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Abstract

A method for the kernel-independent construction of 7{2-matrix approximations to
non-local operators is proposed. Special attention is paid to the adaptive construction
of nested bases. As a side result, new error estimates for adaptive cross approxima-
tion (ACA) are presented which have implications on the pivoting strategy of ACA.

Mathematics Subject Classification 65D15 - 41A05 - 65N38 - 65N30 - 42B10 - 42B37

1 Introduction

The fast multipole method introduced by Greengard and Rokhlin (see [18,30]) has
become a very popular method for the efficient evaluation of long-range potentials
and forces in the n-body problem. In a STAM News article [17] it has been named to
be one of the top 10 algorithms of the 20th century. While in the initial publications
two-dimensional electrostatic problems were investigated, later publications [16,19]
have improved the method such that three-dimensional electrostatic problems and
also problems with more general physical background can be treated efficiently. All
these variants rely on explicit kernel expansions, which on the one hand allows to
tailor the expansion tightly to the respective problem, but on the other hand requires
its own analytic apparatus including a-priori error estimates for each kernel. In order
to overcome this technical difficulty, kernel-independent generalizations [32] were
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introduced. While the latter keep the analytic point of view, - and H2-matrices (see
[20,21,23]) generalize the method as much as possible by an algebraic perspective.
In addition to the n-body problem, the latter methods can be applied to general ellip-
tic boundary value problems either in its differential or its integral representation;
see [9,22]. Furthermore, approximate replacements of usual matrix operations such
as addition, multiplication, and inversion can be carried out with logarithmic-linear
complexity, which allows to construct preconditioners in a fairly automatic way.

Nevertheless, H-matrix approximations cannot be constructed without taking into
account the analytic background. For instance, the construction of suitable cluster
bases is a crucial task. In order to guarantee as much universality of the method as
possible, polynomial spaces are frequently used; see [13]. While this choice is quite
convenient due to special properties of polynomials, it is usually not the most efficient
approach. To see why, keep in mind that the three-dimensional approach based on
spherical harmonics [16] requires k = O( pz) terms in a truncated expansion with
precision of order p, while the number of polynomial terms for the same order of
precision requires k = O(p?) terms. In the special case of surface problems, an
isogeometric approach exploiting surface information and a suitable parameterization
can also yield a behavior k = O( pz); see [24]. With the approach presented in the
present article also volume problems can be treated.

The number of terms k required to achieve a prescribed accuracy is crucial for
the overall efficiency of the method. In addition to its dependence on the kernel,
this number also depends on the underlying geometry (local patches of the geometry
may have a smaller dimension). Additionally, a-priori error estimates usually lead to
an overestimation of k. It is therefore helpful to find k in an automatic way, i.e. by
an adaptive procedure. Such a method has been introduced by one of the authors.
The adaptive cross approximation (ACA) [8] computes low-rank approximations of
suitable sub-blocks using only few of the original matrix entries. From the algorithmic
point of view this procedure is similar to a partially pivoted LU factorization. Therefore,
it is kernel-independent. In addition to that, it provably achieves asymptotic optimal
convergence rates.

The aim of this article is to generalize the adaptive cross approximation method,
which was introduced for H-matrices, to the kernel-independent construction of H2-
matrices for matrices A € RM*N with entries of the form

aijZ/-Q/QK(x,y)w,'(x)tﬁj(y)dydx, i=1,....M, j=1,....,N. (1)

Here, ¢; and v/; denote locally supported ansatz and test functions. The kernel func-
tion K is of the type

K@, y)=86x)¢() f(x,) (2)

with a singular function f(x, y) = [x —y|™® and functions £ and ¢ each depending on
only one of the variables x and y. Such matrices result, for instance, from a Galerkin
discretization of integral operators. In particular, this includes the single layer potential
operator K (x, y) = |x — y|~! and the double layer potential operator of the Laplacian

@ Springer



Kernel-independent adaptive construction of H2-matrix... 3

in R3 for which K (x, y) = “l‘;_‘il? = ‘;C;nyyp =3 xy _n;|3 . Note that collocation methods
and Nystrom methods can also be included by formally choosing ¢; = 8y, or Vi = 6x;,
where §, denotes the Dirac distribution centered at x. In contrast to 7{-matrices for
which the method is applied to blocks, in the case of H2-matrices cluster bases have
to be constructed. If this is to be done adaptively, special properties of the kernel have
to be exploited in order to be able to guarantee that the error is controlled also outside
of the cluster. Our approach relies on the harmonicity of the singular part f of the
kernel function K. This article also presents a-priori error estimates which are based on
interpolation by radial basis functions. The advantage of these new results is that they
pave the way to a new pivoting strategy of ACA. While results based on polynomial
interpolation error estimates require that the pivots are chosen such that unisolvency
of the polynomial interpolation problem is guaranteed, the new estimates show that
only the fill distance of pivoting points is crucial for the convergence of ACA.

The article is organized as follows. In the next Sect. 2 we construct interpolants s to
kernels f which are harmonic with respect to one variable. The system of functions in
which the interpolating function is constructed will be defined from restrictions of f.
This construction guarantees that the harmonicity of f is preserved for its interpolation
error. Hence, in order to achieve a prescribed accuracy in the exterior of a domain,
it is sufficient to check it on its boundary. This allows to construct s; in a kernel-
independent and adaptive way. The interpolating function sy is then used to construct
a quadrature rule which will be used in the construction of nested bases. Sect. 2.1
presents error estimates for functions e 71 based on radial basis functions. These
results are used in Sect. 2.2 to derive exponential error estimates (via exponential sum
approximation) for s when interpolating f(x, y) = |x — y|™* for arbitrary o > O.
The goal of Sect. 3 is the construction of uniform - and 2-matrix approximations
to matrices (1) using the harmonic interpolants s . In Sect. 4 we present a new pivoting
strategy, which is based on the fill distance, to tackle an old problem that ACA may
suffer from on non-smooth domains. Furthermore, we apply the new construction
method of ?-matrix approximations to boundary integral formulations of Poisson
boundary value problems and to fractional diffusion problems and present numerical
results which validate the presented method.

2 Harmonic interpolants and quadrature rules

For the construction of 7{2-matrix approximations (see Sect. 3), quadrature rules for
the computation of integrals

/ Sfx,y)dx
X

will be required which depend only on the domain of integration X € R and which
are valid in the whole far-field of X, i.e. for y € JF,(X), where

Fy(X) :={y e R? : pdist(y, X) > diam X}
with given > 0. Such quadrature formulas are usually based on polynomial interpo-

lation together with a-priori error estimates. The aim of this section is to introduce new
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4 M. Bauer et al.

adaptive quadrature formulas which are controlled by a-posteriori error estimates. In
the special situation that f(x, -), x € X, is harmonic in

X< :=RI\X

and vanishes at infinity it is possible to control the quadrature error for y € F,(X)
also computationally. Notice that f(x, y) = |x — y|~* is harmonic in RY. d >3, only
for « = d — 2. Applying the following arguments in R4+2_ one can also treat the case
a = d’ for arbitrary d’ € N. Fractional exponents, which appear for instance in the
case of the fractional Laplacian, will be treated in a forthcoming article.

Harmonic functions u : £2 — R in an unbounded domain £2 C R? are known to
satisfy the mean value property

u(x)

= u(y)dy
|Br| JB, (x)

for balls B, (x) C £2 and the maximum principle

max |u| < max |u|
Q a2

provided u vanishes at infinity.
Let ¥ C R? be an unbounded domain such that (see Fig. 1)

Y DO Fy(X) and 90X C Fru(X). 3)

A natural choice is X' = F,(X). Since our aim is to check the actual accuracy and
we cannot afford to inspect it on an infinite set, we introduce the finite set M C 0%
to be close to 03, i.e., we assume that M satisfies

dist(y, M) <8, yedX. )

In [9] we have already used the following recursive definition for the construction of
an interpolating function s in the convergence analysis of the adaptive cross approx-
imation [8]. Let ro = f and for k = 0, 1,2, ... assume that r; has already been
defined. Let x4+ € X be chosen such that

re(Xg+1,) 0 in M, 5)
then set
_ Tk (Xk+1, Y)
rk+1(x, y) == re(x, y) — ———————— (X, Yk+1) (6)
Tk (Xk+15 Yi+1)
and Sg41 := f — re+1, where yr41 € M denotes the maximum of |7 (xk1, -)| in M.
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Fig.1 X and the far-fields 73, (X) and F; (X)
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It can be shown (see [9]) that s¢ interpolates f at the chosen nodes x;,

forall y € F,(X), i.e.,

=1,...,k,

sk(-xh y) = f(-xh y)7

f (X, yi) €

1C€ O

= span{f(-, y1), ..., f(-, y)}. Inaddition, the cho

and belongsto Fy

X x M guarantees unisolvency, which can be seen from

yi) # 0,

o Tt (X

det Cx = ro(x1, 1)

,i, ] =

= f(xi’yj)

(Coij
for the system and the nodes

iX with the entries

where C € R¥*K denotes the matr

1, ..., k. Hence, one can define the Lagrange functions

O
k

1,...,k,as

) =30ij,i,j =

i.e. L )(x,-

Xi, 1

ts i-th row with the vector

ing i

from Cy, by replac

where C lgi)(x) € Rk results

|

fx, y1)
S x, ye)

|

v (x)

pringer

A's



6 M. Bauer et al.

Another representation of the vector L; € R* of Lagrange functions L,((i) is
Li(x) = C; T ue(x). ™
Due to the uniqueness of the interpolation, s; has the representation
k .
s, ) =Y f @ LY @) = v G we (), ®)
i=1
where wi(y) == [f(¥1, ), -, f O D1
For an adaptive procedure it remains to control the interpolation error f — sp = ry
in X x F,(X). The following obvious property follows from (6) via induction.

Lemma 1 If f(x, -) is harmonic in X and vanishes at infinity for all x € X, then so
do sy (x, ) and ri(x, -).

The following lemma shows that although M C 92X is a finite set, it can be used
to find an upper bound on the maximum of ¢ (x, -) in the unbounded domain F, (X).

Lemma 2 Let the assumptions of Lemma 1 be valid and let 2qn § < diam X, where
g = (Y2 — 1)~V 4+ 2. Then there is ¢y > 0 such that for x € X it holds

max | f(x,y) —si(x, y)| < 2max|f(x, y) — se(x, y)| + ckgé,
yeF,(X) yeM

where ¢ = || Vyri(x, )|l co-

Proof Letx € X and y € X . We define the set
N :={z € Bgs(y) : re(x,2) =0}

of zeros in Bys(y). If N # () then withz € N

1
7 (x, )| = I/O (v —2) - Vyre(x, 2+ t(y — 2)) di] < crqd.

In the other case N = @, our aim is to find y’ € M such that |r;(x, y)| < 2|rx(x, y')|.
ry does not change its sign and is harmonic in Bys5(y) due to Bys(y) C X, which
follows from (3) as

2ndist(Bys(y), X) = 2ndist(y, X) — 2ngd > diam X — 2ngs > 0.
Due to the assumption (4) we can find y' € Bs(y) N M. Then By-2s5(y) C
Bg—1)s(y") C Bys(y). Hence, the mean value property (applied to ry if r¢ is pos-

itive or to —ry if ry is negative) shows
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Kernel-independent adaptive construction of H2-matrix... 7

Table 1 Approximation error of s and tensor Chebyshev interpolation polynomial of degree k

k 8 27 64 125 216 343

Cross approximation 3.93e—4 1.74e—6  2.76e—9 1.13e—12  3.35e—14  6.60e—15
Chebyshev interpolation ~ 3.24e—4  7.03e—6  2.15e—7  5.13e—09 1.23e—10  3.77e—12

1 1
[re(x, )| = ——— |re(x, 2)|dz < ——— |re(x, 2)|dz
|Bg-2)8| /By 25 |Bg—2)8 JBy_1)s0"
|Bg—1)s| g—1\¢
= 2D e = (=) I, )1 = 21, )L
|Bg—2)sl q—2

Sine ry vanishes at infinity, (3) together with the maximum principle shows

max |ri(x, y)| < max |re(x, y)| < max |rr(x, y)| <2 max |rg(x, y)| + ckgé.
yeF(X yex yesx yeM

Notice that due to (8) we have

k
Vyre(x, ) = Vy f(x.3) = Vysi(r, 3) = Vy f(x, ) = Y L)V f (i, ).

i=l1
Hence,

ck = [IVyrie@, Jlloo = (1 4+ Ar) max [[Vy f(x. lloo

with the Lebesgue constant Ay (x) := Zf;l |L,({’)(x)|.Although it seems that Ay (x) ~
k in practice, there is no proof for this observation up to now. A related topic in
interpolation theory are Leja points; see [25].

To see that this special kind of interpolation is more efficient than polynomial
interpolation, we present the following example.

Example 1 Let X C R? be 1000 points forming a uniform mesh of the unit cube
[0, 113. We choose ¥ = {x € R3 : |x| > 10}. M is a discretization of 9 with
768 points. We consider f(x, y) = |x — y|~! and compare the quality of s; with the
quality of the interpolating tensor Chebyshev polynomial of degree k. Table 1 shows
the maximum pointwise error measured at X x M see also Fig. 2. Table 2 compares
the cross approximation with a sparse grid interpolation obtained from the Sparse Grid
Matlab Kit; see [7].

2.1 Exponential error estimates for multivariate interpolation

For analyzing the error of the cross approximation, the remainder rj has to be esti-
mated. The proof in [9] establishes a connection of r; with the best approximation in
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8 M. Bauer et al.

Fig.2 Error versus k of cross

approximation (black), 10-3 |- —

Chebyshev interpolation (blue,

dotted), and sparse grid

interpolation (red, dashed) 10-6 |- |

1070 |- a
10—12 - -
10—15 - -
\ \ \

ol

100 200 300

Table 2 Approximation error of s; and sparse grid interpolation polynomial for k nodes

k 7 25 69 165 351

Cross approximation 9.25e—4 3.50e—6 1.82e—9 8.74e—14 3.10e—15
Sparse grid interpolation 1.10e—3 9.43e—5 7.29¢e—6 5.08e—07 3.25e—08
an arbitrary system = = {£1,..., &/} of functions. There, qualitative estimates are

presented for a polynomial system ='. For the uniqueness of polynomial interpolation
it has to be assumed that the Vandermonde matrix [§;(x;)];; € RkxK jg non-singular.
The goal of the following section is to provide new error estimates for the convergence
of cross approximation which avoid the unisolvency assumption by employing radial
basis functions (RBF) for the system & instead of polynomials as the former type of
functions are positive definite; see e.g. [15]. Since the interpolation error of RBFs is
governed by the fill distance [see (10)], we will be able to state a rule for choosing the
next pivotal point xj [in addition to (5)] leading to fast convergence.

Let k : RY — R be a continuous function. In the following we assume that « is
positive definite, i.e.

/ k(x —y)ex)p(y)dxdy >0
R4 x R4

forall 0 # ¢ € C{° (R?). The Fourier transform of such functions determines a
measure 1 on R? \ {0} such that

/KuwaMx=/¢@mma,¢eC$@%.

Following [28] we define %, the set of continuous functions f satisfying

(ﬁ@;s&/d

R4 xR

; k(x —y)ox)p(y)dxdy 9)
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Kernel-independent adaptive construction of H2-matrix... 9

for some constant ¢ > 0 and all ¢ € C3° (R%). The smallest constant ¢ in (9) defines
anorm || f |, and %% is a Hilbert space.

Given a set Xy := {x1,...,x} C X consisting of k € N nodes x;, an interpolant
p € span{x (- — x;), j = 1,..., k} has to fulfill the conditions

pxj)) = f(xj), j=1,....k

A solution of this interpolation problem can be written in its Lagrangian form

k
p@) =Y flx) LE(x),

i=1

where Lf(x) = ZI;‘:I ay)/c(x — xj) denote the Lagrange functions satisfying
L’;.(xi) = §;j, i.e., its coefficients oD e R¥ are defined as the solution of the lin-

ear systems of equations Ao = ¢; with A := [k(x; — x;)];j € R¥k. The error
between a function f € %, and its interpolant p is typically measured in terms of the
fill distance

hx, x = supdist(x, Xy). (10)

xeX
The following result is proved in [28].

Theorem 1 Let X be a cube of side by. Suppose that u satisfies

/|fs|"du(fs> <o, keN, (10

for some p > 0. Then there is 0 < A < 1 such that for all f € 6, the corresponding
interpolant p satisfies

If(x) = p(x)] < AV mxex ) £,
forall x € X.

Remark 1 The assumption that X is a cube can be generalized. Theorem 1 remains
valid as long as X can be expressed as the union of rotations and translations of a
fixed cube of side bo. Actually, any ball in R? or any set X with sufficiently smooth
boundary fulfills the requirements.

Elements f € %, can be characterized (see [26,27]) by the existence of a function
g€ Li such that

f(&)de = g(&)du(®). (12)
For later purposes we prove
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10 M. Bauer et al.

Lemma3 Let k(x) = exp(—,3|x|2) with B > 0. Then « is positive definite and the
measure |4 associated with k satisfies (11). Furthermore, h(x) = exp(—y|x|) with
y > 0 belongs to 6.

Proof Since the Fourier transform of a Gauss function is again a Gauss function, the
measure associated with « is

AN s
wor=(5) e (-55)

w satisfies (11). Let H(r) = exp(—yr) with r = |x|. Then h(§) = H(s), where
s = |&|. Since

o0
H(s) = (2n)d/2s(2_d)/2/ Jap—1(sr)r? H(r)dr
0

with the Bessel function J;/2_1 of order d /2 — 1, we obtain for the Hankel transform
(cf. [6]) that

o0
H(s) = (2n)d/2s(1_d)/2f pd/2=1+1/2 exp(—yr) Jajp—1(sr) (sr)l/2 dr

0
d+1 y
_ dj2 (1=d)j2_—1/2rd/2 d-1/2
= 2m)%s T 2 F( 5 >s RGN ER:
_ d+1 y
_ Hd_(d=1)/2
=2 F( 2 ) (2 + s2)@+0/2
and
A _ d+1 y
_ ~d_(d—1)/2
"= F( 2 ><y2+|s|2)<d+1>/2’

where I denotes the Gamma function. Defining the Li-function

_ d+1 y HE
_~dpd/2_—1/2
$E) =25 F( 2 )(y2+|s|2><d+“/2 CXP(W)

we obtain (12), because
% A 2ed—1 2d_d—1 2 (A1 o [ st
/ |[H(s)|"s“ " ds =2"m r<-{— —|»\y / —————ds < o0.
0 2 0o (2452t
O

Although RBFs lead to a positive definite Vandermonde matrix A, its numerical
stability might be an issue. The eigenvalues of A depend significantly on the distribu-
tion of the points and in particular on their distances. A typical measure for this is the
separation distance
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Kernel-independent adaptive construction of H2-matrix... 1

min _[lx — y|l2.

1
X = E x,yeXk, Xx#Yy

In our case, i.e. for the Gaussian kernel, the smallest eigenvalue of A can be estimated
by

B 40.71d*\ _
hmin(A) = CB) P exp | ——5—— | a5
qu,B

where C = C(d) > 0 is a d-dependent constant; see [31]. One of the main aims of
the techniques presented here is a uniform coverage of the considered domain with
interpolation points and no generation of local clusters of points, so also from the
numerical point of view the Vandermonde matrix A is expected to behave in a stable
way.

2.2 Application to |x — y|~ %

We consider functions f of the form

1
fx,y)=——, a>0,
lx — y|*

on two domains X, Y satisfying
diam X < ndist(X,Y) and diamY < ¢gdiam X. (13)

The validity of the latter condition usually results from a partitioning of the compu-
tational domain §2 x 2 induced by a hierarchical partitioning of the matrix (1).
In this article, the choice ¥ = M is of particular importance, where the set
M C X C F2,(X) was introduced at the beginning of this section. Notice that
diam M < diam 0.F;(X) < diam X + 2dist(X, 0F,(X)) = (1 4+ 2/n) diam X.

Let k (x, y) = exp(—B|x — y|?). For fixed y € Y we interpolate f with the radial
basis function

k
py(x) =[x y) LE(x) (14)
i=1
on the data set X = {x1, ..., xx}. Here, L’](., j =1,...,k,are the Lagrange functions

for k and Xj.

Lemma4 Leto :=dist(X,Y). Thenforx € X,y e Y
2 o
|f (. y) = py(0)] < (c+ A}) (;) Allhxx

where A} = sup,x Zle |Lf (x)| denotes the Lebesgue constant.

@ Springer



12 M. Bauer et al.

Proof Functions of type f are not covered by Theorem 1. Therefore, we additionally
employ exponential sum approximations

g (1) ==Y _wjexp(—y;1)
j=1

of g(¢) := t~* with finite r in order to approximate f on the interval [1, R]. According
to [14], there are coefficients w;, y; > 0 such that

2
Tr
_ 00 <8- 20[ - :
g — grliLeepi,ry < e"p( 10g(8R)>

Choosing r such that

2
exp| — T = 2 hxex
log(8R)

and R =1 +n(1 + ¢p), (13) implies forx € X andy € Y

[x —y| - diam X + o + diam Y - (1+cp)diam X + o
o o - o

1<t:= <14n(l+co) =R.

Letting A ,(x) = 0~ % exp(—y;j|x — y|/o), we obtain

r » 2\ ¢ 7'[2}’
£y~ ]Z:jlehj,y(x)l =0 s — s (=8 (E) o (_1‘og<8R>> '

According to Theorem 1 and Lemma 3, the functions /4 , can be interpolated using
the radial basis function « on the data set X; = {x, ..., x¢}, i.e.

T 1/h
By —hjylloox < AM%X|R; |,

where

k
hjy(x) = hjy(x) LY (x).

i=1

Let h*(x) ;=07 ¢ sup,cy exp(—px«|x — y|), where By :=minj—; __,y;/o. From

,,,,,

(hjy, )22 < (h*, 9)2, < |h*]|2 / k(x —2)p(x) @) dxdz, 1<j<r,
R4 x R4
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Kernel-independent adaptive construction of H2-matrix... 13

Table 3 Maximum interpolation error of the problem described in Example 2

hx,.x 0.286 0.133 0.0645 0.0317
Max. error at X x {y1} 491le—1 6.73e—2 3.16e—2 1.02e—3
Max. error at X x {y7} 1.31e—1 1.62e—2 7.78e—3 4.03e—4

for all ¢ € C(‘)’O(Rd) we obtain that ||/ |l < [IA*].. Hence,

r r r
7 1/h
| E wjhjy — E wjhjyloo,x <A / XX ™ ij'
1

j=1 j=1
Notice that Z;-:] wj < e’ Z;'=1 wje Vi = erg. (1) < ¢, where y, =
max -1, ¥j. The last step is to show that

r k r
lpy — Z(Ujﬁj,y”oo = Z[f(xi, y) — ijhj,y(xi)]L;{”oo
=1 —

i=1

k r
<sup Y |f (i y) = Y wjhj ()] |LE (x)]

XEX i j=1
2\“ 2r .
<8|—) exp| ——= ) A
o log(8R)
2 o
=(Z) al/huexak,
p k

The assertion follows from the triangle inequality. O

Since the previous theorem relies on Theorem 1, X is assumed to be smooth. The
generalization of Theorem 1 to non-smooth X is not straightforward and needs further
investigation. However, the following numerical tests show that the presented theory
gives reasonable results also for non-smooth manifolds X.

Example2 Let X = {(x,y,2) € [-1,1P : x =1} U{(x,y,2) e [-1,1P : z =1}
be the union of two faces of the cube [—1, 1]°. On several discretizations of X the
interpolation of the function f(x,y) = |x — y|~! is considered using the Gaussian
kernel k (x) = exp(—lxlz). The error between f and its approximation p is tested
with a discretization of X consisting of 32640 points and two different points y; =
2,2,2)T and y, = (5,5, 5)" from the far-field. Then the maximum pointwise error
measured at X x {y;} and X x {y»} can be observed in Table 3.

The convergence can be controlled by choosing the node xz; such that the fill
distance hy, , x is minimized from step k to step k + 1. This minimization problem
can be solved efficiently, i.e. with logarithmic-linear complexity, with the approximate
nearest neighbor search described in [3-5].
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14 M. Bauer et al.

Remark 2 In practice, we replace possibly uncountable sets X with a sufficiently fine
mesh. In our applications, X is a discrete cloud of points.

If we choose the pivots x1, ..., xi such that the fill distance behaves like 2y, x ~
k=174 Lemma 4 shows exponential convergence of py with respect to k provided the
Lebesgue constant grows sub-exponentially.

Applying the results of the previous lemma to the remainder r¢, we obtain the
following result for interpolating f on X x Y. Notice that this result shows that the
convergence is governed only by the fill distance. Hence, the unisolvency assumption
on the nodes x1, ..., x; in the older convergence proof of ACA (which was based on
polynomials; see [9]) can be dropped.

Theorem 2 For y € Y let py denote the radial basis function interpolant (14) for
fy = fC,y)=1|-—yI7% Choosing yi, ..., yx € Y such that

|det C;”(»)| < culdetCyl, 1<i <k yev,
where cpy; > 1 is a constant, it holds that

k(e )| < eleark + 1) A Mex,

where Xy == {x1, ..., X}
Proof Let the vector of the Lagrange functions L;.‘ ,i =1,...,k, corresponding to the
radial basis function x and the nodes x1, ..., xx be given by
LY (x)
L(x) = :
Li(x)

Using (8), we obtain

re(x, y) = Fx,y) — )T O we(y)
= £, y) —weO L) = [k (x) = GeL* (0] ¢ wi(y)

k
= 10 = py) = Y[ we )] [ = py 0]
i=1
k
= fy(x) = pyx) = >

i=1

detC" (y)

TdetCp [ () = py, (0],

where the last line follows from Cramer’s rule. The assertion follows from the triangle
inequality and Lemma 4. O
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Kernel-independent adaptive construction of H2-matrix... 15

Remark 3 In practice, Y will be replaced by a discrete set of points. For the choice
Y = M (which is important for this article), it is sufficient to choose the nodes
Y1, ..., Yk € Y according to the condition

[Fr—1 (X, yi)| = lrk—1(xx, y)| forally e Y, (15)

which is much easier to check in practice and which leads to the estimate
det € (y)| <287 |det Cyl, 1 <i <k yeY;

for details see [9].

3 Construction of 7{%-matrix approximations

The aim of this section is to construct hierarchical matrix approximations to the
matrix A defined in (1). To this end, we first partition the set of indices I x J,
I ={l,...,M}and J = {1,..., N}, into sub-blocks t x s,t C [ and s C J,
such that the associated supports

X, = Usupp(p,' and Y, := USUPP vj

iet jes
satisfy
ndist(X;, ¥Y;) > max{diam X,, diam Y}, (16)

ie. Yy C Fy(X;) and X; C F;,(¥y). Notice that from Sect. 2.2 we know that the
singular part f of the kernel function K in (1) can be approximated on the pair
X; X Y.

The usual way of constructing such partitions is based on cluster trees; see [9,21].
A cluster tree T; for the index set [ is a binary tree with root 7, where each t € T; and
its nonempty successors Sy (t) = {t’, t"} C Ty (if they exist) satisfy t = " U " and
t'Nt” = 0. Wereferto L(T;) = {t € Ty : S;(t) = @} as the leaves of T and define

T\ = {t e Ty : dist(t, I) = €} C T,
where dist(z, s) is the minimum distance between ¢ and s in 7. Furthermore,
L(Ty) := max{dist(¢, I), t € Ty} + 1
denotes the depth of 77.
Once the cluster trees 77, T; for the index sets / and J have been computed,
a partition P of I x J can be constructed from it. A block cluster tree 77y is a

quad-tree with root I x J satisfying conditions analogous to a cluster tree. It can
be constructed from the cluster trees 77 and 7 in the following way. Starting from
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16 M. Bauer et al.

the root I x J € Ty, let the sons of a block t X s € Tyxy be S;xy(t,s) := 0
if t x s satisfies (16) or min{|¢], |s|} < ngm with a given constant ngin > 0. In the
remaining case, we set Syx j (¢, ) := Sy (t) x Sy (s). The set of leaves of T ; defines
a partition P of I x J and its cardinality | P| is of the order min{|/|, |J|}; see [9]. As

usual, we partition P into admissible and non-admissible blocks
P = Padm U Pnonadm»

where each t X 5 € P,gn, satisfies (16) and each t X s € Pyonadm 1S small, i.e. satisfies

; H
minf|z], |s[} < npy.

3.1 Uniform H-matrix approximation

Hierarchical matrices are well-suited for treating non-local operators with logarithmic-
linear complexity; see [9,11,22].

Definition 1 A matrix A € R’*/ satisfying rank A|;, < k for all b € Py, is called
hierarchical matrix (H-matrix) of blockwise rank at most k.

In order to approximate the matrix (1) more efficiently, we employ uniform H-
matrices; see [20].

Definition 2 A cluster basis @ for the rank distribution (k;);c7, is a family @ =
(@ (1))ser, of matrices @ (1) € R ¥k,

Definition 3 Let @ and ¥ be cluster bases for 77 and 7. A matrix A € R/*/ satis-
fying

Alyy =@ (1) F(t,s) W (s)? forallt x s € Pam

. ] v, . . . .
with some F(z, s) € Rk *ks g called uniform hierarchical matrix for @ and V.

The storage required for the coupling matrices F' (¢, s) is of the order k min{|/|, | J|}
if for the sake of simplicity itis assumed thatk; < k forall¢ € T;. Additionally, itis not
useful to choose k; > |t|. The cluster bases @ and ¥ require k[|I|L(T7) + |J|L(Ty)]
units of storage; see [23].

In the following we employ the method from Sect. 2 to construct a uniform H-
matrix approximation to an arbitrary block # x s € P,gp of matrix (1). Let e > 0 be
given and [x]; = {x;, p et} C Xyand [v], = {vfp, p € o1} C F,(X;) be the pivots
chosen in (6) such that

1FOy) = D LL) f@h )l <6 x € Xpy e Fy(Xo), (17)

PEY

for each cluster ¢. Here, L'(x) = f(x, [v],)f’l([x]l, [v];) denotes the vector of
Lagrange functions defined in (7). 7; and o; denote index sets with cardinality k. From
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Kernel-independent adaptive construction of H2-matrix... 17

Theorem 2 we know that k& ~ |10g8|d. Similarly, for s € T let [y]; = {y;, q €
oy} C Yy and [w]y = {wf{', q € 15} C F;(Ys) be chosen such that

1Fy) = Y FayDLEO)| <6 x € Fy(Yy). y € Y, (18)

q€0s

where L*(y) := f’l([w]s, [v1s) f([wls, ¥). For x € X; and y € Y this yields the
dual interpolation

fen =Y Lh@fah. Y L) fidh, v L)

PEY DET, 4 €05

with corresponding interpolation error

fy) = Y LL@) FE D LY < £ G y) = D L) f(xh. )

PET;, gEOTy PET
+ D L @IF G ) = D F G yL ()]
PET: q €05
<etey IL,()]=+4pe (19)
PET

and the Lebesgue constant Af{ > 1. We define the matrix B of rank at most k

bij= Y. f(x;,y;)fx L;(X)cpi(x)é(x)dx/[ L)Y (0)¢(y)dy

PET:, <0y

[®(1) F(t,5)¥(s) 1), (20)

where £ and ¢ are the functions defined in (2). Notice that both matrices
0@y = [ Lyea e ds and W), = [ L0000y
X, Yy

are associated only with 7 and s, respectively, and can be precomputed independently
of each other. Only the matrix F (¢, s) € Rk with [F(r, pg = f(x;,, y;) depends
on both clusters ¢ and s.

Remark 4 Since the vector of Lagrange functions L (x) has the representation L’ (x) =
Cr ! vk (x), the matrices @ (t) € R'*% can be found from solving the linear system

Cd @) = /X 0 (1) s (X)E (x) dxls.
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18 M. Bauer et al.

With [l@; |1 =1 = ||l the Cauchy-Schwarz inequality implies

|ai,-—b,»,-|s// ()
Yy JX;

— Y L) £ ) LEOE®] @i ) 18] gy ()] d dy

PET:, 4E€0s
(19) :
< 2A% I§llooll lloo &
and thus
IAlis — BI3 < IAlis — BI} = 1Als — @0 Fe.) ¥ 15 = > laij — byl

i€t, j€Es 21
< QALIENIoollE lloe)? 12 11s1€2.

Notice that the computation of the double integral for a single entry of the Galerkin
matrix (1) is replaced with two single integrals in (20).

3.2 Nested bases

In order to reduce the amount of storage for storing the bases @ and ¥ one can
establish a recursive relation among the basis vectors. The corresponding structure
are H2-matrices; see [11,23]. This sub-structure of H-matrices is even mandatory
if a logarithmic-linear complexity is to be achieved for high-frequency Helmholtz
problems. To this end, directional ‘H2-matrices have been introduced in [10].

Definition 4 A cluster basis U = (U ());c7, is called nested if foreacht € Ty \ L(T7)
there are transfer matrices T, € R%’ <k such that for the restriction of the matrix U (¢)
to the rows ¢’ it holds that

Uty =U@) Ty, forallt’ e S;().

For estimating the complexity of storing a nested cluster basis U notice that the set of
leaf clusters £(77) constitutes a partition of I and for each leaf cluster t € L(T7) at
most k|| entries have to be stored. Hence, ZIEE(T1) k|t| = k|I| units of storage are
required for the leaf matrices U (¢), t € L(T;). The storage required for the transfer
matrices is of the order k|/|, too; see [23].

Definition 5 A matrix A € R!*7 is called H2-matrix if there are nested cluster bases U
and V such that for r x s € Pygm

Alys =U@) F(t,5) VE(s)

. . . U |4
with coupling matrices F(z, s) € Rk xks

Hence, the total storage required for an H2-matrix is of the order k(|1| + |J|).
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Kernel-independent adaptive construction of H2-matrix... 19

Remark 5 1t may be advantageous to consider only nested bases for clusters ¢ having

2 o e
H > ngin. Blocks consisting of smaller clusters are treated

a minimal cardinality n_; >

with H-matrices.

We define the matrices U(f) € Rk t e T, by the following recursion. If
t € T\ L(Ty) then the set of sons S;(¢) is non-empty and we define

Uy =U@TY, 1 eSi@),
with the transfer matrix
7Y = f(xly, ) £~ (x)ss [],) € RE<K

For leaf clusters t € L(T}) we set U(t) = @ (¢). Similarly, we define matrices V (s) €
Rs*ks g e Ty, using transfer matrices

T = T qwls, Y1) 77 (wls, [yly) € RS
Then U := (U(t))ier, and V := (V(t))ser, are nested bases.

Lemma 5 Assuming that max,er, {|[UO | r, [VOIr TN F} < v and ky < kit
holds that there exists a constant ¢ > 0 such that

1ALy = U@ F(t, ) V) lr < e = OVItlls] 1ol loo &, 1 X 5 € Pagm,
where £ denotes the level of t X s.

Proof Lett € Ty \ L(T;) ands € T; \ L(Ty).Fort’ € S;(t) and s’ € Sy(s) we have

U Ft,)V)IL =0T Fe,s) (T, visHT )
=UWF(',sH V()T —Uu@ D', sHV(sHT,

where D(t',s") := F(t',s') = T F(t,s)(T,/)T. Using

ID, )3 <20F(', sy = TYF@t,s)% + 20T 31 F (2, s') — F(t, s)(TY)T 1%,

one observes that the previous expression consists of matrices with entries

Fiyp) — fa I £ A ) £Ux)e, yj), et jes,

and

Fiyp) — foi, 1) f (wls, vls) f(wls, vj), i€t, jes,
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20 M. Bauer et al.

which can be estimated using (17) and (18) due to x; € X; C F;(¥s) and y; € Yy C

Fy(X,). Thus,
ID(', s)HIF <20+ yD)VI]ls'| e

By induction we prove that |Al;; — U@ F(t,s)V(s)T |r < y2V/2(01 + y2)(L —
O)/1t11s] 1€ o 1€ loo &, Where £ denotes the maximum of the levels of # and s. If both
t and s are leaves, then [|Al;; — @ () F(t, )W ()T || < 2A5 /1tTIsT 1€ oo 1 lloo € due
to (21). From (22) we see

1ALy = U@l Ft,)VILIE < [Alng = UEYFE sHWVHT I
+ U@ sHW )T |

<220+ D@L — €= DVI] I8 1Elso g lloo & + ¥/ 2(1 + yD)V/1[1s'|
<220+ yD@ = OV 15T € Nloc 1E Nl &

This shows
lAlis — U@ F @, )V ) 15 = > ALy — U F(t.)VILIE
'Sy (1), s'€Sy(s)
<241+ yDUL = 02 oo li¢lloo &) > 1] 1s'|

eS8y (1), s'€Sy (s)

=241+ yH(L = 02U looli oo )2 12]Is].

The same kind of estimate holds if ¢ or s is a leaf, because then U(t) = @ (¢) or
V(s) = ¥(s). O

4 Numerical results

The focus of the following numerical tests lies on three problems. The first problem is
academic and shows that the new pivoting strategy for the adaptive cross approxima-
tion (ACA) which is based on the fill distance is able to overcome possible difficulties
resulting from non-smooth geometries. The second problem is an exterior boundary
value problem for the Laplace equation, the third is a fractional diffusion process.
The second and third problem compare the method presented in this article (which
generates H{*-matrices) with an 7{-matrix approximation generated by standard ACA.
All computations were performed on a computer consisting of two Intel E5-2630 v4
processors. For the second problem, the construction of the matrix was done with
a single core in order to guarantee a better comparability of the computation time.
For the third test example, the fractional Poisson problem, this cannot be done in a
reasonable time. Therefore, all 20 cores were used there.
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Fig.3 Sets on the boundary of a box

4.1 New pivoting strategy for ACA

We apply ACA, i.e. the discrete version of (6) (for details see [9]), together with the
pivoting strategy that is based on the fill distance (with respect to x) and (15) (with
respect to y) to approximate a single block A € RV >V having the entries

P e ) T T
1] |xl_yj|3 ’ ’ L) )

where the points x; are chosen from D; U D; and y; are chosen from D3 U D4. The
vector ny; denotes the unit normal vector in y; to the boundary of the domain shown in
Fig. 3. The two smallest side lengths of this domain were 1; the distance of D1 U D, and
D3 U D4 was chosen to be 9. A similar problem was presented in earlier publications;
see [9,12]. If the points x;,i = 1,..., N,and y;, j =1, ..., N, are ordered such that
the first points are in D1 and D3, respectively, then A has the structure

| 0 A
A_[A2] O]

As we have already mentioned in [9], standard ACA fails to converge since the pivots
stay in one of the blocks A1y or A1 while the other block is not approximated at all.
The new pivoting strategy leads to the desired convergence as Fig. 4 indicates.

4.2 Exterior boundary value problem

We consider the Dirichlet boundary value problem for the Laplace equation in the
exterior of the Lipschitz domain £2 C R3,ie.

—Au=0 inQ°:=R\Q,

(23)
vs¥'u =g onag,
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22 M. Bauer et al.

Fig.4 Error versus rank of the
approximation based on the fill 100
distance
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where y§*' denotes the exterior trace and g the given Dirichlet data in the trace space
H'/2(382) of the Sobolev space H'(£2°). In order to guarantee that the problem is
well-defined, we additionally assume suitable conditions at infinity.

Using the single and double layer potential operators

V= [ p0KG -y ds. Ko = [ e0)piKG - s,
952 982
where

K(x) = ﬁwl, x e R\ {0},

denotes the fundamental solution, the solution of (23) is given by the representation
formula

u(x) =V(x) —Kgx), xR\ .

The task is to compute the missing Neumann data ¢ := y*'u € H ~1/2(382) from
the boundary integral equation

Vi = <%I+/C) g ondsf2. (24)

The unique solvability of the boundary integral equation (24) or (if the L?-scalar
product is extended to a duality between H —1/2(3£2) and H'/2(3£2)) its variational
formulation

1
VY, ¥ 12p0) = <<§I + ;c> gx/f’)Lz(m) . v e H ' 0%2),
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Kernel-independent adaptive construction of H2-matrix... 23

is a consequence of the mapping properties of the single layer potential, the coercivity
of the bilinear form (V-, -) 123 and the Riesz-Fischer theorem.

A Galerkin approach is used in order to compute ¥ numerically. To this end, let
the set {lﬂ?, R 1/;2,} denote the basis of the piecewise constant functions Py(7) C
H~'/2(32), where 7 is a regular partition of 352 into N triangles. If g is replaced by
some piecewise linear approximation

ghn ePl(T)zspan[wll,...,gb}w},

we obtain the discrete boundary integral equation Ax = f with A € R¥*V and
f € RY having the entries [see (1)]

ai; =f f K(x = DY) dsy dse, iy j=1,.... N,
02 JOos2
M 1

fi=) @ ((—IHC)WW) . i=1...N
I=1 2 L2(3R2)

We choose various boundary discretizations of the ellipse 2 := {x € R? : )cl2 + x% +
x% /9 = 1} as the computational domain and the Dirichlet data g = |x — 10e; 2. We
compare H-matrix approximations of A generated via standard ACA with H?-matrix
approximations obtained from the method introduced in this article. For both cases

the same block cluster tree generated with n = 0.8 is used. The minimum sizes of
H H?

min min’
The accuracy 8/7;[(3 A of ACA for the approximation of the H{-matrix blocks is fixed for

clusters are denoted by n’% and n respectively; see the remark after Definition 5.

. 2 .
both methods at 87&% A= 10~ and the corresponding accuracy ‘9ch A Was adjusted so
that both methods produce almost the same relative error

lu —unllL2p0)
ep 1= ————— "2

lullz20)

as Table 4 shows. Therefore, we cannot expect any convergence rate of the error e,. It
is interesting to observe that for the coarse grids sfcz A can be chosen larger than E%C A-
This is because the number of the 72-blocks is small compared with the number of
‘H-blocks and therefore the H-blocks dominate the error ej. For the finer grids this
is no longer true. On the one hand, a larger part of the stiffness matrix consists of
H2-blocks and on the other hand, the depth of the cluster bases increases, which has
to be compensated by a smaller elfcz A> see Lemma 5. Moreover, the approximations
differ in the time needed for computing the respective approximation of A and in the
required amount of storage, which is presented as the compression rate, i.e. the ratio
of the amount of storage required for the approximation and the amount of storage of
the original matrix.

The time for the construction of the matrix approximation decreases the more
blocks are approximated with the 7{?-matrix method. While for a small number of
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Table 4 Comparison between - and H2-matrix adaptive cross approximation

N H-matrix ACA H?-matrix ACA BN
H o Tone ~ HE o ~
min Tmeins Compr.in % ep npe Timeins Compr.in % ey
10,024 30 7.1 16.6 6.le—4 400 8.8 17.2 6.2e—4 1.0e—4
40,096 60 36.9 6.1 3.5e—4 600 37.0 59 3.8e—4 7.0e—6
160,384 60 217.7 1.9 2.5e—4 1000 107.2 1.6 2.7e—4 1.0e—6
641,536 60 698.9 0.6 1.9e—4 1000 487.6 0.4 2.2e—4 4.0e—7
Table5 Time com;z)arlson. H-matrix H2-matrix
between H- and H“-matrices .
N An Precalculations AH2
10,024 7.1s 0.7s 8.1s
40,096 369s 24s 34.6s
160,384 217.7s 8.4s 98.8s
641,536 698.9 s 48.3s 439.3s

degrees of freedom N the H-matrix method is faster than the H2-matrix method, the
latter requires nearly 30% less CPU time for the finest discretization. Figs. 5 and 6
give a deeper insight. Figure 5 shows the matrix A for a coarse discretization which
was approximated as an H-matrix. Green blocks are admissible and were generated by
low-rank approximation. The numbers displayed in the blocks show the approximation
rank k7. Red blocks are not admissible and were generated entry by entry. In Fig. 6, A
was approximated as an 7{-matrix. The meaning of green and red blocks is the same as
in Fig. 5, the blue blocks were generated using the 2 -approximation. Obviously, there
are several additional blocks that could be approximated with the 7{?-method. These
are, however, omitted due to their size in order to improve the storage requirements.
Additionally, we can see that the ranks of the 7>-blocks are significantly larger than
the ranks of the corresponding H-blocks. This is due to the fact that the 72-approach is
based on an approximation which is valid for all possible admissible blocks, whereas
in the H-approach the approximation is tailored to the respective block.

Table 5 shows the portion of time required for the precalculations and the time
for constructing the matrix. For all examples the time required for the precalculation
is about 10% of the time required to compute the stiffness matrix. However, in the
smaller examples there are only few blocks which are approximated with the H>-
method. Therefore, the precalculations can hardly be exploited and there is only a
marginal time difference when setting up the matrices with the two methods. The
number of H2-blocks increases as the number of degrees of freedom N increases. In
this situation, the precalculations can be used more often. As a result, setting up the
matrix with the 742-method becomes faster than with the 7{-method.

Concerning the amount of storage, the new construction of {>-matrix approxima-
tions is more efficient also for small numbers of degrees of freedom N as can be seen
from Table 6. The larger N becomes, the more efficient is the new method. This cannot
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25

Fig.5 A4y for N =2506

11 ||2

Fig.6 A, 2 for N =2506
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Table 6 Memory comparison between H- and H2-matrices

N ‘H-matrix H2-matrix

Memory in MB Compr. in % Memory in MB Compr. %
10,024 64 16.6 66 17.2
40,096 372 6.1 360 5.9
160,384 1824 1.9 1610 1.6
641,536 8666 0.6 6618 0.4

directly be seen from the compression rates, which compare the respective approxi-
mation with the dense matrix. However, inspecting the actual storage requirements,
one can see that the storage benefit actually improves. For the finest discretization
almost 25% of storage (i.e. more than 2.0 GB) are saved.

4.3 Fractional Poisson problem

Let 2 C R9 be a Lipschitz domain, s € (0, 1),and g € H" (§2),r > —s. We consider
the fractional Poisson problem

(=A)’u=g in £2,

(25)
u=0 on Rd\.Q,
where the fractional Laplacian (see [1]) is defined as

25 (s +d/2)

s u(x) —u(y)
(—A) u(x) = Cd,s pl)/ m

oy W cas =
Rd |x_y|a'+2s

Here, s is called the order of the fractional Laplacian, I" is the Gamma function, and
p.v. denotes the Cauchy principal value of the integral. The solution of this problem
is searched for in the Sobolev space

H(Q) = {v € L2(2) : [vlma) < oo},
where
[v(x) — v(y)]?
i) = / / Ty

denotes the Slobodeckij semi-norm. The space H*(§2) is a Hilbert space, equipped
with the norm

lvllas @) = vl + [vlEs(2)-
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Zero trace spaces H; (£2) can be defined as the closure of C§°(£2) with respect to the
H*-norm.

Due to the non-local nature of the operator, we need to define the space of the test
functions

A (Q) = {u cLX(Q):ii e HS(Rd)},

where u denotes the extension of u by zero:

i) = u(x), x e $2,
~lo, xeRMQ.

H’(£2) is also the closure of C3°(£2) in H* (R%); see [29, Chap. 3]. It is known (see
[2]) that H*(22) = HS(£2) for s # 1/2, and for s = 1/2 it holds that H'/2(2) C
Hy* (9).

The weak formulation of (25) is to find u € H(£2) satisfying

a(u,v) = (g, v)12(0). veH (),

where

4, v) = Cd,s / / [u(x) —u(][vx) — v(y)] dx dy
2Je

2 |x _ y|d+2s

Cd,s v — x)T ny
+—= / u(x) v(x)/ ———ds, dx.
2s Jo o lx — yjdtzs

Then H*(£2) can be equipped with the energy norm

Nl gs (@) = 1l s may = Vau,u).

Let the set {¢1, ..., ¢n} denote the basis of the space of piecewise linear func-
tions V (7), where 7 is a regular partition of £2 into M tetrahedra and N inner points.
The Galerkin method yields the discrete fractional Poisson problem Ax = f with
A € RV*N | £ e RN having the entries

dx dy

Cd,s// loi () — @i (W] [p; () — ;)]
2782

ai =
Y2 e =yl

Cas =0T n, .
+ = (X)) p;i(x =~ dsydx. i,j=1,...,N,
- /Qm ) ;i )fm oy S dx i

fi=( vy, i=1,...,N.
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If the supports of the basis functions ¢; and ¢; are disjoint, the computation of the
entry a;; simplifies to

@i (X)e;(y)
A f/ b=y O

Thus, admissible blocks ¢ x s (which satisfy dist(X;, X) > 0) are of type (1) and can
be approximated by the method presented in this article. We remark that the singular
part f(x,y) = |x — y|=?=2% due to its fractional exponent is not covered by the
theory presented in Sect. 2. Nevertheless the following numerical results show that the
method works and a theory for fractional exponents will be presented in a forthcoming
article.

The general setup and our approach is the same as in the second example in Sect. 4.2.
We compare two types of H-matrix approximations of A using the same block cluster
tree generated with n = 0.8. The first one is generated via standard ACA and the
second one is an H?-matrix approximation obtained from the method introduced in
this article. Due to the Galerkin approach, we choose various volume discretizations
of the ellipse 2 := {x € R?: x12 + x% + x32 /9 = 1} as the computational domain, the
Dirichlet data g = 1, the order of the fractional Laplacian is s = 0.2 and the accuracy
et of ACA for H-blocks is fixed at 107,

Since no analytical solution is known for this geometry, we cannot directly verify
the accuracy of the numerical solution uj. Instead, we test the quality of A4 and
Ay2 when applying them to a special vector. For this purpose, we take advantage of
the fact that the constant functions are in the kernel of the fractional Laplacian. This
also applies to the discrete version, the stiffness matrix A. Hence, in the following we
use ey = [[A1]2/~/N, 1 =[1,..., 117 € RV, as a measure of the quality of the
approximations Ay and Aqp2.

Table 7 shows the minimum sizes of the respective clusters nH and n and the
corresponding numerical results, the time needed for the respectlve appr0x1mat10n
of A, the compression rate and the error ej. As in the second example, the accuracy
817\'[5 A for the H2-blocks was adjusted so that both methods produce almost the same
error ¢j,. The time for the construction of the matrix approximation decreases the more
blocks are approximated with the 7{?-matrix method and for the finest discretization
the CPU time for approximating A is reduced by almost 30%. Here however, even
for a small number of degrees of freedom N the {>-method is faster. There are two
reasons for this. The first is shown in Table 8. The cost of the precalculations is only
a small fraction of the cost of the approximation of A. This is because A is a dense
matrix whose entries are significantly more expensive to calculate than in the second
example. The second reason can be seen from Figs. 7 and 8. These figures show the
matrix A for the coarsest discretization, which was approximated as an H-matrix and
H>-matrix, respectively. As in the Figs. 5 and 6 , the red blocks were calculated entry
by entry, the green and blue blocks are low-rank approximations calculated via ACA
and the new method, respectively, and the numbers in the low-rank blocks are the ranks
k¢ and k2, respectively. Compared with the second example the ranks k3, and kyp2

of corresponding blocks hardly differ. Therefore, nmm can be chosen relatively small
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Table 7 Comparison between - and H2-matrix adaptive cross approximation

N H-matrix ACA H?-matrix ACA elbin
H . . . H2 . . .
min Hmeins Compr.in% ep npe Timeins Compr.in % e
7100 30 53.4 36.7 2.5¢e—3 100 46.6 333 2.5e—=3 1.0e—2
62,964 60 1455.1 11.6 3.le—4 200 11989  10.1 3.le—4 1.0e—3
528,747 60 28,680.7 2.4 39e—5 200 20,2439 1.8 3.9e—5 1.0e—4
Table 8 Time com;z)anson. N H-matrix H2-matrix A
between H- and H?-matrices . H
An Precalculations
7100 534s 03s 46.3s
62,964 1455.1s 0.5s 1198.4 s
526,747 28,680.7 s 33s 20,240.6 s

even for a large number of degrees of freedom N in order to ensure memory efficiency
and to approximate as many blocks as possible with the 7{?-method. The reason for
the small value of ky.2 is that for [x| > 1 the kernel function K (x) = |x|—d=2s
is quite easy to approximate due to its decaying behavior. For a small number of
degrees of freedom N the condition |x| > 1 is almost automatically guaranteed by
the admissibility condition of the 7>-blocks. On the other hand, we pay for this in the
time it takes to calculate A, because the cost of the singular and near-singular integrals
scale with | log /| per dimension; see [2, Chap. 4.2].

Of course not only the CPU time benefits from the small difference between k7; and
kq42, but also the storage requirements as can be seen from Table 9. For each selected
discretization, less storage is required when using the H2-method. For example, the
finest discretization requires 25% less storage (i.e. more than 6.3 GB). In addition,
the H?-approximation becomes more efficient the larger the number of degrees of
freedom N becomes, since the precalculations can be exploited for an increasingly
larger part of the matrix.

5 Conclusion

A new method for the adaptive and kernel-independent construction of 2-matrices
has been presented. It is based on the cross approximation method, which is known
from the construction of H-matrices, and relies on the harmonicity of the kernel
function. The error analysis for the function f(x,y) = |x — y|~* makes use of an
approximation result for radial basis functions. As a result, exponential convergence
can be guaranteed with respect to the fill distance. Since this result can also be applied
in the convergence analysis of ACA, we obtain a new pivoting strategy, which is based
on the fill distance and seems to solve a known difficulty when ACA is applied to non-
smooth geometries. While the convergence for the latter strategy in the case of smooth
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Table 9 Memory comparison between - and H2-matrices

N H-matrix H2-matrix

Memory in MB Compr. in % Memory in MB Compr. in %
7100 71 36.7 64 333
62,964 1760 11.6 1534 10.1
528,747 25,438 2.4 19,082 1.8

domains can be proved, a rigorous convergence analysis in the case of non-smooth
domains needs further investigation.
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