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A model for network-based identification and
pharmacological targeting of aberrant, replication-
permissive transcriptional programs induced by
viral infection
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SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state

amenable to its replication. Here we show that analysis of Master Regulator proteins repre-

senting mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in

infected cells revealed coordinated inactivation of Master Regulators enriched in physical

interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host

cell state refractory to virus replication. To test their functional relevance, we measured SARS-

CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire

of repressed Master Regulators, based on their experimentally elucidated, context-specific

mechanism of action. Overall, 15 of the 18 drugs predicted to be effective by this methodology

induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This

model for host-directed pharmacological therapy is fully generalizable and can be deployed

to identify drugs targeting host cell-based Master Regulator signatures induced by virtually

any pathogen.
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Several approaches have been employed to identify specific
host cell pathways and proteins whose individual interac-
tion with viral proteins is either required to mediate

SARS-CoV-2 infection or that represents key modulators of
virulence1–6. In contrast, a paucity of effort has been devoted to
elucidating the host cell transcriptional control mechanisms and
programs hijacked by viruses, including identification of the
Master Regulator (MR) proteins that effect infection-mediated
reprogramming of the host cell transcriptional state. MRs are
proteins whose activity is necessary and sufficient to maintain the
transcriptional identity of a specific cellular phenotype. They are
organized in highly inter-regulated protein modules, or tran-
scriptional regulatory checkpoints, which operate as a molecular
switch, controlling the transcriptional identity of both physiologic
and pathologic cell states (for a recent perspective, please see
ref. 7). More importantly, there has been no experimental eva-
luation of the role of such host MR proteins in the virus life cycle
nor their amenability to pharmacological targeting for the pur-
pose of inhibiting viral replication.

Here, we show that specific host MR proteins, representing viral
infection-mediated determinants of the transcriptional regulatory
programs hijacked by viruses, are required for establishing a host-
cell phenotypic state amenable to virus replication. Specifically, we
leveraged an established systems biology-based methodology,
originally developed in the field of oncology7, to identify MR
proteins that mechanistically control the transcriptional state of
virus-infected cells. We then prioritized drugs capable of inverting
the activity of MR proteins—thus decommissioning the regulatory
programs induced by viral infection to maintain a pro-infective
cell state—using another oncology-based approach described in
ref. 8. We propose that extension and translation of these cancer-
based methodologies to study viral infection can identify host cell
MR proteins representing key mechanistic determinants of virus-
mediated host cell reprogramming, as well as the drugs that can
abrogate this transition.

As we have previously shown, MRs can be accurately and
systematically identified by assessing the enrichment of their
transcriptional targets in differentially expressed genes, using the
Virtual Inference of Protein activity by Enriched Regulon analysis
(VIPER)9. While many approaches can be used to identify
the tissue-specific targets of a regulatory protein, the Algorithm for
the Accurate Reconstruction of Cellular Networks (ARACNe)10 is
among the few that have been extensively experimentally tested,
with validation rates exceeding 70%10–12. We have shown that
VIPER can accurately measure the activity levels of >70% of reg-
ulatory proteins, including in single cells, where we have shown
that metaVIPER13—a VIPER extension specifically designed for
single-cell analyses—can virtually eliminate the gene dropout issue
due to low single cell profiling depth;14,15 and, notably, outper-
forms antibody-based measurements14. Hereafter, for simplicity,
we will refer to the transcriptional activity inferred by VIPER or
metaVIPER, as protein activity. The combination of these two
algorithms has been highly effective in elucidating protein-based
mechanisms that were virtually undetectable by gene expression-
based methods alone7,14,16,17 (see methods for additional details).
Moreover, once MR protein activity levels are quantified by VIPER
analysis, the CLIA-certified OncoTreat algorithm8 can accurately
and efficiently identify small molecule inhibitors that can invert
their activity (MR-inverter drugs), thereby abrogating the reg-
ulatory programs they control. The OncoTreat algorithm leverages
large-scale gene expression profiles of MR-matched cell lines per-
turbed with a comprehensive repertoire of clinically relevant drugs,
including Food and Drug Administration (FDA)-approved and
late-stage experimental agents, and has led to several clinical trials
evaluating drug therapy for cancer (NCT02066532, NCT02632071,
and NCT03211988, among others).

Given the urgency and unmet needs mandated by the COVID-
19 pandemic, we proceeded to test the applicability of this model
to SARS-CoV-2 infection. Specifically, we asked whether this
methodology could be used to identify host cell MR proteins
representing the mechanistic determinants of the transcriptional
programs hijacked by the virus to support efficient replication
and, by extension, whether we can identify drugs capable of
inverting their activity, thereby making host cells more resistant
to hijacking and viral replication. The methodology can be tri-
vially generalized to other pathogens, conditional only on the
availability of appropriate infection gene expression signatures.

VIPER-inferred MRs from multiple SARS-CoV-2 infection
models consistently showed that the host MR proteins that were
significantly activated following SARS-CoV-2 infection controlled
innate immune response programs. This suggests that the tran-
scriptional programs supporting optimal viral replication and
infectivity, during the hijack phase, may be controlled by
host MRs that were significantly inactivated following infection.
Supporting this hypothesis, we found the inactivated MRs to
be highly enriched in interactions with SARS-CoV-2 proteins
and in genes reported as essential antiviral factors by CRISPR
screens2,4,6. To further test this hypothesis, we adapted the
OncoTreat algorithm8 to prioritize compounds based on their
ability to activate the entire set of virus-inactivated MR proteins,
and evaluated their effect on SARS-CoV-2 replication in infected
epithelial cell cultures. Prioritization of 154 FDA-approved drugs
—primarily for use in oncology—was highly effective, with 15 out
of 18 predicted drugs effectively reducing SARS-CoV-2 replica-
tion in colon epithelial cells, with no significant reduction of cell
viability. Based on these findings, we conclude that SARS-CoV-2-
induced transition of the host cell phenotypic state is required for
its optimal replication. Moreover, we provide a model for sys-
tematically dissecting the MR proteins that mechanistically
facilitate this transition and for identifying MR-inverting drugs
that, by blocking this phenotypic transition, can induce a host cell
regulatory state of “viral contraception”. This model, which we
call, “ViroTreat”, could be used to identify therapeutic options in
the COVID-19 setting and can be easily generalized to virtually
any viral pathogen-mediated host cell hijacking that is essential
for the infective cycle.

Results
SARS-CoV-2-induced MR signature. To elucidate the MR
proteins mediating SARS-CoV2-induced host-cell phenotypic
transition, we analyzed publicly available single cell (scRNASeq)
profiles of SARS-CoV-2 infected epithelial cells (Supplementary
Table 1), including epithelial cell lines from both lung adeno-
carcinoma (Calu-3 and H1299)18, and gastrointestinal organoid
models from the ileum and colon19. Single cell RNASeq analysis
allows highly effective identification of individual virus-infected
cells, which would otherwise represent only a minority of cells
in culture. Moreover, single cell-based gene expression sig-
natures—computed by comparing confirmed infected cells to
non-infected controls—are less affected by contamination and
dilution effects typical of bulk RNASeq signatures representing
a mixture of infected and non-infected cells (Supplementary
Fig. 1 and Methods).

The differential activity of 5,734 proteins, including 1,723
transcription factors, 630 co-transcription factors, and 3,381 sig-
naling proteins, was estimated for each infected cell with the
VIPER algorithm9 (Supplementary Data 1). This analysis revealed
highly conserved differential protein activity signatures, as
defined by the conservation of top 50 most differentially active
candidate MRs. The use of 50 proteins is based on previous
results in the context of cancer, where less than 50 candidate MRs
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are required to canalize the effect of each individual patient
genetics on the cell transcriptional identity16. By analogy to
tumor MRs7, we will refer to this repertoire of virus-induced MRs
as the Viral CheckPoint. The analysis identified a highly
conserved MR core induced by SARS-CoV-2 infection, within
each available cellular model, across all post-infection time-points
for which data was available (p < 10−40, by 2-tailed aREA test9,
Fig. 1a and Supplementary Fig. 2a).

When comparing equivalent time-points, we observed sig-
nificant conservation of the differentially active protein signature
across lineage-related cell models (e.g., Calu-3 vs. H1299, at 12 h,
p < 10−40, Supplementary Fig. 2a). Interestingly, the virus-
mediated MR signature was highly conserved even across
unrelated lineages, when equivalent time-points were considered

(e.g., H1299 vs. colon non-transformed organoid at 24 h, p < 0.01,
Supplementary Fig. 2a). Taken together, these findings suggest
the existence of a highly reproducible, SARS-CoV-2-mediated
MR activity signature in epithelial cells, regardless of organ
context (lung vs. gastrointestinal (GI)). Interestingly, however,
inactivated MRs were significantly more conserved than activated
MRs, both across models and lineages (p < 10−6, 2-tailed paired
U-test, Supplementary Fig. 2b, c), suggesting a potentially distinct
biological role for the activated vs. inactivated components of the
SARS-CoV-2 MR core.

The MR activity signatures detected by single cell analyses were
also recapitulated by bulk-tissue analysis of SARS-CoV-2-infected
epithelial cells (ST1), albeit at a slightly lower statistical significance,
as we expected. These findings applied to bulk-tissue analysis of
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Fig. 1 Changes in host cell protein activity in response to SARS-CoV-2 virus infection. a Left, heatmap showing the VIPER-inferred differential activity of
the top 10 most activated proteins in response to SARS-CoV-2 infection in each of the models and time-points profiled (62 proteins across all evaluated
conditions) at the single-cell level. Right, heatmap showing the activity of the top 10 most inactivated proteins in response to SARS-CoV-2 infection in each
of the models and time-points profiled (69 proteins across all evaluated conditions) at the single-cell level. Differential protein activity is expressed in
Normalized Enrichment Score (NES) units with protein inactivation and activation induced by SARS-CoV-2 infection shown in blue and red color,
respectively. b Heatmap showing the enrichment of biological hallmarks in the SARS-CoV-2-induced protein activity signatures. Shown is the NES
estimated by the aREA algorithm, with purple color indicating enrichment in the over activated proteins and green color indicating enrichment in the
inactivated proteins.
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both transformed models, including lung (Calu-3, H1299, and
A549) and colon (Caco-2) adenocarcinoma, and normal human
bronchial epithelial (NHBE) primary cells, as well as to more
physiologic models, including lung organoids. As should be
expected, MR conservation was more significant for models
characterized by high infection rates (Supplementary Fig. 2a),
likely due to signature dilution/contamination by a high proportion
of non-infected cells in other models.

MRs govern distinct biological functions. Gene Set Enrichment
Analysis (GSEA)20 demonstrated a critical dichotomy of biological
hallmark programs enriched in activated vs. inactivated MRs
(Fig. 1b). Specifically, biological hallmarks enriched in activated
MRs included inflammatory response, epithelial-to-mesenchymal
transition (EMT) and interferon response. Indeed, among the top
aberrantly activated MRs, we identified MX1, a protein induced by
interferon I and II21, the interferon regulator IRF9, and additional
transcriptional regulators that mediate cellular response to inter-
ferons, such as STAT1 and STAT222 (Fig. 1a).

In contrast, our model shows that biological hallmarks enriched
in inactivated MRs were strongly related to virus-mediated host-
cell hijacking programs, such as PI3K signaling, unfolded protein
response, DNA repair, and metabolic-related processes23,24

(Fig. 1b). Consistent with this observation, the most significantly
inactivated MRs included several ribosomal subunit members
(such as RPS27A, RPS3, RPL3, RPS6, RPS14), as well as proteins
involved in cell cycle arrest (UBA52)25, translational regulation,
and cellular metabolism (GABPB1)26 (Fig. 1a).

VIPER-inferred MRs are enriched in SARS-CoV-2-interacting
proteins. To assess whether activated vs. inactivated MRs in our
model may represent a more effective target for drug-mediated
reversal, we proceeded to assess whether either class was enriched
in host proteins previously identified as cognate binding partners
of SARS-CoV-2 proteins. For this analysis, we leveraged a col-
lection of 332 host proteins previously reported to be involved in
protein-protein interactions (PPIs) with 26 of the 29 proteins
encoded by the SARS-CoV-2 genome, as determined by mass-
spec analysis of pull-down assays2. Of these interactions, 90 were
with proteins included in the 5,734 we analyzed by VIPER.
GSEA20 revealed statistically significant enrichment of these 90
proteins in SARS-CoV-2 inactivated but not activated MRs,
across all the evaluated single-cell protein activity signatures
(p < 10−3, 2-tailed GSEA, Supplementary Fig. 3). This suggests
that host cell proteins that physically interact with SARS-CoV-2
proteins are mostly inactivated in response to the infection.

VIPER-inferred MRs are enriched in viral infection-essential
genes. To further confirm the functional duality of the inferred
MRs, we also assessed their enrichment in genes previously
reported as essential to the virus infectious cycle. Specifically, we
evaluated their enrichment in genes identified by functional
CRISPR screens from two different studies, including using
SARS-CoV-2 infected Vero6 and Huh-7.54 cells. Consistent with
our original observation and definition of the SARS-CoV-2
induced MR signature, the 50 most inactivated candidate MRs—
as determined by integrating results from both lung and GI
models—were significantly enriched in infection-essential genes
identified in both CRISPR screen (p < 10−4 and p < 10−3,
respectively), as well as in the integrated set (Supplementary
Fig. 4a–c, p < 10−4). In contrast, the 50 most activated MRs were
not significantly enriched in infection essential genes (Supple-
mentary Fig. 4d–f). Confirming these results, analysis of two
additional CRISPR screen reports showed enrichment of the 50
most inactivated SARS-CoV-2 infection candidate MRs on

infection-essential genes identified in A549-ACE2 cells3, as well
as significant enrichment of the infection-essential genes identi-
fied in Calu-3 and Caco-2 cells27 among the candidate MR pro-
teins being inactivated in response to SARS-CoV-2 infection
(Supplementary Fig. 4g–i).

ViroTreat prioritization of FDA-approved drugs. We have
previously shown that tumor checkpoints can be pharmacologi-
cally switched, either off8,12,17,28,29 or on16, leading to their col-
lapse and loss of viability or gain of associated functional
properties, respectively. This observation was instrumental for the
development and validation of the New York Clinical Laboratory
Improvement Amendments (CLIA) certified, VIPER-based
methodology OncoTreat, for the prioritization of small mole-
cule compounds that can either inactivate or activate a tumor
checkpoint on a sample-by-sample basis, with critical applications
in precision oncology8. To test the dependence of SARS-CoV-2
replication on inactivation of the MR proteins—termed Viral
Checkpoint for analogy to tumor Checkpoints7—we adapted the
OncoTreat algorithm8 to identify small molecule compounds
capable of activating such MRs (ViroTreat, Fig. 2). We hypo-
thesize that such drug-induced effects would keep the host cell
phenotype in a “viral contraception” regulatory state that effec-
tively reduces the viral replication rate.

We have shown that drug Mechanism of Action (MoA)—as
represented by the proteins that are differentially activated/
inactivated—is an effective predictor of drug activity in vivo and
in explants30,31. This is assessed by VIPER analysis of MR-
matched cell lines following perturbation with a large repertoire
of drugs, at the highest sublethal concentration (IC20), as assessed
by dose response curves. The PanACEA database (PANcancer
Analysis of Chemical Entity Activity)32 comprises drug perturba-
tion RNA-seq profiles representing 25 cell lines and an average of
350 drugs per cell line. Among these, the LoVo and NCI-H1973
cell lines were identified as those whose lineage matched the GI
epithelial and lung epithelial cell models used for SARS-CoV-2
infection assays, respectively. However, while LoVo (human
colon cell line) showed statistically significant MR protein
conservation (p < 10−5 by OncoMatch analysis30), when com-
pared with the colon adenocarcinoma cell line susceptible to
SARS-CoV-2 infection (Caco-233, Supplementary Fig. 5a, b), such
conservation was not observed between NCI-H1793 cells and any
of the three lung cell lines susceptible to SARS-CoV-2 infection
(Calu-3, ACE2-A549 and H1299, Supplementary Fig. 5c–h).
We have previously shown that recapitulation of MR protein
activity by the drug perturbed models is important to maximize
drug MoA conservation and OncoTreat analysis sensitivity30,34.
Based on these results and considering availability of a compatible
cell line as a relevant validation model to experimentally
assess ViroTreat-predicted drugs, for this model we focused our
validation efforts on the GI context.

VIPER was used to elucidate the MoA of 154 FDA-approved
oncology drugs, where MoA is defined as the repertoire of
proteins differentially activated/inactivated at 24 h following drug
perturbation. While this was done specifically in colon epithelial
cells for this study, the analysis can be easily extended to assess
drug MoA in other cellular contexts. Specifically, the RNA-seq
profiles used in this analysis were generated at 24 h (by PLATE-
Seq assays35), following treatment of a colon adenocarcinoma
cell line (LoVo) with a library of FDA-approved drugs and
vehicle control (DMSO). To avoid assessing cell death or stress
mechanisms, rather than drug MoA effects, drugs were titrated at
their highest sublethal concentration (i.e., their 48 h IC20), as
assessed by 10-point dose response curves (see methods for
additional details). Resulting profiles were then used to assess the
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differential activity of regulatory proteins in drug vs. vehicle
control-treated cells with the VIPER algorithm9. Finally, drugs
were prioritized based on their ability to activate the MR proteins
inactivated by SARS-CoV-2 infection, as assessed by their
enrichment in proteins differentially activated by each drug,
using the aREA algorithm8,9 (Fig. 2). Similar to GSEA20, aREA
estimates the statistical significance for the enrichment of a set of
genes or proteins on a vector of differentially expressed genes or
differentially active proteins9.

ViroTreat predictions were averaged across available GI
organoid models and across all evaluated time points. Among
the 154 FDA-approved drugs profiled in LoVo cells, ViroTreat
prioritized 22 (13 orally available and 9 intravenous) at a highly
conservative statistical threshold (p < 10−5, Bonferroni corrected
(BC)), see Fig. 3 and Supplementary Data 2), based on their
predicted activating effect for the proteins that showed the
strongest inactivation in response to SARS-CoV-2 infection.

ViroTreat-predicted drugs inhibit SARS-CoV-2 replication. To
provide proof-of-concept validation for the ViroTreat predictions
in our model, we first assessed drug-mediated inhibition of SARS-
CoV-2 replication by ViroTreat-predicted vs. control drugs in the
colon adenocarcinoma cell line (Caco-2) known to support
SARS-CoV-2 infection33.

For this assay, we considered all 13 ViroTreat-inferred orally-
available drugs, as a more clinically relevant group, and the top 5
most significant intravenous (IV) drugs. As candidate negative
controls, we selected 12 drugs—including 8 orally available agents
and 4 IV drugs—not inferred as statistically significant by

ViroTreat (p ≥ 0.01, Fig. 3 and Supplementary Data 2). Caco-2
cells were pre-treated for 24 h prior to SARS-CoV-2 infection.
Drug concentration was maintained through the entire infection
time course and the relative virus replication levels and cell
viability were assessed by immunofluorescence staining 24 h post-
infection (see methods and Fig. 4a). This approach allows us to
address the impact of the individual drugs on the number of
SARS-CoV-2 infected cells but does not inform whether
restriction takes place at the viral entry level or during viral
genome replication. For each drug, the viability-normalized effect
on SARS-CoV-2 replication (antiviral effect) was quantified as the
log-ratio between viral replication and cell viability reduction
relative to vehicle-treated (DMSO) controls (Supplementary
Fig. 6). Since multiple concentrations were tested, the lowest
concentration corresponding to a significant antiviral effect with
no or limited cytotoxic effect to the cells was reported
(Supplementary Data 2). As a proof-of-concept for the ability
of this model to identify drugs capable of reducing replication of
SARS-CoV-2, we considered drugs to be validated only if their
antiviral effect was statistically significant (FDR < 0.05) and they
induced a decrease in virus replication of at least 20%. This
additional condition was used to further increase the stringency
when considering the antiviral effect of a drug (see Methods).

Of 18 drugs predicted to activate the MR proteins inactivated
by SARS-CoV-2 infection, 15 (83%) showed statistically sig-
nificant antiviral effect. In contrast, none of the 12 drugs selected
as potential negative controls showed significant antiviral effect
(Fig. 4b and Supplementary Data 2), demonstrating a significant
enrichment of ViroTreat results in drugs with antiviral activity
(p < 10−5, 1-tailed Fisher’s exact test (FET)). Consistently, the
Receiver Operating Characteristic (ROC) had an Area Under the
Curve AUC= 0.907 (95% Confidence Interval: 0.77–0.91), which
is highly statistically significant (p < 10−4, Fig. 4c), demonstrating
the predictive power of ViroTreat in this proof-of-concept.

To further assess the pathogen-specific nature of ViroTreat
predictions, we tested the ability of the 8 ViroTreat-inferred drugs
showing the strongest inhibition of SARS-CoV-2 replication, to
inhibit rotavirus replication in Caco-2 cells. Interestingly, none of
these drugs significantly impaired rotavirus replication (Supple-
mentary Fig. 7 and Supplementary Data 2), showing that
ViroTreat-inferred antiviral effects cannot be attributed to
generalized impairment of host cellular functions universally
required for viral replication, but rather to activation of host-cell
MRs required for the maintenance of a host-cell phenotypic state
specifically refractory to SARS-CoV-2 replication.

To also assess whether the antiviral activity of ViroTreat-
predicted oncology drugs in Caco-2 cells might possibly be
attributed to their antineoplastic effects in a cancer cell context,
we evaluated the antiviral properties of the top 8 drugs in non-
transformed, human GI organoid-derived 2D primary cell
cultures. When tested in this more physiologic context, 7 of the
8 assayed drugs, including idarubicin, bosutinib, cyclosporine,
bicalutamide, vorinostat, amiodarone and osimertinib, demon-
strated significant antiviral effect against SARS-CoV-2 based on
our original criteria (FDR < 0.05 and decrease in SARS-CoV-2
replication of at least 20%, Fig. 4d). Except for bicalutamide,
which exerted its antiviral effect at a 125-fold higher concentra-
tion, all drugs were tested at concentrations comparable to their
48 h IC20 in LoVo cells, representing the highest sub-toxic
concentration usable for optimal MoA elucidation. These findings
suggest that ViroTreat can apply the molecular characterization
of a drug’s MoA, as obtained by the measured effect of the drug
on protein activity levels in tissue lineage-matched, neoplastic cell
line models, to prioritize and repurpose drugs with potential
antiviral activity in both infected tumor models as well as non-
transformed human organoid-derived 2D primary cell cultures.

Appropriate
cell model

Drug-perturbation screen

Expression profile
PLATE-Seq

VIPER

Drug-induced protein activity signature

Drug context-specific MOA

Drugs library

Infection

Expression profile

VIPER

Virus-induced protein activity signature
Negative MRs Positive MRs

Viral Checkpoint
ViroTreat

Drug context-specific MOA

a b

Fig. 2 Schematic representation of the ViroTreat algorithm. a Virus-
induced MR proteins—the Viral Checkpoint—dissected by VIPER analysis
of a gene expression signature, obtained by comparing an infected tissue or
relevant model with non-infected mock controls. b Context-specific drug
MoA database, generated by perturbing an appropriate cell model with
therapeutically relevant drug concentrations, followed by VIPER analysis of
the drug-induced gene expression signatures to infer the drug-induced
protein activity signature. ViroTreat prioritizes drugs able to activate the
Viral Checkpoint’s negative MR proteins by quantifying the enrichment of
such proteins on the drugs’ context-specific MoA.
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Finally, to test the tissue lineage context-specificity of ViroTreat
predictions, we assessed the antiviral effect of the 8 ViroTreat
predicted drugs for the GI context showing the strongest inhibition
of SARS-CoV-2 infection in Caco-2, in lung adenocarcinoma cell
line models (Calu-3 and ACE2-A549). Interestingly, only cyclos-
porine and osimertinib showed a significant antiviral effect
(FDR < 0.05 and ≥20% virus replication decrease), while amiodar-
one, apremilast, bicalutamide, bosutinib, exemestane, and pimo-
zide did not (Supplementary Fig. 8 and Supplementary Data 2).
These results highlight the relevance of lineage context-specificity
when prioritizing drugs with ViroTreat.

Discussion
We report here a model characterizing the regulatory biology of
virus-host interaction, in which viral infection induces a pheno-
typic transition in the host cell toward a state that is promotive of
viral replication. We applied Master Regulator (MR) inference
analysis9,16 to systematically dissect the transcriptional regulators
(MR proteins) hijacked by the virus (Viral CheckPoint) and
demonstrated, using a model of SARS-CoV-2 infection in gastro-
intestinal epithelial cells, that pharmacologically blocking this

transition is sufficient to maintain the host cell in a state of
“transcriptional contraception” that is adverse to virus replication.
We adapted the OncoTreat framework, originally developed to
prioritize drugs for precision oncology8, to identify drugs with
concerted activity on the Viral Checkpoint.

We propose that the approach employed in this model, which
we call ViroTreat, can be used as a mechanism-based framework
for repurposing drugs, based on their ability to reprogram host
cells to a state refractory to virus hijacking. In contrast to previous
host cell-centric approaches aimed at targeting single host
cell proteins that directly interact with the viral proteome, the
ViroTreat model was designed to target the entire MR protein
module, whose concerted regulatory activity is responsible for
implementing and maintaining a virus replication-permissive
transcriptional state in the host cell. Thus, ViroTreat expands
the one disease/one target/one drug paradigm to targeting an
entire protein module (i.e, Viral Checkpoint) based on the accu-
rate assessment of each drug’s proteome-wide MoA, as dissected
from perturbational profile data. Such a holistic approach to
matching disease dependencies to drug MoA overcomes the
inherent limitations of drug repurposing efforts that focus on
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inhibitors of individual proteins or single pathways to thwart viral
replication as part of a host cell-targeting strategy.

Viral Checkpoint MR identification requires availability of
gene expression signatures of virus-infected cells. Therefore, to
avoid model-specific confounding effects and to identify a more
universal and reproducible MR signature of viral infection, we
performed MR analysis in multiple, complementary cellular
models, including both transformed cell lines and normal 3D-
organoid cultures representing both airway and GI epithelium
lineages. In addition, to avoid confounding effects from a het-
erogeneous combination of infected and non-infected cells—
representing the majority of the cell population—MR analysis was
also performed at the single cell level, using SARS-CoV-2 genome
mapped reads to unequivocally identify infected cells. Moreover,
we avoided confounding effects from single cell transcriptional
state heterogeneity by comparing each infected cell to a small
pool of the closest non-infected cells, based on MR analysis, as
controls (Supplementary Fig. 1). Finally, to achieve cell context-

specific elucidation of drug MoA, we analyzed drug perturbations
in cell lines that recapitulate the biology of the infected cells,
based on conservation of their most differentially active/inactive
MRs, as previously described30.

The ViroTreat framework prioritizes drugs from a predefined
library used to generate perturbational assays. For this proof-of-
concept, we maximized the translational potential of drug pre-
dictions, by focusing our analysis on FDA-approved drugs used
primarily in an oncology setting; with particular emphasis on
orally available drugs. However, the approach can be easily
extended to explore a much larger library of pharmacological
compounds. Moreover, the database of drug context-specific
MoA can be generated independently and prior to the identifi-
cation, isolation, and characterization of a viral pathogen of
interest, making it readily available for current as well as future
pandemics.

In addition, while most studies have focused on drugs that
act as high affinity inhibitors of target proteins2–6,36,37, to our

Fig. 4 Experimental validation of ViroTreat predictions. a Representative immunofluorescence images of non-infected (Mock) Caco-2 cells, vehicle
control (DMSO) treated and SARS-CoV-2 infected cells, and representative examples of a drug showing significant antiviral effect (Cyclosporine), of a drug
showing non-significant antiviral effect (Thalidomide) and a drug showing non-significant antiviral effect and cell toxicity (Fedratinib). Drug concentration
(μM) is indicated to the left of the images showing triplicated experiments. Cells were stained with DNA dye Draq5 (red) and anti-dsRNA antibody
(green). b Scatterplot showing the ViroTreat results (x-axis) compared to the specific antiviral effect (y-axis) experimentally evaluated in Caco-2 colon
adenocarcinoma cells. The vertical and horizontal dashed lines represent the thresholds for statistical significance for ViroTreat (p-value = 10−5, BC) and
specific antiviral effect (FDR= 0.05), respectively. c ROC analysis for the ViroTreat predictions, considering as positive response a specific antiviral effect
at FDR < 0.05 with at least 20% reduction in virus replication. Estimated AUC, 95% confidence interval (CI) and p-value are indicated in the plot. d Effect
of 8 drugs, showing the strongest reduction in SARS-CoV-2 replication in Caco-2 cells, on cell viability and SARS-CoV-2 replication in GI organoid-derived
2D primary cell cultures. Bars indicate the mean ± SEM. Antiviral effect: *FDR < 0.05, **FDR < 0.01. Source data in Supplementary Data 4 and 5.
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knowledge, this is the first study to focus on pharmacologic
agents predicted to activate, rather than inhibit, an entire protein
module of Master Regulator proteins whose inactivation by the
virus was found to be necessary for viral hijack and replication.
By inducing drug-mediated reversion of the Viral Checkpoint
activity, we successfully reprogrammed host cells to a regulatory
state of “viral contraception,” thereby significantly buffering the
virus’s ability to hijack the host cell machinery required for its
infective cycle.

Critically, Virotreat predicted SARS-CoV-2-specific antiviral
activity of drugs that have recently emerged as potential host cell-
targeting antivirals, in completely unbiased fashion. Among these,
cyclosporine38, amiodarone39, pimozide40, mitoxantrone41,
osimertinib42, bosutinib43, and bicalutamide44. Moreover, three
of the Virotreat-predicted drugs—cyclosporine (NCT04492891),
amiodarone (NCT04351763), and bicalutamide (NCT04509999)
—are being evaluated in clinical trials for their safety and efficacy
in persons with SARS-CoV-2 infection. This further validates the
predictive power of Virotreat to define novel antiviral therapeutic
approaches and strongly suggest that host cell targeting provides
a viable strategy to complement viral-protein targeting drugs.

Among the methodological limitations, the most critical one is
the need to obtain physiologic models to identify appropriate
infection signatures, generate relevant drug perturbational pro-
files, and validate predicted drugs. Assessing the optimal con-
centration at which each compound should be profiled represents
an additional challenge. Moreover, lack of available drug per-
turbational data in suitable lung epithelial models required that
we perform the proof-of-concept evaluation in the GI-context, for
which drug perturbational data, on a cell line recapitulating the
viral checkpoint MRs, is available from the PanACEA
collection32. While limiting somewhat the immediate transla-
tional potential to the clinic, the use of GI-models does not impair
the validity of our proof-of concept evaluation and also allowed
us to test the specificity of drug-mediated viral checkpoint
abrogation for coronavirus vs. rotavirus infection.

In this study, we propose that drug-mediated activation or
stabilization of critical MR proteins inactivated by viral infection
is the principal mode of action blunting virus replication.
Although this mode of action may be inferred from our model,
one limitation of the study is lack of direct experimental evidence
confirming that reactivation of such specific MRs is the
mechanism mediating drug-induced effects on infectivity in the
experimental setting. In this regard, it should be noted that when
such a model has been applied in the oncology setting, drugs
predicted to inhibit tumor growth do so in association with the
expected inversion of MRs in the tumor checkpoint activity
pattern in vivo34,45. However, confirming inversion of critical
MRs in our virus-based model presents a number of technical
hurdles that require intensive optimization. The most challenging
aspect is the difficulty identifying infected cells, given the extre-
mely limited number of copies of the SARS-CoV-2 genome
available for analysis when viral replication is significantly
inhibited by drug exposure. As a result, designing, optimizing
technical features, and performing such experiments based on
scRNA-Seq analysis are beyond the current scope of this research
effort. However, further investigation of this aspect of the model
is certainly warranted.

From a translational perspective, in the setting of both the
current and future pandemics, as well as for recurrent epidemics
such as those caused by influenza and other viral pathogens, the
Viral Checkpoint framework can leverage bulk and single-cell
profiles from infected cells to quickly identify the precise set of
MR proteins responsible for creating a virus infection-friendly
environment in the host cell. Once identified, independent of
the specific viral pathogen, potential therapeutic agents can be

efficiently prioritized by the ViroTreat model, using readily
available—and relatively inexpensive—perturbational databases
to elucidate context-specific, proteome-wide drug MoA. Host
cell-directed therapies shown to be effective in cell line and
organoid models based on such predictions can then undergo
rapid validation in more physiologic contexts, prior to testing in
human trials designed to evaluate their safety and therapeutic
value in the clinical setting.

Methods
Cells. Vero E6 (ATCC CRL-1586) and Caco-2 (ATCC HTB-37) cells were
maintained in DMEM supplemented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin.

GI organoids. Human tissue was received from colon resection from the Uni-
versity Hospital Heidelberg. This study was carried out in accordance with the
recommendations of the University Hospital Heidelberg with informed written
consent from all subjects in accordance with the Declaration of Helsinki. All
samples were received and maintained in an anonymized manner. The protocol
was approved by the “Ethics commission of the University Hospital Heidelberg”
under the protocol S-443/2017. Stem cells containing crypts were isolated following
previously described protocols46. Organoids were passaged and maintained in basal
and differentiation culture media (Supplementary Table 2) as previously
described46.

Viruses. SARS-CoV-2 (strain BavPat1) was obtained from the European Virology
Archive. The virus was amplified in Vero E6 cells and used at a passage 3 for all
experiments as previously described33,47.

SARS-CoV-2 infection assay. 20,000 cells were seeded per well into a 96-well dish
24 h prior to drug treatment. 100 μL of media containing the highest drug con-
centration was added to the first well. Six serial 1:5 dilutions were made (all
samples were performed in triplicate). Drugs were incubated on cells for 24 h. Prior
to infections, fresh drugs were replaced and SARS-CoV-2 at multiplicity of
infection (MOI) 3 (as determined in Vero cells) was added to each well. In these
conditions, 70–90% of Caco-2 cells were found infected by SARS-CoV-2, at 24 h
post-infection (hpi), in the absence of drugs. 24 h post-infection cells were fixed in
4% paraformaldehyde (PFA) for 10 mins at room temperature (RT). PFA was
removed and cells were washed twice in 1X PBS and then permeabilized for
10 mins at RT in 0.5% Triton-X. Cells were blocked in a 1:2 dilution of Li-Cor
blocking buffer (Li-Cor) for 30 mins at RT. Cells were stained with 1/1000 dilution
anti-dsRNA (J2, SCIONS) for 1 h at RT as marker of infected cells as previously
described33. Cells were washed three times with 0.1% Tween in PBS. Secondary
antibody goat anti-mouse IR 800 (Thermo) and DNA dye Draq5 (Thermo) were
diluted 1/10,000 in blocking buffer and incubated for 1 h at RT. Cells were washed
three times with 0.1% Tween/PBS. Cells were imaged in 1X PBS on a LICOR
imager. Effect of drugs were analyzed by comparing the average fluorescence of
mock treated cells to drug treated cells. Draq5 staining was used to determined
cell viability.

Rotavirus infection assay. 40,000 cells were seeded per well into a collagen-coated
96-well dish 24 h prior to drug treatment. 100 μL of media containing the highest
drug concentration was added to the first well. Six serial 1:5 dilutions were made
(all samples were performed in triplicate). Drugs were incubated on cells for 24 h.
Media was removed and cells were washed 2X with serum-free media and were
infected with WT SA11 Rotavirus expressing mKate at MOI 0.1 (calculated in
MA104 cells) diluted in serum-free media. Rotavirus was previously activated for
30 min at 37 °C in serum-free media containing 2 µg/ml trypsin. Infection was
allowed to proceed for 1 h. In these conditions, 70–90% of Caco-2 cells were found
infected by rotavirus, 24 hpi, in the absence of drugs. Following infection, virus was
removed and cells were washed 1X with serum-free media. Media containing drugs
and 0.5 µg/ml trypsin were added back to cells to allow for Rotavirus propagation.
24 h post-infection cells were fixed with 2% PFA for 15 mins and then stained with
DAPI. Cells were imaged in 1X PBS on a Cell Discoverer 7 using a 5X objective.
Quantifications of infection was carried out by quantifying the number of infected
cells (mKate positive cells) in infected and not infected samples using CellProfiler.

SARS-CoV-2 infection of human colon organoids-derived 2D primary cell
cultures. Organoids were cultured in 24-well plates in basal medium for 5–7 days
following the original protocol of Sato and co-workers46. To obtain human colon
organoids-derived 2D primary cell cultures, the medium was removed from the 24-
well plates, organoids were washed 1X with cold PBS and spun (450 g for 5 mins).
PBS was removed and organoids were digested with 0.5% Trypsin-EDTA (Life
technologies) for 5 mins at 37 °C. Digestion was stopped by addition of serum
containing medium. Digested-organoids were spun again at 450 g for 5 mins and
the supernatant was removed and digested organoids were re-suspended in basal
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media at a ratio of 250 μL media/well (corresponding to approximately 400
organoids per ml). Prior seeding, the 48-well tissue culture plates were coated with
2.5% human collagen in water for 1 h at 37 °C. The collagen mixture was removed
from the 48-well plate and 250 μL of trypsin-digested organoids (corresponding to
about 100 digested organoids) were added to each well. 48 h post-seeding differ-
entiation media (Supplementary Table 2) was added to cells and 4 days post-
differentiation cells were treated with drugs at the indicated concentrations for 2 h
prior to SARS-CoV-2 infection. Media containing drugs was removed and 106

focus forming units (FFU) (as determined in Vero cells) of SARS-CoV-2 was added
to each well for 1 h at 37 °C. Following 1 h incubation, virus was removed and fresh
differentiation media containing drugs was added to cells. 24 h post-infection RNA
was harvested, and virus replication was monitored by RT-qPCR.

Estimation of the antiviral effect. We define the antiviral effect of a drug as its
viability-normalized effect on SARS-CoV-2 replication. The antiviral effect was
quantified as the log-ratio between virus replication and cell viability reduction
relative to vehicle-treated controls. Statistical significance was estimated by Stu-
dent’s t-test for each evaluated drug concentration, and multiple-hypothesis testing
due to the multiple evaluated concentrations was corrected using the conservative
Bonferroni’s method. Multiple hypothesis testing due to multiple evaluated drugs
was further corrected by Benjamini-Hochberg False Discovery Rate (FDR).

Drugs predicted by ViroTreat were considered validated when showing a
significant antiviral effect (FDR < 0.05) and a reduction in virus replication of at
least 20%. This additional criterium was used to increase the stringency when
evaluating the predictions and the threshold was inferred by fitting a gaussian
mixture model (GMM) to the relative replication in response to all evaluated drugs
(Supplementary Fig. 9). This analysis identified four groups of drugs—i.e.
components of the GMM analysis. The first two groups, based on their mean,
showed an average decrease in infectivity of 65% and 30%; the third group showed
an average decrease in infectivity close to zero (3.5%); and the forth group showed
an average increased in infectivity of 29% (Supplementary Fig. 9). Based on this
analysis, we empirically estimated 20% as a reasonable threshold distinguishing
drugs that inhibit viral replication (first and second groups) from drugs that
showed no effect or increased replication (third and fourth groups, see
Supplementary Fig. 9). The GMM analysis was performed using the mixtools
package available on CRAN (https://cran.r-project.org/web/packages/mixtools/
index.html) (Supplementary Fig. 9).

RNA isolation, cDNA, and RT-qPCR. RNA was harvested from cells using
RNAeasy RNA extraction kit (Qiagen) as per manufacturer’s instructions. cDNA
was made using iSCRIPT reverse transcriptase (BioRad) from 250 ng of total RNA
as per manufactures instructions. RT-qPCR was performed using iTaq SYBR green
(BioRad) as per manufacturer’s instructions, TBP or HPRT1 were used as nor-
malizing genes. See Supplementary Table 3 for primers used.

VIPER analysis of bulk RNA-Seq datasets. The source for all the datasets is listed
in Supplementary Table 1. RNA-Seq raw-counts data for Calu-3, H1299 and Caco-
2 cell line models were obtained from Gene Expression Omnibus Database (GEO,
GSE148729)18. Raw-counts data for A549 cell line, Normal Human Bronchial
Epithelial (NHBE) primary cells, a post-mortem lung tissue sample from a
COVID-19 patient and a healthy human lung biopsy were downloaded from GEO
(GSE147507)48. Normalized data (Transcript per Kilobase Million, TPM) for lung
organoids were downloaded from GEO (GSE160435). Raw-count data was nor-
malized using the variance stabilization transformation (VST) procedure as
implemented in the DESeq package from Bioconductor49.

Differential gene expression signatures for the Wyler’s dataset18 (GSE148729)
were computed by comparing the SARS-CoV-2 infected samples against the
centroid—i.e. the average expression of each gene—of the closest matched non-
infected (mock) samples as identified by unsupervised clustering. Specifically, we
first performed K-means cluster analysis of the normalized gene expression
profiles. The optimal number of clusters was estimated by silhouette-score
analysis as implemented in the “fviz_nbclust” function of the “factoextra” package
(https://cran.r-project.org/web/packages/factoextra/index.html). Cluster solutions
were evaluated from k= 2 to k= 10 and the solution with the highest average of
silhouette score was considered as optimal. Based on the optimal cluster solution,
we selected as reference for each infected sample the centroid of the mock samples
within the same cluster. In cases of clusters constituted by infected samples only,
the centroid of the mock samples in the closest cluster were used as reference.
Because a two clusters solution was estimated as optimal for all cluster analysis, the
other cluster was the trivial closest cluster solution in all cases. Cluster solutions
with less than two samples per cluster were considered ineffective. For Calu-3 cell
line, we noticed that samples associated to the two series (series-1 and series-2)
clustered separately—i.e. samples clustered according to series memberships. To
avoid possible batch effects in the analysis, the samples of these two series were re-
clustered separately to identify the best matched mock control samples in each
series independently. For series-1, the mock samples at 4 h and 24 h clustered
together and were used as reference to compute the differential expression
signatures of all the Calu-3 SARS-CoV-2 infected samples. For series-2, three mock
samples, including one mock sample at 4 h and two mock samples at 12 h clustered

together and were used as reference to compute the differential expression
signatures for all the Calu-3 SARS-CoV-2 infected samples. Of note, in series-2,
one mock sample at 4 h (GSM4477923) clustered separately from all the other
samples with a silhouette score of zero which indicates no clear cluster assignment.
This sample was considered as outlier and excluded from the downstream analysis.
For the Caco-2 cell line, the centroid of the 4 h mock samples was used as reference
to compute the differential expression signatures of the SARS-CoV-2 infected
samples at 4 h and 12 h, while the centroid of 24 h mock samples was used as
reference to compute the differential expression signatures of the 24 h SARS-CoV-2
infected samples. For the H1299 cell line, the centroid of the 4 h mock samples was
used as reference to compute the differential expression signatures of the SARS-
CoV-2 infected samples at 4 h and 12 h; and the centroid of the 36 h mock samples
was used as reference to compute the differential expression signatures of the 36 h
SARS-CoV-2 infected samples.

Differential gene expression signatures for the Blanco-Melo’s dataset48

(GSE147507) were computed using the centroid of the matched—i.e. same cell line
or primary cells—mock control samples as reference. For the post-mortem human
lung sample from a COVID-19 patient, the differential gene expression signature
was computed using the healthy human lung biopsy samples as reference.

Differential gene expression signatures for the lung organoid sample was
computed using as reference its matched mock control sample.

The differential activity of 5,734 proteins, including 1,723 transcription factors,
630 co-transcription factors, and 3,381 signaling proteins, was estimated for each of
the differential gene expression signatures with the VIPER algorithm9, using
matched context-specific models of transcriptional regulation. Lung, colon and
rectal adenocarcinoma context-specific models of transcriptional regulation were
reverse-engineered, based on 517 lung, 459 colon and 167 rectal adenocarcinoma
samples in The Cancer Genome Atlas (TCGA) with the ARACNe algorithm10,50,
as discussed in ref. 16. While, ideally, regulatory networks from non-cancer-related
epithelial cells may have been more appropriate, use of cancer-related regulatory
networks is justified by the high conservation of protein transcriptional targets in
cancer-related and normal cells from the same lineage11. The regulatory models are
available as part of the aracne.networks R package from Bioconductor. Specifically,
protein activity signatures in response to SARS-CoV-2 infection of the lung
adenocarcinoma cell lines (Calu-3, H1299 and A549), lung organoids and human
lung tissue samples were inferred with the VIPER algorithm using the lung
adenocarcinoma context-specific network. Protein activity signatures for Caco-2
colorectal carcinoma cell line were estimate with the metaVIPER algorithm13 using
the colon and rectal adenocarcinoma context-specific networks.

The VIPER-inferred protein activity signatures of infected samples at the same
time point in the same cell line were integrated using the Stouffer method51.

VIPER analysis of scRNA-Seq datasets. Single-cell (sc)RNAseq count matrices,
based on Unique Molecular Identifiers (UMI), for Calu-3 and H1299 lung ade-
nocarcinoma cell lines were downloaded from GEO (GSE148729). Both count
matrices were already filtered for low quality cells as described18. Count matrices
(UMI) from ileum and colon organoids were made available by Boulant lab and are
also publicly available on GEO (GSE156760). Count matrices were filtered for low
quality cells as described by Triana et al.47.

In contrast to bulk RNASeq profiles, single cell RNASeq profiles (scRNASeq)
allow effective identification of the individual cells likely to be infected by the virus,
which commonly represent a minority of cells in a culture. For this study,
therefore, we defined cells to be infected if they present at least one sequenced read
mapped to the SARS-CoV-2 genome. Critically, gene expression signatures based
on scRNASeq profiles, as computed by comparing bona fide infected cells to non-
infected controls, are less affected by contamination and dilution effects
characteristic of bulk RNASeq-derived signatures, resulting from a variable
proportion of infected vs. non-infected cells.

To account for confounding effects and gene expression profile heterogeneity
associated with mechanisms that are independent of viral infection18,47—such as
cell cycle and the use of models derived from cancer cell lines52—differential
expression signatures between infected and non-infected single cells were
computed by comparing each infected cell to its k= 50 closest non-infected ones
(Supplementary Fig. 1). This approach significantly improved accuracy and
reproducibility of differential gene expression signatures, including across different
cell lines, by minimizing confounding effects not associated with viral infection. To
identify mock controls cells for each individual infected cell we transformed the
count matrices to count per million (CPM) and subsequently to VIPER-inferred
protein activity signatures. Briefly, gene expression profiles were transformed to
differential gene expression signatures using the “scale” method—i.e. z-score
transformation—as implemented in the VIPER package9. Then, using lung
adenocarcinoma context-specific models of transcriptional regulation, we
transformed the single-cell gene expression signature matrices for Calu-3 and
H1299 cell lines to VIPER-inferred protein activity signature matrices. Similarly,
using colon and rectal adenocarcinoma context-specific networks, we transformed
the single-cell gene expression signature matrices for ileum and colon organoids to
the corresponding metaVIPER-inferred protein activity signature matrices.

The phenotypic state similarity between cells of the same dataset was quantified
by the euclidean distance, calculated based on the top 100 principal components of
the VIPER-inferred protein activity matrix. Briefly, the Singular Value
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Decomposition (SVD) was used to estimate the matrix of cells by eigenproteins
(principal components), and linear regression analysis was used to identify the
components (eigenprotein vectors) significantly associated to the viral infection,
expressed as the sum of the normalized UMI viral counts—counts mapping to the
SARS-CoV-2 genome. For ileum and colon, the vectors of viral counts were
generated by summing the normalized counts generated by targeted sequencing
analysis47. Principal components significantly associated with infection (p < 0.05)
were removed from the PCA space. Next, we performed a K-Nearest Neighbors
(KNN) analysis in the dimensionally reduced PCA space, considering the top 100
infection-independent principal components, to identify the phenotypically closest
50 mock cells for each of the infected cells. The KNN analysis was performed using
the FNN package53. The 50 phenotypically closest mock cells were used as
reference to compute the SARS-CoV-2-induced differential gene expression
signature for each of the infected cells. Specifically, the differential gene expression
signature for each infected cell was estimated by subtracting the mean expression of
the 50 phenotypically closest mock cells and dividing by their standard deviation.
For Calu-3 and H1299 cell lines, we considered as “SARS-CoV-2-infected” all the
cells with at least 1 sequencing read mapping to the SARS-CoV-2 genome. For
ileum and colon, we considered as “SCOV2-infected”, all cells identified by targeted
sequencing47.

The differential gene expression signatures of SARS-CoV-2 infected cells were
transformed to inferred protein activity signatures by VIPER and metaVIPER
algorithms, as described above.

Single-cell protein activity signatures of each data set were integrated by
arithmetic mean at each available time point for each cell line.

Similarity of VIPER-inferred protein activity signatures. The conservation of
MR proteins between VIPER-inferred protein activity signatures was quantified by
the reciprocal enrichment of the top 25 most activated, and the top 25 most
inactivated proteins in signature S1 in proteins differentially active in signature S2
and vice versa54, as implemented by the viperSimilarity() function in the viper
package from Bioconductor.

Enrichment of biological hallmarks on SARS-CoV-2 infection-induced protein
activity signatures. Hallmarks gene sets (v.7.2) were downloaded from the
molecular signatures database (MSigDB) website (http://www.gsea-msigdb.org/
gsea/msigdb/collections.jsp). Enrichment of the MsigBD biological hallmarks
protein-sets on the SARS-CoV-2 induced, VIPER-inferred protein activity sig-
natures, were estimated with the aREA algorithm9.

Enrichment of viral checkpoint MRs on infection essential genes identified by
CRISPR screens. CRISPR screen results (z-score) were downloaded from the sup-
plementary data of Wei et al.6 (Vero-E6 cells) and Schneider et al.4 (Huh-7.5 cells).
Z-scores were integrated across all experimental conditions for each cell line using the
Stouffer’s method. Enrichment of the top 50 most activated, and the top 50 most
inactivated proteins in response to SARS-CoV-2 infection, obtained after integrating
(average) all 10 single-cell protein activity signatures, on each CRISPR experiment
z-score signature, and on their Stouffer’s integration, were estimated by GSEA.
Normalized Enrichment Score (NES) and p-value were estimated by permuting the
genes in the CRISPR signatures 10,000 times uniformly at random. SARS-CoV-2
inactivated MRs essential for infectivity were identified as the genes in the leading-
edge for the GSEA of the inactivated MRs on the integrated CRISPR screen signature.

Enrichment of SARS-CoV-2 interacting proteins on host proteins differen-
tially active in response to SARS-CoV-2 infection. A list of 332 SARS-CoV-2
interacting proteins was obtained from Gordon et al.2. 90 of the 332 interacting
proteins were represented among the regulatory proteins for which we could infer
their activity. Enrichment analysis of this 90 SARS-CoV-2 interacting proteins on
the VIPER-inferred protein activity signatures was performed by GSEA. NES and
p-values were estimated by permuting the VIPER-inferred protein activity sig-
natures 10,000 times uniformly at random.

ViroTreat analysis. Based on the successful outcomes observed with OncoTreat
when evaluated in the context of tumor suppression, we sought to develop a novel,
analogous algorithm, ViroTreat, to identify small molecule compounds capable of
suppressing viral infection by targeting the Viral Checkpoint module. Similar to its
use in cancer, ViroTreat systematically assesses and prioritizes a small-molecule
compound’s ability to reverse the activity of a set of MR proteins based on large-
scale drug perturbation assays in cell lines that recapitulate (a) the regulatory
model of the target cellular population and (b) the activity of MR proteins. Spe-
cifically, perturbational assay data are comprised of RNASeq profiles generated at
24 h (by PLATE-Seq assays35), following treatment of MR-matched cell lines with a
library of FDA-approved and late-stage experimental drugs (in Phase 2 and 3
clinical trials) and DMSO as control. These profiles are then used to assess the
differential activity of relevant MRs in drug vs. DMSO-treated cells. Finally,
enrichment of MR proteins in proteins whose activity has been inverted by the
drug is computed by protein set enrichment analysis (PSEA) using the aREA
algorithm8,55. The RNASeq profiles used for ViroTreat analysis were generated at
24 h following treatment of LoVo cells with a repertoire of 154 FDA-approved

oncology drugs. Perturbations were performed at each drug’s highest sublethal
concentration (48 h IC20) or maximum serum concentration (Cmax) at its Max-
imum Tolerated Dose (MTD), whichever was lower. This was done to prevent
confounding effects, unrelated to the drug MoA, resulting from cell death or stress
pathway activation. RNASeq data was generated using PLATE-Seq, a fully auto-
mated, 96-well based assay35 (Supplementary Data 2).

Statistics and reproducibility. The number of replicates for each experiment is
indicated in the figures. Individual data points and mean ± standard error of the
mean (SEM) are shown for bar graphs. Data analysis was performed with R-system
v4.0.5. P-values for the drugs’ antiviral effect was estimated by Student’s t-test.
Normalized enrichment scores (NES) and P-values for enrichment analysis were
estimated by aREA9 or GSEA20 with permutation test. Multiple hypothesis tests
were addressed by Bonferroni’s or Benjamini-Hochberg False Discovery Rate
(FDR) methods, as indicated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Availability of SARS-CoV-2 host cell RNA-Seq and scRNA-Seq datasets is indicated in
Supplementary Table 1. The drug perturbational dataset (PLATE-seq) for the colorectal
adenocarcinoma (LoVo) model is available from ref. 32. The context-specific interactomes are
available from Bioconductor as part of the aracne.networks package for R (https://www.
bioconductor.org). The source data for the plots are available as Supplementary Data 4 and 5.

Code availability
ViroTreat R source code is available in Supplementary Data 3. The aREA algorithm is
available from Bioconductor as part of the viper package for R.
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