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Zusammenfassung

Die meisten biologischen Flüssigkeiten sind viskoelastisch, was komplexe Phänomene wie scherab-
hängige Viskositäten oder nichtverschwindende Speichermodule mit sich bringt. Weiche Objekte,
die in diesen Flüssigkeiten eingebettet sind, verursachen komplizierte Strömungsgeometrien
und Spannungsverteilungen, bei denen Computermodelle helfen können, die zugrunde liegenden
Wechselwirkungen zu verstehen. Zu diesem Zweck wird ein hybrider Algorithmus vorgestellt, der
die Lattice-Boltzmann-Methode (LBM) mit dem Finite-Volumen (FV) Schema kombiniert, wobei
die Erstere zur Lösung der hydrodynamischen Gleichungen und das Letztere zur Modellierung
der Polymerdynamik verwendet wird. Um die verschiedenen viskoelastischen Eigenschaften eines
Polymerfluids gesondert betrachten zu können, wird die Kinetik der gelösten Polymere wahlweise
durch zwei verschiedene konstitutive Gleichungen erfasst. Diese beschreiben viskoelastische Flüs-
sigkeiten, die lineare Federkräfte (Oldroyd-B) oder endlich dehnbare nichtlineare elastische Federn
mit Peterlin-Schluss (FENE-P) beinhalten. Indem der Algorithmus durch sorgfältige Anpassung
mit verschiedenen LBM Randbedingungstypen kompatibel gemacht wird, kann das korrekte
rheologische Verhalten bei mehreren Validierungen mit hoher Genauigkeit reproduziert werden,
einschließlich oszillierender Scherung, Einsetzen der Poiseuille-Strömung, Elongationsströmung
und Beendigung des linearen Scherflusses. Die Kopplung dieses Algorithmus mit der Immersed
Boundary-Methode (IBM) ermöglicht die Modellierung mitschwimmender Kapseln, die sowohl
bei Newtonscher als auch bei Oldroyd-B-Scherströmung gut mit Literaturdaten übereinstim-
men. Auf dieser Grundlage werden in dieser Arbeit numerische Simulationen von Kapseln in
FENE-P-Fluiden vorgestellt, bei denen die Einsatzmöglichkeiten der IB-LBM noch nie quanti-
fiziert wurden. Hierbei wird der zu erwartende Abfall der dimensionslosen Rotationsfrequenz
von Kapseln bei Weissenberg-Zahl Wi ≈ 1 reproduziert, die zeitabhängige Kapsel-Deformation
unter Scherung untersucht und eine Vorhersage zum Verhalten von Zellen unter Bioprinting-
Bedingungen gemacht. Die Komplexität wird gesteigert, indem das Modell auf Kapseln mit
unterschiedlichen inneren und äußeren Fluideigenschaften erweitert wird, wobei sowohl Spannungs-
erhaltung als auch eine hohe Advektionsgenauigkeit an der Kapselgrenzschicht angestrebt werden.

Im Falle von Blasen, die in Newtonschen Flüssigkeiten suspendiert sind, wird keine biologische
Grenzschicht zur Trennung der beiden Phasen benötigt. Stattdessen spielt nun die Oberflächen-
spannung eine dominante Rolle, die mit Hilfe eines Volume-of-Fluid (VoF) Ansatzes in die LBM
integriert wird, wodurch das Problem einer aus Flüssigkeit und Gas bestehenden Zweiphasenströ-
mung auf ein Einphasenfluid mit freier Oberfläche reduziert wird. Die Druckänderung aufgrund
der (De-)Kompression des Blasenvolumens wird unter Einbeziehung der idealen Gasgleichung
approximiert. Insbesondere wenn mehrere Blasen vorhanden sind, wird das Tracking der topolo-
gischen Veränderungen der freien Oberfläche unter Berücksichtigung der Verschmelzung (Merge)
oder Teilung (Split) von Blasen zu einer schwierigen Aufgabe. In dieser Arbeit wird ein auf
dem Hoshen-Kopelman-Algorithmus basierender Algorithmus zur effizienten Verwaltung von
Merge/Split-Prozessen vorgestellt, der die Rechenlast gegenüber rein CPU-basierten Ansätzen
erheblich reduziert, indem er diese Prozesse über GPU-kompatible Kriterien triggert. Die Genau-
igkeit des Algorithmus wird anhand der Rayleigh-Plesset-Gleichung überprüft. Darüber hinaus
wird die Fähigkeit des Algorithmus, die korrekte Form und Geschwindigkeit von Blasen beim
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Aufsteigen zur Atmosphären-Oberfläche zu reproduzieren, über einen weiten Bereich von Morton-
und Bond-Zahlen untersucht. Zusammen mit der Simulation einer platzenden Blase wird das
Modell bezüglich seiner möglichen Anwendung in der Mikroplastikforschung betrachtet, wo Blasen
vermutlich eine wichtige Rolle beim Austausch von Partikeln an der Luft-Wasser-Grenzfläche
spielen.
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Abstract

Most biological fluids are viscoelastic, giving rise to complex phenomena like shear-dependent
viscosities or non-zero storage moduli. Soft objects suspended in these fluids cause complicated
flow geometries and stress distributions, where computational models can help to understand
the underlying interactions. To this end, a hybrid algorithm combining the lattice Boltzmann
method (LBM) with the finite volume (FV) scheme is proposed, where the former is used to
solve the hydrodynamic equations while the latter models the polymer dynamics. To be able
to separate the different viscoelasticity properties within a polymeric liquid, the kinetics of the
dissolved polymers is captured by two different constitutive equations, modeling viscoelastic fluids
consisting of linear dumbbells (Oldroyd-B) or finitely extensible non-linear elastic dumbbells
with Peterlin closure (FENE-P). By carefully adapting the algorithm for compatibility with
various types of LBM boundary conditions, the correct rheological behavior in several validation
setups is reproduced with high accuracy, including oscillatory shear, onset of poiseuille flow,
elongational flow and cessation of steady shear. Coupling this algorithm to the immersed bound-
ary method (IBM) allows for the modeling of immersed capsules, which are shown to match
well with literature data both in Newtonian and Oldroyd-B shear flow. With this basis, this
thesis proposes numerical simulations of capsules in FENE-P fluids, where the capabilities of the
IB-LBM were never quantified before. Here, the well-known drop of the dimensionless rotational
frequency of capsules at Weissenberg number Wi ≈ 1 is reproduced, the time-dependent capsule
deformation under shear is explored and a prediction on the behavior of cells under bioprinting
conditions is made. Increasing the complexity, the model is extended to capsules with differing
interior and exterior fluid properties, whilst at the same time accounting for both conservation
of stress and high advection accuracy at the capsule boundary.

In the case of bubbles suspended in Newtonian fluids, no biological boundary is needed to
separate the two phases. Instead, surface tension now plays a dominant role, which is integrated
into the LBM using a Volume-of-Fluid (VoF) approach, reducing the problem of a liquid-gas
two-phase flow to a single-phase fluid with a free interface. The change in pressure due to
(de-)compression of the bubble volume is approximated by incorporation of the ideal gas equation.
Especially in the presence of multiple bubbles, tracking the topological changes of the free surface
while accounting for merging or splitting of bubbles becomes a difficult task. This thesis presents
an algorithm based on the Hoshen-Kopelman algorithm to efficiently manage merge/split pro-
cesses, significantly reducing the computational load compared to purely CPU-based approaches
by triggering these processes via GPU-compatible criteria. The accuracy of the algorithm is
benchmarked using the Rayleigh-Plesset equation. Furthermore, its capability of reproducing
the correct shape and speed of bubbles rising to the atmospheric surface is investigated over a
long range of Morton and Bond numbers. Together with the simulation of a bursting bubble,
this tests the model for its application in microplastics research, where bubbles are believed to
play an important role in the exchange of particles at the air-water interface.
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1 Introduction

Tissue engineering aims to combine bioactive materials with cells to compose three-dimensional
structures that can be used in medicine. Applications range from the regeneration of injured
tissues to the replacement of failing organs. A young and evolving technique within this field
is bioprinting, where cell-laden hydrogels termed "bio-inks" are used in specifically designed
printers that enable the fabrication of complex biohybrid structures with high shape fidelity
[1, 2]. The potential of this approach has recently been demonstrated by printing cellularized
human hearts with major blood vessels [3]. The fact that the hearts had to be down-scaled to a
diameter of 14 mm highlights the existing trade-off between print speed and cell viability. Print
speed is limited, since for high fluid velocities a large shear stress is generated in the hydrogel,
which can cause damage to the cells. This is especially true for the most common and affordable
bioprinting technique, the extrusion-based printing, which will be examined in this thesis from a
theoretical perspective. In contrast to droplet-based and laser-assisted methods, extrusion-based
methods employ a continuous dispersion. Moreover, the latter allows the use of bio-inks with
high viscosities in the range from 10 Pa s to 104 Pa s and high cell densities. However, with nozzle
diameters typically being greater than 100 µm only a relatively coarse resolution can be achieved
with this method.

In extrusion-based printing, an important viscoelastic characteristic of favorable bio-inks is the
shear-thinning property. It allows for a reduction of physical stresses during printing, without
compromising the mechanical integrity of the manufactured structure [4 – 6]. Much research is
done in order to adapt the rheological properties like shear-dependent viscosity, storage and
loss modulus by testing different polymer classes, altering polymer concentration and molecular
weight or by applying (pre-)crosslinking techniques. However, it is still poorly understood how a
change in the rheological properties of the bio-inks affects the overall system of printing nozzle,
hydrogel and cells. This is because quantities such as the time-dependent deformation of cells or
the stress of the surrounding hydrogel are difficult to measure experimentally. By employing an
HPC approach, this thesis aims to make these quantities accessible in a numerical manner.

To provide the necessary theoretical background, the basic equations of Newtonian fluids are
summarized in chapter 3. Furthermore, in chapter 4 two popular polymer models, namely the
Oldroyd-B and the FENE-P model, are introduced. In the methods part of this thesis the lattice
Boltzmann method (LBM) for the simulation of Newtonian fluids and the immersed boundary
method (IBM) for the modeling of soft deformable objects are explained. With these foundations,
finally, in chapter 10 a numerical method for the simulation of cell-like capsules dissolved in
viscoelastic fluids is developed, implemented, validated and brought to first applications.

Another microfluidics problem that can be tackled using the LBM is the transport of microplas-
tics at the water-air interface. Due to the plastic pollution of the marine environment, a high
load of small-sized plastic debris with sizes in the order of 10 – 1000 µm are found in the ocean.
Due to the interplay of their hydrophobicity and low mass density they have been found to
accumulate below the ocean surface. Accounting only for the three most-littered plastics, a recent
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1 Introduction

study estimated the combined mass of microplastics suspended in the top 200 m of the Atlantic
Ocean to be about 10 – 20 Million Tonnes [7]. The sea surface microlayer right at the top of the
ocean undergoes a particular enrichment of plastic debris, with bubble scavenging proposed as a
possible explanation of the transport mechanism [8]. The observation of airborne microplastic
particles in the remote marine atmosphere indicates that another transport mechanism exists,
leading from the sea surface microlayer into the atmosphere [9]. As a possible mediator of this
transport, again bubbles are considered, since they eject a number of small droplets into the
atmosphere during bursting.

In order to investigate these two processes theoretically, a bubble model is developed in this
thesis. To this end, the computational models of a recent study are applied, which investigated
raindrops as transport vehicles for the transition of microplastic particles from ocean water to
the atmosphere, using the LBM extended by a Volume-of-Fluid (VoF) approach and the IBM
[10]. Chapter 6 provides an overview of the VoF method. In chapter 9, a bubble model is
introduced with a focus on the necessary detection of bubble merge/split processes, where the
developed method makes heavy use of the Hoshen-Kopelman (HK) algorithm. In order to assess
the accuracy of the model with regard to the investigation of the transport processes described
above, the subsequent validations and tests of the model focus mainly on the correct behavior
during the ascending of the bubbles to the atmospheric interface and the burst process.

Both microfluidics topics are approached by extending the capabilities of the computational
fluid dynamics (CFD) software FluidX3D [11]. To this end, algorithms known from literature are
implemented from scratch and new problem-specific algorithms are developed. Chapter 8 briefly
describes what was considered in the design of these algorithms in order to make them compatible
with high performance computing (HPC) prerequisites and to be able to execute them in parallel
on GPUs. Furthermore, for validation purposes some setups are compared against simulations
conducted with the LBM implementation of the open source software package ESPResSo [12].
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2 Nomenclature and notation

2.1 Declaration of symbols

The following tables list the frequently used symbols for physical quantities, lattice Boltzmann
quantities and dimensionless numbers occurring in this thesis.

Physical quantities:
Symbol Physical unit Meaning

ρ kg m−3 Fluid mass density
η, ηs & ηp Pa s Total, solvent & polymer dynamic shear viscosity
ν m2 s−1 Total kinematic shear viscosity
ηE Pa s Extensional viscosity
p & pB Pa Fluid & bubble pressure
σ kg s−2 Surface tension
σ, σs & τp Pa Total, solvent & polymer stress tensor
τij Pa A component of stress tensor τp (suppressing the

subscript)
c - Conformation tensor
D s−1 Deformation rate tensor
F N m−3 Body force
F N Force
θ K Temperature
n m−3 Number density (e.g. of dumbbells)
kB m2 kg s−2 K−1 Boltzmann constant
Rsp m2 s−2 K−1 Specific gas constant
g m s−2 Gravitational acceleration
G, G′ & G′′ Pa Elastic, storage & loss modulus
κS & κS,1, κS,2 N m−1 Shear modulus of neo-Hookean model & shear

moduli of Skalak model
λp s Polymer relaxation time
γ̇ s−1 Shear rate
ε̇ s−1 Elongation rate
β & β̂ - Polymer & Newtonian fraction of total viscosity
b - Finite extensibility parameter

3



2 Nomenclature and notation

Lattice Boltzmann quantities:
Symbol Meaning

fi Particle distribution function or population (pre-collision)
f∗i Population (post-collision)
f i Population with c i = −ci
f eqi Equilibrium population
Ωi Collision operator
cs Lattice speed of sound
wi Velocity weight
ci Discretized grid velocity
q & d Number of discrete velocities contained in a set & its dimen-

sionality
∆t Discrete time step
∆x Lattice spacing
τr & τr,+, τr,− One SRT relaxation time & two TRT relaxation times
S Matrix containing MRT relaxation times
M MRT matrix transforming from population space to moment

space
ϕ Fill level
FF , FI & FG Node types: fluid, interface & gas
I Field storing bubble IDs
ρSI = 1000 kg m−3 vs.
ρ = 1.0

When both SI and lattice quantities occur in the same con-
text, SI quantities are marked by a subscript and have units,
while lattice quantities are unitless.

Dimensionless numbers:
Symbol Meaning

Kn Knudsen number
Re Reynolds number
Ca Capillary number
De Deborah number
Wi Weissenberg number
Bo Bond number (also called Eötvös number)
Mo Morton number
t∗ Dimensionless time

4



2.2 Acronyms

2.2 Acronyms

The following abbreviations for important equations and methods will be used.

Acronym written out

LB lattice Boltzmann

LBM lattice Boltzmann method

NS Navier-Stokes

NSE Navier-Stokes equation

BGK Bhatnagar-Gross-Krook

FENE-P finitely extensible nonlinear elastic model with Peterlin closure

UCM upper-convected Maxwell

FD finite difference

FV finite volume

FVM finite volume method

FE finite element

HK Hoshen-Kopelman

SRT single relaxation time

TRT two relaxation time

MRT multi relaxation time

IBM immersed boundary method

IB-LBM immersed boundary lattice Boltzmann method

BIM boundary integral method

RBC red blood cell

CPU central processing unit

GPU graphics processing unit

PCIe peripheral component interconnect express

VoF Volume-of-Fluid

HPAM hydrolyzed Poly-Acrylamide

POx Poly(2-oxazoline)

CTU corner transport upwind

COM center of mass
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2 Nomenclature and notation

2.3 Mathematical notation and conventions
The following table lists the conventions and mathematical notation used in this thesis.

Notation Explanation

a A column vector

aT Transpose of a vector

n̂ Normal vector

êi i-th unit vector

aα Subscript for vector components (or tensor components i.g.)

aαbα Einstein summation convention applies unless stated otherwise

A A matrix (or tensor i.g.)

I Identity matrix

a · a Scalar product

aa Outer product

δαβ Kronecker delta

∇ Nabla operator

∆ Laplace operator
∇
A Upper convected derivative

TrA Trace of matrix A

〈〉ψ Expectation value using probability density ψ

<(a+ ib) Real part of imaginary number
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3 Newtonian fluids - two mathematical
descriptions

Before aiming to describe Newtonian fluids in terms of mathematics, one should be aware of
the different scales on which such a description can happen. Concerning length scales there is
the size of the fluid atoms and molecules la, the mean free path (distance travelled between
two successive collisions) lmfp and the typical scale lg for gradients of macroscopic quantities
(density, temperature etc.). The typical hierarchy of these length scales is la � lmfp � lg. These
scales correspond to a microscopic (i.e. molecular), mesoscopic or macroscopic (continuum
picture) description of fluids. "Mesoscopic" here refers to a description in-between microscopic
and macroscopic, where distributions (i.e. representative collections) of molecules rather than
the molecules itself are tracked. Closely related to this hierarchy of length scales is the hierarchy
of time scales. There is the collision time ta ∝ la/uθ where uθ = (kBθ/m)1/2 is the average
thermal velocity of molecules of size m and temperature θ. A slower time scale is given by the
time between two successive collisions tmfp ∝ lmfp/uθ, which is also the time scale at which the
system relaxes to local equilibrium. Finally, in the macroscopic description the shorter of the two
time scales tadv ∝ l/u (advective dynamics) and tdiff ∝ l2/ν (diffusive dynamics) plays the more
important role. Here l and u are a typical length and velocity of the considered flow problem. ν
is the kinematic viscosity which is related to the dynamic shear viscosity by η = ρν, where ρ is
the density of the fluid. The ratio of diffusive to advective dynamics is denoted in the Reynolds
number

Re = tdiff
tadv

= ul

ν
. (3.1)

An other useful dimensionless number that can capture the relative importance of scales of the
considered problem is the Knudsen number

Kn = lmfp
l
. (3.2)

It is obvious now, that the microscopic description acts on time and length scales that are not
able to capture the problem size of the problems mentioned in chapter 1. The Navier-Stokes
equation (NSE) and its related equations are a macroscopic description of Newtonian fluids and
will be described in the next section. Kinetic theory, on the other hand, is a mesoscopic fluid
description on which the LBM is based. Its main equations and its relation to the NSE will be
given in chapter 3.2.

3.1 Continuum theory
The equations describing an ideal fluid can be found when considering "fluid elements", which
are small compared to system size, but large compared to an individual molecule as needed for
the continuum description. By demanding, that the mass of an arbitrary fluid element can only
change by mass flux across the elements surface, the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (3.3)

7



3 Newtonian fluids - two mathematical descriptions

is found. Similarly, the change of momentum of a fluid element can be considered via the
momentum density j = ρu. This change can only be due to (i) flow of momentum into or out
of its surface, (ii) differences in pressure p and (iii) external body forces F ext. This directly
corresponds to the last three terms of the Euler equation

∂(ρu)
∂t

+∇ · (ρuu) = −∇p+ F ext. (3.4)

Here, uu denotes the outer product. This is a special case of the Cauchy momentum equation

∂(ρu)
∂t

+∇ ·Π = F ext, (3.5)

where Παβ = ρuαuβ − σαβ denotes the momentum flux density tensor. The term σαβ is called
stress tensor. The Euler equation yields an isotropic stress σαβ = −pδαβ , where δαβ denotes the
Kronecker delta.

In real fluids, internal friction in form of viscosity is present. This effect is captured by an
additional term of the stress tensor, the viscous stress tensor σs. The viscous stress tensor can
be separated into a traceless shear stress and a normal stress:

σs,αβ = ηs

(
∂uα
∂xβ

+ ∂uβ
∂xα

− 2
3δαβ

∂uγ
∂xγ

)
+ ηBδαβ

∂uγ
∂xγ

. (3.6)

The coefficients ηs and ηB are shear viscosity and bulk viscosity respectively. They are usually
assumed to be isotropic and uniform, but don’t have to be in general. Incorporating the viscous
stress tensor into eq. (3.5) leads to the Navier-Stokes equation

∂(ρu)
∂t

+∇ · (ρuu) = −∇p+∇ · σs + F ext. (3.7)

The NSE can be simplified by assuming an incompressible fluid with ρ = const. The continuity
equation (3.3) then reduces to

∇ · u = 0. (3.8)

The NSE (3.7) simplifies to the incompressible NSE

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ηs∆u+ F ext, (3.9)

where ∆ = ∇ · ∇ denotes the Laplace operator and obviously ηs∆u = ∇ · σs holds. A more
general form of the incompressible NSE for future reference is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · σ + F ext, (3.10)

where σ denotes an arbitrary stress tensor and σ = σs leads back to eq. (3.9). In the case of
an incompressible fluid, eqs. (3.8) and (3.9) form a closed system of equations, i.e. there are
four equations for the four unknowns ux, uy, uz and p. For a general fluid ρ is an additional
unknown, therefore one has to introduce an equation of state and additional assumptions. One
of the most simple ways to do so would be to assume constant temperature θ = θ0 = const and
to take the ideal gas law

p = ρRspθ, (3.11)
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where Rsp is the specific gas constant. This isothermal equation of state results in a linear
relationship between pressure and density. The speed of sound cs is i.g. given by the relation

c2
s =

(
∂p

∂ρ

)
s

, (3.12)

taking the derivative at constant entropy s. In this isothermal case it results in cs =
√
Rspθ0.

3.2 Kinetic theory
Kinetic theory considers distributions of particles in a gas, a quantity evolving on timescales
proportional to the mean collision time tmfp. While in principle this description is more general
than the NSE, here only the most common case of a dilute monoatomic gas is considered. The
fundamental variable in kinetic theory is the particle distribution function f(x, ξ, t), which
represents the density of particles with velocity ξ at position x and time t. It therefore has the
units kgs3/m6. The distribution function f is connected to macroscopic variables by its moments.
Here a general notation for the moments of a function g is used:

M0(g) =
∫
g d3ξ, Mα(g) =

∫
ξαg d3ξ, Mαβ(g) =

∫
ξαξβg d3ξ. (3.13)

The quantities mass density, momentum density and total energy density are found as the first
three moments of f , respectively:

ρ(x, t) =M0(f), ρ(x, t)uα(x, t) =Mα(f), ρ(x, t)E(x, t) =Mαα(f). (3.14)

A gas left alone sufficiently long will even out the distribution of particle velocities around the
mean velocity u and finally reach an equilibrium distribution, namely the Maxwell-Boltzmann
distribution for an ideal monoatomic gas

f eq(x, |v|, t) = ρ

(
1

2πRspθ

)3/2

e−|v|
2/(2Rspθ). (3.15)

For the above equation, the definition v(x, t) = ξ(x, t)−u(x, t) is introduced. The time evolution
of f can be found by looking at its total derivative with respect to time:

df
dt =

(
∂f

∂t

) dt
dt +

(
∂f

∂xβ

)
dxβ
dt +

(
∂f

∂ξβ

)
dξβ
dt . (3.16)

Applying Newton’s second law (ρdξβ
dt = Fβ with [Fβ ] = N m−3) and using the notation df/dt =

Ω(f), the Boltzmann equation is obtained:

∂f

∂t
+ ξβ

∂f

∂xβ
+ Fβ

ρ

∂f

∂ξβ
= Ω(f). (3.17)

The source term on the right hand side represents the local redistribution of f due to collisions
and is therefore called collision operator. A useful collision operator for monoatomic gases has to
conserve the quantities mass, momentum and translational energy. This can be formulated as
constraints towards the first three moments of the collision operator:

M0(Ω(f)) = 0, Mα(Ω(f)) = 0, Mαα(Ω(f)) = 0. (3.18)
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One possible collision operator that is also used in the LBM is the very simple Bhatnagar-Gross-
Krook (BGK) collision operator

Ω(f) = − 1
τr

(f − f eq), (3.19)

where τr is the relaxation time.

The macroscopic equations of fluid mechanics can be found directly from the Boltzmann
eq. (3.17). This is done by looking at its first three moments (i.e. again multiplying it with
functions of ξ and integrating over velocity space) and using the equalities from eq. (3.14) and
(3.18). The first moment of the Boltzmann equation reproduces the continuity equation (3.3).
The second moment reproduces the Cauchy momentum equation (3.5) with the resulting stress
tensor

σαβ = −
∫
vαvβf d3ξ. (3.20)

This equation is not closed, since f is unknown. Finally, the total energy equation

∂(ρE)
∂t

+ ∂(ρuβE)
∂xβ

= ∂(uασαβ)
∂xβ

+ Fβuβ −
∂qβ
∂xβ

(3.21)

is found from the trace of the third moment. Here the heat flux is defined as

qβ = 1
2

∫
vαvαvβf d3ξ, (3.22)

so again this equation is not closed. The pendant in continuum theory would be the Navier-
Stokes-Fourier equations, when taking the total energy equation (3.21) with the heat flux

q = −κ∇θ, (3.23)

(κ being the fluid’s thermal diffusivity) together with the continuity equation and the NSE.
In general, to approximate eq. (3.20) and (3.22), an explicit approximation of the distribution
function f has to be found.

The simplest possible approximation is f ≈ f eq, which leads the second moment of the
Boltzmann equation back to the Euler momentum equation, and the trace of the third moment
to the Euler energy equation, i.e. a simplified version of eq. (3.21). If one also want to consider
non-equilibrium, i.e. f − f eq 6= 0, an analysis based on the perturbation expansion can be
performed, which is called Chapman-Enskog analysis and is an established method of connecting
the kinetic and continuum pictures. Restricting the expansion to first order, i.e. f ≈ f eq + εf (1)

with smallness parameter ε, and explicitly finding f (1) from the macroscopic derivatives of the
equilibrium distributions f eq, the full Navier-Stokes-Fourier model with its viscous stress and
heat conduction is recovered. The resulting transport coefficients are:

ηs = pτr, ηB = 0, κ = 5
2Rsppτr. (3.24)

The shown expansion is valid for small Knudsen number Kn. For high Kn, a higher order
expansion has to be considered.
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4 Polymer models

In this chapter, two polymer models, namely the Oldroyd-B and the FENE-P model, will be
described together with their basic properties. For some flow geometries, analytical solutions of
polymer stress or fluid velocity will be given. This serves as an preparation for the validation of
the implementation of these models in chapter 10.4 and 10.6. In chapter 10.1 it will be made
clear, why these models are relevant for bioprinting.

4.1 Oldroyd-B model

4.1.1 From the microscopic picture to a constitutive equation

The Oldroyd-B model can be derived from microscopical principles 1. This connection using
the elastic dumbbell model was first proposed by [14], but here the description of [13, ch. 2.2]
is followed (it is also found in [15, ch. 7.5]). In this model the complex chains of polymers are
simply described by elastic dumbbells (cf. fig. 4.1) diluted in incompressible Newtonian fluid
with viscosity ηs. Each dumbbell consists of two beads of mass m connected by a Hookean
spring (zero mass). The vectors r1(t) and r2(t) being the positions of the beads at time t and
q = r1 − r2 denoting the elongation vector, the equation of motion for both beads is described
by Newton’s fist law

m
d2xi
dt2 = Fs

i −Fd
i +Bi, i ∈ {1, 2}, (4.1)

where on the right-hand side three forces play a role. Fs
i is the force of the spring acting on the

i-th bead and is given by the Hookean law

Fs
1 = −Fs

2 = Kq, (4.2)

where K is the spring constant. Fd
i is the drag force acting on the i-th bead. Since the beads

are modeled as spheres of radius a, it can be described by Stokes law

Fd
i = ζ

(dri
dt − u(ri)

)
, (4.3)

where u(ri) is the fluid velocity and ζ = 6πηsa. Bi is the Brownian force caused by molecules of
the fluid acting on the i-th bead and can be written in the form

Bidt =
√

2kBθζdW i, (4.4)

where W i is the three-dimensional Wiener process, kB is the Boltzmann constant and θ the
temperature.

1An alternative derivation of the Oldroyd-B model uses the theory of simple fluids with fading memory [13,
ch. 2.2].
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4 Polymer models

Fig. 4.1: Illustration of dumbbells dissolved in a Newtonian fluid. Image taken from [16].

The actual derivation of the Oldroyd-B model will be skipped, instead only some additional
assumptions are outlined. First of all, the left hand side of eq. (4.1) can be assumed to be
zero, since m is generally very small and inertia effects are much smaller than viscous and
elastic effects. Secondly, thermodynamic equilibrium is assumed to make use of the equipartition
theorem and find 1

2K 〈|q|
2〉ψ = 3

2kBθ, where 〈·〉ψ denotes the expectation value as defined in
eq. (4.6). Furthermore, beads are assumed to not interact with each other and can be treated as
an ideal gas. As a last step, the view is changed to the macroscopic picture, where the quantity
of interest is the conformation tensor c defined as

c = K

kBθ
〈qq〉ψ , (4.5)

where
〈x(t)〉ψ =

∫
R
x(q, t)ψ(q, t) dq (4.6)

is the expectation value using the dumbbell probability density ψ(q, t). The conformation tensor
is positive definite. Putting this together, a joint Fokker-Planck equation for ψ(q, t) can be found.
By integrating it over q, the Oldroyd-B model is obtained:

λp
∇
c + c = I, (4.7a)

σ = σs + τp, (4.7b)
τp = G(c− I), (4.7c)

where I denotes the identity matrix and the total stress tensor σ from eq. (4.7b) additionally has
to solve the incompressible NSE (3.10). The upper convected derivative is defined as

∇
c = dc

dt − ((∇u)T · c+ c · (∇u)). (4.8)

Note that in the equation above the total (material) derivative

dc
dt = ∂c

∂t
+ u · ∇c (4.9)

is being used. The connection to the microscopic model is given by the relaxation time λp = ζ
4K

and the elastic modulus G = nkBθ with n being the number of dumbbells per unit volume.
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4.1 Oldroyd-B model

4.1.2 Alternative formulations

While the conformation tensor formulation via eq. (4.7) has the advantage of being strongly
connected to the microscopic model, in literature numerous other formulations can be found.
Here the connection to two other often used formulations is presented following the overview
provided by [17] 2. For both, only the total stress tensor σ is given. To obtain the full model,
the total stress tensor again has to enter the incompressible NSE (3.10).

In polymer science it is customary to write the stress tensor as the sum of a viscoelastic
component (originating from the polymers) and a Newtonian component (the solvent contribution).
Doing so, in the polymer formulation the constitutive equation is changed to:

σ = τp + 2ηsD, (4.10)

τp = −λp
∇
τ p + 2ηpD, (4.11)

where λp and ηp are polymer relaxation time and viscosity respectively. The deformation rate
tensor D is given by

Dij = 1
2(∂iuj + ∂jui), (4.12)

and it holds σs = 2ηsD. The justification for calling ηp a viscosity can be found when investigating
steady shear flow (see chapter 4.3.2.1). The polymer formulation presented here will be the
one used for implementation purposes in chapter 10.3. It is related to the conformation tensor
formulation via G = ηp/λp, as shown in eq. (A2).

In the original formulation of the Oldroyd-B model as first proposed in [18] the constitutive
equation for σ obeys

σ + λp
∇
σ = 2η(D + λr

∇
D). (4.13)

Here, η = ηs+ηp is the total viscosity and λr is named retardation time. This original formulation
is equivalent to the polymer one, if one takes (proof see eq. (A1))

ηp = (1− β̂)η, ηs = β̂η, (4.14)

with β̂ = λr/λp = ηs/η. The Newtonian fraction of total viscosity β̂ is not to be confused with
the polymer fraction β = ηs/η = 1− β̂ used in later chapters.

For ηs = 0 (or equally λr = 0) the Oldroyd-B model is reduced to the upper convected Maxwell
(UCM) model (see chapter 7.5.5 in [15]). It can be shown that the UCM model is solved by (see
[15], chapter 7.6)

c(t) = G

λp

∫ t

−∞
exp(s−t)/λp Ct(s)−1ds, (4.15)

with Ct being the right relative Cauchy–Green tensor. This integral version of the UCM model
is called the Lodge rubber-like liquid model, a model with fading memory meant for concentrated
polymer solutions and melts.

2[17] collects even two more Oldroyd-B formulations not mentioned here.
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4.2 FENE-P model
4.2.1 Microscopic model and stress constitutive formulation
The FENE-P model has it origins in the finitely extensible nonlinear elastic (FENE) dumbbell
model. This is a dumbbell model analogous to chapter 4.1.1 and obeys a similar equation of
motion as in eq. (4.1). Again the drag force and the effect of Brownian dynamics act on the
beads, but the spring now obeys the following force law [19, eq. 1]:

Fs
1 = −Fs

2 = Kq

1− (q2/q2
0) , (4.16)

where q is again the vector connecting the beads, and K and q0 are constants. The parameter K
again has the meaning of a spring constant and q0 is the maximum extensibility of the dumbbells
[20, eq. 10]. However, with this force law it is not possible to solve for the configurational
distribution function ψ(q, t) in the diffusion equation (Fokker-Planck equation) of dumbbell
kinetic theory [19, eq. 2]. Therefore the force law of the microscopic model is changed to [19,
eq. 6]:

Fs
1 = −Fs

2 = Kq

1− 〈q2/q2
0〉ψ

, (4.17)

with 〈·〉ψ from eq. (4.6). This idea is based on Peterlin and therefore the model is called FENE-P.
By inserting Fs

1 into the Kramers form, taking the trace and eliminating the appearing term
〈qq〉ψ with the help of the Giesekus form, the original formulation of the constitutive equation
for the stress tensor of the FENE-P model was obtained [19, eq. 4-10] [21, eq. 13-14] for ε = 0:

Zτp + λp
∇
τ p − λp(τp + (1− εb)nkBθI)

d lnZ
dt = 2(1− εb)nkBθλpD (4.18)

where ∇ and d
dt are the upper convected and the total derivative, respectively. D is the deformation

rate tensor and it holds

Z = Z(τp) = 1 + 3
b

(
(1− εb) +

Tr(τp)
3nkBθ

)
. (4.19)

Here Tr is the trace, and b is the finite extensibility parameter (typically values range from 10
to 1000). Because Z depends on Tr(τp), the constitutive equation is nonlinear in stress. When
b goes to infinity, Z becomes unity and the Oldroyd-B limit is obtained, because eq. (4.11) is
recovered. Later, it has been shown in [22, eq. 13.5-49 - 13.5-56] that for ε = 2/(b(b+ 2)) a better
approximation for eq. (4.16) can be obtained, which is actually exact in equilibrium. Note that
my definition of the stress tensor deviates from the one in the original formulation [19, 22] by a
factor −1. Equation (4.18) is conservative ([21, eq. 15]. The model can describe the effect of
shear-thinning, as will be shown in chapter 4.3.3.1. Furthermore, next to λp = ζ/(4K), a second
time constant λQ = ζq2

0/(12kBθ) for rigid dumbbells can be defined and it holds (see [20, p. 20]):

b = 3λQ/λp = Kq2
0/(kBθ). (4.20)

Some more connections to the microscopic model for the case ε = 0 are give by:

ηp/λp = nkBθ, (4.21)

b+ 3 = 3 q
2
0
q2
eq
, (4.22)

where qeq is the average dumbbell length in equilibrium.
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4.2.2 Alternative formulation

An alternative formulation [21, eq. 20] uses the parameter L, which is the maximum extensibility
of a dumbbell scaled with its equilibrium value, L2 = 3q2

0/q
2
eq. The relation to the former model

is obtained via
b̂ = L2 − 3 (4.23)

where

b̂ =
{
b, if ε = 0,
b+ 2, if ε = 2/(b(b+ 2)).

(4.24)

A similar formulation is given in [23], who implement the FENE-P model for the case ε = 0
using the LBM. The paper contains many good validation setups, some of which are also used
in this thesis in chapter 10.6. However, the model formulation seems to contain an error, that
appears in several parts of the paper and will be briefly discussed here. Their constitutive
equation is formulated via the conformation tensor c and the "(dimensionless) maximum possible
extension" L. However, they don’t give the concrete relations L↔ b und c↔ τp. Looking at the
analytic solutions they give in their chapters 3.1 (steady shear flow), 3.2 (steady elongational
flow) and 3.4 (small amplitude oscillatory shearing) using a so called polymer feedback stress
tensor σP and comparing them to ours from chapter 4.3.2.1, 4.3.2.2 and 4.3.2.3 one finds that

σP = ηp
λp
τp + I, L2 − 3 = b (4.25)

must hold. However, inconsistencies then arise with their equations (22)-(24), which are supposed
to be a direct mapping into the original formulation of Bird et al. According to their mapping

Z = L2 − 3 + Tr(σP )
L2 , (4.26)

holds, while in the FENE-P model formulation of this thesis

Z = 1 + 3
b

(
1 +

Tr(τp)
3

λp
ηp

)
(4.27)

holds. Both cannot be transformed into each other via eq. (4.25). Moreover, it is noticeable that
in eq. (4.27) Z = 1 holds for Tr(τp) = −3 ηpλp , which would correspond to Tr(σP ) = 0 when taking
the definition from eq. (4.25). But contradictory to this, Z = 1 in eq. (4.26) is only satisfied for
Tr(σP ) = 3. However, if instead of eq. (4.26) a slightly modified Z is used, i.e.

Z = L2 − 3 + Tr(σP )
L2 − 3 , (4.28)

both discrepancies can be solved. This would be a direct error in their algorithm3 and would
have to be noticeable especially for small L2.

3To be exact, their FENE-P potential f from page 179 would be erroneous and would have to be adjusted to
match with eq. (4.28).
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4.3 Behavior in simple flows

4.3.1 Flow geometries and definition of basic quantities

The following simple flows will be used to analyse the properties of the Oldroyd-B and FENE-P
model:

• Homogeneous shear flow:

u = (γ̇y, 0, 0)T with γ̇ = const. (4.29)

• Oscillatory shear flow:
u = (γ̇y, 0, 0)T with γ̇ = γ̇0<(eiωt). (4.30)

• Homogeneous uniaxial elongational flow:

∇u = diag(ε̇, − ε̇/2, − ε̇/2) with ε̇ = const. (4.31)

Here, γ̇ = ∂ux
∂y denotes the shear rate and ω is an angular frequency. The parameter ε̇ denotes

the elongation rate and is not related with the constant ε of the FENE-P model.

Using these flow geometries, the basic fluid properties are derived by solving for the stress
tensor σ. Firstly, the shear viscosity η and the first and second normal stress differences, N1 and
N2 respectively, are defined via the stress tensor σ observed in homogeneous shear flow at steady
state:

η = σ12/γ̇, N1 = σ11 − σ22, N2 = σ22 − σ33. (4.32)

Secondly, the elastic moduli G′ and G′′ (also called storage and loss modulus respectively) result
from a fluid subject to oscillatory shear flow with small amplitude and read

η∗ = η′ − iη′′ = σ12/γ̇0, G′ = ωη′′, G′ = ωη′, (4.33)

where η∗ is the complex total viscosity. Finally, the elongational viscosity ηE is obtained in
homogeneous uniaxial elongational flow at steady state as

ηE = σ11 − σ22
ε̇

. (4.34)

4.3.2 Oldroyd-B behavior in simple flows

Here the description of [23], chapter 3, and [15], chapter 7.6.1, is followed.

4.3.2.1 Steady shear flow

Considering Eq. (4.11) in 2D under the effect of a homogeneous shear flow, the equations written
out in components become(

τ11 τ12
τ21 τ22

)
+ λp

(
τ̇11 τ̇12
τ̇21 τ̇22

)
− λpγ̇

(
2τ12 τ22
τ22 0

)
− ηp

(
0 γ̇
γ̇ 0

)
= 0. (4.35)
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If the stress components start from zero initial states, then τ22 = 0 is valid for all time (as
do all additional components for the case of 3D). Since τp is symmetric, only two non-trivial
components remain:

τ11 + λp(τ̇11 − 2γ̇τ12) = 0
τ12 + λp(τ̇12 − γ̇τ22) = ηpγ̇

(4.36)

At steady state (i.e. τ̇11 = 0 = τ̇12), τ12 = ηpγ̇ and τ11 = 2ηpλpγ̇2 is found. Therefore the
viscometric functions are

η = σ12/γ̇ = ηp + ηs, N1 = σ11 − σ22 = 2ηpλpγ̇2, N2 = σ22 − σ33 = 0. (4.37)

In this linear elastic dumbbell model the polymer shear stress τ12 is directly proportional to
the shear strain γ̇. This is only realistic for small shear strains. Furthermore, dilute polymer
solutions usually show some degree of shear-thinning. To observe this, one would have to develop
a more realistic force law for the chain, as it is the case for the FENE-P model. Looking at the
shear and normal stress of the Oldroyd-B model motivates a new dimensionless number used in
the context of viscoelastic flows. The Weissenberg number Wi = γ̇λp relates the elastic forces to
the viscous forces present in the polymers:

Wi = elastic forces
viscous forces = τ11 − τ22

2τ12
= 2ηpλpγ̇2

2ηpγ̇
= γ̇λp. (4.38)

4.3.2.2 Small amplitude oscillatory shearing

In an oscillatory flow, looking at eq. (4.36) the Ansatz

τ12 = <(α1e
iωt), τ11 = <(α2e

2iωt) (4.39)

is an obvious choice. Substituting this into eq. (4.36) yields

α1 = ηpγ̇0
1 + iλpω

, α2 = 2ηpλpγ̇2
0iω

(1 + iλpω)(1 + 2iλpω) . (4.40)

Consequently, the dynamic properties of Oldroyd-B are

η∗ = ηs + ηp
1 + iλpω

(4.41)

G′ = ωη′′ =
Gλ2

pω
2

1 + λ2
pω

2 , G′′ = ωη′ = ηsω + Gλpω

1 + λ2
pω

2 . (4.42)

The result for the storage and loss moduli can be brought to a nondimensional form only
dependent on the Deborah number De = ωλp by describing G′′ without the viscosity component
ηs and dividing by G (see [24], p. 140), which results in

G′ = De2

1 + De2 , G′′ = De
1 + De2 (4.43)
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4.3.2.3 Elongational flow

In an uniaxial elongational flow eq. (4.11) becomes

τp + λpτ̇p − λp
ε̇

2

4τ11 τ12 τ13
τ21 −2τ22 −2τ23
τ31 −2τ32 −2τ33

 = ηpε̇

2 0 0
0 −1 0
0 0 −1

 (4.44)

Assuming again zero initial states (τp = 0) the only three terms that not remain zero are (note
that τ22 = τ33)

τ11 + λp(τ̇11 − 2ε̇τ11) = 2ηpε̇ (4.45)
τ22 + λp(τ̇22 + ε̇τ22) = −ηpε̇. (4.46)

For ε̇ = const the solution is

τ11 = 2ηpε̇
1− 2λpε̇

(1− e−(1−2λpε̇)t/λp), (4.47)

τ22 = τ33 = − ηpε̇

1 + λpε̇
(1− e−(1+λpε̇)t/λp). (4.48)

At steady state (t→∞) for −1 < λpε̇ < 1/2 the extensional viscosity becomes

ηE − 3ηs = τ11 − τ22
ε̇

= 3ηp
(1− 2λpε̇)(1 + λpε̇)

(4.49)

The Trouton ratio ηE/η is bigger than the Newtonian value of 3 for ε̇ 6= 0 and becomes unbounded
when λpε̇ approaches −1 or 1/2. Therefore, if either λpε̇ ≥ 1/2 or λpε̇ ≤ −1 at least one component
of the stress grows unboundedly. This is due to the dumbbell model allowing the linear spring
to grow without bound in a strong flow. Constraining the dumbbell to a maximum allowable
length would fix this (e.g. FENE dumbbell, Phan-Thien/Tanner model).

4.3.3 FENE-P behavior in simple flows
The derivation of the rheological quantities is taken from [19, ch. 3] and [25, ch. 13] for ε = 0 and
ε = 2/(b(b+ 2)), respectively.

4.3.3.1 Steady shear flow

For a homogeneous shear flow the following polymer viscosity can be derived:

η̂p = S3nkBθ(1− εb)/γ̇, (4.50)

with

p = b

54(1− ε) + 1
18 , q = bλpγ̇

108(1− εb) , S = 2p1/2 sinh
(1

3arcsinh
(
qp−3/2

))
. (4.51)

Note that η̂p depends on shear rate and should not be confused with the model parameter
ηp = nkBθλp. Two limits can be observed:

γ̇ = 0 : η̂p = nkBθλp
b

b̂+ 3
, (4.52)

γ̇ →∞ : η̂p = nkBθλp

(√
b/2
λpγ̇

b

b̂

)2/3

∝ γ̇−2/3, (4.53)

18
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where the two cases of ε are given by the definition of b̂ in eq. (4.24). For high shear rates γ̇,
shear-thinning is often described by the power law

η̂p = mγ̇n−1. (4.54)

The consistency parameter m has no real physical meaning, as is already implied by its somewhat
artificial units of Pa sn. For the FENE-P model this yields a power law coefficient of n = 1/3.
The first normal stress difference is found to be:

N1,p = τxx − τyy = 18nkBθS2. (4.55)

4.3.3.2 Small amplitude oscillatory shearing

The moduli G′ and G′′ for an FENE-P oscillatory shear flow can be obtained by the expansion
of the covariance matrix in the velocity gradient around the equilibrium state. It is therefore
only valid for small shear strain. Here only the case ε = 0 is presented [19, eq. 43] [20, eq.50-51],
which is very similar to the Oldroyd-B solution:

G′ =
Gλ2

pω
2

( b+3
b )2 + λ2

pω
2 , G′′ = ηsω +

( b+3
b )Gλpω

( b+3
b )2 + λ2

pω
2 . (4.56)

with the same definition G = ηp/λp as for Oldroyd-B.

4.3.3.3 Elongational flow

The behavior in elongational flow is also interesting, where an analytical solution exists for the
normal stress N1 = τxx − τyy, and thus the elongational viscosity ηE = N1/ε̇ can be inferred. In
the derivation, for the FENE-P constant ε only the case ε = 0 will be considered.

For elongational flows (ux = ε̇x, uy = −ε̇y/2, uz = −ε̇z/2) the constitutive equation reduces
to (cf. [19]):

Z

τxx 0 0
0 τyy 0
0 0 τzz

+ λp

 d
dt

τxx 0 0
0 τyy 0
0 0 τzz

+

−2τxx 0 0
0 τyy 0
0 0 τzz

 ε̇


− λp

τxx + nkBθ 0 0
0 τyy + nkBθ 0
0 0 τzz + nkBθ

 d lnZ
dt = nkBθλpε̇

2 0 0
1 −1 0
0 0 −1

 (4.57)

With the definition of the dimensionless elongational rate Λe = ε̇λp this simplifies in the stationary
case to

Z

τxx 0 0
0 τyy 0
0 0 τzz

+ Λe

−2(τxx + nkBθ) 0 0
0 τyy + nkBθ 0
0 0 τzz + nkBθ

 = 0. (4.58)

This results in two independent equations:

ZT − 2DΛe = 0, (4.59)
ZD − (D + T )Λe = Λe, (4.60)
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4 Polymer models

where the definitions T = Tr(τp)/(3nkBθ), D = (τxx − τyy)/(3nkBθ) and B = 3/b apply and
furthermore Z = Z(T ) = 1 +B(1 + T ) holds (cf. eq. (4.19)). After elimination of T , this can be
transformed into a quadratic equation in Λe (cf. [19]). Its solution reads:

P1 = 2BD, (4.61a)
P2 = −5B2D2 − (B − 1)BD +B, (4.61b)
P3 = 2B3D3 + (B + 1)(B2D2 −BD), (4.61c)

Λe =
−P2 ±

√
P 2

2 − 4P1P3

2P1
. (4.61d)

For BD = 1 the root in the above equation becomes zero, whereby Λe = 1 holds. When analyzing
the limits for large and small D, one of the two solutions can be excluded as physically not
reasonable (small D: otherwise negative viscosity; large D: otherwise no continuous derivative).
It follows that for D ≤ 1/B the plus solution is valid, for D ≥ 1/B the minus solution. The valid
limits are:

Λe → 0: Λe = (B + 1)D, (4.62)
Λe →∞: Λe = BD/2. (4.63)

Translating this back to the old nomenclature, solving for ηE and including the case ε = 2/(b(b+2)),
the limits now read [19, eq. 38] [22, eq. 13.5-63]:

ε̇ = 0: ηE − 3ηs = 3Gλp
b

b̂+ 3
, (4.64)

ε̇→∞: ηE − 3ηs ≈ 2Gλpb. (4.65)
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5 Lattice Boltzmann method

Finding a computational solution of the incompressible NSE can be targeted in multiple ways.
The conventional class of Navier-Stokes solvers tries to discretize eq. (3.9) itself. The most
general of these methods are the finite difference (FD) method, the finite volume (FV) method
(which will be used in chapter 10 to solve the constitutive equations of viscoelastic fluids) or
the finite element (FE) method. Another class of solvers are the particle-based solvers, which
model particle interactions on the mesoscale and by this reproduce the incompressible NSE. The
lattice Boltzmann method (LBM) belongs to the latter class and is a discretized version of the
Boltzmann equation (3.17).

5.1 Basic algorithm

In the LBM, discretization takes place with respect to time, space and velocity. In other words,
the LBM works on a regular 3D grid called lattice (representing space) with grid spacing ∆x, a
discrete time step ∆t and a finite velocity set {ci}. Let’s first look at the discretization with
respect to velocity space. In order to reproduce the correct macroscopic behavior, the first three
moments of the Boltzmann equation corresponding to mass, momentum and energy conservation
should be captured as accurate as possible. Therefore, two steps in the discretization process of
the velocity are important: firstly, f eq from eq. (3.15) is approximated by the first three terms of
its Hermite series expansion, whose coefficients are directly related to the conserved quantities
density, momentum and energy. The coefficients can be computed analytically since f eq itself
has the same form as the generating function of the Hermite polynomials. Secondly, the moment
integrals over the approximated form of f eq can be written as a sum over a small number of
discrete points, the so-called abscissae, via the Gauss-Hermite quadrature rule. In this process,
the possible velocity sets {ci} and their corresponding weights wi are derived. The final form of
the discrete equilibrium distribution reads

f eqi (ρ,u) = wiρ

(
1 + ciαuα

c2
s

+ uαuβ(ciαciβ − c2
sδαβ)

2c4
s

)
, (5.1)

where cs = 1/
√

3 is the speed of sound. The same techniques can also be applied to the particle
distribution function f . By doing so, the macroscopic moments (fluid density ρ and momentum
ρu) are found as discretized moments:

ρ(r, t) =
∑
i

fi(r, t), ρ(r, t)u(r, t) =
∑
i

cifi(r, t). (5.2)

At this point of discretization, the conservation laws of the first three moments are still fulfilled
exactly. It is only because of the discretization with respect to time and space that the LBM is a
second order solver. In the algorithm, eq. (5.1) and (5.2) are only evaluated between discrete
time steps ∆t and at the grid positions separated by ∆x. With r being a grid point, the full
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5 Lattice Boltzmann method

discretized version of the Boltzmann equation (3.17) in the force-free case reads

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Ωi(r, t) (5.3)

and is called the lattice Boltzmann equation.

Here, the evolution of fi(r, t) is described by two terms, that correspond to the two main
parts of the basic LBM algorithm called streaming and collision: The term on the left hand side
expresses that populations fi(r, t) move with velocity ci to the neighboring point r + ci∆t at
the next time step t+ ∆t (streaming). At the same time, particles are redistributed due to their
local interaction (collision), which is modeled by the collision operator Ωi. From now on, the
populations right before streaming will be referred to as f∗i , so for normal streaming it always
holds fi(r + ci∆t, t+ ∆t) = f∗i (r, t).

Let’s first take a closer look at possible velocity sets. To describe them, the established notation
DdQq is used, where d denotes the number of spatial dimensions and q is the number of discrete
velocities. While a larger q provides higher resolution and is therefore more accurate in general,
memory consumption as well as the number of computational operations rise linear with q. In
3D simulations, D3Q19 is an often used standard as it represents a payoff between accuracy
and efficiency. But throughout this thesis, also other sets like D2Q9, D3Q7, D3Q13, D3Q15
and D3Q27 will be used in different contexts (HK, FVM, advection tests). The sets available
in FluidX3D are depicted in fig. 5.1. It should be noted, however, that D3Q13 is the minimal
velocity set in 3D to simulate the NSE (D2Q7 is minimal in 2D) [26, ch. A.4]. Note also, that all
sets have the rest velocity with zero magnitude at index i = 0 and that opposite velocity vectors
have consecutive indices, which has advantages in terms of the implementation. The population
with opposite velocity vector to fi will be referred to as f i. In tab. 5.1 the velocity components as
well as the weights wi (needed for several computations below) for D3Q19 are given as an example.
The values of the other sets as used in FluidX3D are documented in [11, ch. 3.2]. In tab. 5.1
the concept of velocity sets is extended by D2Q5. This set is not suitable for Navier-Stokes,
but used to define a possible neighborhood for the Hoshen-Kopelman algorithm in chapter 9.1.2.2.

Set Velocities ci Number Length |ci| Weight wi

D2Q5 (0, 0) 1 0 -
(±1, 0),(0,±1) 4 1 -

D3Q19 (0, 0, 0) 1 0 1/3
(±1, 0, 0),(0,±1, 0),(0, 0,±1) 6 1 1/18

(±1,±1, 0),(0,±1,±1),(±1, 0,±1) 12
√

2 1/36

Tab. 5.1: Properties of two selected velocity sets. D3Q19 is a popular set suitable for Navier-Stokes simulations.
D2Q5 defines a possible neighborhood for the Hoshen-Kopelman algorithm in chapter 9.1.2.2.

There exist many different possible collision operators. The software FluidX3D provides three
of them, all of which can be used for Navier-Stokes simulations. The simplest among them
is the BGK operator. It is obtained by exchanging f and f eq in eq. (3.19) by its discretized
versions fi and f eqi , respectively. Since τr is the only time constant present here, it is also called
single relaxation time (SRT) operator. The next operator in ascending accuracy is the two
relaxation time (TRT) operator. It relaxes symmetric and antisymmetric linear combinations
of fi with two independent time constants, τr,+ and τr,−, respectively. They are related by the
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5.1 Basic algorithm

Fig. 5.1: The velocity sets available in FluidX3D. Image taken from [11].

"magic parameter" ΛTRT [11]:

τr,+ = τr, τr,− =
( ΛTRT
τr/∆t− 1/2 + 1

2

)
∆t. (5.4)

The symmetric relaxation time τr,+ directly determines the fluid viscosity, while τr,− can be used
to tune the accuracy and stability of the LBM solver. Throughout this thesis, ΛTRT = 3/16
will be used whenever TRT is chosen. This causes the boundary wall implemented via the
bounce-back rule (cf. chapter 5.2) in planar poiseuille flow simulations to be exactly located
between horizontal walls and fluid nodes [26, ch. 10.7.2]. The last option is the multi relaxation
time (MRT) operator

Ωi = (M−1SM(f(r, t)− f eq(r, t)))i. (5.5)

Here, M is a q × q matrix that transforms from population space into moment space. The most
important moments after transformation correspond to density ρ, energy density e, energy density
squared ε, momentum density jα, heat flux qα and momentum flux pαβ , with α, β ∈ {x, y, z}. The
remaining moments are mostly non-physical higher-order polynomials depending on the choice
of the velocity set. S is a diagonal matrix of same size as M containing individual relaxation
times τr,i for each moment. The relaxation times of the conserved quantities ρ and jα are infinite,
while the relaxation times of e and pαβ are determined by the kinematic shear viscosity. For the
non-physical moments the corresponding relaxation rate ∆t/τr,i is normally set to 1 (instant
relaxation). The remaining relaxation times for ε and qα can be used for tuning, which in principle
allows for high accuracy. However, since tuning is not as easy as in the TRT case, throughout this
thesis they will be set to 1 as well. Concerning computational cost, a naive implementation of
MRT it is much more expensive than the former two collision operators. That is because it involves
several matrix products of q×q matrices, q again denoting the number of discrete velocities of the
used set. But if S andM are constants throughout the simulations,M−1SM can be precomputed,
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5 Lattice Boltzmann method

so only a single matrix-vector product remains. The software FluidX3D uses this optimization.
Here, the MRT operator is available for all velocity sets except D3Q7 and D3Q27. The explicit
expressions forM used in the software for each available velocity set are provided in [11, ch. 3.3.3].

The force-free case described above can be extended to the case including external forces. The
form of the force density F ext itself depends of the underlying physics and is not given by the
LBM. The interaction of F ext with the fluid in FluidX3D is implemented via the Guo forcing
scheme. For this scheme the volume force enters the algorithm at two points: Firstly, as an
additional term in the computation of the fluid velocity in eq. (5.2), which changes to

u(r, t) = 1
ρ

q−1∑
i=0
cifi(r, t) + 1

2ρF ext(r, t)∆t. (5.6)

Missing out this so-called half-force correction would lead back to a first-order rather than
second-order space-time accuracy [26, ch. 6.2]. Secondly, an additional source term Si enters the
LB equation (5.3), which now reads

fi(r + ci∆t, t+ ∆t) = fi(r, t) + (Ωi(r, t) + Si)∆t. (5.7)

The concrete form of Si depends on the choice of the collision operator Ωi. For SRT, TRT and
MRT its form as used in FluidX3D is documented in [11, ch. 3.5].

Finally, it should be mentioned, that all LB simulations are non-dimensional. When both SI
and non-dimensional quantities occur in the same context, SI quantities will be marked by a
subscript and have units, e.g. ρSI = 1000 kg m−3. After the conversion of a SI quantity into a
non-dimensional quantity, the non-dimensional value is often referred to as being given in lattice
units. In fluid mechanics, three independent conversion factors are needed in order to convert a
system from SI units into lattice units. Given that the quantities ρ, L and u denote a typical
density, length and velocity in the system, the ratios ρ/ρSI, L/LSI and u/uSI are sufficient to
convert all other quantities like time, viscosity, surface tension etc. During this chapter, the grid
spacing ∆x as well as the time spacing ∆t in lattice units was assumed to equal one. This is a
common choice and will always remain so throughout this thesis.

5.2 Boundaries
In this thesis, different boundary conditions are used in connection with LB. In the simplest
case, periodic boundary conditions are applied. Fluid leaving the simulation domain on one side
immediately re-enters it at the opposite side. E.g. in a domain with side length sx in x-direction
the grid point at coordinate (sx − 0.5, y, z) is reached from grid point (0.5, y, z) with the velocity
vector ci = (−1, 0, 0) in a single time step. Furthermore, there are velocity boundary conditions
in form of moving no-slip bounce-back boundaries. Here it holds

fi(rw + ci∆t, t+ ∆t) = f∗
i
(rw + ci∆t, t) + 6ρwi∆t2

∆x2 ci · uw, (5.8)

where rw is a boundary node with velocity uw and rw+ci∆t is a fluid node [27]. This corresponds
to a boundary wall moving with velocity uw. It is important that the actual position of the
boundary is approximately between the fluid nodes and the boundary nodes, not on the boundary
nodes themselves. More precisely, assuming the boundary position at the boundary node itself
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would introduce a first-order error, while assuming the wall location exactly between the two
nodes makes the method formally second-order accurate. Furthermore, a distinction is made
between half-way and full-way bounce-back methods, where in the case of FluidX3D the half-way
method is implemented [26, ch. 5.3.3.2]. The case of resting walls, i.e. non-moving no-slip
bounce-back boundary conditions, is obtained for uw = 0. For this case, the populations are
simply reflected at the boundary nodes in the streaming step.

Finally, there is the equilibrium boundary. A corresponding equilibrium node at position re
has a fixed density ρe and velocity ue. Instead of using eq. (5.7), the populations are set to their
equilibrium value, i.e. fi(re, t) ≡ f eqi (re, t). Thus, in the streaming step

fi(rw + ci∆t, t+ ∆t) = f eqi (ue, ρe) (5.9)

holds, where re + ci∆t is a fluid node. All incoming populations arriving at re during streaming
are simply discarded, which makes this method non-reflecting. Furthermore, according to [26]
it is necessary to use τr/∆t = 1, i.e. ν = 1/6, in order to still have a second order solver. For
all other cases, the method is first order [28], so moving bounce-back boundaries are preferable
to equilibrium boundaries if possible. Another difference is that for equilibrium boundaries the
given values for density and velocity apply to the nodes themselves, not to positions in between
nodes as it is the case for bounce-back boundaries.

In the previous implementation of FluidX3D (cf. [11, ch. 3.4]), uw, ue and ρe could only be
specified location-dependent. Their constant values were read from the fields u and ρ at the
corresponding grid positions, where the term field denotes a buffer storing a value for each lattice
node in the computational domain. For some setups in this work, however, additional time
dependence was necessary, so the boundary methods were extended to this end. This is done as
follows: Two additional fields u0 and ρ0 are introduced, in which location-dependent amplitudes
are stored before the simulation starts. Furthermore, functions fu(u0, ρ0, t) and fρ(u0, ρ0, t)
can be specified 4. Now, before each actual simulation step, simply set u = fu(u0, ρ0, t) and
ρ = fρ(u0, ρ0, t) at the nodes marked as boundary. This method is simple and robust, but
consumes a lot of memory.

4The functions must be specified in the form of valid OpenCL code, which is injected at the appropriate location
before compiling the GPU code.
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6 Volume of Fluid method

The LBM can be used for the simulation of free surface flows by combining it with a Volume-of-
Fluid (VoF) approach for interface tracking [11, 29, 30]. The fluid interface position is tracked
by a newly introduced field storing a fill level ϕ for every lattice node. Additionally, every lattice
node can assume one of the three states fluid, interface or gas, marked by the flags FF , FI and
FG, respectively. Depending on the state of the node, the fill level is obtained by

ϕ(r, t) =


1, if r is fluid,
min

(
max

(
0, m(r,t)

ρ(r,t)

)
, 1
)
, if r is interface,

0, if r is gas.
(6.1)

where m is an additional field storing the fluid mass. The fluid mass is a conserved quantity.
The LBM populations fi can directly be used to advect m:

m(r, t+ ∆t) = m(r, t) +
q−1∑
i=1

k(r, i, t) · [f∗
i
(r + ci∆t, t)− f∗i (r, t))]. (6.2)

The coefficient k(r, i, t) is always 1 if r is a fluid node. If r is an interface node, it holds

k(r, i, t) =


0, if r + ci is gas,
1
2 [ϕ(r + ci, t) + ϕ(r, t)], if r + ci is interface,
1, if r + ci is fluid,

(6.3)

which means there is no mass flux to gas cells.

Gas nodes are excluded from all calculations and do not have valid LBM populations. Therefore,
interface nodes cannot stream populations from gas nodes. Instead, the free surface boundary
conditions for an interface node at positions r and a gas node at position r + ci reads

f i(r, t+ ∆t) = f eqi (ρb,ub) + f eq
i

(ρb,ub)− f∗i (r, t). (6.4)

Eq. (6.4) ensures mass and momentum conservation for interface nodes and approximates a free
surface boundary condition with first order spatial accuracy [31]. The velocity ub at the interface
is approximated as the local fluid velocity u(r, t). The density ρb at the interface is defined as

ρb(r, t) = 1
c2
s

pb(r, t) = 1
c2
s

(p0 −∆p(r, t)) , (6.5)

where p0 ≡ 1
3ρ0 is the ambient pressure and ∆p = 2σκ is the Young-Laplace pressure consisting

of the surface tension parameter σ and the local mean curvature κ. The quality of the free
surface simulations strongly depends on the accuracy of the approximation of κ. It usually has
to be extracted from the fill levels ϕ, and a variety of approaches to do so exist [11, ch. 7][30].
In FluidX3D, the exact positions of the interface of an FI -node and all its FI -neighbors are
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6 Volume of Fluid method

Fig. 6.1: 2D illustration of the Volume-of-Fluid method. An interface (light blue nodes) with thickness of exactly
one lattice node divides the gas phase (white nodes) from the fluid phase (dark blue nodes). From the fill levels
ϕ ∈ [0, 1] (example values given at node centers) the position and mean curvature of the actual sharp interface
(black curved line) is reconstructed by PLIC and least-squares fitting of an paraboloid. Image taken from [11].

computed via piecewise linear interface construction (PLIC). Then the local curvature is obtained
by fitting a paraboloid curve to these positions using the least-squares method. Finally, the mean
curvature is calculated analytically from the fitting parameters.

After computing the mass flux and reconstructing missing populations of interface nodes
according to eq. (6.2) and (6.4), the flags FF , FI and FG marking the node states have to be
updated. However, the whole algorithm only works if the interface is ensured to be exactly
one lattice node thick, i.e. if every FG-node is separated from every FF -node by exactly one
FI -node. Updating the flags directly from the fill levels ϕ of the next iteration might violate
this condition. Instead, a flag handling procedure as described below is used. To avoid race
conditions, it has to make use of additional kernels and newly introduced flags. FIF marks a
planned change from FI → FF without already conducting the change. The definition of FIG
and FGI work analogously 5. The flag handling procedure originally developed in [11, ch. 6.3] is
described in detail here, as it will be extended to simulate bubbles in chapter 9.1.2.

Kernel 1: In the end of kernel stream_collide, for FI -nodes the flags FIG and FIF are set
according to

m(r, t)
{
> (1 + ε)ρ(r, t), set FIF ,
< (0− ε)ρ(r, t), set FIG,

(6.6)

where ε � 1 is a threshold to avoid flickering of flags between consecutive simulation steps.
Furthermore, FI -nodes with no neighboring FG-nodes are marked as FIF , while FI -nodes with
no neighboring FF -nodes are marked as FIG.

Kernel 2: The kernel surface_1 looks for FIF -nodes next to FIG-nodes. The conflict is resolved
by clearing the FIG-flags, so these interface nodes are not marked for a change to gas nodes any
more. Furthermore, FG-nodes next to FIF -nodes are marked as FGI .

Kernel 3: The kernel surface_2 computes the previously undefined populations fi for nodes
marked as FGI via fi := f eqi (ρavg,uavg), where ρavg and uavg are obtained by averaging over the
fluid and interface neighbors. Moreover, if a FIG-node has a neighboring FF -node or FIF -node,
the flags of these nodes are cleared and instead the FI -flag is set, turning these nodes into
interface. Moreover, the FIG-flag is applied, i.e., for FIG-nodes the FI and the FIG flags are
cleared, and they are converted to gas nodes by setting the FG-flag.
5The flag FGI does actually not exist in the implementation. To save memory capacities, it is represented by the
flag combination (FIG AND FG), which does not occur otherwise.
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Kernel 4: The kernel surface_3 applies the FIG-flag, i.e., for FIG-nodes the FI and the FIG
flags are cleared, and they are converted to gas nodes by setting the FG-flag. Analogously, the
FIF -flag is applied. By now, all node types for the next iteration have been set. The fluid mass
m is restricted to

m


= ρ, fluid node,
∈]− ε, ρ+ ε[, interface node,
= 0, gas node.

(6.7)

To ensure mass conservation, any mass added/removed during this restriction is stored as the
excess mass mex for every node in an newly introduced field. Then, the fill levels for the next
iteration are set according to eq. (6.1). At the very beginning of the kernel stream_collide,
the excess mass mex will be distributed to all neighboring FF -nodes and FI -nodes and added to
their fluid mass m. To be able to do this in parallel, the distribution is already prepared here by
dividing mex by the total number of fluid and interface neighbors6.

6A neighbor might not have already applied the flag changes due to parallelization. Still their future state can
already be read out from the flags FIG, FIF and FGI marking the state change.
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7 Immersed boundary method

In chapter 5.2 boundary methods are described, that work directly on the populations of the
LBM. As a consequence, boundaries can only be defined on a regular grid. Non-planar boundaries
can only be approximated by marking discrete lattice nodes, therefore the flow solution near such
boundaries contains numerical errors caused by the staircase effect. As an additional restriction,
the boundary position cannot change over time. In order to simulate curved, deformable, moving
objects, the immersed boundary method (IBM) is used instead.

7.1 The general method
In the IBM, two coordinate systems are used. The fluid properties are defined on an Eulerian
grid, which is regular and stationary (non-moving). In our case, the LBM provides this grid.
For the boundaries, a Lagrangian mesh is introduced, which in general is non-stationary and
unstructured. The following explanation will be restricted to the case of a 2D massless boundary
immersed in 3D space. The IBM boundary positions will be referred to as x(i)(t) and they will
be called particles, while for the LBM grid positions still the notation r applies. The interaction
between Eulerian grid and Lagrangian mesh is bi-directional [32]: The particle i at position
x(i)(t) is advected with fluid velocity

ẋ(i)(t) =
∑
r∈grid

u(r, t+ 1)φIBM(x(i) − r), (7.1)

where φIBM is an appropriate interpolation stencil. The forces F (i)(x(i)(t), t) acting on particle i
are spread to the ambient fluid according to Newton’s law "actio = reactio", which is done by

F IBM(r, t) =
∑

xi∈mesh
F (i)(t)φIBM(x(i) − r). (7.2)

Finally, F IBM(r, t) can be translated into a force density and included into the LBM via the
Guo forcing scheme described in chapter 5. Note that the particles only interact with each other
over the forces they exert on the fluid. Also note that there is no direct boundary condition
for the LB populations. They can cross the boundaries of the IBM without restriction, but
the macroscopic fluid behaves as if there was a boundary. As a consequence, a closed 2D IBM
boundary is filled with fluid as well.

The interpolation stencil φIBM is normally short-ranged with finite cut-off length. In the
implementation of FluidX3D, trilinear interpolation is used [11, ch. 3.8]. Thus, only a cube of
eight lattice nodes around x(i)(t) interacts with particle i as visualized in fig. 7.1. This reduces
the required memory read/write operations to a minimum.

As further described in chapter 8, for algorithms running in parallel it is aimed that during
a single kernel call each memory address is guaranteed to be written by a single thread only.
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7 Immersed boundary method

Fig. 7.1: 2D illustration of the IBM. The Eulerian grid (black) is fixed and regular, while the Lagrangian mesh
(red) is non-stationary and unstructured. During velocity interpolation, all lattice nodes within the red square
region around x(i) are used to determine the velocity of particle i. During force spreading, all particles within the
black square region contribute to the force acting on node at position r.

The force spreading according to eq. (7.2) is the only exception in FluidX3D: multiple particles
might add volume forces to a single lattice node at the same time. Possible race-conditions are
therefore bypassed with atomic_add operations [11, ch. 3.8]. Besides performance drawbacks,
these operations have the disadvantage that simulations become non-deterministic, since the
order of terms during addition is random. But in total there is still a large performance gain
(about a factor of 20) compared to outsourcing the IBM to the CPU.

7.2 IBM for deformable objects - the capsule model

7.2.1 Modeling of fluid-particle interaction

Up to now, the general two-way interaction between particles and fluid has been described. By
concretely modeling the particle forces F (i), a big variety of applications are possible. In a simple
case, the IBM particles have no coupling forces among each other. E.g. in microplastics research,
each microplastics particle can be modeled as a single IBM particle being exhibited to buoyancy
and a hard potential permitting them to cross the air-water interface [10]. If one introduces
coupling forces, rigid walls with non-trivial shapes (i.e. not made up of staircases) and rigid or
quasi-rigid objects can be modeled [33, ch. 4]. However, the IBM reveals its strength especially
in the context of deformable objects.

For deformable objects, the present deformation state causes elastic forces. The force on
particle i is found by looking at deformation energy ED and using the principle of virtual work

F (i)(x(i)) = − ∂ED
∂x(i) . (7.3)

In order to apply the algorithms as outlined below, in addition to the current positions of
the particles that together make up a capsule, the connections between the particles must also
be known. This is realized by the particles representing the vertices of triangles. The initial
states used in this work are shown in fig. 7.2, where the edges represent the connections between
particles. They all discretize a sphere using the Loop subdivision surface scheme [34]. Starting
from an icosahedron, all triangles are subdivided recursively, where the number of recursive steps
determines the number of resulting triangles.
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7.3 Volume tracking

(a) (b) (c) (d) (e)

Fig. 7.2: Generation of the capsule mesh visualized. Starting from an icosahedron (a), in (b) to (e) the triangles
are recursively split increasing resolution with each step. The number of triangles n∆ of the meshes (d) and (e)
equals 1280 and 5120, respectively.

7.2.2 Stretching via neo-Hookean or Skalak law

The deformation energy of capsules arises due to shear elasticity, area dilatation and bending
forces. The former two effects are often modeled by empirical laws. For capsules, the neo-Hookean
law is widely used (e.g. [35]), whose in-plane energy density due to stretching εS can be written
as

εS = κS
6

(
I1 + 1

I2 + 1 − 1
)
. (7.4)

The model parameter κS is the shear modulus for the in-plane tensions. I1 and I2 are the
strain invariants, which are obtained by the principle in-plane stretch ratios λ1 and λ2 via
I1 = λ2

1 + λ2
2 − 2 and I2 = λ2

1λ
2
2 − 1. In the context of RBCs, on the other hand, the Skalak law

is very prominent [36]:
εS = κS,1

4

(1
2I

2
1 + I1 − I2

)
+ κS,2

8 I2
2 . (7.5)

For I1 and I2 the same definitions as for the neo-Hookean law hold, the shear moduli κS,1 and
κS,2 are again model parameters. Independent of the chosen law, by surface integration

ES =
∮
S0
εS dS0 (7.6)

the total energy is obtained, where S0 denotes the surface of the reference state. For all simula-
tions in this thesis, the reference state is defined by the initial state. Finally, the actual force
F (i)
S (x(i)) on node i is found as an analytical expression by using eq. (7.3) together with the FE

method. Details are elaborated in [35, 37].

The bending energy, on the other hand, is calculated via the local mean curvature of the
membrane surface. This can be implemented approximating the Laplace-Beltrami operator as
described in the work of Gompper and Kroll [35, 38]. Since the bending forces won’t be included
in the modeling of the capsules (i.e. the bending modulus κB will be zero for all times), an
in-depth description will be skipped.

7.3 Volume tracking
As mentioned above, in the standard IB-LBM the fluid inside the deformable objects has the
same parameters (e.g. viscosity, density) as outside. This is not always desirable. E.g. in the
simulation of RBCs moving through blood vessels, the fluid inside the cell consists of a hemoglobin
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7 Immersed boundary method

solution, while outside it is surrounded by blood plasma. Also in the context of this thesis, in
chapter 10.10.3 a Newtonian capsule embedded in a viscoelastic fluid will be simulated, where
interior and exterior fluids differ. Fluid properties are very easy to change locally in LBM: the
parameter set used for the simulation can be switched for each node individually using a flag field.
Then, only two things are important: On the one hand, conservation laws might be violated at
the interface between the two parameter sets. This problem will be discussed in chapter 10.8.3.1
in the context of the conservation of polymer stress. Another difficulty is how to obtain the flag
field from the IBM data (particle positions and triangle information), which will be discussed here.

One approach would be to use the ray-casting method. In this method, for each lattice node a
ray in an arbitrary direction is generated, leading from the node itself to the edge of the simulation
domain. The number of membrane crossings is counted using the triangle mesh. This method is
very costly to do in every time step7 and furthermore not compatible with periodic boundary
conditions. Therefore it is only used during initialization and instead an implementation of the
algorithms described in [39] is used, which will be referred to as the InOut algorithm. Assuming
that the Lagrangian mesh does not move further than one lattice node during one time step, only
the lattice nodes next to the capsule surface might have changed their inside/outside status and
are the only ones to be considered. Their inside/outside status can be checked via the distance
vector d from the node mid point to the capsule surface and the normal vector n̂ of the closest
capsule vertex. This can simply be done via the scalar product, i.e.

d · n̂ =
{
< 0, inside,
≥ 0, outside.

(7.7)

This criterion is not sufficient in rare cases, where the angle between adjacent triangles is small.
Therefore an additional correction step is applied: Assuming the boundary between inside/outside
nodes to be locally smooth, strange flag geometries (e.g. a node marked as inside enclosed by
outside nodes) should not occur. As described in [39], such geometries can be detected by counting
the inside/outside flags of one nodes 26 neighbors. If the count exceeds a certain threshold, the
inside/outside flag has to be inverted. This strategy is successfully used in ESPResSo. Since this
strategy is not compatible with GPU parallelization due to possible race conditions, in FluidX3D
a different correction method is used. In the implementation of Moritz Lehmann, each lattice
node is assigned a cube-shaped volume with side length ∆x. A distance vector dj to the capsule
surface is calculated for all corner points j = 1, ..., 8 of the cube around the respective lattice
node. If one of the corner points is believed outside the boundary via eq. (7.7), the whole node
is marked as outside.

7For N lattice nodes and T triangles the algorithm scales with O(NT ).
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8 GPU parallelization

As seen in chapter 5, the LB algorithm is highly parallel. Regarding performance, this allows
for orders of magnitude gains when using massively parallel hardware, especially in the case
of graphics processing units (GPUs). Since these are mainly used in gaming industry, where
computational speed is more important than computational accuracy, they are especially opti-
mized for the use of float32 (hereafter: float). Fortunately, this accuracy is sufficient for most
applications of the LBM, which is why all computations occurring on the GPU in this thesis
could be performed with float accuracy. The only exception is the bioprinting simulation from
chapter 10.10.3, which was found to only be working when using float64 (hereafter: double).
The parallel code of FluidX3D was programmed in the OpenCL [40] language. This language
has the advantage over CUDA, for example, that it is designed vendor independently for Nvidia,
AMD, Intel and others.

The CPU side of FluidX3D is programmed in C++. Here, non-parallel computations can
take place; furthermore, OpenCL kernels are enqueued in the OpenCL queue. Within a ker-
nel execution, no dynamic memory can be allocated; all buffers must be fixed at the time
of enqueuement. For each kernel, an integer index space must be defined. It specifies how
many work-items are available for a kernel and further assigns a unique ID to each work-item.
For a typical LBM kernel, the index space is chosen to be as large as the total number of
lattice nodes, so that the calculations for each lattice point are performed by a separate work-
item. On the hardware side, each work-item is processed by a single GPU thread. The order
in which the entire index space is processed is random. On GPUs, the distinction between
global and private memory is particularly relevant. Reading/writing is associated with high
latency for global memory, but is the only way to store results between kernel calls. In fact,
the pure LBM algorithm without extensions is typically in the memory limit because of its
low arithmetic intensity, meaning it can only be accelerated by hardware with faster memory
bandwidth. After caching data from global memory, computations are done in private memory,
where memory latency is negligible. Every work-item can only read/write its own private memory.

In addition to avoiding unnecessary write/read operations to global memory, the following was
taken into account when implementing GPU code:

• Race conditions: if the same memory address is written by two work-items during a single
kernel execution, the last written value is kept, while all previous values are overwritten.
Since the order of the work-items is random, this leads to non-deterministic behavior. For
the same reason, a memory address must not be read and written simultaneously during a
kernel execution. Again, it is not clear whether the read takes place before or after the
write. To prevent this, double-buffers may be utilized, or read and write operations must
be implemented in two different kernels.

• Branching: if-else branches should be avoided where possible. Work-items are grouped
into work-groups (size: 32 work-items or more, typically 256) that cannot execute commands
independently. For example, if only one part of the work-group executes an if statement,
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8 GPU parallelization

the other part must wait and cannot already execute the else statement. This of course
directly affects performance.

• PCIe data transfer : data between CPU and GPU is transferred via the PCIe bus. The
transfer comes with comparably slow bandwidth and high latency. Data transfer in every
time step can significantly reduce overall performance. Where this cannot be avoided, special
buffers should be used. OpenCL offers the flag CL_MEM_USE_HOST_PTR which can speed up
the PCIe transfer multiple times. In this thesis, this optimization has been successfully
used in the context of simulating bubbles. In order to use CL_MEM_USE_HOST_PTR, however,
a corresponding CPU buffer must be permanently assigned to the GPU buffer.

• multi-GPU compatibility: FluidX3D has the ability to run a simulation on multiple GPUs
simultaneously [41]. This widens the memory limitations of a single GPU and also increases
performance. For an extension to be compatible with multi-GPU, it must consist of local
operations only, just like the pure LBM. In other words, a node may only change the values
of its 27 surrounding neighbors within a time step.

With these restrictions, an OpenCL kernel has a "natural" length. It should accommodate
as many computational operations as possible before having to write to global memory again.
However, a new kernel must be used at the latest for global synchronization between discrete
time steps and to avoid race conditions.

In tab. 8.1 one can find an overview of the extent to which the extensions used/implemented
in this work meet the above guidelines. For the simulation of capsules using the IBM with
volume-conservation switched on as well as for the simulation of bubbles, volume calculations
of the respective object have to be performed. Since these can only be done non-locally, PCIe
data transfer must take place in every time step and multi-GPU compatibility is no longer
given. Moreover, the IBM implementation uses atomic_add operations for force spreading. Since
the order of these parallel additions to the same memory location is random, for floating-point
variables this leads to non-determinism due to rounding. Accordingly, two simulations with
exactly the same initial and boundary conditions lead to different results at bit level. Other
optimizations that are successfully used in FluidX3D but are not directly relevant in this thesis
are documented in [11].

extension deterministic PCIe Data
Transfer

multi-GPU
compatible comment

pure LBM yes no yes -
Oldroyd-B /
FENE-P yes no yes -

IBM no yes no atomic_add operations,
volume computation

VoF yes no yes -
Bubble yes yes no volume computation

Tab. 8.1: Compatibility of several extensions of FluidX3D with the GPU programming guidelines mentioned in
the text.
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9 Bubbles

9.1 Implementation

The bubbles will be modeled based on the assumption that the dynamics of the gas phase can
be neglected, i.e., the problem is reduced to a single phase flow with a free boundary. The free
boundary is implemented via the VoF method outlined in chapter 6. The bubble dynamics are
introduced using the ideal gas law

pB(t)VB(t) = pB,0VB,0 = const, (9.1)

where pB and VB denote bubble pressure and volume, respectively. pB,0 ≡ p0 = ρ0c2
s is the

ambient pressure, VB,0 is the volume of the bubble at ambient pressure. The pressure pB enters
the VoF method, by changing eq. (6.5) to

ρb(r, t) = 1
c2
s

(pB(VB)−∆p(r, t)) . (9.2)

Two methods how to obtain pB(t) for each bubble 1 ≤ B ≤ NB were implemented and will be
discussed in the next two chapters.

9.1.1 Implementation idea 1: implicit pressure equilibration

For the implicit pressure equilibration method a new field ε is introduced. It is initialized with
ε(r) = (1− ϕ(r)) pB(r) and thus stores a value proportional to the kinetic energy of the ideal
gas contained in the respective lattice node. The field ε is ensured to be zero for fluid nodes FF
throughout the whole algorithm. The pressure pB(r, t) can be restored locally by

pB(r, t) =
∑q−1
i=0 ε(r + ci∆t, t)∑q−1

i=0 (1− ϕ(r + ci∆t, t))
, (9.3)

i.e., by taking the mean including the own node and all neighbor nodes. To reflect correct bubble
dynamics, the field ε must satisfy two conditions. First, ∑r∈B ε(r) = pB,0VB,0 must hold for a
bubble B, otherwise conservation of energy would be violated. Second, pB(r, t) must assume
approximately the same value for all r ∈ B, since there should be no pressure differences within
a bubble.

These conditions are implemented by the kernel equilibration, which is called after the
kernel surface_3 and before the kernel stream_collide of the next iteration. Here, for an
interface or gas node at position r it holds:

ε(r, t+ ∆t) = ε(r, t) +
∑

i∈Γ(r,t)
αi(r, t) ∆p̂i(r, t), (9.4)
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9 Bubbles

where Γ(r, t) denotes the set of neighbors of the node at position r that are labeled as gas or
interface at time t. Furthermore, the definition

∆p̂i(r) = ε(r + ci∆t)
ϕ̂(r + ci∆t)

− ε(r)
ϕ̂(r) (9.5)

applies. For the last equation, the definition ϕ̂ = 1−ϕ is introduced. The factor αi(r, t) controls
how much a possible pressure difference between two neighboring nodes is equilibrated. Since

∆p̂i(r) = −∆p̂ i(r + ci∆t) (9.6)

holds,
αi(r) = α i(r + ci∆t) (9.7)

must be demanded in order to guarantee conservation of energy. Suppose each node has only one
neighbor, where all quantities of the node at position r are denoted by subscript a, all quantities
of the neighbor at position r + ci∆t by subscript b. Moreover, let be αi(r) = α here. Quantities
marked with ∗ depend on time step t+ ∆t, all other quantities depend on time step t. Then the
pressure difference is equalized in one step if

ε∗a
ϕ̂a

= ε∗b
ϕ̂b

(9.8)

(9.4),(9.6),(9.7)⇐⇒ (α∆p̂a + εa)ϕ̂b = (−α∆p̂a + εb)ϕ̂a (9.9)

⇐⇒ α = εaϕ̂b − εbϕ̂a
∆p̂a(ϕ̂a + ϕ̂b)

= ϕ̂aϕ̂b
ϕ̂a + ϕ̂b

. (9.10)

But since q − 1 neighbors exist i.g., αi(r) is chosen to be

αi(r) = 1
q − 1

ϕ̂(r)ϕ̂(r + ci∆t)
ϕ̂(r) + ϕ̂(r + ci∆t)

. (9.11)

To improve the equilibration of the pressure, the kernel equilibration is called not only once,
but Neq times in a row within a simulation step. Nodes that change from interface to fluid in
kernel surface_3 will have their remaining ε distributed evenly between all neighboring interface
nodes during the first call only. The same is done with interface nodes for which ϕ̂� 1 applies.
These are then excluded from the kernel equilibration for the rest of the Neq − 1 calls. The
reason for this is that for nodes with ϕ̂� 1 equation (9.5) becomes too inaccurate.

With the method just described, bubbles inside a fluid rising to the atmosphere could be
simulated. However, Neq > 100 had to be chosen, which has a significant performance impact.
The exact choice of Neq strongly depends on how fast the interface moves during the simulation.
If Neq is chosen too small, an artificial slowdown of the interface is observable. In principle, the
merging and splitting of bubbles can also be simulated. In this case the bubbles do not have to be
tracked explicitly, a possible pressure difference due to the merging of two bubbles is compensated
implicitly via the kernel equilibration. However, Neq would have to be chosen many times
larger, since at the moment of merging a large pressure gradient has to be compensated over a
large number of lattice nodes. If one wanted to adjust Neq dynamically in such situations, one
would have to track the bubbles explicitly and the advantage of the implicitness of this method
would be lost. For these reasons, the algorithm is discarded.
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9.1 Implementation

9.1.2 Implementation idea 2: bubble tracking
In the bubble tracking method, each bubble is assigned its own ID (implemented by consecutive
positive integer values). A newly introduced field I stores these IDs and by this assigns each
lattice node to its bubble. Since fluid nodes have no bubble membership, they are marked with
the ID −1. The pressure within a bubble can thus be easily calculated by means of

pB(t) = VB,0
VB(t) pB,0, (9.12)

where the current volume is computed by

VB(t) =
∑
r∈B

(1− ϕ(r, t)). (9.13)

The volume update is therefore performed in each time step via the fill levels ϕ. Since eq. (9.13)
cannot be fully parallelized, the calculation is done on the CPU. So in each time step memory
transfer of the fields ϕ and I is necessary.

9.1.2.1 Algorithm overview

An overview of the program flow is given in fig. 9.1. First, the ID field I is initialized using the
Hoshen-Kopelman algorithm. For each bubble, the reference volume VB,0 is set. The reference
pressure is independent of the particular bubble pB, 0 ≡ p0 = 1/3ρ0. For most applications,
VB,0 is chosen such that pB(t = 0) equals the sum of the mean surrounding fluid pressure and
the Laplace pressure caused by surface tension. Then the call to stream_collide is made,
the only change from the normal VoF method being that eq. (9.2) instead of eq. (6.5) is used
as the pressure at the interface. The current pB(t) can be read locally using the bubble ID.
An unchanged call to surface_1 is made. Remember from chapter 6 that in surface_2 the
neighbors of FIG nodes are considered. If these are FF nodes, they are converted to FI nodes.
Since they are now no longer fluid nodes, they need a valid ID and are therefore initialized with
the ID of the neighboring FIG node. Thus, it is exploited that neighboring nodes are part of
the same bubble. After the execution of kernel surface_2 the new node types (fluid, gas or
interface) are already fixed, but the information which node type is converted to which is still
available. This is exploited in the kernel bubble_1 to check whether a merge or split of bubbles
has occurred due to the node changes. If a FIF node causes a split, its ID is marked with −3. If
two adjacent interface nodes with different IDs are found, a merge must have occurred and their
IDs are marked with −2. Then kernel surface_3 is called. The only change to the normal VoF
method from chapter 6 is here that at a conversion FIF → FF , the ID of the respective node is
set to −1 (normal fluid node) if it has not already been marked as −3 (fluid node causing a split)
during kernel bubble_1. The updated fields ϕ, I and the flag field must be transferred to the
CPU. It is also reported to the CPU if a split/merge was triggered. The rest of the algorithm is
done on the CPU and is divided into three parts. If a merge was triggered, it is executed. Then
the recalculation of the volume VB(t) and the pressure pB(t) takes place. If a split was triggered,
it is also executed. In every time step, the newly calculated pressure is transferred to the GPU.
If a merge or split was present, additionally the updated field I has to be transferred and the
triggers have to be reset.

9.1.2.2 Bubble labeling: Hoshen-Kopelman

Now it must be clarified by which algorithm the bubble is labeled with IDs. Labeling is not
only relevant during initialization, but also when the bubble IDs have to be reassigned due to
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9 Bubbles

Initialization:  

LBM step: apply  rhouf 
(st r eam_col l i de)

flag handling, new IDs for 
nodes blablabal...

 (sur f ace_1,  sur f ace_2)  

split / merge trigger 
(bubbl e_1)

merge bubbles, update dddddd 
(bubbl e_2, CPU)

flag handling, reset IDs of 
nodes ddddddddd 

(sur f ace_3)

compute dddddbbbdd 
(bubbl e_2 ,CPU)

transfer to CPU: 
triggers, flags, dddddd

split bubbles, 
update  ddbbbbbbbbbbbddddd 

(bubbl e_2 ,CPU)

transfer to GPU:
bbbbbb , (triggers,    ) 

Fig. 9.1: Program flow of FluidX3D when using the bubble extension. The events marked with dashed frames are
not executed in every time step, but have to be triggered.
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bubble merges and splits. Therefore labeling should be done as performant as possible. [42] also
model bubbles with the LBM and the VoF method. For the ID labeling they use the flood fill
algorithm [43]. When the flood fill algorithm was implemented during this thesis, it proved to be
poorly performing due to its recursive structure. Instead, the Hoshen-Kopelman (HK) algorithm
is used, which was originally described in [44]. It is a special case of the class of Union-Find
algorithms, which is a method for maintaining a collection of disjoint sets. An element x defines
its membership to a set by its set leader, which is determined by the find(x) operation. Two sets
A, B can be united by a union(A,B) operation, where the elements of both sets are assigned
to a new common leader. Working on trees and using union by rank with path compression, a
union operation needs O(1). The amortized time of the find operation, on the other hand, is
O(α(n)), where n denotes the total number of elements and α(n) denotes the inverse Ackermann
function8. α(n) is a limiting case of the iterated logarithm, grows extremely slowly, and can be
assumed constant for all conceivable input quantities, since α−1(5) is already larger than the
number of atoms in the universe [45].

The implementation of the Hoshen-Kopelman algorithm is based on [46]. It uses a naive union
in combination with path compression, so no extra rank field is needed. First, the ID field I is
initialized using the flag field, where

I(r) =
{
−2, r is FI or FG node,
−1, r is FF node.

(9.14)

The rest of the algorithm can be well described in pseudocode for the case D2Q5. The algorithm
1 consists of a raster scan of the LB lattice of size sx × sy. Each time an interface or gas node
(marked by ID −2) is encountered, a check is done including all neighbors who have already
been scanned. A union is done between all those neighbors, excluding fluid nodes (marked by ID
−1). Finally, the leader of the set obtained after union is assigned to the current node. If, on the
other hand, the current node has no valid neighbors, it is assigned the next free ID. Algorithm 1
only yields intermediate IDs. Afterwards, the lattice must be iterated over one more time to
assign each node its final ID (marked by the leader of the intermediate ID, who can be read out
of T ). While doing so, the IDs are reassigned such that they contiguously range from 0 to the
number of IDs needed.

The find operation works with a tree T represented by an array of size NT and initialized with
T [n] = n for all 0 ≤ n ≤ NT − 1. NT must be at least as great as the number of intermediate IDs
Ninter that occur during the Hoshen-Kopelman algorithm. Ninter is typically much larger than
the number of final IDs Nfinal. The find operation with built-in path compression is described
in algorithm 2. A union operation between two elements x and y can then be simply realized by
I[find(x)] = find(y).

In order to apply the algorithm just shown for bubbles, two things still have to be done. First,
the algorithm must be extended to other DdQq neighborhoods. In this thesis, this was done for
the sets D2Q5, D2Q9, D3Q7, D3Q13, D3Q15, D3Q19, and D3Q27, where (q − 1)/2 neighbors
must always be examined when searching for neighbor IDs, and more than two neighbors at
once must be united for a union operation in general. Furthermore, the HK algorithm must be
extended to periodic boundary conditions. To this end, after the for-loop over x in algorithm
1 (i.e., after line 24) one more time the node with x = 0 performs a union operation between
8More precisely, α(n) ≡ A(n, n)−1 holds, where A(m,n) is the two-argument Ackermann-Péter function.
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Algorithm 1 Hoshen-Kopelman for D2Q5
Input: initialized ID field I and tree T
Output: I containing intermediate IDs and T leading to final IDs
1: next_ID ← 0;
2: for y ← 0 to sy − 1 do
3: for x← 0 to sx − 1 do
4: if I[x, y] = −2 then
5: left ← −1; below ← −1;
6: if x 6= 0 then // x = 0 has no left neighbor
7: left ← I[x− 1, y];
8: end if
9: if y 6= 0 then // y = 0 has no below neighbor

10: below ← I[x, y − 1];
11: end if
12: if (left = −1) and (below = −1) then // left and below are fluid
13: I[x, y]← next_ID;
14: next_ID ← next_ID + 1
15: else if (left 6= −1) and (below = −1) then // only left has valid ID
16: I[x, y]← find(left, T );
17: else if (left = −1) and (below 6= −1) then // only below has valid ID
18: I[x, y]← find(below, T );
19: else // both neighbors have valid ID
20: union(left, below, T ); // link cluster of left and below
21: I[x, y]← find(left, T );
22: end if
23: end if
24: end for
25: end for

Algorithm 2 find
Input: ID x and tree T
Output: y (leader of x) and the compressed tree T
1: y ← x;
2: while T [y] 6= y do
3: y ← T [y];
4: end while
5: while T (x) 6= x do
6: z ← T [y];
7: T [x]← y;
8: x← z;
9: end while
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itself and its (q − 1)/2 relevant neighbors. At the end of the for-loop over y and z (in case of
3D) the procedure is analogous. An example for the entire algorithm using D2Q5 is shown in
fig. 9.2. The HK algorithm implemented during this thesis, as described so far, was already suc-
cessfully brought to application in [10] for the tasks of counting and measuring simulated droplets.

(a) (b) (c)

Fig. 9.2: Illustration of the HK algorithm used with a D2Q5 neighborhood and periodic boundary conditions. In
(a) the ID field I is shown after initialization via eq. (9.14). In (b) a step of the algorithm is illustrated. Before
processing the node framed in red, T has the entries [0|1|2|1|2|5|6|7|...|NT − 1]. After processing, the ID 1 is
assigned to the node and the entries of T change to [0|1|1|1|1|5|6|7|...|NT − 1]. In (c) the final field I is shown
after reassigning the bubble IDs in order to have a contiguous ID range from 0 to Nfinal.

9.1.2.3 Split/merge detection

With the help of the HK algorithm, a naive implementation of merging and splitting of bubbles
can already be worked out. In each time step, the HK algorithm is executed on the entire field
I. Then, based on the coordinates of all FG and FI nodes, a mapping between old and new
IDs is established. If one old ID is mapped to two new ones, the associated bubble must have
split in the current step. If, on the other hand, two old IDs are mapped to one new ID, two
bubbles must have merged. The same principle can be applied to a simultaneous merge/split
of more than two bubbles. Finally, the reference volumes VB,0 must be adjusted. Let β be a
set of bubbles to merge. Then the reference volume of the new bubble Bnew is calculated from
VBnew,0 = ∑

Bold∈β VBold,0. Given a split of one bubble Bold into multiple bubbles Bnew ∈ β, on
the other hand, VBnew,0 = VBoldpBold/p0 is set. In many time steps, neither a split nor a merge is
present. Nevertheless, the naive implementation must run the HK algorithm on the entire field
I. This motivates the implementation of triggers, which already determine locally on the GPU
whether a merge/split can be present at all and thus prevent an unnecessary execution of the
HK algorithm.

9.1.2.4 Optimization: split/merge on GPU

The idea of the merge trigger is very simple. During the kernel bubble_1 all future FI and
FG nodes test if a neighboring FI or FG node with a different ID than their own exists. If
this is the case, a merge of bubbles must have occurred. The merge trigger is activated and
the corresponding nodes are marked with −2. By means of these markings the ID mapping
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9 Bubbles

between old and new iteration can take place on the CPU without having to use the HK algorithm.

The split trigger is much more difficult to implement. [42] look for a grid configuration where
in the neighborhood of a fluid node two interface sections of the same bubble have anti-parallel
surface normals. This criterion assumes that the surface normals are present in memory, which is
not yet the case in the VoF module of FluidX3D. Furthermore, it is not quite clear up to which
angle the surface normals should be considered anti-parallel: on the one hand, one wants to
minimize the number of false positives, i.e., the falsely triggered splits. These cause unnecessary
CPU work. On the other hand, there must be no false negatives, since these are equivalent to an
error in the algorithm and can no longer be corrected in later time steps. All in all, it is difficult
to show from which minimal angle this method does not yield false negatives for all conceivable
grid configurations. Therefore, another method was developed in this thesis. For this method,
all nodes which have the flag FIF are considered. Only this node type can cause a split. In a
cubic region (square in 2D) around this node the HK algorithm is executed locally several times.
The size of the region can be chosen depending on the application. A cube with side length 3∆x
is still compatible with the present multi-GPU implementation, a cube with side length 5∆x
reduces the number of false positives somewhat more at the expense of the runtime of the trigger
itself. The boundaries of the local cube are not treated periodically, since it represents only a
small part of the entire simulation domain.

Two criteria are tested on this cubic region. The first criterion determines via the local HK the
number of bubbles nF and nI that are counted, if the central FIF node is replaced by an FF or
FI node, respectively. All nodes except the central node are interpreted as their future type (e.g.
a FIG node is interpreted as FG node). If nF > nI holds, the conversion FIF → FF happening in
surface_3 will locally lead to a split9, so the trigger is activated and the central FIF node’s ID
is marked with −3. In grid constellations with several FIF nodes next to each other, a split can
occur which is not covered by the first criterion. The second criterion therefore checks whether the
central node has at least one neighboring FIF node. If yes, first the HK algorithm assigns separate
IDs to all disjoint clusters of FIF nodes within the test region. Second, it is checked within the
cluster containing the central node, if FIF nodes exist that are not neighbor to any native bubble
(a bubble to which the central FIF node is neighbor to) 10. If any such node is neighbor to a
foreign bubble (a bubble to which the central FIF node is not neighbor to) or is adjacent to
the border of the test region, the split trigger is activated and the central node is marked with
−3. Example configurations for both criteria in a D2Q9 neighborhood are shown in fig. 9.3 and 9.4.

If a split is triggered, the HK algorithm must be executed on the CPU. However, it is sufficient
to reassign IDs only to the bubbles that are adjacent to a node marked with −3 and are thus
involved in a potential split. Since a possible bubble merge is already done (cf. fig. 9.1), the ID
−2 is free again to initialize the nodes of these bubbles for the HK algorithm with −2.

In chapter 9.2.1 it will be validated, that the presented split and merge triggers don’t lead to
false negatives. Furthermore, the fraction of false positives trigger events will be evaluated.

9But at another location the bubble could still be connected, which would lead to a false positive.
10Again, when determining bubble membership all nodes are interpreted as their future type.
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9.1 Implementation

(a) (b) (c)

Fig. 9.3: First split trigger criterion for a D2Q9 neighborhood and a test region of 3× 3 grid nodes. (a) Flag field
after kernel surface_2. (b) and (c) are the results of the HK algorithm with the central FIF node being exchanged
by FI and FF , respectively. With this constellation, the split trigger criterion is fulfilled, since 2 = nF > nI = 1.
This case is a false positive, because the two bubbles of (c) are actually connected, which can already be seen
when looking at the 5× 5 region.

(a) (b) (c)

Fig. 9.4: Second split trigger criterion for a D2Q9 neighborhood and a test region of 3× 3 grid nodes. (a) Flag field
after kernel surface_2. (b) The HK algorithm marks cluster of FIF nodes. The non-center FIF node (marked in
red) and the central node are within the same cluster. (c) The HK algorithm marks bubbles. The node marked
in red is adjacent to the border of the test region and is not neighbor to a native bubble. Thus, the split trigger
criterion is fulfilled. Doing the same in a 5 × 5 region would also trigger the split, this time because the node
marked in red is neighbor to a foreign bubble.
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9.1.2.5 Further optimizations

The PCIe transfer of a GPU buffer can be optimized by assigning the CL_MEM_USE_HOST_PTR
OpenCL flag to it and allocating a fixed corresponding CPU buffer. This is done for the
buffers ϕ, I, flags, pB and triggers, since a transfer of these buffers happens in every time step.
Furthermore, all heavy computations on the CPU11 except the HK algorithm are parallelized via
the OpenMP API, carefully ensuring that the parallelization doesn’t break determinism. With
these two optimizations and when using 16 CPU cores for OpenMP, the performance of the
trigger validation setup of chapter 9.2.1 measured in mega lattice updates per second (MLUPs)
was investigated. The performance with bubble extension enabled is about half the performance
with VoF extension only. This is remarkable, since using the VoF extension only does not involve
any PCIe transfer or CPU computation. To further increase the performance or to prepare a
multi-GPU implementation of the bubble extension, it would be possible to also parallelize the
HK algorithm itself by dividing the computational domain into several sub-domains [47], which
is left as an open task.

9.2 Validation

9.2.1 Triggers

The trigger validation setup consists of several cylinder shaped bubbles pointing in different
directions and an open atmosphere above the fluid phase. See fig. 9.5a for a visualization. The
atmosphere in this and every future simulation is treated separately from the other bubbles: its
pressure in lattice units has a constant value of p0 = ρ0c2

s independent of eventual volume changes.
Not doing so results in a strange wiggling of the atmosphere-fluid interface. As an external
homogeneous volume force pointing in downward z-direction, i.e. gravity Fgêz, is switched on.
The density in lattice units is initialized according to the hydrostatic pressure

ρ(z) = ρ0 + 1
c2
s

(z −H/2)Fg, (9.15)

where H is the total height of the liquid column. It holds ρ(H/2) = ρ0 = 1. This initialization is
necessary, since the LBM is weakly compressible. If the hydrostatic pressure is not regarded,
pressure/density waves occur at the beginning of the simulation and disturbance of the bubbles
is clearly visible.

After the simulation start, the bubbles rise towards the atmospheric surface and perform
many merges as well as splits on their way. Looking at the number of split trigger events in
tab. 9.1, one observes that using a test region of 5 × 5 × 5 lattice nodes reduces the amount
of false positive split trigger events by a third compared to a region of 3× 3× 3 lattice nodes.
But also the latter region size has a reasonable fraction of false positive to total split trigger
events. To test, whether false negatives occur, one can proceed as follows: At every time
step, an independent HK algorithm is run on the whole simulation domain, using the flag
field to initialize a second ID field separate from I. The number of counted bubbles has to
match with the number determined by the algorithm from chapter 9.1.2.4 at all times. This
was successfully tested for a region of 3×3×3 and 5×5×5 lattice nodes, running 20000 time steps.

11E.g. computation of bubble volume, reassignment of IDs.
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(a) t = 0∆t (b) t = 3000∆t (c) t = 10000∆t

Fig. 9.5: Trigger validation setup for different time steps. One half of the simulation domain shows the IDs of
interface nodes color coded, the other half shows the position of the actual surface. Due to the limited color space,
separate bubbles might have very similar color, their IDs are different though.

t/∆t number of bubbles region size total split triggers false positive split triggers

3000 21 3× 3× 3 102 65
5× 5× 5 95 58

10000 22 3× 3× 3 641 478
5× 5× 5 551 388

20000 17 3× 3× 3 4104 3088
5× 5× 5 3116 2100

Tab. 9.1: Number of total and false positive split trigger events occurring during the trigger validation setup.
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9 Bubbles

9.2.2 Rayleigh-Plesset
After the triggers have been evaluated, the next step is to validate the dynamics of the bubble
interface. Here eq. (9.2) plays a central role. In the simplified form with constant pB ≡ 1/3ρ0,
i.e. in the form of eq. (6.5), it has already been validated in [11]. For this purpose, the Plateau-
Rayleigh Instability was used; furthermore, a simulated droplet impact was successfully made to
match experimental data. To validate the bubble extension on top of this, the Rayleigh-Plesset
equation [48] is used, which is an ordinary differential equation governing the dynamics of a
spherical bubble in an infinitely extending incompressible fluid and reads

R
d2R

dt2 + 3
2

(dR
dt

)2
+ 4ν
R

dR
dt + 2σ

ρR
+ ∆P (t)

ρ
= 0. (9.16)

Here, R is the radius of the bubble and ρ, σ and ν denote density, surface tension and kinematic
viscosity of the surrounding fluid, respectively. Furthermore ∆P (t) = p∞(t)− pB(t), where pB(t)
is the pressure within the bubble and p∞(t) is the external pressure infinitely far from the bubble.

This differential equation is solved via an implicit Runge-Kutta method of the Radau IIA
family of order 5 using SciPy [49, Sec. IV.8.]. Consistent to the LBM implementation, the bubble
pressure pB occurring in eq. (9.16) is computed via the ideal gas law. Besides viscosity ν and
surface tension σ, fluid density ρ is also handled as a constant, which is only approximately the
case for LBM due to weak compressibility.

For the LBM simulation, a cubic domain with side length L = 256∆x is used. Nodes that
lie outside a sphere with radius RS = 127∆x and center at mS = (L/2, L/2, L/2)T are used as
equilibrium nodes. Inside the sphere there is fluid, only in the center of the domain there is a
bubble of radius R(t = 0) = L/24. Since pressure and density are related in LBM, a density of
ρe(t) = p∞(t)/c2

s is applied to the equilibrium boundaries.

First, cavitating bubble growth is simulated by setting p∞(t) = p∞,0 exp (−αt). Here, the decay
rate in lattice units is chosen as α = 0.0002. In preparation for chapter 9.2.5, the parameters given
in tab. 9.2 are tested. The conversion to lattice units is given by the ratios ρSI/ρ, RSI/R(t = 0)
and uSI/u, where ρ = 1 holds and all other parameters are included in tab. 9.2. In all cases,
15000 simulation steps are performed. Throughout the parameter space, the simulation remains
stable thanks to the thoroughly chosen tuning factor uSI/u. The agreement between theory and
simulation is very good, examples are given in fig. 9.6. A comparable simulation can be found
in [50, fig. 8], who study bubble dynamics using a 2D two-phase LBM solver. At time t2 with
R(t2)/R(0) = 2, their simulation result is already more than 25% above the Rayleigh-Plesset
solution. The authors explain this deviation by the fact that eq. (9.16) is only valid for an
infinite domain. But the real reason is probably that in their setup they apply the equilibrium
boundaries to the surface of a cubic simulation domain, instead of using spherical geometry.
Applying them with spherical geometry in the present thesis results in the very high accuracy
shown in fig. 9.6. In the same figure it is also noticeable that the simulation results are shifted
a little bit backwards in time compared to the theoretical Rayleigh-Plesset solution. This is
due to the fact that for LBM the pressure p∞ does not propagate instantaneously. Instead, the
equilibrium boundaries slowly adjust the density and thus the pressure in the entire domain.
Therefore, for the simulation data shown in the graph, p∞ is computed as the mean pressure at
the bubble interface (not at the equilibrium boundaries).
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number RSI [m] uSI/u [m/s] ηSI [Pa s] σSI [N/m] ρSI [kg/m3]
1 5.0× 10−3 64 8.36× 10−4 7.2× 10−2 1000
2 2.5× 10−3 32 8.36× 10−4 7.2× 10−2 1000
3 1.5× 10−3 32 8.36× 10−4 7.2× 10−2 1000
4 1.0× 10−2 8 1.0× 10−3 1.0× 10−3 100
5

√
10× 10−3 8 1.0× 10−3 1.0× 10−3 100

6
√

10× 10−3 8
√

10× 10−3 1.0× 10−3 100
7 1.0× 10−2 2.5 1.0× 10−2 1.0× 10−3 100
8 1.0× 10−3 2.5 1.0× 10−2 1.0× 10−3 100
9 1.0× 10−2 2.5

√
10× 10−2 1.0× 10−3 100

10 1.0× 10−2 2.5 1.0× 10−1 1.0× 10−3 100
11 6.3× 10−5 6 8.36× 10−4 7.2× 10−2 1000

Tab. 9.2: SI-values and the conversion factor uSI/u used for the cavitating bubble growth simulation and later in
chapter 9.2.5.
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Fig. 9.6: Rayleigh-Plesset validation for exponential decay of p∞. Solid lines show the solution of the Rayleigh-
Plesset equation itself, dashed lines are simulation results. All results are shown in lattice units. The parameters
used are listed in tab. 9.2.
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To have a measure of the accuracy of the simulation, the pressure at infinity is now changed
to p∞ = 1−A sin (ωt), where in lattice units ω = 4× 10−4 is chosen. In fig. 9.7, the results of
theory and simulation differ noticeably only from A = 0.1, where noise appears in the pressure
near the bubble interface. Overall, sub-lattice accuracy is achieved.
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Fig. 9.7: Rayleigh-Plesset validation for oscillating p∞. All results are shown in lattice units. Parameter set 4 from
tab. 9.2 is used. The interface moves with accuracy far below lattice resolution.

9.2.3 Cubic initialization

In the previous chapter, the interface was considered in pure spherical geometry. Now, the bubble
is initialized in cubic shape instead, and periodic boundary conditions apply in the simulation
domain. Since there are no external forces, the shape of the bubble should change to a sphere in
order to minimize its surface energy. This is now done for all parameter sets from tab. 9.2, where
the missing conversions ρSI/ρ and RSI/R are given by ρ = 1 and R(t =∞) = 10∆x. Overall, a
cubic simulation domain with side length L = 256∆x is used.

For parameter set 11 from tab. 9.2, the bubble oscillates several times between the shapes of a
cube and an octahedron due to the high surface tension, but transitions to a resting sphere for
long times (cf. fig. 9.8). For other parameter sets the dynamics are different, e.g. the transition
from cube to sphere for parameter set 9 happens creeping due to the high viscosity. For all
parameter sets, however, the bubble shape converges to a sphere.

9.2.4 Rising bubble: shape

The shape of a bubble in a liquid pool rising due to gravity is mainly determined by two
dimensionless numbers. The Bond Number Bo describes the ratio of gravitational to capillary
forces. The Morton Number Mo relates the viscous force to the force due to surface tension.
They are defined as

Bo = ∆ρgR2
e

σ
, Mo = gη4∆ρ

ρ2σ3 , (9.17)
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(a) t = 0 s (b) t = 1.76× 10−5 s (c) t = 4.10× 10−5 s (d) t = 7.03× 10−5 s

(e) t = 1.05× 10−4 s (f) t = 1.35× 10−4 s (g) t = 2.11× 10−4 s (h) t = 5.80× 10−4 s

Fig. 9.8: Bubble dynamics after cubic initialization. The parameter set 11 from tab. 9.2 is used. The bubble
shape oscillates between cube and octahedron, the first two oscillations are shown in (a)-(g). Finally, the bubble
converges to a sphere (h).

where Re denotes the radius of the equivalent sphere of a bubble of arbitrary shape and g is
the gravitational acceleration. Furthermore, ∆ρ is the density difference between fluid and gas
phase, where in this context ∆ρ = ρ holds. [51] have summarized the experimentally occurring
bubble shapes by means of these two dimensionless numbers in a shape regime map, which is
depicted in fig. 9.9. With their LBM extended by a Cahn-Hilliard diffuse interface approach, [52]
were able to successfully reproduce correct shapes for some combinations of Bo ∈ [1, 1000] and
Mo ∈ [10−5, 104].

In this thesis, the shape regime map is investigated for the parameters listed in table 9.3.
For the setup a domain of size Lx × Ly × Lz = L × L × 1.6L with L = 256∆x is used. The
gravitational acceleration acts in negative z-direction. Above height Ha = 0.8Lz the atmosphere
begins, below which the fluid at rest is initialized with hydrostatic pressure. An initially quiescent
and spherical bubble with radius R = L/6 and center at (Lx/2, Ly/2, R+ 5∆x)T rises for t > 0
under the action of gravity, often assuming a stable shape, which is depicted in fig. 9.10.

The parameter sets 1, 2 and 3 represent small air bubbles dissolved in a fluid with water-like
parameters. The boundary between wobbling and spherical shape is very well visible. Bubbles
with R < 10−3 m "get stuck", i.e. do not rise during the simulation, and are therefore classified
as faulty. This is also true for parameter set 11. The shape of parameter set 4 arises because the
interface of the bubble bottom pushes the slower interface of the bubble top ahead of it, which is
considered unphysical. The shape shown does not remain stable until the end of the simulation,
but breaks up into several small bubbles. Similar phenomena were observed also for smaller Mo,
so the whole spherical cap regime could not be reproduced. Parameter set 5 forms an annular
bubble whose circumference grows until it finally decays into several bubbles. Parameter sets 7
to 10, on the other hand, are shape stable and agree well with the shape regime map. If the
radius of parameter set 8 is reduced and thus Bo, the phenomenon of "stuck drops" appears
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Fig. 9.9: Shape regime map, taken from [52, fig. 1]. The numbers in gray refer to the numbers from tab. 9.3.

number Mo Bo gSI [m/s2]
1 1.31× 10−11 3.47 10
2 1.31× 10−11 0.868 10
3 1.31× 10−11 0.313 10
4 10−4 100 10
5 10−4 10 10
6 10−2 10 10
7 1 100 10
8 1 1 10
9 200 200 20
10 104 100 10

Tab. 9.3: Parameters used for validation via shape of rising bubble. Additionally, all parameters from tab. 9.2 are
used.
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(a) Number 1, 3D (b) Number 1, 2D (c) Number 2, 3D (d) Number 2, 2D

(e) Number 3, 3D (f) Number 3, 2D (g) Number 4, 3D (h) Number 4, 2D

(i) Number 5, 3D (j) Number 5, 2D (k) Number 6, 3D (l) Number 6, 2D

(m) Number 7, 3D (n) Number 7, 2D (o) Number 8, 3D (p) Number 8, 2D

(q) Number 9, 3D (r) Number 9, 2D (s) Number 10, 3D (t) Number 10, 2D

Fig. 9.10: Shapes of rising bubble for the parameters from tab. 9.3. Alternating, the 3D interface and the 2D
intersection at x = Lx/2 is shown. The shapes match quite good with the shape regime map fig. 9.9.
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again. To be able to simulate the parameter sets 3 and 8, the conversion factor uSI/u has to be
adjusted very carefully: if it is chosen too small, the whole simulation becomes unstable due to
the high surface tension, but if it is too large, the bubble does not rise.

The phenomenon of stuck drops in simulations with Bo . 1 was further investigated. These
occur in a region where capillary forces dominate gravitational force. For testing, the bubble
extension was turned off and the initial conditions were changed to simulate an initially resting
droplet falling into a liquid pool under the action of gravity. This droplet also "gets stuck", i.e.
does not fall, for the same parameter sets as for the rising bubble simulations. In principle,
however, this parameter range should be accessible with the methods used here: For the VoF
method, no limitation to this parameter range is known in the literature. [53] combine the
LBM with the VoF method and simulate bubbles using the ideal gas law. In [53, fig. 7.4], they
simulate a bubble with R = 0.6 mm and do not mention any principal lower bound. Suspecting
a numerical error due to round off errors, the VoF algorithm of FluidX3D was changed from
float to double by Moritz Lehmann for testing purposes, without showing any improvement.
Solving this problem remains as an open task.

9.2.5 Rising bubble: speed

In addition to the bubble shape, the terminal rising velocity vt of bubbles can provide information
on how well the simulation can reproduce reality. Depending on which of the three regimes
marked in red in fig. 9.9 is entered, other forces play a role. In the spherical regime (lower
left region), surface tension and viscous forces dominate over inertial forces and low Reynolds
numbers are typical. In the ellipsoidal regime (middle region), inertial forces are no longer
negligible, but still surface tension plays an important role. Finally, the spherical cap regime
(upper right region) is mostly governed by inertial force. For the spherical, the ellipsoidal and the
spherical cap regime thus different approximate terminal velocities vt,sph, vt,ell and vt,cap apply,
respectively. Using the equivalent diameter de = Re/2, they are described by [52, 54 – 57]

vt,sph = gd2
eρ

12η , vt,ell =
√

2.14σ
ρde

+ 0.505gde, vt,cap = 2
3

√
gde
2 . (9.18)

For all parameter sets from tab. 9.3 a simulation is performed, where every 100 steps the z
position of the center of the bubble zM (t) is calculated. The simulation is terminated if one
surface point of the bubble is less than 2R nodes away from the atmosphere, but at the latest
after 15000 steps. Using central differences, the rising velocity vz(t) is determined from zM (t).
This velocity is shown in fig. 9.11 and fig. 9.12 together with the terminal velocity vt valid for
the respective region. To give the bubble more time to converge to a constant velocity as it rises,
some parameters from chapter are adjusted: it now holds Ha = 0.9Lz, Lz = 3.0L, and R = L/8.
This also reduces the self-interaction of the bubble via its periodic image and via pressure waves
reflected at the atmospheric interface. However, due to memory limitations a further increase of
L/R is only possible by a degradation of the resolution, which will not be pursued further here.
Nevertheless, some important tendencies can already be read from the available data. For all
simulations in the spherical regime or close to it (number 3, 8 and 10) the simulated velocity
vz(t) is significantly smaller than the theoretical terminal rising velocity vt. A connection to
the phenomenon of stuck drops, which also occurred in this regime, is likely. In the ellipsoidal
regime the correct order of magnitude of the rising velocity is reached, but it is systematically
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underestimated in the simulation. Taking the ratio of simulated over theoretical terminal rising
velocity and averaging over the simulations number 1, 2, 5 and 6 gives vz/vt ≈ 0.73. The self
interaction via the atmospheric interface might still cause this slowdown. In the spherical cap
regime, however, the terminal rising velocities are well predicted, only simulation number 4 is an
exception due to its unphysical interface dynamics as discussed in the preceding chapter.
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Fig. 9.11: Rising velocity of an initially spherical bubble at rest. The setup numbers 1-4 refer to tab. 9.3. As the
rising velocity eventually reaches a steady-state, is should match the theoretical terminal velocity from eq. (9.18).
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Fig. 9.12: Like fig. 9.11, but for setup numbers 5-10.
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9.3 Limitations - bursting bubble

9.3 Limitations - bursting bubble
When a bubble approaches the liquid-atmosphere free interface, a very thin fluid film forms
between the bubble and the atmosphere, which is called lamella. The actual burst is triggered
by a rupture of the lamella. Two main processes cause droplets to be ejected into the air: Firstly,
the lamella gets unstable and bursts into droplets. Secondly, as the bubble cavity collapses, a
water jet is ejected into the air and breaks into droplets. This process is visualized in fig. 9.13. It
is of special interest for microplastics research, since these droplets could play a major role at
the exchange of microplastics particles at the air-water interface.

(a) (b) (c)

Fig. 9.13: Schematic of a bursting bubble. (a) When the lamella ruptures, it retreats towards the meniscus and
a rim forms at its edge. (b) The rim becomes unstable, tiny droplets are ejected into the air. As the bubble’s
pressure is released, oscillations at the atmosphere-water interface are triggered. (c) The bubble cavity collapses,
which forms a water jet. This jet becomes unstable and breaks into droplets. Images taken from [58].

With the current bubble implementation, a physically correct simulation of a bursting bubble
is not possible. This is mainly due to the time and length scales involved. The typical equivalent
diameter of the bubbles in question is in the range de = 10−4 − 10−2 m. Popular instability
models require a film thickness less than 10 nm [58]. [59] estimate the film mean thickness prior
to the rupture to be between 0.3 and 0.9 µm. Furthermore, they determine the films rim velocity
to be in the order of 10 m/s. In the current VoF implementation, a film of minimal thickness
consists of three lattice nodes (two interface nodes separated by one fluid node). For a bubble
of size de = 2 mm in a cubic simulation domain with side length L = 5de, in order to resolve a
critical thickness of 0.1µm a total of (3× 10 mm

0.1 µm)3 = (3× 105)3 = 2.7× 1016 lattice nodes would
be needed. For a single AMD Radeon VII GPU with 16 GB of internal memory, only about
4.5× 108 lattice nodes fit into memory when using the VoF with float accuracy. Since this
memory discrepancy cannot be overcome by a multi-GPU approach, instead the VoF would need
to be changed. In particular, the limitation that every interface node must be neighbor to both
a fluid and a gas node must be lifted in such a way, that interface nodes of arbitrary fill level
between two regions of gas may be simulated. This would mean, that a slice through a fluid film
of minimal thickness consists of the nodes (FG|FI |FG) instead of the nodes (FG|FI |FF |FI |FG).
Thus, whole fluid films could be simulated with sub-grid resolution. In order to achieve this,
the VoF algorithm including the curvature calculation and the HK algorithm would need to be
adapted, which is beyond the scope of this work.

To illustrate the current limitations of the bubble extension, fig. 9.14 shows a bubble burst
for parameter set 2 from tab. 9.3, with only uSI/u changed to 32 m/s. The size of the domain
is L× L× Lz, where it holds Lz = 2L, L = 3de and L = 256∆x. Thus, the length of a lattice
node in SI-units is 15 mm

256 ≈ 0.18 mm, so the expected thickness of the lamella can by far not be
resolved. Furthermore, ρ = 1 is chosen in lattice units. At time t < 0 s the bubble is spherically
initialized and rises to the atmospheric interface, at time t = 0 s the simulation is one simulation
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9 Bubbles

step away from the lamella rupturing. At frame 9.14d, the largest of the holes in the lamella has
a radius of approximately 1 mm. Thus, the rim velocity is estimated to be 1 mm/18 µs ≈ 56 m/s,
which is about the right order of magnitude. During the entire simulation, only a single droplet
detaches from the lamella. No liquid jet forms. One reason for this could be that for t > 30 µs
the cavity interacts with itself via the periodic boundary conditions. The choice of a larger
simulation domain could remedy this.

(a) t = 0 µs (b) t = 1.83 µs (c) t = 7.32 µs (d) t = 18.3 µs

(e) t = 29.3 µs (f) t = 62.3 µs (g) t = 62.3 µs (h) t = 102.5 µs

Fig. 9.14: Bursting of a bubble of size de = 5 mm using water parameters (parameter set 2 from tab. 9.3). 2D slices
as well as 3D side views are shown. Directly before rupture of the interface, the lamella has a critical thickness of
more than 0.18 mm due to the restricted resolution. The rim velocity is about 56 m/s. No liquid jet forms after
breakdown of the cavity.
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10 Viscoelasticity

10.1 Fits to rheological data

In the following chapters, the implementation of the Oldroyd-B and FENE-P models will be
described and validated. But first, the question of how well these models can describe real data
must be answered. [60] work with dilute polymer solutions. They are prepared from powders of
polyacrylamide and dissolved in distilled water (HPAM), resulting in a concentration of 11%w/w
(weight percentage concentrations of the solvent in the solution). They explain their rheological
data with the Oldroyd-B model. Since the dilute polymers have only a weak shear-thinning
behavior, this yields a good description. In fig. 10.1 the rheological functions of η, G′ and G′′ are
simultaneously fitted to the data taken from their fig. 3. The FENE-P model is chosen for the
fit, i.e., eq. (4.51) and (4.56) are used with ε = 0 and the free parameters G, λp, b and ηs. It
gets obvious that the shear-thinning behavior and the elastic properties of HPAM 11% can be
captured well within a single model.
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Fig. 10.1: Fit of FENE-P simultaneously to shear-thinning and moduli data from [60, fig. 3], HPAM 11%. The
parameters determined by the fit are listed in tab. 10.1.

Next, literature is taken into account that provides data of polymer classes also used for
bioprinting. [61] studies the rheological properties of sodium alginate in solution. Alginates,
salts of alginic acid, are linear long-chain polysaccarides. With their high biocompatibility and
non-toxicity, they are widely used as biomaterials in applications such as tissue engineering. For
bioprinting, polymer solutions with rather high concentrations are of interest, so in fig. 10.2 and
10.3 alignates with 2.1 g/dL and 3.0 g/dL are shown, respectively. The data is taken from [61,
fig. 2 & 4]. Again the rheological functions η, G′ and G′′ of the FENE-P model are simultaneously
fit to the data. The elastic behavior is captured well, only for high ω the model starts to deviate
more from the data. Concerning the shear-thinning data, the FENE-P model can describe the
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10 Viscoelasticity

alginate with 2.1 g/dL better than the ones with 3.0 g/dL. The data set with 1.0 g/dL yields
an even better description (not shown), so all in all it is found that for increasing concentra-
tion it becomes more and more difficult to describe the experimental data with the FENE-P model.
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Fig. 10.2: Fit of FENE-P simultaneously to shear-thinning and moduli data from [61], fig. 2 und 4, 2.1 g/dL. The
parameters determined by the fit are listed in tab. 10.1.
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Fig. 10.3: Like fig. 10.2, but for a polymer concentration of 3.0 g/dL.

Finally, the rheobase of the Sonderforschungsbereich TRR 225 Biofabrication [62] is inspected
and two representative polymers are selected, namely alginate 4 g/dL and Poly(2-oxazoline)s
(POx) 25%w/w 12. POx are accessible via living cationic ring-opening of 2-oxazolines. They
are known for their biocompatibility, high modulation of solubility and chemical functionality
and are also used in other contexts, e.g. drug delivery [63]. Shear-thinning and elasticity data of
both alginate and POx is shown in fig. 10.4b and fig. 10.5, where the fits were made with the
same procedure as above. In fig. 10.4b, the gray region has been excluded from the fit. In the
rheobase, the zero shear viscosity of POx (≈ 104) is generally orders of magnitude greater than
12The exact names as occurring in the rheobase are alginate_PH176_4wv_1.2 and POx_25ww_2.

60



10.1 Fits to rheological data

the one of alginates (≈ 101).

Concerning the shear-thinning, in the data set alginates often exhibit multiple "modes" (see
the flanks with different slopes in fig. 10.4a). Since the unextended FENE-P model consists of
only one mode (it only has one polymer relaxation time), only one of the slopes can be captured
by the fit. However, the slope shows good compatibility with the fixed power-law with exponent
1/3 of the FENE-P model - the isolated fit to the viscosity data only has very good agreement
(not shown). For POx, although there is only one "mode", even an isolated fit to the viscosity
data could not capture the shear-thinning behavior. The Carreau-Yasuda model

η = η0
(1 + (γ̇/γ̇0)α) (10.1)

is used to describe shear-thinning fluids [64]. When this model is fitted to the shear-thinning data
with α, η0 and γ̇0 as free parameters, the power law corresponding to POx can be determined.
Obviously, in the limit of large shear rates (γ̇ � γ̇0) it holds α → 1 − n, with the power law
coefficient n from eq. (4.54). While this yields a value close to n = 1/3 for the previous datasets
(e.g., for alginate 3.0 g/dL from [61]: n = 0.28± 0.01) and thus is well compatible with FENE-P,
for POx it yields n = 0.085± 0.018. This explains why the fit to the viscosity data is poor, even
if they are fitted isolated from the elasticity data. Furthermore, the FENE-P model can capture
the elastic properties of alginates much better than the one of POx. The former has a strong
frequency dependence, while for the latter G′ is nearly constant over the whole frequency domain.
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Fig. 10.4: Fit of FENE-P simultaneously to shear-thinning and moduli data of alginate 4 g/dL from the rheobase
[62]. The parameters determined by the fit are listed in tab. 10.1.

In summary, in the context of bioprinting, the FENE-P model is preferable to the Oldroyd-B
model because it can describe the shear-thinning property in addition to the viscoelastic properties
of the polymers used. The FENE-P model thus contains the two most important properties of the
polymers to be modeled, without losing its strong relation to microscopic theories. Nevertheless,
the FENE-P model can only represent the variety of polymer types used in bioprinting to a limited
extent. However, it provides a good starting point from which the description could be further
refined. For example, it would be possible to extend the single-mode FENE-P implementation
of this work to a multi-mode FENE-P [65] implementation using a spectrum of N relaxation
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Fig. 10.5: Like fig. 10.4, but for POx 25%w/w.

solution G [Pa] λp [s] b ηs [Pa s] ηp [Pa s]
HPAM11% 26± 6 0.015± 0.017 5± 16 0.44± 0.06 0.39± 0.44

Alginate 2.1 g/dL 36± 4 0.12± 0.03 6± 4 0.39± 0.16 4.3± 1.2
Alginate 3.0 g/dL 52± 9 0.33± 0.08 10± 10 2.1± 0.5 17± 5
Alginate 4 g/dL 24± 5 0.14± 0.05 10± 14 0.9± 0.2 3.3± 1.4
POx 25%w/w 850± 260 8± 5 10± 17 4.1± 2.8 6900± 5000

Tab. 10.1: Parameters obtained when fitting the FENE-P model to data from fig. 10.1 - 10.5.

times. Looking at the number of slopes present in the shear-dependent viscosity measurements
of the rheobase, N = 2 would already be sufficient to describe most of the data. In order
to widen the limitation of the fixed power law with exponent 1/3, the spring law of FENE-P
could be adjusted phenomenologically. However, since in this thesis only the most important
properties of bioprinting polymers are to be captured and in order to be able to make use of the
analytical solutions to numerous flow geometries during the validation, this work is limited to
the unextended versions of Oldroyd-B and FENE-P.

10.2 Algorithm overview
In this section, an overview of the simulation program will be given, the individual parts of
which will be explained in more detail in the following chapters. The most complex case of the
simulation of a Newtonian capsule in viscoelastic flow is shown in form of a flow chart in fig. 10.6.
The names of the GPU kernels as they appear in FluidX3D are given in parentheses. After
initializing the fields (step 0) according to the desired initial and boundary conditions, the kernel
stream_collide (step 1) computes the values of ρ, u and fi of the respective next iteration as
described in chapter 5. The external force caused by viscoelasticity is also included. Afterwards,
the stress tensor τp is updated according to the constitutive equation (step 2, see chapters 10.3
and 10.5). These two steps are already sufficient to simulate purely viscoelastic fluids. In step 4
the capsule in the fluid is taken into account (see chapters 7 and 10.7). Finally, steps 3, 5, 6 and
7 are necessary to make the interior fluid of the capsule Newtonian (see chapters 7.3 and 10.8.3).
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Initialization

LBM step: update rhouf 
(st r eam_col l i de)

Constitutive Equation: update ... 
(st r ess_t ensor )  

Algorithm M4: deplete 
in outmost capsule layer

   (conser ve_st r ess_B)

Algorithm M4: count outer 
neighbors 

(count _out er _nei ghbor s)

IBM step: update mesh, 
compute IBM force density 

(i bm_st r ai n, 
ibm_bendi ng_A/ B, 
i bm_ar ea_vol ume, 
i bm_i nt er gr at e,  

i bm_f or ce_spr eadi ng)

InOut algorithm: update flag 
field 

(i bm_i nout _t r acki ng_A/ B)

Algorithm M4: distribute      if 
node changes  

(conser ve_st r ess_A)

Fig. 10.6: Overview of the program cycle when simulating a Newtonian capsule in viscoelastic flow.
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10.3 Implementation idea Oldroyd-B
Different approaches are conceivable in the numerical treatment of the Oldroyd-B model. [16]
and [66] solve the time evolution of the dumbbell probability density function ψ(q, t) and recover
the macroscopic polymer stress at each lattice node. But it is also possible to directly use the
constitutive equation, which is preferred in this thesis. In the polymer formulation of Oldroyd-B
according to eq. (4.10) and (4.11) the total stress σ is split into a Newtonian part σs and a
polymer part τp. Since in the associated constitutive equation only the latter part appears,
this allows the whole flow problem to be solved by two coupled solvers. σs can be solved by
the standard LBM, while the FVM is used to update τp via the constitutive equation. The
coupling LBM → FVM happens via the velocity field. For the reverse direction LBM ← FVM
two options come up. On the one hand, the polymer stress could be added directly to the
Newtonian stress in moment space. This has however the disadvantage that the implementation
is compatible with MRT only, since it is the only collision operator where the moment space is
directly available during transformation. Furthermore, the matrix M−1SM from eq. (5.5) can
no longer be precomputed (since it is no longer constant during simulation), which comes with
performance drawbacks. The second option is to let the polymer stress enter as an external force
(see below). For this thesis the latter option is chosen, even though according to [23, 67] the
former option should bring advantages in terms of stability.

Next, the constitutive equation must be solved. For this task the FVM is not the only possibility.
E.g. [68] couple their D3Q19-LBM-NS solver with a D3Q7-LBM solver for viscoelasticity (the
LBM is not restricted to the NSE in general). But since they need a separate set of distribution
functions for each component of the stress tensor, their memory consumption is at least 7 times
larger than that of the FVM implementation of this thesis. [23] use an explicit second-order
central finite-difference scheme in space and a second-order Adams-Bashforth method for temporal
evolution. Both alternatives introduce additional diffusive terms to increase stability. In this
thesis, a solution without diffusive terms using the FVM analogous to [69] is presented. However,
to increase stability, later an alternative advection algorithm will be used (see below) that
intrinsically incorporates artificial diffusion.

Reformulation of the basic equations: First one can make use of the fact that

uk(r, t)
∂

∂rk
τij(r, t) = ∂

∂rk
(uk(r, t)τij(r, t))− τij(r, t)

∂

∂rk
uk(r, t)︸ ︷︷ ︸

=0 per eq. (3.8)

=

= ∂

∂rk
(uk(r, t)τij(r, t)) ≡

∂

∂rk
Jijk(r, t). (10.2)

With this definition of the flux term Jijk(r, t), the constitutive equation (4.11) is brought to the
form of a conservation law:

∂

∂t
τij(r, t) = − ∂

∂rk
Jijk(r, t) + Sij(r, t), (10.3)

where all remaining terms are interpreted as source terms (the (r, t) dependence is suppressed
here):

Sij = τik
∂

∂rk
uj + τkj

∂

∂rk
ui + ηp

λp

(
∂

∂ri
uj + ∂

∂rj
ui

)
+ 1
λp
τij . (10.4)
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Finally, for coupling to LBM the effect of polymer stress must be incorporated into the external
body force:

F pext,i(r, t) = ∂

∂rk
τki(r, t). (10.5)

Discretization of the basic equations: Next comes the discretization of eq. (10.3). To this end,
it is first averaged over one cell with volume V = ∆xd (d being the dimensionality of space) and
surface unit normal n̂:

∂

∂t
τ ij(r, t) = − 1

V

∫
V

∂

∂rk
Jijk(r, t) dV + Sij(r, t) = − 1

V

∫
∂V
Jijk(r, t)n̂k dS + Sij(r, t), (10.6)

where the overbar marks the volume average and in the last step Gauss’s divergence theorem
was applied. Then the same grid spacing ∆x and the same time step ∆t as for LBM is chosen,
so that τ and S correspond to the values at the grid positions. Furthermore, n̂ can be defined
using a velocity set {ci}, which does not necessarily have to match the set used in the coupled
LBM solver.

n̂(i) = 1
|ci|A0

ci with A0 = 1
2d

q−1∑
l=1
|cl|, (10.7)

where in this equation no Einstein summation applies. We share the observation of [69] that
D3Q7 is sufficient for most cases. Using an arbitrary velocity set {ci}, the following discretized
form of the constitutive equation is obtained:

τ ij(r, t+ ∆t) ≈ − 1
∆xJijk(r + cl∆t/2, t)n̂(l)k + Sij(r, t) + τ ij(r, t), (10.8)

where l ∈ {1, . . . , q − 1} and i, j, k ∈ {1, . . . , d}. To compute the term ∂
∂ri
uk(r, t) appearing in

S(r, t), its first-order FV discretization is used. This is again done by averaging over a volume,
this time using not a cell defined by an arbitrary velocity set, but a cube-shaped cell only, which
means a restriction to the D3Q7 neighborhood. This results in the approximation (derivation cf.
[69, eq. 32-33])

∂

∂ri
uk(r, t) ≈ (uk(r + êi/2, t)− uk(r − êi/2, t)) , (10.9)

where êi denotes the unit vector. Values of quantities Q ∈ {u, τp} at the cell surface, as they
appear in eq. (10.8) and (10.9), are obtained via interpolation:

Q(r + ci∆t/2, t) ≈
1
2(Q(r, t) +Q(r + ci∆t, t)). (10.10)

Note that inserting eq. (10.10) into eq. (10.9) yields an expression identical to the first-order FD
scheme. Analogous to above, the averaged value for the force after applying Gauss’s divergence
theorem is obtained as

F
p
ext,j(r, t) = 1

V

∫
∂V
τij(r, t)n̂i dS ≈ − 1

∆xτij(r + cl∆t/2, t)n̂(l)i. (10.11)

For the remainder of this thesis, the overbar notation for the mean value at a grid position
will be dropped again.
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Optimized memory format: To save memory as well as computational operations, the symmetry
of the stress tensor is exploited. Instead of the full d2 entries, an upper triangular matrix with
d(d+ 1)/2 entries is used. The matrix itself is stored in a 1D array, so the mapping from the full
matrix to the 1D array can be specified defining the index function fmap(i, j) as follows:

fmap(i, j) =
{
id− (i− 1)i/2 + j − i, i ≤ j
jd− (j − 1)j/2 + i− j, else.

(10.12)

Alternative advection: This thesis will refer to the computation of the flux term via the first
term of eq. (10.8) as the simple scheme. An alternative advection scheme called corner transport
upwind (CTU) scheme will be used in several simulations throughout this thesis. It will be
further described in chapter 10.8.1.

Boundaries: In order to handle the two possible boundary conditions from chapter 5.2, namely
the moving no-slip bounce-back boundary (also referred to as moving "wall") and the equilibrium
boundary, the FVM has to be adapted accordingly. No stress should be transported over wall
boundaries, which is achieved by simply setting J(rw + ci∆t/2) ≡ 0, where rw is a wall node
and rw + ci∆t is a fluid node. Also, note that

u(rw + êi/2, t) ≡ uw (10.13)

holds (cf. chapter 5.2), so the velocity between boundary node and fluid node is given by uw
and not by interpolation via eq. (10.10). To obtain a value for τp(rw) from eq. (10.11), constant
interpolation is used: τp(rw) ≡ τp(rw + ci∆t).

Also for equilibrium boundaries at position re one gets τp(re) by constant extrapolation. Since
the velocity boundary condition of equilibrium boundaries might not be parallel to the wall, here
J(re + ci∆t/2) 6= 0 in general. Since the main focus of this work is not on the use of equilibrium
boundaries for advection problems (it will only used once for a validation in chapter 10.6.3), I
use constant extrapolation of velocity for simplicity. Together with the constant extrapolation of
stress this e.g. results in J(re + ci∆t/2) ≡ J(re + ci∆t) in case of the simple scheme. How to
implement better elaborated equilibrium boundary conditions for advection diffusion problems
can be found in [26, ch. 8.5].

Two programs: A fully parallelized version designed for GPUs including all the details mentioned
above was implemented in FluidX3D. For testing purposes, a reduced version was implemented
in ESPResSo, running CPU parallel via the Message Passing Interface MPI. It does not make
use of the optimized memory format, has only the simple advection scheme available and is not
compatible with equilibrium boundaries.

10.4 Validation of Oldroyd-B
10.4.1 Validation via rheometer
The rheometer setup consists of a cuboid domain filled with initially quiescent fluid, bounded by
walls at z = 0 and z = H and periodic along the other two directions. The lattice nodes used in
stream-flow direction (here x-direction) and traverse-flow direction (here y-direction) are denoted
as Ls and Lt, respectively. This notation will be used for all shear flow setups throughout the
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remainder of this thesis. The wall at z = 0 has velocity ux(t) = −ω sin(ωt+ Θ)γ0/2, the wall at
z = H moves exactly opposite with ux(t) = ω sin(ωt+ Θ)γ0/2, the other velocity components
are zero in each case. This is realized by moving bounce-back boundary conditions. The stress
components σs,xz and τxz are measured for different heights z = h+ 1/2, 0 ≤ h ≤ H − 1 (each
value at a specific height is averaged over the whole corresponding fluid layer). It holds

σxz(t) = G′γ(t) + G′′

ω
γ̇(t), (10.14)

By means of a fit

−G′ cos(ωt+ Θ)γ0/H +G′′ sin(ωt+ Θ)γ0/H + c, (10.15)

with G′, G′′ and c as the only free parameters the moduli can be determined. The fit is started
only after half of the total calculated oscillations (wait for transient to be finished). No depen-
dence of z for G′, G′′ is to be expected, which must be checked in the following simulations in
each case. For the final determination of the moduli, the average value over all fluid layers is taken.

To quantify the accuracy of the results, two error definitions are useful. One is the error

sr(Qtheo, Qsim) = |Qtheo −Qsim|
|Qtheo|

, (10.16)

which is the relative deviation between the analytical solution Qtheo and the numerical result
Qsim. On the other hand the error

s1(Q) =
√
Var(Q) + Mean(sQ,fit)2. (10.17)

The term Var(Q) denotes the variance of the means of the fluid layers. The error sQ,fit is the
standard deviation of Q obtained when fitting via eq. (10.15). For all the following simulations,
D3Q19 and the TRT operator with ΛTRT = 3/16 are used.

10.4.1.1 Pure viscous fluid

A simple method to check this setup is to calculate the viscosity of a pure viscous fluid using
η = ηs = G′′/ω. This Newtonian case is also used to tune the accuracy of the simulation via the
free parameters. The procedure is as follows: First, ρ = 1 and ν = 1/6 are chosen (all parameters
in lattice units), which is an often chosen standard for LBM. Furthermore, γ0 = 0.1 and Θ = 0
are chosen. Then a reasonable value for ω must be determined. As [23] correctly notes, care
must be taken to ensure that a steady shear flow can form during each oscillation. The time
scale required for this is τνs = H2

νs
, as can be seen by looking at eq. (10.18). So τνsω � 1 must

hold, otherwise one would still be in the transient regime. Therefore, H = 6 and ω = ε/τνs is
chosen, where the smallness parameter ε is varied. Furthermore, Ls = 32 and Lt = 1 are set. Ten
oscillations are calculated, of which the last five are used for the fit. In fig. 10.7a, τνsω < 0.1 is
evident as a sufficient condition. Moreover, it is nice to see how the exponential turn-on behavior
of the steady shear flow is reflected as a straight line in the log-log plot of the error. Overall, the
error is dominated by the transient regime, since sr > s1 holds.

Next, the channel height H is varied with fixed ε = 0.1. In this process, Ls must also be
adjusted (see tab. 10.2), since for optimization reasons the total number of lattice nodes must be
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10 Viscoelasticity

divisible by 256 without remainder. For increasing channel resolution, a small decrease of error
sr is visible in fig. 10.7b. The error s1 is rather constant over a long range of H, the parameter
selection strategy is therefore considered successful.
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Fig. 10.7: Measurement of the error sr(ηs,theo, ηs,sim) and s1(ηs,sim) via eq. (10.16) and eq. (10.17) for a pure
viscous fluid (ηs ≡ η) using the rheometer setup. In (a), the smallness parameter ε is varied while keeping H = 6.
In (b), channel height H is varied while keeping ε = 0.1.

H 3 4 6 10 14 30 62
L 256 128 32 64 16 8 4

Tab. 10.2: Since the product LsLt(H + 2) must be a multiple of 256 and Lt = 1 holds, Ls is chosen suitable for H
in each case.

10.4.1.2 Viscoelastic fluid

Now the same setup is used for a viscoelastic fluid. Again the last five of ten total oscillations
are used for the fit. In addition, H = 6 and for the moment ε = 0.1 are chosen. In fig. 10.8a one
can compare the analytical solution according to eq. (4.41) with the simulation results, where for
the fitting of G′ and G′′ to eq. (10.15) the whole tensor σ consisting of both the pure viscous
fraction σs = 2ηsD and the viscoelastic fraction τp according to eq. (4.10) was used. One could
also just use τp, since the contribution of σs to G′′ is known to be ωηs, while the contribution
to G′ should be zero. However, this would reduce the reliability of the validation. Significant
deviations from the analytical solution are observed for G′ for large and small De, respectively.
In fig. 10.8b, the moduli are shown in the non-dimensional form according to eq. (4.43). Here, in
addition to the deviation in G′, a deviation in G′′ is evident. All deviations can be explained
by s1. Another simulation with ε = 0.001 can improve the result significantly and is shown in
fig. 10.8b. The reason why ε = 0.1 is not sufficient is presumably that in the viscoelastic case
further time constants than τνs play a role. Minor deviations now exist only for large De in
fig. 10.8b. A possible explanation is that a smaller ε leads to a more accurate shear flow, but at
the same time λp ∝ 1/ε and λp ∝ De hold. If the implemented Oldroyd-B model is no longer
valid for large λp, this is especially noticeable for large De and even worsens for a smaller choice
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10.4 Validation of Oldroyd-B

of ε. For De = 1000, actually λp ≈ 2× 108 holds, which is far from the λp ≈ 103 usually used.
Attempts were made to reduce λp by rescaling ν, but this only worsened the result.
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Fig. 10.8: Rheometer setup with ε = 0.1. The points show the simulation results, while the solid lines show the
analytical solution given by eq. (4.41). (a) shows G′ and G′′ in lattice units, (b) shows the results in non-dimensional
form in accordance with eq. (4.43). The error bars indicate the error s1 computed via eq. (10.17). In fig. 10.9 it is
shown in more detail, how the value pair encircled in black is determined.

In all simulation results shown, simple with a D3Q7 neighborhood was sufficient for advection.
Other combinations of {simple, CTU} x {D3Q7, D3Q19, D3Q27} were tested successfully as
well, but bring no apparent increase in accuracy.

10.4.2 Validation via inception of poiseuille flow

To additionally check the dynamics of the system, a validation procedure analogous to [69, fig. 2]
is followed. A planar poiseuille channel is considered, which has non-moving no-slip bounce-back
boundaries with u((x, 0, z)T, t) = u((x,H, z)T, t) = 0 and is otherwise periodic. The size of the
domain is Ls in stream-flow direction (x-direction) and Lt in traverse-flow direction (z-direction).
The flow is driven by a homogeneous force parallel to the channel walls, F = Fxêx, which
leads to a parabolic steady state flow profile both in the Newtonian and the Oldroyd-B case.
After instantaneously incepting the force in a resting Newtonian fluid, the steady-state flow is
approached in a monotonous manner and is described by [70, eq. 65]

u

u0
(y1, t1) = −4y1(y1 − 1)− 32

∞∑
n=1

sin(Ny1)
N3 exp(−N2t1), (10.18)

where

t1 = ηt

ρH2 , y1 = y

H
, u0 = FxH

η
, N = (2n+ 1)π2 . (10.19)

The flow velocity of a viscoelastic fluid, however, can overshoot its steady-state value and then
decay to it on a time scale given by λp. The analytical expression is provided by [70, eq. 64] for
the liquid B’ model, which has shown to be equivalent to Oldroyd-B [69]. The time dependent
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Fig. 10.9: The encircled value pair of fig. 10.8 is determined as the mean value of the liquid layers between 0 and
H, where the corresponding variance is ideally small (a). In (b), the shear rate (normalized to the interval [-1,1]) is
shown in blue. The component τxz in lattice units is shown in red red, the means of all individual fluid layers are
plotted on top of each other. After 5 oscillations the fit according to eq. (10.15) starts (black dashed line, again
the fits of all layers are plotted on top of each other). For the calculation of G′ and G′′ in reality σxz is used, but
here the phase difference to γ̇ would no longer be visible to the naked eye.
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Fig. 10.10: Like fig. 10.8, but for ε = 0.001.
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solution reads

u

u0
(y1, t1) = −4y1(y1 − 1)− 32

∞∑
n=1

sin(Ny1)
N3 exp

(
−αN t12S1

)
GN (t1), (10.20)

where
GN (t1) =

(
cosh

(
βN t1
2S1

)
+ (1 +N2(S2 − 2S1))

βN
sinh

(
βN t1
2S1

))
. (10.21)

Here the additional definitions

αN = 1 + S2N
2, βN = ((1 + S2N

2)2 − 4S1N
2)(1/2), S1 = ηλ1

ρH2 , S2 = ηλ2
ρH2 (10.22)

are used and it holds λ1 = λp and λ2 = (1 − β)λp, where β, as always, denotes the polymer
fraction of total viscosity.

To evaluate the above solution, the infinite sum above has to be truncated after m terms, where
m = 10 was found to be sufficient. Furthermore, special care has to be taken when evaluating
GN (t1) from eq. (10.21), since cosh and sinh do overflow for higher n. To prevent the overflow,
one has to rewrite the term exp

(
−αN t1

2S1

)
GN (t1) in a form, where besides polynomials only terms

∝ exp
(
−αN t1

2S1
± βN t1

2S1

)
appear.

For the simulation, channel dimensions of Ls ×H × Lt = 32∆x × 28∆x × 4∆x are chosen.
Furthermore, ρ = 1 and η = 1 are fixed. The body force Fx = 2u0ρνs/R2 is chosen such that
u0 = 10−3 results. For comparison with the analytical solution, only the velocity in the center of
the channel is looked at. In fig. 10.11a, λp ∈ {1000, 3000, 5000, 7000, 9000} is varied and β = 0.5
is fixed. Both the magnitude of the overshoot and the characteristic decay time scale with λp.
In fig. 10.11b, β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} is varied and λp = 3000 is fixed. The magnitude of the
overshoot increases with β. For large β the flow decays to steady-state velocity in an oscillatory
fashion.

Both figures show very good agreement with the analytical solution. Indeed, they are much
better than in [69], who has to fit the analytical solution using H as a free parameter in order
to improve the solution and still doesn’t reach a comparable accuracy. The author speculates
that the constant extrapolation of stress to the wall nodes might be a reason for the deviations,
but in this thesis the same extrapolation is used. Still the reason can be found in the treatment
of the boundaries in the FV solver of the Oldroyd-B constitutive equation. As the author
confirmed, [69] does not use special treatment of velocity interpolation at boundaries like it is
done in this thesis by accounting for eq. (10.13). This is equivalent to assuming wrong bound-
ary positions, which according to chapter 5.2 reduces the accuracy of the fluid solver to first order.

The results of fig. 10.11 were generated in FluidX3D with TRT and D3Q19 concerning the
LBM, and simple and D3Q7 concerning the advection in the FVM. All other combinations of
{simple, CTU} x {D3Q7, D3Q19, D3Q27} for the FVM were tested successfully as well. The
implementation in ESPResSo yields similarly good results.
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Fig. 10.11: Time dependent center velocity in a planar poiseuille channel after inception of volume force. The
analytical solution (solid lines) and the numerical results (dots) match very good. In (a) β = 0.5 was fixed, while
in (b) λp = 3000 was chosen.

10.5 Implementation idea FENE-P
First, it should be noted that it is possible to reformulate the FENE-P model in such a way that
only one time derivative occurs in the constitutive equation. Then τp(t+ ∆t) ≈ τp(t) + ∂

∂tτp(t)
could simply be set as was done for the Oldroyd-B model in chapter 10.3. This strategy is e.g.
used in [23]. However, such a reformulation has the disadvantage that it is no longer possible
to resort to the preliminary work of the Oldroyd-B implementation. Furthermore, [23] have an
inconsistency in their implementation (cf. chapter 4.2.2). Instead, this thesis implements the
FENE-P model in a very simple way: First, the constitutive equation for ε = 0 is solved for ∂

∂tτp,
i.e.

∂

∂t
τp = 2 ηp

λp
D + ((∇v)T · τp + τp · (∇v))− v · ∇τp −

1
λp
Zτp + 1

λp

d lnZ
dt (τp + ηp

λp
I). (10.23)

The treatment of the first three terms on the right hand side is exactly the same as for the
Oldroyd-B model. For term four, Z must be known, which can be easily calculated if τp is
known. The last term contains a total time derivative d lnZ

dt = ∂ lnZ
∂t +v ·∇ lnZ. The partial time

derivative occurring here is implemented as a backward difference. To do this, Z must be stored
from the previous iteration. The term v · ∇ lnZ is an advection term and is treated analogously
to the term v · ∇τp.

Specifically, this is done as follows: In the FENE-P implementation, a new field must be
introduced, in order to be able to perform a backward difference of Z using the previous time
step. If instead of Z the value Z − Z0 is stored with Z0 = Z(0) = 1 + 3/b (cf. eq. (4.19)), the
field can be treated analogously to the stress tensor τp with respect to all advection algorithms:
e.g. for the algorithm M3 and M4 from chapter 10.8.3.1 it applies τp = 0 within the capsules,
where now also the new field storing Z − Z0 takes the value zero. To further reduce special
treatments, the new field is implemented as an additional component of the field that manages
the stress tensor. Doing so, the changes remain minimal, only the number of different components
def_symm_dimXdim_size of the symmetric stress tensor and the number of components related
to all advection processes def_stress_advection_size must be carefully distinguished.
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10.6 Validation of FENE-P

10.6.1 Validation via steady shear flow

The analytical solution for the shear-dependent viscosity of the FENE-P fluid is known from
eq. (4.51). With this, the shear-thinning behavior of the present implementation is now to
be checked by means of a simple setup. Just as in [23], a domain of size Ls × Lt × H =
2∆x× 2∆x× 62∆x is used, applying periodic boundary conditions in stream-flow and traverse-
flow direction and having walls with bounce-back rule at z = 0 and z = H. They move in
opposite directions to each other with velocity uw(z = 0) = (γ̇H/2, 0, 0)T = −uw(z = H) and
thus generate a shear flow with constant steady state shear rate γ̇. Furthermore, D3Q19 and
MRT are chosen for the LBM, while D3Q7 and simple are sufficient for the advection regarding
the FVM. Fixed viscosity fraction β = 0.5, total viscosity η = 1 and relaxation time λp = 3000
are used. The shear rate 10−8 ≤ γ̇ ≤ 101 is varied such that equal spacing results in a logarithmic
plot. Several b ∈ {10, 100, 1000, 1000000} are tested for the FENE-P model, the Oldroyd-B
model is tested as well. All mentioned parameters are rescaled depending on the value of γ̇ to
reduce simulation time, leading from one set of lattice parameters to an other without chang-
ing spacial resolution. A fixed number of simulation steps tf = 107∆t is chosen for all simulations.

The simulation results are shown in fig. 10.12 and yield very good agreement with the analytical
solution for γ̇λp ≤ 103. At the same time, one can also observe well how the FENE-P model
for b → ∞ transitions into the Oldroyd-B model, i.e. has constant viscosity. For γ̇λp > 103

the simulation takes a very long time to get into a steady-state. Since nevertheless a constant
number of simulation steps was simulated independent of γ̇, this can explain the deviations from
the analytical solution. By using a smaller domain, i.e. H = 2, the transition to steady-state is
accelerated and now the simulation also shows very good agreement with the analytical solution
for γ̇λp > 103 (cf. fig. 10.13). In contrast to [23, fig. 1] no deviations between theory and
simulation for low dimensionless shear rates γ̇λp are observed. Moreover, the simulation data pro-
vided in this thesis extends two orders of magnitude further towards high dimensionless shear rates.
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Fig. 10.12: Validation of shear-thinning behavior of FENE-P using a domain of size Ls×Lt×H = 2∆x×2∆x×62∆x.
The solid lines show the theory curves, the crosses mark the simulation results. (a) shows the total viscosity, (b)
the dimensionless viscosity due to polymers.

73



10 Viscoelasticity

10 3 10 1 101 103

p

10 2

10 1

100

(
s)/

p
(b

+
3)

/b

b = 10
b = 100
b = 1000
b = 1000000
OldroydB

Fig. 10.13: Like fig. 10.12b, but for H = 2.

10.6.2 Validation via rheometer

For the oscillating shear flow, the solution for G′ and G′′ for small amplitudes is very similar to
the Oldroyd-B case. Therefore, the same parameters as in fig. 10.10 and additionally b = 100
were chosen. In fig. 10.14 very good agreement between theory and simulation can be observed,
with the problems for large De as already mentioned in chapter 10.4.1.2.
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Fig. 10.14: Like fig. 10.10, but for the FENE-P model and with the additional parameter b = 100.

10.6.3 Validation via elongational flow

So far, the FENE-P model has only been investigated in different variants of shear flow. The
behavior in elongational flow is also interesting, where for validation the analytical solution
according to eq. (4.61) can be used.
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[23] use this validation successfully. Unfortunately, they do not specify how they generate an
elongational flow with the LBM. They only state that their simulation domain is periodic in all
directions. Accordingly, they cannot use equilibrium boundaries. They might give a location-
dependent volume force that produces the desired velocity field, but it’s not clear how this
force field would look like. Or perhaps they just specify a location-dependent, time-independent
velocity field throughout the domain without actually computing the velocities by the LBM.

For the validation setup of this thesis, at first equilibrium boundaries were used on which the
elongation velocity profile according to eq. (4.31) is given. The expectation is that the same
velocity profile will then form throughout the whole domain for t→∞. It was taken into account
that, in contrast to moving bounce-back boundaries, the desired velocity is defined at the center
of the node, not in-between nodes. Furthermore, ν = 1/6 was chosen in order to still have a
second-order solver (cf. chapter 5.2).

Unfortunately, the validation via equilibrium boundaries is not very successful. This is probably
mainly due to the fact that the target velocity field does not evolve. After convergence of the
simulation, the total error s2 of the flow profile usim obtained by simulation is calculated via the
L2 norm [26]:

s2(usim) =
√∑

r∈domain |usim(r)− utheo(r)|2∑
r∈domain |utheo(r)|2 , (10.24)

where utheo(r) denotes the theoretical elongational flow profile. The L2 error shown in fig. 10.16
is proportional to the deviation of simulation and theory from fig. 10.15a. Furthermore, it is
easy to see that the algorithm quickly reaches its stability limits (cf. the missing simulation
data in fig. 10.15a versus fig. 10.15b). In a second approach, the LBM is switched off and
instead the target flow profile is prescribed by a time-independent velocity field everywhere in the
domain. The equilibrium boundaries are still present in order to correctly handle the advection
of polymer stress at the boundaries. With this approach, there are only small deviations from
the analytical solution (cf. fig. 10.15b). However, there is still a slight offset compared to the
analytical solution. This could possibly be further improved if the simulation domain were made
completely periodic. Then the equilibrium boundaries wouldn’t be needed anymore, and the
presumable boundary effect due to their naive implementation would disappear. However, this
will not be done here. For the first approach with equilibrium boundaries only, a cube-shaped
domain with side length Ld = 29∆x was used and D was determined as the mean value of a
cube-shaped region of side length Lm = 8 around the center of the domain, i.e. as far away
as possible from the domain boundaries. For the second approach where the velocity field was
prescribed everywhere, Ld = 61∆x and an evaluation region of size Lm = Ld/2 was chosen to
improve accuracy. Each simulation was run until the convergence of D.

For the plots from fig. 10.15 the theoretical solution was computed as follows: Equation (4.61)
was numerically inverted in the desired range of values to obtain D(Λe, b). Then D(B + 1)/Λe
was plotted along Λe, i.e., the dimensionless elongation viscosity scaled by its limit for small Λe.

10.6.4 Validation via cessation of steady shear flow

Up to now, only steady-state solutions have been used for validation. To test the model dynamics,
instead of looking at the inception of volume force in a planar poiseuille flow like in chapter
10.4.2 for Oldroyd-B, the cessation of steady shear flow will be investigated. For shear flows
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Fig. 10.15: Validation via elongational flow using equilibrium boundaries. The simulation must match the
numerically inverted analytical solution (4.61). In (a), only the boundaries are given, which results in a flow
deviating from the elongational one (see fig. 10.16). In (b), additionally the required velocity field is prescribed
everywhere in the fluid, which improves stability as well as accuracy significantly.
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Fig. 10.16: L2-error of the velocity fields corresponding to the simulations from fig. 10.15a. The L2-error s2(usim)
is computed via eq. (10.24).
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(ux = γ̇(t)y, uy = uz = 0) the FENE-P constitutive equation [19, eq. 12] results in

Z

τxx τxy 0
τyx τyy 0
0 0 τzz

+ λp

 d
dt

τxx τxy 0
τyx τyy 0
0 0 τzz

−
2τyx τyy 0
τyy 0 0
0 0 0

 γ̇


− λp

τxx + nkBθ τxy 0
τyx τyy + nkBθ 0
0 0 τzz + nkBθ

 d lnZ
dt = nkBθλpγ̇

0 1 0
1 0 0
0 0 0

 (10.25)

After switching off the shear flow, this simplifies further due to γ̇ = 0. For T = Tr(τp)/(3nkBθ)
it therefore holds

ZT + λp
dT
dt − λp(T + 1)d lnZ

dt = 0. (10.26)

With the definition B = 3/b and because of Z = Z(T ) = 1 +B(T + 1) and d lnZ
dt = 1

Z
dZ
dt = B

Z
dT
dt

this simplifies to

ZT + λp
dT
dt

(
1− (T + 1)B

Z

)
= 0. (10.27)

Finally, using (T + 1)B/Z = 1− 1/Z this results in the following differential equation:

Z2T + λp
dT
dt = 0. (10.28)

In the Oldroyd-B limit (Z = 1), a simple exponential decay T (t) = T0e(−(t−t0)/λp) results after
switching off the shear flow at time t = t0. The solution of the general case with Z = Z(T )
cannot be given by means of elementary functions. However, one can specify a function for
S = τxy/(3nkBθ), where S = S(T, T0, S0, B). The differential equation for S can be extracted
from eq. (10.25) and reads as follows:

ZS + λp
dS
dt − λpS

d lnZ
dt = 0. (10.29)

Substituting Z in the first term by the relation as given in eq. (10.28), calculating d lnZ
dt explicitly

as above and exploiting 1
S

dS
dt = d lnS

dt , eq. (10.29) is transferred into

d lnS
dt̃ = dT

dt̃
1
TZ

(1 +BT ), (10.30)

where t̃ = t/λp. Equation (10.30) is integrated and then rearranged to finally obtain

S

S0
=
( 1 +B(1 + T )

1 +B(1 + T0)

)B/(B+1) ( T
T0

)1/(B+1)
. (10.31)

For the purpose of validation, a geometry analogous to chapter 10.6.1 is chosen, i.e., a domain
of size Ls × Lt ×H = 2∆x× 2∆x× 62∆x with the same boundary conditions as in the steady
shear flow setup. However, at t̃ = 10 the wall velocity uw is instantaneously set to zero. Slightly
different simulation parameters than in [23] are chosen here to demonstrate a more interesting
switch-on behavior: in fig. 10.17a the normalized stress component τxy of the simulation is
shown; when the shear flow is switched on, overshooting occurs to some extent, reaching its
maximum amplitude at intermediate values b ≈ 10. Now eq. (10.28) is numerically solved for
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each parametric set separately to obtain Tr(τp)num and plotted against the simulation results.
In the same plot, S = S(Tr(τp)num/(3nkBθ)) is also solved via eq. (10.31) and compared with
the simulation outcome. In fig. 10.17b very good agreement between theory and simulation is
obtained. As expected, the normalized curves for S(t) and T (t) differ only for small b. For large
b, on the other hand, the transition to the Oldroyd-B limit can be observed.

0 2 4 6 8 10 12 14 16
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

xy
(t)

/
xy

(t
=

10
)

b = 1
b = 3
b = 10
b = 100
b = 1000
b = 1000000
OldroydB

(a)

10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00
t

0.0

0.2

0.4

0.6

0.8

1.0

T(
t)/

T(
t=

10
) &

 S
(t)

/S
(t

=
10

)

b = 1
b = 3
b = 10
b = 100
b = 1000
b = 1000000
OldroydB

(b)

Fig. 10.17: Validation via cessation of steady shear flow. The wall velocity is switched off at time t̃ = 10. In (a),
normalized simulation data for τxy is shown. In (b), the numerical expectation for S (solid) and T (dashed) is
compared with the simulation data (S crosses, T circles).

10.7 Validation of capsule in Newtonian fluid
The IBM was transferred from ESPResSo to FluidX3D by Moritz Lehmann, but not validated
yet concerning the capsule model. The ESPResSo version itself has been validated extensively in
[35, ch. 4.4] together with their boundary integral method (BIM) implementation against various
other methods (projection methods combined with IBM or BIM). The validation was carried out
for a capsule of radius R in shear flow for various ratios κ̂B = κB

R2κS
between shear and bending

resistance (including the case κ̂B = 0) and in a range 0.005 ≤ Ca ≤ 0.2, where the capillary
number is defined as Ca = ηγ̇R

κS
.

This ESPResSo implementation will now be used to validate the FluidX3D implementation.
An initially spherical capsule of radius R placed in a resting fluid is considered. Moving bounce-
back walls at z = 0 and z = H instantaneously start moving against each other in the x-plane
with |uw| = γ̇H/2 at time t∗ = 0, which lead to a linear shear flow with shear rate γ̇. This is
in contrast to the validations in [35], where the shear flow is already fully developed at t∗ = 0.
The initial sphere is taken as the reference state for the in-plane tensions. For the capsule,
the neo-Hookean model is used. The Reynolds number Re = R|uw|

ν is much smaller than one.
Capsules with two different resolutions are considered: the capsule with R = 6∆x is resolved
by n∆ = 1280 triangles, the one with R = 13.5∆x has n∆ = 5120. A simulation domain of size
Ls × Lt ×H = 10R × 5R × 15R is chosen. It is important that the capsule is placed with its
center of mass exactly in between the two walls. Misplacing it by only half a lattice node from
the channel center causes the capsule to drift off during the simulation. Furthermore, D3Q19
and MRT are chosen for the LBM simulation. Using TRT makes an observable difference, as is
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10.7 Validation of capsule in Newtonian fluid

documented in fig. A2.

As a benchmark, three quantities will be investigated. For not too large shear rates the shape of
the capsule becomes approximately an ellipsoid. This can be described by the Taylor deformation
parameter D = a−c

a+c , where a and c denote the major and minor semi axes, respectively. The
ellipsoid is inclined towards flow direction, which is measured by the inclination angle φincl between
the flow direction (x-axis) and the major axis of the ellipsoid. Furthermore, the membrane
rotates around the capsules centroid, which is called "tank treading" motion. An illustration
of the considered quantities is given in fig. 10.18. From the capsule mesh the inertia tensor is
computed by [71, eq. 3.9]. The diameters of the semi-axes are calculated by its eigenvalues, their
orientation by its respective eigenvectors [33, 35]. To compute the rotation angle φrot(t) of the
capsule, the capsule at t∗ = 0 is taken as a reference. All points making up the capsule are first
projected in the plane of rotation. Then the vector vi from the capsule mid towards each point
is computed. The angle between vi and the reference vector v0,i is computed via

atan2(|vi × v0,i|, |vi · v0,i|) (10.32)

with the atan2 definition as in C++. Taking the mean over all points results in smooth curves
for φrot. The reference capsule is always a sphere, but the capsule deforms later in shear flow,
which is reflected in φrot not fully covering the range [0, π]. The dimensionless frequency ω/γ̇ is
extracted from φrot by averaging over the distances of its maxima and minima.

𝑥𝜙

Fig. 10.18: 2D illustration of the capsule in linear shear flow. The initially spherical capsule deforms to an ellipsoid.
The Taylor deformation parameter D is calculated via the major and minor semi axes a and c, respectively. φincl
denotes the inclination towards streaming direction. The membrane performs a "tank treading" motion around the
capsule’s centroid.

First, Ca is varied by holding κS fixed and changing γ̇. This yields very good agreement of
D between ESPResSo and FluidX3D. After testing the parameter space of γ̇, the validation
strategy is switched by holding γ̇ fixed and varying κS . This has the effect that by fixing γ̇, Re
is also fixed. More importantly, it now holds γ̇∆t = const, so the number of simulation steps is
independent of Ca. Re = 0.05 is chosen, which results in γ̇∆t ≈ 5.9× 10−5. A comparison of
the two strategies for FluidX3D and ESPResSo is done in fig. 10.19. By looking at the Taylor
deformation D one can see that both strategies yield the same steady-state values, but result in
slightly different behavior at inception of shear (since the evolution to steady state scales with
Re). Furthermore, in ESPResSo both strategies show small oscillations of D for low Ca, which
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10 Viscoelasticity

can also be seen in the BIM simulations of [35, fig. 12]. In FluidX3D these oscillations only
show up for fixed Re, and are still poorer resolved than in ESPResSo. The good match of both
strategies for ESPResSo / the mismatch in FluidX3D for low Ca can even better be obtained for
the inclination angle. Finally, in FluidX3D for Ca = 0.005 the fixed κS strategy seems to fail
concerning the inclination angle.
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Fig. 10.19: Capsule of R = 13.5∆x in Newtonian shear flow. Comparison of the two strategies fixed Re and fixed
κS for FluidX3D and ESPResSo. On the left in (a) and (b), the lines have the following meanings: fixed Re +
FluidX3D (solid colored), fixed Re + ESPResSo (dashed colored), fixed κS + FluidX3D (dashed black), fixed κS
+ ESPResSo (dotted gray). The steady state values averaged starting from t∗ = 4.5 are shown on the right.

For all future simulations in shear flow the strategy of fixed Re is applied. Next, the capsule of
radius R = 13.5∆x (high resolution) is compared with a capsule of R = 6∆x (low resolution) (cf.
fig. 10.20). For both softwares, the small oscillations of D for small Ca disappear completely for
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10.7 Validation of capsule in Newtonian fluid

R = 6∆x, but the steady state values of D remain nearly the same as in the case R = 13.5∆x.
The inclination angle φincl is shown for a much longer time now. It depends on resolution
much stronger than D, but still the effect of decreasing φincl for increasing Ca is captured well.
Furthermore, for low Ca one can see periodic patterns in φincl. They are much more pronounced
in ESPResSo than in FluidX3D, and have a bigger amplitude for higher resolution. Finally, the
rotation frequency has a weak dependency on resolution, but this dependency is nearly equal for
ESPResSo and FluidX3D. Overall, the differences caused by resolution are much more severe
than the differences between the two softwares. The differences between the softwares might be
due to floating-accuracy: while ESPResSo uses double for the IBM, FluidX3D normally uses
float (except in chapter 10.10.3).

The periodic patterns observed in fig. 10.20 are investigated in more detail. The frequency of
the pattern seems to be proportional to the frequency of the rotation of the capsule: smaller Ca
is associated with a higher frequency. Looking at the videos of the capsule meshes, the patterns
are caused by tiny wrinkles on the capsule surface. In ESPResSo they have a stable shape
and rotate along with the capsule mesh itself, while in FluidX3D they appear and disappear
seemingly at randomly. For further comparison, a BIM simulation was provided by Katharina
Gräßel. Here, differently than in the LBM the capsule is in infinite shear flow. The results for
Ca ∈ {0.005, 0.025, 0.05} are shown in fig. A3. One can see that with respect to the amplitude
of the pattern, BIM is somewhere between ESPResSo and FluidX3D. Secondly, especially for
Ca = 0.025 one can see how the periodicity matches with the one from ESPResSo. Katharina
Gräßel did some further investigations showing that the concrete pattern strongly depends on
the initial/reference shape of the capsule13: slightly rotating the capsule before starting the
simulations results in different patterns. Because already so many discrepancies exist between
BIM and ESPResSo simulations and also within ESPResSo simulations, not being able to match
the periodic patterns between FluidX3D and ESPResSo doesn’t seem to be a problem.

As a next step, the implementation of the InOut algorithm in FluidX3D shall be validated.
This is done by using the algorithm to implement a viscosity contrast Λ = ηin/ηout between
the interior and exterior fluid of the capsule. The ESPResSo version was validated in [39] by
looking at the center of mass displacement of red blood cells (RBCs) in a rectangular channel
and comparing it to the results of BIM solutions. Here, a more dynamic validation is chosen,
where the Taylor deformation D of a capsule with Λ = 5 is investigated. This validation was
first done by [72, fig. 5] (IBM + thin-shell model), then confirmed in [73, fig. 11] (again IBM +
thin-shell model) and [74, fig. 7] (immersed-finite-element method + FVM based incompressible
fluid solver). They all use the neo-Hookean constitutive equation for the capsule and set the
bending energy to zero.

[73] use 7776 Catmull-Clark subdivision elements for the mesh representation of the capsule
(generated via the Catmull-Clark subdivision scheme). Aiming for a similar resolution, at first a
refinement with n∆ = 5120 triangles is used in this thesis. The domain should be chosen large
enough so that boundary effects become negligible. A size of Ls × Lt ×H = 10R × 5R× 10R
is chosen, which is very close to the cube of side length 10R [73] use. A smaller domain in
traverse-flow direction should not affect the simulation much. One can see in fig. 10.21a that
the InOut implementation of FluidX3D can qualitatively reproduce the increasing overshoot of
the deformation parameter for increasing Ca. However, the absolute deviation from the data

13Unpublished results.
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Fig. 10.20: Capsule in Newtonian shear flow with Re = 0.05. Comparison of two resolutions R = 13.5∆x and
R = 6∆x for FluidX3D and ESPResSo. On the left in (a), (b) and (c) the lines have the following meaning:
R = 13.5∆x + FluidX3D (solid colored), R = 13.5∆x + ESPResSo (dashed colored), R = 6∆x + FluidX3D
(dashed black), R = 6∆x + ESPResSo (dotted gray). For (a) and (b), the steady state values averaged from
t∗ = 4.5 are shown on the right. For (c), on the right the rotation frequency was determined by reading the
maxima and minima of φrot.
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from [73] increases with increasing Ca - not only for the overshoot, but also for the steady
state γ̇t→∞. However, a comparison with the ESPResSo implementation (dashed) shows that
ESPResSo and FluidX3D match perfectly. A bug in the new, parallelized InOut implementation
in FluidX3D is therefore unlikely. Nevertheless, it was visually checked whether the LBM nodes
were correctly marked as inside/outside. Additionally, a BIM simulation with n∆ = 5120 is used
(performed by Katharina Gräßel). The outcome agrees well with the results from [73]. Two
reasons for the deviation of the two LBM simulations are most likely: first, the domain could
have been chosen too small, so that boundary effects play a role. Secondly, the discretization
could be not fine enough. Since only discrete LBM nodes are marked as inside/outside during
simulation, e.g. the staircase effect could have too great an influence. To confirm this theory,
in fig. 10.21b simulations at Ca = 0.5 for different domain sizes and capsule mesh refinements
have been conducted. As the number of triangles n∆ grows, the grid refinement of the LBM also
increases, as listed in tab. 10.3. Fig. 10.21b suggests, that for even finer resolution and bigger
domain size, the LBM solution converges into the true solution. However, such a resolution is no
longer practically computable. Instead, VoF methods could be used to circumvent the staircase
effect, e.g. similar to the work of [27] in the context of the simulation of charged particles.
However, this is beyond the scope of this work.

n∆ 1280 5120 20480
R/∆x 6 12 25

Tab. 10.3: LBM grid resolution used for the different capsule mesh refinement shown in fig. 10.21.
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Fig. 10.21: Time evolution of the Taylor deformation parameter for an initially spherical capsule in shear flow with
Λ = 5 and κ̂B = 0. The solid lines are the results obtained by the FluidX3D implementation and the dashed lines
are obtained by ESPResSo. The dots indicate the results found by BIM simulations and the crosses indicate the
data taken from [73, fig. 11]. In (a), the resolution n∆ = 5120 in a domain of 10R× 5R× 10R was used both for
FluidX3D and ESPResSo. In (b), all simulations were taken at Ca = 0.5.
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10.8 Advection
10.8.1 The CTU advection scheme
In chapter 10.3 the treatment of the flux term ∂

∂rk
Jijk(r, t) via the FVM was shown. However,

especially in the context of high stress contrasts, a checkerboard instability can arise, as visualized
in the next chapter. Therefore, an alternative advection scheme called the corner-transport
upwind (CTU) scheme is presented. It’s basic description can be found in [75], the concrete
implementation is taken from [69] as used in the software pystencils [76].

In the CTU scheme, the grid is assumed to be made up from cubic cells (squares in 2D). The
flux J (out)

Q (r, t) of a quantity Q(r, t) out of the cell at position r and time t is computed by
virtually displacing the cell by the velocity u(r, t) and computing the overlap with the neighboring
cubes (cf. fig. 10.22). The full scheme is therefore defined on a D3Q27 neighborhood (D2Q9
in 2D). To check if a cell at position r displaced by u(r, t) overlaps with a neighboring cell at
position r + ci∆t, it must hold α(r, ci, t) = 1, where:

α(r, ci, t)
{

1, (uk(r, t)cik > 0) ∨ (cik = 0) for all k ∈ {1, . . . , d},
0, else.

(10.33)

In the condition above no Einstein summation applies. Furthermore, the actual overlap volume
V (out) is computed via

V (out)(r, ci, t) = α(r, ci, t)
d∏

k=1
lk(r, ci, t), where lk(r, ci, t) =

{
∆x− uk(r, t)∆t, if cik = 0
uk(r, t)∆t, else.

(10.34)
Finally, J (out)

Q (r, t) is obtained via

J
(out)
Q (r, t) =

q−1∑
i=1

J
(out)
Q,i (r, t), with J

(out)
Q,i (r, t) = V (out)(r, ci, t)Q(r, t). (10.35)

To ensure conservation, the incoming flux J (in)
Q (r, t) is defined by the overlap of the cell with the

neighboring cells displaced by their respective velocities

J
(in)
Q (r, t) =

q−1∑
i=1

J
(in)
Q,i (r, t), (10.36)

where J (in)
Q,i (r, t) = J

(out)
Q,i (r− ci∆t, t). The total flux −JQ(r, t) = −J (out)

Q (r, t) +J
(in)
Q (r, t) finally

replaces for Q(r, t) ≡ τij(r, t) the first term on the right hand side of eq. (10.8).

Note that J (out)
Q (r, t) only depends on values at position r, while J (in)

Q (r, t) only depends
on values of neighboring cells. This is basically the reason why the checkerboard instability
is prevented. Indeed, the CTU method is stable for Courant numbers up to 1, which means
each cell is not allowed to shift more than one grid point, i.e. |u|∆t < ∆x. Furthermore, since
|u|∆t � ∆x in typical LBM simulations, the flux J (out)

Q,i caused by the displacement is ∝ |u|
for face neighbors (edge in 2D), ∝ |u|2 for edge neighbors (corner in 2D) and ∝ |u|3 for corner
neighbors. Accordingly, using the CTU scheme on a reduced neighborhood incurs an error
compared to the full scheme, but has the advantage of increased performance. The error is
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Fig. 10.22: Illustration of the CTU scheme in case of a D2Q9 neighborhood. The grid nodes are marked as circles,
the ci are found as the vectors connecting neighboring nodes. J(out)Q (r, t) (gray region) is constructed by virtually
displacing a cube (square in 2D) by node velocity u(r, t) and computing the overlap volume with the neighboring
cubes. The flux to face neighbors (edge in 2D) is of first order in u, to edge neighbors (corner in 2D) it is of second
order, to corner neighbors of third order. J(out)Q (r, t) is at the same time the contribution of cell r to J(in)Q of the
neighboring cells.

of third order in |u| for D3Q19 (no corner neighbors) and of second order for D3Q7 (no edge
neighbors).

Boundaries with J(rw) ≡ 0 can be imposed by just skipping respective neighbors in the
summations appearing in eq. (10.35) and (10.36).

10.8.2 Conservation tests, checkerboard effect and staircase effect

A small, but systematic loss of the advected quantity is observed in the tests of the following
chapter, where the two advection schemes CTU/simple are combined with the volume tracking
algorithm of capsules. In this chapter it will be shown that this loss is already observable for
the pure advection algorithms, i.e., is not a bug in the algorithms of chapter 10.8.3.1. During
this chapter, the constitutive equation and the force term due to viscoelasticity F pext is switched
off. Furthermore, for simplicity, a scalar quantity τ instead of the full stress tensor τp is used. τ
can be thought of simply as ink that is advected with the flow and τges = ∑

r∈ grid τ(r) should
therefore be conserved.

For the first two tests, the velocities are not computed by the LBM. Instead, the con-
stant velocity ux = 0.001, uy = uz = 0 is given. The simulation domain has the sizes
Lx × Ly × Lz = 64∆x× 32∆x× 96∆x and is periodic in all directions. For simplicity, the D3Q7
neighborhood is chosen for advection.

For the first test, τ is initialized to τ(r) ∈ [0.95, 1.05], with the actual value assigned randomly,
equally distributed and independently for each node (cf. fig. 10.23a). Then, as described above,
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only advection is performed at each time step using the given constant velocity field. For
calculations with float accuracy, the following results are found: for simple, the average size
of the perturbation is preserved. Moreover, τges is conserved except for rounding errors. CTU,
on the other hand, causes a smearing of the perturbations over time, which is probably due
to numerical diffusion. τges is not preserved, but decreases systematically (cf. fig. 10.23 and 10.24).

(a) initialization (b) simple (c) CTU

Fig. 10.23: Cut through setup at y = Ly/2. In (a), the randomized initialization of τ at time t = 0∆t is shown. In
(b) and (c), the configuration of τ at time t = 80000∆t is shown for simple and CTU, respectively. A random
initialization around 1± 0.05 and a constant fluid velocity ux = 0.001, uy = uz = 0 is used in a domain of size
Lx × Ly × Lz = 64∆x× 32∆x× 96∆x.

0.05

0.10

0.15

m
ax

0 20000 40000 60000 80000
t/ t

0

1

ge
s/

ge
s,

0

1e 8+9.9999999e 1

0.024

0.025

m
ea

n

(a) simple

0.02

0.04

m
ax

0 20000 40000 60000 80000
t/ t

0.9998

1.0000

ge
s/

ge
s,

0

0.01

0.02

m
ea

n

(b) CTU

Fig. 10.24: Maximum and mean deviation of all nodes from 1 (top) and conservation of τges (bottom) for the two
advection algorithms. The same setup as in fig. 10.23 is used.

In appendix A1 further tests are listed that rule out a bug in the CTU implementation.
Finally, it is shown there that when using a buffer with double-precision, also for the CTU
scheme only numerical fluctuations in τges(t) occur (i.e. a behavior analogous to fig. 10.24a,
lower figure, only with significantly smaller amplitude). Nevertheless, in this thesis a buffer with
float-precision is continued to be used - in practice, the loss of τges compared to the source
terms in the constitutive equation is negligible.

The numerical diffusion of the advection algorithms will be investigated in a second test. In
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fig. 10.23 it looks like diffusion dominates advection for CTU, while simple seems to qualitatively
preserve the pattern given at initialization. In practice, however, high stress gradients occur
especially near the capsule boundary. Therefore, the exact same test as above is carried out for
a modified initialization: now a spherical region around the center of the domain with radius
R = Lz/4 is initialized with one, the rest with zero. With this, the test is already much closer to
geometries appearing in capsule simulations.

In fig. 10.25, the results at time t = 80000∆t are visualized. For both algorithms, the sphere
has already completely crossed the domain once and is in the process of leaving the domain
again on the right side. It is immediately noticeable that simple has perturbations with certain
wavelengths and a checkerboard pattern. Moreover, the range of values has increased from the
initial [0, 1] to [−0.6, 1.6]. CTU, on the other hand, preserves the initial shape and range of
values very well. Fig. 10.26 shows that the conservation error for simple has now increased,
possibly because it is now calculated with an unfavorable range of values. For CTU, on the
other hand, the error has decreased compared to the random initialization, possibly because
contiguous regions with a similar value range have an advantageous effect.

(a) initialization (b) simple (c) CTU

Fig. 10.25: Like fig. 10.23, but for a dot initialization. ParaView interpolates the colors of the single grid points in
(a) - in the actual initialization only the values 0 and 1 are used. In (b) and (c), the dot has already crossed the
whole domain once and is at the point of crossing it a second time.
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Fig. 10.26: Conservation of τges for the two advection algorithms. The same setup as in fig. 10.25 is used.

In a third test, it will be examined how the advection algorithms cope with bounce-back
boundaries. For this purpose, the velocities are no longer prescribed constantly, but calculated
with the LBM. The LBM part of the simulation is calculated with D3Q27 and TRT, so that
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discretization effects are mitigated in the LBM part. Doing so, possible discretization effects
caused by the different velocity sets used for the advection algorithms should be independent of
the LBM. Three setups are defined, which are used here and also in the following chapter for the
validation of the advection. The shear flow setup S1 is already known from chapter 10.6.1 and is
used this time with Ls × Lt ×H = 64∆x× 32∆x× 94∆x. The planar poiseuille channel setup
S2 has already been used in chapter 10.4.2. This time the no-slip bounce-back boundaries with
u((x, y, 0)T, t) = u((x, y,H)T, t) = 0 are in the z-plane, the homogeneous body force F = Fxêx
points in x-direction. The domain size is chosen to be Ls × Lt ×H = 64∆x × 32∆x × 94∆x.
The unaligned poiseuille channel setup S3 is used as a further setup. It consists of a periodic
cylindrical channel aligned along the vector (1, 1, 1)T (cf. fig. 10.27). The volume force is also
parallel to this direction. The whole simulation domain is a cube with side length L = 96∆x.
This setup is interesting for two reasons: firstly, the walls are constructed from staircases for
discretization reasons, and secondly, the flow direction is not along a major axis.

Fig. 10.27: Unaligned Poiseuille Setup S3. Wall nodes gray, cell grid black, section through stress field in colors
blue to red (see text for meaning of stress field in advection tests). Image taken at t∗ = 20, with the algorithm
simple + M0 (cf. chapter 10.8.3.1) and advection neighborhood D3Q27. The additional notches at the edges of
the domain are needed in order to obtain a fully periodic channel.

In order to have a definition of the dimensionless time t∗ = tγ̇, for setup S2 and S3 the typical
shear rate γ̇ is approximated as γ̇ = 2|ucenter|

H , where ucenter denotes the center velocity for a
simulation without capsule. For S1 it holds γ̇ = 2|uw|

H with wall velocity uw.

For this third test, the stress is homogeneously initialized to one; no capsule is present in the
flow. Just like the tests before, the constitutive equation is switched off and there is no force
resulting from the stress, instead there is only advection. The LBM simulation is therefore com-
pletely independent of the stress (ink) τ . A good advection algorithm should give a homogeneous
stress over time (i.e. continue to be one everywhere). When testing both advection algorithms
using the setups S1 and S2, τ remains exactly one for all times and τges is conserved exactly. The
reason for this is the high symmetry of the flow and the planar walls. For S3, on the other hand,
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10.8 Advection

the following is observed: Both for simple and CTU, stress conservation is violated on similar
orders of magnitude as in the tests without walls. Concerning the homogeneous distribution of
stress, the CTU scheme has problems with the staircase effect near the walls. This does not
improve with a larger neighborhood (cf. fig. 10.28b and 10.29b for D3Q27, fig. A5b for D3Q7.).
The simple scheme, on the other hand, already copes well with the D3Q7 scheme: at t∗ = 20,
an error of only ±0.4 has formed near the walls (cf. fig. 10.28a and 10.29a), with increasing
resolution it gets even better (D3Q19: ±0.1, D3Q27: ±0.1, cf. fig. A5a). It is also interesting to
note that the deviation caused by simple is symmetrical around one (reflecting the symmetry
of the algorithm itself), while CTU mainly has values greater than one. Why CTU already
performs significantly worse than simple in D3Q7 is not clear. The fact that simple improves
with D3Q27 compared to D3Q7, but CTU does not, can be explained as follows: For fluid nodes
next to the wall, the flow to many face-neighbors is blocked by the wall itself. Therefore, the flow
to edge-neighbors becomes more important. For simple these flows are first order in |u|, but for
CTU they are second order as explained above. Therefore, for simple D3Q19 brings a clear
improvement over D3Q7, while for CTU there is no noticeable improvement. However, if one
wants to keep the stability advantages of an upwind scheme, there are two possibilities: first, the
stress accumulation on walls due to the staircase effect could be bypassed analogously to chapter
10.8.3 in the improvement from method M3 to M4. In other words, advection of stress into the
first layer of wall nodes would be allowed, but directly afterwards the stress inside all wall nodes
would be re-distributed to nearby fluid nodes. Secondly, an upwind scheme could be used that
includes first-order flows for edge and corner neighbors (e.g. by starting at simple with D3Q27
and applying the first-order upwind scheme [77] to it). These tasks are left as future work.

(a) simple + D3Q7 (b) CTU + D3Q27

Fig. 10.28: Slice at x = L/2 through setup S3 (cf. fig. 10.27). Shown is τ at t∗ = 20 for a simulation without
capsule. Wall nodes are colored black.

10.8.3 Advection towards Newtonian capsules in viscoelastic fluids
In this section it will be explained how the basic advection algorithms can be adapted to simulate
a capsule with Newtonian interior fluid and viscoelastic exterior fluid. At first the implementation
of the algorithms will be explained, then some pure advection tests analogous to chapter 10.8.2
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(a) simple - D3Q7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
max. deviation

0.60

0.80

1.00

co
un

ts
 (n

or
m

.)

0 5 10 15 20

0.96

0.98

1.00

co
un

ts
 (n

or
m

.)

0

1

m
ax

0 5 10 15 20
t

0.0000

0.0005

ge
s/

ge
s,

0 +1
0.00

0.05

m
ea

n

(b) CTU - D3Q27

Fig. 10.29: Top: stacked and normalized histogram of all fluid nodes, ordered by the amount of their respective
deviation from one. Deviation intervals color-coded. Histogram in two versions with different "zoom levels". Mid:
maximum and average deviation from one. Bottom: check of conservation of τges.

are conducted and finally the behavior of the algorithms in realistic setups is investigated.

10.8.3.1 Algorithms

M0 and M1: reference methods To compare the different algorithms, two reference methods
are defined. In both the methods M0 and M1 the whole computational domain is captured by
the same constitutive law. Furthermore, M0 doesn’t distinguish between interior and exterior
fluid at all. M1 however makes the interior fluid Newtonian by artificially setting F p

ext(rI) = 0
for nodes nI at a position rI inside the capsule, while for exterior nodes nO the stress continues
to act on the fluid with the force F p

ext(rO) = ∇ · τp. This is only a rough approximation, as the
stress is still advected over the capsule boundary without restriction . Which node is nI/nO is
marked by the already existing volume tracking algorithm from chapter 7.3.

M2: two parameter sets Looking in literature, [78] is able to simulate a capsule where the
inner fluid is Newtonian and the outer fluid is an Oldroyd-B fluid. For the Newtonian part they
use the FVM instead of the LBM, and a front-tracking method [71] is used to model the capsule
instead of the IBM. They solve the equations of the viscoelastic fluid on the entire computational
domain, but for two different sets of parameters for the interior and exterior fluid. Since the fluid
properties would vary sharply across the interface, a smoothed indicator function provides an
interpolation between the two sets in a small region around the interface. The Newtonian case
for the interior fluid is observed by taking the limit λp → 0. To be able to obtain this limit, the
discretization of the constitutive equation has to be done differently so no terms ∝ 1/λp appear.
This has been done in [78, eq. 11-14] [79] and leads to the discretization

τ ij(r, t+ ∆t) ≈ τ ij(r, t) exp(−∆t/λp) +K(r, t)(1− exp(−∆t/λp)), (10.37)
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10.8 Advection

where
K = ηpD − λp(u · ∇τp − (∇u)τp − τp(∇u)T). (10.38)

This reformulated discretization defined by eq. (10.37) and (10.38) was implemented in
FluidX3D, obtaining K by the methods outlined in chapter 10.3. Then, the implementa-
tion was first tested without a capsule for a single parameter set with λp = 0 in shear flow, where
the Newtonian case could be successfully reproduced. If the same test is carried with capsule
(again with a single parameter set), after a few time steps regularly arranged "threads" form in
the stress field as well as the velocity field. They have a thickness of exactly one lattice node,
slowly grow from the walls to the channel center and finally lead to an numerical instability.
They have phenomenological similarities to an hourglass instability. This is the case for different
Reynolds numbers Re ∈ {0.5, 0.05} and different capsule resolutions R ∈ {6∆x, 12∆x}.

The method M2 thus seems to be incompatible with IBM. This is particularly strange because
IBM and M2 do not interact directly with each other, but only via the fluid velocity field. An
explanation for the emergence of the "threads" and the unstable behavior could not be found.
Furthermore, it was assured that exp(−∆t/λp) for λp = 0 was correctly evaluated as 0. Thus,
since the problem could not be identified, this method is discarded. Even if the implementation
had been successful, there would have been a problem: if polymer stress is advected from a
region with parameter set 1 to a region with parameter set 2, the polymer stress is generally not
preserved. This is most easily seen when Newtonian parameters (λp = 0) are chosen as parameter
set 2: stress advected into this region is simply deleted. Method M3 addresses this problem.

M3: shovel at conversion Method M3 builds upon M1 with the addition, that for all nodes
nI inside the capsule τp(rI) = 0 is set. As an optimization regarding the implementation, the
constitutive equation for interior nodes isn’t evaluated at all. To ensure conservation of stress
for the exterior fluid, J(rI + ci∆t/2) = 0 is set where rI + ci∆t is a nO-node. This idea is
analogous to the treatment of bounce-back walls. However, it is not sufficient: Because the
capsule boundary moves over time, conversions nI → nO and nO → nI happen.

The flag GI already provided by the InOut algorithm is defined as

GI(r, t) =
{

1, for nodes nI ,
0, else,

(10.39)

To treat the conversions, a new flag GC is introduced, which is defined as

GC(r, t) =
{

1, if GI(r, t) 6= GI(r, t−∆t),
0, else,

(10.40)

marking if a change of GI compared to the last time step is applied. No new kernel is needed, the
flag can be set during the kernels ibm_inout_tracking_A and ibm_inout_tracking_B. For each
node marked with GC = 1 one also needs to know the number Nf of nO-neighbors (irrespective
if the neighbors themselves are additionally marked with GC = 1). Since this can only happen
after the flags GI and GC are set, this is done in a separate kernel count_outer_neighbors. As
an optimization regarding memory GI , GC and Nf are saved in a single 8-bit field (for Nf only
5 bits are needed because of Nf ≤ 26.).
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10 Viscoelasticity

The rest of the algorithm is based on an idea outlined in [69] 14 [27, 80] 15. The idea is
implemented in the kernel conserve_stress. The stress tensor is denoted τp before kernel
conserve_stress is called, and τ∗p afterwards. A node at position rf with nO → nI distributes
its stress to the surrounding Nf nO-nodes, i.e.:

τ∗p(rf + ci∆t, t) = τp(rf + ci∆t, t) + 1
Nf

τp(rf , t). (10.41)

A node at rf with nI → nO, on the other hand, receives from the surrounding Nf nO-nodes

τ∗p(rf , t) = 1
Nf + 1

q−1∑
i=1

τp(rf + ci∆t, t) (10.42)

and the corresponding amount is removed from the respective nodes:

τ∗p(rf + ci∆t, t) = τp(rf + ci∆t, t)
(

1− 1
Nf + 1

)
(10.43)

Equation (10.43) agrees with [27, eq. 22], but differs from the description in [69, eq. 45], where
there are probably several typing errors.

M4: ongoing shovel Method M3 provides problems as outlined in chapter 10.8.3.2. In short,
J(rI + ci∆t/2) = 0 leads to an undesired build-up of stress near the capsule boundary. This
motivates method M4, which is a modification of M3. Here, the condition J(rI + ci∆t/2) = 0 is
removed, which leads to stress being advected into the outermost layer of the capsule interior in
the kernel stress_tensor. In the immediately following kernel conserve_stress2, the stress
is distributed to the surrounding Nf outer neighbors. For an inner node at rf with an outer
neighbor at rf + ci∆t, again eq. (10.41) holds, where this time τ∗p denotes the stress tensor after
calling conserve_stress2. Since the capsule interior is now free of stress 16 the remaining steps
starting from kernel ibm_inout_tracking_A can be applied like in M3. The individual steps of
algorithm M4 are shown in fig. 10.30. An overview of the kernels was already given in fig. 10.6.

Concerning the implementation, there are still two technical details to note. First, in the
kernel count_outer_neighbors, all nodes with GI = 1 must now additionally determine the
number of their outer neighbors, not only those with GC = 1. Second, in the same kernel, the
last remaining bit in the 8-bit flag is used as another flag GS to mark nodes in the outermost
layer of the capsule interior. This is an optimization, as nodes (GI && !GS) can now be omitted
from the advection in stress_tensor.

10.8.3.2 Pure advection tests

Now it will be investigated how the algorithms described above perform with regard to ad-
vection. For this purpose, the three setups S1, S2 and S3 described in ch. 10.8.2 are used.
This time, a capsule of radius R = 6∆x and n∆ = 1280 is placed in all setups, following the
14Used for the conservation of stress for simulations of hard particles in a viscoelastic fluid via the moving boundary

method.
15Used for the conservation of charge for simulations of the propagation of ion concentrations.
16For parallelization reasons, the stress inside is actually only explicitly set to zero in kernel conserve_stress.
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(a) (b)

𝑣

(c)

(d) (e) (f)

Fig. 10.30: 2D illustration of the algorithms M4, where a D2Q5 neighborhood is used for advection. The
inside/outside flags are represented by filled/empty circles at the lattice node centers. The arrows indicate how
stress (red squares) is exchanged between neighbors. Advection into the interior of the cell is initially allowed (a),
but the stress is distributed again to external neighbors (b). These two steps together prevent accumulation of
stress. After calling the IBM kernels, the cell has moved and the inside/outside flag grid is no longer up-to-date
(c), which is corrected by IBM tracking (d). This leads to a new redistribution of stress for the changed nodes and
their neighbors (e), before a correct capsule is ready for the next iteration (f).
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10 Viscoelasticity

neo-Hookean law. It will be simulated at Ca = 0.1 and Re = 0.05, where the capillary number
is defined as Ca = ηγ̇R

κS
. The Reynolds number for S1 is given by Re = R|uw|

ν , for S2 and S3
it holds Re = R|ucenter|

ν . The same procedure as in chapter 10.8.2 is applied (turning off the
constitutive equation, τ is an ink-like scalar that is only advected and does not couple to the
LBM), where τ is initialized to zero (ink-free) inside the capsule and to one (ink-filled) outside
the capsule. The velocity field for the advection is computed by the IB-LBM with a D3Q27
neighborhood and TRT. In an ideal simulation, the capsule boundary should always have exactly
the velocity of the surrounding fluid. Accordingly, for t∗ > 0 the ink-free region should not mix
with the ink-filled region. Since the velocity field already does not fulfill this perfectly in real
simulations, even a perfect advection algorithm would mix the two regions. Nevertheless, to
quantify the quality of the advection algorithms, the deviation from the ideal values will be used,
i.e. |τ(rI)| and |τ(rO) − 1| for an interior and exterior node, respectively. Since M0 and M1
behave the same with respect to advection (the coupling of τ to the fluid is switched off for
this test anyways), only M0, M3 and M4 are included in the comparison of the methods. In
the analysis plots, for the calculation of the maximum and mean deviation as well as for the
histograms, only those fluid nodes are considered that either lie within the capsule or, starting
from the capsule edge, can be reached within 6 time steps with lattice speed of and a D3Q27 ve-
locity set. For the check of the conservation of τges, on the other hand, all fluid nodes are included.

In the setup S1 (shear flow), the capsule is placed in the center of the domain and remains
there at t∗ > 0. In the setup S2 (planar poiseuille), the capsule also starts in the center, but has
already completely crossed the domain once at t∗ = 20. In the setup S3 (unaligned poiseuille),
the capsule starts in the center of the channel in the corner of the domain and has almost reached
the center of the domain at t∗ = 20.

First, the combination CTU + D3Q27 + M3 is examined. For this combination, in the
setup S1 the stress accumulates at some corners of the capsule (cf. fig. 10.31a and 10.32a). The
reason for this is that the velocity field has a component into the cell, but for τ the no-flux
condition J(rI + ci∆t/2) = 0 holds. In the setup S2, stress accumulates behind the capsule due
to the periodic motion of the boolean GI -flag field, which together with the no-flux condition
systematically pushes the stress backwards (cf. fig. 10.31b and 10.32b).

(a) S1 (shear flow) (b) S2 (planar poiseuille)

Fig. 10.31: Advection test using CTU + D3Q27 + M3. A slice at y = Lt/2 of the field τ is shown at t∗ = 20. In
(a), an accumulation of τ at the capsule edge is visible. The color bar ranges from 0.0 (blue) to 2.5 (red). In (b),
stress accumulates behind the capsule. The color bar ranges from 0.0 (blue) to 5.9 (red). The corresponding plots
are shown in fig. 10.32.
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(a) S1 (shear flow)
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(b) S2 (planar poiseuille)

Fig. 10.32: Advection test using CTU + D3Q27 + M3. Top: stacked and normalized histogram of all fluid nodes,
ordered by the amount of their respective deviation from their ideal value, |τ(rI)| or |τ(rO)−1|. Deviation intervals
color-coded. Histogram in two versions with different "zoom levels". Mid: maximum and average deviation from
the ideal value. Bottom: check of conservation of τges. The accumulation of stress is visible by the increasing
maximum deviation. It decreases again whenever the GI -flag field shifts in such a way that τ can flow away from
the accumulation point.
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M3 is therefore discarded. The tests for the combinations {CTU, simple} x {M0, M4} x
{D3Q27} x {S1, S2, S3} are shown in figs. 10.34 - 10.40. It can be seen that the combination
M4 + CTU performs best in every setup, followed by the combination M0 + CTU. Further on,
the following observations are made:

• For simple, negative values for τ occur in all setups. This is particularly pronounced in
combination with M0.

• The high symmetry of the setup S1 (shear flow) is reflected by all advection algorithms.

• M4 can successfully prevent the accumulation of τ near the edge of the capsule that was
observed in S1 when using M3.

• In the setup S1, stress accumulates for CTU in the y-plane at a very concentrated point
on both sides of the capsule. In addition, a cross-shaped accumulation occurs in the
x-plane. Whether this is an effect of the advection algorithm or just an accurate reflection
of stagnation points of the velocity field is not clear here.

• In the setup S2 (planar poiseuille), M4 can successfully prevent the accumulation of τ
behind the capsule observed in M3.

• In the setups S2 and S3, waves occur in the stress distribution behind the capsule when
using simple.

• In the setup S3 the problems with the staircase effect regarding the walls are also present in
simulations with capsule. The color scale in fig. 10.39b and 10.39d was artificially adjusted
to the interval [0, 1.2]. At the channel walls τ takes values up to 1.9.

• The violation of the conservation of τges has the same orders of magnitude as already
observed for simulations without capsule in chapter 10.8.2. It is independent of the use of
M0/M4. Furthermore, τges tends to be better preserved for simple than for CTU. The
shape of the curve τges(t) seems to depend mainly on the choice of setup.

Presented so far are the results using a D3Q27 neighborhood for advection. In the setups S1
and S2 the advection neighborhoods D3Q19 and D3Q7 do not produce worse results (in some
cases they are even better) because of the alignment along the coordinate axes. In the setup
S3 a difference between the advection neighborhood sets is only visible with the combination
CTU + M4 and is shown in fig. 10.41. In fact, the results improve as the size of the neighborhood
set increases.
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10.8 Advection

(a) simple + D3Q27 + M0. The color bar ranges from
-0.5 (blue) to 1.3 (red).

(b) CTU + D3Q27 + M0. The color bar ranges from
0.9 (blue) to 3.1 (red).

(c) simple + D3Q27 + M4. The color bar ranges from
-0.3 (blue) to 1.8 (red).

(d) CTU + D3Q27 + M4. The color bar ranges from
0.0 (blue) to 2.0 (red).

Fig. 10.33: Advection test using setup S1 (shear flow) with capsule. Shown is a slice through the ink τ at y = Lt/2
and t∗ = 20. Note the high symmetry of ink-distribution and, in case of CTU, the ink-accumulation on both sides
of the capsule.

(a) simple + D3Q27 + M0. The color bar ranges from
-0.4 (blue) to 1.3 (red).

(b) CTU + D3Q27 + M0. The color bar ranges from
0.7 (blue) to 1.9 (red).

(c) simple + D3Q27 + M4. The color bar ranges from
0.0 (blue) to 1.4 (red).

(d) CTU + D3Q27 + M4. The color bar ranges from
0.0 (blue) to 2.3 (red).

Fig. 10.34: Like fig. 10.33, but at x = Ls/2. Note the high symmetry of ink-distribution and, in case of CTU, the
cross-shaped ink-accumulation.
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(a) simple + D3Q27 + M0
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(b) CTU + D3Q27 + M0
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(c) simple + D3Q27 + M4
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(d) CTU + D3Q27 + M4

Fig. 10.35: Advection test using setup S1 (shear flow) with capsule. The meaning of the plots is the same as in
fig. 10.32. Algorithm M4 performs much better than M0 in terms of accuracy. The conservation of τges is orders of
magnitude better for simple when compared to CTU.
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10.8 Advection

(a) simple + D3Q27 + M0. The color bar ranges from
-0.5 (blue) to 1.4 (red).

(b) CTU + D3Q27 + M0. The color bar ranges from
0.4 (blue) to 1.0 (red).

(c) simple + D3Q27 + M4. The color bar ranges from
-0.1 (blue) to 2.9 (red).

(d) CTU + D3Q27 + M4. The color bar ranges from
0.0 (blue) to 2.2 (red).

Fig. 10.36: Advection test using setup S2 (planar poiseuille) with capsule. Shown is a slice through τ at y = Lt/2
and t∗ = 20. Note the negative values of τ occurring for algorithm M0.

(a) simple + D3Q27 + M0. The color bar ranges from
0.0 (blue) to 1.1 (red).

(b) CTU + D3Q27 + M0. The color bar ranges from
0.4 (blue) to 1.0 (red).

(c) simple + D3Q27 + M4. The color bar ranges from
0.0 (blue) to 1.1 (red).

(d) CTU + D3Q27 + M4. The color bar ranges from
0.0 (blue) to 2.3 (red).

Fig. 10.37: Like fig. 10.36, but at x = Ls/2.
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(a) simple + D3Q27 + M0
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(b) CTU + D3Q27 + M0
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(c) simple + D3Q27 + M4
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Fig. 10.38: Like fig. 10.35, but for setup S2 (planar poiseuille).
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(a) simple + D3Q27 + M0 (b) CTU + D3Q27 + M0

(c) simple + D3Q27 + M4 (d) CTU + D3Q27 + M4

Fig. 10.39: Advection test using setup S3 (unaligned poiseuille) with capsule. Shown is a slice through τ in the
plane r · (1, 1,−2)T = 0 and at time t∗ = 20. Note the waves in τ occurring for simple. Also note the accumulation
of ink at the walls occurring for CTU. Algorithm M0 leads to negative values in τ , which are not present in
algorithm M4.
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(b) CTU + D3Q27 + M0
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(c) simple + D3Q27 + M4
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(d) CTU + D3Q27 + M4

Fig. 10.40: Like fig. 10.35, but for setup S3 (unaligned poiseuille). The combination CTU + D3Q27 + M4
outperforms the other combinations in terms of accuracy. The conservation of τges is orders of magnitude better
for simple.
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(a) CTU + D3Q7 + M4
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(b) CTU + D3Q19 + M4

Fig. 10.41: For the combination CTU + M4 and the setup S3 (unaligned poiseuille) the results improve as the
size of the advection neighborhood set increases (compare to fig. 10.40d).

10.8.3.3 Behavior with viscoelasticity switched on

Next, it is investigated how the algorithms behave when the stress interacts with the fluid
again via the constitutive equation. The combinations {CTU, simple} x {M0, M1, M4} are
inspected. Here, D3Q27 is always chosen as the neighborhood of the advection algorithms. First,
in connection with M1 and M4, the question arises how the boundary conditions are to be chosen
for nO-nodes next to the capsule interior. A constant extrapolation of stress was chosen for the
wall nodes regarding the no-slip bounce-back boundaries. But since the interior of the capsule is
explicitly assumed to be stress-free in both algorithms, a linear extrapolation into zero makes
more sense in this context.

Like in chapter 10.8.3.2 the three setups S1, S2 and S3 are simulated at Ca = 0.1 and Re = 0.05.
Furthermore, again R = 6∆x and n∆ = 1280 is chosen. In order to switch on viscoelasticity,
the Oldroyd-B model with Wi = 2 and β = 0.5 is used. In contrast to before, the measures of
the planar poiseuille channel of setup S2 are changed to Ls × Lt ×H = 64∆x× 32∆x× 32∆x.
This causes higher shear rates near the center of the channel and thus higher deformation. In
fig. 10.42 and 10.43 the results of the different algorithms are shown, always compared against
the pure Newtonian solution of same total viscosity. In addition, for M4 the version with
constant extrapolation is drawn in dashed lines. The version with constant extrapolation is
clearly further away from M0 than the version with linear extrapolation into zero. Overall, for
linear extrapolation the two algorithms M4 and M1 agree well. The differences to M0 are not
very large, since only small shear rates are present inside the cell and thus the viscoelasticity
inside the capsule is small even for a purely viscoelastic fluid.

Moreover, fig. 10.42 shows that CTU is significantly better than simple in terms of stability.
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Fig. 10.42: Newtonian capsule at Wi = 2 in Oldroyd-B shear flow, setup S1. Comparison of different advection
algorithms with the pure Newtonian fluid. For M4, the constant extrapolation version is plotted with dashed lines.
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Fig. 10.43: Like fig. 10.42a, but for the setups S2 and S2.
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More detailed investigations showed that in the setup S1 (shear flow) instabilities occur starting
at Wi ≈ 1 when using simple. Therefore, only CTU will be used in the future.

Fig. 10.44 illustrates how small the difference between the algorithms actually is: For the setup
S2, the algorithms result in almost identical capsule meshes, all of which differ strongly from the
pure Newtonian solution. The latter propagates much faster through the fluid and experiences
higher deformation. Similar good agreement between the meshes was found for the other setups,
although in the shear flow setup S1 the meshes are twisted with respect to each other due to
the slightly different rotational frequency of the respective algorithms. In fig. 10.45 for setup S1
the stress field of M0 is contrasted with that of M4. The results of the algorithms are in good
visual agreement. Effects of the individual algorithms, as considered for pure inks in fig. 10.33
and 10.34, thus play no role with the constitutive equation switched on. This is also true for the
ink-accumulation near wall boundaries in the unaligned poiseuille setup S3 when using CTU
that was observed in fig. 10.39. No build-up of stress near the walls could be observed for actual
viscoelastic fluids (cf. fig. A4).

Overall, it can be observed in fig. 10.42a that the steady state deformation of M0 beginning at
t∗ ≈ 5 is somewhat smoother than that of M4 and M1. The fact that the latter two algorithms
switch discretely between two parameter sets is thus visible here. This tendency is even stronger
for FENE-P and also gets worse for coarser resolution (cf. fig. A6). Furthermore, for increasing
Wi the results of M0 increasingly differ from those of M1 and M4, respectively. This can already
be observed in fig. A6, but will be explained in more detail in chapter 10.9 (cf. fig. 10.48).

Fig. 10.44: Capsule mesh in setup S2 at t∗ = 7.5 using CTU. The algorithms M0 (black), M1 (blue) and M4 (red)
in comparison to the pure Newtonian fluid (green).
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(a) M0 (b) M4

Fig. 10.45: Stress component sxx in shear flow at t∗ = 20 using CTU. The stress field is qualitatively the same for
both algorithms M0 and M4.

10.9 Validation of capsule in viscoelastic fluid
Also [68] consider capsules in Oldroyd-B fluids. They do not use the FVM for the viscoelasticity
part, but instead couple a D3Q7-LBM viscoelasticity solver to the actual D3Q19-NS solver.
Moreover, for stabilization, they introduce an additional diffusion term in the constitutive equa-
tion to control the growth of the gradient of the stress tensor. They specify the strength of the
term using the dimensionless diffusion parameter Pr = k/γ̇L2, where k denotes the diffusion
constant and L is a characteristic length.

To compare the results, their setup of a 3D capsule in an Oldroyd-B shear flow has to be
reproduced. It consists of a cubic domain with Ls×Lt×H = 10R× 10R× 10R. The simulations
are performed at Re= 0.125, Ca = 0.05 and β = 0.5 17. Internal and external fluid have the same
properties, the neo-Hookean law is used for the capsule and there is no bending energy. The grid
spacing is ∆x = R/12, so correspondingly R = 12∆x, which will be resolved by n∆ = 5120.

A comparison of their simulation results with the ones of this thesis is shown in fig. 10.46. Up
to the dimensionless time γ̇t = 5 there is a very good agreement. After that, there are deviations
for Wi≥ 2. However, these are partly within the range of deviations caused by the artificial
diffusion term within the simulations of [68]: their fig. 21 provides a comparison of the data
shown here with simulations at lower Pr. It seems like lower Pr tend to go with lower D. Thus,
the fact that the simulation results from their fig. 18 show higher D than the ones presented in
this thesis is probably due to their diffusion constant being too high. Furthermore, strangely
enough, in their 3D simulation no initial overshoot of D for Wi ∈ {0.25, 0.5, 1.0} can be seen.
However, in their 2D simulations, [68] find overshoots which are qualitatively similar to those
17The dimensionless quantities given by [68] were converted to the definitions valid in this thesis.
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10.9 Validation of capsule in viscoelastic fluid

observed in this thesis (compare fig. 10.46 with their fig. 15). Overall, it should be noted that
the simulations for Wi = 10 and Wi = 100 do not reach a steady state, but become unstable
at later times. Upon inspection using ParaView, one notices that the simulation sees its own
periodic image (cf. fig. 10.47a). So the domain chosen by [68] is actually too small. Therefore,
the domain was increased in stream-flow direction until no significant change in D occurred,
which was the case at Ls = 40R. At the same time, the domain was decreased to Lt = 5 to
reduce computation time, but this had no effect on D. The solution with enlarged domain is
shown in fig. 10.46 as dashed lines.

Moreover, the inspection of the capsule mesh reveals a buckling behavior in the capsule surface.
In [68, fig. 19] similar buckling is documented, but the ones from the present algorithm (cf.
fig. 10.47b) are more sharp-edged. Possibly this is because in the present algorithm there is lower
diffusion of stress at the capsule surface.
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Fig. 10.46: Validation of a capsule in Oldroyd-B shear flow, interior and exterior fluids are equal. The data from
[68, fig. 18] is indicated with crosses. In FluidX3D simulations with the same domain size (solid, 10R× 10R× 10R)
and with a bigger domain size (dashed, 40R× 5R× 10R) were conducted.

(a) Simulationbox of [68] contains periodic images. (b) Buckling described by [68].

Fig. 10.47: The pictures are taken using the original simulation domain [0, 10R]× [0, 10R]× [0, 10R] at Wi = 2
and t∗ = 15.
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Now that the viscoelastic capsule in viscoelastic fluid has been validated, we turn to the
Newtonian capsule in viscoelastic fluid. Here, a comparison with Raffiee et al. [78], whose method
was already explained in chapter 10.8.3.1, is appropriate. The setup from their fig. 8 is recreated,
i.e., a domain with Ls × Lt ×H = 128∆x× 64∆x× 126∆x is used. Moving walls at z = 0 and
z = H cause a shear flow. An initially spherical capsule of radius R = 12∆x is placed in the
domain center, which will be resolved by n∆ = 5120. Other fixed dimensionless numbers are
Ca = 0.2, Re = 0.118 and β = 0.5. In fig. 10.48, their simulation data is compared with that of
this thesis. Linear interpolation into zero was used for algorithms M1 and M4.

It can be seen that the pure Newtonian case (Wi = 0) agrees well. For the remaining cases,
M0 (dotted), M1 (dashed), and M4 (solid) are plotted against [78, fig. 8] (crosses). Let us first
look at the deformation D from fig. 10.48a. With respect to the initial dynamics up to about
t∗ = 10, algorithm M0 agrees best with Raffiee et al. Compared to M0, for M1 and M4 the initial
oscillations of D are more pronounced. For long times and increasing Wi, on the other hand, the
data is in better agreement with M1 and M4, where the deformation is reduced compared to
M0. Overall, the data of Raffiee et al. is mostly between the results of M0 and M1/M4. The
reason for this might be their interpolation procedure (smoothed indicator function). Also, the
fact that they do not explicitly care about stress conservation might play a role. Looking at the
inclination data in fig. 10.48b, on the other hand, M0 always seems to fit the data from Raffiee et
al. best. This is strange, since M0 is the reference method of a viscoelastic capsule in viscoelastic
fluid. Furthermore, Raffiee et al. do not provide a comparison between their Newtonian and
their viscoelastic capsule is viscoelastic flow. For all those reasons mentioned, the significance of
the validation via Raffiee et al. is considerably reduced.
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Fig. 10.48: Quantities of a Newtonian capsule in Oldroyd-B shear flow for various Wi. The algorithms M0 (dotted),
M1 (dashed) und M4 (solid) are compared against data from [78, fig. 8] (crosses).

18[78] state that they are actually simulating at Re = 0.5 (converted to the definition used here), but this already
leads to strongly different results in the fully Newtonian case and is suspected to be an error.
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10.10 Applications

10.10.1 Deformation and inclination of capsule in FENE-P shear flow

A neo-Hookean capsule in Oldroyd-B shear flow has already been studied in detail in literature.
As shown above, the simulations of this thesis provide good agreement. Now, a similar investiga-
tion will be carried out for the FENE-P fluid. For this purpose, simulations are performed in a
domain of size Ls × Lt ×H = 120∆x × 64∆x × 180∆x and at Re = 0.05 and Ca = 0.1. The
dimensionless parameters of the FENE-P fluid are chosen as β = 0.5 and b = 100. Furthermore,
a resolution of R = 12∆x is chosen using n∆ = 5120. A comparison with simulations at R = 6∆x
using n∆ = 1280 (not shown) suggests that this resolution is sufficient.

The results are depicted in fig. 10.49. The data for the Taylor deformation D show an interest-
ing transient response of the capsule when switching on the shear flow. For low Wi (until Wi ≈ 3)
a single overshoot is observed. This overshoot was already present in Oldroyd-B simulations (cf.
fig. 10.46). But when Wi is increased further, after the initial overshoot a further increase of
the deformation assuming a step-like form is found, until D finally slowly decays to its steady
state value (even the simulations with Wi = 30 and Wi = 50 reach a steady state for t∗ > 40
and remain stable). This is a difference to Oldroyd-B, where no steady state occurs from about
Wi ≈ 10. This difference between the two fluid types can be explained as follows: The presence
of the capsule gives rise to an elongational flow near the capsule edges. The dimensionless
elongational rate Λe = ε̇λp is proportional to the Weissenberg number Wi. Therefore, for high
Wi the stress near the capsule edges can grow unboundedly for the Oldroyd-B fluid (cf. chapter
4.3.2.3), resulting in an unbounded growth of the capsule deformation. For the FENE-P fluid,
on the other hand, stress always reaches a steady state for elongational flows (cf. chapter 4.3.3.3)
and so does the capsule deformation in the present shear flow setup. Overall, however, the
tendency already observable for Oldroyd-B remains that a higher Weissenberg number causes
lower deformation and inclination.
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Fig. 10.49: Neo-Hookean FENE-P capsule in FENE-P shear flow. Parameters in text.
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10.10.2 Rotation frequency of capsule in viscoelastic shear flow

A single, non-Brownian sphere in bulk simple shear flow is an interesting object of study. Assuming
a no-slip boundary condition on the surface of the sphere, the total torque acting on the sphere
must be zero. For a Newtonian fluid, this leads to a rotational frequency ω (rad/s) of half the
vorticity, which can be expressed as [81, 82]

ω = γ̇

2 . (10.44)

For decreasing Ca, the steady state shape of the capsule in shear gets less prolate and finally
transitions into a sphere. Therefore it doesn’t surprise, that e.g. in fig. 10.20c the dimensionless
rotational frequency ω/γ̇ approaches 1/2 for Ca→ 0. On the other hand, fluids with viscoelastic
properties lead to a more complex behavior. [83] model a sphere in viscoelastic fluid via a
multi-mode Giesekus model and compare the results to experimental data. In [83, fig. 6] they find
that all the experimental data collapse on a single master curve if plotted against the Weissenberg
number. For small Weissenberg numbers the Newtonian case is reproduced. But starting from
Wi ≈ 1 a strong frequency drop is found for increasing Weissenberg numbers, until finally a
plateau at ω/γ̇ ≈ 0 is reached: at Wi = 10 already ω/γ̇ < 0.02 is valid for their models, the
experimental data only reaches as far as Wi ≈ 4. In this thesis, the viscoelasticity will be modeled
by FENE-P and Oldroyd-B. A layer of complexity is added by considering deformable capsules.
Re = 0.05, Ca = 0.1 and R = 6∆x are chosen and a domain of Ls×Lt×H = 64∆x×32∆x×94∆x
is used. Furthermore, simulations take place at fixed β = 0.5 and for FENE-P the cases b = 10
and b = 100 are selected. The fluid of the capsule interior can be viscoelastic itself or Newtonian,
where in the latter case M4 or M1 is used. The frequencies are obtained analogous to fig 10.20c,
with the only difference that the total simulation time equals t∗ = 70.

The results are shown in fig. 10.50. Similar to the case of hard spheres in [83, fig. 6], frequency
starts dropping at Wi ≈ 1. For the Oldroyd-B model, at Wi = 10 the beginning of a plateau at
ω ≈ 0 is only slightly visible; for FENE-P the transition to the plateau is more pronounced. For
0 ≤Wi ≤ 1 another plateau is visible. Its value depends on Ca, is therefore generally different
from the plateau value for hard spheres. Since the shear-thinning effect is negligible for low Wi,
FENE-P and Oldroyd-B collapse on the same curve. Comparing M4 to M0, one can see that
in this region the values of Newtonian capsules are shifted towards higher rotational rates in
comparison to viscoelastic capsules. Furthermore, M1 transitions to M0 for small Wi, but to M4
for large Wi.

For Wi > 4, simulations with Oldroyd-B capsules are getting unstable. The choice of a
Newtonian capsule seems to have a stabilizing effect, here simulations can reach Wi = 10.
This stability advantage can already be observed in fig. 10.48a, where for Wi = 10 the Taylor
deformation parameter reaches a steady state value for Newtonian capsules (M1 and M4), but not
Oldroyd-B capsules (M0). Since this unboundedly growing deformation for M0 is already present
at the validation via fig. 10.46a, it is not considered a numerical, but rather a model intrinsic
instability. The FENE-P model on the other hand yields stable simulations up to Wi ≈ 20 for
both Newtonian as well as FENE-P capsules when using M0 and M1, respectively. Algorithm
M4 gets unstable starting from Wi ≈ 10. This time a numerical instability is the reason. Already
much earlier, starting from about Wi = 1, wiggles in the deformation parameter become clear (cf.
fig. A6b). They are also present for Newtonian capsules in Oldroyd-B fluid. An increase of the
resolution or an improvement of the advection algorithm with the possibilities already outlined
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Fig. 10.50: Capsule rotation rate as a function of Weissenberg number. Results for both the FENE-P and the
Oldroyd-B model, and for viscoelastic as well as Newtonian capsules.

in previous chapters could resolve this.

10.10.3 Newtonian capsule in rectangular channel filled with alginate

As a final application, it is shown how the viscoelastic models can be used in the context of
biofabrication research. In extrusion-based biofabrication, a cell experiences high hydrodynamic
stresses during printing. These stresses depend on the viscoelastic properties of the hydro-
gel, the geometry of the printer nozzle as well as the emerging flow profile. An important
property of hydrogels is their shear-thinning behavior. For strongly shear-thinning fluids with
η(γ̇ ≈ 0 s−1)/η(γ̇ = 100 s−1) ∝ 104, the potential for stress reduction can already be seen from
the flow profile: while Newtonian liquids have high shear rates nearly everywhere in the nozzle
due to its parabolic velocity profile, shear-thinning fluids have low shear rates in the nozzle center
where the flow profile is nearly flat [64]. However, the hydrogel modeled in this chapter will only
have η(γ̇ ≈ 0 s−1)/η(γ̇ = 100 s−1) ∝ 2, so it will be interesting to see if this still allows for a
noticeable reduction of stress. Furthermore, the elasticity of the hydrogel could also play a role
in the direct interaction with the cell and will be captured by the model as well.

A typical printing nozzle has a square or rectangular cross section with side length of
100 – 200 µm and a channel length of several millimeters. Flow speeds in the center of the channel
are in the order of 1 cm s−1 [64]. For the simulation, a square cross section of 100 µm× 100 µm
is chosen. As a representative bioink, alginate 4 g/dL is used. It is modeled via the FENE-P
viscoelastic constitutive equation, the model parameters are taken from tab. 10.1. Since the
cell model from [84] is not yet implemented in FluidX3D, a capsule simulation will imitate
the cell behavior. For this purpose, the Skalak model serves better than the neo-Hookean
model. The shear modulus of a typical cell is between 100 – 1000 Pa, its radius in the order
of 10−5 m. Here, a cell of radius RSI = 8.0× 10−6 m with a shear modulus of G = 100.0 Pa
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10 Viscoelasticity

is modeled by using the moduli κS,1 = GRSI and κS,2 = 50κS,1. The volume force is chosen
such that at steady state a center velocity of 1.00 cm s−1 is reached. This leads to a shear rate
of γ̇ ≈ 1.00 cm s−1/50 µm = 200 s−1 and consequently to a very high Weissenberg number of
Wi ≈ 200 s−1 × 0.14 s = 28. For comparison, a simulation of a cell-like capsule in a Newtonian
fluid is conducted. It has the same total viscosity η = 4.2 Pa s as the viscoelastic fluid. Further-
more, the volume force is chosen such that the same mean velocity of 0.512 cm s−1 and thus
the same flow rate as in the viscoelastic case is reached. The quantities that differ between the
Newtonian and the viscoelastic simulation are listed in tab. 10.4.

fluid type umax [cm s−1] Fx [N m−3] ηs [Pa s] ηp [Pa s] Re · αRe Ca
Newtonian 1.07 12553 4.2 0.0 0.102 8.34
FENE-P 1.00 3982.8 0.9 3.3 0.095 8.40

Tab. 10.4: The quantities differing between Newtonian and viscoelastic simulations. The Reynolds number is
scaled up by the Reynolds scaling parameter αRe in order to speed up the simulation.

The LBM simulation domain consists of Lx × Ly × Lz = 80∆x× 76∆x× 76∆x lattice nodes
with planar boundaries in y− and z−direction. Thus, the cell radius of RSI = 8.0× 10−6 m
is represented by exactly 6 lattice nodes. A capsule grid resolution of n∆ = 1280 is chosen.
Furthermore, capsule volume conservation is switched on. In order to speed up the simulation, a
Reynolds scaling of αRe = 5× 103 is used. This means that all viscosities and Skalak moduli
are divided by αRe before converting them to lattice units, which does not change the Capillary
number. The rescaling should have a negligible effect on the whole simulation as long as Re� 1
is still valid, which was successfully tested by comparing to a simulation with smaller Reynolds
scaling. Moreover, it was found that simulating a capsule in a FENE-P fluid is more prone to
instabilities than for the case of a Newtonian fluid. That’s why for the former ν = 1/30 in lattice
units is chosen, while for the latter the common choice of ν = 1/6 is used. This results in a five
times smaller time step for the FENE-P fluid compared to the Newtonian fluid. Furthermore, it
became evident that double accuracy is needed for this setup. When using float, the shear
forces of the capsule cannot be resolved, resulting in the capsule mesh getting unstructured over
time.

In order to look at the fluid properties only, at first simulations without capsule are conducted.
The velocity profile of the Newtonian fluid in fig. 10.52a is very close to a parabolic shape which
should evolve in the case of a cylindrical channel. Compared to the Newtonian case, the FENE-P
fluid has a lower velocity in the channel center, but a slightly higher velocity near the walls of
the channel. This effect is caused by the shear-thinning behavior of FENE-P. The two fluids
differ much more with respect to the fluid stress. Comparing the FENE-P fluid to the Newtonian
fluid in fig. 10.52b, the FENE-P stress σxy is less than half as large almost everywhere in the
fluid. This goes well with the fact that less than half the volume force is needed for FENE-P to
arrive at the same flow rate. Again, the shear-thinning behavior is the reason behind this: an
Oldroyd-B fluid would yield the same steady state mean velocity as a Newtonian fluid, if the
same volume force and total viscosity are used.

Now the simulation setup is completed by adding the initially spherical capsule with its
center of mass (COM) at lattice position rCOM = (Lx/2, Ly/2 + 4R,Lz/2)T, i.e., shifted by 4
capsule radii from the channel center. In the case of the FENE-P fluid, the interior fluid of
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10.10 Applications

Fig. 10.51: Newtonian capsule in a rectangular channel using bioprinting parameters, 0.1 s after switching on the
volume force. The case of a FENE-P fluid using algorithm M1 is depicted. The full simulation domain is shown.
All wall nodes besides the front wall are depicted in gray, the side length of a single square corresponds to the
lattice spacing ∆x. The slice at x = 0 shows the fully developed velocity profile.
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Fig. 10.52: Mean values of (a) fluid velocity and (b) the xy−component of the fluid stress. The mean over the
channel length is taken at slice z = H/2 and is resolved for different y-positions.
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10 Viscoelasticity

the capsule is kept Newtonian via the algorithm M1. As discussed in the previous chapter,
algorithm M4 is no longer stable at such a high Weissenberg number. First, this Newtonian
capsule in a viscoelastic fluid (FENE-P fluid M1) is compared to the Newtonian capsule in
Newtonian fluid. Looking at the COM in fig. 10.53a, both capsules travel 2 cm in x-direction
during 2 s. This can be explained by fig. 10.53b: both capsules migrate towards the channel
center, where ux ≈ 1 cm s−1 holds. The migration of the FENE-P fluid M1 happens on a much
faster timescale, however. Furthermore, fig. 10.54 shows that the Taylor deformation D of the
capsule in Newtonian fluid is much higher than the one in FENE-P fluid. This can be explained
by the differing values for σxy from fig. 10.52b. In both cases, D decreases as the capsule migrates
towards the channel center. Looking at the rotation angle φrot(t) in fig. 10.53c, not much
deviation between the Newtonian fluid and the viscoelastic fluid M1 is present during the first
two oscillations. The rotation frequency drop for viscoelastic fluids at Wi > 1 does not play a big
role here, since a FENE-P fluid with b = 10 is simulated (see fig. 10.50). After the first two os-
cillations, the rotational frequency is slowed down due to the migration towards the channel center.
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Fig. 10.53: Capsule with cell-like properties in rectangular channel with bioprinting parameters. The x-position
(stream-flow direction) (a) and y-position (center offset direction) (b) is given as well as the rotation angle φrot (c).
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Fig. 10.54: Deformation of capsule with cell-like properties in rectangular channel with bioprinting parameters.

The speed-up of the migration velocity of the FENE-P fluid M1 is an unexpected result. By
extending the ESPResSo software, Sebastian Müller conducted IB-LBM simulations of cells [84]
inside a Carreau-Yasuda fluid [64], which is a shear-thinning fluid without an elastic component.
Using the same fluid parameters for interior and exterior fluid, he found a slow-down of migration
velocity compared to Newtonian fluids19. This motivates the simulation of a FENE-P fluid with
algorithm M0, where also no distinction between interior and exterior fluid is made. Here, the
initial deformation of the capsule is nearly the same as in the case of algorithm M1, but the
migration towards the channel center is not present at all. This leads to a smaller travel distance
after 2 s and a higher rotational frequency because of the bigger shear rates near the channel walls.
One could argue that the discrepancy between M0 and M1 is caused by an effective viscosity
contrast: since for M1 the viscoelastic force is switched off inside the capsule, it holds η = ηs for
the interior fluid. A reduced total viscosity might lead to a higher migration velocity. To test for
this hypothesis, a simulation with ηs,interior = Ληs,exterior is conducted for the FENE-P fluid M1,
where Λ = ηp+ηs,exterior

ηs,exterior
= 4.67 holds. It is indicated with dotted lines in fig. 10.53. It becomes

obvious that a compensation for the effective viscosity contrast does not qualitatively change the
simulation results - the speed-up of migration velocity is still present for M1.

An other explanation for the different behavior of M0 and M1 is found when looking at the
stress near the capsule. A volume force in y-direction is caused by several components of the
stress tensor: F py = ∇· (σxy, σyy, σzy). Looking at the data, the component σyy stands out among
the three terms for both its high stress and sharp stress gradient. In fig. 10.55, σs,yy and τyy near
the capsule are depicted for the FENE-P fluid M0 at time t = 0.12 s. At this point, there is little
difference between the M0 and M1 data. Furthermore, the distribution of the Newtonian stress
around the capsule from fig. 10.55a is qualitatively very similar to the case of a purely Newtonian
fluid - only the absolute values of the occurring stress are about a factor ∝ 2.5 lower for the
FENE-P fluid due to the smaller solvent viscosity ηs. Looking at fig. 10.55b, inside the capsule

19Unpublished results.
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10 Viscoelasticity

there is a positive polymer stress gradient from the lower right to the upper left edge leading
to a positive volume force F py . This force might prevent the capsule from migrating towards
the channel center when using algorithm M0. This is not the case when using algorithm M1,
since the force inside the capsule is switched off. All in all, it becomes evident that the concrete
modeling of the stress in the vicinity of the capsule has a major impact on migration velocity.
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Fig. 10.55: Stress of a FENE-P fluid M0 caused by the presence of a capsule in the rectangular channel setup
simulated with bioprinting parameters. The components σs,yy (a) and τyy (b) are sliced at z = Lz/2. The frames
are taken at t = 0.12 s. The extent of the capsule is indicated as a white line.

116



11 Conclusion

In the first part of this work, bubbles dissolved in water were modeled using a coupling of
the single-phase incompressible NSE and the ideal gas equation. The former was simulated
using the LBM extended by the VoF method. For this, an own method had to be developed
which can correctly handle bubble merge and split processes. While the first idea of an implicit
pressure equilibration failed due to the high and hard to estimate number of equilibration steps
required per simulation step, the second idea of explicit bubble tracking was a success. Using the
Hoshen-Kopelman algorithm for global bubble tracking in LBM simulations is a novelty in the
literature and offers a considerable advantage over the floodfill algorithm in terms of runtime.
The fact that the HK algorithm is simultaneously used for local split/merge detection establishes
an impressive consistency between global tracking and local detection that is also unparalleled
in the literature. Although not all calculations can take place locally for the bubble extension
and therefore PCIe transfers and expensive CPU calculations have to be performed, the overall
performance only drops by a factor of two compared to equivalent pure GPU simulations where
the bubble extension is deactivated. This is thanks to optimized buffers and additional CPU
parallelization. Using the Rayleigh-Plesset equation to solve for the bubble interface position in
spherical geometries, accuracy well into the sub-lattice range was demonstrated. For ascending
bubbles, the evolving stationary shapes were studied depending on the given Morton and Bond
number. For large parts of the regime 1 ≤ Bo ≤ 103 and 10−12 ≤ Mo ≤ 108 good agreement
with the literature was found. In the same regime, the rising velocity of simulated bubbles was
determined and compared with the expected terminal velocities, which showed large deviations in
some cases. These deviations can partially be explained by the limited setup, but they also have
to do with the problem of "stuck bubbles", i.e. the phenomenon that bubbles with Bo . 1 do not
rise during the simulations performed. By investigating falling droplets in the same parameter
range it was proven that this phenomenon must have to do with the VoF implementation, i.e.,
the problem is independent of the bubble extension itself. In the case of the simulation of
bursting bubbles, a far more fundamental limitation was shown. The length scales involved
in a bursting process can by far not be resolved with the existing algorithm due to memory
limitations. As a possible solution, an adaptation of the VoF method as well as the HK algorithm
was proposed, which would allow simulation of the bubble lamella with sub-grid resolution. This
would be another essential step to provide a basis for studying the exchange of microplastics at
the water-air interface due to rising and bursting bubbles. However, it was discovered that already
in the existing implementation with poorly resolved lamella, the correct order of magnitude for
the rim velocity is established upon rupture of the liquid film.

The second part of this work aimed to lay the foundations for the simulation of cells under
bioprinting conditions. A first important step was the implementation of suitable polymer models.
It was found that the Oldroyd-B model is capable of reproducing the viscoelastic properties of
linear polymers, which becomes apparent when investigating their storage and loss moduli. With
the FENE-P model, the shear-thinning property can additionally be captured. The fact that
both models contain only first-order time derivatives of stress made a simple implementation
via the FVM possible. The CTU advection scheme contributed to a significant improvement
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of the stability. However, more detailed investigations showed that an upwind scheme with
first order flux in all directions defined by the used lattice neighborhood would bring further
advantages when dealing with the staircase effect. Fits to rheological data showed that the
FENE-P model can capture the essential properties of the polymers used in bioprinting. Two
improvements were suggested for more accurate modeling: the single-mode FENE-P model could
easily be extended to a multiple-mode FENE-P model, where presumably already two modes
would be sufficient to model most alginates. Furthermore, modifying the dumbbell spring-law
would lift the restriction on shear-thinning fluid with a power-law with exponent 1/3. However,
implementing the polymer models in the first instance without such extensions offered the
advantage of having analytical solutions for a number of simple flow geometries. Thus, the
viscoelastic behavior of the Oldroyd-B model was validated by simulating a rheometer. Through
a precise understanding of the LB boundary conditions, it was possible to implement the FV
boundary conditions in such a way that a significant improvement compared to [69] was achieved
regarding the validation via inception of planar poiseuille flow. For the FENE-P model, the
expected shear-thinning behavior was accurately reproduced in steady shear flow simulations.
Despite a rather simple implementation of equilibrium boundary conditions for the advection of
stress, the proper behavior of the elongational viscosity was achieved within acceptable error
bounds. Finally, the correct time evolution of the stress tensor at cessation of steady shear flow
was established for a remarkably wide parameter range of the finite extensibility parameter b.
For preliminary investigations of the interaction of viscoelastic fluids with soft objects, capsules
were chosen, which were simulated via the IBM. First, the FluidX3D implementation of the IBM
had to be validated against the ESPResSo implementation by looking at the case of a purely
Newtonian fluid. Investigating the capsule in simple shear-flow, good agreement for quantities
like the Taylor deformation, the inclination angle and the rotation frequency was found. Another
result of the validation process was that both programs lag significantly behind the accuracy of the
BIM for simulations with viscosity contrast and high capillary numbers. However, it was shown
that the deviations become smaller with increasing resolution. Furthermore, an improvement
of the viscosity contrast computation based on the VoF was suggested. For a capsule having
the same Oldroyd-B parameters for the interior and exterior fluid, simulation results from [68]
were used for validation, where good agreement in the time evolution of the Taylor deformation
was found up to Weissenberg numbers Wi = 100. As a next step, four methods were developed
to simulate capsules with Newtonian interior fluid and viscoelastic exterior fluid. For method
M4, great efforts were made to guarantee stress conservation while at the same time preventing
stress build-up due to the staircase effect. In application, however, hardly any difference between
method M4 with linear interpolation to zero and the much simpler method M1 was found.
Only for Weissenberg numbers Wi < 1 a difference in the dimensionless rotational frequency
was observed, furthermore M1 has increased stability compared to M4 for large Weissenberg
numbers. This time, simulation data from [78] was used for validation, where a capsule with
Newtonian interior fluid and Oldroyd-B exterior fluid was considered. No satisfactory validation
was achieved here, the deviations can probably be explained by the fundamentally different
methods for eliminating viscoelasticity inside the capsules. Regarding new applications, to the
best of our knowledge we are the first to simulate an IB capsule in a FENE-P fluid. Therefore,
this thesis can present new simulation data for the time-evolution of the inclination angle as well
as the Taylor deformation D of a capsule in FENE-P simple shear flow, where the divergence
of D for Wi & 10 found in the case of an Oldroyd-B fluid is suppressed. Furthermore, with
these models it was possible to reproduce the expected drop of the dimensionless rotational
frequency for objects in viscoelastic shear flow at Wi ≈ 1. First results were provided on how
the size of the frequency drops is related to the finite extensibility, i.e. to the non-linearity of
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polymer spring-law. Finally, the possible application for computational problems in bioprinting
was demonstrated by simulating a rectangular channel filled with alginate. With proper rescaling,
the desired parameter set was stably accessed. By comparison to a Newtonian fluid it was shown,
that shear-thinning on the one side leads to a reduction of capsule deformation and on the
other side prevents the capsule from experiencing a frequency drop. Furthermore, the differences
between a FENE-P capsule (algorithm M0) and a Newtonian capsule (algorithm M1) dissolved
in a FENE-P fluid are more noticeable than expected: The former has an increased migration
velocity towards the center of the channel compared to the purely Newtonian case, whereas in
the latter the migration is completely suppressed. As a first explanation, a stress gradient in the
viscoelastic stress tensor τ inside the capsule was suggested. To further investigate the issue, it
would be desirable to improve the algorithm M4 in a way that it also remains stable at these
high shear rates.
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Appendix

A1 Further advection tests
Since a bug in the CTU algorithm was suspected, the following things were assured:

• For the setup as described above, the two adjacent nodes at position r = (0, 0, 0)T and r +
c1 = (1, 0, 0)T were considered. It was verified that J (out)

Q,1 ((0, 0, 0)T, t) = J
(in)
Q,1 ((1, 0, 0)T, t)

holds. This is the case, as found by bitwise comparison.

• Initializing τ to exactly 1 everywhere, τges is conserved exactly for both advection schemes
(simple and CTU) and for all velocity sets.

• Initializing τ randomly as described in chapter 10.8.2, but specifying the flow direction-
dependent but location-independent (done here using J (out)

Q,i (r, t) = i× 0.001 = J
(in)
Q,i (r, t)),

τges is again obtained exactly.

So a faulty implementation of CTU is unlikely based on the above tests. The following things
were tested to investigate the loss of τ further:

1. The values needed for the calculation of J (out)
Q and J (in)

Q are cast to double after reading
from their float buffers. All further computation takes place in double, only the new value
τ(r, t+ ∆t) is cast back to float when saved. This leads to no noticeable improvement
(cf. fig. A1a).

2. The stress gets another order of magnitude: instead of τ = 1± 0.05, τ = (1± 0.05)× 103 is
used. This leads to an improvement of the conservation by almost two orders of magnitude
(cf. fig. A1b). Moreover, τges is now no longer monotonically decreasing. The reason for
this is not clear.

3. In CTU, for J (out)
Q normally only the own value of τ is used, for J (in)

Q only the neighbor
value. Now this is changed to the mean value of own and neighbor value in both cases.
This leads to similar results as simple (cf. fig. A1c). Moreover, there is no numerical
diffusion anymore, the distribution of τ at the end of the simulation resembles the results
of simple from fig. 10.23b.

4. Again all computations take place in double, but this time τ is stored as double field.
This leads to the conservation of τ with numerical precision (cf. fig. A1d). Still, numerical
diffusion as in fig. 10.23c can be observed, it is a property of the CTU algorithm.

Overall, no explanation for this behavior was found. In particular, it was expected that (except
for the precision, i.e. the magnitude of the numerical fluctuation around τges) there would be no
fundamental difference between float and double.
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Fig. A1: Tests concerning the conservation of τ using the CTU advection algorithm.

A2 Equality of Oldroyd-B formulations
Equality of original and polymer science formulation of Oldroyd-B:

σ
(4.10)= τp+2ηsD

(4.11)= −λp
∇
τ p+2(ηs+ηp)D

(4.10)= −λp(
∇
σ−2ηs

∇
D)+2(ηs+ηp)D

(4.14)= −λp
∇
σ+2η0(D+λr

∇
D)

(A1)
Equality of polymer science and conformation tensor formulation of Oldroyd-B:

∇
c

(4.7a)= − 1
λp

(c− I) (4.7c)= − 1
λpG

τp (A2a)

⇐⇒ τp = − 1
λp

∇
τ p + 2ηpD, (A2b)

where in the last step
∇
I = 2D and ηp = Gλp has been used.
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Fig. A2: Taylor deformation D of capsule with R = 6∆x in Newtonian shear flow. Comparison of MRT and TRT
operators. On the left, the lines have the following meaning: MRT + FluidX3D (solid colored), TRT + FluidX3D
(dashed colored), MRT + ESPResSo (dashed black). On the right, the steady state values are averaged starting
from t∗ = 4.5. The choice of the operator is already visible via a deviation of D at low resolution.
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Fig. A3: Inclination angle φincl of capsule discretized by 5120 triangles in Newtonian shear flow. Comparison of
FluidX3D (solid), ESPResSo (dashed) and BIM (dotted).
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A3 Collection of further figures

Fig. A4: Stress component sxx in unaligned poiseuille flow at t∗ = 20 for the combination CTU + M0. The stress
accumulations near the wall due to the staircase effect found in isolated advection tests (cf. fig. 10.39) cannot be
observed in real setups.
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Fig. A5: (a) Like fig. 10.29a, but for D3Q27. (b) Like fig. 10.29b, but for D3Q7.
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Fig. A6: Deformation of neo-Hookean capsule viscoelastic shear flow. (a) R = 12∆x in FENE-P fluid. The
setup is the same as in fig. 10.49, but this time including Newtonian capsules via M4 (solid) as well as FENE-P
capsules via M0 (dashed). Deviation between M4 and M0 grows for increasing Wi, behavior is qualitatively
different. Furthermore, M4 (as well as M1) show wiggling in D, which gets stronger for increasing Wi. Simulations
with Wi = 30 and Wi = 50 get instable for M4 at t∗ > 30, while they reach a steady state with respect to
Deformation and Inclination for M0. (b) R = 6∆x Newtonian capsule simulated with M4 in FENE-P fluid (solid)
and Oldroyd-B fluid (dotted). Selected data from the simulation of fig. 10.50 is shown. The wiggling is stronger
than for R = 12∆x, furthermore it is more pronounced for FENE-P than for Oldroyd-B.
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