
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
7
1
1
5
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
9
.
9
.
2
0
2
3

https://dom-pubs.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Ae12a08de-2017-4722-9ed3-18d94009601f&url=https%3A%2F%2Fad.doubleclick.net%2Fddm%2Fclk%2F530324142%3B338236520%3Br&pubDoi=10.1111/dom.14812&viewOrigin=offlinePdf


Grimsmann Julia M (Orcid ID: 0000-0003-3627-1163) 
Tittel Sascha René (Orcid ID: 0000-0001-7913-6135) 
Seufert Jochen (Orcid ID: 0000-0001-5654-7310) 
 
 
Disease heterogeneity of adult diabetes based on routine clinical parameters at 

diagnosis: Results from the German/Austrian DPV registry 

Short running title: Cluster analysis of adult diabetes 

 

Julia M Grimsmann, PhD1,2 *, Sascha R Tittel, MS1,2 *, Peter Bramlage, MD3, Benjamin 

Mayer, PhD4, Andreas Fritsche, MD5, Jochen Seufert, MD6, Markus Laimer, MD7, 

Stefan Zimny, MD8, Sebastian M Meyhoefer, MD2,9, Michael Hummel, MD10, Reinhard 

W Holl, MD1,2 

* Contributed equally 

 

1Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, 

Germany (julia.grimsmann@uni-ulm.de, sascha.tittel@uni-ulm.de, reinhard.holl@uni-

ulm.de) 
2German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany 
3Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany 

(peter.bramlage@ippmed.de) 
4Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany 

(benjamin.mayer@uni-ulm.de) 
5German Center for Diabetes Research, Eberhard Karl University, Tuebingen, 

Germany (Andreas.Fritsche@med.uni-tuebingen.de) 
6Division of Endocrinology and Diabetology, Department of Medicine II, Faculty of 

Medicine, Medical Center, University of Freiburg, Freiburg, Germany 

(jochen.seufert@uniklinik-freiburg.de) 
7Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, 

Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland 

(Markus.Laimer@insel.ch) 
8Department of General Internal Medicine, Endocrinology and Diabetology, Helios 

Clinic Schwerin, Schwerin, Germany (stefan.zimny@helios-gesundheit.de) 
9Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany 

(sebastian.meyhoefer@uni-luebeck.de) 

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1111/dom.14812

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1111/dom.14812
http://dx.doi.org/10.1111/dom.14812
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fdom.14812&domain=pdf&date_stamp=2022-07-06


Page  

10Specialized Diabetes Practice, Rosenheim, Germany (Michael.Hummel@lrz.uni-

muenchen.de) 

Correspondence should be addressed to Dr. Julia M. Grimsmann: 
Address: Albert-Einstein-Allee 41, D-89081 Ulm 

Telephone:  0731-50-25353 

FAX:  0731-50-25309 

E-Mail:  julia.grimsmann@uni-ulm.de 

 

 

 

 

Word count abstract: 250 

Word count manuscript (excl. abstract, references, tables and figure legends): 

3,880  

Number of tables: 1 

Number of figures: 4 

Number of references: 30 

Number of supplementary figures: 2 

 

 

Key words: adults, Cluster analysis, diabetes complications, diabetes mellitus, 

diabetes registry, diabetes subgroups, DPV, Prospective Diabetes Follow-up, 
hierarchical clustering, real-world data  

  



Page  

ABSTRACT (250 words) 

Aims: To cluster adults with diabetes using parameters from real-world clinical care at 

manifestation. 

Materials and methods: We applied hierarchical clustering using Ward’s method to 

56,869 adults documented in the Prospective Diabetes Follow-up Registry (DPV). 

Clustering variables included age, sex, BMI, HbA1c, diabetic ketoacidosis (DKA), 

components of the metabolic syndrome (hypertension/dyslipidemia/hyperuricemia), 

and beta-cell antibody status. Time until use of oral antidiabetic drugs (OAD), use of 

insulin, chronic kidney disease (CKD), cardiovascular disease (CVD), retinopathy, or 

neuropathy were assessed using Kaplan Meier analysis and Cox regression models. 

Results: We identified eight clusters: Four clusters comprised early diabetes onset 

(median age between 40 and 50 years), but differed with regard to BMI, HbA1c, DKA 

and antibody positivity. Two clusters included adults with diabetes onset in their early 

60s who met target HbA1c, but differed in BMI and sex distribution. Two clusters were 

characterized by late diabetes onset (median age 69 and 77 years) and relatively low 

BMI, but differences in HbA1c. Earlier insulin use was observed in adults with high 

HbA1c, and earlier OAD use was observed in those with high BMI. Time until CKD or 

CVD was shorter in those with late onset, whereas retinopathy occurred earlier in 

adults with late onset and high HbA1c, and in adults with early onset, but high HbA1c 

and high percentage of antibody positivity. 

Conclusions: Adult diabetes is heterogeneous beyond classical type 1/type 2 

diabetes, based on easily available parameters in clinical practice using an automated 

clustering algorithm which allows both continuous and binary variables.  

 

 

INTRODUCTION 
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Diabetes mellitus is very heterogeneous in terms of age at manifestation, clinical 

presentation, disease progression, comorbidities and aetiology (1, 2), which may have 

implications on its treatment. However, up until today, classification is usually based 

on blood glucose, beta-cell-antibodies, the patient’s age and body-mass-index (BMI), 

family history, and diabetic ketoacidosis (DKA) (3). Commonly, over 90% of diabetes 

mellitus is classified as type 2 diabetes (T2D) (1). 

In an attempt to refine diabetes classification and to personalize diabetes treatment, 

Ahlqvist et al. tried to identify subgroups of adults with diabetes using clinical features 

that were measured at diabetes manifestation, including an estimate of insulin 

secretion and insulin sensitivity based on fasting measurements of glucose and insulin 

(HOMA2-B and HOMA2-IR). They found five replicable clusters of individuals with 

diabetes, which were significantly different in characteristics and risk of complications. 

In support of the clustering, genetic associations in the clusters differed among those 

traditionally classified as T2D. The authors proposed that this sub-stratification might 

help to guide optimal early treatment for patients who would benefit most, thereby 

representing a first step towards precision medicine in diabetes. Ideally, newly 

diagnosed individuals could be allocated to distinct clusters that may help to predict 

adverse events and the need for intensified treatment (2).  

Zaharia et al. applied the classification published by Ahlqvist et al. to adults with type 

1 diabetes (T1D) or T2D from the German Diabetes Study and observed similar 

patterns (4). 

A Swedish study from Lugner et al. clustered individuals with clinical T2D from the 

Swedish National Diabetes Register using nine continuous variables at diabetes onset, 

but without inclusion of insulin secretion or insulin sensitivity. The authors found no 

optimal value for the number of clusters and concluded there would be no evidence for 

a specific number of subgroups within T2D (5). 
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Fasting blood samples are not part of standard treatment at diabetes diagnosis in real-

world diabetes care (6), which makes the classification proposed by Ahlqvist difficult 

to apply in routine clinical care. In the present study, we aimed to find an alternative 

clustering approach based on routine clinical data obtained at diabetes manifestation, 

avoiding the requirement of elaborate measures for insulin secretion and sensitivity. In 

addition, we chose a clustering algorithm that allowed not only for continuous but also 

for dichotomous variables such as sex and antibody positivity. Clusters were then 

analysed by baseline characteristics, disease progression, and treatment requirement. 

 

 

MATERIALS AND METHODS 

In September 2020, the multinational Diabetes Follow-up Registry (DPV) consisted of 

601,200 individuals with different types of diabetes from 503 participating centres. 

Detailed information on the documentation system has been published previously (7). 

The protocol of DPV was approved by the ethics committee of Ulm University (approval 

no. 202/09), and data collection was approved by the local review boards at the 

participating diabetes centres. The registry was conducted in accordance with Good 

Epidemiological Practice (8) as well as applicable regulatory and data protection 

requirements. 

 

Participants 

We included individuals with clinical diagnosis of T1D or T2D between 1995 and 2019, 

age ≥18 years at manifestation, available baseline data on body-mass-index (BMI), 

HbA1c, and at least one of the following variables: blood pressure, lipid values, uric 

acid (Figure 1). 
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Variable definitions 

Baseline data were aggregated ±3 months around diagnosis and included age, sex, 

BMI (kg/m²), HbA1c, beta-cell-antibody status (positive/negative), DKA, dyslipidaemia, 

hypertension, and hyperuricaemia. HbA1c values were standardized according to the 

Diabetes Control and Complications Trial (DCCT) (9, 10). DKA was defined as pH <7.3 

and/or bicarbonate <15 mmol/mol (7). Dyslipidaemia was defined as total cholesterol 

>200 mg/dl and/or HDL cholesterol <35 mg/dl and/or LDL cholesterol >130 mg/dl 

and/or triglycerides > 150 mg/dl (fasting), or >350 mg/dl (non-fasting) and/or use of 

lipid-lowering medication. Hypertension was defined as systolic blood pressure ≥140 

mmHg and/or diastolic blood pressure ≥90 mmHg and/or antihypertensive treatment 

(11). Hyperuricaemia was defined as uric acid >6 and >7 mg/dl in females and males, 

respectively (12), and ‘components of metabolic syndrome’ was defined as having at 

least one of dyslipidaemia, hypertension, or hyperuricaemia. In addition, we present 

‘≥3 components of metabolic syndrome’ (dyslipidaemia, hypertension, hyperuricaemia, 

carbohydrate metabolism disorder, obesity [BMI >30 kg/m2]). 

Follow-up data on HbA1c were obtained after a median [interquartile range] diabetes 

duration of 1.8 [1.4–2.1] years. Long-term outcomes included time until insulin use, 

oral antidiabetic drug (OAD) use, chronic kidney disease (CKD), cardiovascular 

disease (CVD), diabetic retinopathy, and diabetic neuropathy. The date of the 

respective event was extracted from the standardized documentation or using string 

search in free-text fields. CKD was defined as estimated glomerular filtration rate 

(eGFR) <60 ml/min/1.73 m² calculated via MDRD formula (13) and/or dialysis and/or 

transplant and/or albuminuria (urinary albumin excretion >30 mg/l). CVD was defined 

as coronary artery disease and/or stroke and/or peripheral arterial occlusive disease 

and/or any operation on the heart. Diabetic retinopathy was assessed by 
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ophthalmologists in accordance with published guidelines as described before (14), 

and diabetic neuropathy was extracted from string search in free-text fields using 

diagnosis of (poly)neuropathy or ‘PNP’ in combination with ‘diabetic’, or ICD codes 

(E10.4, E11.4, E12.4, E13.4, E14.4, G59.0, G63.2). 

 

Statistical analysis 

We applied agglomerative hierarchical clustering to incorporate both continuous and 

dichotomous variables. In this approach, each observation starts in its own cluster. 

Similar clusters are merged stepwise until all observations are combined in one cluster, 

and then the optimal number of clusters is determined (15). The baseline variables age 

at manifestation, sex, BMI, HbA1c, DKA, beta-cell-antibodies, and ‘components of the 

metabolic syndrome’ were used for clustering, with continuous variables being 

standardized. We used Ward’s Minimum Variance method for clustering. As this 

method is sensitive to outliers, we excluded individuals with standard deviation >5 from 

the mean to remove the most extreme observations (2). We analysed three criteria to 

find the optimal number of clusters: Cubic Clustering Criterion (local peaks indicate 

good clusters), Pseudo-F statistic (relatively large values indicate good numbers of 

clusters), and Pseudo-t² statistic (a good number of clusters is marked by the start of 

a peak when going from higher to lower numbers of clusters) (16). The analysis was 

carried out using SAS procedures PROC CLUSTER and PROC TREE (SAS Version 

9.4, TS1M7, SAS Institute, Cary, NC, USA). 

Baseline data were tabulated overall and by cluster using percentage for dichotomous 

variables and median [interquartile range] for continuous variables, as Kolmogorov-

Smirnov tests indicated non-normality of all continuous variables (all p<0.01)  (Table 

1). Unadjusted comparisons of outcomes between clusters were analysed using 

Kruskal-Wallis test for continuous outcomes, and Chi-squared test for dichotomous 
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outcomes. For the time until a certain event, e.g., CKD, we used Kaplan-Meier analysis 

and compared clusters using log-rank tests. Individuals without an event at the end of 

documentation were right-censored. Mean (± standard error) event-free survival time 

is presented by cluster (Figure 3 and 4); the respective survival curves are included as 

Supplementary Figure 1 and 2. In order to account for differences in patient 

characteristics, we used Cox regression models adjusted for age, sex and use of OAD 

to analyse the risk of long-term complications. Results are given as hazard ratios with 

corresponding 95% confidence intervals (Table 1). 

P-values of unadjusted comparisons were adjusted for multiple testing using the 

Bonferroni-Holm method. Two-sided p-values <0.05 were considered statistically 

significant. 

 

 

RESULTS 

Inclusion criteria were met by N=56,869 individuals from 257 centres in Germany and 

12 centres in Austria (Figure 1). Overall, 13% of all individuals included were clinically 

classified as T1D and 87% as T2D. Median age at diagnosis was 40 [31 – 48] years, 

59% were men (Table 1). 

Cluster analysis 

The Cubic Clustering Criterion had a local peak at eight clusters, whereas the PseudoF 

statistic showed a smooth curve without clearly indicating the optimal number of 

clusters. The Pseudo t2 statistic indicated good clustering at eight or three clusters. 

Considering the three statistics together, we chose eight clusters that account for 54% 

of the variance. 

A description of the seven clustering variables can be found in Table 1, and a 

schematic characterization of the clusters is presented in Figure 2. Cluster 1 (including 
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12% of the individuals) was characterized by early diabetes onset, relatively low BMI, 

and low HbA1c. Cluster 2 (12%) also had early diabetes onset and low BMI, but high 

HbA1c. Furthermore, cluster 2 included more men (70%), very high percentage of DKA 

(14%) and positive beta-cell antibodies (21%), and the lowest percentage of ≥3 

components of the metabolic syndrome (29%). Cluster 3 (11%) was characterized by 

early diabetes onset, high BMI, high HbA1c, and higher percentage of men. Individuals 

in cluster 4 (15%) were older at diabetes onset, had high BMI, and low HbA1c. Cluster 

5 (13%) was similar with regard to age and HbA1c, but had lower BMI than cluster 4 

(26.1 [24.2–27.9] vs. 34.4 [31.8–37.3]), higher percentage of positive beta-cell-

antibodies (6 vs. <1%), lower percentage of ‘≥3 components of the metabolic 

syndrome’ (38 vs. 71%), and included more men (68 vs. 58%). Both cluster 4 and 5 

included almost no individuals with DKA at diabetes onset. Cluster 6 (15%) was 

characterized by late diabetes onset, BMI in the upper overweight range, high HbA1c, 

and very low percentage of positive beta-cell-antibodies (<1%). Cluster 7 was the 

smallest cluster (6%) and included individuals with early diabetes onset, low HbA1c, 

very high BMI (44.6 [40.6–49.3]), and a lower percentage of men (35%). This cluster 

had the highest percentage of individuals having ‘≥3 components of the metabolic 

syndrome’ (82%). Cluster 8 (16%) had the latest diabetes onset (76.6 [72.4–81.1] 

years), relatively low BMI, and low HbA1c. In this cluster, 38% were men, and almost 

no one had positive beta-cell-antibodies. Clusters 1 and 2 comprised the highest 

percentage of clinical T1D (32% and 45%, respectively), whereas clusters 4, 6, 7 and 

8 comprised mostly clinical T2D (96 to 98%). 

 

HbA1c at two-year follow-up by cluster 

Two-year follow-up data on metabolic control were available for N=12,650 individuals. 

HbA1c was low in all clusters with median values between 6.3 and 6.9% (45 and 
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52 mmol/mol); however, clusters with high baseline HbA1c (clusters 2, 3 and 6) still 

had higher HbA1c at follow-up than clusters with low baseline HbA1c (Table 1).  

 

Use of insulin and OAD by cluster 

Kaplan-Meier analysis showed significant differences in mean estimated time until first 

documented use of insulin or OAD among clusters (Figure 3 and Supplementary 

Figure 1, both p<0.001). Cluster 2 (highest baseline HbA1c, 45% clinical T1D) had the 

earliest usage of insulin with a mean (SE) time of 1.9 (0.1) years after diabetes onset, 

followed by cluster 3 and 6 (both with high baseline HbA1c). Time until OAD use was 

shortest in clusters with high baseline BMI and HbA1c (clusters 3 and 6), or HbA1c 

near target value but very high BMI (cluster 7). Latest OAD use was observed in 

clusters with a high proportion of clinical T1D diagnoses (clusters 1 and 2). 

 

Long-term complications by cluster 

For CKD, CVD, retinopathy, and neuropathy, the mean estimated event-free survival 

time was significantly different among the clusters (Figure 4, all p<0.001). Time until 

CKD was shortest in cluster 8 (highest age at diabetes manifestation) and cluster 6 

(higher age and high HbA1c at baseline). Clusters 4 and 5 with higher age but low 

HbA1c at baseline had a later diagnosis of CKD. The longest time until CKD was 

observed in cluster 1 (young age and low HbA1c at diabetes manifestation). A similar 

pattern was observed for time until CVD or neuropathy with the shortest time until an 

event in clusters 8 and 6, and a long time in cluster 1. Overall, retinopathy was less 

frequent than CKD and CVD. Around 10% of all individuals in clusters 1 and 7 had 

retinopathy 15 years after diabetes manifestation, whereas it was around 20% in 

clusters 2 and 6 (Supplementary Figure 2). 
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The risk for long-term complications after adjustment for age, sex, and use of OAD, is 

presented in Table 1 and in the schematic characterization in Figure 2. A high risk for 

CKD, retinopathy, and neuropathy was observed in clusters 3, 6, and 2 (high HbA1c 

at manifestation). Individuals in cluster 7 (very high BMI) had a high risk for developing 

CKD, CVD, or neuropathy. 

 

 

DISCUSSION 

In this large observational study, we found eight data-driven clusters of adults with 

diabetes based on routine clinical data collected at diabetes manifestation. These 

clusters were significantly related to therapeutic decisions and the development of 

diabetes complications. We consider the use of broadly available routine clinical data 

as essential when newly diagnosed individuals should be assigned to subgroups that 

may eventually be used to guide early treatment decisions. As patient heterogeneity is 

reflected by both continuous and categorical parameters, we chose a hierarchical 

clustering approach accommodating both. We included age at onset, BMI, and 

metabolic control similar to previous studies (1, 2, 17), but also sex, DKA at onset, 

beta-cell-antibody positivity, and components of the metabolic syndrome. We did not 

use pathophysiological parameters like insulin sensitivity and insulin secretion as they 

are not easily available in daily routine care.   

 

 

 

Cluster characterization and comparison with clusters proposed by Ahlqvist et al. 

Our clusters are not directly comparable to those proposed by Ahlqvist et al., which 

were mainly dependent on insulin secretion and insulin sensitivity. Ahlqvist et al. found 
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five clusters, among them one cluster labelled ‘severe autoimmune diabetes’ (SAID, 

6.4%) including all individuals with T1D or latent autoimmune diabetes in adults 

(LADA), defined by the presence of glutamic acid decarboxylase antibodies (GADA) 

(2, 18). The authors had to pre-specify this group in their k-means analysis based on 

results from the hierarchical clustering approach. In our study, cluster 2 (12.0% of all 

individuals) resembled the SAID and ‘severe insulin-deficient diabetes’ (SIDD, 12.0%) 

clusters from Ahlqvist with regard to early diabetes onset, low BMI, and high metabolic 

control. In addition, cluster 2 included more men than women and a very high 

percentage of positive beta-cell-antibodies and DKA, which was in accordance with 

the results of Ahlqvist et al. who evaluated DKA at manifestation after clustering.   

Cluster 7 from our study (5.8%) was similar to Ahlqvist’s ‘mild obesity-related diabetes’ 

(MOD, 21.6%) cluster with early onset, high BMI, and metabolic control near target 

level. In contrast to Ahlqvist et al., we found two additional clusters comprising 

individuals with early diabetes manifestation: Cluster 1 (12.3%, low HbA1c and BMI) 

and cluster 3 (11.5%, high HbA1c and BMI). In addition, we observed sex differences 

between the three clusters, and adults in cluster 3 more often presented with DKA. 

Cluster 4 resembled Ahlqvist’s cluster labelled ‘severe insulin-resistant diabetes’ 

(SIRD, 14.9%) with late diabetes onset, high BMI, and median HbA1c of ~6.7% (50 

mmol/mol). Two clusters were most similar to the ‘mild age-related diabetes’ (MARD) 

cluster with regard to low BMI and low metabolic control: Individuals in cluster 5 were 

younger (61 [55-66] years) and more often male (68%), whereas cluster 8 comprised 

older age (77 [72-81] years) and fewer men (38%). We found one additional cluster 

with higher age (69 [62-76] years, cluster 6) that also had low BMI; however, metabolic 

control was high. 
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Of note, we did not detect a single cluster that comprised clinical T1D only, but three 

clusters (1, 2, and 3) that included 32, 45, and 12% of clinically diagnosed T1D, 

respectively. 

 

Association of clusters with long-term diabetic complications 

 

We observed the highest risk for CKD and neuropathy in those clusters with median 

HbA1c >10% at manifestation (clusters 2, 3, and 6) and in cluster 7, characterized by 

the highest median BMI. Clusters 6 and 3 also had short time until retinopathy. 

Furthermore, short time until retinopathy was observed in cluster 2, in line with the 

SIDD cluster (2, 4, 19). 

In our study, time until CVD decreased with increasing age at manifestation for 

unadjusted data. After adjustment for age, sex and use of OAD, the risk for CVD was 

highest in clusters 3 and 7. Ahlqvist observed higher risk of coronary events and stroke 

in clusters with late diabetes onset for unadjusted data as well, but no significant 

difference after adjustment for age and sex (2). 

 

Clustering variables, algorithms and reproducibility 

Ahlqvist used data from the All New Diabetics in Scania (ANDIS) database that 

documents >90% of all incident cases of diabetes in the Scania County in Sweden. 

They replicated the analysis in three other Swedish and one Finnish database (2). 

In our German/Austrian multicentre study including adults with T1D and T2D, we 

applied a different clustering algorithm based on a different set of clustering variables 

(hierarchical clustering using Ward’s method, routine care variables) compared with 

Ahlqvist (hierarchical clustering with log-likelihood as distance measure, k-means, 
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including variables for insulin secretion and sensitivity). Some clusters resembled 

those from Ahlqvist, but others did not have a clear equivalent. 

Slieker et al. performed clustering in GADA-negative individuals with T2D from ANDIS 

or two large cohorts from Scotland (GoDARTS) and the Netherlands (DCS). They used 

C-peptide as a proxy for beta-cell function and HDL cholesterol as a proxy for insulin 

sensitivity. In principle, their clusters mapped to those identified by Ahlqvist; however, 

adding HDL cholesterol resulted in division of the MARD cluster into two clusters (17).  

Lugner et al. applied k-means clustering based on nine routine clinical variables (age, 

HbA1c, BMI, systolic and diastolic blood pressure, HDL and LDL cholesterol, 

triacylglycerol and eGFR) to adults with T2D from the Swedish National Diabetes 

Register. They were not able to find a specific number of clusters and hence concluded 

that the cluster division might be arbitrary (5). 

These discrepancies may raise the question how many and which variables should be 

included for a clinically meaningful clustering, and whether the clustering variables 

must be adjusted to different populations. Moreover, clustering newly diagnosed 

individuals may lead to different results than clustering individuals with long-term 

diabetes. Zaharia et al. assigned N=1,105 individuals with newly diagnosed diabetes 

to the diabetes clusters proposed by Ahlqvist. While the pattern at baseline resembled 

that of Ahlqvist, cluster reproducibility reduced to 77% after 5 years of disease 

progression. The authors suspected that cluster membership could be affected by 

differences in treatment over time as well as by alterations in glucose homeostasis, 

triglycerides, and liver steatosis (4). 

 

Furthermore, the choice of the classification algorithm is likely to affect results, as the 

algorithms differ, amongst other aspects, regarding distance metrics, cluster shape, 

and type of variables. The k-means algorithm is not applicable to mixed-type data (20). 
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However, binary variables like sex or DKA at onset are known to have a strong 

association with HbA1c trajectory, use of medications (21), and long-term outcomes 

(14, 21). Our results based on hierarchical clustering indicate that they may also play 

a role in clustering individuals at diabetes manifestation, as we observed differences 

between clusters with respect to sex, antibody positivity, and DKA. Ahlqvist partly 

addressed this issue by stratifying their analyses by sex. However, GADA positivity 

could only be analysed in their hierarchical clustering approach, whereas for k-means 

the authors classified all GADA-positive individuals as one group before applying 

clustering to GADA-negative individuals only (2). Another characteristic of the k-means 

algorithm is that it partitions observations into convex clusters with data being split 

halfway between cluster means. Overlapping groups may therefore not be partitioned 

reliably (20). 

Other clustering approaches like k-prototype, an extension to the k-means algorithm 

for clustering mixed-type data, are able to overcome some of the drawbacks mentioned  

(22). Alternatively, dissimilarity measures for mixed-type data can be created using 

Random Forest analysis and subsequently be used for various clustering algorithms 

(23). Another way to detect subgroups is latent class growth modelling that can model 

distinct trajectories over time (24). A previous DPV analysis in adults with T2D has 

identified four distinct HbA1c trajectories over five years, which differed with regard to 

age at diabetes manifestation, BMI, sex, and insulin therapy (21). In youth with T1D, 

five distinct HbA1c trajectories over ten years were identified (25). Also, a multi-

trajectory approach identified five distinct curves of HbA1c, BMI, and insulin dose in 

youth with T1D (26). Cluster switchers as observed by Zaharia may indicate that 

clustering could benefit from including not only parameters obtained at diagnosis but 

also development over time, e.g., response to treatment after six months. Additional 

work is required to clarify which clustering approach, based on selection of parameters 
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as well as computer algorithm, is superior. Also, as proposed by Dennis et al. (1), the 

predictive power of a clustering approach should be compared to a score based on 

various risk factors, e.g., the UKPDS risk engine (27) or the Framingham risk function 

(28). In our view, data published so far do not demonstrate a superiority of the 

clustering approach over traditional categorization of diabetes heterogeneity. 

 

Strengths and limitations 

Strengths of our study include the large sample size of newly diagnosed adults with 

T1D or T2D and the long follow-up period to address complications. We used 

continuous as well as binary routine clinical variables for clustering; hence, the 

classification would be easily adaptable to other data sets without the need for fasting 

measurements. However, several limitations need to be addressed. The determination 

of the optimal number of clusters was not consistent for all three methods. In addition, 

hierarchical clustering using Ward’s method tends to produce clusters of similar size 

(15) which may not fully reflect the underlying subgroups. Furthermore, diabetes 

therapy including medications and technology has changed during the long 

documentation period (1995 to 2019) which affects disease progression. We did not 

investigate genetic differences among clusters, hence, clusters were built based on 

routine clinical variables only, but did not include disease pathogenesis. Data from our 

European study population are not necessarily generalizable to other cohorts, as 

diabetes phenotypes and drug responses can differ between ethnic groups (29). 

Bancks et al. (30) used k-means clustering in individuals with South Asian, Non-

Hispanic White, Chinese, African American, or Hispanic ethnicity and observed ethnic 

differences across the subgroups. They reported differences in BMI and age at 

diabetes onset, which affected subgroup assignment. This finding highlights the need 

of further studies that examine the applicability of the subgroup concept in different 
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populations and ethnic groups. Future research may also lead to combination of 

clusters to make them more practical and easier to follow. However, at this stage, we 

consider knowledge gain as the primary aim of clustering approaches. 

Additionally, diabetes onset is difficult to determine for diabetes forms with slow 

progression and may depend on the frequency of routine laboratory tests. Therefore, 

different health care systems may include more or less early-diagnosed individuals, 

which could lead to different results. Potential misdiagnosis of type of diabetes affected 

our analysis in only that way as only individuals with T1D (including LADA) or T2D 

were included, but no other types of diabetes. Misdiagnosis of e.g. LADA as T2D would 

not affect clustering results, as type of diabetes was not included as clustering variable. 

Misdiagnosis of maturity-onset of diabetes of the young (MODY) would affect results; 

however, as absolute numbers of MODY are small, results are likely to change only 

marginally. 

 

Conclusions 

Based on routine real-world clinical data at diabetes onset, hierarchical clustering 

results in distinct patient subgroups with different treatment and complication rates. 

However, clustering results should be interpreted cautiously, as they highly depend on 

the choice of clustering variables. Independent confirmation of the subgroups, for 

example using genetic polymorphisms, is needed to account for the underlying 

pathophysiology. Large registries from different parts of the world are necessary to 

clarify these questions before a reclassification of diabetes mellitus is ‘ready to use’.  

 

 

 

 



Page  

 

 

 

 

 

 

 

 

DECLARATIONS 

Ethics approval and consent to participate 

The DPV initiative, which was established in 1995, was approved by the ethics 

committee of the University of Ulm, and data collection was approved by local review 

boards. 

Availability of data and material 

The datasets generated and analyzed during the current study are not publicly 

available due to data privacy but are available from the corresponding author on 

reasonable request. 

Acknowledgements 

We thank all participating centers of the DPV initiative. A list of them is included in 

the supplement. 

Funding 

The DPV registry was supported by the German Diabetes Society (DDG) and the 

German Centre for Diabetes Research (DZD, 82DZD14A03) and DiabetesAgenda 

2010. These received funding from Abbott, AstraZeneca, Bayer, Boehringer 



Page  

Ingelgeim, and Sanofi. Funders were not involved in the analysis and interpretation of 

data, the writing of the report or the decision to submit the article for publication. 

This manuscript is part of a project (www.imisophia.eu) that has received funding 

from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 

No 875534. This Joint Undertaking support from the European Union’s Horizon 2020 

research and innovation programme and EFPIA and T1D Exchange, JDRF, and 

Obesity Action Coalition. This work reflects the author's view and neither IMI nor the 

European Union, EFPIA, or any Associated Partners are responsible for any use that 

may be made of the information contained therein. 

Competing interest 

JS reports grants and personal fees from Abbott, AstraZeneca, and Sanofi, outside 

the submitted work. PB reports to have received consultancy honoraria from Sanofi 

and Abbott. All other authors have no conflict of interest to declare. 

Authors’ contributions 

PB, AF, JS, ML, SZ, SMS, and MH contributed to the data collection. SRT and RWH 

designed the analysis. JMG and SRT drafted the manuscript. JMG created figures. 

SRT and RWH were responsible for the statistical analyses. All authors contributed 

to the discussion and reviewed/edited the manuscript. SRT and RWH had full access 

to all the data in the study and take responsibility for the integrity of the data and the 

accuracy of the data analysis. All authors approved the final manuscript to be 

submitted. 

 

 

 

 



Page  

 

 

 

 

 

 

References 

1. Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. Disease 
progression and treatment response in data-driven subgroups of type 2 diabetes 
compared with models based on simple clinical features: an analysis using 
clinical trial data. Lancet Diabetes Endocrinol 2019;7(6):442-451. 

2. Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes 
and their association with outcomes: A data-driven cluster analysis of six 
variables. Lancet Diabetes Endocrinol 2018;6(5):361-369. 

3. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: 
Standards of Medical Care in Diabetes-2021. Diabetes Care 2021;44(Suppl 
1):S15-S33. 

4. Zaharia OP, Strassburger K, Strom A, et al. Risk of diabetes-associated diseases 
in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. 
Lancet Diabetes Endocrinol 2019;7(9):684-694. 

5. Lugner M, Gudbjornsdottir S, Sattar N, et al. Comparison between data-driven 
clusters and models based on clinical features to predict outcomes in type 2 
diabetes: Nationwide observational study. Diabetologia 2021.64(9):1973-1981. 

6. Petersmann A et al. Definition, Classification und Diagnosis of Diabetes Mellitus. 
Exp Clin Endocrin Diabetes. 2019;127(S01):S1-S7 

7. Galler A, Tittel SR, Baumeister H, et al. Worse glycemic control, higher rates of 
diabetic ketoacidosis, and more hospitalizations in children, adolescents, and 
young adults with type 1 diabetes and anxiety disorders. Pediatr Diabetes 
2021;22(3):519-528 

8. Hoffmann W, Latza U, Baumeister SE, et al. Guidelines and recommendations for 
ensuring good epidemiological practice (GEP): A guideline developed by the 
german society for epidemiology. Eur J Epidemiol 2019;34(3):301-317 

9. Feasibility of centralized measurements of glycated hemoglobin in the diabetes 
control and complications trial: A multicenter study. the DCCT research group. 
Clin Chem 1987;33(12):2267-2271 



Page  

10. Diabetes Control and Complications Trial (DCCT). Update. DCCT Research 
Group. Diabetes Care 1990;13(4):427-433 

11. van Mark G, Tittel SR, Sziegoleit S, et al. Type 2 diabetes in older patients: An 
analysis of the DPV and DIVE databases. Ther Adv Endocrinol Metab 
2020;11:2042018820958296 

12. Gois PHF, Souza ERM. Pharmacotherapy for hyperuricaemia in hypertensive 
patients. Cochrane Database Syst Rev 2020;9:CD008652 

13. Schwandt A, Bergis D, Denkinger M, et al. Risk factors for decline in renal 
function among young adults with type 1 diabetes. J Diabetes Complications 
2018;32(10):940-946 

14. Hammes HP, Kerner W, Hofer S, et al. Diabetic retinopathy in type 1 diabetes-a 
contemporary analysis of 8,784 patients. Diabetologia 2011;54(8):1977-1984 

15. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Data 
Mining, Inference, and Prediction. 2nd ed. ed. New York, Springer; 2009 

16. SAS Institute Inc. SAS/STAT(R) 13.1 User's Guide. Chapter 33: The CLUSTER 
procedure. The CLUSTER procedure. Cary, NC, SAS Institute Inc.; 2013 

17. Slieker RC, Donnelly LA, Fitipaldi H, et al. Replication and cross-validation of 
type 2 diabetes subtypes based on clinical variables: An IMI-RHAPSODY study. 
Diabetologia 2021;64(9):1982-1989 

18. Ahlqvist E, Prasad RB, Groop L. Subtypes of type 2 diabetes determined from 
clinical parameters. Diabetes 2020;69(10):2086-2093 

19. Tanabe H, Saito H, Kudo A, et al. Factors associated with risk of diabetic 
complications in novel cluster-based diabetes subgroups: A japanese 
retrospective cohort study. J Clin Med 2020;9(7):2083 

20. Bacher J. A probabilistic clustering model for variables of mixed type. Quality and 
Quantity 2000;34(3):223-235 

21. Rathmann W, Schwandt A, Hermann JM, et al. Distinct trajectories of HbA1c in 
newly diagnosed type 2 diabetes from the DPV registry using a longitudinal 
group-based modelling approach. Diabet Med 2019;36(11):1468-1477 

22. Huang Z. Extensions to the k-means algorithm for clustering large data sets with 
categorical values. Data Mining and Knowledge Discovery 1998;2(3):283-304 

23. Shi T, Horvath S. Unsupervised learning with random forest predictors. Journal of 
Computational and Graphical Statistics 2006;15(1):118-138 

24. Nagin DS, Jones BL, Passos VL, Tremblay RE. Group-based multi-trajectory 
modeling. Stat Methods Med Res 2018;27(7):2015-2023 



Page  

25. Sherr JL, Schwandt A, Phelan H, et al. Hemoglobin A1c patterns of youth with 
type 1 diabetes 10 years post diagnosis from 3 continents. Pediatrics 
2021;148(2):e2020048942 

26. Schwandt A, Kuss O, Dunstheimer D, et al. Three-variate longitudinal patterns of 
metabolic control, body mass index, and insulin dose during puberty in a type 1 
diabetes cohort: A group-based multitrajectory analysis. J Pediatr 2020;218:64-
71.e3 

27. Kothari V, Stevens RJ, Adler AI, Stratton IM, Manley SE, Neil HA, Holman RR. 
UKPDS 60: Risk of stroke in type 2 diabetes estimated by the UK prospective 
diabetes study risk engine. Stroke 2002;33(7):1776-1781 

28. Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk 
profiles. Am Heart J 1991;121(1 Pt 2):293-298  

29. Herder C, Roden M. A novel diabetes typology: towards precision diabetology 
from pathogenesis to treatment. Diabetologia 2022 Jan 4. doi: 10.1007/s00125-
021-05625-x 

30. Bancks MP, Bertoni AG, Camethon M et al. Association of Diabetes Subgroups 
With Race/Ethnicity, Risk Factor Burden and Complications: The MASASLA and 
MESA Studies. J Clin Endocrinol Metab. 2021: 106(5): e2106-e2115 

 

 

 



Page  

 Overall 
(n=56,869) 

Cluster 1 

(n=6,974) 
Cluster 2 

(n=6,824) 

Cluster 3 

(n=6,523) 

Cluster 4 

(n=8,464) 

Cluster 5 

(n=7,287) 

Cluster 6 
(n=8329) 

Cluster 7 
(n=3,304) 

Cluster 8 
(n=9,164) 

p-
value 

Male sex (%) 58.5 58.1 70.3 67.2 58.0 67.9 66.1 35.3 38.3 <.001 

Age at diagnosis (y) 58.9 [47.4 

– 70.2] 

39.9 [30.8 – 

47.6] 

48.8 [37.8 – 

55.0] 

45.7 [38.4 – 

52.8] 

62.7 [56.6 – 

68.6] 

61.0 [55.2 – 

66.3] 

69.0 [62.4 – 

75.9] 

48.6 [40.0 – 

55.6] 

76.6 [72.4 – 

81.1] 

<.001 

BMI at onset (kg/m²) 29.4 [25.7 

– 34.0] 

28.7 [25.0 – 

31.7] 

24.6 [21.9 – 

27.2] 

34.9 [31.2 – 

38.6] 

34.4 [31.8 – 

37.3] 

26.1 [24.2 – 

27.9] 

29.3 [26.0 – 

32.1] 

44.6 [40.6 – 

49.3] 

27.9 [25.0 – 

30.8] 

<.001 

HbA1c at onset (%) 7.9 [6.4 – 

10.6] 

7.0 [6.1 – 

8.5] 

11.9 [10.6 – 

13.6] 

11.0 [10.0 – 

12.1] 

6.7 [6.1 – 

7.6] 

6.5 [5.9 – 

7.4] 

10.8 [9.5 – 

12.2] 

7.0 [6.2 – 

8.4] 

6.5 [6.0 – 

7.2] 

<.001 

HbA1c at onset (mmol/mol) 62 [46 - 92] 53 [43 - 69] 107 [92 – 

125] 

97 [86 – 109] 50 [43 – 60] 48 [41 – 57] 95 [80 – 110] 53 [44 – 68] 48 [42 – 55]  

DKA at onset (%) 3.6 2.4 13.9 6.1 0.1 0.1 3.3 2.2 1.9 <.001 

Positive β cell AB (%) 5.0 5.6 20.6 6.1 0.4 6.4 0.6 3.0 0.0 <.001 

≥3 components of the 

metabolic syndrome† (%) 

56.5 39.4 29.2 74.5 70.7 37.8 68.9 81.6 58.5 <.001 

Clinical type 1/2 DM (%) 13.2/86.8 31.5/68.5 44.8/55.2 11.9/88.1 2.0/98.0 9.7/90.3 3.9/96.1 2.3/97.7 1.9/98.1  

HbA1c at 2-yr follow-up (%) 

(n) 

6.5 [5.9 – 

7.3] 

(n=12,650) 

6.4 [5.8 – 

7.4] 

(n=2,008) 

6.7 [6.0 – 

7.9] 

(n=1,170) 

6.9 [6.1 – 

8.2] 

(n=1,251) 

6.4 [5.9 – 

7.1] 

(n=2,219) 

6.3 [5.8 – 

7.0] 

(n=1967) 

6.9 [6.1 – 

7.8] 

(n=1348) 

6.4 [5.8 – 

7.2] 

(n=862) 

6.4 [5.9 – 

7.1] 

(n=1825) 

 

Chronic kidney disease: 
HR (95% CI) ‡ 

  

 

reference 

 
1.3 (1.2, 1.3) 

 
1.6 (1.5, 1.8) 

 
0.9 (0.9, 1.0) 

 
0.8 (0.7, 0.8) 

 
1.3 (1.2, 1.4) 

 
1.3 (1.2, 1.4) 

 

1.0 (1.0, 1.1) 

 

Cardiovascular disease: 
HR (95% CI) ‡ 

  

reference 

 

1.1 (1.0, 1.3) 

 
1.3 (1.1, 1.5) 

 

1.0 (0.9, 1.1) 

 
1.2 (1.1, 1.4) 

 
1.2 (1.0, 1.4) 

 
1.3 (1.2, 1.5) 

 
1.2 (1.0, 1.4) 

 

Retinopathy: 
HR (95% CI) ‡ 

  

reference 

 
2.2 (1.7, 2.8) 

 
1.6 (1.2, 2.1) 

 

0.9 (0.7, 1.2) 

 

1.0 (0.8, 1.4) 

 
1.9 (1.4, 2.5) 

 

0.7 (0.5, 1.0) 

 

0.8 (0.6, 1.2) 

 

Neuropathy: 
HR (95% CI) ‡ 

  

reference 

 
1.4 (1.3, 1.5) 

 
1.6 (1.4, 1.7) 

 
1.1 (1.0, 1.2) 

 
1.1 (1.0, 1.2) 

1.4 (1.3, 1.5)  
1.3 (1.2, 1.4) 

 

1.0 (0.9, 1.1) 
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Table 1: Demographics and outcomes overall and by cluster. Data are presented as median [interquartile range], percentage, or hazard ratio (HR) with 95% confidence 

interval. p-values obtained by Kruskal-Wallis or chi-squared tests. p-values adjusted for multiple testing using Bonferroni-Holm method. † hypertension, dyslipidemia, 

hyperuricaemia, carbohydrate metabolism disorder, obesity (BMI>30 kg/m2). ‡ Obtained from Cox regression models adjusted for age, sex, and use of oral antidiabetic drugs. 

Significant hazard ratios (p<0.05) for comparison with cluster 1 are highlighted in bold. 
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Figure 1: Patient selection. 

 

Figure 2. Schematic characterization of the eight clusters 
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Figure 3. Mean estimated time until (A) use of insulin and (B) use of oral 
antidiabetic drugs by cluster 

 

 

 

 

 

 

 

 

 

Estimated time based on Kaplan-Meier analysis (unadjusted). Estimates given as 
mean with SE. 
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Figure 4. Mean estimated event-free survival time by cluster for (A) chronic 
kidney disease, (B) cardiovascular disease, (C) retinopathy, and (D) neuropathy 

 
Estimated time based on Kaplan-Meier analysis (unadjusted). Estimates given as 
mean with SE.  
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