Figure 15: State of memory at different times of the execution of the program in listing
71.

Listing 71 and figure 15 show a concrete example of a creation of a shallow
copy when passing a composition or a list value which contains references to other
values, in this example we have lists of references. Both variables l1 and l2 are
declared as list<reference<Point2D>>, l1 is initialized with a concrete value
while l2 keeps its default value, i.e. an empty list (state 1). We then assign
the value of l1 to l2, the list stored in l1 is copied as well as the references
which are stored in the list, however, the referenced values in the memory are not
copied (state 2). We now have two equal list values which store references to the
same values in the memory. If we now access one of the references from one list,
dereference it and manipulate the value, as seen in line 7, the effect is visible in

153

the other list (state 3). However, changing one of the stored references directly,
for example by accessing a stored reference and assigning it a null-reference is
line 8, will not affect the other list (state 3).

1 main

2 variable v1 : reference<list<Point2D>>

3 variable v2 : reference<list<Point3D>>

4

5 v2 := reference [Point3D{x = 1, y = 1, z = 1}, Point3D{x = 2, y = 2, z = 2}]

6 v1 := v2 // error: Expected type is: reference<list<Point2D>>

7 // Actual type is: reference<list<Point3D>>

8 v1@[0] := Point2D{x = 1, y = 1}

9 IO.writeInteger(v2@[0].z)

10 endmain

Listing 72: Type incompatibility in case of references to lists of compositions.

Figure 16: Assumed state of memory at different times of the theoretical execution of
the program in listing 72.

A rather different example is shown in listing 72 and figure 16. Even though the
types in line 6 are compatible at the first glance, the program does not compile. As
stated in the type compatibility rules previously in section 5.5.12, if the expected
type is reference<list<T1>> and the actual type is reference<list<T2>>,
then T1 and T2 must be equal. The reason for this is shown in figure 16, which
demonstrates the state of the memory if the program in listing 72 would actually
be executed. The variable v2 is initialized as a reference to a list filled with

154

instances of Point3D (state 1). If it would be possible to assign v2 to v1, we
would create two aliases with different static types to the same list (state 2). We
would now be able to store values of Point2D in the list via the variable v1 (state
3). This leads to an issue when accessing these values via the variable v2, which
offers access attributes which are no longer present in some of the values (line 8
in listing 72).

Value Equality Rules

Following rules apply when performing an equality check on two values:

� The types on both sides of the equality check expression must be compatible
with each other. Otherwise, the program will not compile. This rule applies
to all types.

� Rules for boolean values are simple: true = true, false = false.

� Two string values are equal, if both values have the same number of char-
acters, the characters’ order of appearance is equal, and each character is
equal.

� Two integer or rational values are equal, if they represent the same numeri-
cal value. For example, both expressions 42 = 42.0 and 10 = 1.0E1 yield
true.

� Two enumeration values are equal, if both literals are equal.

� Two references are equal, if both references address the same value in the
memory. A null-reference is equal to the null-literal.

� Two list values are equal, if both lists have the same number of values, the
order of the values is the same and each corresponding value is equal.

� Two compositions are equal, if the values of shared attributes are equal.
Since the types on both sides must be compatible but not equal to each
other, the equality check Point2D{x = 1, y = 2} = Point3D{x = 1, y

= 2, z = 3} will be evaluated as true.

5.6. Expressions

Expressions are syntactic units which represent the simplest possible instructions
in MuLE. Expressions are evaluated and return a value but do not change the
state of a program on their own, unless the expression is a call to a memory
altering operation. Furthermore expressions can be contained in other expressions
but the root expression has to be contained in a statement (section 5.8).

155

The Expression Grammar

Listing 73 contains the entire expression grammar of MuLE. Excerpts and short-
ened versions of this grammar rules were already presented in previous sections.
Literals for the various primitive types as well as the null literal are not included,
the corresponding rules are presented in chapter 5.3.

The expression grammar can be separated into two parts, the first one includes
binary expressions which yield a value by applying a binary operator to two val-
ues. The second one contains atomic expressions, which represent value literals,
value constructors, apply a unary operator to a value, as well as the parenthesized
expression.

1 Expression:

2 OrExpression;

3

4 OrExpression:

5 AndExpression (’or’ AndExpression)*;

6

7 AndExpression:

8 EqualityExpression (’and’ EqualityExpression)*;

9

10 EqualityExpression:

11 ComparisonExpression ((’=’ | ’/=’) ComparisonExpression)*;

12

13 ComparisonExpression:

14 AdditiveExpression ((’<’ | ’<=’ | ’>’ | ’>=’) AdditiveExpression)*;

15

16 AdditiveExpression:

17 MultiplicativeExpression ((’+’ | ’-’ | ’&’) MultiplicativeExpression)*;

18

19 MultiplicativeExpression:

20 ExponentExpression ((’*’ | ’/’ | ’div’ | ’mod’) ExponentExpression)*;

21

22 ExponentExpression:

23 AtomicExpression ((’exp’) AtomicExpression)*;

24

25 AtomicExpression:

26 SymbolReference | SuperExpression | StringConstant | IntegerConstant |

27 RationalConstant | BooleanConstant | Null | Unary | Reference |

28 ParenthesizedExpression | ListInit | LambdaExpression;

29

30 Unary:

31 (’+’|’-’|’not’) AtomicExpression;

32

33 Reference:

34 ’reference’ AtomicExpression;

156

35 ParenthesizedExpression:

36 ’(’ Expression ’)’;

37

38 LambdaExpression:

39 ’operation’ ’(’ (Parameter (’,’ Parameter)*)? ’)’ (’:’ DataType)?

40 Block ’endoperation’;

41

42 SuperExpression:

43 ’super’ ’.’ SymbolReference;

44

45 SymbolReference:

46 [NamedElement] (SymbolRefCompositionInit)? SymbolRefAccessModifier?

47 (’.’ SymbolReference)?;

48

49 SymbolRefAccessModifier:

50 OperationInvocation | ListAccess | Dereference;

51

52 OperationInvocation:

53 ’(’ (Expression (’,’ Expression)*)? ’)’ SymbolRefAccessModifier?;

54

55 ListAccess:

56 ’[’ Expression ’]’ SymbolRefAccessModifier?;

57

58 Dereference:

59 ’@’ SymbolRefAccessModifier?;

60

61 SymbolRefCompositionInit:

62 ’{’ (SymbolRefCompositionAttribute

63 (’,’ SymbolRefCompositionAttribute)*)? ’}’;

64

65 SymbolRefCompositionAttribute:

66 [Attribute] ’=’ Expression;

67

68 ListInit:

69 "[" (Expression (ListInitFunction | ListInitElements))? "]";

70

71 ListInitFunction:

72 ("**" | "..") Expression;

73

74 ListInitElements:

75 ("," Expression)*;

Listing 73: The expression grammar.

Semantics and Examples of Expressions

Operators are an integral part of most expressions. They define the function of
the corresponding expression, the order in which the expressions are evaluated as

157

well as which operands can be accepted by validation checks. See section 5.3.5
for the table of operators, their function and precedence.
Following list presents a summary of all supported expressions, their function-

ality and requirements:

� Logical OR – boolean values are required as operands. The result is false,
if both operands are false. Otherwise the result is always true.

a or b, true or false

� Logical AND – boolean values are required as operands. The result is
true if both operands are true and false in any other case.

a and b, true and false

� Logical not – negates a boolean value.
not a, not false

� Equality checks – are performed to check if two values are equal or not.
Both operands must have compatible types. The result is a boolean value.

a = b, a /= b, 5 = 2, 5 /= 2

� Comparative checks – are performed to evaluate how the value on the
left-hand side of the expression compares to the value on the right-hand
side. Both operands must be numerical values, i.e. either rational or inte-
ger. The result is a boolean value.

a < b, a <= b, a >= b, a > b

2 < 4, 2 <= 4, 2 >= 4, 2 > 4

� Addition and subtraction – are used to add or subtract two numerical
values. If one of the operands is a rational number, the result also also
rational. If both operands are integer values, the result is also integer.

a + b, a - b, 2 + 4, 2 - 4

� Unary signs – are used to apply a unary + or - to a numerical value. Unary
operators can be chained, whereby the innermost operator is applied first.

-2, +4, --2

� String concatenation – both operands must be strings. The result is a
string value composed of both original values.

a & b, "Hello " & "world!"

� Multiplication – is used to multiply the left-hand value by the right-hand
value. Both operands must be either integer or rational. The resulting value
is an integer if both operands are integer. As soon as one of the operands
has the type rational, the resulting value is also rational.

a * b, 2 * 4

158

� Rational division – is used to divide the left-hand value by the right-hand
value. Both operands must be either integer or rational. The resulting value
is always rational, e.g. 5 / 2 will result in 2.5.

a / b, 2 / 4

� Integer division – is used to divide the left-hand value by the right-hand
value. Both operands must be integers. The resulting value is always inte-
ger, e.g. 5 div 2 will result in 2.

a div b, 2 div 4

� Modulo – is used to compute the remainder of the left-hand value divided
by the right-hand value. Both operands must be numerical values. The
result is an integer if both values are integers and rational in other cases.

a mod b, 4 mod 2

� Exponentiation – computes the left-hand side to the power of the right-
hand side. Both operands must be numerical values. The resulting value is
always rational.

a exp b, 4 exp 2

� Parenteses – can be used for their usual function in mathematical and
boolean expressions.

2 * (5 - 3), a and (b or c)

� Named element call – is used when a named element, e.g. a variable
or an operation, has to be referenced in the source code. If the named
element cannot be accessed directly, i.e. it is not in the immediate scope,
its qualified name must be used.

a, a.x

Operation calls can be used both as a part of an expression or stand-alone
as a statement (more details in section 5.8.3). Operations without a return
value cannot be called in an expression.

IO.writeString("Hello, world!"), 42 + sum(2, 5), foo()

� Reference value constructor – is used to create a reference type of a
value. The value is copied and wrapped in a reference, meaning that the
manipulations of the referenced value do not cause any effects on the orig-
inal value.

reference b, reference 42

� Dereferencing – is used to get the value of a reference which is stored in
a data container, i.e. a variable, an attribute or a parameter.

a@

� List value constructor – there are three distinct ways to express a list
value in MuLE. The first one as a set of values separated by commas. The

159

second option is to create a repetition of values, wherein the value on the
right-hand side (which can be of any type) is repeated by the amount on
the left-hand side (integer). The ∗∗ operator is used in this case. And
finally, a range of integers can be defined by using the .. operator with the
corresponding borders represented by integer values. Square brackets are
used in all cases.

[a, b, c], [a ** b], [a .. b]

� List access – if a named element represents a list value, the stored values
can be accessed via their index. In this case the index is written in square
brackets after the identifier of the named element. In case of multi dimen-
sional lists several list access modifiers can be written after the list name.

a[1], table[0][1]

� Super expression – is used if a redefined operation has to be invoked in
a sub type.

super.foo()

� Composition value constructor – is used to create values of composition
types. It consists of the identifier of the composition followed by attribute
value assignments in curled brackets. The attributes are written in order of
their declaration in the composition (including inherited attributes, which
come first) separated by commas. Two variants exist for each composition
representing an empty and a non-empty value constructor.

Vector2D{}, Vector2D{x = 2, y = 3}

� Lambda expression – represents anonymous operations which can be
passed as data to data containers. The corresponding data container is then
used to invoke the stored operation. The syntax of a lambda expression is
very similar to that of an operation construct, same applies to the performed
validation checks. Section 5.9 covers the specification of operations in detail,
the corresponding operation type is discussed in section 5.5.11, while the
rules of operation invocations are covered in section 5.8.3.

operation(parameter x : integer) : integer

return x * x

endoperation

Validation Checks

The expected and provided types of MuLE’s expressions are listed above. Each
part of an expression is checked for type compatibility. Following error messages
may appear in the context of an expression at compile time. As usual, text
elements marked as [...] are placeholders which are filled with context specific

160

information at runtime. Rules that apply to operations (see section 5.9) are also
applied for lambda expressions, except for the duplicate name error, since lambda
expressions do not have an identifier by themselves.

� Couldn’t resolve reference to NamedElement [IDENTIFIER].

� Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].

� Cannot compare a non-reference type to a null-reference.

� You must not invoke an abstract operation in the context of a super ex-
pression.

� You must not use an abstract composition in order to create a value. Use
one of its subtypes instead.

� The referred element is a composition, it requires a composition initializa-
tion notation. The correct notation is either: [EMPTY VALUE CONSTRUCTOR]

or [NON-EMPTY VALUE CONSTRUCTOR].

� Incorrect attribute sequence used in the composition value constructor. The
correct notation is either: [EMPTY VALUE CONSTRUCTOR] or [NON-EMPTY

VALUE CONSTRUCTOR]

� You must not use operation invocation notation on a composition value
constructor.

� You must not use list index access notation on a composition value con-
structor.

� You must not dereference a composition value constructor.

� The referred element is not a composition, this notation is not allowed in
this context.

� You must not pass an operation which is a member of a composition to a
data container since it may rely on other composition members not acces-
sible in this context.

� The referred element is an operation, either invoke it with a parameter
profile or pass it without any access modifiers to a data container with an
operation type.

� Invalid access modifier, you must not dereference a non-reference type.

� Invalid access modifier, you must not use list access on a non-list type.

161

� Invalid access modifier, you must not use operation invocation on a non-
operation type.

� Incomplete expression, you have to access a type declaration or an operation
from the imported library via its qualified name.

5.7. Blocks

A block is a group of statements (section 5.8) which is attached to another lan-
guage construct, i.e. another statement, an operation or the main procedure. In
MuLE, a block may contain only statements, therefore the body of a composi-
tion, which contains attribute declarations and may contain operations, is strictly
speaking not a block, whereas it may be defined as a block in other programming
languages.

1 Block:

2 Statement*;

3

4 MainProcedure:

5 ’main’ Block ’endmain’;

6

7 LoopStatement:

8 ’loop’ Block ’endloop’;

Listing 74: Grammar rule for blocks and examples for its uses.

As an example, the statements between the keywords loop and endloop rep-
resent the block of statements attached to that loop-statement. The main proce-
dure represents a special kind of an operation and also has a block of statements
enclosed by the keywords main and endmain. Any number of statements may be
included in a single block.

Following language constructs include one or more blocks of statements:

� The main procedure.

� Non-abstract named operations.

� Lambda expressions.

� Loop-statements.

� If-statements, each branch of an if-statement has its own block.

� Let-statements, each branch of a let-statement has its own block.

162

5.8. Statements

Statements are language constructs which represent single executable actions in
a program. Statements express the behaviour of a program step by step. They
define the flow and may change the state of the program. In MuLE, statements
are structured in blocks (section 5.7).

1 Statement:

2 VariableDeclaration | AssignmentOrOperationCall | IfStatement |

3 LoopStatement | LetStatement | ReturnStatement | ExitStatement;

4

5 VariableDeclaration: ’variable’ ID ’:’ DataType;

6

7 AssignmentOrOperationCall: (SymbolReference | SuperExpression) (’:=’ Expression)?;

8

9 LoopStatement: ’loop’ Block ’endloop’;

10

11 IfStatement:

12 ’if’ Expression ’then’ Block

13 (’elseif’ Expression ’then’ Block)*

14 (’else’ Block)?

15 ’endif’;

16

17 LetStatement:

18 ’let’ VariableDeclaration ’be’ Expression ’do’ Block

19 (’elselet’ VariableDeclaration ’be’ Expression ’do’ Block)*

20 (’else’ Block)?

21 ’endlet’;

22

23 Return: ’return’ (Expression)?;

24

25 ExitStatement: ’exit’;

Listing 75: Grammar rules for statements.

Actual computations and logical operations are defined by expressions (section
5.6) which are part of some statements. For instance, if a value has to be stored
in a data container, an assignment statement can be used wherein an expression
is first evaluated and the resulting value is then stored in the data container.

Grammar rules of supported statements are displayed in listing 75. Sub-
sequent sections will offer more details on each type of statement. The rule
AssignmentOrOperationCall is listed under statements since it is used for as-
signment statements (which reference a named element as a SymbolReference

expression rule on the left-hand side of the assignment statement) and invocations
of operations (referred by SymbolReference or SuperExpression) at statement
level.

163

5.8.1. Variable Declaration Statement

Before a variable may be used, it must be declared via a variable declaration
statement. The syntax of a variable declaration statement is similar to that of
attribute and parameter declarations. The statement starts with the keyword
variable followed by the identifier of the variable and its data type.

1 VariableDeclaration: ’variable’ ID ’:’ DataType;

Listing 76: The grammar rule of the variable declaration statement.

When a variable is declared, a type dependent default value is automatically
assigned to it. Listing 77 shows examples of variables declarations for various
MuLE types. Default values of compositions, enumerations and operations are
dependent on the type declaration or its signature. Abstract types and composi-
tion type parameters cannot be used to declare variables directly since no default
values exist for such types. Instead, they must be wrapped as reference types
(line 14). Finally, a variable declaration is also part of every let-statement, more
in section 5.8.6.

1 program VariableDeclarations

2

3 type RGB : enumeration

4 RED, GREEN, BLUE

5 endtype

6

7 type Point2D : composition

8 attribute x : integer

9 attribute y : integer

10 endtype

11

12 type Wrapper<T> : composition

13 operation foo()

14 variable v0 : reference<T> // null

15 endoperation

16 endtype

17

18 main

19 variable v1 : integer // 0

20 variable v2 : rational // 0.0

21 variable v3 : boolean // false

22 variable v4 : string // empty string

23 variable v5 : list<integer> // []

24 variable v6 : reference<integer> // null

25 variable v7 : RGB // RED

26 variable v8 : Point2D // Point2D{x = 0, y = 0}

27 variable v9 : operation() : integer // returns 0 when invoked

28 endmain

Listing 77: Examples of variable declarations and their default values.

164

Validation Checks

Following error messages may appear in the context of a variable declaration
statement at compile time. As usual, text elements marked as [...] are place-
holders which are filled with context specific information at runtime.

� Use of this name is not allowed. You are attempting to use a reserved word
as an identifier.

� An element with such name already exists. Use a different name for this
element.

� Couldn’t resolve reference to TypeDeclaration [IDENTIFIER].

� An abstract type is not allowed to be used directly in a feature declaration.
Either use a non-abstract type or wrap the abstract type as a reference
type.

� A type parameter is not allowed to be used directly in a feature declaration.
Either use a non-abstract type or wrap the type parameter as a reference
type.

� Incompatible type was used for type parameter.
Expected type: [EXPECTED TYPES]

Actual type: [ACTUAL TYPE]

5.8.2. Assignment Statement

Assignment statements are used to change the value of a data container, i.e. a
variable, a composition attribute or an operation parameter. The data container
is located on the left side of an assignment statement, followed by an assignment
operator := and an expression on the right side.

1 AssignmentOrOperationCall: (SymbolReference | SuperExpression) (’:=’ Expression)?;

Listing 78: The grammar rule of the assignment statement.

According to the grammar rule, an applicable statement is evaluated as an as-
signment statement if an assignment operator with the corresponding expression
is present, otherwise this rule is meant to represent operation invocation state-
ments (see section 5.8.3). Validation checks invalidate any attempts to assign
values to operation calls. Multiple assignments are not allowed within one state-
ment. After the expression is evaluated, a shallow copy of the resulting value is
created and stored in the referenced data container.
Listing 79 shows examples for assignments to variables, composition attributes

and operation parameters. The type of the expression on the right side must be
compatible to the type of the data container on the left side.

165

1 program Assignments

2

3 type Point2D : composition

4 attribute x : integer

5 attribute y : integer

6 operation setX(parameter _x : integer)

7 x := _x // Assignment to an attribute

8 endoperation

9 endtype

10

11 operation increment(parameter num : integer) : integer

12 num := num + 1 // Assignment to a parameter

13 return num

14 endoperation

15

16 main

17 variable p : Point2D

18 p := Point2D{x = 1, y = 1} // Assignment to a variable

19 p.y := 3 // Assignment to an attribute via its qualified name

20 endmain

Listing 79: Examples of assignments.

Validation Checks

In addition to the usual error messages which can be caused by invalid expres-
sions which are part of every assignment statement, following error messages may
appear in the context of an assignment statement at compile time. As usual, text
elements marked as [...] are placeholders which are filled with context specific
information at runtime.

� Couldn’t resolve reference to NamedElement [IDENTIFIER].

� Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].

� You are not allowed to assign a value to an operation invocation statement.

� You are not allowed to assign a null-reference to a non-reference type.

5.8.3. Operation Invocation

Referring to an operation simply by its name does not invoke the operation.
Instead, it is handled as data, i.e. it can be passed to data containers. In
order to actually execute an operation, it must be invoked by passing a list of
parameters, even if this list is empty. To invoke an operation, the list of the
passed parameters must have the same length as the list of parameters specified
in the parameter profile of the operation declaration. Furthermore, the types

166

of each passed parameters must correspond to the types in the same order as
specified in the parameter profile. For example, if we have an operation with the
signature foo(integer, boolean), a correct invocation could be foo(5, true),
while foo(), foo(true, 5) and foo("5", true) are all incorrect. Finally, if the
operation is a procedure, i.e. it has no return type, it can not be invoked in an
expression, only as a statement. Operations with a return type can be invoked
both as expressions and statements.
The syntax of operation invocation instructions is defined by the expression

grammar rule SymbolReference (listing 73 in section 5.6, a shortened version is
also displayed is listing 80) which allows to invoke functions, i.e. operations with a
return value, as a part of other expressions. In order to invoke operations without
a return value, this expression must be used as a statement, which is achieved by
the rule AssignmentOrOperationCall, assignments begin as a symbol reference
and are interpreted as assignments only if the symbol reference is followed by the
assignment operator and an expression. Validation mechanisms invalidate the
statement, if an assignment is performed on an operation invocation construct
or if the symbol reference is neither followed by an operation invocation nor an
assignment.

1 AssignmentOrOperationCall: (SymbolReference | SuperExpression) (’:=’ Expression)?;

2

3 SuperExpression: ’super’ ’.’ SymbolReference;

4

5 SymbolReference:

6 [NamedElement] (SymbolRefCompositionInit)? SymbolRefAccessModifier?

7 (’.’ SymbolReference)?;

8

9 SymbolRefAccessModifier: OperationInvocation | ... ;

10

11 OperationInvocation:

12 ’(’ (Expression (’,’ Expression)*)? ’)’ SymbolRefAccessModifier?;

Listing 80: The grammar rules used to invoke operations.

Static and Dynamic Binding

When invoking operations in the context of a composition type value, one must
consider that the operation may be redefined in an inheritance hierarchy, i.e.
several specifications of an operation may be given. When using non-reference
types, the static type, i.e. the one specified in the declaration of a data container,
is checked when deciding which operation is executed. In case of non-reference
types, the type of the value is always same as the static type.
However, when using reference types, the dynamic type of the referenced value

may deviate from the static type, i.e. the dynamic type may be a subtype of the
static type. In that case, the operations are bound dynamically, i.e. the type of

167

the referenced object is relevant when deciding which operation will be executed.
If the dynamic type specifies a concrete implementation of the invoked operation,
i.e. it redefines an inherited operation, than this operation will be executed.
In both cases, if the type in question does not redefine an inherited operation

and this operation is invoked, the inheritance hierarchy is traversed up until a
definition of the required operation is found, which is then executed. An example
demonstrating both cases is shown in the next subsection in listing 82.

Examples

Various examples of operation calls are demonstrated in listings 81, 82 and 83.
The simplest example is the invocation of the operation bar in listings 81 (line
13). The operation expects a string parameter, which is passed in order to execute
the operation. This example is representative of procedural programming.
Since the operation bar is declared within the scope of the invocation statement

in line 13, it can be referred simply by its name. Alternatively we could also
invoke it by its qualified name which is OperationInvocationExample1.bar in
this case. However, if an operation was not defined within the scope of the
invoking statement, which is the case when calling imported library operations,
the qualified name must be used. An example is shown in line 9, where the
operation writeString is invoked via its qualified name.
If an operation is referred without the parameter profile in an expression, it

is handled as data, which is more common in functional programming. This is
the case in line 5, where we return the operation bar from the operation foo.
The operation foo is invoked in line 14, since the returned value is the operation
bar, we need to pass another list of parameters in order to invoke the returned
operation. The output of the program is: Hello, world!

1 program OperationInvocationExample1

2 import IO

3

4 operation foo() : operation(string)

5 return bar // returning an operation as data

6 endoperation

7

8 operation bar(parameter str : string)

9 IO.writeString(str) // invocation of an imported library operation

10 endoperation

11

12 main

13 bar("Hello, ") // invocation of an operation

14 foo()("world!") // invocation of an operation returned from another operation

15 endmain

Listing 81: First example of operation calls.

168

1 program OperationInvocationExample2

2 import IO

3

4 type A : composition

5 operation baz()

6 IO.writeString("A.baz invoked") // invocation of a library operation

7 endoperation

8 endtype

9

10 type B : composition extends A

11 override operation baz()

12 IO.writeString("B.baz invoked, ") // invocation of a library operation

13 super.baz() // invocation of an overridden operation in a super type

14 endoperation

15 endtype

16

17 main

18 variable a : A

19 a.baz() IO.writeLine() // invocation of an operation defined in a composition

20

21 variable b : B

22 b.baz() IO.writeLine() // non-reference types are used for now

23

24 a := b // the type does not change

25 a.baz() IO.writeLine()

26

27 variable aRef : reference<A>

28 aRef := reference a // invocation on reference types, dynamic type is checked

29 aRef@.baz() IO.writeLine()

30 aRef := reference b // the dynamic type deviates from the static type

31 aRef@.baz() IO.writeLine()

32 endmain

Listing 82: Second example of operation calls.

Listing 82 shows examples of operation invocation instructions in the context
of object-oriented programming. Here we have got two types: A, which specifies
an operation baz, and its subtype B, which overrides the inherited operation baz.
The overriding operation invokes the inherited operation by using the super

expression to access it, otherwise we would have a recursive call of this operation.

Operations defined within compositions are either invoked directly within the
defining type hierarchy, or on instances of these types. The latter case is demon-
strated in line 19, where we invoke the operation baz on the variable b, which
is an instance of type B. This means that we first invoke the operation baz as
defined in type B, which then invokes the inherited operation baz.

169

The output of the program is:

A.baz invoked

B.baz invoked, A.baz invoked

A.baz invoked

A.baz invoked

B.baz invoked, A.baz invoked

The first three lines in the output are caused by invocations on non-reference
types, i.e. the the operations are bound statically in this case. Even when we as-
sign the value of b to a, the types remain the same. However, the last two lines are
caused by invoking the operation on reference types. At first, the static and the
dynamic types are equal, i.e. reference<A> in line 28, resulting in the output as
specified in type A. In line 30 the static type remains reference<A>, we still have
the same variable after all, while the dynamic type is now reference. Since
B provides a redefinition of the operation baz, the output is different, although
we still invoke the operation on the variable aRef.

1 program OperationInvocationExample3

2 import IO

3

4 main

5 variable f : operation(integer, operation(integer) : integer) : integer

6 f := operation(parameter x : integer,

7 parameter g : operation(integer) : integer) : integer

8 return g(x) // invocation of an operation which is passed as a parameter

9 endoperation

10

11 IO.writeInteger(// invocation of an imported library operation

12 f(3, // invocation of an operation stored in a variable

13 operation(parameter x : integer) : integer

14 return 2 * x

15 endoperation)

16)

17 endmain

Listing 83: Third example of operation calls.

Finally, our last example (listing 83) demonstrates invocation of operations de-
fined by lambda expressions, which is usually the case in functional programming.
The variable f is initialized as a lambda expression which accepts an integer value
x and another function g. The function g, which accepts and returns an integer
value, is applied to the parameter x, the resulting value is returned by the lambda
expression, which is now mapped to the variable f.
We can now invoke this operation by passing a list of operation parameters to

the variable f, an integer 3 and an operation which accepts an integer and returns
this value multiplied by 2. This operation is mapped to the parameter g during

170

the invocation of the operation mapped to f. Basically, we invoke the procedure
writeInteger first, which then invokes the function f, which ultimately invokes
the function g. The output of the program is: 6

Validation Checks

In addition to the usual error messages which can be caused by invalid expressions
which represent the syntax of an operation invocation and are passed as parame-
ters, following error messages may appear in the context of operation invocation
statements and expressions at compile time. As usual, text elements marked
as [...] are placeholders which are filled with context specific information at
runtime.

� Couldn’t resolve reference to NamedElement [IDENTIFIER].

� Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].

� Invalid number of arguments was passed. Expected types of arguments are:
[DATA TYPES].

� You are not allowed to assign a value to an operation invocation statement.

� The referred element is an operation, either invoke it with a parameter
profile or pass it without any access modifiers to a data container with an
operation type.

� The super expression is not allowed to be used in this context. This ex-
pression can only be used in operations defined in a composition.

� You must not invoke an abstract operation in the context of a super ex-
pression.

5.8.4. if Statement

An if-statement is one of the control flow defining statements in MuLE. This
statement defines which part of code is executed depending on one or more con-
ditions.

1 IfStatement:

2 ’if’ Expression ’then’ Block

3 (’elseif’ Expression ’then’ Block)*

4 (’else’ Block)?

5 ’endif’;

Listing 84: Grammar rule for if-statements.

171

Following keywords can be used in the if-statement:

� if - begins the if-statement and is followed by the condition. The condition
is an expression of boolean type.

� then - comes after the condition and is followed by a block of statements,
which are executed if the condition is true.

� elseif - introduces an additional condition, which is checked if the first
one was false. The additional condition is followed by the keyword then

with a corresponding block. An arbitrary number of elseif-clauses can be
included in a single if-statement.

� else - the following code block is executed if all previous conditions were
false. The else branch is optional.

� endif - terminates the if-statement. Also removes ambiguity in nested if
statements thus eliminating the dangling else problem.

1 if a then

2 // if block

3 elseif b < 5 then

4 // elseif block

5 elseif b = 5 and not a then

6 // elseif block

7 else

8 // else block

9 endif

Listing 85: An example of an if-statement.

The if-clause and each elseif-clause are checked whether their respective
conditional expression evaluates to a boolean type. If not, the message “Expected
type is: boolean. Actual type is: [DATA TYPE].” is displayed at the invalid
expressions. Other than that, no other validation checks are performed directly
on an if-statement, however, each statement contained within an if-statement
is checked against its own applicable rules.

5.8.5. loop and exit Statements

A repetition of a block of statements can be achieved by means of recursion or
by using the loop-statement, which in its basic form represents an infinite loop.
Both return- and exit-statements can be used in order to exit a loop. In the
first case the containing operation is terminated, in the second case only the
immediate containing loop. An if-statement has to be used in order to check the
termination condition, if an endless loop is not required. An example is shown
in listing 87. Any type of loops can be simulated with these constructs.

172

1 LoopStatement: ’loop’ Block ’endloop’;

2

3 ExitStatement: ’exit’;

Listing 86: Grammar rule for loop- and exit-statements.

1 loop

2 IO.writeString("Type the charachter \"N\" to exit the loop: ")

3 if (IO.readString() = "N") then

4 exit

5 endif

6 endloop

Listing 87: An example of a loop terminated by an exit-statement.

No validation checks are performed directly on a loop-statement, however,
each statement contained within a loop-statement is checked against its own
applicable rules. The exit-statement must be used in the context of a loop-
statement, i.e. it may be contained in several nested if-statements, however,
at some point one of the if-statements must be a part of a block of a loop-
statement. If this is not the case, following error message will appear: “An
exit-statement must be included in the context of a loop-statement, e.g. loop
if CONDITION then exit endif STATEMENTS endloop.” It should be noted,
that while an exit-statement must be used within a loop-statement, not every
loop-statement is required to have an exit-statement.

5.8.6. let Statement

The purpose of the let-statement is to check whether a specific value is an
instance of a certain type, i.e. if the dynamic type of the value is compatible to
the type specified in the head of the let-statement. Therefore, it is meant to be
used in the context of object-oriented programming when working with values
with different dynamic types within the same type hierarchy.

1 LetStatement:

2 ’let’ VariableDeclaration ’be’ Expression ’do’ Block

3 (’elselet’ VariableDeclaration ’be’ Expression ’do’ Block)*

4 (’else’ Block)?

5 ’endlet’;

Listing 88: Grammar rule for let-statements.

This statement accepts a value as a parameter (can be any expression) and
declares a variable. The type of the expression must be a reflexive or transitive
subtype of the type of the declared variable. Both types must be reference types.
If the type of the value is compatible to the type of the variable, the value is
assigned to the variable and the block of the statement is executed. The declared
variable acts as an alias inside of the corresponding block of the statement.

173

The statement allows to define additional elselet-clauses which function the
same way, but are checked only if the preceding cases in the whole let-statement
were not executed. Similar to the if-statement, a let-statement offers an op-
tional else clause, which is executed if all previous clauses were not.

Figure 17: Class diagram for the recursive list example in listing 89.

1 main

2 variable lst : List<Transport>

3 variable f1 : reference<Wheeled>

4 f1 := reference Wheeled{}

5 variable f2 : reference<Airplane>

6 f2 := reference Airplane{}

7 variable f3 : reference<Car>

8 f3 := reference Car{}

9 lst.append(f1) lst.append(f2) lst.append(f3)

10 lst.print() IO.writeLine()

11

12 variable i : integer

13 loop

14 if lst.get(i) = null then

15 exit

16 endif

17 let variable ff : reference<Airplane> be lst.get(i) do

18 ff@.fly()

19 elselet variable ff : reference<Wheeled> be lst.get(i) do

20 ff@.drive()

21 elselet variable ff : reference<Car> be lst.get(i) do

22 ff@.drive()

23 endlet

24 i := i + 1

25 endloop

26 endmain

Listing 89: An example demonstrating the use of let-statements.

174

Listing 89 shows an example of a let-statement. This is only a short outtake
of a larger object-oriented program, whose type structure is summarized in the
class diagram in figure 17. In this example we have a list of transports stored
as references to actual objects. The used list type is not the built-in mule list
type, but a custom one created for this example. In the let-statement we check
the type of each value in the list. For example, if the value has the data type
reference<Airplance> the value is passed to the variable ff, which is then
dereferenced and the operation fly() is invoked. The loop iterates over the list
and executes the let-statement for each value in the list. The let-statement
checks the dynamic type of the value and executes the operation specific to that
type. Since Car is a subtype of Wheeled, the elselet-clause reserved to the type
reference<Car> can actually never be visited in this example. However, due to
the dynamic binding of operations when using reference types, the program will
execute the correct operation drive depending on the dynamic type of the value
referenced by the variable ff. The output of the program is:

[Wheeled [Airplane [Car]]]

driving

flying

car is driving

Validation Checks

All statements inside of a let-statement are checked against their respective
rules. Following error messages can be triggered directly in the context of a
let-statement:

� An element with such name already exists. Use a different name for this
element.

� The type of this variable must be a reference type.

� The type of this expression must be a reference type.

5.8.7. return Statement

A return-statement is required to return a value from a function or to terminate
a procedure prior to its usual completion. The statement is initiated by the
keyword return which may be followed by an expression. Each control flow
path of operations with return types must end with a return statement with an
expression, which is evaluated to a value whose type must be compatible to the
return type of the operation. Operations without a return type may have empty
return statements, which will terminate the operation.

175

1 ReturnStatement: ’return’ (Expression)?;

Listing 90: Grammar rule for the return-statement.

Validation Checks

Following error messages can be triggered in the context of a return-statement:

� Expected type is: [DATA TYPE]. Actual type is: [DATA TYPE].

� An empty return statement is not allowed in an operation with a return
type.

� A non-empty return statement is not allowed in an operation without a
return type

5.9. Operations and their Parameters

MuLE offers both named and anonymous operations, the former can be invoked
or passed to a data container directly by their identifier while the latter are
represented by lambda expressions, which must first be passed to a data container
before they can be invoked.
Operations may have a return type, in this case at least one return-statement

(see section 5.8.7) is expected to be included in the operation body. Operations
without a return type may include empty return statements which will simply
terminate the operation at a specified place. Finally, to be able to handle oper-
ations as data, every operation has an operation type (see section 5.5.11), which
should not be confused with the return type. An operation type stores informa-
tion about the operation parameter profile as well as its return type.
As previously mentioned, an operation can be passed to a data container with

a compatible type. In this case, the operation is simply referenced by its identifier
without specifying the operation parameters. The data container must have an
operation type stated in its declaration. The types specified in the parameter
profile of the passed operation must be compatible to those defined in the opera-
tion type of the data container. Same applies to the return type. Actively passing
parameters to an operation referred by its identifier results in an invocation of
that operation (see section 5.8.3), i.e. the operation will be executed.

5.9.1. Operation Parameters

An operation parameter is a data container meant to pass data to an operation
from outer context. Operations contained within compositions can work with the
corresponding attributes, i.e. they can provide meaningful functionality without
parameters. Named operations in compilation units as well as anonymous op-
erations (which cannot access data containers from outer context) require value

176

parameters to perform any meaningful computations, unless they are meant to
return or print constant values. Each operation may have an arbitrary number
of parameters.

1 Parameter: ’parameter’ ID ’:’ DataType;

Listing 91: Rule for operation parameters.

Figure 18: State of the memory during the execution of the program in listing 92.

1 program ParameterValues

2 import IO

3

4 operation foo(parameter a : integer, parameter b : reference<integer>,

5 parameter c : list<reference<integer>>)

6 a := -1

7 b@ := -2

8 c[0]@ := -3

9 endoperation

10

11 main

12 variable x : integer

13 variable y : reference<integer>

14 variable z : list<reference<integer>>

15 x := 1

16 y := reference 2

17 z := [reference 3]

18 foo(x, y, z)

19 endmain

Listing 92: Value copying semantics to operation parameters in the context of
operation invocation.

177

The value of an operation parameter is assigned when the operation is invoked.
MuLE offers only pass-by-value semantics, meaning that parameter values are
always copied when they are passed to an operation. In this case the passed
reference is copied while still pointing to the same data object in memory after
being passed to an operation.
Listing 92 and figure 18 show an example of value passing semantics. As we

see, the parameters a, b and c are initialized with the values of variables x, y
and z respectively. The referenced values are not copied, so even though the list
and the reference contained within are copied when passed to the parameter c.
Manipulating the referenced values in the operation foo will cause side effects
outside of the operation. In named operations the parameter can be assigned a
new value inside of the operation, in anonymous operations this is forbidden.

5.9.2. Named Operations

Named operations can be defined directly in a compilation unit (section 5.4)
or in a composition (section 5.5.8). Following subsections will specify rules for
using operations in the context of their respective container based on the used
programming paradigm as well as provide various examples.

1 Operation:

2 (’override’)? VisibilityModifier? (’abstract’)? ’operation’ ID

3 ’(’ (Parameter (’,’ Parameter)*)? ’)’ (’:’ DataType)?

4 (Block ’endoperation’)?;

Listing 93: Rule for named operations.

Named Operations in Procedural Programming

The visibility of library operations can be restricted by the visibility modifier
private, such operations can only be accessed within the same library com-
pilation unit. Listing 94 demonstrates examples of library operations. The op-
eration pi does not accept any parameters and returns a constant value. The
operation pow invokes the operation powHelper with its own parameters as well
as an additional parameter required for the internal computation. The private

operation powHelper can not be accessed outside of the library. All included
operations are functions.
Listing 95 demonstrates an operation which accepts one parameter and invokes

the procedure writeString from the standard library IO. Visible operations im-
ported with the library MyMath (listing 94) are invoked in the main procedure of
the program. Library operations are referred by their qualified names. Opera-
tions declared within program units can not be assigned a visibility modifier.

178

The output of the program is:

Hello, world!

3.14

8

1 library MyMath

2

3 operation pi() : rational

4 return 3.14

5 endoperation

6

7 operation pow(parameter n : integer, parameter e : integer) : integer

8 return powHelper(n, e, 0)

9 endoperation

10

11 private operation powHelper(parameter n : integer,

12 parameter e : integer,

13 parameter counter : integer) : integer

14 if counter = e then

15 return 1

16 else

17 return n * powHelper(n, e, counter + 1)

18 endif

19 endoperation

Listing 94: Examples of named operations in a library.

1 program OperationsProcedural

2 import IO

3 import MyMath

4

5 operation sayHello(parameter str : string)

6 IO.writeString("Hello, " & str & "!\n")

7 endoperation

8

9 main

10 sayHello("world")

11 IO.writeRational(MyMath.pi())

12 IO.writeLine()

13 IO.writeInteger(MyMath.pow(2, 3))

14 endmain

Listing 95: Examples of named operations in a procedural program.

179

Named Operations in Object-Oriented Programming

The visibility of operations in compositions can be restricted by visibility mod-
ifiers private and protected. Operations declared as private can only be
accessed within the same composition. Operations with the modifier protected
are visible within the containing composition and its subtypes. If an operation
has the same name and same parameter profile as an existing operation in a super
type in the same inheritance hierarchy, the redefining operation must be marked
with the keyword override. An operation contained in an abstract composition
can be marked as abstract, meaning that it must not have an operation body
and must be overridden in one of the inheriting subtypes. When using reference
types, operations are bound dynamically, i.e. it depends on the dynamic type of
the referenced object on the heap which operation is executed at runtime.
The example in listing 96 demonstrates operations used in object-oriented con-

text, i.e. declared as member operations of compositions. We have three type
declarations:

� An abstract composition Vector which only specifies two abstract opera-
tions printData and length, the latter operation is additionally marked
as protected.

� A composition Vector2D, which extends Vector and contains protected
attributes x and y. Both inherited operations are overridden, otherwise the
program would not compile since Vector2D is not abstract.

� A composition Vector3D, which extends Vector2D and contains an addi-
tional protected attribute z. Again, both inherited operations are overrid-
den in order to take the additional coordinate into account. Since the inher-
ited abstract operations from Vector were already overridden in Vector2D,
it is not necessary to override them in Vector3D to compile the program.

The operation printData is the only accessible member outside of this type
hierarchy, all other members are protected. Both vector variables are declared
as references to the abstract Vector and typed as either Vector2D or Vector3D.

The output of the program is:

Vector:

length: 3.605551275463989

x: 2.0

y: 3.0

Vector:

length: 3.7416573867739413

x: 2.0

y: 3.0

z: 1.0

180

1 program OperationsOO

2 import IO

3 import Strings

4

5 abstract type Vector : composition

6 abstract operation printData()

7 protected abstract operation length() : rational

8 endtype

9

10 type Vector2D : composition extends Vector

11 protected attribute x : rational

12 protected attribute y : rational

13

14 override operation printData()

15 IO.writeString("Vector:\n")

16 IO.writeString("\tlength: " & Strings.rationalToString(length()) & "\n")

17 IO.writeString("\tx: " & Strings.rationalToString(x) & "\n")

18 IO.writeString("\ty: " & Strings.rationalToString(y) & "\n")

19 endoperation

20

21 protected override operation length() : rational

22 return (x exp 2 + y exp 2) exp 0.5

23 endoperation

24 endtype

25

26 type Vector3D : composition extends Vector2D

27 protected attribute z : rational

28

29 override operation printData()

30 super.printData()

31 IO.writeString("\tz: " & Strings.rationalToString(z) & "\n")

32 endoperation

33

34 protected override operation length() : rational

35 return (x exp 2 + y exp 2 + z exp 2) exp 0.5

36 endoperation

37 endtype

38

39 main

40 variable v2d : reference<Vector>

41 variable v3d : reference<Vector>

42 v2d := reference Vector2D{x = 2, y = 3}

43 v3d := reference Vector3D{x = 2, y = 3, z = 1}

44 v2d@.printData()

45 v3d@.printData()

46 endmain

Listing 96: Examples of named operations in an object-oriented program.

181

Named Operations in Functional Programming

Semantically, both named and anonymous operations are very similar, both types
of operations can and need to be used in the context of functional programming.

1 program OperationsFun

2 import IO

3

4 operation foo(parameter x : integer, parameter y : integer) : integer

5 return x + y

6 endoperation

7

8 operation bar(parameter x : integer,

9 parameter f : operation(integer, integer) : integer) : integer

10 return f(x, x)

11 endoperation

12

13 operation baz() : operation(integer, integer) : integer

14 return foo

15 endoperation

16

17 main

18 IO.writeInteger(bar(2, foo))

19 IO.writeString(", ")

20 IO.writeInteger(bar(2, baz()))

21 endmain

Listing 97: Examples of named operations in a program written in a rather functional
style.

Listing 97 demonstrates higher-order named operations bar and baz as well as
a first-order operation foo. The operation bar accepts another operation as a
parameter, maps it under the identifier f, and finally, invokes the passed function
by its new name in order to return the expected integer value. The operation baz,
on the other hand, simply returns another operation which is again the named
operation foo.
In the main procedure, we invoke the operation bar twice, first by passing the

named operation foo directly and then by invoking the operation baz which ulti-
mately returns foo. In both cases the operation foo is executed in the operation
bar. The produced output is: 4, 4.

5.9.3. Anonymous Operations

Anonymous operations are represented by lambda expressions making them the
integral language construct of functional programming. They lack an identifier,

182

in order to be invoked they must be referenced by another applicable named
element first, e.g. a data container or as a returned value of another operation.
It is not allowed to access data containers declared outside of lambda expressions,
since they can be passed to another context where these data containers might be
missing. For example, if we declare an integer variable and a lambda expression
in the context of a main procedure, allow the lambda expression to access the
variable and then pass the lambda expression to another operation where this
variable does not exist, the lambda expression would try to access a non-existing
variable.

1 LambdaExpression:

2 ’operation’ ’(’ (Parameter (’,’ Parameter)*)? ’)’ (’:’ DataType)?

3 Block ’endoperation’;

Listing 98: Rule for anonymous operations represented by lambda expressions.

Listing 99 contains examples of anonymous operations. All demonstrated
lambda expressions are functions, however, procedures are possible as well. For
the sake of simplicity, we will refer to these operations by the names of their
respective variables. Operations mult and sum are both first-order functions.
The operation provider is a higher-order function which returns other opera-

tions depending on the value of the passed parameter. The returned operations
are basically the same lambda expressions we have already stored in the variables
mult and sum, however, we cannot simply return these variables since it is not
allowed to refer to variables declared outside of the lambda expression.
Finally, we have the higher order functions f1 and f2. The former function

accepts and integer and another function, which is applied to the integer param-
eter and the produced value is then returned by f1. The latter function accepts
an integer value as well as two other functions, which are both applied to the
integer parameter and the sum of their results is then returned. The functions
f1 and f2 are invoked with the functions mult and sum directly as well as with
those returned by the function provider.

The output of the program is:

f1(3, mult) = 9

f1(3, sum) = 6

f2(sum, mult, 3) = 15

f2(provider("+"), provider("*"), 3) = 15

183

1 program AnonymousOperations

2 import IO

3

4 main

5 variable mult : operation(integer) : integer

6 mult := operation(parameter x : integer) : integer

7 return x * x

8 endoperation

9

10 variable sum : operation(integer) : integer

11 sum := operation(parameter x : integer) : integer

12 return x + x

13 endoperation

14

15 variable provider : operation(string) : operation(integer) : integer

16 provider := operation(parameter symbol : string)

17 : operation(integer) : integer

18 if symbol = "+" then

19 return operation(parameter x : integer) : integer

20 return x + x

21 endoperation

22 else

23 return operation(parameter x : integer) : integer

24 return x * x

25 endoperation

26 endif

27 endoperation

28

29 variable f1 : operation(integer, operation(integer) : integer) : integer

30 f1 := operation(parameter x : integer,

31 parameter g : operation(integer) : integer) : integer

32 return g(x)

33 endoperation

34

35 variable f2 : operation(operation(integer) : integer,

36 operation(integer) : integer, integer) : integer

37 f2 := operation(parameter g1 : operation(integer) : integer,

38 parameter g2 : operation(integer) : integer,

39 parameter x : integer) : integer

40 return g1(x) + g2(x)

41 endoperation

42

43 IO.writeString("\nf1(3, mult) = ") IO.writeInteger(f1(3, mult))

44 IO.writeString("\nf1(3, sum) = ") IO.writeInteger(f1(3, sum))

45 IO.writeString("\nf2(sum, mult, 3)) = ") IO.writeInteger(f2(sum, mult, 3))

46 IO.writeString("\nf2(provider(\"+\"), provider(\"*\"), 3) = ")

47 IO.writeInteger(f2(provider("+"), provider("*"), 3))

48 endmain

Listing 99: Examples of anonymous operations.

184

5.9.4. Returning References to Local Values

In section 3.2.1 we have shown an example of the dangling pointer issue in C, the
same source code is presented on the left side in figure 19. As a reminder, the
function foo returns the address of a locally allocated variable which is deallo-
cated as soon as the function is terminated. The attempt to store the result of
foo in a pointer variable dp and to print the stored value in the main procedure
will fail.
Right side of figure 19 contains a comparable MuLE program. The operation

foo returns a reference to a value stored in a local variable, however this time the
local value is copied and stored in the memory when the expression in the return-
statement is evaluated. Therefore, the returned reference can be successfully
dereferenced in the main procedure to access the stored value, meaning that the
issue of the dangling references is not present in MuLE.

1 #include <stdio.h>

2

3

4 int *foo() {

5 int a = 42;

6 return &a;

7 }

8

9

10 int main(void) {

11 int *dp = foo();

12 printf("%d", *dp);

13 return 0;

14 }

1 program ReturningReferences

2 import IO

3

4 operation foo() : reference<integer>

5 variable a : integer

6 a := 42

7 return reference a

8 endoperation

9

10 main

11 variable intRef : reference<integer>

12 intRef := foo()

13 IO.writeInteger(intRef@)

14 endmain

Figure 19: Example of a dangling reference in C and a comparative MuLE program.

5.9.5. Validation Checks in the Context of Operations

Each statement in the body of an operation is checked against its own rules. For
error messaged displayed in context of an operation invocation see section 5.8.3.
Following error messages can be triggered in the context of an operation:

� Use of this name is not allowed. You are attempting to use a reserved word
as an identifier.

� An element with such name already exists. Use a different name for this
element.

� An operation with a return type must have a return statement.

185

� An operation can not be abstract and override at the same time.

� Declaration of abstract operations is not allowed in non abstract types.

� Declaration of abstract operations is not allowed in compilation units.

� An abstract operation must not have an operation body.

� A non-abstract operation must have an operation body.

� This operation does not override any inherited operation. The override
keyword is not allowed in this case.

� This operation overrides an inherited operation with the same name. Please
use the override keyword.

� An overriding operation must have the same visibility as the overridden
operation.

� The super type has an operation with the same name but with a different
parameter profile. Both operations must have either different names or the
same parameter profile.

� The overriding operation must have the same return type as the overridden
operation.

� An operation declared in a compilation unit must not be marked with the
modifier override.

� Unreachable code.

5.10. Main Procedure

The main procedure is a special operation which acts as an entry point into any
MuLE program, which is why every program unit must include a main procedure
and libraries are not allowed to. Unlike operations, the main procedure does not
accept any parameters, nor does it return a value. Still, it may include empty
return statements.

1 MainProcedure: ’main’ Block ’endmain’;

Listing 100: Grammar rule for the main procedure.

Listing 101 shows a simple example of a main procedure, which contains a
variable declaration and a loop-statement. The procedure is terminated when
the variable reaches the value 5. The output of the program is: 1, 2, 3, 4, 5.

186

1 program MainProcedureExample

2 import IO

3

4 main

5 variable x : integer

6 loop

7 x := x + 1

8 IO.writeInteger(x)

9 if x = 5 then

10 IO.writeString(".")

11 return

12 endif

13 IO.writeString(", ")

14 endloop

15 endmain

Listing 101: Examples of a main procedure.

Each statement inside of a main procedure is checked against its own rules.
The absence of a main procedure in a program unit or its presence in a library

unit are reported by the respective errors in the context of the compilation unit.
Statements that can not be executed due to early termination of the main pro-
cedure with a return statement are marked as “Unreachable code”.

5.11. Conclusion

In this chapter we have covered the detailed specification of our language based
on the design decisions presented in the previous chapter. We have covered
the scoping rules, explained the type system as well as all supported language
constructs. For each construct we have shown the grammar rules, the validation
rules which are defined by the type system, visibility rules as well as further
constraints, and finally, programming examples which demonstrate how these
constructs can be used. Next chapter will cover the standard libraries distributed
with MuLE.

187

6. Libraries

The range of functionality provided by the grammar of the language, i.e. by its
built-in types, operators and keywords, is rather limited by design. The grammar
offers a minimal set of commonly used types and operators. More specific op-
erations are reserved to various standard libraries, each containing thematically
consistent type declarations and operations. The most basic example is the IO

library which provides input and output operations allowing to print and read
values to or from the console or files. Other libraries may include mathematical
operations not covered by the operators, operations reserved to specific types
or educational libraries. Another convenient aspect of libraries, in addition to
reducing the number of required operators and keywords, is that it is far easier
to edit existing libraries or add new ones compared to changing the grammar of
the language.
MuLE comes with a set of standard libraries which offer additional functional-

ity and must be explicitly imported just as any user defined library. The currently
included libraries are the aforementioned IO, which provides basic input/output
functionality, Mathematics with additional mathematical functions, Strings and
Lists, both of them containing operations reserved for these specific types, the
educational libraries Turtle and UBTMicroworld which provide an environment
to learn programming while drawing shapes or navigating an agent through a
maze, and finally GUIFactory, a simple library which allows to implement graph-
ical user interfaces. Following sections offer an overview over the included stan-
dard libraries as well as examples of their uses, the APIs of these libraries are
specified in the appendix of this thesis.

6.1. IO

The standard library for input/output operations. The specification of the API
is provided in appendix C. It includes operations which print or read values of
basic types on or from the console, create a line break as well as create files and
read from them. Students are immediately confronted with this library when
implementing their first “Hello, world!” program. Due to frequent use, the
instruction import IO is included by default in newly created MuLE files.
Operations tasked with reading values of basic types from the console follow the

following rules: the initial white spaces are ignored, i.e. if the user enters a line
break first, the system will still wait for user input, however the next white space
character after a character sequence will terminate the sequence evaluation, i.e.
the sequences Hello world!, true false, or 42 15 will be evaluated as Hello,
true and 42 respectively. If the evaluated character sequence cannot be parsed
as a legitimate value of the expected return type, a default value is returned
instead, for example if readInteger() was called and the user entered hello,
the result will be 0.

188

1 program InputOutputExamples

2 import IO

3 main

4 IO.writeString("Enter a string: ")

5 IO.writeString(IO.readString()) IO.writeLine()

6 IO.writeString("Enter a boolean: ")

7 IO.writeBoolean(IO.readBoolean()) IO.writeLine()

8 IO.writeString("Enter an integer: ")

9 IO.writeInteger(IO.readInteger()) IO.writeLine()

10 IO.writeString("Enter a rational: ")

11 IO.writeRational(IO.readRational()) IO.writeLine()

12 endmain

Listing 102: Examples of usage of IO library operations to read and write values of
basic types.

Our first example of IO operations is demonstrated in listing 102. The contents
of the console with both user input (green) and program output (black) are as
follows:

Enter a string: Hello, world!

Hello,

Enter a boolean: true

true

Enter an integer: hello

0

Enter a rational: 42

42.0

The entered string is Hello, world!, however only Hello, is printed since the
entered character sequence is evaluated up until the next white space. Further-
more, we have entered a hello when we were prompted to enter an integer value
and since this sequence cannot be parsed as an integer, the printed result is 0.
Finally, we have entered the integer 42 when the program asked us to enter a
rational value, which was promptly converted into a 42.0 and printed on the
console.
Our next example in listing 103 shows how this library can be used to read

and write contents of files. A file can be identified either by its absolute or by
its relative path. The absolute path contains all the details needed to locate
a file starting with the drive name. If one of the folders on the path does not
exist, the file cannot be located. The relative path is, as the name suggests,
relative to a specific location, in our case the project folder where our current
program file is located. If we simply enter the file name test.txt as the path,
the program will look for it in the root project folder, however if the entered path
is files\\test.txt, the program will attempt to locate the folder files in the
root folder of the project first and then, assuming that the folder does exist, look
for the file there. If we want to read from a file and it does not exist, we either get

189

a string "file not found" or a list ["file not found"], depending on which
operation we have executed. If we want to write to a file and it does not exist, it
will be created as long as all the folders on the path do exist. If the file already
exists, its contents will be overwritten, therefore the user may want to check if
this is the case by invoking the operation fileExists first.

1 program InputOutputExamples2

2 import IO

3 import Strings

4 main

5 variable path : string

6 path := "test.txt"

7 IO.writeString(IO.readFile(path)) IO.writeLine()

8 if IO.fileExists(path) then

9 IO.writeFile(path, IO.readFile(path) & "\n" & "world")

10 else

11 IO.writeFile(path, "hello")

12 endif

13 IO.writeString(Strings.genericToString(IO.readFileLines(path)))

14 endmain

Listing 103: Examples of usage of IO library operations to read and write contents of
files.

We are using relative paths in the example in listing 103, meaning that the
files will be located in the root folder of the project. Assuming that we execute
the program for the first time after we have created the project, the required files
do not yet exist, which means that the attempt to read from the file and print
its contents in line 7 will fail, hence the printed file not found in the initial
output of the program:

file not found

File path: C:\Users\UserName\WorkspaceFolder\ProjectFolder\test.txt

[hello]

The file is created when we invoke the operation writeFile and its path is
printed on the console to help users locate the file more easily. We check explic-
itly if the file exists in the if-statement. If this is not the case yet, we invoke
writeFile with the content "hello", otherwise we add "world" to the existing
content. Finally, we read the file with the operation readFileLines which re-
turns us the list of lines in the file, which we then print on the console. For each
subsequent execution of the program, an additional line containing "world" is
added to the file. The output of the program after three runs including the initial
execution is:

hello

world

File path: C:\Users\UserName\WorkspaceFolder\ProjectFolder\test.txt

[hello, world, world]

190

6.2. Mathematics

This library includes a range of mathematical functions that are not already
covered by operators. Additionally, it contains functions which provide pseu-
dorandom numbers, approximations of mathematical constants as well as the
minimal and maximal supported values of numerical types. The specification of
the API is provided in appendix D.
It should be noted, that due to the limitations of the representation of float-

ing point numbers [103], the resulting values may differ slightly from the ideal
mathematical value. This behaviour is demonstrated in the example in listing
104, where we first convert the angle of 45° to radians, apply the sine func-
tion, then apply the arc sine function and convert the result back to degrees.
The produced result should be 45 again, the output of the program is however
44.99999999999999 which is a result of rounding errors and approximations in
the floating point arithmetic.

1 program MathematicsExample

2 import IO

3 import Mathematics

4

5 main

6 IO.writeRational(

7 Mathematics.toDegrees(

8 Mathematics.asin(

9 Mathematics.sin(

10 Mathematics.toRadians(45)))))

11 endmain

Listing 104: Examples of Mathematics trigonometric library operations.

Listing 105 demonstrates the use of operations which generate pseudorandom
integer and rational numbers. We have two lists which are initially filled with four
zeroes each and are meant to be filled with the number of the generated numbers
in range [0 .. 3] in case of integers and in steps of 0.25 in case of rational numbers.
In the latter case, the list is filled with the number of occurrences of the generated
numbers. The loop is executed 4000000 times, meaning that the expected ideal
result in both cases would be [1000000, 1000000, 1000000, 1000000]. The
actual output in one of the runs is:

lst1: [999963, 1000886, 1000559, 998592]

lst2: [1000469, 999406, 999542, 1000583]

The actual result is close to the expected result, which is good enough for the tasks
in which students have to rely on random number generators in the introductory
courses.

191

1 program MathematicsExample2

2 import IO

3 import Mathematics

4 import Strings

5 main

6 variable count : integer

7 variable lst1 : list<integer>

8 lst1 := [4 ** 0]

9 variable lst2 : list<integer>

10 lst2 := [4 ** 0]

11 loop

12 variable rndInt : integer

13 rndInt := Mathematics.randomInteger(0, 3)

14 lst1[rndInt] := lst1[rndInt] + 1

15 variable rndRat : rational

16 rndRat := Mathematics.randomRational()

17 if rndRat < 0.25 then

18 lst2[0] := lst2[0] + 1

19 elseif rndRat < 0.50 then

20 lst2[1] := lst2[1] + 1

21 elseif rndRat < 0.75 then

22 lst2[2] := lst2[2] + 1

23 else

24 lst2[3] := lst2[3] + 1

25 endif

26 count := count + 1

27 if count >= 4000000 then

28 exit

29 endif

30 endloop

31 IO.writeString(Strings.genericToString(lst1) & "\n")

32 IO.writeString(Strings.genericToString(lst2) & "\n")

33 endmain

Listing 105: Examples of Mathematics random number generator library operations.

6.3. Strings

This library includes a range of functions meant to work with string values, e.g.
provide a substring, the number of characters in a string, replace the first or
all occurrences of a substring with another, split a string into a list of strings at
specific substrings, convert alphabetical characters to upper or lower case, as well
as convert values of other types to string values. The first character in a string
value has the index 0. The specification of the API is provided in appendix E.

The first example in listing 106 demonstrates how values of other types can
be converted to string values. This example is actually a shortened version of

192

an early assignment, which has to be solved by the students in our preliminary
programming course where MuLE is used as the programming language (more in
chapter 9). The students have to implement a simple user interaction scenario,
where the user is prompted to enter his or her age as an integer. They also have
to compute the year of birth depending on the current year and the age again as
an integer and use string concatenation to print the answer in a single instruction.
Since string concatenation requires string values on both sides, students have to
convert the year of birth to a string value first. The contents of the console with
both user input (green) and program output (black) are as follows:

Please enter your age: 31

So, you were born in 1990

1 program UserInteraction

2 import IO

3 import Strings

4

5 main

6 IO.writeString("Please enter your age: ")

7 IO.writeString("So, you were born in "

8 & Strings.integerToString(2021 - IO.readInteger()) & ".")

9 endmain

Listing 106: Converting integer values to strings using the Strings library.

Similarly to our first example, the second example in listing 107 is one of the
assignments in our preliminary programming course, albeit one of the last ones
with recursion being the main topic. Students have to implement a recursive
algorithm, which decides whether a string is a palindrome, i.e. it reads the same
forward or backward, or not. The approach is to compare characters on the left
and right edge of the string, if they are not equal, the string is not a palindrome.
If they are, the remainder of the string must be checked if it is a palindrome. If
the string consists of only one or zero characters, it is definitely a palindrome,
which also serves as the termination condition. Students have to use the Strings
operations subString to get the characters at the edges as well as the substring
without those characters, and the legthOf operation in order to compute the
position of the last character.
The output of the program is:

true

true

false

false

193

1 program Palindromes

2 import Strings

3 import IO

4

5 operation isPalindrome(parameter str : string) : boolean

6 if Strings.lengthOf(str) <= 1 then

7 return true

8 else

9 variable s1 : string

10 variable s2 : string

11 s1 := Strings.subString(str, 0, 0)

12 s2 := Strings.subString(str,

13 Strings.lengthOf(str) - 1, Strings.lengthOf(str) - 1)

14 if s1 /= s2 then

15 return false

16 else

17 variable newStr : string

18 newStr := Strings.subString(str, 1, Strings.lengthOf(str) - 2)

19 return isPalindrome(newStr)

20 endif

21 endif

22 endoperation

23

24 main

25 IO.writeBoolean(isPalindrome("abba")) IO.writeLine()

26 IO.writeBoolean(isPalindrome("abcba")) IO.writeLine()

27 IO.writeBoolean(isPalindrome("abc")) IO.writeLine()

28 IO.writeBoolean(isPalindrome("abca")) IO.writeLine()

29 endmain

Listing 107: Examples of Strings library operations lengthOf and subString.

6.4. Lists

This library includes functions designed to work with the built-in list type, such
as checking if the list is empty, adding or removing new entries, returning specific
entries or sublists, filtering, iterating, checking whether an entry is contained in
the list or returning the index of an entry (if available). The index of the first
entry in the list is 0. The specification of the API is provided in appendix F.
When adding or removing entries, the original list, which is passed as a param-

eter to the corresponding functions, is not changed and an altered copy of the
original list is returned instead. This behaviour is demonstrated in listing 108,
where we declare a variable lst as a list of integers and initialize it as [1, 2,

3]. When we simply invoke the append operation, which adds an element at the
end of the list, the printed result is [1, 2, 3, 4]. However, when we print the
value of lst, we notice that it has not changed. Its state is changed only after

194

we repeat the invocation of append and explicitly assign the resulting list to lst.
The output of the program is:

[1, 2, 3, 4]

[1, 2, 3]

[1, 2, 3, 4]

1 program ListsExample1

2 import IO

3 import Strings

4 import Lists

5

6 main

7 variable lst : list<integer>

8 lst := [1, 2, 3]

9 IO.writeString(Strings.genericToString(Lists.append(lst, 4)))

10 IO.writeLine()

11 IO.writeString(Strings.genericToString(lst))

12 lst := Lists.append(lst, 4)

13 IO.writeLine()

14 IO.writeString(Strings.genericToString(lst))

15 endmain

Listing 108: Examples of Lists library operations forEach and filter.

1 program ListsExample2

2 import IO

3 import Lists

4

5 main

6 Lists.forEach(

7 Lists.filter(

8 [1, 2, 3, 4],

9 operation(parameter entry : integer) : boolean

10 if entry mod 2 = 0 then

11 return true

12 else

13 return false

14 endif

15 endoperation

16),

17 operation(parameter entry : integer)

18 IO.writeInteger(entry) IO.writeString(" ")

19 endoperation

20)

21 endmain

Listing 109: Examples of Lists library operations forEach and filter.

195

An example of how we can use the operations forEach and filter are demon-
strated in listing 109. In this example, we filter the list [1, 2, 3, 4] first by
applying an operation which returns true for each even integer in the list, mean-
ing that the resulting filtered list is [2, 4]. Then we use the forEach procedure
to apply another procedure on the filtered list, which prints each entry of the list
followed by a white space. The output of the program is: 2 4 .

6.5. Turtle

MuLE includes an implementation2 of the Turtle library, which has been success-
fully used in programming education over decades [75]. The library is designed
to be used in procedural way without relying on object-oriented programming.
As soon as at least one invocation of a Turtle operation is included in the source
code, the Turtle window will open when the program is executed. The upper
left corner of the canvas has the coordinates (0, 0), the standard canvas size is
600x400 pixels, the pen is initially placed at (300, 200) pixels. Users can resize
the canvas and turn the coordinates grid on and off. The specification of the API
is provided in appendix G.

Figure 20: Result of the program in listing 110.

Listing 110 shows an example program using the Turtle library to draw filled
polygons displayed in figure 20. This program is another assignment students
have to solve in our preliminary programming course (see chapter 9.1). The
operation draw contains the logic of drawing a polygon with the given number
of edges (n), their length (l) and the fill colour. The operation move moves the
cursor to the next position where the next shape has to be drawn, the move

2The Java implementation of this library was provided by Stefan Schill as a part of his Master
of Science project [104] at the University of Bayreuth and subsequently included in MuLE.

196

direction depends on the orientation of the pen in this example. First, we set
up our Turtle window by turning the coordinate grid on, setting the size of the
canvas, the thickness of the drawn lines, etc. Then, we draw our three shapes
with the help of the operation draw and move the cursor to the next position with
the operation move. Finally, we hide the cursor after we have finished drawing.

1 program TurtleExample

2 import Turtle

3

4 operation draw(parameter n : integer,

5 parameter l : integer, parameter color : Turtle.Colors)

6 Turtle.startFilledPolygon(color)

7 variable count : integer

8 loop

9 if count >= n then

10 exit

11 endif

12 Turtle.forward(l)

13 Turtle.left(360.0 / n)

14 count := count + 1

15 endloop

16 Turtle.endFilledPolygon()

17 endoperation

18

19 operation move(parameter a : integer)

20 Turtle.penUp()

21 Turtle.forward(a)

22 Turtle.penDown()

23 endoperation

24

25 main

26 Turtle.showCoordinateSystem(true)

27 Turtle.setFrameSize(300, 200)

28 Turtle.setPosition(50, 150)

29 Turtle.setOrientation(Turtle.Orientation.EAST)

30 Turtle.setThickness(2)

31 draw(4, 60, Turtle.Colors.RED)

32 move(65)

33 draw(3, 45, Turtle.Colors.GREEN)

34 move(50)

35 draw(6, 45, Turtle.Colors.BLUE)

36 Turtle.showCursor(false)

37 endmain

Listing 110: Example program using the Turtle library to draw simple polygons, the
result is shown in figure 20.

When drawing polygons, a line is drawn between the current position of the
pen and the initial position when this operation was invoked, filling the space

197

between the edges of the polygon with the given colour, figure 21 shows a square
polygon in the process of drawing. The operation endFilledPolygon must be
invoked at some point to correctly terminate the process of drawing a polygon.

Figure 21: An unfinished coloured square during the drawing process. The initial po-
sition of the cursor was in the bottom-left corner of the square.

6.6. UBTMicroworld

MuLE includes a programming microworlds library3 inspired by educational pro-
gramming environments such as Scratch [67] and Karel [106]. These environ-
ments, their purpose as well as their advantages and shortcomings were dis-
cussed in section 3.2.2, thus the focus of this section will be purely on the library
UBTMicroworlds and its functionality. The specification of the API is provided
in appendix H.
The idea of this library is to offer a two dimensional environment with one or

more agents which can be navigated in this environment either by instructions
written in source code or by inputs from the keyboard. The environment is
basically a board with tiles that can be entered and those that cannot be entered,
starting tiles where agents are placed, target tiles which represent the goal of the
agents in most of the scenarios, as well as optional objects, that can be placed
on the board and must be gathered by the agents in order to achieve their goal.
An agent moving from one tile to a neighbouring tile or turning left or right or
actively doing nothing (by invoking the doNothing operation) counts as one step.
The library offers several predefined levels with predefined win conditions such

as reach the target tile or gather all objects and then reach the target tile. Fur-
thermore, users may define their own levels with their own win conditions making
room for some creativity. This library can be used to playfully introduce begin-
ner programmers to such topics like control flow, but also for the more advanced
exercises such as implementation of navigational algorithms in a two dimensional
maze. Several agents can be placed, with some of them following the programmed
algorithm while one agent can be registered to key listeners.
Users initialize the level and implement the movements of the agents in the

source code of the MuLE program. When they execute the program, a graphical

3The Java implementation of this library was provided by Marco Jantos as a part of his
Bachelor of Science thesis [105] at the University of Bayreuth and subsequently included in
MuLE.

198

user interface (see figure 23) displays the environment and shows the movements
of the agents as defined in the program. After the level is finished, the replay
mode is activated, wherein the user can retrace the movements for each agent.

Level Details

Each level is represented by the terrain map and optionally a map of objects, if
objects are placed in the level. Win conditions define when a level is completed.
There are three predefined win conditions which require all agents to reach a
target tile, gather all objects or both, as well as a custom win condition, which
requires the user to define the logic for successful of failed level completion on
their own.

Figure 22: Tile coordinates, tile colouration based on terrain type, object placement
and agent colours (images taken from the B.Sc. thesis [105] of Marco Jan-
tos).

Figure 22 displays information regarding the tile coordinates, terrain types,
object placement and agent colouring. The tile in the upper left corner has the
coordinates (0,0). The board size can range from 5x5 tiles up to 32x32 tiles.
Each tile has a specific terrain type, each terrain type is additionally coded by
an RGB value which can used to define custom levels by PNG images, wherein
each pixel in the image is representative of one tile, meaning that a board with
32x32 tiles is represented by an image file with 32x32 pixels. There are two
possibilities to define custom levels, either programmatically which can become
tedious when specifying larger maps, or by loading the aforementioned PNG
images with terrain types coded as RGB values, wherein each terrain type is
represented by the corresponding colour. For example, WATER is represented
by the colour blue with the RGB values (0, 0, 255), i.e. all pixels in the PNG
file with this colour will mean that the tiles with the same coordinates in the

199

map are displayed as WATER. Examples of initialising custom levels using both
approaches are given in the next subsection. The terrain types are as follows:

� WATER – inaccessible, RGB code is (0, 0, 255).

� STONE – inaccessible, RGB code is (255, 0, 255).

� GRASS – accessible, RGB code is (0, 255, 0).

� SAND – accessible, RGB code is (255, 255, 0).

� SNOW – accessible, RGB code is (0, 255, 255).

� PATH – accessible, RGB code is (255, 0, 0).

� TARGET – accessible, RGB code is (0, 0, 0), required by some win valida-
tors.

� START – accessible, RGB code is (255, 255, 255), an agent is placed at
each starting tile, i.e. the number of placed agents is equal to the number
of starting tiles.

Objects can be placed on tiles and automatically collected by the agents if they
visit the tile. Each agent tracks the number of collected objects. Some default win
validators require that all placed objects have to be collected. When initializing
a custom level via PNG images, an additional image that represents the map of
the objects can be passed. The object map must have same dimensions as the
terrain map, the objects are coded by the RGB value (0, 0, 0), any other colour
will signalize a lack of an object at the corresponding tile.
As already mentioned, an agent is placed for each starting tile facing east. The

first eleven agents have a unique colour as shown in figure 22, subsequent agents
have the colour of the eleventh one.

Examples

Figure 23 shows a screenshot of the graphical user interface after the program in
listing 111 was executed.
As we can see in the source code, the library is simply imported as any other

library. The user then needs to initialize a game level, as we see in line 5. Exe-
cuting this line alone is enough to show the interface displayed in the screenshot.
The intended procedure is to initialize a level first, execute the program to display
it, design and implement a solution and run the program again to test it.
In our example we have one agent placed initially in the upper left corner in the

tile with the coordinates (1, 1) as defined by the default level. We get a reference
to this agent from the library and implement a movement algorithm wherein our
agent makes a forward move, a right turn, moves forward again followed by a left

200

Figure 23: Example screenshot of the UBTMicroworld environment after executing the
code in listing 111.

turn, and then repeats these movements until the target tile is reached. What
we see in the screenshot in figure 23 is the replay mode, where we can trace each
movement made by the agent after the level is finished, which helps to debug the
implemented algorithm if necessary.

1 program UBTMicroworldExample1

2 import UBTMicroworld

3

4 main

5 UBTMicroworld.initDefaultGame(UBTMicroworld.DefaultLevelType.DEFAULT_LEVEL_2)

6 UBTMicroworld.setDelayTime(UBTMicroworld.DelayTime.SHORT_DELAY)

7 variable agent : reference<UBTMicroworld.Agent>

8 agent := UBTMicroworld.getAgentList()[0]

9 loop

10 agent@.moveForward()

11 agent@.rotateRight()

12 agent@.moveForward()

13 agent@.rotateLeft()

14 if UBTMicroworld.isGameRunning() = false then exit endif

15 endloop

16 endmain

Listing 111: An example of a predefined level with 23.

201

Our next example in listing 112 and figure 24 demonstrates how custom levels
can be defined by lists of terrain types with object placements and custom win
conditions. In this scenario we implement a small game where a player agent
controlled by arrow keys has to gather at least three keys and reach the target
goal while not getting caught by the enemy agent controlled by the computer.

Figure 24: Two states of the game after finishing the program in listing 112, a successful
completion on the left and the game over state on the right.

1 program UBTMicroworldExampleCustom1

2 import UBTMicroworld

3 import Mathematics

4

5 main

6 variable g : UBTMicroworld.TerrainType g := UBTMicroworld.TerrainType.GRASS

7 variable s : UBTMicroworld.TerrainType s := UBTMicroworld.TerrainType.STONE

8 variable O : UBTMicroworld.TerrainType O := UBTMicroworld.TerrainType.START

9 variable T : UBTMicroworld.TerrainType T := UBTMicroworld.TerrainType.TARGET

10 variable X : UBTMicroworld.ObjectType X := UBTMicroworld.ObjectType.KEY

11 variable _ : UBTMicroworld.ObjectType _ := UBTMicroworld.ObjectType.NO_OBJECT

12 UBTMicroworld.initCustomGame2(

13 [[O, g, g, g, g],

14 [g, s, g, s, g],

15 [g, g, g, g, T],

16 [g, s, g, s, g],

17 [O, g, g, g, g]],

18 [[_, _, X, _, X],

19 [_, _, _, _, _],

20 [X, _, X, _, _],

21 [_, _, _, _, _],

22 [_, _, X, _, X]],

23 UBTMicroworld.WinValidatorType.CUSTOM

24)

25 UBTMicroworld.setDelayTime(UBTMicroworld.DelayTime.NO_DELAY)

202

26 variable player : reference<UBTMicroworld.Agent>

27 player := UBTMicroworld.getAgentList()[0]

28 variable enemy : reference<UBTMicroworld.Agent>

29 enemy := UBTMicroworld.getAgentList()[1]

30 UBTMicroworld.registerAgentForKeyListener(player)

31 variable playersMoves : integer

32 variable playersTurn : boolean

33 loop

34 if UBTMicroworld.isGameRunning() then

35 if not playersTurn then

36 if Mathematics.randomInteger(1, 2) = 1 then

37 enemy@.rotateLeft()

38 else

39 enemy@.rotateRight()

40 endif

41 enemy@.moveForward()

42 playersTurn := true

43 else

44 if player@.getNumberInputs() > playersMoves then

45 playersMoves := playersMoves + 1

46 playersTurn := false

47 endif

48 endif

49 if enemy@.getXPosition() = player@.getXPosition() and

50 enemy@.getYPosition() = player@.getYPosition() then

51 UBTMicroworld.setGameOver()

52 elseif player@.getNumberOfCollectedObjects() >= 3 and

53 player@.getXPosition() = 4 and player@.getYPosition() = 2 then

54 UBTMicroworld.setGameFinished()

55 endif

56 else

57 exit

58 endif

59 endloop

60 endmain

Listing 112: Example showing custom levels, win conditions and agents contolled by
different means.

First we define a set of variables for different terrain types and object placement
for the sake of more clarity, which we promptly use to initialize our custom game
with two lists representing the terrain map and the object placement map as well
as a custom win validator, which basically means that we have to define our own
win conditions in the code. We continue by removing the delay time between
actions, since our program will be waiting on user input anyway.
We then get our references to both the player and the enemy agents and imple-

ment a loop which runs until the game is finished. If it is not the player’s turn,
we move our enemy agent by performing a random turn and a move forward. If

203

it is the player’s turn, the program waits for the user input by comparing the
number of inputs of the player agent and the corresponding value of the variable
playersMoves. If the player has not yet pressed a key in his turn, both values
are equal, otherwise the value of playersMoves is increased and playersTurn is
set to false. In any case, we check if both agents are placed in the same tile
which sets the state to game over, and if this is not the case, we check whether
the player agent has completed the goal which sets the state to game completed.

Figure 25: An enlarged terrain map used to initialize the custom level in the example
in figure 26, the actual size of the image is 32x32 pixels.

Figure 26: Screenshot of the level defined by the terrain map in figure 26 after it has
been completed.

204

Defining a larger level which may contain 32x32 tiles can become quite tedious,
therefore, there is an alternative way which allows to define a custom level by
reading the terrain types and object placement from image files. Each pixel in
the image file represents one tile, meaning that a level with 32x32 tiles is defined
by an image with 32x32 pixels. The colour coding of the different terrain types
was explained in the previous subsection. Figure 25 shows an enlarged version
of the terrain map used to define the level in figure 26. The instruction used to
initialize this custom level is:

UBTMicroworld.initCustomGame3("img/maps/map2.png",

UBTMicroworld.WinValidatorType.VALIDATOR_1)

In this particular example we have created two identical mazes, the goal of the
level is that both agents are located at their target tiles. The agents move in the
same random pattern as in the previous example until they reach a target tile. As
we see in the screenshot, the blue agent has required approximately twice as many
actions to reach the goal. Such exercises can be used to test implementations of
different students or different navigational algorithms against each other.

6.7. GUIFactory

Graphical user interfaces usually rely on a wide range of different components
and are implemented using advanced techniques and design patterns which are
unknown to beginner programmers. In the context of programming education,
professionally used GUI libraries like Swing [107] and JavaFX [108] suffer from
the same issues as professionally used languages and IDEs, the amount of contents
provided by these toolkits is overwhelming for programming beginners. There-
fore, the implementation of GUIFactory is consistent with the general design
principles of MuLE. This library4 is meant to be used as an educational tool
to teach basics of graphical user interfaces (GUI). Thus, it provides a minimal
set of components which are sufficient for the intended task in the context of
programming education. The specification of the API is provided in appendix I.

The relation between the elements of this library is quite simple as shown in
figure 27, a Window includes a Pane (with a specific layout), which includes a list
of Components. Several Panes can be nested, since a Pane is also a Component.

The entire library is split into five compilation units to keep them manageable.
Most likely, users will have to import most or all of the library units in order to
implement a working graphical user interface. As the name implies, this library
was heavily inspired by the factory pattern. Therefore, the usual build up of a
library unit consists of enumerations and abstract compositions, which are used

4The Java implementation of this library was provided by Johannes Glier as a part of his
Bachelor of Science thesis [109] at the University of Bayreuth and subsequently included in
MuLE.

205

Figure 27: Overview over core elements of the GUIFactory library (images taken from
the B.Sc. thesis [109] of Johannes Glier.)

to declare variables of these types and creation operations used to initialize these
variables.

GUIFactory Unit

This is the main compilation unit, in addition several enumeration types, compo-
sitions and operations related with colours, font types and alignments, this unit
contains the composition Window, which represents the root element of a GUI.
As previously mentioned, the library is inspired by the factory pattern and since
instances of Window must be created one way or another, this unit also provides
the corresponding creation operation createWindow.

GUIFactoryPanes Unit

A pane is a special component of a GUI with a specific layout. It serves as a
container for GUI components and defines how these components are arranged.
Since a pane is a Component itself, it can contain other panes allowing users
to create complex layouts with a small amount of predefined layouts defined by
panes.
Users may set the border as well as add components via operations defined

by these types. If the user does not specify the size of the components, they

206

Figure 28: Examples of pane types and the corresponding layouts specified in
GUIFactoryPanes.

will automatically take all available shared space. Components, whose specified
size is bigger than the available space are scaled down. Users may specify the
padding, i.e. the space between the borders of a pane and its contents, and the
spacing between child components. There are four pane types specified in this
library unit, as well as the corresponding creation operations (examples are given
in figure 28):

� VerticalPane – components are arranged vertically when added as children
to this pane. Children components are displayed in the same order as they
are added via the addComponent(c : reference<Component>) operation
to the pane, i.e. the first added child will be displayed at the top while the
last at the bottom of the pane.

� HorizontalPane – components are arranged horizontally when added as
children to this pane. Similarly to the VerticalPane, the children are
displayed in the same order as they are added, starting from left to right.

� GridPane – components are arranged in a grid pattern, they have to be
added at specific coordinates as children. The upper left corner has the
coordinates (0, 0). Unlike the previous panes, the addComponent operation,

207

which adds a component to the pane, requires coordinates, where the added
component is placed.

� BorderPane – this pane is separated into five sectors: top, bottom, center,
left and right, thus representing the common arrangement inside of a GUI
separated into a header, menu bar, content page, contributions bar, etc.
Unlike with the previous panes, children components are not added via
the simple addComponent operation, but via setter operations, e.g. setTop
or setCenter. Furthermore, the size if the components contained directly
in the border pane is overridden so that they take up all available space
defined by the corresponding sector.

GUIFactoryBorders Unit

This library unit contains an abstract type Border, an enumeration BorderType

with the values RAISED and LOWERED, three non-abstract border types which are
subtypes of Border as well as the corresponding creation operations. There are
three border types, which are displayed in figure 29. The TitledBorder has a
title in the upper left corner of the border which is given upon the creation of the
border. The LineBorder is a simple line border, the example border in figure
29 surrounds a text field with the entry line border and has a thickness of two
pixels. And finally, the BevelBorder appears either as raised or lowered against
the background by using different colours. The example in figure 29 surrounds a
text field with the entry lowered bevel border, is a lowered border defined by
colours black and light grey.

Figure 29: Examples of border types specified in GUIFactoryBorders.

GUIFactoryComponents Unit

This unit contains all components that are not Panes, which are summarized in

208

a separate unit which we have already discussed earlier. As with all elements of
this library, the components are abstract compositions. For each component, a
creation operation is offered. In general, the components can be summarized into
three groups: visual components, i.e. images and various kinds of shapes, textual
components and control components, for example buttons.

Figure 30: Examples of components in GUIFactoryComponents.

Images can be loaded by using both absolute and relative paths, in the lat-
ter case the path is relative to the project folder, i.e. an image with the path
img/smiley.png is located in the folder img, which is located in the project folder.
While the shapes Rectangle and Ellipse are self-explanatory, a Polygon is de-
fined by a set of points. The polygon displayed in figure 30 is defined by four
points with coordinates (15, 0), (45, 0), (60, 60) and (0, 60). All shapes can be
coloured, their size can be changed.
The group of textual components is made up of a Label, which represents

simple text that can not be edited directly in the GUI without using setter op-
erations, a TextField, which represents a single line text field, and a TextArea,
wherein the text can be displayed over several lines. Users may change the font
and the colour of the displayed text. The size of the TextFields and TextAreas
can be altered, furthermore, the programmers may specify whether the users of
the GUI are allowed to edit the text in these components.
The final group consists entirely of interactive control components, including

Buttons, CheckBoxes, DropDownMenus and Sliders. The button is the only con-
trol element that can perform actions when activated. The performed action is
implemented in a redefined operation in a user defined subtype of ActionTask

209

(see next subsection), which is passed to a button via the operation handle-

ActionTask.

GUIFactoryTasks Unit

This unit includes the single abstract composition ActionTask which contains
a single abstract operation actionPerformed. Furthermore, this unit does not
contain a creation operation for ActionTask, users are meant to extend this type,
provide their own implementation of the operation actionPerformed and pass
instances of this type to Buttons. Additional tasks may be included in the future,
such as tasks handling mouse or key events.

Example

In the following example we will implement a simple GUI which is displayed in
figure 31. The initial state is displayed on the left, this state can be restored by
pressing the Reset button. The right side shows the GUI after entering various
names in the text field and pressing the Save button several times. The main
layout of the GUI is defined by a vertical pane, marked by the border with the
title outer pane. Its only two children are a horizontal pane (border with the
title inner pane) and a text area. The contents of the horizontal pane are a text
field and two buttons.

Figure 31: A simple example of a user interface implemented with GUIFactory.

The functionality of both buttons is displayed in listing 113, which represents
the first part of the implementation. This listing contains the import instruc-
tions, as we see, all GUIFactory units are imported, as well as two subtypes of
ActionTask. Both tasks work with the text field and the text area of the GUI,
therefore both of them contain attributes with the corresponding types, which
are initialized when the tasks are instantiated. Furthermore, both tasks override
the inherited operation actionPerformed, which is executed when a button is

210

pressed. The task SaveActionTask, which is meant to be used with the Save
button, defines this operation as reading the current content of the text field and
appending the resulting string to the content of the text area. Meanwhile, the
task ResetActionTask, which is used with the Reset button, sets the content
of both textual widgets to the strings displayed on the left side in figure 31.

1 program simpleIO

2 import IO

3 import GUIFactory

4 import GUIFactoryBorders

5 import GUIFactoryPanes

6 import GUIFactoryComponents

7 import GUIFactoryTasks

8

9 type SaveActionTask : composition extends GUIFactoryTasks.ActionTask>

10 private attribute _textField : reference<GUIFactoryComponents.TextField>

11 private attribute _textArea : reference<GUIFactoryComponents.TextArea>

12

13 override operation actionPerformed()

14 variable text : string

15 text := _textArea@.getText() & "\n " & _textField@.getText()

16 IO.writeString(text)

17 _textArea@.setText(text)

18 endoperation

19 endtype

20

21 type ResetActionTask : composition extends GUIFactoryTasks.ActionTask>

22 private attribute _textField : reference<GUIFactoryComponents.TextField>

23 private attribute _textArea : reference<GUIFactoryComponents.TextArea>

24

25 override operation actionPerformed()

26 _textField@.setText(" Enter name here")

27 _textArea@.setText(" Registered names are:")

28 endoperation

29 endtype

Listing 113: Part one of the example depicting the GUI displayed in figure 31.

The second part of the implementation is displayed in listing 114. First, we
create a non-resizable Window with a set size and title. We continue with creating
panes and other components as described at the beginning of this subsection, i.e.
a VerticalPane with a TitledBorder outer pane as the main pane of the
window object, and a HorizontalPane and a TextArea as its children. The
HorizontalPane is marked by the TitledBorder inner pane, its children are a
TextField, a Button Save with the assigned task SaveActionTask and a Button
Reset with the assigned task ResetActionTask.

211

1 main

2 variable window : reference<GUIFactory.Window>

3 window := GUIFactory.createWindow("Simple IO", 450, 300)

4 window@.setResizable(false)

5

6 variable mainPane : reference<GUIFactoryPanes.VerticalPane>

7 mainPane := GUIFactoryPanes.createVerticalPane(GUIFactory.Alignment.TOP_CENTER, 10)

8 mainPane@.setPadding(10, 10, 10, 10)

9 window@.setPane(mainPane)

10

11 variable outerBorder : reference<GUIFactoryBorders.TitledBorder>

12 outerBorder := GUIFactoryBorders.createTitledBorder(

13 GUIFactory.createColour(55, 55, 55, 255), 1, "outer pane")

14 mainPane@.setBorder(outerBorder)

15

16 variable textArea : reference<GUIFactoryComponents.TextArea>

17 textArea := GUIFactoryComponents.createTextArea(" Registered names are:")

18 textArea@.setEditable(false)

19

20 variable secondaryPane : reference<GUIFactoryPanes.HorizontalPane>

21 secondaryPane := GUIFactoryPanes.createHorizontalPane(GUIFactory.Alignment.CENTER, 10)

22 secondaryPane@.setPadding(10, 10, 10, 10)

23

24 variable textField : reference<GUIFactoryComponents.TextField>

25 textField := GUIFactoryComponents.createTextField(

26 GUIFactory.HorizontalAlignment.LEFT, " Enter name here")

27 textField@.setSize(200, 28)

28

29 variable button1 : reference<GUIFactoryComponents.Button>

30 button1 := GUIFactoryComponents.createButton("Save")

31 button1@.handleActionTask(

32 reference SaveActionTask{_textField = textField, _textArea = textArea})

33

34 variable button2 : reference<GUIFactoryComponents.Button>

35 button2 := GUIFactoryComponents.createButton("Reset")

36 button2@.handleActionTask(

37 reference ResetActionTask{_textField = textField, _textArea = textArea})

38

39 variable innerBorder : reference<GUIFactoryBorders.TitledBorder>

40 innerBorder := GUIFactoryBorders.createTitledBorder(GUIFactory

41 .createColourFromPalette(GUIFactory.Palette.LIGHT_GREY), 1, "inner pane")

42

43 secondaryPane@.addComponent(textField)

44 secondaryPane@.addComponent(button1)

45 secondaryPane@.addComponent(button2)

46 secondaryPane@.setBorder(innerBorder)

47

48 mainPane@.addComponent(secondaryPane)

49 mainPane@.addComponent(textArea)

50

51 window@.showWindow()

52 endmain

Listing 114: Part two of the example depicting the GUI displayed in figure 31.

212

6.8. Conclusion

As demonstrated in this section, MuLE is distributed with a small set of standard
libraries which can be used in the context of programming education. The pro-
vided libraries are intended to have a small number of absolutely necessary types
and operations in order to be kept manageable and not overwhelming for beginner
programmers. Experienced programmers may find the range of provided oper-
ations lacking for more advanced tasks, however, this is not the intended scope
of application of MuLE and its libraries. Therefore, the included libraries are
implemented with the same ideology behind the general design of the language.
Additional libraries can be implemented in the future, to further expand the

range of educational tasks which can be solved using MuLE. Such libraries could
cover, among others, the following topics: logic programming, parallel computing,
database management, microcontroller programming, etc.

213

7. Tool Support

An educational language itself is not sufficient in a programming course, it must
be supported by proper tools, such as an integrated development environment
(IDE). The requirements for tool support were already discussed in section 3.3,
this section will cover the provided tools. As explained in the aforementioned
section, Eclipse is currently used as the IDE. Therefore, a Java version 8 instal-
lation (or higher) and an Eclipse IDE are required to run MuLE on any common
operating system.
The main section of this chapter covers Eclipse and its IDE functionality cur-

rently supported by MuLE. This section focuses on such topics as the project
structure and MuLE files, text editor and its features, as well as various views
such as the outline tree and the console. Additionally, it covers the views and
further features used when debugging a program. The subsequent section shortly
explains the two execution modes Run and Debug.

7.1. Eclipse IDE

Eclipse is a widely used IDE in the field of Java development [86]. In addition
to standard tools expected from a programming environment, such as an editor,
a project manager, a debugger, etc., the functionality of this IDE can be heavily
expanded by plug-ins via the built-in marketplace. These plug-ins may provide
support for version control systems, such as Git and SVN, additional program-
ming languages, frameworks, etc. In fact, MuLE was developed as an Eclipse
plug-in by using Eclipse with support of SVN and the Xtext framework (more in
section 8), which allowed us to reuse the tools provided by this IDE to support
MuLE. The installation instructions can be found in appendix A.
Figure 32 shows a screenshot of the Eclipse user interface with a MuLE program

in the state of debugging. The user interface is built up as a combination of
different views (e.g. the file editor view in the center and the console view at the
bottom of the screenshot) combined in a perspective (e.g. the debug perspective
displayed in the screenshot). The perspectives are by no means set in stone, they
are merely a template which can be customized by the user by adding or removing
views, changing their size and location, etc. We have separated the screenshot
into eight sectors, which we will discuss in the following sections. The displayed
arrangement of views is also the one used during the preliminary programming
course (see chapter 9.1) by the instructor, the students are encouraged to do the
same.

Sector 1: Menu Bar and Options

The first sector contains the menu bar at the top and a quick bar directly below it.
The menu bar contains all options available in Eclipse separated into categories,

214

Figure 32: Screenshot of the Eclipse user interface.

e.g. the category File contains, among others, options which allow to create new
files and projects, save and open files or import and export projects, whereas
the category Window contains options which allow to open different views and
perspectives as well as open the preferences window, which allows to change very
specific settings of the IDE, such as the version of the Java compiler.

The quick access control bar contains the options which are often needed in
the context of a specific perspective. The first three icons represent the options
New, Save and Save All. Since we are in the Debug perspective, the next op-
tions represent actions reserved to debugging, such as skipping all breakpoints,
resuming or terminating the program, and stepping modes. The green icons rep-
resent types of execution of the program, such as debugging, wherein the program
is executed and halted at the first active breakpoint, and executing, wherein all
breakpoints are ignored and the program is executed normally. The remaining
icons represent buttons which allow to open a specific type declaration, search in
the source file, jump between errors and annotations or last viewed locations in
the editor, and other editor specific options, such as Show Whitespace Characters.
As previously mentioned, the perspectives can be customized, i.e. these buttons
can be removed or added when necessary.

The user also may right-click on almost any element in the user interface, such
as a view or a textual element in the editor, to open a contextual menu which

215

will display options available specifically for this element. For example, the user
may execute a program by right-clicking on the file or in the text editor.

Sector 2: Project Explorer

This sector represents the project explorer view which acts as the current work-
space. The workspace is a physical location on the drive of the machine, which
contains projects. Projects are folders which contain designated source folders
with source files stored within them, and non-source folders with other resources
and meta-files which are meant to organize the project, e.g. specify the execution
environment, the dependencies, etc. The workspace is selected when starting
Eclipse, or can be changed via the File → Switch Workspace option, which will
however force a restart of Eclipse.
As long as the MuLE plug-in is correctly installed in Eclipse, users can see

the MuLE wizards for project and file creation when navigating to wizards via
the File → New option. MuLE projects are realised as Eclipse plug-in projects,
i.e. in addition to the files and folders directly related to MuLE and its imple-
mentation, the project folder includes files and folders of a plug-in project, e.g.
the MANIFEST.MF file which specifies a dependency to the MuLE plug-in in each
created MuLE project. In addition, this also allows to create functioning Eclipse
plug-ins from MuLE projects.
In our example in the screenshot in figure 32, we have two projects p1 and p2

currently open in our workspace. The project p1 contains MuLE files f1 (program
displayed in the editor in sector three) and f2 (a library with a procedure foo

which prints an integer on the console), while p2 contains the file f3 with a
single function bar which returns 42. Open projects can be referenced by other
projects, e.g. as a dependency. A project can also be closed, i.e. its folder is
located in the workspace folder but the project itself is inactive, meaning that
it cannot be referenced by other projects. Open and closed projects are marked
by different icons. Since both of our projects are open, they can reference each
other, which we have made a use of by stating that p2 is a dependency of p1,
allowing us to import the compilation units contained in p2 in the compilation
units that are located in p1. This can be seen in sector three, which contains the
file editor view and which we will explain soon. In the lower half of this sector we
see the graphical editor of the file MANIFEST.MF where the plug-in p2 is stated as
the dependency in addition to the MuLE plug-in. If we remove p2 from the list
of the dependencies, we will not be able to import the library f3 in the program
f1, already present import instructions such as in the program f1 (displayed in
the upper half of sector three) will be reported as unresolved references.
If we look closely at the project p1 in the Project Explorer view, we see two

folders src and src-gen which are designated as the source folders of the project,
meaning that our source files are located there. The former folder contains .mule
files which are created and edited by the user, while the latter contains the

216

generated .java files, which are executed in the background and should not
be tampered with. Finally, each MuLE project contains a ---HELP--- folder
with .txt files which contain the information concerning the standard libraries
(basically a shortened version of the contents presented in chapter 6) and short
programming examples demonstrating the various language constructs and the
functionality of the more complex standard libraries.

Sector 3: File Editor

The central and the biggest part of the user interface is usually taken by the
source file editor, displayed in the sector three. In our concrete example we have
split this sector into two file editor views, to demonstrate that the editor may
look differently depending on the format of the opened file and whether a specific
editor is provided for this format. In the upper half of this sector we have the
source file editor with the usual IDE functionality expected from such an editor,
while in the lower half we have the graphical editor with project relevant settings,
where we can edit the specifics of the MANIFEST.MF file, plug-in extensions, etc.
Usually, we would rather use a single view to maximize the available work area.

Programmer beginners are not required to manipulate project relevant settings,
and are even advised not to do so. As depicted in the upper half of this sector,
several files can be opened at the same time marked by their respective tab, with
only one of them visible in a single view.
As mentioned, programmer beginners should stick to the source file editor,

which offers significantly more visual feedback than most common text editors,
which are not designed with programming in mind. Following features are pro-
vided by the textual source file editor:

� Syntax highlighting is the most obvious feature of the text editor. By de-
fault, the keywords are coloured mauve, data types are orange, string
literals are blue, comments are green and everything else is black. These
settings can be overridden in the Eclipse preferences page.

� Line numbers are extremely helpful when discussing examples, assignments
and their solutions with the students. Users may toggle the line numbers
on and off or place breakpoints at specific lines, which are used to suspend
the execution of the program at these lines during the debugging process.
If parts of code are violating grammar or validation rules of the language,
an error marker is placed close to the corresponding line number.

� Folding allows to collapse or expand specific text fragments, hiding or show-
ing parts of source code to maintain overview, which may become helpful
when writing larger programs. Type declarations and all block based lan-
guage constructs, i.e. the main procedure, operations and control flow
defining statements, can be folded.

217

� Error messages are displayed if a part of the source code does not comply
to grammar or validation rules specified in chapter 5. The corresponding
checks are performed at the same time the code is written providing im-
mediate feedback. The program will not compile if at least one validation
error is present in the code. The rule breaking text fragment is under-
lined in red. In addition, an error marker is placed at the corresponding
line number and an error message is displayed when hovering with mouse
cursor over the error marker or the offending text fragment.

� The quick fix provider offers proposals for automatic fixes for most valida-
tion error messages. For example, in the context of a compilation unit, the
first error that can happen is when the identifier of the unit is not equal
to the file name. The offered quick fix changes the identifier of the unit to
the file name. Other types of errors may have more than one proposal, e.g.
in case a program unit is lacking a main procedure, one of the proposals
adds an empty main procedure while the other proposal changes the unit
to a library. Due to their automated nature, quick fix proposals are not
provided for every available error message, for example, in cases when a
duplicate name is registered since providing meaningful names can not be
achieved by automated mechanisms.

� The automatic formatter of the source code can be invoked by right click
→ Source → Format or by the corresponding shortcut Shift+Ctrl+F.

� The content assist provider offers source code proposals at the location of
the textual cursor in the editor. The content proposal mechanism is in-
voked by right click → Source → Content Assist or by the corresponding
shortcut Ctrl+Space. The proposals depend on the context, i.e. the pro-
posed identifiers are the ones that are visible at the current position of
the cursor as defined by the scoping rules (section 5.1), the proposed key-
words are allowed in the context of the encompassing language construct,
etc. Selecting a proposal will automatically insert the proposed keyword or
an identifier. In case of operations, the proposal displays the entire signa-
ture of the operation, i.e. it includes parameter types and the return type.
The generated operation invocation contains placeholders for expected pa-
rameters. For example, if content assist is invoked in the context of the
library IO (section 6.1), i.e. when the cursor is placed after IO., one of
the proposals is displayed as operation writeString(parameter arg :
string). If this proposal is selected by the user, the generated source code
is writeString(ARG STRING).

� Find/Replace – this function is present in any common text editor and can
be accessed by pressing the key combination Ctrl-F.

218

Sector 4: Outline Tree

The outline tree provides a quick overview of the program currently displayed
in the source file editor. Furthermore, it allows quick access to the elements
displayed in the tree, e.g. clicking on the node main in the tree will highlight the
keyword main in the text editor. The nodes displayed in the outline tree represent
the program unit itself, import instructions, type declarations, operations and the
main procedure. Import nodes contained directly in the program and type nodes,
i.e. compositions and enumerations, can be folded and unfolded, which allows to
inspect the contents of these elements in the outline tree. Operations and the
main procedure nodes can not be unfolded.

Sector 5: Console and Problems Views

The active tab in this sector represents the Console view. User interactions via
the console are supported by write and read operations of the library IO (see
section 6.1). Runtime errors are also displayed in this view. Additionally, the
Problems tab is visible in the sector. The problems view lists current error and
warning messages, the corresponding resource (i.e. the file), the line of code, and
allows to quickly access the location causing the problem by double clicking the
list entry.
The control bar in the Console view, visible in the top-right corner of this

sector, contains, among others, buttons which toggle, whether the console should
be automatically displayed (if it is not already visible) when the output changes,
clear the console contents, as well as the terminate button (red square icon, which
is also present in the quick access control bar in sector 1).

Sector 6: Variables and Breakpoints View

The views displayed in this sector are relevant for the debugging process. The
active view, Variables, displays the currently existing data containers and their
values if the execution of the program is halted at a specific line during debugging.
To halt the execution of the program, a breakpoint must be set up in the source
file editor, for example by double clicking on a line number. The breakpoints
are listed in the breakpoints view. Users can quickly access the location of the
breakpoint in the source code, disable, enable or, ultimately, delete breakpoints.
In our screenshot, we see a breakpoint placed in line six in the text editor view

in sector 3. The program is in the middle of the debugging process, meaning that
it was executed by pressing the debug button and was halted as soon as it has
reached the first breakpoint. We have then executed one more line by pressing
the step-over button in the quick access bar (sector 1), as we can see, the program
is currently suspended in line seven. The variable x is highlighted in the Variables
view, meaning that its value has recently changed, this change happened when
we have executed the previous line. This way, users have a good visual feedback

219

over the current state of the program when debugging it. Since Java is executed
in the background, we can also see some traces of the Java code, i.e. the args

parameter of the main method and the return value of the copyObject method
(see chapter 8).

Sector 7: Debug View

The debug view displays currently running processes, which can be suspended by
halting at a breakpoint, waiting for user input, or running in an endless loop. In
our example we have only one running program with the main-procedure which
is currently suspended in line seven. As we can see, a Java program is actually
executed in the background. However, the suspended line is that of the MuLE
text editor, which is also displayed when the program is halted during the debug
process. When several subroutines are invoked in a single program but have not
yet finished their execution, they are displayed in a stack-like arrangement in this
view, with the uppermost subroutine being the last executed one with the others
waiting for it to finish its execution. Users may switch between these subroutines
to observe their internal state as well as see in which line they were halted.

Similarly, several programs can be displayed in this view, for example when the
user is debugging several programs at once or running several programs which are
waiting for user input or a specific event, etc. The latter case is often observed
when beginner students involuntarily implement an endless loop, and keep execut-
ing the program under the false assumption that nothing is happening. Running
programs are marked by the green play icon (visible in the last entry in the de-
bug view), which is replaced by the red stop icon on terminated programs. Each
running process can be selected in this view and terminated manually. Users
may also terminate all running programs at once. Terminated programs can be
removed to clean up the view.

Sector 8: Perspectives Bar

We have called this sector the perspectives bar since it mostly contains buttons
tasked with opening new or displaying previously opened perspectives, however
the first icon in the bar represented by the magnifying glass allows to search for
various commands in the Eclipse IDE. For example, if the user clicks on this icon
and types co in the displayed pop-up view, the displayed actions will include,
among others, options to open the console view and collapse all foldable regions.
The next icon allows to open other perspectives. The following icons represent
the active as well as previously opened perspectives. The active perspective, in
our case the debug perspective, is highlighted.

220

7.2. Execution

Upon saving a MuLE compilation unit, Java code is generated (see chapter 8)
as long as no compile time errors are present. The MuLE program can then be
executed by pressing the Run or Debug button, or by right clicking in the editor
frame or directly on a file in the project explorer view and selecting these options
in the contextual menu. The generated Java code is executed in the background.
Breakpoints can be set up in order to initiate the debugging process with

stepwise execution. Even though Java code is executed in the background, MuLE
source code is displayed in the editor. The current line of execution as well as
the state of the variables can also be seen during this process as explained in the
previous section. Running programs can be manually terminated if necessary, for
example if the user has executed a program with an endless loop.

7.3. Conclusion

Since Eclipse is a professionally used IDE, the amount of offered functionality
may become quickly overwhelming for a beginner programmer. While the project
structure, the text editor, the console and the outline view are more or less easy to
understand, experience shows that beginner programmers are usually not using
the debugger when trying to locate runtime or semantic errors in their code.
Some of them will even ignore the compilation errors, which are marked directly
in the source code. Therefore, a huge amount of offered functionality should not
be discussed with the students, at least not at the beginning.
That being said, we have not provided a dedicated beginner friendly IDE specif-

ically implemented to support MuLE, since this task would go beyond the scope
of this dissertation. In future, it should be considered to provide a simpler IDE
comparable to BlueJ [85] or similar programming environments designed specifi-
cally with education in mind and oriented towards beginner programmers. BlueJ
is merely an example, the IDE should be compatible in its simplicity but still
be implemented with the goal to support MuLE, its intended use as well as the
chosen educational approach.

221

8. Implementation

While the previous chapters focused on the requirements, the design and the
specification of MuLE, the topic of this chapter is the implementation of our
language. Although the majority of our students are using Windows, some of
them are using other operating systems. Therefore, it was necessary to provide
either an implementation for each operating system that might be used by the
target audience, or a platform independent implementation, which was one of the
reasons why we have decided to use Java as the base of our implementation. Other
reasons included the fact that it is a multi-paradigm general purpose language
with a powerful library support, meaning it promised an easier implementation of
the planned concepts (see chapter 4), and last but not least our own experience
with this language. This allowed us to use the Xtext framework integrated into
the Eclipse IDE, which in turn allowed us to integrate MuLE into Eclipse and
reuse its IDE functionality for our language (see chapter 7).

Xtext [110] is a framework specifically designed to implement text-based domain-
specific languages (DSLs). Usually, a DSL is far less flexible than a general pur-
pose language, since it is designed with a very specific goal in mind, such as SQL
and R which we have mentioned in chapter 3. Neither language can be used for
tasks, that may be totally different in nature, like implementing a generic data
structure, algorithms which will work with it and writing tests for the implemen-
tation with a single language. However, while a GPL can be used to implement
any scenario that is computable on a Turing Machine, a DSL designed to solve
specific problems will be a far more user-friendly tool when applied in their in-
tended field. Thus, using a framework designed to implement DSLs might sound
like a questionable decision at first. However, since both DSLs and GPLs are
languages defined by their abstract and concrete syntax as well as their static
and execution semantics [111], a tool capable to develop text-based DSLs should
also be applicable to the development of text-based GPLs.

Xtext was developed as a part of the Eclipse Modelling Project [112], it relies
on other tools and frameworks which contribute to this project, thus we should
first briefly explain these tools as well as the underlying concepts. The first two
sections of this chapter cover the Eclipse Modelling Project in general and the
Xtext framework in particular. The third section offers an overview over the
implemented MuLE plug-in projects, which are then integrated into an Eclipse
installation to provide MuLE support. Section 8.4 focuses on the implementation
of language specific modules defined by the specification of MuLE (see chapter
5), i.e. the grammar, code generation, type system, scoping and compile time
validation. The final section covers the implementation of modules specific to
tool support (see chapter 7), such as the debug support, the outline tree provider
or the project and file creation wizards.

222

8.1. The Eclipse Modelling Project

By itself, modelling is not a new concept. For example, by drawing a blueprint, an
architect creates a model which is then used to build a structure. A teacher who
explains complex mechanisms in a simplified way so that the students could un-
derstand it based on their present capabilities, presents them an abstracted model
of the corresponding system. Thus, we have two types of models: prescriptive,
which are used to specify future projects, and descriptive, i.e. abstract represen-
tations of complex systems. Both are used in the context of software development
of a software system, for example when designing modules or presenting these
to the stakeholders in a less technical way, by using various diagrams defined by
the UML2 standard [71]. The entire discipline of Model Driven Software De-
velopment (MDSD) was born out of the idea of bridging the gap between the
models and the implementation by generating code directly from these models,
thus increasing productivity, quality and reusability [113]. The general approach
in MDSD is to provide a model which defines a future system as well as gen-
erator templates with transformation rules that specify how this model will be
translated into source code or another model. The model must correspond to the
rules formally defined by its metamodel, which may define itself or be defined by
its own meta-metamodel.
The Eclipse Modelling Project was developed as a powerful toolkit which sup-

ports MDSD. The core of this toolkit is represented by the Eclipse Modelling
Framework (EMF) [114], which unifies three technologies: Java, UML and XML
Schema, allowing to represent a model using one or all of them. EMF includes
its own standard for models: the Ecore metamodel, which is a simplified subset of
the UML standard. The Ecore metamodel defines itself, meaning that it acts as
the meta-metamodel for itself as well as for all other models created using EMF.

Figure 33: A simplified subset of the Ecore metamodel [114].

A subset of the Ecore metamodel is displayed in figure 33, it contains class
definitions that specify Ecore classes EClass, EAttribute, EDataType and ERef-

erence. The last class demonstrates one of the bigger differences between Ecore
and UML, while an association in UML can be bidirectional and can also be an

223

aggregation or a composition, a reference in Ecore is unidirectional and can only
simulate compositions if it is marked as a containment reference. As we can see,
an EClass has a name and can have an arbitrary number or EAttributes and
EReferences. While the type of the first ones (EDataType) covers both primitive
and object types, the type of an EReference is always an EClass.

As we can see, the graphical representation of the subset of the Ecore meta-
model in figure 33 looks similar to any other UML class diagram. Previously,
we have mentioned that EMF is based on three technologies, and since we have
already covered UML, we have yet to see which roles are played by XML Schema
and Java in this framework. Ecore models are serialized using the XML Meta-
data Interchange standard [115], wherein model elements are defined by XML
tags with the specification of their types and various attributes. A serialized
shortened version of the subset of the Ecore metamodel is displayed in listing
115. This example is not an excerpt of the actual Ecore metamodel, but our
own model representing the same structure as in listing 115. The root element of
the model, ecore:EPackage represents packages and stores, in addition to other
data, information required to load the model as a resource, for example via its
nsURI. In it, classes are listed as eClassifiers, the super type of EClass in the
actual full Ecore metatmodel, thus we can see our ecore:EClass with the name
EClass, i.e. an EClass which defines other EClasses. It has an EAttribute with
the identifier name typed EString. Furthermore, it has two EReferences refer-
encing the classes EAttribute and EReference with their corresponding names.
The tags for EAttribute and EReference are listed as eStructuralFeatures
named after the super type of these classes in the full Ecore metamodel.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="ecoreMM"

5 nsURI="http://www.example.org/ecoreMM" nsPrefix="ecoreMM">

6 <eClassifiers xsi:type="ecore:EClass" name="EClass">

7 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

8 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

9 <eStructuralFeatures xsi:type="ecore:EReference" name="eAttributes"

10 upperBound="-1" eType="#//EAttribute"/>

11 <eStructuralFeatures xsi:type="ecore:EReference" name="eReferences"

12 upperBound="-1" eType="#//EReference"/>

13 </eClassifiers>

14 <!-- Further eClassifiers for EAttribute, EReference and EDataType -->

15 </ecore:EPackage>

Listing 115: A shortened version of our own implementation of the Ecore model in
figure 33 serialized using XMI.

Now that we have a serialized model, we can start generating Java code from
it, which is, after all, one of the main goals of MDSD. The model element EClass

224

is mapped to a Java interface EClass (listing 116) and the corresponding imple-
mentation class EClassImpl (listing 117). The transformation rules from Ecore
to Java are implemented in EMF, we do not need to provide them in this case.
We have shortened the generated code in both listings, the functionality of the
displayed methods is self explanatory.

1 public interface EClass extends EObject {

2 String getName();

3 void setName(String value);

4 EList<EAttribute> getEAttributes();

5 EList<EReference> getEReferences();

6 }

Listing 116: The generated Java interface EClass.

1 public class EClassImpl extends MinimalEObjectImpl.Container

2 implements EClass {

3 protected static final String NAME_EDEFAULT = null;

4 protected String name = NAME_EDEFAULT;

5 protected EList<EAttribute> eAttributes;

6 protected EList<EReference> eReferences;

7

8 protected EClassImpl() {

9 super();

10 }

11 public String getName() {

12 return name;

13 }

14 public void setName(String newName) {

15 String oldName = name;

16 name = newName;

17 if (eNotificationRequired())

18 eNotify(new ENotificationImpl(this, Notification.SET,

19 EcoreMMPackage.ECLASS__NAME, oldName, name));

20 }

21 public EList<EAttribute> getEAttributes() {

22 if (eAttributes == null) {

23 eAttributes = new EObjectResolvingEList<EAttribute>(EAttribute.class,

24 this, EcoreMMPackage.ECLASS__EATTRIBUTES);

25 }

26 return eAttributes;

27 }

28 public EList<EReference> getEReferences() {

29 // similar to getEAttributes

30 }

31 // further generated methods, which are unrelated to our example

32 }

Listing 117: The generated Java class EClassImpl.

225

As we can see, the generated code can be used out of the box. There is,
however, one limitation to this, we can add EOperations, which are mapped to
Java methods, to our EClasses in the model in order to define the functionality
of our classes. However, there is no way to specify their semantics, the generated
methods will throw an exception as long as the user does not provide an actual
implementation manually.
As a final note, even though Java does not support direct multiple inheritance

on classes, EMF supports this feature which we have made use of in our imple-
mentation. The multiple inheritance is simulated via Java interfaces, i.e. while
a class may extend only one other class, it may implement multiple interfaces
which are effectively super types of this class. Since EMF provides interfaces for
all of its classes and a corresponding factory class, this simulation is even less
noticeable.

8.2. The Xtext Framework

Now that we know what EMF is and how we can generate Java code from Ecore
models, let us move on to the Xtext framework, which is built upon EMF and
which we have used to implement MuLE. One of the defining factors of any
language is its grammar. In chapter 5 we have specified language constructs
of MuLE primarily based on its grammar. So let us again take a look at the
definition of a MuLE compilation unit, which we see in listing 118.

1 CompilationUnit:

2 (’program’ | ’library’) ID

3 Import*

4 ProgramElement*

5 MainProcedure?;

6

7 Import: ’import’ [CompilationUnit];

8

9 ProgramElement: TypeDeclaration | Operation;

10

11 MainProcedure: ’main’ Block ’endmain’;

Listing 118: Composition of a MuLE compilation unit.

Our compilation unit can be a program or a library, has an identifier, which
can be represented as a string of characters (see section 5.3.2), a set of import
instructions and program elements (i.e. type declarations and operations) and it
can include a main procedure, which has a block of statements. In a sense, it is
very similar to the definition of the EClass from the previous section, meaning
that we can create a similar model, that would resemble our grammar. The
resulting model is displayed in figure 34, to keep it simple, we have left out
most of the structural features of the class Operation (except for the block

reference), this is just an example after all. Although it bears a resemblance to

226

a typical UML class diagram, it should be noted that we are using EDataTypes
to specify the types of our attributes and do not use bidirectional associations,
the reference imports is a containment EReference while importedNamespace

is another EReference without the attribute containment set to true. This
model is an instance of the Ecore metamodel, meaning that we could now start
generating Java code from it.

Figure 34: A class diagram representing the grammar in listing 118.

However, although we could now define the entire model of our language this
way (which is also possible in Xtext), traditionally the context free grammar
of a programming language is specified by using a textual notation such as the
Extended Backus-Naur Form or its variant that we have used in this thesis and
that is in fact used by Xtext, as we will see shortly. The grammar of the lan-
guage acts as a model, upon which a lexer and a parser are implemented, the
former attempts to separate the stream of characters into grammar confirming
tokens (keywords, identifiers, operators, etc.) while the latter evaluates whether
the sequence of tokens contributes to a valid language construct defined by the
grammar and builds a parse tree, a data structure which closely represents the
parsed syntax, while doing so. In addition to the parse tree, the abstract syntax
tree (AST) can be created, which excludes terminal and non-terminal symbols
and stores only the language constructs which carry all the necessary semantic
information. The AST can then be analysed by further tools to ensure validity
of the program that can not be defined by the grammar alone, such as type con-
formity, scoping and further validation checks. Therefore, the AST is basically
the model of our program, while the grammar is its metamodel.
The cornerstone of an Xtext project is an .xtext file which includes the gram-

227

mar of the language written in a textual form similar to the one in listing 118 but
with some additions (see listing 121), which allow it to be translated into an Ecore
model represented by the diagram in figure 34. For instance, we need to provide
actual names for our EAttributes and EReferences, for example name=ID in our
compilation unit is an attribute with the identifier name and type ID. We will not
go further into implementation details yet, we have an entire section 8.4.1 dedi-
cated to the grammar in this chapter, this example is just meant to demonstrate
how Xtext maps the textual representation of the grammar to the corresponding
Ecore model.

1 CompilationUnit:

2 (isProgram?=’program’ | isLibrary?=’library’) name=ID

3 imports+=Import*

4 programElements+=ProgramElement*

5 main=MainProcedure?;

6

7 Import: ’import’ importedNamespace=[CompilationUnit];

8

9 ProgramElement: TypeDeclaration | Operation;

10

11 MainProcedure: ’main’ block=Block ’endmain’;

Listing 119: Composition of a MuLE compilation unit.

As explained earlier, both the lexer and the parser are entirely dependent on
the grammar of the language, meaning that once the grammar is specified, these
modules can be generated based on the grammar by using parser generator tools.
One of such tools is ANTLR [116], which generates recursive descent parsers
and is used by Xtext for exactly this specific task. While the current version 4
of ANTLR generates adaptive LL(*) parsers which are able to parse sequences
defined by left-recursive grammars, Xtext uses the previous version 3 of ANTLR
which does not offer this feature. This means, that the we have to take care
when designing our grammar in order to avoid ambiguity. This is especially
evident when writing the expression grammar (section 5.6), which is recursive by
its nature and must be left factored in Xtext.
The initial step using Xtext is, therefore, to write a grammar using an EBNF-

like notation, and then generate Xtext artefacts from this grammar. One of
these artefacts is an EMF model, which represents the grammar, as well as the
Java code generated from this model. Another generated artefact is the ANTLR
lexer and parser. These modules are defined by the grammar and, usually, do not
require any post-generation editing by the developer of a DSL. In addition to these
modules, Xtext generates class stubs for code generation, scoping and validation,
which must be manually implemented by the user. Finally, Xtext generates the
infrastructure required to integrate the implemented language into Eclipse. The
project structure of the MuLE plug-ins as well as the implementation of the
various modules will be discussed in the subsequent sections, but before that we

228

still have to cover some of the remaining features of Xtext.
Now that we have our grammar and the generated artefacts, we can actually

write our very first program. When we write our program, the Xtext generated
parser builds simultaneously both a parse tree and an AST, which is an instance
of the generated EMF model. It should be noted, that the model which acts as
the AST is not serialized by default in Xtext, but merely stored in memory for
as long as necessary [110].
Let us take a look at a simple MuLE program (listing 120), which we can write

based on the snippet of the grammar included in this section. The generated
AST is displayed in the object diagram in figure 35, this AST is an instance of
the generated EMF model represented as a class diagram in figure 34.

1 program f1

2

3 operation foo() endoperation

4

5 main endmain

Listing 120: A simple program example which we are about to parse.

Figure 35: An object diagram representing the AST of the program in listing 120.

Earlier, we have mentioned that Xtext generates additional modules, for ex-
ample for code generation or semantic checking. This is where the parsed AST
becomes very important. Up until now, our written program did not actually
carry any information, except for the fact that it is grammatically correct. How-
ever, we can now compile this program, for example by generating Java code by
using the model-to-text template based transformation tool Xpand [112], which is
integrated into Xtext. The generated Java code can then be executed, effectively
allowing us to execute our program.

229

Additionally, Xtext allows to implement logic of various DSL modules, e.g. for
the purpose of validation checking or as an additional help in the generator, by
using Xtend [110][112], a programming language which is very similar to Java, it
reuses its type system, allows to use all of its libraries and adds such features like
type inference and more elegant lambda expressions which make the syntax more
readable. By default, most of the generated module stubs use Xtend, however
Java can be used just as well.

Finally, since a programming language can only benefit from being supported
by a powerful IDE and Xtext is an Eclipse based framework, it generates the
infrastructure necessary to integrate a DSL implemented with Xtext into Eclipse.
The subsequent sections will present first the implementation of MuLE and then
its Eclipse based UI support using the tools discussed in this section.

8.3. Plug-in Project Structure

Provided, Xtext is installed as an Eclipse plug-in, the corresponding plug-in
projects for the development of a DSL can be created via the project creation
wizards. The users must enter the project name and specify the extension of the
DSL source files. In our case the project name is de.ubt.ai1.mule and the cor-
responding file extension is mule. Users may additionally specify, whether they
want to generate projects intended to contain JUnit test cases for the language
itself and its UI support, as well as plug-ins related with setting up the update
site for the language plug-ins.

The three main plug-in projects, which are downloaded when installing MuLE,
are therefore:

� de.ubt.ai1.mule – this is the main project, which contains the grammar
definition as well as all modules related directly to the language, such as
the parser, linker, code generator, validation, etc. The implementation of
these modules is discussed in section 8.4. If the language is meant to be
used separately from Eclipse, this is the only required plug-in.

� de.ubt.ai1.mule.ide – this project contains services for the content assist
provider, which is implemented in the ui project. We have not performed
any changes within this project, thus it will not be discussed any further.

� de.ubt.ai1.mule.ui – this project contains Eclipse related tool support
functionality (discussed in chapter 7), such as the syntax highlighting in
the text editor, debug support, wizards, etc. The implementation of these
modules is discussed in section 8.5.

230

8.4. Language Specific Modules

This section focuses on the implementation of the language itself, thus we are
going to discuss the modules included in the project de.ubt.ai1.mule here. As
explained in section 8.2, the foundation of any Xtext project is the grammar
of the language, which is used as a model from which the lexer and the parser
are generated automatically. We have not altered the implementation of neither
of these modules, therefore we will merely give a brief explanation of their core
functionality before moving on to other artefacts.

The generated Xtext lexer is implemented as an extension of the ANTLR
lexer. It is tasked with tokenizing the input, i.e. the entire program is passed
to the lexer as a stream of characters upon its initialization, which then at-
tempts to match the characters to keywords, operators, literals, comments, white
spaces, etc., at the current position in the input. For example, one of the key-
words in MuLE is program, thus the generated MuLE lexer includes a method,
which attempts to match the input stream (which, for example, could start as
[p,r,o,g,r,a,m, ,f,1]) against the string "program". If the characters can
be successfully matched, a corresponding token object is created and added to
the stream of tokens (e.g. [program, ,f1]). The internal state of the lexer is
updated and it continues to match the subsequent characters until the end of file
is reached. If the characters cannot be matched, for example if the input starts
with the character string programm, the token cannot be recognized, the lexer
computes the position and the offset of the offending character string and reports
it as an error.

Similarly to the lexer, the generated Xtext parser is implemented as an exten-
sion of the ANTLR parser. The parser accepts a token stream and checks whether
the tokens contribute to a grammatically valid language construct. It contains
methods, i.e. parser rules, which attempt to match actual tokens from the input
against the expected tokens depending on the context. For example, a MuLE
compilation unit starts either with the keyword program or library, thus the
generated parser method tasked with parsing the entire compilation unit starts by
matching the first token to either program or library, then continues to match
the identifier and, if present, import instructions, type declarations, operations
and finally the main procedure. All of these language constructs are checked by
their own parser rules. The output of the parser is a parse tree, which contains
the entire lexical information of the program based on tokens, including their po-
sition in the source text, as well as an abstract syntax tree, which is a semantic
representation of the program realized as a non-serialized EMF model which is
an instance of the metamodel generated from the grammar of the language. If
the input cannot be parsed, for example either a token could not be recognized
by the lexer (e.g. programm instead of program) or the token is misplaced (e.g.
main main instead of main endmain), the parser generates a node with a syntax
error in the parse tree. This node contains the error message and its location in

231

the source code, which is then displayed to the user in the editor. Thus we have
a parse tree, which is used to relay information specific to the text editor and the
abstract syntax tree, which we can use for other tasks like validation checks and
code generation.

8.4.1. Grammar and the Resulting Metamodel

As already mentioned, all other aspects of a language are dependent on its gram-
mar, therefore it has to be specified first. Generally, Xtext users are advised to
provide a less restricting grammar and then write validation rules which would
prevent occurrence of specific cases at the same time providing more understand-
able messages. Xtext offers two approaches to define the grammar, as an exten-
sion of either the Terminals or the Xbase grammar [110]. Xbase is an expression
language designed to reuse the Java type system, the language Xtend is built
upon Xbase. By choosing the Xbase approach, users get a ready to use expres-
sion grammar which imitates Java, as well as code generation, scoping, validation
and debugging support for the constructs defined by this grammar. They still
have to implement mapping for user defined types specified by their own gram-
mar to Java types. Nevertheless, choosing this approach promises quicker results.
However, once we have tried to use this approach initially, we have noticed that a
large amount of work has to be invested into redefining and reimplementing spe-
cific constructs which differ from Java syntax. Furthermore, although the debug
support is automatically provided, the generated code includes intermediate vari-
ables which are not present in the DSL code, however are visible when debugging
it, which may confuse beginner programmers.

Therefore, we have decided to use the approach with the Terminals grammar,
which meant that we had to implement more from the ground, however, we
also had more control over the implementation. The Terminals grammar (the
definition is included in appendix B) specifies terminal symbols for identifiers,
integer and string literals, comments and white spaces. We have redefined the
rule for identifiers to disallow the placement of the symbol ^ at the start of an
identifier as well the rule for string literals to allow to use only double quotation
marks instead of additionally single quotation marks to denote string literals.

The entire grammar is located in appendix B, snippets of this grammar with-
out Xtext related implementation details were discussed in section 5. In this
subsection we will discuss the general approach we took when writing this gram-
mar based on smaller examples taken out of the entire grammar. Since we have
already used the MuLE compilation unit as a running example throughout this
chapter, we will continue by looking at the first part of the grammar (see list-
ing 121) which specifies this construct as well as other elements directly related
to it.

232

The Compilation Unit and its Elements

As mentioned, we have decided to use the Terminals grammar as the base of our
own grammar, which can be seen in the first line in listing 121. The next line
specifies the name and the URI of the generated EMF model which then acts as
the metamodel of our language.

1 grammar de.ubt.ai1.mule.MuLE with org.eclipse.xtext.common.Terminals

2 generate muLE "http://www.ubt.de/ai1/mule/MuLE"

3

4 CompilationUnit:

5 (isProgram?=’program’ | isLibrary?=’library’) name=ID

6 imports+=Import*

7 programElements+=ProgramElement*

8 main=MainProcedure?;

9

10 Import: ’import’ importedNamespace=[CompilationUnit];

11

12 NamedElement: EnumerationValue | TypeDeclaration | Feature | CompilationUnit;

13

14 ProgramElement: TypeDeclaration | Operation;

15

16 Feature: Attribute | VariableDeclaration | Parameter | Operation ;

17

18 Operation:

19 override?=(’override’)? visibility=VisibilityModifier? abstract?=(’abstract’)?

20 ’operation’ name=ID ’(’ (params+=Parameter (’,’ params+=Parameter)*)? ’)’

21 (’:’ type=DataType)? (block=Block ’endoperation’)?;

22

23 VisibilityModifier: ’private’ | ’protected’;

24

25 Parameter: ’parameter’ name=ID ’:’ type=DataType;

26

27 MainProcedure: ’main’ block=Block ’endmain’;

28

29 Block: {Block} statements+=Statement*;

Listing 121: An excerpt of the MuLE grammar containing the definition of the
compilation unit and its elements.

Let us now take a look at the rule CompilationUnit, which specifies that the
initial keyword is either program or a library with a corresponding isProgram

and isLibrary attribute. Both attributes are typed as EBoolean, which is de-
noted by the operator ?= after the attribute name followed by the respective
keyword. This means, that if the unit starts with the keyword program, the at-
tribute isProgram in the instance of CompilationUnit in the AST is set to true
and isLibrary to false, since a unit can not be a program and a library at the
same time. Examples of a class diagram and the corresponding object diagram

233

for the AST are displayed in figures 34 and 35 in section 8.2 of this chapter. Each
unit has a single name attribute defined by ID rule, which is mapped to the EMF
type EString. An attribute name followed by a simple = is mapped to a 0..1

relation in the metamodel of the language, parser checks ensure that an identifier
is actually present ultimately resulting in cardinality 1 in this case.
The class diagram representing a part of the model covered by the grammar

in listing 121 is displayed in figure 36. As already mentioned, this model acts as
the metamodel for our AST, which can be used for code generation, for example.
Each compilation unit may have several import instructions or none at all,

which is marked by the operator += and a * symbol after the Import reference.
Same behaviour is seen with the attribute programElements which results in
a 0..* relation to instances of type ProgramElement, which are also either in-
stances of TypeDeclaration or Operation. Speaking of import instructions, the
[CompilationUnit] denotes a cross reference, i.e. an existing compilation unit
is referenced by importedNamespace.

Figure 36: A class diagram representing an excerpt of the metamodel, which contains
elements mentioned in the grammar in listing 121.

The reference main is typed MainProcedure and has a relation 0..1 to in-
stances of this type, which is denoted by the symbol ? after the MainProcedure
reference. The reference block in the MainProcedure has the cardinality 1 to
instances of type Block, marked by the absence of the question mark symbol. A
Block represents a collection of Statements, {Block} at the beginning of the rule
ensures that a Block object is in fact instantiated (even if the list of statements
is empty) and not consumed by the encompassing rule, i.e. by MainProcedure,
Operation or one of the statements.

234

As previously mentioned, each CompilationUnit can specify a list of Program-
Elements, which are either TypeDeclarations or Operations. We have included
only the Operations in the grammar excerpt in listing 121 and will later take
a separate look at TypeDeclarations. Each operation may be marked by key-
words override and abstract which are mapped to the corresponding boolean
attributes in the class which represents the Operation in the generated meta-
model. Validation rules ensure, that these attributes can not be true at the same
time, we will talk about the implementation of such rules in section 8.4.4. In
addition, an operation may have a VisibilityModifier, the corresponding at-
tribute is called visibility (typed EString) and can be null if no modifier is
present. Other than that, each Operation instance has a name attribute, a list
of Parameters which may be empty, and may have a return type. Furthermore,
it may have a block of statements, so, unlike in MainProcedures, the reference
block has the cardinality 0..1 in case of Operations.

Data Types

The implementation of MuLE types is displayed in the class diagram in figure
37, which represents the part of the language metamodel generated from the
grammar excerpt in listing 122.
A large number of language constructs are typed, i.e. they reference a DataType,

such as data containers, named operations (all subtypes of Feature) and lambda
expressions, but also parameterized types, such as ListType, ReferenceType
and DeclaredType. Expressions are also typed, however their type can not be
accessed directly via a type or a similar reference and must be inferred, which is
covered in the implementation of the type provider in section 8.4.3.
The four elementary types integer, rational, boolean and string are cov-

ered by BasicType, which is instantiated each time one of these four keywords
is used to specify the type of a typed construct. The used keyword is stored as
typeName in the instance of BasicType. Instances of ListType and Reference-

Type are created similarly, when the corresponding keyword is used, however as
mentioned, they also reference another type, e.g. list<integer> is an instance
of ListType which references a BasicType object with the value of the typeName
attribute being integer. The OperationType does not represent the return type
of an Operation (although it can be certainly used as one), it represents the sig-
nature of an operation combining the types of its parameters, their order and the
return type.
The DeclaredType is probably the most interesting one, since it is referencing

user defined types which are represented by the super type TypeDeclaration.
Users can define Enumerations, Compositions and TypeParameters of Compo-
sitions. Technically, the grammar allows to declare type parameters in the
context of compilation units at the same level as enumerations and compositions,
since TypeParameter is a subtype of TypeDeclaration. This is, however, pro-

235

Figure 37: A class diagram depicting the elements of the metamodel related to the
type system.

hibited by validations rules. Same applies to type parameters declared within
the body of a composition instead of its head, i.e. when it is contained in the
typeDeclarations collection instead of typeParams. Both Composition and
TypeParameter can specify one other Composition as a its superType, which is
then used to implement inheritance relations in the code generation, validation
and scoping mechanisms.

It is explicitly stated in the grammar, that declared types can be referenced
by their qualified names (lines 4, 28 and 35 in listing 122), which allows to refer-
ence imported type declaration. The standard cross-referencing mechanism, i.e.
without an explicit specification which kind of identifier should be allowed, relies
on simple names.

1 DataType: BasicType | DeclaredType | ReferenceType | ListType | OperationType;

2

3 DeclaredType:

4 type=[TypeDeclaration|QualifiedName]

5 (’<’ typeParams+=DataType (’,’ typeParams+=DataType)* ’>’)?;

236

6 BasicType: typeName=(’integer’ | ’rational’ | ’string’ | ’boolean’);

7

8 ReferenceType: ’reference’ ’<’ type=DataType ’>’;

9

10 ListType: ’list’ ’<’ type=DataType ’>’;

11

12 OperationType:

13 {OperationType} ’operation’ ’(’ (paramTypes+=DataType

14 (’,’ paramTypes+=DataType)*)? ’)’ (’:’ type=DataType)?;

15

16 TypeDeclaration: Composition | Enumeration | TypeParameter;

17

18 Enumeration:

19 visibility=VisibilityModifier? ’type’ name=ID ’:’ ’enumeration’

20 values+=EnumerationValue (’,’ values+=EnumerationValue)* ’endtype’;

21

22 EnumerationValue: name=ID;

23

24 Composition:

25 visibility=VisibilityModifier? abstract?=(’abstract’)? ’type’ name=ID

26 (’<’ typeParams+=TypeParameter (’,’ typeParams+=TypeParameter)* ’>’)?

27 ’:’ ’composition’ (’extends’ superType=[Composition|QualifiedName]

28 (’<’ superTypeParams+=TypeParameter

29 (’,’ superTypeParams+=TypeParameter)* ’>’)?)?

30 typeDeclarations+=TypeDeclaration*

31 attributes+=Attribute*

32 operations+=Operation*

33 ’endtype’;

34

35 TypeParameter: name=ID (’extends’ superType=[Composition|QualifiedName])?;

Listing 122: An excerpt of the MuLE grammar containing the rules defining the type
system.

Statements

As mentioned earlier, some constructs, such as operations, the main procedure or
some statements, define a Block, which is basically a wrapper for a collection of
statements gathered under the umbrella of their super type Statement. Listing
123 demonstrates an excerpt of the grammar including a selection of statements.
To keep it short, the definitions of the ExitStatement, the ReturnStatement

and the LetStatement are not included in listing 123.
The statements that include blocks are control flow defining statements Loop-

Statement, IfStatement and LetStatement. Since the latter two can define
more that one execution path, depending on their conditions, these statements
can have more than one block. Therefore, both IfStatement and LetStatement

reference Block directly as block and an optional elseBlock. Furthermore, both

237

statements reference a collection of ElseIfs and ElseLets respectively, each of
them defining their own instance of Block. All instances of these four classes
define and reference an Expression, which acts as the condition for the execution
of their blocks.

Figure 38: A class diagram representing the elements of the metamodel related to the
statements of MuLE.

Another statement that references Expression is ReturnStatement, however
in this case the reference may be null if the return statement is empty. However,
the most interesting statement is AssignmentOrOperationCall. We have men-
tioned earlier, that Xtext uses a generated top down parser which has trouble
processing left recursive or ambiguous grammars. For example, if we have two
separate statement rules OperationInvocation and Assignment, which both
start with an identifier, we have a case of ambiguity. Furthermore, operations
can be invoked both as an expression (with a return type) and as a statement
(without a return type), meaning that there must be rules which would allow
both cases, but at the same time not collide with assignment statements or refer-
ences to data containers in expressions. We have solved it by defining a single rule
AssignmentOrOperationCall, which starts with a SymbolReference expression
or SuperExpression, both of which can be used to invoke an operation (see next
subsequence) and the corresponding types are used to instantiate the respective
objects if the statement is in fact an operation invocation. However, as soon
as an assignment operator is present after these expressions, the language con-
struct is interpreted as an instance of AssignmentOrOperationCall with a left

side, which is an instance of either of the two aforementioned Expressions, and a
right side which can be any Expression. Validation checks prevent assignments
to operation calls and ensure type conformability in valid assignment statements.

238

1 Block: {Block} statements+=Statement*;

2

3 Statement:

4 VariableDeclaration | AssignmentOrOperationCall | IfStatement | LoopStatement |

5 LetStatement | ReturnStatement | ExitStatement;

6

7 VariableDeclaration: ’variable’ name=ID ’:’ type=DataType;

8

9 AssignmentOrOperationCall:

10 (SymbolReference | SuperExpression)

11 ({AssignmentOrOperationCall.left=current} ’:=’ right=Expression)?;

12

13 LoopStatement:

14 {LoopStatement} ’loop’ block=Block ’endloop’;

15

16 IfStatement:

17 ’if’ expression=Expression ’then’ thenBlock=Block

18 elseIfs+=ElseIf* (=> ’else’ elseBlock=Block)? ’endif’;

19

20 ElseIf: ’elseif’ expression=Expression ’then’ block=Block;

Listing 123: An excerpt of the MuLE grammar containing a selection of statement
rules.

Expressions

Since we have already mentioned SymbolReferences as a part of the statement
rule AssignmentOrOperationCall, let us begin by discussing its implementa-
tion. Due to the aforementioned concerns about ambiguity, this rule is used to
invoke operations, refer to data containers or as a part of the composition value
constructor.

Some elements, for example composition attributes, must be referenced by
their qualified name. As a reminder, the corresponding rule is defined as ID

(’.’ ID)*, meaning that we cannot use it if the first identifier, for example,
refers to a reference to a value with a composition type in which case we have to
dereference it first, before we can access the attribute.

Therefore, the expression rule SymbolReference is defined recursively, i.e. it
references itself as memberCall when members of compositions need to be re-
ferred. Instances of this rule have a cross reference symbol to declared named
element. They can reference SymbolRefCompositionInit thus resulting in a
composition value constructor and an SymbolRefAccessModifier, which acts as
a super type for OperationInvocation, ListAccess and Dereference and is
also defined recursively to allow chaining of access modifiers. Validation rules
prevent using access modifiers if the compositionInit reference is not null.

239

Figure 39: A class diagram representing the elements mentioned in the grammar in
listing 122.

1 AssignmentOrOperationCall:

2 (SymbolReference | SuperExpression)

3 ({AssignmentOrOperationCall.left=current} ’:=’ right=Expression)?;

4

5 AtomicExpression returns Expression:

6 SymbolReference | SuperExpression | ... ;

7

8 SuperExpression: {SuperExpression} ’super’ ’.’ memberCall=SymbolReference;

9

10 SymbolReference:

11 symbol=[NamedElement]

12 compositionInit=SymbolRefCompositionInit?

13 accessModifier=SymbolRefAccessModifier?

14 (’.’ memberCall=SymbolReference)?;

15

16 SymbolRefAccessModifier:

17 {OperationInvocation} ’(’ (params+=Expression (’,’ params+=Expression)*)? ’)’

18 accessModifier=SymbolRefAccessModifier? |

19 {ListAccess} ’[’ index=Expression ’]’ accessModifier=SymbolRefAccessModifier? |

20 {Dereference} ’@’ accessModifier=SymbolRefAccessModifier? ;

21

22 SymbolRefCompositionInit:

23 {SymbolRefCompositionInit} ’{’ (attributes+=SymbolRefCompositionAttribute

24 (’,’ attributes+=SymbolRefCompositionAttribute)*)? ’}’;

25

26 SymbolRefCompositionAttribute: attribute=[Attribute] ’=’ expression=Expression;

Listing 124: An excerpt of the MuLE grammar with expression rules tasked with
referring to named elements.

240

Let us finally take a look at the remaining expressions. By its nature, the
expression grammar is recursively defined. The simplest way to define a binary
expression would be, for example, as Expr: Expr Operator Expr;. However,
this would result in a left recursive grammar, which we cannot use with the Xtext
parser. Furthermore, we would still need to implement operator precedence. Both
of these issues can be solved by left factoring the grammar. As we can see, the
first Expression rule is OrExpression, which is evaluated as AndExpression,
unless the operator or with the corresponding right side is present, similar to the
approach we have used to define the statement rule AssignmentOrOperationCall
earlier.

Figure 40: A class diagram representing most of the elements mentioned in the gram-
mar in listing 122.

Same approach is used with the AndExpression rule, as well as all other rules
which represent binary expressions. This resolves the issue of left recursion, since
the parser attempts to resolve the left side as an expression of another type ini-
tially. Furthermore, this approach enforces the intended operator precedence,
since the left and right sides of the OrExpression are typed AndExpression,
the AndExpression is evaluated first resulting in the operator and having higher
precedence than or. For the sake of reducing redundancy, the class diagram in fig-
ure 40 does not fully represent this behaviour and depicts only the OrExpression
class.

241

1 Expression:

2 OrExpression;

3

4 OrExpression returns Expression:

5 AndExpression ({OrExpression.left=current} op=(’or’) right=AndExpression)*;

6

7 AndExpression returns Expression:

8 EqualityExpression ({AndExpression.left=current}

9 op=(’and’) right=EqualityExpression)*;

10

11 // other binary expressions

12

13 ExponentExpression returns Expression:

14 AtomicExpression ({ExponentExpression.left=current}

15 op=(’exp’) right=AtomicExpression)*;

16

17 AtomicExpression returns Expression:

18 ... | {StringConstant} value=STRING | {Null} ’null’| ListInit |

19 LambdaExpression | {Unary} op=(’+’|’-’|’not’) expression=AtomicExpression |

20 {Reference} ’reference’ expression=AtomicExpression |

21 {ParenthesizedExpression} ’(’ expression=Expression ’)’ ;

22

23 LambdaExpression returns Expression:

24 {LambdaExpression} ’operation’

25 ’(’ (parameters+=Parameter (’,’ parameters+=Parameter)*)? ’)’

26 (’:’ type=DataType)? block=Block ’endoperation’;

27

28 ListInit:

29 {ListInit} "[" (left=Expression

30 right=(ListInitFunction | ListInitElements))? "]";

31

32 ListInitFunction:

33 {ListInitFunction} op=("**" | "..") expression=Expression;

34

35 ListInitElements:

36 {ListInitElements} ("," elements+=Expression)*;

Listing 125: An excerpt of the MuLE grammar with expression rules tasked with
referring to named elements.

The left and right sides of the binary ExponentExpression are defined as
AtomicExpression, i.e. all non-binary expressions that either represent a value
literal, a value constructor, unary expressions or the already mentioned Symbol-

References and SuperExpressions. Although a ParenthesizedExpression is
hardly atomic if we are being precise, we have nevertheless placed it under the
same super type for the sake of simplicity. As we can see in the grammar,
we can put any Expression between parentheses, but can only reference other
AtomicExpressions in a Reference or a Unary expression, meaning that the

242

keyword reference and unary operators will be applied only to the left side of
a binary expression, unless it is put into parentheses.
To define list value constructors, we have used the same approach of resolving

ambiguity. The problem is that we have several slightly different notations for list
value constructors, i.e. an empty list, a list with values separated by commas, a
list defined as a range of integers and a list with a set number of the same value,
which all begin with the same symbol. Thus, if the ListInit lacks a left side (and
therefore the right side as well), it is interpreted as an empty list. If not, the right
side can either be a ListInitFunction, which represents the last two notations,
or ListInitElements which references a collection of other Expressions each
representing a value.
Finally, the implementation of LambdaExpression is somewhat similar to that

of Operation, however it lacks a name, cannot be abstract and has therefore
always a block in a valid program. Furthermore it is not a subtype of the class
Feature, therefore it must reference a DataType by itself.
Without validation checks, users may and will do a lot of errors, that are

not discovered by the lexer and the parser. Typing errors are a good example
here, without proper checks we can declare an integer variable and assign it
a string value, which would represent grammatically correct, yet still erroneous
code. Similarly, errors related to the scoping mechanism are not discovered by the
parser. Once the source code of a MuLE program has been written and parsed,
we have access to an AST as an instance of the EMF metamodel presented in the
previous subsection. We can now use this model to perform these checks, and if
the program is validated, compile it into executable code. The implementation of
these checks as well as the code generator will be discussed in subsequent sections.

8.4.2. Scope Provider

The resolution of visible named elements is implemented in the scope provider,
which is a generated artefact which relies on a default implementation and can
be further customized. The general approach of the scope provider is to gather
all named elements that are visible at a certain reference in the source code. The
default implementation is not optimal, for example it does not show operations
of imported libraries, e.g. IO.writeLine() will not work with the default imple-
mentation, while the identifier IO is correctly resolved if the library is imported,
writeLine is not visible. A similar problem appears when referring to members
of compositions in symbol reference expressions or to composition attributes in
composition value constructors. The solution is to customize the scope provider.
The general implementation of the scope provider is demonstrated in listing

126, the method getScope returns an instance of IScope, which contains a set
of all visible elements depending on the parameters context and reference.
The latter is used to identify the referenced node in the AST while the con-
text is used to compute visible elements. In the first case included in list-

243

ing 126, the reference points to a named element as a symbol reference of
a SymbolReference node, the scope is computed by a set of methods called
getVisibleSymbols based on the context and its container. For example, if
the container of the context is a block of statements, we first need to gather all
variables which are declared in this block before the statement which contains
the context. Then, we have to add all the named elements, that are declared as
a part of the construct which acts as the immediate container of the block, e.g. if
it is an operation, we add all parameters. We continue this process by navigating
trough the encompassing containers, e.g. if the container is a compilation unit,
the visible elements are operations, type declarations, import instructions and
finally the compilation unit itself. If the container is a composition, the members
of its super type are added to the scope, unless they are marked as private. If the
container is another SymbolReference and the referenced element is a Feature,
i.e. it represents a value, we must compute its type by using the type provider,
and if it is a composition, gather the elements visible from the context of an in-
stance of that composition, this time also taking the visibility modifier protected
into consideration. These methods return all visible named elements, regardless
whether they are data containers, operations, declared types, etc.

1 class MuLEScopeProvider extends AbstractMuLEScopeProvider {

2 @Inject MuLETypeProvider typeProvider

3

4 override IScope getScope(EObject context, EReference reference) {

5 var defaultScope = super.getScope(context, reference)

6 if (reference == MuLEPackage::eINSTANCE.symbolReference_Symbol) {

7 return getVisibleSymbols(context.eContainer, context)

8 }

9 else if (reference == MuLEPackage::eINSTANCE.declaredType_Type) {

10 var outerScope = scopeForDataTypeReferences(context, reference)

11 var list = newArrayList

12 var contextContainer = context.eContainer

13 while (!(contextContainer instanceof CompilationUnit)) {

14 if (contextContainer instanceof Composition) {

15 list.addAll(contextContainer.typeParams)

16 }

17 contextContainer = contextContainer.eContainer

18 }

19 return Scopes.scopeFor(list, outerScope)

20 }

21 // other cases

22 return defaultScope

23 }

24 }

Listing 126: An excerpt of the MuLEScopeProvider class.

In cases when we reference a declared type, e.g. as a data type of a vari-
able declaration, we do not need all visible elements which would include other
variables, operations, etc. This would mean, that we would have to implement
additional checks, whether an element is allowed to be used as a type. Instead, we

244

use another method scopeForDataTypeReferences, which computes the scope
only for the declared types from the outer context similarly to the approach we
have described earlier. If the context is contained in a composition, we add all
type parameters of this composition to the scope.

8.4.3. Type Provider

Before we can perform any type checks, we must first determine the types of
the respective language constructs. In many cases, we can get the type of
the element directly from the corresponding node in the AST, for example a
VariableDeclaration object has a type reference to a DataType object. How-
ever, this becomes more difficult as soon as we are confronted with expressions,
for example we cannot simply say that the expression a + b * c yields a rational
value, it could also be an integer, or one of the values might not be a numerical
type at all and we have a type error on our hands.

1 class MuLETypeProvider {

2 def DataType typeFor(EObject obj, EObject context) {

3 switch (obj) {

4 BooleanConstant:

5 BOOLEAN_TYPE

6 OrExpression:

7 BOOLEAN_TYPE

8 AdditiveExpression: {

9 val left = typeFor(obj.left, context)

10 val right = typeFor(obj.right, context)

11 if (obj.op.equals("&")) {

12 return STRING_TYPE

13 } else if (left == RATIONAL_TYPE || right == RATIONAL_TYPE) {

14 return RATIONAL_TYPE

15 } else {

16 return INTEGER_TYPE

17 }

18 }

19 LambdaExpression: {

20 var paramTypes = newArrayList

21 for (param : obj.parameters) {

22 var type = typeFor(param, context)

23 var typeCpy = MuLEObjectCopyProvider.copyMuLEObject(type) as DataType

24 paramTypes.add(typeCpy)

25 }

26 var returnType = MuLEObjectCopyProvider.copyMuLEObject(obj.type) as DataType

27 var opType = MuLEFactory.eINSTANCE.createOperationType()

28 opType.type = returnType

29 opType.paramTypes.addAll(paramTypes)

30 return opType

31 }

32 // further cases

33 }

34 }

35 }

Listing 127: An excerpt of the MuLETypeProvider class.

245

The type provider (an excerpt is shown in listing 127) is tasked with computing
the type of expressions based on their actual values, provide the expected type
for binary expressions, as well as some additional functionality related to provid-
ing types for MuLE’s language constructs. The type provider is not generated
automatically when generating Xtext artefacts from a grammar, however we felt
it should be kept separate from the general validation module. The type provider
is reused in other modules, for example in the aforementioned validation module
or in the generator to compute the type of an expression to generate a type cast
(see section 8.4.5). The core of the type provider is the method typeFor, which
accepts an EObject which we want to know the type of, as well as its context,
which may be the encompassing statement, if additional information to compute
the type is required.
The simplest example is the case of basic type value literals. For example,

the literals true and false are represented by the BooleanConstant grammar
rule and, therefore, the AST node with the same name. If the EObject that was
passed to typeFor happens to be a BooleanConstant, the returned type is an
instance of BasicType with typeName set to "boolean". Same applies to binary
expressions which yield a boolean value, such as the OrExpression. However,
some arithmetical binary expressions may yield different types, depending on
the used operator, or the types of the respective operands. For example, if the
operator of the AdditiveExpression is &, then we have a string concatenation,
meaning that the expression yields a string value. If the operator is either + or
-, we must check if one or both operands are typed rational, in which case the
entire expression is typed as rational. If not, the returned type is integer.
When computing types of value constructors, for example those specified by

the Reference expression, we compute the type of the referenced expression,
wrap it in an instance of ReferenceType and return it as a result. The type
of the referenced expression is copied, which is necessary due to the EMF rule
stating that an object may be contained only in one container at any time. If we
would not copy the type of, let’s say, a variable declaration, the original element
node in the AST would lose its type. The types of ListInit expressions and
LambdaExpressions (shown in listing 127) are computed in a similar way.
The type computation of SymbolReference expressions is the most interesting

one. The general approach is similar to the control flow that we have already
described when discussing the generation of this construct, i.e. we can have a com-
position value constructor, wherein we would simply create and return an instance
of DeclaredType, or passing an operation as data, in which case we create an
OperationType similar to the approach used when typing LambdaExpressions,
or it can also be an operation invocation or a reference to a data container. Since
the SymbolReference expression can be simply described as a qualified name
with some additions, the type of the entire expression is that of the last referred
named element. For example, the type of the expression point2d.x would be
the type of the attribute x which is defined in the composition Point2D. We

246

still have to consider access modifiers, let us assume that we have a variable
lst of type list<reference<integer>>, then the expression lst[0]@ is typed
integer. The parameter of typeFor is in this case a SymbolReference pointing
to the start of the expression, i.e. the named element lst. We first compute the
type of lst, i.e. list<reference<integer>>, then continue to unwrap the type
for each present access modifier ultimately resulting in the BasicType integer.

1 type Container<T> : composition

2 attribute value : reference<T>

3 endtype

4

5 main

6 variable c : Container<integer>

7 c.value := reference 42

8 endmain

Listing 128: An example used to demonstrate cases related to type parameters in the
implementation of the type provider.

Finally, sometimes it is not enough to compute the type simply by navigating
to the referred element. Let us take a look at the program in listing 128, we have a
composition Container<T> which stores an attribute value typed reference<T>,
i.e. a formal type parameter which is later replaced by an actual type parameter,
e.g. Container<integer>. If the computed type includes formal type parame-
ters, the actual type parameter is inferred from the declared Feature object. For
example, we declare a variable c typed Container<integer> and attempt to ini-
tialize the stored value using the assignment c.value := reference 42. The
initially computed type of value is reference<T>, thus we would have a typing
error here (expected type is reference<T>, actual type is reference<integer>).
The type provider resolves the formal T to actual integer from the type of the
variable c.

8.4.4. Compile Time Validation

Performing additional constraint checks is required to enforce the rules of a pro-
gramming language, which are not already covered by the grammar or the scop-
ing mechanism, like type checking, naming or checking for cyclic relations. Xtext
provides a mechanism to implement validation checks in form of a generated
validator class which may include methods with an annotation @Check. These
methods accept AST nodes as a parameter and are invoked for every object in
the AST that matches the type of the parameter. For example, we can imple-
ment a check method which accepts instances of NamedElement and performs
checks related to naming conflicts within. Then, when we write our DSL code,
this method will be automatically invoked for every parsed named element in the
background, giving immediate feedback if one or more elements fail to validate.

247

Since we have already introduced the example of named elements, let us first
focus on validation rules specified for these elements. Xtext offers an option to
use the default name validator, that performs checks for unique names in the
same namespace. Since we needed to perform some additional checks and there
were cases, where the offered validator was not sufficient, we have implemented
our own name validator, which also happens to be the simplest validator which
is why we have included the entire class in listing 129.

1 class MuLENamesValidator extends AbstractMuLEValidator {

2 @Inject MuLEScopeProvider scopeProvider

3 override void register(EValidatorRegistrar registrar) {}

4

5 @Check

6 def checkDuplicateNamesForFeatures(NamedElement nElem) {

7 var reservedNames = newArrayList

8 reservedNames.addAll(ReservedNames.reservedJavaKeywords)

9 reservedNames.addAll(ReservedNames.reservedJavaNames)

10 reservedNames.addAll(ReservedNames.reservedMuLEKeywords)

11 if (reservedNames.contains(nElem.name)) {

12 error("Use of this name is not allowed. You are attempting to use a reserved

13 word as an identifier.", MuLEPackage.Literals.NAMED_ELEMENT__NAME);

14 }

15 var container = nElem.eContainer

16 if (container !== null) {

17 var scope = scopeProvider.getVisibleSymbols(container, nElem)

18 for (elem : scope.allElements) {

19 var currentElement = (elem as IEObjectDescription).EObjectOrProxy

20 if (nElem.name.toString().equals(elem.name.toString())

21 && currentElement !== nElem) {

22 error("An element with such name already exists. Use a different name for

23 this element.", MuLEPackage.Literals.NAMED_ELEMENT__NAME)

24 }

25 }

26 }

27 }

28

29 @Check

30 def checkUnitNameSameAsImportedLibrary(CompilationUnit unit) {

31 for (_import : unit.imports) {

32 if (unit.name.equals(_import.importedNamespace.name)) {

33 error("Naming conflict, the names of the importing and imported compilation

34 units must not be equal.", MuLEPackage.Literals.NAMED_ELEMENT__NAME)

35 }

36 }

37 }

38 }

Listing 129: The MuLENamesValidator class.

The naming validator relies on the scope provider, which computes visible
named elements at specific places in the source code (more in section 8.4.2).
The naming validator contains just two check methods. The first one is invoked
for every instance of NamedElement and its first task is to check if the name of
the element is equal to one of the reserved names. The lists of reserved names

248

include MuLE keywords for obvious reasons, as well as Java keywords and other
reserved names, like commonly used Java types, to prevent naming conflicts in
the generated Java code. If the name of the checked element is included in one
of these lists, an error message is displayed in the editor marking the name of
the element. Additionally, we have to check if there are no two elements with
the same name in the same namespace. For this task, we use the injected scope
provider to get all visible elements at the position of our named element. If one of
these elements has the same name as our current named element, a corresponding
error message is displayed.
The second method checks instances of CompilationUnit explicitly. Its task is

to ensure, that the import instructions do not state the same name as that of the
compilation unit. The purpose is to prevent confusion, for example if the task of
the students is to test the Turtle library, they might name their program also
Turtle, which will cause the import Turtle instruction to attempt to import
the program itself.
In section 8.4.1, we have spoken about the necessity of type checks. These

checks are performed by the type validator, which relies heavily on the type
provider discussed in section 8.4.3. The type validator works by the same principle
as the name validator, i.e. the constraint checking is performed by a set of
@Check annotated methods. However it also includes utility methods, such as
checkExpectedType, which is used by most of the type check methods, as well as
the methods isCompatibleType and isEqualType, the first one checks if one type
if compatible to another according to the rules defined in section 5.5.12 and the
other one checks if two types are equal. The method checkExpectedType relies on
isCompatibleType, and displays an error message at the offending expression if
the types are not compatible. Apart from the expected type and the actual type,
this method accepts the reference to the source code location in the editor, which
is used to accurately display the error message if the types are not compatible,
as well as the context, which is used in specific cases. Furthermore, the type
provider stores error codes, which are not the actual error message, but are used
identify the errors in the quick fix provider (see section 8.5.5).
An excerpt of the type provider is demonstrated in listing 130, we can see the

injection of the type provider, an example of an error code and two checkType

methods, one for statements and one for expressions. Let us start with the
validation check of the OrExpression, which is a binary expression consisting of
a left-hand and a right-hand side. Both sides must contain truth values, i.e. they
must be typed as boolean. We use the type provider to get the types of both
sides and invoke the checkExpectedType method to check, whether these types
are actually instances of BasicType with typeName boolean.
The other example is that of the ReturnStatement, which may or may not

have an expression depending on whether the containing operation has a return
type or not. What we have to do first, is get the type of the containing operation.
Since the immediate container of the return statement must not necessarily be

249

an operation, we must navigate through the containers of the statement until we
find one, which may be either an instance of Operation or LambdaExpression,
and then use the type provider to get its return type. Next, we check if the return
statement is actually allowed to be empty or not, e.g. if the return type of the
operation is not null but the expression reference of the return statement is null,
we have an empty return statement in a function and show a corresponding error
message. This error message refers to an error code, which is stored in line 5 in
listing 130, the quick fix provider can use this error code to generate a placeholder
expression. We also have to check the inverse case, i.e. if a non-empty return
statement is contained in a procedure. And finally, we must check if the type of
the expression in our return statement is compatible to the return type of our
operation, or if both are null.

1 class MuLETypeValidator extends AbstractMuLEValidator {

2 @Inject extension MuLETypeProvider

3 override void register(EValidatorRegistrar registrar) {}

4

5 public static val ERROR_ILLEGAL_RETURN_NO_VALUE = "IllegalReturnStatementNoValue"

6

7 @Check

8 def checkType(Statement s) {

9 switch (s) {

10 ReturnStatement: {

11 var opType = null as DataType

12 // get the type using the injected type provider

13 if (opType !== null && s.expression === null)

14 error("An empty return statement is not allowed in an operation with

15 a return type.", MuLEPackage.Literals.RETURN_STATEMENT__EXPRESSION,

16 ERROR_ILLEGAL_RETURN_NO_VALUE)

17 // check for non-empty return statements in operations without a return type

18 else checkExpectedType(typeFor(s.expression, s), opType,

19 MuLEPackage.Literals.RETURN_STATEMENT__EXPRESSION, s)

20 }

21 // further cases

22 }

23 }

24

25 @Check

26 def checkType(Expression s) {

27 switch (s) {

28 OrExpression: {

29 checkExpectedType(typeFor(s.left, s), MuLETypeProvider::BOOLEAN_TYPE,

30 MuLEPackage.Literals.OR_EXPRESSION__LEFT, s)

31 checkExpectedType(typeFor(s.right, s), MuLETypeProvider::BOOLEAN_TYPE,

32 MuLEPackage.Literals.OR_EXPRESSION__RIGHT, s)

33 }

34 // further cases

35 }

36 }

37 // further check methods, utility methods and error codes

38 }

Listing 130: An excerpt of the MuLETypeValidator class.

250

Finally, a lot of validation checks have nothing to do with naming or the type
system, for example checking for cyclic inheritance, if a program unit has a main
procedure, or if the integer literal starts with a zero. These rules are combined in
the MuLEValidator class, which also acts as the main validator, i.e. it references
both previously discussed validators. In other aspects, it is implemented in a
similar way as what we have already discussed.

8.4.5. Code Generation to Java

Once the AST has been successfully validated we can use it to generate Java
code, which can then be executed on the Java virtual machine, which allows
to use MuLE on any operating system that supports Java. The Xtext genera-
tor is integrated in the Eclipse building infrastructure [110], i.e. it is executed
automatically each time the source file is changed and saved.

Mapping of MuLE Constructs to Java Constructs

Before we discuss the implementation of the generator, let us take a look at the
mapping of MuLE’s language constructs to the corresponding Java constructs,
thus demonstrating which artefacts are generated from the MuLE source code.
Each MuLE compilation unit is mapped to a separate Java class, which has the

same name as the compilation unit. Import instructions are mapped directly to
Java import statements. MuLE enumerations and compositions are mapped to
nested static enums and classes respectively. Operations are generated as static
methods of the base class. The main procedure is mapped to the main method.

MuLE type Java type Generated default value
integer Integer new Integer(0)
rational Double new Double(0.0)
string String new String(””)
boolean Boolean new Boolean(false)
list<T> ArrayList<T> new ArrayList<>()
reference<T> MuLEReferenceType<T> null
enumeration enum EnumName.FirstLiteral
composition class new ClassName()

operation<...>
Function<T,R>
Supplier<R>

A lambda expression with default
functionality based on its signature.

Table 3: MuLE types with the corresponding Java types and the generated default
values.

Let us now take a look at the mapping of MuLE types to Java types, which
is summarized in table 3. We use Integer and Double to represent integer

and rational respectively, as well as Boolean for MuLE’s boolean. This allows

251

us to use these types as type parameters of parameterized types such as list

(java.util.ArrayList) and reference (MuLEReferenceType). The MuLERefe-
renceType contains a single field value, which is accessed when a reference value
is dereferenced. As already mentioned earlier, type declarations are generated
as nested types in the classes either representing the compilation unit or the
containing composition.
The operation type is generated either as a Supplier or as Function. The

type Supplier is used to represent anonymous operations with neither param-
eters nor a return type (the generated supplier returns null, but can be only
be invoked as a procedure), or those with a return type but still lacking any
parameters. Although there are other Java types that could be more suitable
in some cases, e.g. Consumer, we have decided against using them to keep the
number of cases in the generator at the minimum. The type Function is used
to represent anonymous operations with at least one parameter but without a
return type (similarly to supplier, the generated function returns null and can be
only invoked as a procedure), or when both parameters and the return type are
present. When more than one parameter is present, we generate curried lambda
expressions to simulate anonymous operations with multiple parameters.
MuLE statements are generated the their Java counterparts as follows:

� VariableDeclaration – a variable declaration with the generated Java
type and a generated standard value, the corresponding mapping will be
given below.

� AssignmentOrOperationInvocation – if the statement is an operation in-
vocation, i.e. its type is either SymbolReference of SuperExpression, the
corresponding expression generation methods are invoked. Otherwise, both
left and right sides are generated as expressions. The invocation of the util-
ity method copyObject (section 8.4.7) is generated around the right side
in order to enforce the value copying semantics of MuLE.

� LoopStatement – is generated as a while(true) loop.

� IfStatement – as described in listing 133, it is generated simply as a Java
if-statement.

� LetStatement – is generated as a Java if-statement where the condition
of the generated if-statement is an instanceof check against the type of
the variable declared in the head of the let-statement. This variable is
generated as the first statement of the generated if-statement.

� ExitStatement – a Java break statement.

� ReturnStatement – a Java return statement with or without the return
value.

252

Finally, the expressions are mostly mapped to the corresponding Java expres-
sions. MuLE binary expressions are generated as Java binary expressions with
the corresponding operator, same applies to most of the unary expressions. For
example, let us take a look at the binary MultiplicativeExpression, if the
operator is mod, the generated operator is %, if the MuLE operator is div, the
generated operator is / which acts as integer division in Java as long as integers
are used on both sides (validations checks are implemented to enforce this in
MuLE), and if the MuLE operator is /, then both sides are cast to double simu-
lating rational division. Some expressions lack an appropriate direct counterpart
in Java. These expressions include:

� EqualityExpression – invocation of the Util.MuLEEquals method (see
section 8.4.7), which is additionally negated if the used MuLE operator is
/=.

� ExponentialExpression – invocation of the java.lang.Math.powmethod.

� ListInit – generates a new ArrayList, depending on the used MuLE list
value, an invocation of dedicated utility methods (see section 8.4.7) may be
necessary.

� Reference – generates a new MuLEReferenceType with the value of ref-
erenced expression copied (using Util.copyObject, see section 8.4.7) and
passed as the constructor parameter.

� LambdaExpression – by default, Java does not support lambda expressions
with more than one parameter. As previously mentioned, MuLE lambda
expressions with multiple parameters are mapped to curried lambda ex-
pressions in Java.

The Generator Stub

The generator stub is one of the artefacts created from the grammar, however
unlike the lexer, parser and the metamodel, the generator stub must be imple-
mented manually to be of any actual use. The generator class is written in Xtend,
which we have also used to generate strings for most single line language con-
structs, e.g. expressions, while Xpand templates are used to generate multi-line
language constructs, such as the compilation unit itself, compositions, operations
or block-based statements. A newly created generator class initially overrides the
inherited method doGenerate, which accepts an EMF Resource object, which
is basically our AST, a IFileSystemAccess2 with framework related file access
operations (creation, deletion, path management, etc.) and the also framework
related IGeneratorContext object, which tracks the cancellation indicator.

253

1 class MuLEGenerator extends AbstractGenerator {

2 @TracedAccessors(MuLEFactory)

3 static class MuLETraceExtensions {}

4 @Inject extension MuLETraceExtensions

5 @Inject extension MuLETypeProvider

6

7 override void doGenerate(Resource resource, IFileSystemAccess2 fsa,

8 IGeneratorContext context) {

9 val program = resource.contents.head as CompilationUnit

10 if (program !== null) {

11 val programName = resource.URI.lastSegment.nameWithoutExtension

12 generateTracedFile(fsa, "generated/" + programName + ".java", program,

13 ’’’package generated;

14 import mule.util.*;

15 // further imports of required Java libraries

16 ≪FOR i : program.imports≫

17 ≪var n = i.importedNamespace.name≫

18 ≪IF #["IO", "Mathematics", "Strings", "Lists"].contains(n)≫

19 import mule.lang.≪n≫;

20 ≪ELSEIF n.equals("Turtle")≫

21 import mule.turtle.Turtle;

22 import mule.turtle.Turtle.*;

23 // further imports of MuLE standard libraries

24 ≪ELSE≫

25 import generated.≪n≫.*;

26 ≪ENDIF≫

27 ≪ENDFOR≫

28

29 public class ≪programName≫ {
30 ≪FOR element : program.programElements≫

31 ≪IF element instanceof TypeDeclaration≫

32 ≪generateTypeDeclaration(element)≫

33 ≪ELSEIF element instanceof Operation≫

34 public static ≪generateOperation(element)≫

35 ≪ENDIF≫

36 ≪ENDFOR≫

37

38 ≪IF program.main !== null≫

39 public static void main(String[] args){
40 ≪FOR s : program.main.block.statements≫

41 ≪generateStatement(s)≫

42 ≪ENDFOR≫

43 }
44 ≪ENDIF≫

45 } ’’’)

46 }

47 } // further generator methods

48 }

Listing 131: The core of the generator class.

The default approach when using the Xtext code generator is to call the
IFileSystemAccess2 generateFile method in the overridden method doGe-

nerate passing it the file name and the generated text, which can be written
using an Xpand template. However, one of the requirements for the language

254

was debugging support, thus we had to make slight adjustments to the generator
by reusing the tracing mechanism which was initially implemented for Xtend,
which is seen in lines 2-4 in the shortened source code of the generator class in
listing 131.
Although the topic of this section is code generation and we have a dedicated

section for the implementation of the debugging support (section 8.5.1), the gen-
erator lays the groundwork for the debugging support. What we also see in line
5, is the injection of the MuLETypeProvider, which is discussed in section 8.4.3.
The injection mechanism allows to easily specify a dependency directly and thus
use the functionality of the injected component. The internal mechanisms of the
framework take over the task of instantiating objects for stated dependencies.
Let us take a look at the overridden doGenerate method. Instead of calling the

generateFilemethod of the IFileSystemAccess2 object, we invoke the method
generateTracedFile which we have got by injecting the MuLETraceExtensions.
We still need to pass the IFileSystemAccess2 object to it as a parameter, along
with the path of the generated file, the root of the AST (program), as well as the
content of the generated file, which is defined by an Xpand template.

Generation of Compilation Units and their Elements

In the template, we see textual content coloured blue which is generated as it
is, as well as Xpand constructs which we use to iterate over specific nodes of
our AST to generate the corresponding strings which depend the contents of
the AST. For example, every generated class requires a specific set of imports,
e.g. the contents of the mule.util package which is distributed with MuLE
and contains, among others, utility operations, such as the implementation of
the MuLE value copying semantics (see section 8.4.7), meaning that this import
is always generated. However, not every library is required, both standard and
user defined libraries are manually imported in MuLE compilation units, meaning
that the import instructions are present as nodes in our AST. We iterate over
these nodes and generate the corresponding strings depending on whether it is
a standard library or one defined by the user. The name of the program itself
is also the name of the generated Java file (thus, also the name of the generated
class), the difference is in the path. While the MuLE files are located in the
source folder src, the generated files are located in the package generated in the
source folder src-gen. Since we are using the generateTracedFile, in addition
to the Java file, a hidden trace file is generated in the same folder with tracing
information between the original MuLE file and the generated Java file, which
can be used to implement debugging support (more in section 8.5.1). This allows
us to simply generate the import instructions of user defined libraries using the
name of the library with the prefix import generated., however, this also means
that as soon as the users make changes to the generated files (which they should
not do), the generated code will stop working.

255

In a similar fashion, we iterate over ProgramElement nodes of our AST to gen-
erate type declarations and operations, if there are any, and ultimately generate
the main procedure, again if it is present in our source compilation unit. Types
are generated as static nested types in the generated class while operations are
generated as static methods, unless they are member operations of compositions.
The generated visibility modifier of all Java elements is always public, regardless
of the actual visibility modifier of the MuLE element. This results in a simpler
generator code, while the visibility checks performed by the scope provider (sec-
tion 8.4.2 ensure that the scoping rules (section 5.1) are enforced in the MuLE
source code.

1 @Traced def private generateOperation(Operation op) {

2 ’’’

3 ≪op.generateOperationSignature≫≪IF op.abstract≫;≪ELSE≫{
4 ≪FOR s : op.block.statements≫

5 ≪s.generateStatement≫

6 ≪ENDFOR≫

7 }
8 ≪ENDIF≫

9 ’’’

10 }

11

12 def private generateOperationSignature(Operation op) {

13 var n = ""

14 if (op.abstract) n += "abstract "

15 if (op.type === null) n += "void"

16 else n += generateType(op.type)

17 n += " " + op.name + "("

18 for (p : op.params) {

19 n += generateType(p.type) + " " + p.name

20 if (!op.params.get(op.params.size() - 1).equals(p))

21 n += ", "

22 }

23 n += ")"

24 return n;

25 }

Listing 132: Methods tasked with generating operations.

We will use operations to demonstrate further generator functionality. The
general approach depicted in listing 132 is to generate the method signature, and
if it is not abstract, the method body too. To generate the method body, we
must iterate over all statements of the corresponding block and generate them
too, which ultimately requires generating expressions in most cases. This ap-
proach applies more or less to the generation of type declarations and the main
method too, thus we will not look into them. The generateOperation method
is invoked from within the core Xpand template in listing 131 and provides an-
other template tasked with generating Java code from Operation nodes in the
AST. This method is marked by the annotation @Traced, meaning that it is
used as a part of the traced code generation procedure initiated with the invo-
cation of the generateTracedFile method. As mentioned earlier, in addition

256

to the generated Java code we get a trace model in a separate file. The method
generateOperationSignature, which is written in pure Xtend is meant to sim-
plify the template in generateOperation, it provides a simple string based on
the information stored in the passed Operation object.

Generation of Statements

Statements are generated in a similar way (see listing 133), however, the anno-
tation @Traced additionally specifies, that the value useForDebugging is set to
true. This means that the nodes that representing statements in the trace model
are intended to be used for the purpose of debugging, i.e. the program will stop
at the line of code represented by this node if a breakpoint is placed at this line.

1 @Traced(useForDebugging=true) def private generateStatement(Statement s) {

2 switch s {

3 VariableDeclaration: { ’’’≪generateVariableDeclaration(s)≫;’’’ }

4 IfStatement: { ’’’≪generateIfStatement(s)≫’’’ }

5 // further statements

6 }

7 }

8

9 def private String generateVariableDeclaration(VariableDeclaration varDec) {

10 var type = varDec.type

11 var staticType = generateType(type)

12 var result = staticType + " " + varDec.name

13 + " " + generateInitialValueForType(varDec.type)

14 return result

15 }

16

17 @Traced def private String generateIfStatement(IfStatement c) {

18 ’’’

19 if(≪generateExpression(c.expression)≫){
20 ≪FOR s : c.block.statements≫

21 ≪generateStatement(s)≫

22 ≪ENDFOR≫

23 }
24 ≪FOR elif : c.elseIfs≫

25 else if (≪generateExpression(elif.expression)≫){
26 ≪FOR s : elif.block.statements≫

27 ≪generateStatement(s)≫

28 ≪ENDFOR≫

29 }
30 ≪ENDFOR≫

31 ≪IF c.elseBlock !== null≫

32 else {
33 ≪FOR s : c.elseBlock.statements≫

34 ≪generateStatement(s)≫

35 ≪ENDFOR≫

36 }
37 ≪ENDIF≫

38 ’’’

39 }

Listing 133: Methods tasked with the generation of statements.

257

This does not mean that we can now place breakpoints in our MuLE file, the
actual logic for breakpoint placement in MuLE files is discussed in section 8.5.1.
The method generateStatement checks the actual type of the passed Statement

object and executes the corresponding generation method.
The variable declaration is a single line statement, we use pure Xtend to gener-

ate this statement. The type of a variable as well as its initial value are generated
by separate methods. The if-statement is a multiline construct, therefore the
corresponding method is providing another Xpand template. The MuLE if-
statement is generated simply as a Java if-statement, the conditional expression
is generated by its own method. Since the if-statements may have several paths
defined by additional ElseIf objects and an optional elseBlock, we have to
check whether they are present, generate the corresponding Java code represent-
ing these constructs as well call generateStatement for each statement within
their respective blocks. Single line statements are generated with a trailing semi-
colon, the multiline statements are not.

Generation of Expressions

The expressions range from single literals to complex constructs like lambda ex-
pressions, we have selected a few examples for various cases (listing 134). Literals,
like the IntegerConstant, are the simplest expressions, we must simply return
the value stored in the AST node. String literals are a bit more complex, we
have to watch for escaped characters during the generation process. In case of
the ListInit expression, depending on the used notation we either generate an
empty ArrayList, an ArrayList filled with elements, wherein each element is
an expression which also must be generated, or invoke the list creation functions
of the utility class (section 8.4.7).
Binary expressions, like the OrExpression consist of two expressions and a cor-

responding operator. Some expression rules allow several different operators, e.g.
the MultiplicativeExpression, which must be considered in the corresponding
cases.
The aforementioned lambda expressions, represented by instances of Lambda-

Expression, are a special case of multiline expression. However, since all other
expressions are generated as single strings and the entire process is invoked from
within the statement generator, which expects string values when generating
expressions, we do not use a template in this case.
The issue with the templates is that when using the @Traced mode, the tem-

plates are actually typed as GeneratorNode instead of String. The generation of
statements expects strings when invoking the expression generator, which means
that we would need to convert the result back to string if we would have used a
template losing any tracing information in the process. Therefore, we have de-
cided to generate these expressions without a traced template. This also means,
that it is not possible to place breakpoints within lambda expressions.

258

The generation of the SymbolReference expression is probably the most com-
plex of all expressions, the implemented method is too large to be rationally
placed here, thus its heavily abstracted behaviour is depicted in a diagram in
figure 41. As mentioned in section 8.4.1, the instances of SymbolReference are
used to refer to named elements in expressions, when necessary, via its qualified
name. Since the named element may be a list variable, a composition declaration
or an operation, we have to distinguish between these cases. When a compo-
sition is referenced, we generate a Java constructor call based on whether the
composition value constructor has attributes or not. Any declared composition
is generated as a Java class with two constructors, one that is empty and another
one with all fields including those inherited from its super types.

Figure 41: An activity diagram depicting the behaviour of the generateSymbol-

Reference method.

259

1 def private String generateExpression(Expression e) {

2 switch e {

3 IntegerConstant: return e.value

4 ListInit: return generateListInit(e)

5 SymbolReference: return generateSymbolReference(e)

6 OrExpression:

7 return generateExpression(e.left) + " || " + generateExpression(e.right)

8 LambdaExpression: {

9 var result = ""

10 if (e.parameters.empty) result += "()" + " -> "

11 for (Parameter p : e.parameters)

12 result += p.name + " -> "

13 result += "{\n"

14 for (Statement s : e.block.statements) {

15 result += traceNodeToString(generateStatement(s)

16 as CompositeGeneratorNode) + "\n"

17 }

18 if (e.type === null) result += "\treturn null;\n"

19 result += "}"

20 return result }}

21 }

22

23 def private String generateListInit(Expression expr) {

24 var result = ""

25 if (expr instanceof ListInit) {

26 var right = (expr as ListInit).right

27 if (right === null) { result = "new ArrayList(Arrays.asList())" }

28 else {

29 switch right {

30 ListInitElements: {

31 result = "new ArrayList(Arrays.asList("

32 if ((expr as ListInit).left !== null)

33 result += (expr as ListInit).left.generateExpression

34 for (e : right.elements)

35 result += "," + e.generateListInit

36 result += "))" }

37 ListInitFunction: {

38 if (right.op.equals("**")) {

39 var rightType = typeFor(right.expression, null)

40 result = "mule.util.Util.fillListRepetition("

41 + (expr as ListInit).left.generateExpression

42 + ", " + right.expression.generateExpression

43 + ", \"" + copyObjectHelper(rightType, expr) + "\")"

44 } else if (right.op.equals("..")) {

45 result = "mule.util.Util.fillListRange("

46 + (expr as ListInit).left.generateExpression

47 + "," + right.expression.generateExpression + ")" }}}}}

48 else { result += expr.generateExpression }

49 return result

50 }

Listing 134: A selection of rules tasked with the generation of expressions.

If the currently referred element is an operation and the expression lacks an
access modifier, meaning that the operation is not invoked in the source code,
we generate a lambda expression which copies the functionality of the referred

260

operation. This allows us, for example, to pass named operations as parameters
to other operations, with some exceptions: it is not possible to pass named
operations which are members of compositions or are imported from a library,
since they could reference outer context which could be not available.
However, if the referred element is neither a composition nor an operation, or it

is an operation with an operation invocation access modifier, we add the name of
the referred element to the result and generate all access modifiers depending on
their type, i.e. an operation invocation with actual parameters, a .get(INDEX)

in case of a list access or a .value if it is a dereference.
The next step is to check if we can cast the generated expression to its type.

Why do we need to do that? For example, let us assume we have two variables a :

list<reference<A>> and b : list<reference>, with B being a subtype of
A, the assignment a := b is valid in MuLE. However, if we generate the Java types
for these variables directly as they are, i.e. ArrayList<MuLEReferenceType<A>>
and same for B, we can no longer perform this assignment in Java. Since lists are
reference types in Java, this assignment would create two aliases with different
type parameters of the same list object, allowing to store instances of A in the
same list in which we can except to access all features defined in B. This is not a
problem in MuLE, since the list is copied. The corresponding compilation errors
in Java are circumvented by avoiding the generation of the type parameter of
the MuLEReferenceType and casting of the generated expressions instead. We
generate a type cast as long as it can be done according to Java rules, i.e. it is
not a procedure invocation, not a super expression and the referenced element
is not the left side of an assignment (its parent symbol references are valid for
casting though).

Example of Code Generation

Let us take a look at a simple example of generated code, we have two small
compilation units demoProgram and demoLibrary. The generated Java code can
be seen in listings 135 and 136 respectively. It should be noted, that we have
shortened the examples of the generated code considerably, e.g. by removing
empty lines, unnecessary imports, comments, etc. Furthermore, the generated
code is generally not well formatted, and is thus not easy to read compared to
hand written code. If we would make these changes to the generated code in our
project, we would at very least break debugging support, which depends on line
information which was actual at the time of code generation.
As we see, both Java classes have the same names as the original MuLE

units, both are located in the package generated. Note that the import of the
demoLibrary unit is generated as import generated.demoLibrary.*;, while
the import of the standard library IO has a different qualified name. The im-
port of the util package is generated automatically. Line 8 in listing 135 shows
a generated variable declaration with the corresponding default value. We can

261

also see examples of generated code for pretty much every statement, except for
the let-statement. As we can see, when a value is passed to a data container,
the copyObject method is invoked. Similarly, the equality is checked by the
MuLEEquals utility method (more in section 8.4.7).

1 program demoProgram

2 import demoLibrary

3 main

4 variable i : integer

5 loop

6 if i = 5 then

7 exit

8 endif

9 demoLibrary.printIntLine(i)

10 i := i + 1

11 endloop

12 endmain

1 library demoLibrary

2 import IO

3

4 operation printIntLine(parameter i : integer)

5 IO.writeInteger(i)

6 IO.writeLine()

7 endoperation

1 package generated;

2

3 import mule.util.*;

4 import generated.demoLibrary.*;

5

6 public class demoProgram {

7 public static void main(String[] args){

8 Integer i = new Integer(0);

9 while(true){

10 if(mule.util.Util.MuLEEquals(((Integer)i), 5)){

11 break;

12 }

13 demoLibrary.printIntLine(mule.util.Util.copyObject(((Integer)i), "Integer"));

14 i = mule.util.Util.copyObject(((Integer)i) + 1, "Integer");

15 }

16 }

17 }

Listing 135: The shortened generated code of the demoProgram compilation unit.

1 package generated;

2

3 import mule.util.*;

4 import mule.lang.IO;

5

6 public class demoLibrary {

7 public static void printIntLine(Integer i){

8 IO.writeInteger(mule.util.Util.copyObject(((Integer)i), "Integer"));

9 IO.writeLine();

10 }

11 }

Listing 136: The shortened generated code of the demoLibrary compilation unit.

262

8.4.6. Implementation of Standard Libraries

The standard libraries are implemented using Java. For each standard library,
a .mule file, which acts as an interface to the Java implementation, is provided
and can be imported by the user. The .mule file is basically a MuLE library unit
with type declarations and operations, the latter are not implemented and may
even lack a return statement. The library units representing standard libraries
are parsed, but not validated. This means that when importing them, we get an
AST and can refer to their elements, but we get no errors if an operation with a
return type lacks a return statement in this unit. As we have said, they are meant
to be used as interfaces for the actual Java implementations, which are imported
in the generated code. This approach allows to implement functionality, which
is otherwise not possible with the constructs offered by MuLE.

A short example of this approach is demonstrated in listings 137 and 138. The
former contains an excerpt of the standard library IO (section 6.1) defined by
its importable MuLE unit, while the latter demonstrates its actual Java imple-
mentation. As we can see, the operations in the MuLE unit do not specify any
functionality, moreover, the library would not even compile if we would write it
on our own since the operation readString lacks a return statement. However,
if we import this library in our program, the parser will be able to create an
AST from it, meaning that we can then invoke the operations regardless whether
they are implemented or not. The generator (see section 8.4.5) will generate the
instruction import mule.lang.IO; in the Java code, resulting in the invocation
of Java implemented method.

1 library IO

2

3 operation writeString(parameter arg : string) endoperation

4

5 operation readString() : string endoperation

Listing 137: An excerpt of the IO MuLE library unit.

1 package mule.lang;

2 public class IO {

3 static Scanner sc = new Scanner(System.in);

4

5 public static void writeString(Object arg) {

6 System.out.print(arg);

7 }

8

9 public static String readString() {

10 String result = sc.next();

11 sc.nextLine();

12 return result;

13 }

14 }

Listing 138: An excerpt of the Java implementation of the IO library.

263

As we have mentioned in chapter 6, some of the standard libraries were imple-
mented by students of the University of Bayreuth, i.e. Turtle, UBTMicroworld,
and GUIFactory. They have provided the Java implementation of these libraries,
which was later integrated in MuLE using the approach described above. The
implementation of the Turtle library was designed from the very beginning with
MuLE in mind resulting in a very simple integration process, i.e. the imple-
mentation already included a single Java interface, for which we had to provide a
corresponding MuLE interface. This was not the case with the other two libraries
resulting in a more complex integration process. Among other actions, we had to
wrap the return types of the factory methods as MuLEReferenceTypes to make
it compatible to the type system of MuLE. On the other hand, this served as a
proof, that even more complex Java libraries can be integrated into MuLE, using
the interface and the adapter patterns if necessary.

8.4.7. Utility Package

When discussing the implementation of various modules, we were constantly
confronted with the utility methods, such as the copyObject method. As we
have seen in the implementation of the generator, the contents of the package
mule.util are imported into any generated Java class. This package contains
the classes MuLEReferenceType, Util, and MuLEObjectCopyProvider.
The class MuLEReferenceType serves as the wrapper type for reference types.

In MuLE, we can wrap any type as a reference type and any expression as a
reference expression, which creates an instance of MuLEReferenceType with the
expression providing its referenced value. The toString method of this class
provides the string representation of the values of this type, that are seen in the
debugger or when printed on the console.
The class MuLEObjectCopyProvider creates copies of AST nodes, when simply

passing the reference to a node would break the AST since an EMF object may
only be contained within one container at any time. For example, if we pass a
named operation as data, we create a lambda expression with the same seman-
tics. Each parameter, the return type as well as each statement of the original
operation is copied using this class, otherwise the AST node representing the
source operation would be emptied of its structural features afterwards.
And finally, we have the Util class, which provides utility methods mostly

invoked in generated Java classes. For instance, this class provides the meth-
ods which implement MuLE’s equality and value copying semantics (see section
5.5.13). The implementation of the equality semantics for most of the types is
fairly simple, e.g. if both values are of numerical but different types, they are
converted to Double and the results are compared. However, if we have two com-
positions, we have to rely on reflection to decide, which object is instance of the
subtype of another in order to invoke the correct equals method. For example,
we have two objects p2d (Point2D{x = 2, y = 3}) and p3d (Point3D{x = 2,

264

y = 3, z = 5}), with Point3D being a subclass of Point2D. If the classes were
not related, we would return false in the MuLEEquals method. However, since
they are, we need to invoke the generated equals method. Since these are value
types, we can only compare the shared attributes. The generated equals method
for each composition contains an instance check against the current type as well
as comparisons of all owned and inherited attributes, i.e. invoking equals on p2d

would result in a instanceof Point2D check and subsequent comparison of the
respective values of x and y, meaning that p2d.equals(p3d) would result in true
while p3d.equals(p2d) in false. Since we can write both p2d = p3d and p3d =

p2d in MuLE and expect true in each case, the MuLEEquals method checks which
way the comparison should be actually performed and returns the result.

A similar issue has to be handled in the copyObject method, which imple-
ments the value copying semantics. If the copied object is null, a reference, a
value of a basic type or a function, we simply return this object. If it is a list, we
create a new list and copy the entries of the source list recursively. However, if
we have a composition, we use reflection to create an instance of the target class,
the class name is passed as string to the method and then used to search for
the class in the workspace, and then iterate over the declared fields of the target
class to copy values of these fields (again recursively) into the target object, thus
ensuring that only shared attributes are copied. For example, let us take a look
at the assignment p2d := p3d. The source object is p3d with three attributes,
while the target class Point2D specifies only two. We first use the type provider
to get the type of the left side of the assignment, which is Point2D, then gener-
ate the corresponding qualified name, e.g. CompilationUnitName$Point2D, and
then invoke copyObject with p3d and the qualified name of the target class as
parameters. Inside of the method, we locate the target class by its qualified name
and create an instance of it. We continue by iterating over the fields declared in
class Point2D, apart from sone internal fields there are x and y, which are then
searched in the source object and the values are copied (by invoking copyObject

with the corresponding parameters) into the new instance of Point2D.

8.5. UI Modules

The focus of this section lies on the implementation of the user interface modules
contained in the de.ubt.ai1.mule.ui plugin. These modules provide tool sup-
port within the Eclipse IDE and are thus less relevant should MuLE be ported
to another IDE one day. The general approach for most of the modules is similar
to what we have already seen in the previous section, however, in addition to the
AST we will also rely on the parse tree for some of the UI modules.

265

8.5.1. Launch Shortcuts and Debug Support

Initially, the DSL created with Xtext acts as a source from which runnable code,
e.g. Java, is generated. The users were then meant to execute the generated Java
code directly, i.e. although the program was written using the DSL, the users
were still confronted directly with the generated code. This was not acceptable
in case of MuLE, we wanted to create a simple tool for education by reducing
the overall overhead, not increasing it. Therefore, we had to implement shortcuts
which would allow users to execute MuLE files directly, without navigating to
the generated Java files first.
To achieve this, we took inspiration from Xtext projects which relied on the

Xbase grammar, as we have mentioned in section 8.4.1 this is an expression gram-
mar which, when used as a basis for the implemented DSL, also automatically
provides debug support, among other artefacts. By reverse engineering (with the
help of Xtext developers) the generated Xtext infrastructure as well as the gen-
eral launch process of Eclipse projects, we were able to provide launch shortcuts
and debug support for our own language without using the Xbase grammar.

Figure 42: A simplified diagram demonstrating the relations of the classes responsible
for the execution of MuLE files.

By using plug-in extensions as well as Xtext components registration mech-
anism, we have registered two launch modes, run and debug, both of which
rely on the class MuLELaunchShortcut which implements the Eclipse interface
ILaunchShortcut responsible for launching the selected file or the contents of
the active editor in the workbench (see figure 42). In the implemented launch

method, we can get the project name and, ultimately, the path to the gener-
ated Java file from the editor input, i.e. the MuLE file. From this data we
create the launch configuration and pass it along to the launching procedure of
Eclipse. Additionally, we had to redefine the JavaSourceLookupDirector (as
MuLESourceLookupDirector), which is responsible for the location of the MuLE
source file at a later stage, when the correct line in the debugging process has to be
displayed. We also had to provide our own extension of the JavaLaunchDelegate
as MuLELauchDelegate, which uses the MuLESourceLookupDirector instead of
its Java variant.

266

Figure 43: A simplified diagram demonstrating the relations of the classes responsible
for the placement of breakpoints within MuLE files.

The launch shortcut alone is not sufficient to actually enable the creation of
breakpoints. To implement debug support for Xtend and Xbase based DSLs, the
developers of Xtext have provided the class StratumBreakpointAdapterFactory,
which links the logic related to the creation, removal and toggling of breakpoints
to the XtextEditor. In order to fully provide debug support for MuLE, we had to
specify and register our own text editor class MuLEEditor by extending the default
XtextEditor as well as an extension of StratumBreakpointAdapterFactory

(see figure 43). We register our own MuLEStratumBreakpointAdapterFactory

as the adapter for MuLEEditor. The breakpoint adapter factory uses an imple-
mentation of IStratumBreakpointSupport which provides the logic for decision
making, whether the selected line is valid for placing a breakpoint, or not. In our
implementation of the method isValidLineForBreakpoint, we iterate through
the parse tree to locate the text region which corresponds to the passed line.
Then, we get the corresponding AST node and return true, if the node is an
instance of one of the state altering single line statements, i.e. a variable dec-
laration, an assignment, an invocation of a procedure, or a return statement,
and the line in the text region is equal to the line parameter. If the AST node
is a block, a block based statement, a composition or a compilation unit, we
invoke isValidLineForBreakpoint again to search within these constructs for
statements, where we can place a breakpoint. In other cases we return false
signalizing that we can not place a breakpoint in this line. Finally, we have to
register the double click action and a pop-up action on the ruler in our text editor
using the Eclipse plug-in extensions.

In the implementation of the generator (section 8.4.5), we have used a trace

267

Figure 44: Content of the hidden trace file generated along the executable Java file.

based generator, which, as we have said, generates an additional trace model
based on the parse tree, which is then used to link regions in the source code
of the DSL file to the corresponding regions in the generated file. Let us take
a look at such a trace file demonstrated in figure 44, which was generated from
a simple program. In the screenshot we see both the trace model (shortened
in the screenshot) and the textual representation of the currently selected node.
In the textual representation, we see both the source MuLE file on the right,
the generated Java file on the left and the textual representation of the trace
regions at the bottom. The trace model consists of a tree of debug trace regions,
we have selected the root node which represents the entire program unit. The
trace regions are enumerated, i.e. we can quickly identify which regions are
linked, e.g. the variable declaration is marked as region 02 in both the source
and the target file. Furthermore, if we look at the textual representation of the

268

regions at the bottom of the screenshot, we see that this region is additionally
marked as D, which means that it can be used for the purpose of debugging. The
marker D is placed on regions that were generated using the generator annotation
@Traced(useForDebugging=true), meaning that if we place a breakpoint at this
line, it will be actually registered and the program will halt. As a reminder, only
the statements are generated using this annotation and only specific statements
can return true in the method isValidLineForBreakpoint. This means, that we
can place a breakpoint in the line with the variable declaration, when debugging,
the trace model is checked whether we can actually use this breakpoint, and if it is
the case, the execution of the Java program will be halted and the corresponding
line will be displayed in the MuLE editor by tracing the line from the Java file
to the MuLE file.

In a nutshell, this allows us to place breakpoints in our MuLE text editor as
well as execute MuLE files both in run and debug mode. In both cases, we select
the MuLE file and the underlying implementation locates the corresponding gen-
erated Java file and executes it. In case of the run mode, the program is executed
normally and all breakpoints are ignored. When launched in debug mode, the
tracing model is used to display the correct line in the MuLE editor based on the
line in the executed Java program. The process is as follows, we place a break-
point in the MuLE editor, then execute the program in debug mode. The Java
code is executed with the framework keeping track between the executed Java
code and the MuLE source code and halting the program at the appropriate Java
line at the same time displaying the corresponding MuLE line in the editor. We
do not need to provide an implementation for the actual halting of the executed
Java code, this is taken over by the Xtext framework and Eclipse itself.

8.5.2. Syntax Highlighting

The default syntax highlighting already does a decent job, e.g. it marks keywords
and string literals by distinct colours while everything else remains black. Addi-
tionally, we wanted to mark references to data types in our source code by a differ-
ent colour. To achieve that, we have extended the DefaultHighlightingConfi-
guration and implemented the interface ISemanticHighlightingCalculator.
The class MuLEHighlightingConfiguration defines and registers the text style
(orange and bold) for data type references, while MuLESemanticHighlighting-

Calculator iterates over the parse tree and if the grammar element in the current
node is either a DataType reference, which, for example, occurs in a variable dec-
laration, or the identifier of a type declaration, we get the location and the length
of the textual region and use the previously defined custom text style to mark
this region. All other textual nodes are covered by the default implementation.
Since both of these classes are not automatically generated artefacts, we had to
manually register them in the specific class reserved exactly for this task.

269

8.5.3. Outline Tree Provider

The outline tree (section 7.1) offers a quick overview over the source code. The
default implementation is insufficient, it generates nodes for every element in the
AST including expressions or keywords resulting a cluttered tree. Moreover, since
some of these elements lack specific information required during the creation of
the outline tree, e.g. an identifier, a lot of the nodes are generated as <unnamed>,
resulting in a clearly unfinished look.

To alleviate this, Xtext automatically generates an outline provider stub, which
must be customized by the developer of a DSL in order to implement a proper
outline tree. An excerpt of the implemented stub is displayed in listing 139.
First, we have to define which elements of our outline tree are leaves, i.e. they
will have no further children. For example, we have specified that nodes created
for instances of compilation units are leaves, which might sound like a problem
at first, after all, we want to create an entire tree for our compilation unit. Other
leaves are for example the main procedure or all operations.

1 class MuLEOutlineTreeProvider extends DefaultOutlineTreeProvider {

2 @Inject extension MuLETypeProvider

3 @Inject StylerFactory stylerFactory

4

5 def _isLeaf(CompilationUnit a) { true }

6 // further leaf definitions, e.g. MainProcedure, Operation, etc.

7

8 def void _createChildren(DocumentRootNode outlineNode, CompilationUnit program) {

9 createNode(outlineNode, program)

10 for (importStatement : program.imports) {

11 createNode(outlineNode, importStatement)

12 // Create nodes for visible content of the imported library.

13 }

14 for (programElement : program.programElements)

15 createNode(outlineNode, programElement)

16 if (program.main !== null)

17 createNode(outlineNode, program.main)

18 }

19

20 def Object _text(CompilationUnit program) {

21 var result = new StyledString()

22 if (program.isLibrary)

23 result.append("library ",

24 stylerFactory.createXtextStyleAdapterStyler(getNodeTypeTextStyle()))

25 else

26 result.append("program ",

27 stylerFactory.createXtextStyleAdapterStyler(getNodeTypeTextStyle()))

28 if (program.name !== null)

29 result.append(program.name)

30 return result

31 }

32 // further _text methods, as well as methods defining text styles

33 }

Listing 139: An excerpt of the MuLEOutlineTreeProvider class.

270

If we look at the method createChildren, we notice why making a compila-
tion unit a leaf is not an issue, but rather a necessity. This method creates our
outline tree by invoking the inherited method createNode. The created nodes
are then added to the passed root node. Another parameter is an instance of
our compilation unit, for which we instantly create a node. The root node is not
actually displayed in the outline view, creating a leaf for our compilation unit
creates a corresponding element in the view as the very first entry, so that we
can actually see the type and the identifier of our compilation unit in the tree.
The strings, that are displayed in the view, are provided by the text methods.
For example, for our compilation unit, we append the string library or program
as a grey styled string and the normally styled name of the program, and return
the result.

We then create the nodes for import instructions, which are not leaves, i.e. we
can unwrap them to see the imported elements. Same applies to type declarations,
meaning that we can see literals of enumerations and members of compositions.
Operations are, however, leaves similar to the main procedure. This also explains,
why the CompilationUnit entry must be leaf, otherwise, we would have the
created children not only in the immediate tree, but also for every compilation
unit node resulting in duplicated entries in our tree. We use orange styled strings
for data type references and identifiers of type declarations.

Figure 45: An example of a source program and the resulting outline tree.

Figure 45 demonstrates an example of an outline tree created from a simple
program. As we can see, the first child of our tree is a program outlineDemo

element, recognizable as a leaf since we cannot expand it. Again, if we could, we
would get the same content that is already displayed here. The next child is the
import IO node, we can expand it to get an overview over imported operations.
The identifier of the node representing the type declaration RGB is coloured or-
ange, its literals are visible if we expand the node. The children representing the
operation and the main procedure are both leaves, we cannot see their statements
in the outline tree. However, we still can see the parameter of the operation, the

271

parameters are included in the styled strings which represent the operations in
the tree.

8.5.4. Proposal Provider

The proposal provider generates content proposals when the content assist func-
tion of the IDE is invoked, e.g. by pressing the Ctrl+Space key combination.
The default implementation displays allowed keywords as well as visible iden-
tifiers. However, we wanted to provide more information when displaying the
identifiers. For example, instead of a simple operation name, which is the case
when using the default implementation, we wanted the proposal to be marked
with the keyword operation followed by its name and the parameter profile.
Conveniently, Xtext generates a proposal provider class stub which extends the

default implementation. We have redefined the implementation of the method
tasked with creation of proposals for symbol references. We use the injected
scope provider to get all visible elements at the current position of our cursor,
and then create proposals for each visible element. The proposals consist of two
string values, a label, which is displayed in the content assist pop-up window, as
well as the generated proposal string in the source code once one of the labels
was selected. The approach of creation of these strings is similar to that used in
the generator, i.e. create a string based on the information stored in the AST
node. The injected type provider is used to get the types of typed elements.
For example, if we invoke the content assist in the main procedure of the

program in figure 45, one of the proposed elements will be the operation foo, the
corresponding label in the content assist view is operation foo(parameter arg

: integer) : integer, while the generated proposal is foo(ARG INTEGER).

8.5.5. Quickfix Provider

During the discussion of the implementation of the validator in section 8.4.4,
we have encountered error codes, which were passed when displaying an error
message. We have also mentioned, that these error codes are used in the imple-
mentation of the quick fix provider, an excerpt of which is displayed in listing
140.
Generally, when one or more quick fixes are implemented for a validation error,

which is identified by its error code, Eclipse will show available quick fixes when
hovering over the location of the error with the mouse. For example, if a return
statement is contained in an operation with a return type, but lacks an expression,
we will get an error message and the program will not compile. This particular
error message is identified by the error code ERROR ILLEGAL RETURN NO VALUE,
the implemented quick fix appends a placeholder string to the return statement
and replaces the erroneous text fragment in the source code with the new string.
Although it does not fully solve the problem, the placeholder must also be re-

272

placed by a meaningful expression, this should still help programmer novices to
solve the problem. Finally, as already mentioned in sections 7.1 and 8.4.4, it is
not possible to implement useful quick fixes for all validation errors.

1 class MuLEQuickfixProvider extends DefaultQuickfixProvider {

2 @Fix(MuLETypeValidator.ERROR_ILLEGAL_RETURN_NO_VALUE)

3 def returnAddValue(Issue issue, IssueResolutionAcceptor acceptor) {

4 acceptor.accept(issue, ’Add a value placeholder to the return statement.’,

5 ’Add a value placeholder to the return statement.’, null) [element, context |

6 val xtextDocument = context.xtextDocument

7 val issueString = xtextDocument.get(issue.offset, issue.length)

8 val newString = issueString + " __INSERT_VALUE_HERE__"

9 xtextDocument.replace(issue.offset, issue.length, newString)

10]

11 }

12 // further methods

13 }

Listing 140: An excerpt of the MuLEQuickfixProvider class.

8.5.6. Automatic Formatting

By default, the formatter stub is not generated, although, there is an option to
activate its generation. Once generated, the auto formatter must be implemented,
because otherwise invoking the auto formatting process will format the source
code into a single line, which is probably the reason why the stub is not generated
by default.

1 class MuLEFormatter extends AbstractFormatter2 {

2 @Inject extension MuLEGrammarAccess

3 override protected void _format(XtextResource resource, IFormattableDocument document) {

4 if (resource.errors.size > 0) return

5 else super._format(resource, document)

6 }

7

8 def dispatch void format(CompilationUnit program,

9 extension IFormattableDocument document) {

10 append(prepend(regionFor(program).keyword(’library’), [noSpace]), [oneSpace])

11 append(prepend(regionFor(program).keyword(’program’), [noSpace]), [oneSpace])

12 for (importStatement : program.imports) {

13 prepend(importStatement, [newLine])

14 format(importStatement, document)

15 }

16 for (programElement : program.programElements) {

17 format(programElement, document)

18 prepend(programElement, [newLines = 2])

19 }

20 prepend(program.main, [newLines = 2])

21 append(program.main, [newLines = 3])

22 format(program.main, document)

23 }

24 // further methods

25 }

Listing 141: An excerpt of the MuLEFormatter class.

273

The general approach is to manipulate the parse tree directly, for example
by replacing the currently present white spaces around certain tokens with a
specified number of space characters, indentations or line breaks. An example is
demonstrated in listing 141, the injected MuLEGrammarAccess is used to access
the parse tree. If compilation errors are present in the source code, the formatting
process is not initiated. Otherwise, format methods are invoked for various nodes
in our AST. For example, in the case of a compilation unit node, we ensure that
there are no white spaces before the keyword program, if one is present in the
corresponding text region in the parse tree, and exactly one space character
after it. Same applies to the keyword library. Furthermore, every import

instruction is preceded by exactly one line break, and additionally formatted by
its own format method. We apply a similar pattern to all other elements of the
compilation unit, with a varying amount of line breaks in between. The methods
append and prepend do not add the specified number of white spaces to the
already present ones, but replace them instead.

8.5.7. Project and File Creation Wizards

Both the file and the project creation wizards are implemented as subtypes of
the abstract class Wizard, which acts as the standard base for wizards in Eclipse.
At some point, Xtext introduced template provider class stubs, which simplified
the implementation of wizards for Xtext DSLs. However, at this point we had
our own implementation, which was by far not optimal. Furthermore, we had
encountered issues when using the new Xtext approach. As a result, we ended
up with a mix of both our own implementation and a large part of the current
Xtext approach, which is based around specifying templates for files and projects
in the template provider and validation rules in the creation page (see figure 46).
Everything else is taken over by the framework.

1 class MuLEFileTemplateProvider implements IFileTemplateProvider {

2 def static String getEmptyFileTemplate(String name) {

3 ’’’

4 program ≪name≫

5 import IO

6

7 main

8 endmain

9 ’’’

10 }

11 }

Listing 142: The MuLEFileTemplateProvider class.

This approach worked well for the project creation wizard, but, as we have
already mentioned, we had issues getting it to work with the file creation wizard.
As a solution, we have created a workaround by copying the functionality of
the default TemplateNewFileWizard into our MuLETemplateNewFileWizard and
altering it at key places. For example, by adding a generateFile method, which

274

creates a new file at the specified path with a standard template provided by the
method getEmptyFileTemplate of the class MuLEFileTemplateProvider which
is displayed in listing 142.

Figure 46: A heavily abstracted diagram demonstrating the relations of the classes
responsible for the project and file creation wizards.

Although the project template provider in figure 46 states the possibility of
several templates, we have implemented only one. Since an eclipse project is a
bit more complex than a mere text file, in addition to the project name and its
path, we have to specify the project natures (Java, Xtext, Plugin), the builders
(Java and Xtext), the dependency on the MuLE plugin, the source folders (src
and src-gen), etc. Furthermore, as mentioned in chapter 7, each MuLE project
contains a help folder with text files filled with examples and short documentation
of the standard libraries. These help files are generated using templates similar
to the one displayed in listing 142.

8.6. Testing Procedure

Initially, we have used the JUnit framework to test the implementation during the
development. However, since we have also used a runtime Eclipse environment
to test the plug-ins directly by implementing example programs, we have quickly
noticed that we need more time to maintain both the unit tests and the example
programs at the same time. Since the latter variant produced better testing re-
sults in a large picture, especially when testing the execution semantics of specific
language constructs, we have decided to omit unit testing entirely. Building all

275

test projects after introducing some changes to the language provided a similar
experience to the automated tests created with JUnit, i.e. if something is wrong,
either we will see it as a compile time error in the MuLE code or in the generated
Java code, unless it is a very specific case, which we would usually notice when
executing the program. This has also demonstrated another advantage of this
approach, we have noticed far more errors compared to when using unit tests,
which required to design a test case for a very specific scenario.
For the sake of testing, we have created thematically oriented projects. For

example, one of the projects would contain programs tasked with testing purely
procedural concepts, e.g. variables, input/output, control flow, etc., while others
would concentrate on object-oriented or functional language constructs. Spe-
cific projects were tasked with testing the more complex standard libraries, such
as GUIFactory or UBTMicroworld. Nevertheless, the actual deployment of the
language in an introductory course (chapter 9) was extremely helpful to find ad-
ditional bugs, although, we were relieved that no absolutely breaking bugs were
encountered during the course. The errors were mostly caused by students new
to the world of programming trying to write programs in a way, that was not
meant to be done but neither were thought of as possible by the developers of this
language. For this, we are very grateful to our students, who had contributed to
the process of improvement of MuLE, and had to have the patience when doing
so.

8.7. Conclusion

As we have seen in this chapter, Xtext provides a very generous set of tools to
create a programming language, even offering various options, which approach
to choose. Without heavily relying on the tools provided by this framework and
reusing existing infrastructure, it would not be possible to implement a fully
functional programming language and provide it with tool support within the
context of a single PhD thesis. Even with these tools, the developers of a new
programming language must prepare themselves to invest a lot of time into the
process.
The current implementation is meant to be used with Eclipse, however, it is

possible to create an independent execution environment. With a few additional
steps [110], the generator can be invoked from the command line terminal which
would allow to use it completely separated from Eclipse. This would however also
mean, that the entire implementation of the supported tools discussed in section
8.5 cannot be used.

276

9. Evaluation and Related Work

Over the course of this thesis, we have already given an ample amount of example
programs written with MuLE, thus this chapter will not focus on the demonstra-
tion of this language in action. Instead, we will mostly discuss its practical
application in a programming course, which acts as a preliminary course prior to
the start of the first semester with the intention to give students a basic under-
standing of programming concepts. Furthermore, we discuss students’ feedback
that we were able to gather over several iterations of this course as well as their
performance immediately at the end of the course and at the end of the semester.
Additionally, this chapter includes a comparison to other programming languages
used in the context of education.

9.1. Practical Application and Students’ Feedback

As mentioned in the introduction of this thesis, MuLE was initially developed as
a second part of a two step plan meant to facilitate the entry into programming
education at the University of Bayreuth. The first part of this plan actually
consisted of a preliminary programming course, which is conducted shortly before
the start of the CS1 lecture at our university. The language of choice is Java in
this lecture, our initial plan was to use a simpler language such as Python [59] in
the preliminary course as a medium used to convey the programming concepts
in a simpler manner and thus to prepare the students for the lecture. As soon
as MuLE was mature enough to be used for this task, we have started to use it
instead of Python in our course, which has also helped us to test the language
with the target audience, gather feedback and improve the language. Ultimately,
MuLE is supposed to be used in the CS1 lecture as a replacement for Java. By
now, it supports all the necessary concepts, however, we have not been able to
use it for this task yet.

9.1.1. Preliminary Programming Course

Initially, the course took place in a computer lab with room for roughly 40 par-
ticipants. Since we had around 90 participants at the start of each year, we
had to separate them into two equally sized groups. This in turn meant that
we could not separate them based on their background knowledge, since we had
assumed that we would have more participants without prior programming ex-
perience. This turned out to be mostly correct, almost each year around two
thirds of the participants had either very basic programming experience or none
at all. However, this has changed since the start of the Covid-19 pandemic and
the subsequent transition to education via online live conferences. In the last
two iterations of this course, we could separate the students based on their back-
ground knowledge, since we were no longer limited by the available physical space.

277

This allowed us to tailor the educational approach and the speed of presentation
specifically to these distinct groups, for example, by limiting the time spent on
the trivial introductory topics and discussing assignments only if necessary in
case of the experienced group.
However, the online conference approach has a significant drawback. The

course was initially designed around the active learning approach [117], wherein
the students are encouraged to actively participate in the process of education.
Simply described, an educational unit consists of a new programming concept,
which is usually introduced by a real world algorithmic scenario or a previously
known problem, a corresponding new language construct, an example program
and, finally, one or two assignments centered around the new concept as well as
those introduced earlier. The scenario used to introduce the new concept acts
as an analogy which is meant to create a mental model among participants and
facilitate the transfer of the newly introduced concept [118].
During all of these phases, we encourage active discussions with the students,

and especially in the last part, the assignment, the students are encouraged to
work in pairs to discuss the solution. Students with prior programming knowl-
edge, who have no difficulties solving these assignments in short time, were en-
couraged to take a role of a tutor by helping other students. During this phase,
the instructor would observe the process and provide help when needed.
This has been transformed more or less back into frontal lecture styled lessons

since the start of the pandemic, since the students are apparently much less willing
to actively participate in such activities (those that are possible at all) in an online
conference. Thus the resulting approach was turned into discussing a real world
scenario, followed by the introduction of the related programming concept and
implementation of an example program. The corresponding student assignments
were either solved together (beginner group) or by the students separately from
the course time at their own leisure (advanced group).
Another core approach that we have chosen when designing our course was

problem-based learning [119], which can be easily combined with the aforemen-
tioned active learning approach. During the assignment phase, the students were
given a task which was formulated in a rather abstract way, i.e. in most cases stu-
dents were given no concrete algorithmic steps which they merely had to translate
into a program. This means that first they had to find an algorithmic solution and
then implement it as a program, a very difficult task for beginner programmers,
which was somewhat alleviated by working in pairs and with the aforementioned
tutoring by experienced students and the instructor [120]. However, this way of
working is not viable in an online conference, most of the students had shown no
inclination to work together on a solution or give any signs of active participation
at all. As mentioned earlier, the participants of the beginner group wished that
the instructor would demonstrate them the solution, which resulted in a step-
wise implementation of the assignment by the instructor with minimal input by
the participants, while the participants of the group with prior experience were

278

solving the tasks on their own and required help only in a few non-trivial cases.
To facilitate this, the assignments were formulated in a more detailed way, with
steps outlining which constructs to choose and how to use them.
As we can see, depending on the conditions in which the course is performed,

its design and chosen approaches may change drastically out of necessity. Due
to the transition to online conferences, we have moved from a less formal and
dynamic learning environment to a more classic lecture-style approach. However,
this way we could separate the groups by their knowledge, which seems to suit
our students according to their feedback after the course.

Course Structure

Since the support for procedural programming was implemented first, initial iter-
ations of the course were focused entirely on this paradigm. With the subsequent
support for other paradigms added to MuLE, the course was expanded by addi-
tional chapters covering these concepts and restructured to ensure more or less
fluent transition to new chapters. Thus, the current version of the course is built
around the procedural-first approach [10], i.e. we start by teaching the concepts
of procedural programming and move on to object-oriented and functional pro-
gramming at later stages in the course.
Regardless whether the course was performed in presence in the computer lab

or entirely via online meetings, we have used the Elearning educational platform
of the University of Bayreuth as a central hub to organize the course, host all
related information and files as well as gather feedback. Since the start of the
Covid-19 pandemic, the students were informed about the separation into two
groups based on their previous knowledge prior to the beginning of the course.
In order to estimate which group they should visit, they had to answer a set of
self-assessment questions with answers given in less readable form next to the
questions. The questions included MuLE code snippets where, for example, the
resulting value of a variable was asked, or purely conceptual questions, e.g. what
are the truth values. The students had to answer these questions on their own
and if they felt that they knew the correct answer to most of the questions, they
were advised to participate in the group with prior knowledge. The students were
not restricted to a specific group after their decision, if they felt that they had
chosen poorly, they were free to change their group.
After the initial organisational chapter, we begin with the actual contents of

the course. The course is structured into six main chapters, each chapter focuses
onto specific related concepts. Initially, algorithms were part of their separate
chapter with more tasks and content, including flow charts and assignments based
around programming using executable flow charts with the RAPTOR tool [70].
However, due to the subsequent implementation of new programming concepts
in MuLE and the necessity to discuss them in the course, some contents were
reduced or removed entirely due to the present time constraints.

279

The course is structured into the following chapters:

1. Variables, data types, I/O – We begin by discussing a money with-
drawal algorithm at an automated teller machine, thus introducing the
concept of algorithms and their relevance in the world of computer science.
We continue by formulating the algorithm for the computation of the great-
est common divisor together with the students, introducing the concepts of
data (variables, input/output) and data manipulation (assignment instruc-
tions and control flow). This leads us to the implementation of our very
first "Hello, world!" program and the discussion of its elements. Subse-
quently, we introduce and discuss variables, elementary data types (except
for boolean), user input, assignments, arithmetic operators, string concate-
nation, type conversion as well as error types. Of all chapters, this one
covers the most concepts, which are comparably fairly easy to comprehend
and are required to understand topics featured in the subsequent chapters.

2. Control structures – We start by analysing the already discussed money
withdrawal algorithm and take a specific interest at steps, in which certain
conditions are examined, in turn leading to skipping or repeating other
steps. We continue by introducing relational operators, the elementary type
boolean with the corresponding values as well as operators and, ultimately,
the if-statement. Another new concept is iteration via the loop-statement
as well as its termination via the exit-statement. Among other exam-
ples, the money withdrawal algorithm is implemented and incrementally
expanded utilizing these concepts.

3. Complex data types – This chapter covers the user defined enumerations
and composition as well as one- and two-dimensional lists. Real world
examples are used as a motivation for the introduction for each of these
constructs, e.g. weekdays or a menu for enumerations, points in a coordi-
nate system or cars (wherein the previously introduced enumerations are
reused) for compositions and shopping lists or a parking-lot (again reusing
previous types) for lists. Finally, we finish this chapter by discussing multi-
dimensional lists and introduce a chessboard example, which relies on all
previously learned language constructs and is further expanded in subse-
quent chapters.

4. Operations – As an analogy to loops and their goal to reduce redundancy,
we introduce the concept of named subroutines with the ultimate goal to
increase reusability. Therefore, operation parameters, procedures, functions
and return statements are also discussed in this chapter. The topic of
recursion is, however, not part of this chapter and is covered in the last
chapter instead.

280

5. Reference types and object-oriented programming – The previously
implemented chessboard example is used as a motivation for reference types.
The issue with the previous implementation is that figures are handled
as value types, i.e. a figure is placed on each field of the board due to
MuLE’s policy that each variable and attribute is initialized with a default
value after its declaration. References and their default value null are
used to alleviate this problem. The differences between stack allocated and
heap allocated values are explained on a simplified memory model. We
continue with a car sale scenario, where one Person is meant to sell a Car

to another Person. This scenario is used as a running example for the rest
of this chapter. We start by analysing static and dynamic features of a
car relevant to our scenario and implement it in a procedural way initially.
We then introduce object-oriented programming by moving the operations
related to the type Car into the corresponding type declaration. Same is
done with the type Person. We continue to introduce other concepts of this
paradigm, such as inheritance, redefinition of operations, data abstraction
via visibility modifiers and abstract types, etc., and incrementally expand
the car sale scenario.

6. Recursion and functional programming – Both topics are rather dif-
ficult to understand for beginner programmers, which is why we have put
them into the final chapter, which may or may not be covered due to lack
of time at the end of the course. The topic of recursion is introduced by
examples of recursion in the nature and use the classic Fibonacci function
as our first example. We learn how to translate loops into recursive oper-
ations and vice versa, implement both recursive functions and procedures
(one of the tasks is to draw a tree using the Turtle library) as well as a
simple recursive data structure. The topic of functional programming is
then introduced by the discussion of the lambda calculus as well as the
lambda expressions and how they compare to named operations. As a mo-
tivation for this topic, we demonstrate the use of a forEach operation of the
Lists library, which applies a lambda expression to a list of values, with
different results depending on the passed lambda expression. Concepts of
operations as data, higher order functions and currying are covered in this
chapter. Among other tasks, the students have to implement a filter

operation, which returns a filtered list depending on the passed lambda
expression.

In addition to the regular chapters and the corresponding assignments, we have
given a set of additional tasks, which are not covered by the instructor during the
course and are meant as an additional challenge for experienced students. These
tasks are more difficult compared to standard assignments. Furthermore, their
formulation is rather abstract, usually, we just give the expected result and the

281

students have to figure out everything else, i.e. the algorithm as well as which
constructs to use, on their own.

An Example of an Educational Unit

As already mentioned, an educational unit usually starts with a real world ex-
ample or a program, which was implemented as a part of a previous topic but
sill has some unresolved issues. Let us take a look at the topic of loops, which is
a part of the second chapter. By now, we have discussed the money withdrawal
algorithm and implemented a simple variant of it using if-statements to check if
we have enough money on our account to make a withdrawal. As a motivation
we discuss that after a transaction the ATM does not shut down but returns to
its initial state and waits for further input allowing to repeat the process without
restarting it manually.
We start by demonstrating a simple counting loop, which prints a set of in-

crementing integers until the termination condition is fulfilled. The program is
executed once normally, and then step-by-step using debugging tools. Afterwards,
we return to our money withdrawal algorithm, and implement a loop together
with the students which waits for user input. The user must enter numbers,
which represent options either to withdraw money or to terminate the program.
This way, we demonstrate the concept of potentially infinite loops as well as its
reliance on previously known concepts by using a familiar scenario.
As an additional motivation to use loops, we take another program imple-

mented during the chapter one. The task of this program is to keep the students
motivated and interested in future content by using the Turtle library to draw
simple shapes. Experience has shown, that using this library can make the stu-
dents more relaxed and increase their interest in the topic. Since control flow is
not yet part of chapter one, initially the square shape is drawn simply by copy-
pasting the instructions responsible for the drawing as well as for the rotation
of the cursor, as can be seen in the screenshot in figure 47. Now that the con-
cept of loops is presented in chapter two, the students are tasked to alter this
implementation using a loop-statement. Here, it is important to check whether
they actually make a good use of this construct and remove the redundant lines.
Some students would simply put all the present copy-pasted instructions into a
loop effectively drawing four squares on top of each other, which necessitates an
explanation why we are actually using loops.
The screenshot also demonstrates, that the slides are designed in such a way

that they can be used by students who prefer to work on their own or can not
participate in the live sessions for various reasons. Since this is a rather simple
task, not much explanation is given on the slide. In case of more complex tasks,
we give an explanation of the underlying algorithm as well as which constructs
should be used to implement it. Nevertheless, in the lower-left corner of the slide
we see the name of the corresponding compilation unit, which can be downloaded

282

as a part of an Eclipse project associated with this chapter. This is meant to
help students to quickly find the corresponding example program or assignment
in the respective projects. Furthermore, the example programs in the projects
are usually more extensive than what can be normally covered on a presentation
slide. Comments are additionally used to explain the functionality of the example
program or to formulate the steps that must be implemented in an assignment.

Figure 47: A screenshot of one of the tasks covering the topic of loops.

9.1.2. Students’ Feedback and Performance

The course is usually performed over a duration of two weeks prior to the start of
the semester. In the latest iteration at the time of writing, each session took 120
minutes, with a 10 minute break in the middle. Each student visits one session
per day, making it ten sessions in total. Each year, we have an average of 80 to
90 participants at the start of the course, with approximately 50 remaining at the
end. Most of the students drop out right after the first day, probably realizing
that they are not interested in the course. Presumably, some of them realize that
they do not have to actively participate in the course and can become acquainted
with the concepts and solve the assignments at their own leisure. However, we
have not attempted to interview these students to find out the real reasons why
they stop participating. The average participation numbers and the attrition rate
have not changed when we have switched from Python to MuLE, leading to the
assumption that the choice of the programming language is not an issue for most
of the students.

283

Initially, in computer lab held iterations, the students were asked to fill out two
anonymous questionnaires, one at the beginning of the course meant for us to
assess the students background knowledge, and one at the end of the course with
the intention to gather feedback. In the online held iterations, the questionnaires
were hosted in the central course platform. The number of filled out question-
naires has dropped since then, probably since the students are not given an actual
printed out form and are thus feeling less obliged to fill it out. The questionnaires
changed slightly over time, but their main goals remained the same.

The First Questionnaire

The first questionnaire was performed right at the beginning of the course, be-
fore the students were confronted with MuLE. It included questions regarding
prior programming experience as well as code snippets which helped us to make
some syntax related decisions. Initially, the snippets included an assignment
statement, a loop and an if-statement written with MuLE (which had a quite
different syntax at that time), Java and Quorum [79] with slight semantic differ-
ences among the examples. The students had to assign the correct semantics to
these statements. The main outcome of this questionnaire was the change of the
assignment operator in MuLE from <-- to :=. Our assumption that using the
same operator for assignment and equality check as it is done in Quorum might
confuse the students was confirmed by this questionnaire.
The latest iteration of this question was intended to compare some syntactical

choices we made for MuLE to the concrete syntax of C-based languages (see figure
48). The initial results did not look promising, for all three questions over the
half of the participants preferred C-based syntax. As it turned out, in that year,
we had a higher than usual number of participants with prior experience. Out of
70 total participants in the questionnaire, 45 had prior programming experience,
mostly with Java. Once we had filtered them out, we had another picture which
is demonstrated in figure 49. Students without prior experience clearly preferred
keywords over brackets to denote blocks. As for the other two questions, the
results were inconclusive. And even though students with prior experience tended
to choose familiar syntax, around 25% of them preferred keywords to denote
blocks and a lack of a semicolon and around 33% preferred MuLE’s choice of
assignment and equality operators (see figure 50).
As a result of this questionnaire, we assume that our choice of syntax is mostly

correct. Even though the majority of students that were exposed to other lan-
guages preferred the syntax that was familiar to them, a recognizable part of
this cohort would rather prefer the unfamiliar syntax of MuLE. One third of ex-
perienced students seem to be unhappy with the choice of the equality and the
assignment operators in languages with C-based syntax and would rather prefer
the variant present in MuLE. Students without prior experience were more in
favour of MuLE’s syntax, or at least neutral. Especially in regards to the use of

284

Figure 48: Questions targeted at the choice of the concrete syntax.

keywords to denote blocks, inexperienced students are preferring keywords.
The issue with such questionnaires is that only very specific choices regarding

the concrete syntax can be analysed using such questions. The more complex de-
cisions, such as whether or not to include a foreach-loop as a separate construct
and if it is allowed to manipulate the list it is iterating over, are difficult to wrap
in an appropriate question for the target audience, i.e. programmer beginners
who lack an understanding of such concepts. A couple of more threats to the
validity of these observations are:

� As we have seen, experienced students tend to prefer options familiar to
them.

� Inexperienced students may have chosen options at random. Due to their
lack of experience, they can not know which advantages one option has over
the other. For example, some of them might prefer semicolons to separate
or terminate statements assuming that it might increase readability without

285

Figure 49: Results of the questionnaire in figure 48, participants with prior experience
filtered out.

Figure 50: Results of the questionnaire in figure 48, includes only participants with
prior experience.

ever having experienced semicolon related errors.

� In general, the participants had little time to answer the questions meaning

286

that not much thought could have been put into their decisions.

� Option three could have been made more expressive by changing the as-
signment to a = a + 1 which could potentially lead to different results.

� The questionnaire has changed over time, this particular variant was per-
formed only once. Therefore, we lack data gathered over several years which
we could use to make more reliable statements.

With the transition to the online mode, we have removed this questionnaire
entirely and replaced it with the self-assessment form which we have described
earlier.

The Second Questionnaire

The second questionnaire was performed at the end of the course with the in-
tention to gather feedback both for the course and for MuLE. The questions
regarding the course are mostly multiple-choice questions, e.g. You had enough
time to complete the exercises. (not at all, rather not, rather yes, absolutely).
Students were also asked to give written feedback and suggestions, which were
used to improve subsequent iterations of the course. A small number of stu-
dents wished that another language was used in the course, e.g. either Python or
Java instead of MuLE. However, when we were using Python, some were wishing
Java was used instead. The majority of the students did not mention that they
wished another language while another minority explicitly stated that they were
glad that an easier language was used. This leads us to believe, that, although we
can never make everyone happy, in its current state MuLE is in fact appropriate
for the task it was designed for.
The latest two iterations of the course were performed online, with the result

that we had less participants in this questionnaire. Less than a half of partici-
pants remaining at the last day of the course filled out the questionnaire. The
overall feedback was, however, rather similar to the feedback gained from previ-
ous years. The major difference was that students were explicitly happy about
the separation into groups based on prior knowledge, which was wished for in
previous iterations. In all iterations, some students were positively mentioning
the use of the Turtle library. Each year, some complaints were issued regarding
the increase of complexity starting with chapter three.
In addition to course feedback, this questionnaire included an ungraded test,

intended to assess the state of the knowledge after the course. Initially, this test
included ten written conceptional questions as well as four code snippets with
multiple-choice questions. In the latest iteration, the test was separated into two
tests with six questions for the beginner group and four additional questions for
the experienced group. All of them were multiple-choice questions based around
a program with multiple correct answers. The answers included the output of the

287

program, potential error messages, explanations of concepts, etc. The questions
of the beginner group were based on topics covered by the first four chapters, the
additional four questions of the experienced group were based on the topics of
the other two chapters.

1 operation foo(parameter x : integer)

2 x := x * 2

3 IO.writeInteger(x)

4 endoperation

5

6 main

7 variable x : integer

8 x := 2

9 foo(x)

10 IO.writeString(", ")

11 IO.writeInteger(x)

12 endmain

Listing 143: The program example of the question six of the second questionnaire.

As an example, the question six is built around the program in listing 143, the
participants are notified that multiple answers are correct. The possible answers
are:

a. The parameters keep their default values, if users don’t pass them explicitly.

b. The output of the program is 4, 4.

c. Users must pass values for all parameters when invoking an operation.

d. Operations without a return type must be terminated with an empty return-
statement.

e. Operations with a return type must be terminated with one or more return-
statement with the corresponding value.

f. The output of the program is 4, 2.

The correct answers are c, e, and f, choosing all three results in one point for
this question, i.e. each option yields 0.33 of the point for this question. Selecting
incorrect options does not lead to total point reduction. This question was present
in both the beginner test and in the advanced test.
In all iterations of the course, the majority of participants managed to get

over the half of the points, meaning that in a graded test roughly 90% of the
participants would pass the course. However, we should keep in mind, that the
participation was non-mandatory, i.e. we do not know if the non-participants
would produce similar or different results. In the latest iteration, only half of the

288

Figure 51: Results of the test in the second questionnaire taken by participants without
prior experience.

Figure 52: Results of the test in the second questionnaire taken by participants with
prior experience.

students remaining at the end of the course have taken the test, and even less
filled out the feedback questionnaire.

The results of participants with prior programming experience were overall
better compared to students without experience. All experienced students would
pass the test, while roughly 19% of those without prior experience have gathered
less than 50% of the points. On average, the cohort of the experienced students
got around 83% of the total points while inexperienced students got roughly 66%,

289

meaning that at the end of the course the knowledge heterogeneity among the
students is still present.
Among others, the threats to the validity of this questionnaire are:

� Lack of a control group using another language, e.g. Python, to compare
results at the end of the course.

� Small sample size, which is especially evident in the number of experienced
participants who have taken the test, which is eight.

� The attrition over the course is not taken into the account. The performance
of the students who have dropped out could be different altering the entire
result.

� The previous point leads to the issue that we have only compared stu-
dents within the course. It would be interesting to compare inexperienced
students who have participated in the course with students with prior expe-
rience who did not. This would allow us to make more concrete statements
about the effect of the course on the knowledge heterogeneity among the
students.

Performance of the Students at the End of the Semester

Over the years, we have compared the performance in the final exam of the CS1
lecture at the end of the first semester of those students who have participated
in the course to those who have not. The results are displayed in table 4 and
in figures 53 and 54. The failure rate represents the percentage of the students
of each group who have failed the final exam. As a reminder, the students are
required to use Java in this exam, same as in the corresponding CS1 lecture. The
lesser the average score, the better the results, the best score is 1.0 while the
lowest is 5.0, in which case the student fails the exam.
The first two iterations were performed using Python. As we can see, in the

very first iteration the participants of the course had a better average score and
a lesser failure rate compared to non-participants. In 2017, the overall results
were slightly different, the participants had still performed better, however, the
difference of the failure rates was no longer that remarkable. Overall, in both years
the participants had better results in the final exam. The difference between both
years can be explained by different compositions of the students, unlike in 2016,
in the second iteration most of the students were enrolled in their first semester.
However, when we look at 2018, the year when we have used MuLE for the first

time, we get a rather bleak picture. The participants had yielded overall worse
results compared to non-participants. One explanation for this could be that
neither MuLE nor its supporting tools were mature enough at that time, in fact,
the syntax of the language looked quite differently at that time. The course was

290

2016 2017 2018 2019 2020 2021
Language Python Python MuLE MuLE MuLE MuLE
Mode lab lab lab lab online online
Number of P 44 48 48 36 65 48
Number of NP 74 62 77 78 80 60
Total number 118 110 125 114 145 108
P avg. score 3.01 3.20 3.15 2.88 3.09 2.78
NP avg. score 3.11 3.40 2.62 3.10 3.55 3.85
Total avg. score 3.07 3.31 2.83 3.03 3.35 3.38
P failure rate 16% 30% 27% 28% 23% 17%
NP failure rate 24% 32% 19% 26% 40% 48%
Total failure rate 21% 31% 22% 26% 32% 34%

Table 4: Comparison of course participants (P) and non-participants (NP) in the final
exam at the end of the semester.

Figure 53: Average scores of the students in the final exam over the years.

Figure 54: Failure rates of the students in the final exam over the years.

291

designed anew for this year, which means that its design and structure included
mistakes which could be ironed out for later iterations. We have used the feedback
of the students to improve both MuLE and its tools, as well as made slight
changes to the design of the course. In the next year, the performance shifted.
Although the participants still have a slightly higher failure rate, their average
score is better than that of non-participants, meaning that in this year the group
of course participants included both a high number of very good students, as well
as those who have failed the exam. Some errors in the implementation of the
language were still encountered by the students during this iteration, however,
overall, the syntax of the language represented the state described in this thesis.
The iteration in year 2020 had again shown different results. First, we had

an overall higher number of students. Furthermore, for the first time, the course
was performed online. This might explain a generally higher participation rate,
since the students were not forced to be physically present at the university two
weeks before the actual start of the lectures. Additionally, this was also the first
iteration where we have covered object-oriented programming, which represents
at least a third of the final exam. This, as well as the, by now, improved state
of MuLE, the supporting tools and the design of the course, might explain the
overall better performance among the participants.
In the final iteration in 2021, which was also performed online, we had overall

less students compared to the previous iteration. However, the participation rate
remained roughly the same 44%. This was also the first iteration, in which we had
discussed functional programming, although it should not have any significant
impact on the results since this topic was not covered in the final exam. As
we can see, the performance of the participants is even better in this iteration
compared to 2020, especially noticeable in the failure rate diagram in figure 54.
Only 17% of course participants have failed the final exam, while about 48%
of non-participants failed which in our opinion implies, that there is a certain
correlation between students’ participation in the course and their performance
in the final exam.
Of course, we have to consider additional factors when looking at these num-

bers. Thus the issues with these observations are as follows:

� Each year, the composition of the students changes slightly compared to the
previous year, for example, in the year 2016 non-computer-science students
who wrote the exam were enrolled in higher semesters and had demon-
strated better results compared to computer-science students enrolled in
their first-semester. A large number of these students had also participated
in the course. This has changed in subsequent years, most of our students
are now enrolled in the first semester.

� Furthermore, we assume that students who participate in a non-mandatory
course are by their nature more motivated, which might also explain the,
usually, better results of course participants.

292

� The change of used language, the environment, the fact that the final exam
is changing in each subsequent year, all of these circumstances make these
observations highly inconsequential.

� Due to the anonymous nature of these analyses, we do not know which
students had actual prior programming experience and who did not. We
only know, who had participated in the course.

� We do not know what impact on the performance had the language itself,
and what was caused by the course design. The results might be similar
if the students had participated in the same course but with a different
language.

Thus, the only concrete statement that we can make based on this data, is that
the performance of course participants has improved over the last three iterations,
leading us to assume that both the language and the course have matured over
this time.

9.1.3. Conclusion and Threats to Validity

Based on the more or less favourable students’ feedback and a lack of major
critique towards MuLE, we can assume that our target audience is, at large, not
deterred by the use of a language that is otherwise not used in the industry. In
fact, in recent years some students have explicitly stated that MuLE is a good
choice for an introductory course. Of course, there are also those who would
rather prefer a “real” language.
The results of the ungraded tests taken directly at the end of the preliminary

course are very good. Most students would pass if the test would have been
graded. This may be explained by the intensity of the course, the students
are actively practising programming over the course of two weeks and take a test
immediately after it, without a longer pause in which they might forget previously
learned concepts. Nevertheless, we are very happy with these results and assume
that, at least in the short term, the course has a positive effect on the students.
To asses the long term effects, we have compared the exam results of those who

have participated in the course who those who have not. The exam in question
is the final exam of the CS1 lecture which takes place approximately half a year
after the preliminary course. Here, we have had some rather mixed results.
Nevertheless, except for one case when we have started using MuLE which may
have not yet been fully ready for the task, the performance of participants was
better than the performance of non-participants. Based on this data, we assume
that the participation in the course may have a long term positive effect on the
students’ performance. Based on the results of the latest iterations of the course,
we also assume that MuLE does not have a negative effect, and may even have a
positive effect on students’ future learning process.

293

In the previous subsection, we have listed a number of problems for each per-
formed analysis. To sum it up, the general threats to validity of our evaluation
of students’ performance are as follows:

� The composition of the students, the course structure, chosen methods and
tools, even the language itself has evolved over each iteration. The version
of MuLE which we have presented in this thesis with all its features was
used only in the latest iteration, the procedural part of the language has
remained roughly unchanged for the last three iterations. Based on these
constant changes it is difficult to make solid assumptions.

� Lack of control groups using other languages, such as Python or Java, while
teaching the same contents to directly asses the impact of the language.

� Small sample sizes in certain questionnaires.

� The attrition rate was not considered, neither during the analysis at the
end of the course, nor over the semester. In the latter case, it would also
be interesting to compare the attrition rate of course participants to non-
participants.

� No separation between experienced and inexperienced students when analysing
their performance in the final exam which makes it hard to asses which
impact the course and the used language had on the actual problem of
knowledge heterogeneity among our first semester students.

9.2. Related Work

Professionally used programming languages follow a more is more approach [90]
regarding included language constructs, data types, libraries, etc. MuLE, as an
educational programming language, follows a less is more approach, for each
language construct in MuLE, professional languages offer a selection of similar
constructs. The reasons are discussed in chapter 4. In the same chapter, we
have specified a set of requirements for an educational language, we will use
these requirements to compare MuLE to professional languages currently used in
education, as well as other educational programming languages.

Comparison to Java and Python

As discussed in section 3.2.1, since the advent of object-oriented programming ed-
ucational institutions have stopped using Pascal, which was specifically designed
for education but lacked support for the new paradigm, and moved on to using
professional programming languages. The initially used C++ is in our opinion
by far one of the most difficult languages to be used in education, which is why
Java and Python are rather used today for this task. Thus, in this section we
will compare MuLE to these two languages.

294

1 class HelloWorldExample {

2 public static void main (String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

Listing 144: A “Hello, world!” program written with Java.

1 print("Hello, world!")

Listing 145: A “Hello, world!” program written with Python 3.

1 program HelloWorldExample

2 import IO

3

4 main

5 IO.writeString("Hello, world!")

6 endmain

Listing 146: A “Hello, world!” program written with MuLE.

Let us first take a look at the implementation of the classic "Hello, world!"

program using Java (listing 144), Python (listing 145), and MuLE (listing 146).
As already mentioned in section 3.2.1, Java is an object-centric programming
language, i.e. it is not possible to program in a purely procedural way using this
language. This is evident in the "Hello, world!" example. When explaining
this simple program we have to either explain such object-oriented concepts as
classes, visibility modifiers as well as static/non-static context from the beginning
overwhelming the students with the amount of information, or save them for later.
The latter variant is not optimal either, since the students will adapt to using
specific constructs or keywords simply because they are told to do so and not
because they understand their meaning.
The Python implementation is the shortest of the three, producing the quickest

results. But, in our opinion, this is also one of the weaknesses of Python when
used in the context of education. It tends to hide important concepts and rely
on implicit behaviour.
Finally, the MuLE variant of this program is more similar to the Java imple-

mentation, at least at the first glance. MuLE compilation units are conceptually
not equal to classes, like in Java, thus when introducing a program we merely
need to differentiate between a program and a library and can follow up by dis-
cussing the entry into a program via the main procedure. Differently to the other
two languages, we actually have to import the standard library IO to be able to
use the output producing operations. Both in Java and in Python the respective
library is implicitly imported, however other specific libraries have to be im-
ported manually, which represents less consequent behaviour possibly increasing
the confusion among the students.

295

Requirement 1 – Easy to Learn states that the language should be easily
understood by students without prior programming knowledge while at the same
time be an effective educational tool, i.e. it should demonstrate important con-
cepts (requirement 9 – Clear execution semantics) instead of hiding them
under a layer of implicity. Although Python has the shorter syntax compared
to MuLE, its reliance of implicit behaviour, dynamic typing (which violates the
requirement 10 – Explicit static type system), use of indentations to denote
blocks, etc., makes it less suitable to demonstrate these specific concepts. Fur-
thermore, errors caused by dynamic typing or wrong indentations are not possible
in MuLE. Both Python and Java have a mix of mutable, e.g. objects, and im-
mutable types, e.g. primitive types and strings. Without knowing which is which,
inexperienced students may encounter unexpected behaviour when passing values
of these types to operations. MuLE makes a clear differentiation between value
and reference types, thus forcing the students to understand the differences but
also making it less confusing by using different notations.
Requirement 2 – Non-cryptic syntax states that the language should provide

a readable syntax. In comparison to Java, the syntax of MuLE is more readable
due to its reliance on keywords to introduce various declarations (e.g. type,
operation or variable) and denote blocks. Various shortcuts, such as i++,
although convenient, are not necessarily practical in the context of education.
Even if the instructor avoids using these constructs, sooner or later experienced
students will start asking if they can use them instead of, for example, the longer
i = i + 1, which is conceptually easier to explain and to understand. At this
point, the instructor has to explain what these constructs mean to other students
wasting valuable time. Python’s syntax is very readable, the use of indentations
is one of the reasons for that, which have however other disadvantages, which we
have mentioned earlier.
Compared to the other two languages, MuLE offers far less language constructs

fulfilling the requirement 3 – Minimal number of language constructs. For
example, if we look at numeric types, MuLE offers integer and rational, while
Java offers byte, short, int, long, float and double as primitive types alone
as well as corresponding wrapper types and other class based implementations of
numeric types such as BigDecimal. While it is useful when used professionally,
especially when performance and optimization are involved, such complexity is
overwhelming in education. Python, on the other hand, also offers a small amount
of primitive types, e.g. int, float and complex for numeric types. Both Java
and Python offer various non-orthogonal constructs, such as while and for loops
(or abstract classes and interfaces in Java), making MuLE a better candidate
according to the requirement 4 – Orthogonality. As for the requirement 6 –
Build upon present knowledge, all three languages are rather similar in this
context, we can say that MuLE has a slight advantage by using the := operator
for assignment and = for equality checks as well as strict value copying semantics.
Both Java and Python support the three required paradigms stated in the

296

requirement 7 – Multi-paradigm language. However, as we have discussed
earlier, Java is an object-oriented language first and foremost violating the re-
quirement 8 – No forced object-orientation, which in turn violates the re-
quirement 5 – Incremental introduction, at least when attempting to use
Java in a course built around a procedural-first approach. Same is evident when
attempting to program in a functional way using Java. Python’s lambda expres-
sions are conceptually similar to those in MuLE. Compared to MuLE, Python
offers more functionality related to functional programming on syntactical level,
e.g. for loops (simulated as a forEach library operation in MuLE) and powerful
list comprehension (MuLE merely offers several list creation notations). Then
again, this functionality is basically syntactical sugar which violates the require-
ment 4 – Orthogonality.
In the context of object-oriented programming regarding the requirement 11 –

Data abstraction, MuLE displays certain similarities to Java, with some simpli-
fications. Java offers two non-orthogonal variants of abstract types, i.e. abstract
classes (represented by abstract compositions in MuLE) and interfaces, allowing
to simulate multiple inheritance in Java. However, our experience shows, that
students have trouble differentiating between these two constructs, furthermore,
at least in the context of CS1, such scenarios where both constructs are used
for their intended purpose can be simulated by other means. Python follows a
rather unusual way of declaring abstract classes, for example by importing an
AbstractBaseClass from the abc module and inheriting from it, or by simu-
lating abstract methods by raising the NotImplementedError, which is in our
opinion rather confusing. Just like in MuLE, attributes in Python are by de-
fault accessible. To restrict the visibility one must type underscores before the
member identifier, one underscore representing protected, and two underscores
private visibility, which is in our opinion a less meaningful notation (require-
ment 2 – Non-cryptic syntax) and can result in errors caused by the wrong
number of typed underscores. Unlike Java and Python, MuLE does not differen-
tiate between static and non-static context within compositions, all members are
handled as instance attributes and operations. Static context is either managed
by the procedural part of the language or simulated by separate objects.
Although MuLE does support parametric and subtype polymorphism fulfilling

the requirement 12 – Polymorphism, Java and Python have an advantage over
MuLE in this regard. MuLE does not support overloading of operations and
lacks the ability to pass type parameters to operations, meaning that parametric
polymorphism is only supported by operations declared within compositions.
All three languages fulfil the requirement 13 – Modularity. Since Java and

Python are professionally used languages with a long history, they are supported
by a far larger range of standard libraries (requirement 14 – Standard li-
braries). MuLE offers a rather limited set of types and functions provided by
standard libraries, which are nevertheless more than sufficient in the context of
CS1. Moreover, MuLE is distributed with a set of built-in educational libraries.

297

Finally, all three languages fulfil the requirement 15 – Tool support, however,
Java and Python have a clear advantage in this regard due to their widespread
professional use. Since Java has also been used in education for quite some time,
a number of educational IDE’s such as BlueJ [85] have been implemented for this
language, which is currently not the case for MuLE.
To sum it up, while Java and Python certainly still have some advantages over

MuLE, in case of most of the formulated requirements, MuLE seems to be better
suited for education.

Comparison to other Educational Languages

Since Pascal is no longer used in education, supports only procedural program-
ming in its basic version and its tool support is considered obsolete by modern
standards, we will not compare it to MuLE. However, it remains to asses how
MuLE compares to other textual educational languages, which we have discussed
in section 3.2.2, i.e. Grace [76], Quorum [79], Pyret [81], and RESOLVE [82].
The specific shortcomings of each language are discussed in section 3.2.2, here
we are going to make a broad comparison between the languages. All being said,
by no means do we intend to degrade the contribution of the developers of these
languages.
Since all of these languages are implemented with education in mind, they are

designed to be easy to learn, at least compared to professional programming lan-
guages (requirement 1 – Easy to Learn). Except for Grace, all languages use
keywords to denote blocks. Similarly to MuLE, all languages attempt to reduce
the number of language constructs compared to professional languages. Unlike
MuLE, they still offer non-orthogonal constructs, e.g. different kinds of loops or
conditional statements thus not fulfilling the requirement 4 – Orthogonality
and only partly fulfilling the requirement 3 – Minimal number of language
constructs. Comparing the clarity of the syntax (requirement 2 – Non-cryptic
syntax) and the semantics (requirement 9 – Clear execution semantics), we
would rate MuLE on par with Pyret (which is inspired by Python with certain
improvements) and better than Grace (use of brackets to denote blocks, returning
a value without an explicit return statement, various notations for method dec-
larations), Quorum (same operator used for assignment statements and equality
checks), and RESOLVE (confusing parameter modes and additional conditions
which can be represented by other means, shortcuts for keywords).
Most of these languages, except for RESOLVE, support dynamic (violating

the requirement 10 – Explicit static type system) or a mix of static and
dynamic typing (violating the requirement 4 – Orthogonality). None of these
languages offer a clear separation between value and reference types the way it
is implemented in MuLE (requirement 9 – Clear execution semantics).
Most of these languages support procedural, object-oriented and functional

programming (requirement 7 – Multi-paradigm language), except for Quo-

298

rum and RESOLVE, which lack support for functional programming. Usually,
one of these paradigms is better represented compared to the others, e.g. Grace
has a focus on object-oriented programming, Pyret on functional, while MuLE is
focused on procedural. That being said, none of these languages forces to use a
specific paradigm, fulfilling the requirements 8 – No forced object-orientation
and 5 – Incremental introduction.
Concerning the requirement 11 – Data abstraction in the context of object-

oriented programming, Grace offers the highest flexibility, including a way to
simulate multiple inheritance similarly to Java, which inherently results in less
orthogonality. Quorum supports multiple inheritance but apparently lacks ab-
stract types relying onto the keywords private and public as the sole means of
encapsulation. Neither Pyret, nor RESOLVE support inheritance.
Similarly to MuLE, Grace and Quorum support both subtype and parametric

polymorphism (requirement 12 – Polymorphism). Pyret provides support for
parametric polymorphism. RESOLVE seems to support neither of them.
All of these languages fulfil the requirement 13 – Modularity as well as

the requirement 14 – Standard libraries. Similarly to MuLE, Quorum and
Pyret offer standard libraries which are specifically designed to be used in the
programming education, such as the Turtle library.
As for the requirement 15 – Tool support, both Pyret and Qurom are sup-

ported by web based interpreters, which help to reduce the effort to start program-
ming with these languages, however lack the tool support provided by a dedicated
IDE, such as debugging tools with stepwise execution. Grace is supported by sev-
eral desktop based interpreters. According to the RESOLVE documentation, it
is supported by an Eclipse plug-in similarly to MuLE, however at the time of
writing, the provided link was not accessible.
Although all of them are educational programming languages, in the end all of

these languages, including MuLE, were developed with a certain focus in mind.
MuLE was basically built around procedural programming with the intention
to be used in CS1 with a procedural-first approach. Other languages are either
focused on another paradigm, thus being better suited in a course built around
this way of programming, or are designed around other specific features, such
as a built-in verification or testing mechanism. Next to MuLE, of all of these
languages Grace seems to fulfil most of the requirements that we have set up for
MuLE, however, it also comes with most of the issues which are also present in
Java. All of these languages have certain drawbacks or limitations, at least from
our point of view, such as lack of support of a certain paradigm, non-orthogonal
language constructs, unnecessary syntactical shortcuts, dynamic type system,
etc., which makes MuLE more capable for our goals. At the same time, these
languages were designed with other requirements in mind and we are certain,
that the developers of these languages will find a number of shortcomings within
MuLE according to their preferences.

299

10. Conclusion

At last, we have reached the final chapter of this thesis. To recapitulate, our
intention was to facilitate students’ entry into programming education by using
a simpler programming language, at least compared to Java or C++. The lan-
guage should still be capable to convey relevant programming concepts. Other
existing languages like Python had various shortcomings which, in our opinion,
made them less adequate in the context of programming education. Thus, we
have implemented our own language called MuLE which represents the main
contribution of this thesis. First, we have analysed existing professional and edu-
cational languages. Based on the information gained from this research we have
summarized a set of requirements for MuLE, which we have used to specify and
implement the language.
To sum it up, MuLE provides following features:

� Support of procedural, object-oriented and functional programming. The
implementations of the object-oriented and functional paradigms are char-
acterized by their reliance on procedural constructs, due to the initial im-
plementation of procedural programming and its subsequent use as a basis
for the implementation of other paradigms. It is not possible to program
entirely in an object-oriented or functional manner the way it would be
possible using a mono-paradigm language, such as Smalltalk or Haskell.

� A minimalistic set of orthogonal language constructs, sufficient to support
the aforementioned paradigms. This reduces the overhead of information
confronted by the students setting the focus on understanding the algo-
rithmic solution by removing divergences caused by a multitude of imple-
mentations possible by additional non-orthogonal constructs. Instead of in-
troducing a class construct, we have reused the composition construct and
expanded it by object-oriented concepts when implementing this paradigm
which facilitates the transition from procedural to object-oriented program-
ming in an introductory course. Similarly, the lambda expression is imple-
mented in a very similar way to named operations to increase the number of
analogies and reduce confusion, when discussing functional programming.

� Possibility to program in a procedural way without relying onto object-
oriented or functional constructs, allowing to easily design a programming
course around a procedural-first approach without having to worry about
handling concepts of other paradigms as black-boxes until they can be rea-
sonably explained at a later stage without overwhelming the students with
too much information at once.

� Static explicit type system, which prevents certain typing errors caused by
dynamic typing as well as puts data types into focus and thus forces the
students to understand this important concept.

300

� Explicit differentiation between stack and heap allocated values. We have
implemented a parameterized reference type, which accepts any other type
as a parameter. This makes the use of this type very flexible while at the
same time confronting the students with the concept of references at lexical
level and forcing them to understand it.

� More or less expressive compile time error messages. Those that are caused
by the parser are still rather cryptic, especially for beginner programmers.

� Support by Eclipse and its powerful tools, including background compila-
tion checks with immediate feedback and debugging with stepwise execu-
tion.

� Platform independency due to its current Java based implementation. At
least version 8 of Java is therefore required to run MuLE.

The language has been used in its intended way, i.e. as an educational tool, in a
non-mandatory preliminary programming course which is performed prior to the
CS1 lecture at the University of Bayreuth. We have used this as an opportunity
to test the language and gather feedback from the target audience, which was
used to improve MuLE over time. Based on students’ performance immediately
at the end of the course, as well as in the final exam of the CS1 lecture roughly
half a year after the course, we assume that the current state of MuLE, its tool
support and the preliminary course have a rather positive effect on the ability of
our students to comprehend the programming concepts taught in CS1.

Future Work

One of the aforementioned requirements was adequate tool support. As men-
tioned, we are currently using Eclipse as the development environment support-
ing MuLE due to reasons mentioned in chapter 8. However, Eclipse is by far not
a beginner friendly programming environment, the amount of options available
to the user can be quite overwhelming, which is exactly the reason why we think
that professionally used programming languages and environments are not an
appropriate tool in programming education. Therefore, the next priority is to
develop a suitable IDE which would correspond to same requirements that apply
to the language itself.
A web-browser based programming environment could be beneficial due to its

accessibility. Compared to desktop based IDEs, the amount of time and effort
required to start programming in such an environment is minimal. Users are not
required to follow installation instructions to get an IDE running, a process, in
which inexperienced users may encounter errors which they are not yet capable
to solve on their own. A web-based environment requires only a web-browser
and can be seamlessly integrated into a web-based tutorial or even an entire

301

programming course. Ultimately, this would make the language more attractive
for potential users, who may be sitting on the fence about using it and would
rather decide not to due to a complex installation process of required tools.
The compile time constraint checking mechanism can also benefit from ad-

ditional improvements. For example, we could implement checks that would
provide meaningful error messages for cases, currently backed by the parser. In
such cases, the error messages can be rather cryptic, for example the error mes-
sage extraneous input ‘attribute’, expecting RULE ID is displayed when
attempting to declare an attribute inside of an enumeration. An inexperienced
user may rightfully assume that something is wrong with the keyword attribute,
but will most likely be totally baffled by the expected RULE ID. Furthermore,
previous parser errors may cause other errors in the subsequent parts of the en-
compassing construct, which may add to the overall confusion.
At the time of writing, MuLE suffers from two restrictions in regards to para-

metric polymorphism, i.e. generic types can only be used wrapped as corre-
sponding reference types and the fact that it is not possible to declare generic
operations. These restrictions should be eliminated.
In general, MuLE would certainly benefit from further development. Currently,

the language provides support for three programming paradigms, i.e. procedu-
ral, object-oriented and functional. However, in chapter 2 we have covered logic
programming as another major paradigm. Although this paradigm differs signif-
icantly from the other three, it could be implemented as a library, which would
for example provide specific types or operations capable to register facts, rules
based on these facts as well as the ability to resolve queries. Basically, the im-
plementation of such a library would be similar to the implementation of a logic
programming language such as Prolog.
Speaking of which, MuLE could only benefit from additional libraries designed

for education. One of the tasks of programming education is not only to teach
programming per se, but also to keep students motivated and perhaps even at-
tract others to the world of programming. To achieve this, MuLE should provide
opportunities to be used in more different ways, for example in the programming
of robots or microcontrollers. This, together with a specifically designed IDE,
could also make MuLE more attractive for secondary education and other edu-
cational facilities. The language is suited not only to be used in a preliminary
programming course, but would also fit into the high school curriculum in the
context of the German educational system.
Additionally, the language would benefit from additional statistical analysis

performed in better designed controlled experiments and a detailed evaluation of
individual language constructs to further assess the performance of the language
itself and the specific design decisions met during its development. In chapter
9, we have discussed that the performance of the participants of the preliminary
programming course was usually better in the final exam of the CS1 lecture,
compared to the performance of non-participants. We have also mentioned, that

302

the gathered data is lacking important details, e.g. we did not separate the
course participants in those who had prior programming experience before the
start of the semester and those who had none. This comparison (under additional
consideration of further variables, such as prior experience) should be continued
over the course of the following years to further back the assumption, that MuLE
and the course designed around it are actually beneficial for our students.
Finally, it would be interesting to design an alternative course based on an

objects-first approach, separate the students into two groups and use the different
approaches in the respective groups in order to assess, whether MuLE is flexible
enough to be used in a differently designed course, and which approach is more
effective at improving the students’ ability to apply same concepts in a different
language, such as Java, in subsequent courses. Another idea would be to use Java
or Python in the control group and compare the performance of these groups to
asses whether MuLE is actually beneficial compared to these languages.

303

A. Installation Instructions

This section covers the installation instructions for MuLE as an Eclipse plug-in.

1. Java version 8 or higher is required to run MuLE, and should therefore be
installed first (if not already present on the target machine). MuLE was
tested on both Oracle Java SE [121] and OpenJDK [122], other distribu-
tions should work too but we can not guarantee it. Current versions of Java
are built only for 64bit systems, however, when installing an older version,
such as Java 8, users must pay attention whether they are installing a 32bit
or a 64bit version.

2. The next step is to download and install or simply unpack Eclipse. The
standard package Eclipse IDE for Java Developers [123] is sufficient to run
MuLE, however, any other package can also be used. Similarly to current
Java versions, current Eclipse packages are built only for 64bit systems.
Older packages were built for both 32bit and 64bit systems and require
the corresponding Java version, i.e. a 32bit Eclipse version will require an
installation of a 32bit Java version. MuLE was tested with the 2021-9 build,
we do not guarantee it working on releases earlier than 2019.

3. When starting Eclipse, the user is prompted to select a path for the work-
space folder, where the projects will be located on the system.

4. Once Eclipse has started, the user should navigate to the menu bar (see
sector 1 in section 7.1), select the category Help, and from there select the
entry Install new Software. At this point, a new window will open which is
displayed in screenshot in figure 55.

The first step here is to enter the URL to the MuLE update site, which is
http://132.180.192.13/mule/update/, in the Work with entry field. Users
may simply place the URL of the MuLE update site directly in the entry
field or create a corresponding entry by pressing the Add button first. Once
the URL is entered, the MuLE plug-in is displayed (step two) and must be
selected in order to proceed. Finally, users must press the next button and
follow the subsequent instructions. Optionally, users may disable the option
in the step marked as optional in the screenshot, this will cause an error
message in the next steps but MuLE will be installed anyway and will work
properly. This step is required, if the normal installation fails without the
optional step.

5. In the subsequent steps, the user must accept the licence agreement, ig-
nore any dependency (caused by the optional step mentioned before) or
authenticity (caused by unsigned content) related warnings and wait until
the installation is complete.

304

Figure 55: Screenshot of the plug-in installation user interface.

6. Once the installation is finished, the user is prompted to restart Eclipse. If
the installation was successful, the user should be now able to create new
MuLE projects and files via their respective wizards.

305

B. Grammar Definitions

1 grammar org.eclipse.xtext.common.Terminals hidden(WS, ML_COMMENT, SL_COMMENT)

2

3 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

4

5 terminal ID: ’^’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

6 terminal INT returns ecore::EInt: (’0’..’9’)+;

7 terminal STRING:

8 ’"’ (’\\’ . /* ’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’ */ | !(’\\’|’"’))* ’"’ |

9 "’" (’\\’ . /* ’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’ */ | !(’\\’|"’"))* "’"

10 ;

11 terminal ML_COMMENT : ’/*’ -> ’*/’;

12 terminal SL_COMMENT : ’//’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

13

14 terminal WS : (’ ’|’\t’|’\r’|’\n’)+;

15

16 terminal ANY_OTHER: .;

Listing 147: Definition of the Xtext Terminals grammar.

1 grammar de.ubt.ai1.mule.MuLE with org.eclipse.xtext.common.Terminals

2 generate muLE "http://www.ubt.de/ai1/mule/MuLE"

3

4 CompilationUnit:

5 (isProgram?=’program’ | isLibrary?=’library’) name=ID

6 imports += Import*

7 programElements += ProgramElement*

8 main=MainProcedure?;

9

10 QualifiedName: ID (’.’ ID)*;

11

12 Import: ’import’ importedNamespace=[CompilationUnit];

13

14 MainProcedure:

15 {MainProcedure} ’main’ block=Block ’endmain’;

16

17 ProgramElement: TypeDeclaration | Operation;

18

19 NamedElement: EnumerationValue | TypeDeclaration | Feature | CompilationUnit;

20

21 ////// DATA TYPES //////

22 DataType: BasicType | DeclaredType | ReferenceType | ListType | OperationType;

23

24 DeclaredType:

25 type=[TypeDeclaration|QualifiedName]

26 (’<’ typeParams+=DataType (’,’ typeParams+=DataType)* ’>’)?;

27

306

28 BasicType: typeName=(’integer’ | ’rational’ | ’string’ | ’boolean’);

29

30 ReferenceType: ’reference’ ’<’ type=DataType ’>’;

31

32 ListType: ’list’ ’<’ type=DataType ’>’;

33

34 OperationType:

35 {OperationType} ’operation’

36 ’(’ (paramTypes+=DataType (’,’ paramTypes+=DataType)*)? ’)’ (’:’ type=DataType)?;

37

38 VisibilityModifier: ’private’ | ’protected’;

39

40 TypeDeclaration: Composition | Enumeration | TypeParameter;

41

42 Enumeration:

43 visibility=VisibilityModifier? ’type’ name=ID ’:’ ’enumeration’

44 values+=EnumerationValue (’,’ values+=EnumerationValue)* ’endtype’;

45

46 EnumerationValue: name=ID;

47

48 Composition:

49 visibility=VisibilityModifier? abstract?=(’abstract’)? ’type’ name=ID

50 (’<’ typeParams+=TypeParameter (’,’ typeParams+=TypeParameter)* ’>’)?

51 ’:’ ’composition’ (’extends’ superType=[Composition|QualifiedName]

52 (’<’ superTypeParams+=TypeParameter (’,’ superTypeParams+=TypeParameter)* ’>’)?)?

53 typeDeclarations+=TypeDeclaration*

54 attributes+=Attribute*

55 operations+=Operation*

56 ’endtype’;

57

58 TypeParameter: name=ID (’extends’ superType=[Composition|QualifiedName])?;

59

60 ////// FEATURES //////

61 Feature: Attribute | VariableDeclaration | Parameter | Operation ;

62

63 Attribute: visibility=VisibilityModifier? ’attribute’ name=ID ’:’ type=DataType;

64

65 Parameter: ’parameter’ name=ID ’:’ type=DataType;

66

67 Operation:

68 override?=(’override’)? visibility=VisibilityModifier? abstract?=(’abstract’)?

69 ’operation’ name=ID ’(’ (params+=Parameter (’,’ params+=Parameter)*)? ’)’

70 (’:’ type=DataType)? (block=Block ’endoperation’)?;

71

72 Block: {Block} statements+=Statement*;

73

74

307

75 ////// STATEMENTS //////

76 Statement:

77 VariableDeclaration | AssignmentOrOperationCall | IfStatement | LoopStatement |

78 LetStatement | ReturnStatement | ExitStatement;

79

80 ReturnStatement: {ReturnStatement} ’return’ (=> expression=Expression)?;

81

82 ExitStatement: {ExitStatement} ’exit’;

83

84 VariableDeclaration: ’variable’ name=ID ’:’ type=DataType;

85

86 AssignmentOrOperationCall:

87 (SymbolReference | SuperExpression)

88 ({AssignmentOrOperationCall.left=current} ’:=’ right=Expression)?;

89

90 LoopStatement: {LoopStatement} ’loop’ block=Block ’endloop’;

91

92 IfStatement:

93 ’if’ expression=Expression ’then’ block=Block

94 elseIfs+=ElseIf*

95 (=> ’else’ elseBlock=Block)?

96 ’endif’;

97

98 ElseIf: ’elseif’ expression=Expression ’then’ block=Block;

99

100 LetStatement:

101 ’let’ variable=VariableDeclaration ’be’ expression=Expression ’do’ block=Block

102 elseLets+=ElseLet*

103 (=> ’else’ elseBlock=Block)?

104 ’endlet’;

105

106 ElseLet:

107 ’elselet’ variable=VariableDeclaration ’be’ expression=Expression ’do’ block=Block;

108

109 ////// EXPRESSIONS //////

110 Expression:

111 OrExpression;

112

113 OrExpression returns Expression:

114 AndExpression ({OrExpression.left=current} op=(’or’) right=AndExpression)*;

115

116 AndExpression returns Expression:

117 EqualityExpression ({AndExpression.left=current}

118 op=(’and’) right=EqualityExpression)*;

119

120 EqualityExpression returns Expression:

121 ComparisonExpression ({EqualityExpression.left=current}

308

122 op=(’=’ | ’/=’) right=ComparisonExpression)*;

123

124 ComparisonExpression returns Expression:

125 AdditiveExpression ({ComparisonExpression.left=current}

126 op=(’<’ | ’<=’ | ’>’ | ’>=’) right=AdditiveExpression)*;

127

128 AdditiveExpression returns Expression:

129 MultiplicativeExpression ({AdditiveExpression.left=current}

130 op=(’+’ | ’-’ | ’&’) right=MultiplicativeExpression)*;

131

132 MultiplicativeExpression returns Expression:

133 ExponentExpression ({MultiplicativeExpression.left=current}

134 op=(’*’ | ’/’ | ’div’ | ’mod’) right=ExponentExpression)*;

135

136 ExponentExpression returns Expression:

137 AtomicExpression ({ExponentExpression.left=current}

138 op=(’exp’) right=AtomicExpression)*;

139

140 AtomicExpression returns Expression:

141 SymbolReference |

142 SuperExpression |

143 {StringConstant} value=STRING |

144 {IntegerConstant} value=INTEGER |

145 {RationalConstant} value=RATIONAL |

146 {BooleanConstant} value=(’true’ | ’false’) |

147 {Null} ’null’ |

148 {Unary} op=(’+’|’-’|’not’) expression=AtomicExpression |

149 {Reference} ’reference’ expression=AtomicExpression |

150 {ParenthesizedExpression} ’(’ expression=Expression ’)’ |

151 ListInit |

152 LambdaExpression ;

153

154 LambdaExpression returns Expression:

155 {LambdaExpression} ’operation’

156 ’(’ (parameters+=Parameter (’,’ parameters+=Parameter)*)? ’)’

157 (’:’ type=DataType)? block=Block ’endoperation’;

158

159 SuperExpression: {SuperExpression} ’super’ ’.’ memberCall=SymbolReference;

160

161 SymbolReference:

162 symbol=[NamedElement]

163 compositionInit=SymbolRefCompositionInit?

164 accessModifier=SymbolRefAccessModifier?

165 (’.’ memberCall=SymbolReference)?;

166

167 SymbolRefAccessModifier:

168 {OperationInvocation} ’(’ (params+=Expression (’,’ params+=Expression)*)? ’)’

309

169 accessModifier=SymbolRefAccessModifier? |

170 {ListAccess} ’[’ index=Expression ’]’ accessModifier=SymbolRefAccessModifier? |

171 {Dereference} ’@’ accessModifier=SymbolRefAccessModifier? ;

172

173 SymbolRefCompositionInit:

174 {SymbolRefCompositionInit} ’{’ (attributes+=SymbolRefCompositionAttribute

175 (’,’ attributes+=SymbolRefCompositionAttribute)*)? ’}’;

176

177 SymbolRefCompositionAttribute:

178 attribute=[Attribute] ’=’ expression=Expression;

179

180 ListInit:

181 {ListInit} "[" (left=Expression right=(ListInitFunction | ListInitElements))? "]";

182

183 ListInitFunction:

184 {ListInitFunction} op=("**" | "..") expression=Expression;

185

186 ListInitElements:

187 {ListInitElements} ("," elements+=Expression)*;

188

189 @Override

190 terminal ID: (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

191

192 @Override

193 terminal STRING: ’"’ (’\\’ . | !(’\\’|’"’))* ’"’;

194

195 terminal INTEGER: INT;

196

197 terminal RATIONAL: INT ’.’ INT (’E’ (’+’ | ’-’)? INT)?;

Listing 148: Definition of the MuLE grammar with Xtext implementation details.

310

C. IO Library API

This section provides the specification of the operations provided by the library
IO, which we have discussed in section 6.1.

� writeLine() – creates a line break, other operations in this library do not
create a line break after the printed content.

� writeString(arg : string) – prints a string value on the console.

� writeBoolean(arg : boolean) – prints a boolean value on the console.

� writeInteger(arg : integer) – prints an integer value on the console.

� writeRational(arg : rational) – prints a rational value on the console.

� writeFile(path : string, content : string) – creates a file with the
given path and the string content. If a file under the given path already
exists, its content is overwritten, meaning that the users should apply this
operation with caution. The entered path can be relative to the project,
i.e. a simple file name will search for the file in the project folder (or create
it if it does not exist), or absolute. In the latter case, all folders in the path
must exist, otherwise the file can not be created. In any case, after the
execution of the operation the message File path: [ABSOLUTE PATH] is
displayed on the console.

� readString() : string – reads a character sequence from the console and
returns it as a string value.

� readBoolean() : boolean – reads a character sequence from the console
and returns the corresponding boolean value if the entered character se-
quence is either true of false. If not, false is returned as a default value.

� readInteger() : integer – reads a character sequence from the console
and returns the corresponding integer value if the entered character se-
quence can be parsed as integer. If not, 0 is returned as a default value.

� readRational() : rational – reads a character sequence from the con-
sole and returns the corresponding rational value if the entered character
sequence can be parsed either as a floating point number or an integer. If
not, 0.0 is returned as a default value.

� readFile(path : string) : string – reads a file under the given path and
returns its contents as a string. If the file does not exist, the returned string
is "file not found".

311

� readFileLines(path : string) : list<string> – reads a file under the
given path and returns its contents as a list of strings, wherein each entry
of the list is a single line of the file. If the file does not exist, the returned
list is ["file not found"].

� fileExists(path : string) : boolean – returns true if a file with the
given path does exist, and false otherwise.

312

D. Mathematics Library API

� sin(a : rational) : rational – returns the result of the sine function of
an angle measured in radians.

Mathematics.sin(pi / 4.0) returns 0.7071067811865475

� cos(a : rational) : rational – returns the result of the cosine function
of an angle measured in radians.

Mathematics.cos(pi / 4.0) returns 0.7071067811865475

� tan(a : rational) : rational – returns the result of the tangent function
of an angle measured in radians.

Mathematics.tan(pi / 4.0) returns 0.9999999999999999

� asin(a : rational) : rational – returns the result of the arc sine func-
tion, the resulting angle is measured in radians.

Mathematics.asin(0.707) returns 0.785247163395153 (≈45°)

� acos(a : rational) : rational – returns the result of the arc cosine func-
tion, the resulting angle is measured in radians.

Mathematics.acos(0.707) returns 0.7855491633997437 (≈45°)

� atan(a : rational) : rational – returns the result of the arc tangent
function, the resulting angle is measured in radians.

Mathematics.atan(1) returns 0.7853981633974483 (≈45°)

� toDegrees(a : rational) : rational – converts an angle measured in
radians to an angle measured in degrees.

Mathematics.toDegrees(0.7853981633974483) returns 45.0

� toRadians(a : rational) : rational – converts an angle measured in
degrees to an angle measured in radians.

Mathematics.toRadians(45) returns 0.7853981633974483

� log(a : rational) : rational – returns the logarithm with the basis e.
Mathematics.log(0) returns -Infinity
Mathematics.log(1) returns 0.0

� log10(a : rational) : rational – returns the logarithm with the basis
10. Results of log10(0) and log10(1) are same as above.

� round(a : rational) : integer – rounds the floating point number and
returns an integer. Only the first decimal is considered.

Mathematics.round(2.49) returns 2
Mathematics.round(2.50) returns 3

313

� floor(a : rational) : integer – returns the integer part of a floating
point number.

Mathematics.floor(2.50) returns 2

� absoluteInteger(a : integer) : integer – returns the absolute value of
an integer.

Mathematics.absoluteInteger(-5) returns 5

� absoluteRational(a : rational) : rational – returns the absolute value
of a floating point number.

Mathematics.absoluteRational(-5) returns 5.0

� randomInteger(min : integer, max : integer) : integer – returns a
randomly generated integer number between min and max (min ≤ Number ≤
max). An example is shown in listing 105.

� randomRational() : rational – returns a randomly generated floating
point number (0.0 ≤ Number < 1.0). An example is shown in listing 105.

� pi() : rational – returns an approximation of the number π, the returned
value is 3.141592653589793.

� e() : rational – returns an approximation of the number e, the returned
value is 2.718281828459045.

� getMaxIntegerValue() : integer – returns the highest supported integer
value, which is 2147483647.

� getMinIntegerValue() : integer – returns the smallest supported integer
value, which is -2147483648.

� getMaxRationalValue() : rational – returns the highest supported float-
ing point value, which is 1.7976931348623157E308.

� getMinRationalValue() : rational – returns the smallest supported float-
ing point value, which is 4.9E-324.

314

E. Strings Library API

� subString(str : string, startPos : integer, endPos : integer) :
string – returns a substring of the passed str according to the passed bor-
der indices startPos and endPos. Both borders are inclusive. If endPos is
lesser than starPos, the result is an empty string.

Strings.subString("[hi]", 1, 2) returns hi

� lengthOf(str : string) : integer – returns the number of characters in
a given string.

Strings.lengthOf("[hi]") returns 4

� indexOfSubString(str : string, subStr : string) : integer – returns
the position of a substring in a given string. On several occurrences of a
substring, the index of the first occurrence is returned. The result is the
index of the first character of the substring in the given string. If the sub-
string is not part of the string, -1 is returned instead.

Strings.indexOfSubString("ababa", "ba") returns 1

� replaceAll(str : string, regex : string, repl : string) : string –
replaces all occurrences of the passed substring regex in the given string
str by the replacement string repl.

Strings.replaceAll("a:b:c:d", ":", "-") returns a-b-c-d

� replaceFirst(str : string, regex : string, repl : string) : string
– replaces the first occurrence of the passed substring regex in the given
string str by the replacement string repl.

Strings.replaceFirst("a:b:c:d", ":", "-") returns a-b:c:d

� split(str : string, regex : string) : list<string> – splits the given
string str into a list of substrings at all occurrences of the passed substring
regex.

Strings.split("a:b:c:d", ":") returns [a, b, c, d]

� toUpperCase(str : string) : string – replaces all applicable characters
with the corresponding upper case variant.

Strings.toUpperCase("a:b.C:D") returns [A:B.C:D]

� toLowerCase(str : string) : string – replaces all applicable characters
with the corresponding lower case variant.

Strings.toLowerCase("a:b.C:D") returns [a:b.c:d]

� integerToString(num : integer) : string – converts an integer value to
a string value and returns it.

315

� rationalToString(num : rational) : string – converts a rational value
to a string value and returns it.

� booleanToString(bool : boolean) : string – converts a boolean value
to a string value and returns it.

� genericToString(arg : Type) : string – converts a value of any type to a
string value and returns it. This operation can be used to convert values of
enumerations, compositions, lists and references into their respective string
representations.

316

F. Lists Library API

� isEmpty(l : list<Type>) : boolean – checks if the passed list is empty.
Lists.isEmpty([]) returns true

Lists.isEmpty([1, 2, 3]) returns false

� lengthOf(l : list<Type>) : integer – returns the number of entries in
the passed list.

Lists.lengthOf([]) returns 0
Lists.lengthOf([1, 2, 3]) returns 3

� indexOf(l : list<Type>, element : Type) : integer – returns the index
of the first occurrence of the passed element. If the element is not present,
the result is -1.

Lists.indexOf([], 2) returns -1
Lists.indexOf([1, 2, 2], 2) returns 1

� append(l : list<Type>, element : Type) : list<Type> – creates a shal-
low copy of the passed list, appends the passed element at the end of the
copy and returns it.

Lists.append([1, 2, 3], 4) returns [1, 2, 3, 4]

� head(l : list<Type>) : Type – returns the first entry in the list. Passing
an empty list will cause a runtime exception.

Lists.head([1, 2, 3]) returns 1

� tail(l : list<Type>) : list<Type> – returns a copy of the passed list
without its first element. Passing an empty list will cause a runtime excep-
tion.

Lists.tail([1, 2, 3]) returns [2, 3]

� last(l : list<Type>) : Type – returns the last entry of the passed list.
Passing an empty list will cause a runtime exception.

Lists.last([1, 2, 3]) returns 3

� subList(l : list<Type>, min : integer, max : integer) : list<Type>
– creates a list filled with copies of the entries of the original list starting
at the index min and ending at the index max. If min is greater than max,
the result is an empty list. Otherwise, if at least one of these values lies
outside of the bounds of the list, a runtime exception will occur.

Lists.subList([1, 2, 3], 1, 2) returns [2, 3]

� insert(l : list<Type>, element : Type, pos : integer) : list<Type>
– creates a shallow copy of the original list with the passed element inserted
at the passed position. Previous entry at this position as well as all subse-
quent entries are moved one position to the rear of the list. The new list is

317

returned.
Lists.insert([1, 2, 3], 42, 1) returns [1, 42, 2, 3]

� removeElement(l : list<Type>, element : Type) : list<Type> – re-
turns a shallow copy of the passed list without the first occurrence of the
passed value. All entries after this position are moved one position to the
front of the list.

Lists.removeElement([1, 2, 2], 2) returns [1, 2]

� removePosition(l : list<Type>, pos : integer) : list<Type> – re-
turns a copy of the passed list without the entry at the passed position. All
entries after this position are moved one position to the front of the list.

Lists.removePosition([1, 2, 3], 1) returns [1, 3]

� filter(l : list<Type>, op : operation(Type) : boolean) : list<Type>
– returns a list with copies of entries of the original list, which fulfil the
condition specified by the passed operation.

� forEach(l : list<Type>, op : operation(Type)) – applies the passed
operation to each entry of the passed list in order of their appearance.

318

G. Turtle Library API

Following enumeration types are specified within the library:

� Speed – defines a set of options for the speed of the animation. The values
are SLOW, MEDIUM, FAST and INSTANT.

� Colors – specifies a set of predefined colors, which are WHITE, BLACK,

RED, GREEN, BLUE, YELLOW, MAGENTA, CYAN, PINK,

ORANGE, LIGHT GRAY and DARK GRAY.

� Orientation – specifies a set of four orientations for the Turtle pen: NORTH,
SOUTH, EAST and WEST. The standard orientation is NORTH or 0°.

Furthermore, following operations are included in the library:

� forward(length : integer) – moves the pen in its current direction for the
given number of pixels. A line is drawn as long as penUp was not invoked
before.

� backward(length : integer) – moves the pen against its current direction
for the given number of pixels. A line is drawn as long as penUp was not
invoked before.

� right(degree : rational) – turns the pen to the right for the given angle.

� left(degree : rational) – turns the pen to the left for the given angle.

� penUp() – stops drawing if the pen is moved. Can be used to move the pen
to another place in the canvas without drawing a line in between.

� penDown() – starts drawing again when the pen is moved, if penUp was
invoked earlier.

� setColor(color : Colors) – sets the color of the pen to one of the prede-
fined colours.

� setColorRGB(r : integer, g : integer, b : integer) – sets the colour
of the pen defined by an RGB value, the values of the parameters must be
in range [0 .. 255].

� setThickness(thickness : integer) – sets the width of the pen, i.e. the
thickness of the drawn lines, for the given number of pixels. The initial
value is one pixel.

� moveTo(x : integer, y : integer) – moves the pen to a specific coordinate
in the canvas and draws a line, if penUp was not invoked earlier. The
direction of the pen after the movement is that of the direction of the
movement.

319

� setPosition(x : integer, y : integer) – places the pen at the given
coordinates of the canvas. The pen retains its original orientation after the
placement. The initial placement of the pen is at (300, 200) pixels.

� setDirection(arc : rational) – set the direction of the pen towards a
specific angle.

� setOrientation(o : Orientation) – sets the direction of the pen towards
a predefined orientation.

� setFrameSize(x : integer, y : integer) – sets the size of the canvas in
pixels.

� getX() : integer – returns the value of the x-coordinate of the pen.

� getY() : integer – returns the value of the y-coordinate of the pen.

� getArc() : rational – returns the current direction of the pen as an angle.

� startFilledPolygon(color : Colors) – starts drawing a polygon filled
with a predefined colour.

� startFilledPolygonRGB(r : integer, g : integer, b : integer) –
same as above, however the colour is defined by RGB values.

� endFilledPolygon() – terminates the drawing of a polygon.

� circle(radius : integer) – draws a circle with a given radius measured
in pixels.

� filledCircle(radius : integer, color : Colors) – draws a circle filled
with a predefined colour.

� filledCircleRGB(radius : integer, r : integer, g : integer, b :
integer) – draws a circle filled with a color defined by RGB values.

� setAnimationSpeed(speed : Speed) – sets the speed of the drawing ani-
mation.

� showCoordinateSystem(bool : boolean) – is used to toggle the coordinate
grid.

� showCursor(bool : boolean) – is used to toggle the visual representation
of the pen.

� activateDrawMode(speed : Speed) – starts the drawing mode wherein the
pen is controlled by the arrow keys, which can be used to familiarize users
with the behaviour of the Turtle pen.

320

H. UBTMicroworld Library API

The library provides the abstract composition Agent, which is used to interface
with the agents in the environment and specifies following operations for this
task:

� getXPosition() : integer – returns the current x-coordinate of the agent.

� getYPosition() : integer – returns the current y-coordinate of the agent.

� getXstartPosition() : integer – returns the initial x-coordinate of the
agent at the start of the level.

� getYstartPosition() : integer – returns the initial y-coordinate of the
agent at the start of the level.

� moveForward() – attempts to move one step forward.

� moveBackward() – attempts to move one step backward.

� rotateRight() – rotates the agent 90° to the right.

� rotateLeft() – rotates the agent 90° to the left.

� doNothing() – the agents waits until next instructions.

� isTileInFrontOfWalkable() : boolean – returns true if the tile directly
in front of the agent is accessible.

� isTileBehindWalkable() : boolean – returns true if the tile directly
behind the agent is accessible

� getID() : integer – returns the id of the agent.

� getStepsMade() : integer – returns the number of steps made by the
agent.

� getNumberInputs() : integer – returns the number of attempted actions.

� getNumberInvalidInputs() : integer – returns the number of invalid
actions.

� getLastMoveDirection() : MoveDirection – returns the last
MoveDirection made by the agent.

� getMoveDirectionList() : list<MoveDirection> – returns the list of all
MoveDirections made by the agent.

321

� getLineOfSight() : LineOfSight – returns the current direction faced by
the agent as specified by the enumeration type LineOfSight.

� getNumberOfCollectedObjects() : integer – returns the number of col-
lected objects.

Furthermore, the library defines following enumeration types:

� DefaultLevelType – specifies literals representing the default levels
DEFAULT LEVEL 0 up to DEFAULT LEVEL 16.

� DelayTime – used to set the delay time between the actions of the agents,
the options are NO DELAY, SHORT DELAY, MEDIUM DELAY, LONG DELAY. After
an agent receives an instruction, the animation is played after the delay
time.

� LineOfSight – resembles the direction currently faced by an agent, the
values are NORTH, EAST, SOUTH, WEST.

� MoveDirection – resembles the successfully performed or attempted but
failed movements by an agent, the values are FORWARD, BACK, RIGHT, LEFT,
NONE, INVALID, FORWARD INVALID, BACK INVALID.

� ObjectType – specifies the presence or the lack of an object on the map:
NO OBJECT, KEY.

� TerrainType – specifies the various terrain types: GRASS, SAND, PATH, SNOW,
STONE, WATER, TARGET, START.

� WinValidatorType – used to initialize levels with specific level completion
rules: VALIDATOR 1, VALIDATOR 2, VALIDATOR 3, CUSTOM.

Finally, following operations are specified by the library:

� initCustomGame1(terrain : list<list<TerrainType>>, validator :
WinValidatorType) – initializes a custom level with a terrain map defined
as a 2D list of terrain types and a win validator.

� initCustomGame2(terrain : list<list<TerrainType>>, objects :
list<list<ObjectType>>, validator : WinValidatorType) – same as
the above operation with the addition of the objects map defined by a 2D
list of object types.

� initCustomGame3(terrainMapPath : string, validator :
WinValidatorType) – initializes a custom level with a terrain map defined
by a path to an image and a win validator.

322

� initCustomGame4(terrainMapPath : string, objectsMapPath : string,
validator : WinValidatorType) – same as the above operation with the
addition of the objects map defined by a path to an image.

� initDefaultGame(value : DefaultLevelType) – initializes one of the pre-
defined levels.

� getAgentList() : list<reference<Agent>> – returns the list of agents.

� getNavMap() : list<list<String>> – returns a 2D list of strings repre-
senting a simple navigational map, which shows accessible and inaccessible
tiles as well as the start and target tiles.

� getTerrainType(x : integer, y : integer) : TerrainType – returns
the TerrainType of the tile at the specified coordinates.

� isGameRunning() : boolean – returns true if the game is not finished.

� setDelayTime(delayTime : DelayTime) – sets the delay time between
actions performed by the agents.

� setGameFinished() – sets the state of the game to game finished.

� setGameOver() – sets the state of the game to game over.

� registerAgentForKeyListener(agent : reference<Agent>) – registers
an agent for a key listener, this agent can now be controlled by the arrow
keys on the keyboard. Only one agent can be registered.

323

I. GUIFactory Library API

This library is separated into five manageable compilation units.

GUIFactory Unit

This is the core compilation unit, it contains the composition Colour, which does
not specify any operations as well as the composition Window, which represents
the root element of a GUI and specifies following operations:

� showWindow() – forces a window to open, can be used to test initial pane
placement. As soon as a widget, i.e. a component that is not a pane, is
added, the window will open automatically when the program is executed
without the need to invoke this operation.

� setPane(pane : reference<GUIFactoryPanes.Pane>) – sets the main
pane of a window.

� getPane() : reference<GUIFactoryPanes.Pane> – returns the main pane
of a window.

� setSize(width : integer, height : integer) – sets the width and height
of a window in pixels.

� setResizable(resizable : boolean) – allows or disables the resizing of a
window.

� setTitle(title : string) – sets the title of a window.

Furthermore, this unit contains the following enumeration types which define
values for predefined colours, alignments, etc.:

� Palette – specifies a set of predefined colours, which can be used to create
an instance of Colour by the operation createColourFromPalette. The
values are: LIGHT RED, RED, DARK RED, CYAN, LIGHT BLUE, BLUE, DARK BLUE,
LIGHT YELLOW, YELLOW, DARK YELLOW, LIGHT GREEN, GREEN, DARK GREEN,
ORANGE, GOLD, LIGHT GREY, GREY, DARK GREY, LIGHT BROWN, BROWN, DARK -

BROWN, PURPLE, BLACK, WHITE and TRANSPARENT.

� HorizontalAlignment – specifies a set of alignments required by specific
components, e.g. a TextField. The values are: LEFT, CENTER and RIGHT.

� FontType – specifies specific font types, the values are: PLAIN, ITALIC,
BOLD and ITALIC BOLD.

� CheckBoxAlignment – specifies alignments for the CheckBox component,
the values are: NONE, ICON LEFT TEXT RIGHT, ICON RIGHT TEXT LEFT, ICON -

TEXT LEFT and ICON TEXT RIGHT.

324

� Alignment – specifies alignments for specific components, e.g. VerticalPane
and HorizontalPane. The values are: NONE, TOP LEFT, TOP CENTER, TOP -

RIGHT, CENTER LEFT, CENTER, CENTER RIGHT, BOTTOM LEFT, BOTTOM CENTER

and BOTTOM RIGHT.

Finally, the unit contains operations which create and return instances of
Window and Colour:

� createWindow(title : string, width : integer, height : integer)

: reference<Window> – creates a Window instance and returns the corre-
sponding reference.

� createColour(r : integer, g : integer, b : integer, a : integer) :
Colour – creates a Colour instance based on the RGBA values.

� createColourFromPalette(palette : Palette) : Colour – creates a
Colour instance from one of the predefined literals in the enumeration type
Palette.

GUIFactoryPanes Unit

There are four pane types specified in this library unit, as well as the correspond-
ing creation operations:

� VerticalPane – components are arranged vertically when added as children
to this pane. The corresponding creation operation is createVertical-

Pane(alignment : GUIFactory.Alignment, spacing : integer) : re-

ference<VerticalPane>. Children components are displayed in the same
order as they are added via the addComponent(c : reference<Component>)
operation to the pane, i.e. the first added child will be displayed at the top
while the last at the bottom of the pane.

� HorizontalPane – components are arranged horizontally when added as
children to this pane. The corresponding creation operation is create-

HorizontalPane(alignment : GUIFactory.Alignment, spacing : inte-
ger) : reference<HorizontalPane>. Similarly to the VerticalPane, the
children are displayed in the same order as they are added, starting from
left to right.

� GridPane – components are arranged in a grid pattern, they have to be
added at specific coordinates as children. The upper left corner has the
coordinates (0, 0). Unlike the previous panes, the addComponent oper-
ation, which adds a component to the pane, requires coordinates, where
the added component is placed. The corresponding creation operation is
createGridPane(columnSpace : integer, rowSpace : integer) : refe-
rence<GridPane>.

325

� BorderPane – this pane is separated into five sectors: top, bottom, cen-
ter, left and right, thus representing the common arrangement inside of
a GUI separated into a header, menu bar, content page, contributions
bar, etc. Unlike with the previous panes, children components are not
added via the simple addComponent operation, but via setter operations,
e.g. setTop or setCenter. Furthermore, the size if the components con-
tained directly in the border pane is overridden so that they take up all
available space defined by the corresponding sector. The corresponding cre-
ation operation is createBorderPane(hgap : integer, vgap : integer)

: reference<BorderPane>.

GUIFactoryBorders Unit

This library unit contains an abstract type Border, an enumeration BorderType

with the values RAISED and LOWERED, three non-abstract border types which are
subtypes of Border as well as the corresponding creation operations. The border
types are:

� TitledBorder – this border type has a title in the upper left corner of
the border which is given upon the creation of the border. Users must
also specify the colour and the thickness of the border. The corresponding
creation operation is createTitledBorder(colour : GUIFactory.Colour,
thickness : integer, title : string) : reference<TitleBorder>.

� LineBorder – this is a simple line border, users must specify the colour, the
thickness and whether the corners are rounded or not. The corresponding
creation operation is createLineBorder(colour : GUIFactory.Colour,

thickness : integer, rounded : boolean) : reference<LineBorder>.

� BevelBorder – This border has a shadow effect and appears either as
raised or lowered against the background. The users must therefore specify
whether the border is raised or lowered as well as the colours of the highlight
and shadow effects.The corresponding creation operation is createBevel-
Border(borderType : BorderType, highlight : GUIFactory.Colour,

shadow : GUIFactory.Colour) : reference<BevelBorder>.

GUIFactoryComponents Unit

This unit contains Components which are not subtypes of Pane. The included
components are:

� Component – this is a super type for all components of this library unit
as well as all panes, specifies self-explanatory operations setVisible(boo-
lean) and getParent() : reference<Component>. No specific creation

326

operation exists for this type. All components of this unit have the at-
tributes width and height which can be accessed by the corresponding
getter operations and edited with the operation setSize(width : integer,
height : integer).

� Shape – this is a subtype of Component and a super type for the composi-
tions Rectangle, Polygon and Ellipse. It includes additional operations
that can set the colour of the shape or assign an image to it.

� Rectangle – This type represents rectangular shapes and offers no addi-
tional operations. The corresponding creation operation is createRectan-
gle(width : integer, height : integer) : reference<Rectangle>.

� Ellipse – The corresponding creation operation is createEllipse(width
: integer, height : integer) : reference<Ellipse>.

� Polygon – This type represents polygonal shapes defined by a set of points
with x and y pixel coordinates which are relative to the space assigned to
the polygon with the coordinates (0, 0) representing the upper-left cor-
ner of the polygon space. Additional points can be added via the op-
eration addPoint(x : integer, y : integer). The corresponding cre-
ation operation is createPolygon(xPoints : list<integer>, yPoints :
list<integer>, points : integer) : reference<Polygon>.

� Image – This type allows to load images into a GUI via its path. In addition
to the size attributes, users can access and change the transparency of
the image. The corresponding creation operation is createImage(path :
string) : reference<Image>.

� Label – This type represents simple text that can not be edited directly in
the GUI without using setter operations, which allow to set the text itself,
the text alignment, size and font. The stored string can be accessed by a get-
ter operation. The corresponding creation operation is createLabel(text
: string) : reference<Label>.

� TextField – This type represents a single line text field. Users have getter
operations for the text and whether the text field is editable. Users can rely
on setter operations to change the text, its font, the background colour and
disable or enable the ability to edit the text in the GUI. The corresponding
creation operation is createTextField(alignment : GUIFactory.Hori-

zontalAlignment, text : string) : reference<TextField>.

� TextArea – This type is similar to TextField, the only difference is that
the text can be displayed over several lines. The corresponding creation
operation is createTextArea(text : string) : reference<TextArea>.

327

� Button – The button is the only control element that can perform actions
when activated. The performed action is defined as redefined operation
in a user defined subtype of ActionTask (see next subsection), which is
passed to a button via the operation handleActionTask. Other than that,
users can access and change the text of a button, activate or deactivate the
button as well as check if it is active. The corresponding creation operation
is createButton(text : string) : reference<Button>.

� Checkbox – Users may check if the check box is selected via the operation
isSelected. The corresponding creation operation is createCheckBox(a-
lignment : GUIFactory.CheckBoxAlignment, text : string, selected

: boolean) : reference<CheckBox>.

� DropDownMenu – Users may access the selected string in the drop down menu
via the operation getSelectedItem. The corresponding creation operation
is createDropDownMenu(itemNames : list<string>) : reference<Drop-
DownMenu>.

� Slider – Users may access the selected value in the slider via the operation
getValue. The corresponding creation operation is createSlider(minimum
: integer, maximum : integer, value : integer) : reference<Slider>.

GUIFactoryTasks Unit

This unit includes the single abstract composition ActionTask which contains
a single abstract operation actionPerformed. Users are meant to extend this
type, provide their own implementation of the operation actionPerformed and
pass instances of this type to Buttons.

328

J. Implementation of the Universal Turing Machine

In 1936, Alan Turing [124] has described theoretical computing machines, which
were capable to solve any computable task. Such machines, which we now call
Turing Machines, consist of a potentially unlimited tape divided into squares and
a finite number of states q1, ..., qn. At any time, the machine can read from or
write on a single square. The behaviour of the machine is defined by the condi-
tions q1, ..., qn, which basically represent a finite state automaton. Depending
on the symbol on the tape and the condition, the machine can move its head
one square at a time to the left or right or stay in place. Furthermore it can
replace or erase the current symbol on the tape. If a problem is computable, the
Turing Machine will solve it given enough time. A computing machine which can
solve any given computable task is called a Universal Turing Machine (UTM),
any computational device that can solve any task that can be solved by such a
machine is called Turing complete.
According to [7] any machine that is capable of data manipulation and supports

conditional transfers is basically Turing complete. In practice, one has to consider
hardware limitations. Turing completeness is used to demonstrate the expressive
power of a computational machine or a programming language. Some examples
are [125], [126] and [127]. Most general purpose programming languages like Java
or Python are Turing complete while most markup languages like HTML or XML
are not. This still does not tell us anything about the actual practicality of a
language.
MuLE offers variables and assignments to store data, lists as a built-in data

structure, conditional statements, loops, and supports recursion. Therefore, it
offers more than enough language constructs to be considered Turing Complete.
As a further proof we have implemented a UTM with MuLE heavily inspired
by the Java implementation found at [128].This implementation of the Universal
Turing Machine serves as a proof of Turing completeness of MuLE. Listing 150
shows a three state busy beaver machine running on our MuLE UTM. The initial
tape is empty, 0 represents blank space, the goal is to fill the tape with as many
1s as possible and, eventually, halt. The corresponding state machine as well as
the output of the program is seen in figure 56. In the output, the position of the
machine is represented by [H] standing left from the current square on the tape.

329

[[H] 0] --- (a, 0)=>(b, 1)/1

[1 [H] 0] --- (b, 0)=>(a, 1)/-1

[[H] 1 1] --- (a, 1)=>(c, 1)/-1

[[H] 0 1 1] --- (c, 0)=>(b, 1)/-1

[[H] 0 1 1 1] --- (b, 0)=>(a, 1)/-1

[[H] 0 1 1 1 1] --- (a, 0)=>(b, 1)/1

[1 [H] 1 1 1 1] --- (b, 1)=>(b, 1)/1

[1 1 [H] 1 1 1] --- (b, 1)=>(b, 1)/1

[1 1 1 [H] 1 1] --- (b, 1)=>(b, 1)/1

[1 1 1 1 [H] 1] --- (b, 1)=>(b, 1)/1

[1 1 1 1 1 [H] 0] --- (b, 0)=>(a, 1)/-1

[1 1 1 1 [H] 1 1] --- (a, 1)=>(c, 1)/-1

[1 1 1 [H] 1 1 1] --- (c, 1)=>(halt, 1)/0

[1 1 1 [H] 1 1 1] --- (halt, 1)

Terminal state reached.

Tape: [1, 1, 1, 1, 1, 1]

Figure 56: A three state busy beaver machine [127] and the output of the program
shown in listing 150.

330

1 library TuringMachine

2 import IO

3 import Strings

4 import Lists

5

6 type Transitions : composition

7 attribute stps : list<StateTapeSymbolPair>

8 attribute transitions : list<Transition>

9

10 operation add(parameter transition : Transition)

11 if (Lists.contains(stps, transition.from)) then

12 variable index : integer

13 index := Lists.indexOf(stps, transition.from)

14 transitions[index] := transition

15 else

16 stps := Lists.append(stps, transition.from)

17 transitions := Lists.append(transitions, transition)

18 endif

19 endoperation

20

21 operation get(parameter stp : StateTapeSymbolPair) : Transition

22 variable index : integer

23 index := Lists.indexOf(stps, stp)

24 return transitions[index]

25 endoperation

26

27 operation containsStateSymbolPair(

28 parameter stp : StateTapeSymbolPair) : boolean

29 return Lists.contains(stps, stp)

30 endoperation

31 endtype

32

33 type StateTapeSymbolPair : composition

34 attribute state : string

35 attribute tapeSymbol : string

36

37 operation print()

38 IO.writeString("(" & state & ", " & tapeSymbol & ")")

39 endoperation

40 endtype

41

42 type Transition : composition

43 attribute from : StateTapeSymbolPair

44 attribute to : StateTapeSymbolPair

45 attribute direction : integer // -1 left, 0 neutral, 1 right.

46

47 operation print()

331

48 from.print() IO.writeString("=>") to.print()

49 IO.writeString("/") IO.writeInteger(direction)

50 endoperation

51 endtype

52

53 type UniversalTuringMachine : composition

54 attribute tape : list<string>

55 attribute blankSymbol : string

56 attribute headPosition : integer

57 attribute transitions : Transitions

58 attribute terminalStates : list<string>

59 attribute initialState : string

60

61 operation run()

62 if Lists.lengthOf(tape) = 0 then

63 tape := Lists.append(tape, blankSymbol)

64 endif

65

66 variable tsp : StateTapeSymbolPair

67 tsp := StateTapeSymbolPair{state = initialState,

68 tapeSymbol = tape[headPosition]}

69

70 loop

71 if transitions.containsStateSymbolPair(tsp) then

72 print() IO.writeString(" --- ")

73 transitions.get(tsp).print() IO.writeLine()

74

75 variable t : Transition

76 t := transitions.get(tsp)

77 tape[headPosition] := t.to.tapeSymbol

78

79 tsp.state := t.to.state

80

81 if t.direction = -1 then

82 if headPosition = 0 then

83 tape := Lists.prepend(tape, blankSymbol)

84 else

85 headPosition := headPosition - 1

86 endif

87 tsp.tapeSymbol := tape[headPosition]

88 elseif t.direction = 1 then

89 if headPosition = Lists.lengthOf(tape)-1 then

90 tape := Lists.append(tape, blankSymbol)

91 endif

92 headPosition := headPosition + 1

93 tsp.tapeSymbol := tape[headPosition]

94 else

332

95 tsp.tapeSymbol := t.to.tapeSymbol

96 endif

97 else

98 exit

99 endif

100 endloop

101

102 print() IO.writeString(" --- ") tsp.print() IO.writeLine()

103

104 if Lists.contains(terminalStates, tsp.state) then

105 IO.writeString("Terminal state reached.\n")

106 IO.writeString("Tape: " & Strings.genericToString(tape) & "\n")

107 endif

108 endoperation

109

110 operation print()

111 IO.writeString("[")

112 variable pos : integer

113 pos := headPosition - 1

114

115 variable i : integer

116 loop

117 if i > pos then exit endif

118 IO.writeString(tape[i] & " ")

119 i := i + 1

120 endloop

121 IO.writeString("[H] ")

122 i := pos + 1

123 loop

124 if i >= Lists.lengthOf(tape) then exit endif

125 IO.writeString(tape[i] & " ")

126 i := i + 1

127 endloop

128 IO.writeString("]")

129 endoperation

130 endtype

Listing 149: Universal Turing Machine implemented with MuLE.

333

1 program BusyBeaverTest

2 import TuringMachine

3

4 main

5 variable transitions : TuringMachine.Transitions

6 transitions.add(TuringMachine.Transition {

7 from = TuringMachine.StateTapeSymbolPair{state = "a", tapeSymbol = "0"},

8 to = TuringMachine.StateTapeSymbolPair{state = "b", tapeSymbol = "1"},

9 direction = 1

10 })

11 transitions.add(TuringMachine.Transition {

12 from = TuringMachine.StateTapeSymbolPair{state = "a", tapeSymbol = "1"},

13 to = TuringMachine.StateTapeSymbolPair{state = "c", tapeSymbol = "1"},

14 direction = -1

15 })

16 transitions.add(TuringMachine.Transition {

17 from = TuringMachine.StateTapeSymbolPair{state = "b", tapeSymbol = "0"},

18 to = TuringMachine.StateTapeSymbolPair{state = "a", tapeSymbol = "1"},

19 direction = -1

20 })

21 transitions.add(TuringMachine.Transition {

22 from = TuringMachine.StateTapeSymbolPair{state = "b", tapeSymbol = "1"},

23 to = TuringMachine.StateTapeSymbolPair{state = "b", tapeSymbol = "1"},

24 direction = 1

25 })

26 transitions.add(TuringMachine.Transition {

27 from = TuringMachine.StateTapeSymbolPair{state = "c", tapeSymbol = "0"},

28 to = TuringMachine.StateTapeSymbolPair{state = "b", tapeSymbol = "1"},

29 direction = -1

30 })

31 transitions.add(TuringMachine.Transition {

32 from = TuringMachine.StateTapeSymbolPair{state = "c", tapeSymbol = "1"},

33 to = TuringMachine.StateTapeSymbolPair{state = "halt", tapeSymbol = "1"},

34 direction = 0

35 })

36 variable utm : TuringMachine.UniversalTuringMachine

37 utm := TuringMachine.UniversalTuringMachine {

38 tape = [],

39 blankSymbol = "0",

40 headPosition = 0,

41 transitions = transitions,

42 terminalStates = ["halt"],

43 initialState = "a"

44 }

45 utm.run()

46 endmain

Listing 150: Busy beaver running on the UTM implementation in listing 149.

334

List of Figures

1. Dale’s Cone of Experience [50]. 48

2. Scratch programming environment with a sample program. 58

3. RAPTOR programming environment with a sample procedural
program. 60

4. Example of a RAPTOR object-oriented program. 61

5. Logo programming environment with a sample program. 62

6. BlueJ educational IDE. 69

7. Eclipse IDE with the Java perspective. 70

8. Abstract representation of MuLE’s architecture. 76

9. Depiction of the memory at various times during the execution of
the program in listing 26. 84

10. Depiction of the memory at various times during the execution of
the program in listing 27. 86

11. Class diagram representing the example in listing 29. 94

12. An example demonstrating namespaces. 108

13. State of memory at different times of the execution of the program
in listing 69. 151

14. State of memory at different times of the execution of the program
in listing 70. 152

15. State of memory at different times of the execution of the program
in listing 71. 153

16. Assumed state of memory at different times of the theoretical ex-
ecution of the program in listing 72. 154

17. Class diagram for the recursive list example in listing 89. 174

18. State of the memory during the execution of the program in listing
92. 177

19. Example of a dangling reference in C and a comparative MuLE
program. 185

20. Result of the program in listing 110. 196

21. An unfinished coloured square during the drawing process. The
initial position of the cursor was in the bottom-left corner of the
square. 198

22. Tile coordinates, tile colouration based on terrain type, object
placement and agent colours (images taken from the B.Sc. the-
sis [105] of Marco Jantos). 199

23. Example screenshot of the UBTMicroworld environment after exe-
cuting the code in listing 111. 201

24. Two states of the game after finishing the program in listing 112,
a successful completion on the left and the game over state on the
right. 202

335

25. An enlarged terrain map used to initialize the custom level in the
example in figure 26, the actual size of the image is 32x32 pixels. . 204

26. Screenshot of the level defined by the terrain map in figure 26 after
it has been completed. 204

27. Overview over core elements of the GUIFactory library (images
taken from the B.Sc. thesis [109] of Johannes Glier.) 206

28. Examples of pane types and the corresponding layouts specified in
GUIFactoryPanes. 207

29. Examples of border types specified in GUIFactoryBorders. 208
30. Examples of components in GUIFactoryComponents. 209
31. A simple example of a user interface implemented with GUIFactory.210
32. Screenshot of the Eclipse user interface. 215
33. A simplified subset of the Ecore metamodel [114]. 223
34. A class diagram representing the grammar in listing 118. 227
35. An object diagram representing the AST of the program in listing

120. 229
36. A class diagram representing an excerpt of the metamodel, which

contains elements mentioned in the grammar in listing 121. 234
37. A class diagram depicting the elements of the metamodel related

to the type system. 236
38. A class diagram representing the elements of the metamodel re-

lated to the statements of MuLE. 238
39. A class diagram representing the elements mentioned in the gram-

mar in listing 122. 240
40. A class diagram representing most of the elements mentioned in

the grammar in listing 122. 241
41. An activity diagram depicting the behaviour of the generate-

SymbolReference method. 259
42. A simplified diagram demonstrating the relations of the classes

responsible for the execution of MuLE files. 266
43. A simplified diagram demonstrating the relations of the classes

responsible for the placement of breakpoints within MuLE files. . 267
44. Content of the hidden trace file generated along the executable

Java file. 268
45. An example of a source program and the resulting outline tree. . . 271
46. A heavily abstracted diagram demonstrating the relations of the

classes responsible for the project and file creation wizards. 275
47. A screenshot of one of the tasks covering the topic of loops. 283
48. Questions targeted at the choice of the concrete syntax. 285
49. Results of the questionnaire in figure 48, participants with prior

experience filtered out. 286
50. Results of the questionnaire in figure 48, includes only participants

with prior experience. 286

336

51. Results of the test in the second questionnaire taken by partici-
pants without prior experience. 289

52. Results of the test in the second questionnaire taken by partici-
pants with prior experience. 289

53. Average scores of the students in the final exam over the years. . . 291
54. Failure rates of the students in the final exam over the years. . . . 291
55. Screenshot of the plug-in installation user interface. 305
56. A three state busy beaver machine [127] and the output of the

program shown in listing 150. 330

337

List of Listings

1 Declarations of types and global variables in our procedural program. 12
2 Subroutines implementing the dictionary lookup algorithm. 13
3 Main body of our procedural program. 15
4 The interface to our implementation. 21
5 The object oriented implementation of the dictionary lookup algo-

rithm. 21
6 The main class, which tests the implementation of the algorithm. 23
7 Haskell implementation of the dictionary lookup algorithm. 30
8 The test code of our dictionary implementation in listing 7. 32
9 Prolog facts of the family relations example. 35
10 Prolog rules of the family relations example. 36
11 Facts database of our prolog dictionary example. 39
12 Translation lookup rules of our prolog dictionary example. 40
13 Print rules and test code of our prolog dictionary example. 40
14 An example of a dangling pointer in C. 51
15 A “Hello, world!” program written with Java. 52
16 An example of a custom functional interface in Java. 53
17 Function currying in Java. 53
18 An indentation error in Python. 55
19 Semantic field error caused by typographical mistake in Python. . 55
20 Example of Python reference semantics. 56
21 An example of a Grace program taken from [77]. 63
22 An example of a Quorum program. 64
23 Pyret check blocks and variables. 65
24 An operation declaration in RESOLVE [82]. 65
25 An example of a Main-procedure in RESOLVE [82]. 66
26 Example program for value copying semantics with basic types.

The corresponding memory states are shown in figure 9. 84
27 Example program for value copying semantics with reference types.

The corresponding memory states are shown in figure 10. 85
28 Example of a procedural MuLE program. 91
29 Example of an object-oriented MuLE program. 93
30 Main procedure of the program in listing 29. 95
31 Example of a lambda expression in MuLE. 97
32 Example of higher order function in MuLE. 97
33 Example of currying in MuLE. 98
34 First part of the dictionary library. 99
35 Second part of the dictionary library. 100
36 Third part of the dictionary library. 101
37 Test program for the MuLE dictionary example. 103
38 Two elements with the same name in overlapping namespaces. . . 110

338

39 Referencing library operations by using qualified names. 110
40 Referencing attributes and enumeration literals using their quali-

fied names. 111
41 Visibility modifiers in a library. 112
42 Program using the library in listing 41. 113
43 Restricting visibility of composition members. 114
44 Examples of grammar rules in the chosen notation used in this

chapter. 115
45 Grammar rules used to define single- and multi-line comments. . . 118
46 Examples for comments. 118
47 The grammar rules for identifiers and qualified names. 118
48 Simplified excerpt from the AtomicExpression rule demonstrating

rules for value literals. 124
49 Examples of string literals and escape sequences. 126
50 Composition of a MuLE compilation unit. 126
51 Example of a “Hello, World!” programm. 127
52 Grammar rules for MuLE’s data types. 129
53 Examples for operations with strings and boolean values. 131
54 Grammar rules for enumerations and its values. 132
55 Example of enumeration type. 132
56 Grammar rules for compositions, attributes and type parameters. 133
57 Grammar rules for value constructors of compositions. 134
58 An example of a composition type used in a procedural program. 135
59 Vector example with additional OO concepts. 137
60 Grammar rules related to the list type and the corresponding ex-

pressions. 139
61 Examples for MuLE lists. 141
62 Grammar rules related to the reference type and the corresponding

expressions. 142
63 Example of a procedure using reference types. 142
64 Equality checks with references. 143
65 Copy semantics with references. 144
66 Grammar rules related to the operation type and the correspond-

ing language constructs. 144
67 Operation types allow to use named and anonymous operations as

data. 145
68 Explicit conversion with let-statements 148
69 Value copying semantics with composition types 151
70 Value copying semantics with reference types and compositions . . 152
71 Example of a shallow copy. 153
72 Type incompatibility in case of references to lists of compositions. 154
73 The expression grammar. 156
74 Grammar rule for blocks and examples for its uses. 162

339

75 Grammar rules for statements. 163
76 The grammar rule of the variable declaration statement. 164
77 Examples of variable declarations and their default values. 164
78 The grammar rule of the assignment statement. 165
79 Examples of assignments. 166
80 The grammar rules used to invoke operations. 167
81 First example of operation calls. 168
82 Second example of operation calls. 169
83 Third example of operation calls. 170
84 Grammar rule for if-statements. 171
85 An example of an if-statement. 172
86 Grammar rule for loop- and exit-statements. 173
87 An example of a loop terminated by an exit-statement. 173
88 Grammar rule for let-statements. 173
89 An example demonstrating the use of let-statements. 174
90 Grammar rule for the return-statement. 176
91 Rule for operation parameters. 177
92 Value copying semantics to operation parameters in the context of

operation invocation. 177
93 Rule for named operations. 178
94 Examples of named operations in a library. 179
95 Examples of named operations in a procedural program. 179
96 Examples of named operations in an object-oriented program. . . 181
97 Examples of named operations in a program written in a rather

functional style. 182
98 Rule for anonymous operations represented by lambda expressions. 183
99 Examples of anonymous operations. 184
100 Grammar rule for the main procedure. 186
101 Examples of a main procedure. 187
102 Examples of usage of IO library operations to read and write values

of basic types. 189
103 Examples of usage of IO library operations to read and write con-

tents of files. 190
104 Examples of Mathematics trigonometric library operations. 191
105 Examples of Mathematics random number generator library op-

erations. 192
106 Converting integer values to strings using the Strings library. . . 193
107 Examples of Strings library operations lengthOf and subString. 194
108 Examples of Lists library operations forEach and filter. . . . 195
109 Examples of Lists library operations forEach and filter. . . . 195
110 Example program using the Turtle library to draw simple polygons,

the result is shown in figure 20. 197
111 An example of a predefined level with 23. 201

340

112 Example showing custom levels, win conditions and agents con-
tolled by different means. 202

113 Part one of the example depicting the GUI displayed in figure 31. 211
114 Part two of the example depicting the GUI displayed in figure 31. 212
115 A shortened version of our own implementation of the Ecore model

in figure 33 serialized using XMI. 224
116 The generated Java interface EClass. 225
117 The generated Java class EClassImpl. 225
118 Composition of a MuLE compilation unit. 226
119 Composition of a MuLE compilation unit. 228
120 A simple program example which we are about to parse. 229
121 An excerpt of the MuLE grammar containing the definition of the

compilation unit and its elements. 233
122 An excerpt of the MuLE grammar containing the rules defining

the type system. 236
123 An excerpt of the MuLE grammar containing a selection of state-

ment rules. 239
124 An excerpt of the MuLE grammar with expression rules tasked

with referring to named elements. 240
125 An excerpt of the MuLE grammar with expression rules tasked

with referring to named elements. 241
126 An excerpt of the MuLEScopeProvider class. 244
127 An excerpt of the MuLETypeProvider class. 245
128 An example used to demonstrate cases related to type parameters

in the implementation of the type provider. 247
129 The MuLENamesValidator class. 248
130 An excerpt of the MuLETypeValidator class. 250
131 The core of the generator class. 254
132 Methods tasked with generating operations. 256
133 Methods tasked with the generation of statements. 257
134 A selection of rules tasked with the generation of expressions. . . 260
135 The shortened generated code of the demoProgram compilation unit.262
136 The shortened generated code of the demoLibrary compilation unit.262
137 An excerpt of the IO MuLE library unit. 263
138 An excerpt of the Java implementation of the IO library. 263
139 An excerpt of the MuLEOutlineTreeProvider class. 270
140 An excerpt of the MuLEQuickfixProvider class. 273
141 An excerpt of the MuLEFormatter class. 273
142 The MuLEFileTemplateProvider class. 274
143 The program example of the question six of the second questionnaire.288
144 A “Hello, world!” program written with Java. 295
145 A “Hello, world!” program written with Python 3. 295
146 A “Hello, world!” program written with MuLE. 295

341

147 Definition of the Xtext Terminals grammar. 306
148 Definition of the MuLE grammar with Xtext implementation details.306
149 Universal Turing Machine implemented with MuLE. 331
150 Busy beaver running on the UTM implementation in listing 149. . 334

342

List of Tables

1. Long term TIOBE index [40]. 46
2. Operator precedence and associativity 123
3. MuLE types with the corresponding Java types and the generated

default values. 251
4. Comparison of course participants (P) and non-participants (NP)

in the final exam at the end of the semester. 291

343

Referenced Books

[4] L Bauer Friedrich and H Wössner. Algorithmische Sprache und Program-
mentwicklung. Germany: Springer-Verlag Berlin Heidelberg GmbH, 1984.
isbn: 978-3-662-05654-7.

[5] David Harel. Algorithmics: The Spirit of Computing. USA: Addison-
Wesley Longman Publishing Co., Inc., 1987. isbn: 0201192403.

[6] Michael L. Scott. Programming Language Pragmatics. 4th ed. Amsterdam:
Morgan Kaufmann, 2016. isbn: 978-0-12-410409-9.

[11] Jeanne C Adams et al. Fortran 90 Handbook. McGraw-Hill New York,
1992. isbn: 978-0070004061.

[15] Kathleen Jensen and Niklaus Wirth. PASCAL user manual and report:
ISO PASCAL standard. Springer Science & Business Media, 2012. isbn:
978-0-387-97649-5.

[18] Ole-Johan Dahl and Kristen Nygaard. Encyclopedia of Computer Science,
Simula. GBR: John Wiley and Sons Ltd., 2003, pp. 1576–1578. isbn:
0470864125.

[20] Adele Goldberg and Alan Kay. Smalltalk-72: Instruction Manual. Xerox
Corporation Palo Alto, 1976.

[21] Stanley B. Lippman, Jose Lajoie, and Barbara E. Moo. C++ Primer. 5th.
Addison-Wesley Professional, 2012. isbn: 978-0321714114.

[22] Ken Arnold and James Gosling. The Java programming language.
Addison-Wesley Longman, 2005. isbn: 978-0321349804.

[23] Robert W. Sebesta. Concepts of Programming Languages. 11th. Pearson,
2016. isbn: 978-0133943023.

[26] Eric Freeman et al. Head First Design Patterns. O’Reilly Media, Inc.,
2004. isbn: 9780596007126.

[28] Edmund Callis Berkeley and Daniel Gureasko Bobrow. The programming
language LISP: Its operation and applications. The MIT Press 1966, 1966.
isbn: 9780262590044.

[29] Alonzo Church. The calculi of lambda-conversion. 6. Princeton University
Press, 1985. isbn: 978-0691083940.

[30] Peter Norvig. Paradigms of artificial intelligence programming: case stud-
ies in Common LISP. Morgan Kaufmann, 1992. isbn: 1-55860-191-0.

[31] R Kent Dybvig. The Scheme programming language. The MIT Press, 2009.
isbn: 978-0262512985.

[32] Stuart Dabbs Halloway and Aaron Bedra. Programming Clojure. The
Pragmatic Bookshelf, 2012. isbn: 978-1934356869.

344

[33] Tomas Petricek and Jon Skeet. Real World Functional Programming. 2009.
isbn: 9781933988924.

[37] William F Clocksin and Christopher S Mellish. Programming in Prolog:
Using the ISO standard. Springer Science & Business Media, 2012. isbn:
3642554814, 9783642554810.

[43] Rüdiger Baumann. Didaktik der Informatik. Klett-Verlag, 1996. isbn: 978-
3129850107.

[44] Peter Hubwieser. Didaktik der Informatik: Grundlagen, Konzepte,
Beispiele. Springer-Verlag, 2000. isbn: 978-3-540-65564-0.

[45] Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. New York, NY, USA: Association for Computing
Machinery, 2013. isbn: 9781450323093.

[52] Peter Gasston. The modern Web: multi-device Web development with
HTML5, CSS3, and JavaScript. No Starch Press, 2013. isbn: 978-
1593274870.

[71] Martin Hitz et al. UML@Work, Objektorientierte Modellierung mit UML
2. dpunkt.verlag, 2005. isbn: 3-89864-261-5.

[86] Lars Vogel. Eclipse Rich Client Platform. 2015. isbn: 978-3943747133.

[106] Joseph Bergin et al. Karel J. Robot: A gentle introduction to the art of
object-oriented programming in Java. Dream Songs Redwood City, 2005.
isbn: 0970579519, 9780970579515.

[110] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext and
Xtend - Second Edition. 2nd. Packt Publishing, 2016. isbn: 1786464969,
9781786464965.

[111] Markus Voelter et al. DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. dslbook.org, 2013. isbn: 978-1-4812-
1858-0.

[112] Richard C Gronback. Eclipse modeling project: a domain-specific language
(DSL) toolkit. Pearson Education, 2009. isbn: 978-0321534071.

[113] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki. Model-driven
software development: technology, engineering, management. John Wiley
& Sons, Inc., 2006. isbn: 978-0-470-02570-3.

[114] David Steinberg et al. EMF: Eclipse Modeling Framework 2.0. 2nd.
Addison-Wesley Professional, 2009. isbn: 0321331885.

[116] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf,
2013. isbn: 9781934356999.

345

Referenced Articles

[1] Yizhou Qian and James Lehman. “Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review”. In: ACM
Trans. Comput. Educ. 18.1 (Oct. 2017), 1:1–1:24. issn: 1946-6226. doi:
10.1145/3077618.

[2] John Pane, Chotirat Ratanamahatana, and Brad Myers. “Studying the
language and structure in non-programmers’ solutions to programming
problems”. In: International Journal of Human Computer Studies 54 (Oct.
2000), pp. 237–264. doi: 10.1006/ijhc.2000.0410.

[7] Hao Wang. “A variant to Turing’s theory of computing machines”. In:
Journal of the ACM (JACM) 4.1 (1957), pp. 63–92.

[8] Brent Hailpern. “Guest editor’s introduction multiparadigm languages
and environments”. In: IEEE Software 3.1 (1986), p. 6.

[9] Peter Van Roy et al. “Programming paradigms for dummies: What every
programmer should know”. In: New computational paradigms for computer
music 104 (2009), pp. 616–621.

[10] Milena Vujošević-Janičić and Dušan Tošić. “The role of programming
paradigms in the first programming courses”. In: The Teaching of Math-
ematics 21 (2008), pp. 63–83.

[12] Jean E Sammet. “Basic elements of COBOL 61”. In: Communications of
the ACM 5.5 (1962), pp. 237–253.

[13] J. W. Backus et al. “Report on the Algorithmic Language ALGOL 60”.
In: Commun. ACM 3.5 (May 1960), pp. 299–314. issn: 0001-0782. doi:
10.1145/367236.367262.

[14] Edsger W. Dijkstra. “Letters to the Editor: Go to Statement Considered
Harmful”. In: Commun. ACM 11.3 (Mar. 1968), pp. 147–148. issn: 0001-
0782. doi: 10.1145/362929.362947.

[16] Tim Rentsch. “Object oriented programming”. In: ACM Sigplan Notices
17.9 (1982), pp. 51–57.

[17] Ole-Johan Dahl and Kristen Nygaard. “SIMULA: An ALGOL-Based Sim-
ulation Language”. In: Commun. ACM 9.9 (Sept. 1966), pp. 671–678.
issn: 0001-0782. doi: 10.1145/365813.365819.

[24] Ghan Bir Singh. “Single versus Multiple Inheritance in Object Oriented
Programming”. In: SIGPLAN OOPS Mess. 6.1 (Jan. 1995), pp. 30–39.
issn: 1055-6400. doi: 10.1145/209866.209871.

[25] Anders Hejlsberg and Scott Wiltamuth. “C# language reference”. In:
(2000).

346

https://doi.org/10.1145/3077618
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1145/367236.367262
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/365813.365819
https://doi.org/10.1145/209866.209871

[35] Simon Marlow et al. “Haskell 2010 language report”. In: Available on:
https://www. haskell. org/onlinereport/haskell2010 (2010).

[38] Timothy A. Budd. “Blending Imperative and Relational Programming”.
In: 8.1 (Jan. 1991), pp. 58–65. issn: 0740-7459. doi: 10.1109/52.62933.

[39] P. A. Luker. “Never Mind the Language, What about the Paradigm?” In:
21.1 (Feb. 1989), pp. 252–256. issn: 0097-8418. doi: 10.1145/65294.
71442.

[50] Sang Joon Lee and Thomas C Reeves. “A significant contributor to the
field of educational technology”. In: Educational Technology 47.6 (2007),
pp. 56–59.

[51] Diomidis Spinellis. “Choosing a programming language”. In: IEEE soft-
ware 23.4 (2006), pp. 62–63.

[60] Linda Mannila, Mia Peltomäki, and Tapio Salakoski. “What about a
simple language? Analyzing the difficulties in learning to program”. In:
Computer Science Education 16.3 (2006), pp. 211–227. doi: 10.1080/
08993400600912384.

[63] Uolevi Nikula et al. “Python and roles of variables in introductory pro-
gramming: experiences from three educational institutions”. In: Journal
of Information Technology Education: Research 6.1 (2007), pp. 199–214.

[64] Majed A. Sahli and Gordon W. Romney. “Agile Teaching: A case study
of using Ruby to teach programming language concepts.” In: Journal of
Research in Innovative Teaching 3 (2010), pp. 63–72.

[65] Michael Kölling. “The Problem of Teaching Object-Oriented Program-
ming, Part I: Languages”. In: JOOP 11 (1999), pp. 8–15.

[68] Stephen Cooper, Wanda Dann, and Randy Pausch. “Alice: a 3-D tool for
introductory programming concepts”. In: Journal of computing sciences
in colleges 15.5 (2000), pp. 107–116.

[70] Martin C Carlisle et al. “RAPTOR: a visual programming environment
for teaching algorithmic problem solving”. In: Acm Sigcse Bulletin 37.1
(2005), pp. 176–180.

[74] Roy D Pea. “Logo programming and problem solving”. In: (1987).

[80] Andreas Stefik and Susanna Siebert. “An Empirical Investigation into
Programming Language Syntax”. In: Trans. Comput. Educ. 13.4 (Nov.
2013), 19:1–19:40. issn: 1946-6226. doi: 10.1145/2534973.

[84] Michael Kölling. “The Problem of Teaching Object-Oriented Program-
ming, Part II: Environments”. In: JOOP 11 (June 1999), pp. 6–12.

[85] Michael Kölling et al. “The BlueJ system and its pedagogy”. In: Computer
Science Education 13.4 (2003), pp. 249–268.

347

https://doi.org/10.1109/52.62933
https://doi.org/10.1145/65294.71442
https://doi.org/10.1145/65294.71442
https://doi.org/10.1080/08993400600912384
https://doi.org/10.1080/08993400600912384
https://doi.org/10.1145/2534973

[87] Zhixiong Chen and Delia Marx. “Experiences with Eclipse IDE in pro-
gramming courses”. In: Journal of Computing Sciences in Colleges 21.2
(2005), pp. 104–112.

[89] BT Denvir. “On orthogonality in programming languages”. In: ACM SIG-
PLAN Notices 14.7 (1979), pp. 18–30.

[91] John F Pane and Brad A Myers. “Usability issues in the design of novice
programming systems”. In: (1996).

[93] Brian Hayes. “Computing Science: The Semicolon Wars”. In: American
Scientist 94.4 (2006), pp. 299–303.

[96] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008
(Aug. 2008), pp. 1–70. doi: 10.1109/IEEESTD.2008.4610935.

[103] David Goldberg. “What every computer scientist should know about
floating-point arithmetic”. In: ACM computing surveys (CSUR) 23.1
(1991), pp. 5–48.

[117] Tom Briggs. “Techniques for active learning in CS courses”. In: Journal
of Computing Sciences in Colleges 21.2 (2005), pp. 156–165.

[118] Richard E Mayer. “The psychology of how novices learn computer pro-
gramming”. In: ACM Computing Surveys (CSUR) 13.1 (1981), pp. 121–
141.

[120] Brian Hanks et al. “Pair programming in education: a literature review”.
In: Computer Science Education 21.2 (2011), pp. 135–173. doi: 10.1080/
08993408.2011.579808.

[124] A. M. Turing. “On Computable Numbers, with an Application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical So-
ciety s2-42.1 (Jan. 1937), pp. 230–265. issn: 0024-6115. doi: 10.1112/
plms/s2-42.1.230.

[127] Martin Gebser et al. “1 Potassco: The Potsdam Answer Set Solving Col-
lection”. In: AI Commun. 24 (Jan. 2011), pp. 107–124. doi: 10.3233/AIC-
2011-0491.

348

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491

Referenced Conference Proceedings

[19] Johan Dahl, BJorn Myhrhaug, and Kristen Nygaard. “Some features of
the SIMULA 67 language”. In: 1968.

[27] Paolo Boldi and Sebastiano Vigna. “Rethinking Java Strings”. In: ACM
International Conference Proceeding Series. Vol. 42. Citeseer. 2003,
pp. 27–30.

[36] Seppo Keronen. “Non-procedural logic programming”. In: International
Workshop on Extensions of Logic Programming. Springer. 1993, pp. 183–
195.

[41] Leila Goosen. “A brief history of choosing first programming languages”.
In: IFIP International Conference on the History of Computing. Springer.
2008, pp. 167–170.

[42] John E Howland. “IT’S ALL IN THE LANGUAGE (yet another look at
the choice of programming language for teaching computer science)”. In:
Journal of Computing in Small Colleges, Volume 12, Number 4. Citeseer.
1997.

[48] Matthew Hertz. “What do CS1 and CS2 mean? Investigating differences
in the early courses”. In: Proceedings of the 41st ACM technical symposium
on Computer science education. 2010, pp. 199–203.

[49] Randy M Kaplan. “Choosing a first programming language”. In: Proceed-
ings of the 2010 ACM conference on Information technology education.
2010, pp. 163–164.

[53] Yuliia Prokop et al. “An Analysis of Criteria for Choosing a First Pro-
gramming Language in Universities.” In: ICTERI. 2019, pp. 420–425.

[54] Linda McIver. “The effect of programming language on error rates of
novice programmers.” In: PPIG. Citeseer. 2000, p. 15.

[55] Vladyslav Kruglyk and Michael Lvov. “Choosing the first educational pro-
gramming language”. In: ICT in Education, Research and Industrial Ap-
plications: Integration, Harmonization and Knowledge Transfer: Proceed-
ings of the 8th International Conference ICTERI 2012. Kherson. 2012,
pp. 188–189.

[58] Andrew Black, Kim B. Bruce, and James Noble. “Panel: Designing the
Next Educational Programming Language”. In: Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion. OOPSLA ’10. Reno/-
Tahoe, Nevada, USA: ACM, 2010, pp. 201–204. isbn: 978-1-4503-0240-1.
doi: 10.1145/1869542.1869574.

349

https://doi.org/10.1145/1869542.1869574

[59] Linda Grandell et al. “Why complicate things? Introducing programming
in high school using Python”. In: Proceedings of the 8th Australasian Con-
ference on Computing Education-Volume 52. 2006, pp. 71–80.

[66] F. F. de Vega. “To Be, or Not To Be: That is the Recursive Question”. In:
2019 IEEE Global Engineering Education Conference (EDUCON). Apr.
2019, pp. 1294–1299. doi: 10.1109/EDUCON.2019.8725191.

[67] J. Maloney et al. “Scratch: a sneak preview [education]”. In: Proceedings.
Second International Conference on Creating, Connecting and Collaborat-
ing through Computing, 2004. Jan. 2004, pp. 104–109. doi: 10.1109/C5.
2004.1314376.

[69] Neil Fraser. “Ten things we’ve learned from Blockly”. In: 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond). IEEE. 2015, pp. 49–
50.

[72] Paul Gross and Kris Powers. “Evaluating assessments of novice program-
ming environments”. In: Proceedings of the first international workshop on
Computing education research. 2005, pp. 99–110.

[73] Thomas W Price and Tiffany Barnes. “Comparing textual and block in-
terfaces in a novice programming environment”. In: Proceedings of the
eleventh annual international conference on international computing edu-
cation research. 2015, pp. 91–99.

[75] Michael E. Caspersen and Henrik Bærbak Christensen. “Here, there and
everywhere - on the recurring use of turtle graphics in CS1”. In: ACSE.
2000.

[76] Andrew P. Black et al. “Seeking Grace: A New Object-oriented Language
for Novices”. In: Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. SIGCSE ’13. Denver, Colorado, USA: ACM,
2013, pp. 129–134. isbn: 978-1-4503-1868-6. doi: 10 . 1145 / 2445196 .
2445240.

[78] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. “All syntax er-
rors are not equal”. In: Proceedings of the 17th ACM annual conference on
Innovation and technology in computer science education. 2012, pp. 75–80.

[79] Andreas Stefik and Richard Ladner. “The Quorum Programming Lan-
guage (Abstract Only)”. In: Proceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science Education. SIGCSE ’17. Seattle,
Washington, USA: ACM, 2017, pp. 641–641. isbn: 978-1-4503-4698-6. doi:
10.1145/3017680.3022377.

350

https://doi.org/10.1109/EDUCON.2019.8725191
https://doi.org/10.1109/C5.2004.1314376
https://doi.org/10.1109/C5.2004.1314376
https://doi.org/10.1145/2445196.2445240
https://doi.org/10.1145/2445196.2445240
https://doi.org/10.1145/3017680.3022377

[90] Linda McIver and Damian Conway. “Seven Deadly Sins of Introductory
Programming Language Design”. In: Proceedings of the 1996 International
Conference on Software Engineering: Education and Practice (SE:EP ’96).
SEEP ’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 309–.
isbn: 0-8186-7379-6.

[92] Leila Goosen, Elsa Mentz, and Hercules Nieuwoudt. “Choosing the “best”
programming language”. In: Proceedings of the computer science and IT
education conference. 2007, pp. 269–282.

[95] Amjad Altadmri and Neil CC Brown. “37 million compilations: Inves-
tigating novice programming mistakes in large-scale student data”. In:
Proceedings of the 46th ACM Technical Symposium on Computer Science
Education. 2015, pp. 522–527.

[97] Lisa C Kaczmarczyk et al. “Identifying student misconceptions of pro-
gramming”. In: Proceedings of the 41st ACM technical symposium on
Computer science education. 2010, pp. 107–111.

[119] Roger Duke et al. “Teaching programming to beginners-choosing the lan-
guage is just the first step”. In: Proceedings of the Australasian conference
on Computing education. 2000, pp. 79–86.

[125] R. Boyer and J. Moore. “A Mechanical Proof of the Turing Completeness
of Pure LISP.” In: 1983.

[126] J Strother Moore. “Proof Pearl: Proving a Simple Von Neumann Machine
Turing Complete”. In: Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. Ed. by Gerwin
Klein and Ruben Gamboa. Vol. 8558. Lecture Notes in Computer Science.
Springer, 2014, pp. 406–420. doi: 10.1007/978-3-319-08970-6_26.

351

https://doi.org/10.1007/978-3-319-08970-6_26

Referenced Online Sources

[3] Bundesministerium für Bildung und Forschung. Qualitätsoffen-
sive Lehrerbildung. url: https : / / www . qualitaetsoffensive -

lehrerbildung.de/lehrerbildung/de/home/home_node.html (visited
on 11/05/2021).

[34] Graham Hutton. Frequently Asked Questions for comp.lang.functional.
2002. url: http://www.cs.nott.ac.uk/~pszgmh/faq.html (visited
on 08/20/2020).

[40] TIOBE. TIOBE Index. url: https://www.tiobe.com/tiobe-index/
(visited on 05/04/2021).

[46] University of Bayreuth. Computer science module manual. 2021. url:
https : / / www . ai . uni - bayreuth . de / pool / dokumente / MHB _

Informatik/MHB_Informatik_2021_04_02.pdf (visited on 05/06/2021).

[47] Technical University of Munich. Computer science module manual. 2021.
url: https : / / www . in . tum . de / fuer - studierende / module - und -
veranstaltungen/modulkatalog/ (visited on 05/06/2021).

[56] James Gosling et al. The Java Language Specification, Java SE 12 Edition.
2019. url: https://docs.oracle.com/javase/specs/jls/se12/
jls12.pdf (visited on 08/20/2020).

[57] Barry D. Bowen. Educators embrace Java. 1997. url: https://www.
infoworld.com/article/2076867/educators- embrace- java.html

(visited on 05/19/2021).

[61] Tim Peters. The Zen of Python. url: https://www.python.org/dev/
peps/pep-0020/ (visited on 05/21/2021).

[77] PSU Grace Team. Grace Documentation. url: http://web.cecs.pdx.
edu/~grace/doc/variables/methods/ (visited on 05/27/2021).

[81] Benjamin Lerner and Joe Gibbs Politz. Pyret Programming Language Doc-
umentation. url: https://www.pyret.org/docs/latest/ (visited on
05/26/2021).

[82] Svetlana Drachova-Strang. A RESOLVE Primer. url: https://www.cs.
clemson.edu/resolve/teaching/tutor/manual/ResolveManual.pdf

(visited on 05/27/2021).

[83] Don Ho. Notepad++. url: https://notepad-plus-plus.org/ (visited
on 05/31/2021).

[94] Benjamin Hummel. Save the Semicolon. url: https://www.cqse.eu/en/
news/blog/save-the-semicolon/ (visited on 06/21/2021).

352

https://www.qualitaetsoffensive-lehrerbildung.de/lehrerbildung/de/home/home_node.html
https://www.qualitaetsoffensive-lehrerbildung.de/lehrerbildung/de/home/home_node.html
http://www.cs.nott.ac.uk/~pszgmh/faq.html
https://www.tiobe.com/tiobe-index/
https://www.ai.uni-bayreuth.de/pool/dokumente/MHB_Informatik/MHB_Informatik_2021_04_02.pdf
https://www.ai.uni-bayreuth.de/pool/dokumente/MHB_Informatik/MHB_Informatik_2021_04_02.pdf
https://www.in.tum.de/fuer-studierende/module-und-veranstaltungen/modulkatalog/
https://www.in.tum.de/fuer-studierende/module-und-veranstaltungen/modulkatalog/
https://docs.oracle.com/javase/specs/jls/se12/jls12.pdf
https://docs.oracle.com/javase/specs/jls/se12/jls12.pdf
https://www.infoworld.com/article/2076867/educators-embrace-java.html
https://www.infoworld.com/article/2076867/educators-embrace-java.html
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
http://web.cecs.pdx.edu/~grace/doc/variables/methods/
http://web.cecs.pdx.edu/~grace/doc/variables/methods/
https://www.pyret.org/docs/latest/
https://www.cs.clemson.edu/resolve/teaching/tutor/manual/ResolveManual.pdf
https://www.cs.clemson.edu/resolve/teaching/tutor/manual/ResolveManual.pdf
https://notepad-plus-plus.org/
https://www.cqse.eu/en/news/blog/save-the-semicolon/
https://www.cqse.eu/en/news/blog/save-the-semicolon/

[100] Xtext - The Grammar Language. url: https : / / www . eclipse . org /
Xtext / documentation / 301 _ grammarlanguage . html (visited on
07/16/2021).

[101] CP1252 - Windows 1252. url: http://www.cp1252.com/ (visited on
07/07/2021).

[102] Ali Dehghani. Memory Address of Objects in Java. url: https://www.
baeldung.com/java-object-memory-address (visited on 08/05/2021).

[107] Package javax.swing. url: https : / / cs . lmu . edu / ~ray / notes /

paradigms/ (visited on 09/23/2021).

[108] JavaFX API documentation. url: https://openjfx.io/javadoc/17/
(visited on 09/23/2021).

[115] Object Management Group. About The XML Metadata Interchange Spec-
ification Version 2.5.1. url: https://www.omg.org/spec/XMI/ (visited
on 09/05/2021).

[121] Oracle. Java SE at a Glance. url: https://www.oracle.com/java/
technologies/java-se-glance.html (visited on 09/30/2021).

[122] Oracle. OpenJDK. url: https : / / openjdk . java . net/ (visited on
09/30/2021).

[123] Eclipse Foundation. Eclipse IDE 2021-09 R Packages. url: https://
www.eclipse.org/downloads/packages/ (visited on 09/30/2021).

[128] Universal Turing machine. url: https : / / rosettacode . org / wiki /

Universal_Turing_machine (visited on 02/16/2021).

353

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
http://www.cp1252.com/
https://www.baeldung.com/java-object-memory-address
https://www.baeldung.com/java-object-memory-address
https://cs.lmu.edu/~ray/notes/paradigms/
https://cs.lmu.edu/~ray/notes/paradigms/
https://openjfx.io/javadoc/17/
https://www.omg.org/spec/XMI/
https://www.oracle.com/java/technologies/java-se-glance.html
https://www.oracle.com/java/technologies/java-se-glance.html
https://openjdk.java.net/
https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/downloads/packages/
https://rosettacode.org/wiki/Universal_Turing_machine
https://rosettacode.org/wiki/Universal_Turing_machine

Students’ Contributions

[104] Stefan Schill. Java implementation of a Turtle library. 2020.

[105] Marco Jantos. Java implementation of a programming microworlds library.
2020.

[109] Johannes Glier. Java implementation of a GUI library. 2020.

354

Own Publications

[62] Nikita Dümmel, Bernhard Westfechtel, and Matthias Ehmann. Effects of
a Preliminary Programming Course on Students’ Performance. European
Conference of Software Engineering Education (ECSEE), ACM, 2018. doi:
10.1145/3209087.3209088.

[88] Nikita Dümmel, Bernhard Westfechtel, and Matthias Ehmann. Work
in Progress: Gathering Requirements and Developing an Educational
Programming Language. Global Engineering Education Conference
(EDUCON), IEEE, 2019. doi: 10.1109/EDUCON.2019.8725073.

[98] Nikita Dümmel, Bernhard Westfechtel, and Matthias Ehmann. MuLE–
a Multiparadigm Language for Education. The Procedural Sublanguage.
Global Engineering Education Conference (EDUCON), IEEE, 2020. doi:
10.1109/EDUCON45650.2020.9125327.

[99] Nikita Dümmel, Bernhard Westfechtel, and Matthias Ehmann. MuLE:
a Multiparadigm Language for Education. The Object-Oriented Part of
the Language. European Conference of Software Engineering Education
(ECSEE), ACM, 2020. doi: 10.1145/3396802.3396806.

[129] Nikita Dümmel, Bernhard Westfechtel, and Matthias Ehmann. A Multi-
Paradigm Programming Language for Education. Informatics in Educa-
tion, Vilnius University, ETH Zürich, submitted for publication.

355

https://doi.org/10.1145/3209087.3209088
https://doi.org/10.1109/EDUCON.2019.8725073
https://doi.org/10.1109/EDUCON45650.2020.9125327
https://doi.org/10.1145/3396802.3396806

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die von mir angegebenen Quellen und Hilfsmittel
verwendet habe.

Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern
bzw. –vermittlern oder ähnlichen Dienstleistern weder bisher in Anspruch genom-
men habe, noch künftig in Anspruch nehmen werde.

Zusätzlich erkläre ich hiermit, dass ich keinerlei frühere Promotionsversuche un-
ternommen habe.

Bayreuth, den

Unterschrift

356

	Introduction
	Background and Motivation
	A Multi-Paradigm Language for Education
	Overview

	Programs and Programming Paradigms
	From Algorithms to Programs
	Procedural
	Object-Oriented
	Functional
	Logic
	Conclusion – Multi-Paradigm Languages

	Programming Languages in Education
	The Purpose of Programming Education
	Choosing a Language
	Professional Languages
	Educational Languages

	Tools
	Summary

	Requirements and Design Decisions
	Requirements
	Design Decisions
	General Decisions
	Procedural Programming
	Object-Oriented Programming
	Functional Programming

	Multi-Paradigm Programming with MuLE
	Discussion

	Specification of MuLE
	Identifiers, Namespaces and Scoping
	Namespaces and Scope Rules
	Qualified Names
	Visibility Modifiers

	Grammar Notation
	Lexical Units
	Comments
	Identifiers
	Keywords
	Separators
	Operators
	Brackets
	Value Literals

	Compilation Unit
	Type System and Values
	Typed Elements
	Definition of MuLE's Data Types
	Integer
	Rational
	String
	Boolean
	Enumeration Type
	Compositions
	Lists
	References
	Operations
	Type Compatibility and Conversion Rules
	Value Copying Semantics and Equality Rules

	Expressions
	Blocks
	Statements
	Variable Declaration Statement
	Assignment Statement
	Operation Invocation
	if Statement
	loop and exit Statements
	let Statement
	return Statement

	Operations and their Parameters
	Operation Parameters
	Named Operations
	Anonymous Operations
	Returning References to Local Values
	Validation Checks in the Context of Operations

	Main Procedure
	Conclusion

	Libraries
	IO
	Mathematics
	Strings
	Lists
	Turtle
	UBTMicroworld
	GUIFactory
	Conclusion

	Tool Support
	Eclipse IDE
	Execution
	Conclusion

	Implementation
	The Eclipse Modelling Project
	The Xtext Framework
	Plug-in Project Structure
	Language Specific Modules
	Grammar and the Resulting Metamodel
	Scope Provider
	Type Provider
	Compile Time Validation
	Code Generation to Java
	Implementation of Standard Libraries
	Utility Package

	UI Modules
	Launch Shortcuts and Debug Support
	Syntax Highlighting
	Outline Tree Provider
	Proposal Provider
	Quickfix Provider
	Automatic Formatting
	Project and File Creation Wizards

	Testing Procedure
	Conclusion

	Evaluation and Related Work
	Practical Application and Students' Feedback
	Preliminary Programming Course
	Students' Feedback and Performance
	Conclusion and Threats to Validity

	Related Work

	Conclusion
	Appendix Installation Instructions
	Appendix Grammar Definitions
	Appendix IO Library API
	Appendix Mathematics Library API
	Appendix Strings Library API
	Appendix Lists Library API
	Appendix Turtle Library API
	Appendix UBTMicroworld Library API
	Appendix GUIFactory Library API
	Appendix Implementation of the Universal Turing Machine
	List of Figures
	List of Listings
	List of Tables
	Referenced Books
	Referenced Articles
	Referenced Conference Proceedings
	Referenced Online Sources
	Students' Contributions
	Own Publications

