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Abstract: Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen
saturation (sO2) in various biomedical applications – in diagnosis, monitoring of organ function,
or even tumor treatment planning. We present an accurate and practically feasible real-time
capable method for quantitative imaging of sO2 based on combining multispectral (MS) and
multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose
we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging
capability; we trained gradient boosting machines on MI spectrally colored absorbed energy
spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO2
on real OA measurements. We validated MI-LSD in silico and on in vivo image sequences of radial
arteries and accompanying veins of five healthy human volunteers. We compared the performance
of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly
accurate results in silico and consistently plausible results in vivo. This preliminary study shows
a potentially high applicability of quantitative OA oximetry imaging, using our method.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optoacoustic (OA) imaging (also named photoacoustic imaging) is a promising biomedical
imaging modality for visualization of tissue structure and function based on the optical absorption
of endogenous or exogenous chromophores. [1,2]. By combining optical absorption contrast
with ultrasonic detection [3] OA imaging is able to image diagnostically relevant chromophores.
Endogenous chromophores like lipids, collagen and melanin can be imaged centimeters-deep in
tissue for various clinical purposes. Out of these, preclinically and clinically, OA imaging is most
frequently investigated for its ability to image blood. It has been used to image inflammation [4,5]
and other blood volume correlated biomarkers like angiogenesis [6,7], but also blood oxygen
saturation (sO2) [8] to assess organ function [9], wound healing [10], or to follow cancer therapy
[11,12].

Despite a wide range of approaches, a persistent challenge in OA imaging is the quantification
of actual physiological sO2 deep in tissue [13]. The main obstacle is the ill-posed inverse problem
to the optical transport forward problem. Tissue is a turbid medium with unknown distributions
of optical absorption and scattering. Light transport through this medium leads to unknown
(illumination geometry dependent and wavelength dependent) optical fluence distributions in the
imaged regions. This wavelength dependent optical fluence causes so-called spectral coloring
[14,15] in the measured OA spectra. Currently machine learning and data driven approaches
are frequently investigated in order to move towards quantitative OA oximetry and imaging in
general [16–18]. Learned spectral decoloring [19] is one such approach that aims to estimate
sO2 pixel-wise from multispectral (MS) OA signals, with each pixel being evaluated individually

#455514 https://doi.org/10.1364/BOE.455514
Journal © 2022 Received 3 Feb 2022; revised 25 Mar 2022; accepted 26 Mar 2022; published 5 Apr 2022

https://orcid.org/0000-0002-3819-1987
https://orcid.org/0000-0002-6741-9434
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.455514&amp;domain=pdf&amp;date_stamp=2022-04-05


Research Article Vol. 13, No. 5 / 1 May 2022 / Biomedical Optics Express 2656

as a 1D vector – information from other pixels is not taken into account for the estimation. This
is intended to break down spectral coloring, which is effected by a large region, to much fewer
dimensions. In order to add information and constraints to this ill-posed problem, physical
additions to the OA sensing apparatus have been investigated. These include diffuse tomography
[20,21] or multiple illumination geometries. [22–25]

Here, we propose that the application of machine learning to local spectra alone is insufficient
to perform quantitative OA oximetry – the ill-posed inverse problem remains (too) ill-posed to
arrive at accurate or robust estimates of sO2 without further constraints. We therefore propose to
incorporate additional information which may allow us to more accurately estimate sO2. We
do this by combining multiple illumination (MI), multispectral sensing with a modified LSD
technique.

In earlier work [26] we validated such an approach on a highly controlled copper and nickel
sulfate [27] phantom model of sO2. In this work we:

1. Developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging
capability for human applications.

2. Designed and performed Monte Carlo simulations of generic human tissue; generating MI
spectrally colored absorbed energy spectra.

3. Designed and trained gradient boosting machines on these simulations and used the trained
models to estimate sO2 on in vivo human OA measurements.

We validated MI-LSD in silico and on in vivo image sequences of radial arteries and accompanying
veins of five healthy human volunteers including a hemodynamic challenge on one volunteer. We
compared the MI-LSD results to LSD models, conventional linear unmixing of OA data and also
pulse oximeter reference measurements.

2. Imaging system

We developed a real-time MI OA imaging system with US imaging capability (shown in Fig. 1).
The system is based on an US data acquisition system (Vantage128, Verasonics, Inc., Kirkland,
Washington, USA) with a linear probe (L7-4, Advanced Technology Laboratories Inc., Bothell,
Washington, USA) with 128 transducer elements, 5 MHz center frequency, 0.3 mm pitch and
80% fractional bandwidth. The OA excitation is performed with a fast wavelength-tunable optical
parametric oscillator (OPO) laser system (SpitLight, InnoLas Laser GmbH, Krailling, Germany)
using 5 ns laser pulses with 100 Hz pulse repetition frequency. Laser pulses are sequentially
coupled into four custom fiber bundles (FiberOptic P.+P. AG, Spreitenbach, Switzerland) with
NA 0.22 fibers, each bundle 3 mm in diameter. Pulse energy at the fiber exit does not exceed 12
mJ. The sequential coupling is done with a galvo mirror (GVS011/M, Thorlabs Inc., Newton,
New Jersey, USA) and a 25 Hz ramp generated by an arbitrary waveform generator (AWG)
(TG5011, Aim-TTi, Cambridgeshire, UK) – synchronized with the OPO.

The fiber bundle outputs are arranged in a line array with 8 mm spacing. To comply with
American National Standards Institute (ANSI) safety limits for skin [28], the beams are widened
to 8 mm full-width at half-maximum (FWHM) at the tissue surface, staying below 25 mJ cm−2.
The fiber bundle outputs are attached to the handheld linear probe together with a custom made
10 mm thick gel pad through which illumination and acoustic detection are performed. The gel
pad is designed to deliver the illumination pulses to the imaging plane. It is based on a recipe
for a copolymer in mineral oil optoacoustic phantom by Hacker et al. [29] – omitting Titanium
Dioxide (TiO2) and Low-density Polyethylene (LDPE) from the phantom recipe to avoid optical
scattering in the material. Compared to water based gel pads it can be molded into shape and
fixed to the linear probe much easier while being temporally stable for weeks [29]; it also has a
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Fig. 1. Hybrid real-time multiple illumination (MI) optoacoustic (OA) imaging setup with
ultrasound (US) imaging. Tissue is illuminated through four fiber bundles by a tunable
optical parametric oscillator (OPO) laser system firing laser pulses with 100 Hz. A galvo
mirror system is driven at 25 Hz by an arbitrary waveform generator (AWG) to illuminate the
fiber bundles in sequence. A linear array US probe detects OA signals which are recorded by
a 128-channel US data acquisition (DAQ) system. Conventional US imaging and interleaved
OA and US imaging can be performed with the same system. A gold layer is applied to the
transducer surface to reduce OA transducer artifacts. A durable copolymer-in-oil gel pad is
used to enable in plane illumination.

higher optical transmittance for some relevant wavelengths as seen in Fig. 2. The speed of sound
in the gel pad was measured to be ∼1460 ms−1. To reduce the artifact caused by strong optical
absorption in the rubber layer of the linear probe, a gold layer (leaf gold ∼100 nm thick, 23.75
Karat Blattgold Rosenobel Doppel) was applied directly to the surface of the linear probe.

Fig. 2. Absorption coefficient spectra µa(λ) and wavelength selection. Oxy- (HbO) and
deoxyhemoglobin (Hb) spectra are shown at whole blood concentrations cwb(Hb or HbO)
= 150 gl−1 [30]. Absorption spectra of a gel pad sample and the base material mineral oil
were acquired by transmission spectrometry. Water absorption is shown for reference. Grey
vertical lines indicate the wavelengths selected for the multispectral imaging sequence. The
dotted line is 920 nm which was part of the recorded wavelength sequence but only intended
for an analysis of systematic errors – see Supplemental Document 1.
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The MI-MS imaging sequence consisted of four illumination positions, each illuminated by a
sequence of ten laser pulses over a range of wavelengths – (760, 780, 800, 820, 840, 860, 880,
900, 920, 980) nm. While aiming to measure the widest possible range available by the OPO (680
nm to 980 nm), we omitted wavelengths under 760 nm for the following reasons: (1) Variation
between pulse energies is highest in the lower tuning range 680–740 nm of the OPO while (2)
pulse energy is low, too; (3) Melanin absorption is highest for low wavelengths. Wavelengths
between 900 nm and 980 nm were omitted due to the absorption in the gel pad material and the
absorption in fat (a similar peak at 930 nm [31]). This allowed us to reduce the complexity of our
simulations by neither simulating absorption of the gel pad material nor fat.

In addition to the chosen MS sequence – (760, 780, 800, 820, 840, 860, 880, 900, 980) nm
– we measured at an additional wavelength: 920 nm. This was not used for sO2 estimation in
the main body of this work, in the supplement it is used to investigate MI-LSD’s robustness to
systematic errors in the optical forward model.

One 4 × 10 pulse sequence is acquired in 0.4 s. For all experiments, we recorded the raw data
for 300 such sequences for each subject. Live OA or US beamforming and visualization at 25
fps (showing B-mode US and mean OA signal over all illumination positions) was performed
using custom MATLAB scripts. The live visualization was solely used for probe positioning and
image quality control (e.g. avoiding air inclusions in the gel). The following data processing was
performed on recorded raw data.

3. Optoacoustic data processing

For MI-LSD we train a gradient boosting machine with in silico data and estimate sO2 on in vivo
OA data. An overview of these processes is illustrated in Fig. 3. The training pipeline and our
sO2 estimation method in general is detailed in subsection 3.1 and the in vivo data processing
pipeline in subsection 3.3. Both pipelines are fully open-source (see Data and Code Availability).

Fig. 3. Overview of the multiple illumination learned spectral decoloring (MI-LSD)
machine learning method using a Gradient Boosting Machine (GBM) algorithm [32]. Monte
Carlo simulations of randomized generic tissue volumes generate absorbed energy spectra
HI(λ) for four illuminations I. The GBM is then trained with tuples of L1 normalized ĤI(λ)
and labels sOgt

2 extracted from these simulations. Raw optoacoustic data is preprocessed and
beamformed with a naive delay and sum (DAS) algorithm. L1 normalized signal spectra
from these beamformed images ŜI(λ) are then presented to the trained GBM which estimates
sOest

2 .

3.1. Blood oxygen saturation estimation method

Our method is an extension of learned spectral decoloring (LSD) [19] and is based on our prior
work validating multiple illumination LSD (MI-LSD) on copper and nickel sulfate phantoms
[26]. In LSD we estimate sO2 in a pixel, for that we perform a regression on a 1D vector – the
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measured PA signal spectrum S(λ), with λ being the set of measured wavelengths in that pixel.
The naive approach to this regression problem is linear spectral unmixing (LU) [33,34]. In LU
S(λ) is fitted to a linear combination of known spectra of known absorbers (i.e. HbO and Hb). In
this work, the performed reference LU estimations are based on singular value decomposition
using a pseudo inverse absorption matrix. This fast approach was adapted from the simpa toolkit
[35]. While LSD aims to estimate sO2 from a single illumination OA signal spectrum S(λ),
MI-LSD simply uses multiple such spectra with a set of illuminations I as inputs. As in prior
work both our LSD and MI-LSD models are machine learning algorithms that are trained on
simulated absorbed energy spectra H(λ) labeled with ground truth sO2. These absorbed energy
spectra are each normalized with their respective L1 norm resulting into ĤI(λ); this is done for
each illumination I separately. As shown in previous work [26], this normalization makes them
equivalent to normalized measured OA signal spectra ŜI(λ).

The MI-LSD model is trained on an in silico training set consisting of tuples of the absorbed
energy spectra ĤI(λ) for all four illuminations I and the ground truth sO2 label (ĤI(λ), sOgt

2 ). The
trained model is then presented (1) unseen in silico spectra ĤI(λ) from a separate test set or (2)
OA signal spectra ŜI(λ) from an unseen in vivo measurement. The trained model then estimates
the corresponding sOest

2 . For the LSD model, illumination is averaged by ĤLSD =
∑︁

I ĤI and
ŜLSD =

∑︁
I ŜI . As machine learning algorithms we used gradient boosting machine regressors –

unmodified – as implemented by the LightGBM framework [32]. In initial experiments on data
from previous work [26] they proved faster and less memory intensive than random forests, while
providing the same precision. Specifically we used a LGBMRegressor with the regression_l1
objective function and 300 estimators (boosting trees) with a maximum of 200 leaves. These
were the only tuned hyperparameters. The hyperparameter tuning was performed exclusively on
in silico data sets from previous work, and all other hyperparameters were set to default values
(also see the open-source code).

3.2. In silico data processing

To generate in silico training and test data sets for the machine learning algorithms we used
Monte Carlo simulations of light transport. These simulations were performed with the GPU
accelerated open-source mcx toolkit [36] and followed previous simulation studies [26]. The
open sourced simpa [35] framework, was used for illumination modeling and data management.
The aim of these simulations is not to exactly model the specific investigated tissue geometry like
in previous work [19] but to generate a simplified generic data set that contains the broad range
of spectral coloring that is expected for transcutaneous OA imaging.

For that we model a broad range of random blood absorbers, background absorption of blood
and water, and a randomized epidermis with variable melanin content. The randomization of our
tissue layout is shown in Fig. 4. The in silico training data set consists of 4000 volumes and the
separate in silico test set of 1000 volumes. Each volume was simulated with ten wavelengths and
four illumination positions – mirroring the MI OA imaging sequence with our system.

Each volume has two sets of tubes with the tube count drawn from a discrete uniform
distribution U{3, 9}. Each tube has a radius of 0.4 mm, is perpendicular to the imaging plane,
and is uniform-randomly placed in the volume as specified in Fig. 4. The sO2 in each tube set
and the background sO2 were picked from a continuous uniform random distribution U(0%,
100%). All tubes within a tube set have the same random sO2. The background blood volume
fraction bvfbg was picked from U(0%, 3%). The wavelength-dependent background scattering
parameters were set using an analytic soft tissue scattering approximation published by Jacques
[30]. The relevant scattering parameters for background tissue were fixed to average values
for soft tissue derived by that meta analysis (µ′500

s = 19.1, f ray = 0.153 bmie = 1.091). For
epidermis the scattering was defined using data from Salomatina et al. [37] (µ′500

s = 66.7, f ray

= 0.29, bmie = 0.689). The thickness of the epidermis layer was based on Oltulu et al. [38]
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Fig. 4. Generic tissue geometry used for the Monte Carlo simulations. In order to generate
the training set 4000 random tissues are simulated, for the test set 1000 random tissues –
each using the shown parameters. Each volume has two sets of tubes, each set with a random
number of tubes, uniformly distributed as specified by xtube, and an epidermis layer with
thickness dskin. Melanin volume fraction (mvfskin) in the epidermis layer, blood oxygen
saturations in the tube set and background tissue (sObg

2 and sOtube
2 ) as well as background

blood volume fraction (bvfbg) are again drawn from uniform random distributions U. The
illumination geometry is modeled using the geometry of the setup shown in Fig. 1.

U(1.2 mm, 3.2 mm). The melanin volume fraction (mvf) in the epidermis layer was sampled
from U(1.2%, 3.2%) roughly modeling the distribution determined by Alaluf et al. [39] over all
ethnicities for photoexposed and photoprotected skin. For each single wavelength and single
illumination position, the Monte Carlo simulation was performed with 2 × 107 photon packets.
We used 1080 GTX (NVIDIA, Santa Clara) GPUs on a high performance computing cluster.
A single-wavelength and single-illumination-position simulation took an average of ∼30 s, so
that all simulations for the test and training sets used a combined 70 days of GPU time. The
absorbed energy density generated by the simulation was averaged over the thickness (∼2 mm)
of the experimental imaging plane to increase in silico SNR per photon packet. This greatly
reduced the number of photons needed for a precise simulation, when compared to previous
work. The in silico training and test data sets contain only the tube pixels (not the background
pixels) and are open data (see the Data and Code Availability Statement).

3.3. In vivo data processing pipeline

The recorded raw OA data was preprocessed, including a correction for the mean OPO pulse
energy spectrum. This OPO pulse energy spectrum was measured at the fiber bundles outputs
before the experiments. For a single wavelength, the variation of pulse energy was ∼3%. For
noise and artifact reduction, the data was then bandpass filtered using a Hann window from 0 to
9.6 MHz (corresponding to the frequency range recorded by the DAQ). The beamforming of
OA images was performed with a python implementation of delay and sum (DAS) beamforming
(using the numba library to increase processing speed). This beamforming implementation was
validated against a previous DAS implementation [40]. The delay and sum (DAS) algorithm
assumed a fixed speed of sound of 1480 ms−1. This value was chosen intentionally lower than the
typically assumed tissue speed of sound (1540 ms−1), to compensate for the lower speed of sound
in the 1 cm thick gel pad material (1460 ms−1). Furthermore a Hann apodization was used over
an apodization angle of ±30 degrees. The B-mode images were formed using a Hilbert transform
filter for envelope detection and then downsampling the result to an isometric resolution of
0.15 mm. See the Data and Code Availability Statement for the open-source image processing
scripts used. Limited by the pulse repetition rate of the laser, one imaging sequence took 0.4 s to
measure. On this time scale, tissue motion causes spatial deregistration of the images acquired at
different wavelengths, which leads to artifacts in the sO2 estimates. To reduce these unavoidable
motion artifacts and also to further increase SNR we averaged our OA B-Mode images with a
simple moving average – calculating the mean signal over five adjacent frames for each frame.
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4. Experiments and Results

We tested the performance of MI-LSD for oximetry on human subjects and compared it to LSD
and LU sO2 estimation performance. For this we performed (1) an in silico validation experiment,
(2) an in vivo experiment, imaging radial arteries and accompanying veins of five healthy human
volunteers and (3) a hemodynamic challenge on one volunteer.

4.1. In silico

During the in silico validation of the MI-LSD and LSD methods we tested our trained GBM
regressors on the in silico test set which was kept separately. We compared our results to LU
using the same simulated imaging sequence as for LSD. Results are presented in Fig. 5 and
Table 1, for the imaging sequence with the wavelengths (760, 780, 800, 820, 840, 860, 880, 900,
980) nm.

Fig. 5. Estimates of blood oxygenation saturation (sO2) on the in silico test set. Estimated
value (sOest

2 ) with a linear unmixing (LU) and b with multiple illumination learned spectral
decoloring (MI-LSD) is plotted against ground truth (sOgt

2 ) in 2D confusion plots with a
logarithmic color scale; in c zoomed in. d shows a histogram over the estimation errors for
LU in grey, LSD in light-blue and MI-LSD in blue.

Table 1. The median absolute estimation error |∆sOest
2 |in silico for MI-LSD, LSD and LU in

percentage points (pp) with its interquartile range (IQR) from quartile 1 (Q1) to quartile 3 (Q3) and its
90th percentile P90.

|∆sOest
2 | [pp] Q1 [pp] Q3 [pp] P90 [pp]

MI-LSD 3.8 1.7 7.4 12.6

LSD 5.2 2.3 10.7 18.5

LU 13.1 6.1 22.3 31.5

Regressors were also trained and tested on sequences either including 920 nm illumination
or excluding 980 nm (water absorption). The validation results for these modified in silico
sequences were similar and can be found in the supplemental figures S1 and S2.

The estimation for all 265979 samples in the test set on a high-end consumer CPU (Intel
i9-9900KF) was computationally inexpensive with total estimation times of 20 ms for LU, 700
ms for LSD and 800 ms for MI-LSD. Training the GBM regressors on the 1050673 sample
training set took 13 s for LSD and 20 s for MI-LSD on the same CPU.

4.2. In vivo baseline

For this experiment we aimed to image easily accessible vasculature with known references for
sO2. We therefore imaged the radial artery and surrounding vessels in five subjects. All subjects
gave their consent after having been thoroughly informed about the study, and the voluntary
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nature of participation. Before these measurements on the left forearms of the subjects we took
pulse oximeter (OxiMax NPB-40, Nellcor Puritan Bennett Inc., Pleasanton, CA USA) readings
(SpO2) from the index finger of the left hand. For each recording of each subject, we imaged
a transverse plane of the left forearm eight to twelve centimeters from the wrist. We located
the radial artery with the integrated US imaging (see US in Fig. 6) and positioned the probe
such that the radial artery was clearly visible in the center third of the US image – saving that
live US image for reference. We then switched to a live OA view, confirmed that the artery was
visible in the OA image and proceeded with a two minute OA raw data recording of the region of
interest. This raw data was processed offline using the pipeline described in section 3.3. We
then segmented bounding boxes for the radial artery, an accompanying vein and a superficial
vessel on the first of the 290 OA images (see boxes for OA and US in Fig. 6 ). The vessels were
then automatically tracked with fixed size ROIs (5 × 3 pixels) by centering on the maximum
intensity OA pixel in each segmented bounding box. All estimates are given as averages over
these tracked ROIs. Note that the same regressors trained exclusively on in silico data were
used for in vivo estimation. The LU, MI-LSD and LSD estimates in the pixels of these ROIs
were averaged and are shown as time series in Fig. 6. The time series averages and standard
deviations are listed in Table 2 together with reference SpO2 readings. Videos showing estimates
over the entire image over time for all estimation methods and subjects are part of the open-data
supplement. Interleaved US was also recorded for subject 1 and 2. With each of the methods the
sO2 estimation can be performed in real time.

Table 2. Baseline blood oxygen saturation (sO2) estimation on optoacoustic (OA) measurements
of the radial artery, radial vein and an additional superficial vessel in five healthy human volunteers.
sO2 values are averaged over 290 sequences recorded in two minutes and over a 5 × 3 pixel region
of interest (ROI), automatically tracking the vessels. Full sO2 time series are plotted in Fig. 6. Pulse

oximetry (SpO2) measurements on the index finger were taken as a reference before the OA
measurement.

SpO2 LU sOest
2 MI-LSD sOest

2 LSD sOest
2

[%] mean [%] ± sd [pp] mean [%] ± sd [pp] mean [%] ± sd [pp]

# finger artery vein vessel artery vein vessel artery vein vessel

1 95–97 82 ± 4 65 ± 11 52 ± 10 93 ± 3 76 ± 12 73 ± 10 81 ± 7 76 ± 8 72 ± 11

2 97 86 ± 4 63 ± 8 77 ± 6 92 ± 4 76 ± 11 82 ± 6 83 ± 6 80 ± 12 76 ± 6

3 95–98 79 ± 8 20 ± 4 15 ± 2 93 ± 5 56 ± 10 54 ± 9 81 ± 7 56 ± 13 53 ± 11

4 97 86 ± 3 79 ± 8 79 ± 4 92 ± 4 77 ± 8 80 ± 5 82 ± 6 77 ± 8 75 ± 7

5 97 65 ± 11 7 ± 4 78 ± 4 82 ± 10 59 ± 10 80 ± 7 77 ± 11 36 ± 9 73 ± 3

4.3. in vivo hemodynamic challenge

As an additional experiment we performed a venous and arterial cuff occlusion on the forearm of
subject 1. 250 mmHg pressure was applied to occlude arterial and venous blood flow [41] for ten
minutes. We started OA recording 20 seconds before opening the cuff occlusion and expected a
return to baseline for arterial blood after two minutes. All image processing was similar to section
4.2; the resulting time series are shown in Fig. 7. A pulse oximeter reference measurement could
not be taken during this experiment due to the absence of a pulse in the cuffed arm.

This reperfusion experiment resulted in sO2 estimates with MI-LSD that are consistent with
the physiology of such hemodynamic challenges; with MI-LSD showing an estimated arterial sO2
of 56%± 10% before reperfusion (averaged over the first 12 s) and a quick return to baseline with
an arterial sO2 of 91%± 4% (averaged over the last 12 s recorded). The arterial sO2 estimates for
LSD were 61% ± 19% occluded and 82% ± 10% reperfused; and for LU, 28% ± 4% occluded
and 82% ± 5% reperfused. 100 seconds after reperfusion, radial artery and vein sO2 returned to
subject 1’s baseline, and so did the post-experiment pulse oximeter reading.
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Fig. 6. Blood oxygen saturation (sO2) estimation on optoacoustic (OA) measurements
of the radial artery, radial vein and a superficial vessel in five healthy human volunteers.
Ultrasound (US) imaging was used to position the probe and then verify the position of the
vessels. The arterial, venous and superficial vessel bounding boxes are marked in the US
and OS images in red, blue and grey. Estimation was performed with linear unmixing (LU),
multiple illumination learned spectral decoloring (MI-LSD) and mean-illumination learned
spectral decoloring (LSD), for comparison.

Fig. 7. Reperfusion experiment. Blood flow was blocked for ten minutes by a blood pressure
cuff inflated to 250 mmHg. OA imaging was started 20 seconds before reperfusion by deflation
of the cuff. Similar to the baseline experiment, blood oxygen saturation (sO2) estimates
are shown for the radial artery, accompanying vein and a superficial vessel. Estimation is
performed with linear unmixing (LU), multiple illumination learned spectral decoloring
(MI-LSD) and fixed illumination learned spectral decoloring (LSD), for comparison.
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5. Discussion and conclusion

As expected, the MI-LSD estimations of sO2 on the in silico test set were highly accurate, with
median absolute estimation errors of 3.8 percentage points, slightly outperforming LSD with
|∆sOest

2 | = 5.2 pp and clearly outperforming LU with |∆sOest
2 | = 13.1 pp. As can be seen in

Fig. 5, MI-LSD (same as LSD and LU) performed worst at the boundaries of 0% and 100%
sO2. Accuracy of sO2 estimations in the high regime is often medically most relevant as arterial
sO2 under 90% is already considered critical and usually chosen as the clinical threshold for
hypoxemia [42]. The likely reason for this worse performance at the boundary is the non-existence
of training samples outside the 0 – 100% range which punishes estimating values close to the
boundary and leads to an overall bias toward 50% sO2.

In silico accuracy was limited by simulation time, but less by the amount of training data
and more by the signal-to-noise of the training data. Simulating more photon packets will
likely improve the in silico performance but comes at a high computational cost. The MI-LSD
model could further be improved by using machine learning algorithms that aim for more
explainability [43] of their estimations. This may give us a realistic estimation of accuracy or
add confidence estimates to the sO2 estimates of our model [44]. This would of course also
increase computational costs. Using lightGBM [32] is accurate, computationally cheap and
greatly reduced memory usage compared to the random forests of our previous work [26].

Our in silico estimation accuracy of MI-LSD is high, even if it is only a slight improvement
over LSD. However, this testing on in silico data generated with the same random distributions
does not imply that MI-LSD or LSD generalizes well. The MI-LSD machine learning model
was trained by generic and randomized transcutaneous tissue data provided by Monte Carlo
simulations. These random data aim to simulate the full range of possible spectral coloring in
and by blood and water and include spectral coloring by a wide range of melanin concentration
in skin. The aim was to include the full ethnic variation in melanin. Previous quantitative OA
oximetry work [19], when applied to in vivo or phantom test data, used in silico training data
which was not generic but closely modeled after the relevant in vivo or phantom test data. In our
in vivo experiments we estimated sO2 with machine learning models trained with dissimilar and
purposely generic in silico data. Still, our in vivo MI-LSD estimates of sO2 yielded plausible
and highly consistent results. The accuracy of these estimates can not be judged well, as these
experiments on healthy human volunteers lack hard ground truth data for sO2 which would only
be available with invasive means (i.e. arterial blood gas analysis). We employed pulse oximetry
to get a non-invasive reference measure for the true arterial sO2. As an additional reference we
used literature values for normal arterial sO2 averaging around 97% [45].

All our arterial blood in vivo MI-LSD estimation results for radial arteries are consistent with
both literature and pulse oximetry, except for subject 5’s. LU and LSD deviate from the arterial
sO2 reference values for all subjects (see Table 2). Arterial sO2 baseline estimates for MI-LSD
are systematically ∼2–5% lower than expected, which is in line with the deviation observed in
silico. For venous blood we only have literature values as references. In central venous blood
returning from peripheral tissues sO2 averages around 75% [45], but with wide variation [46].
Normal venous sO2 in the arm is usually found to average around 70% with a large standard
deviation of 20% [47] or 12% [48]. All our in vivo MI-LSD results are consistent with this
plausible range for venous blood. LU and LSD have several outliers in their venous sO2 estimates
(see Table 2 and Fig. 6).

It is unclear why subject 5 is an outlier in the arterial sO2 estimation using MI-LSD. The falling
trendline (see Fig. 6) could indicate an inadvertent occlusion (maybe partial arterial occlusion)
due to pressure applied by the imaging probe. SpO2 was not continuously measured and would
have indicated if that were the case. In general, the unequal and uneven pressure applied by the
probe to the forearm may also have resulted in a (partial) collapse of the radial veins in some
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experiments. This may have led to variation over time in sO2 for some of the baselines and
should be closely monitored in future work.

Generally, motion artifacts also have an additional (blurring) influence on the data. It should
also be noted that the acoustic reconstruction with DAS and using a linear transducer array is an
imperfect solution to the acoustic inverse problem. This means that we do not in fact estimate
from a fully local OA signal spectrum but our OA signal spectra include confounding influences
from the surrounding area. A major limitation of our pilot study is the light skin type in all our
subjects. All subjects were light skin males, though with varying degrees of skin photoexposure.
The group only included relatively light skin on the ventral side of their forearms (Type 1–3 on the
Fitzpatrick scale). Therefore, this pilot study, while promising, yields only limited information
about the method’s usefulness with the full range of ethnic variation in melanin. A follow-up
study of MI-LSD OA oximetry should include continuous reference measurements with pulse
oximetry, possibly a blood gas analysis of venous blood samples and definitely a larger, more
diverse cohort.

The result of our hemodynamic challenge experiment showed reduced arterial sO2 estimates
for all methods after a ten minute cuff occlusion. Following reperfusion we could observe
a characteristic overshoot (hyperemia) of arterial sO2 followed by a return to the baseline of
subject 1. Again the MI-LSD estimates followed the expected hemodynamics well. LU and LSD
estimation performed worse. Maybe more importantly, we can see from this experiment that
MI-LSD does not simply systematically estimate higher sO2 values but indeed estimates plausible
values in a wide range. In a follow-up study of MI-LSD OA oximetry such a hemodynamic
challenge experiment could be extended by an oxygen challenge, which would allow a pulse
oximetry reference measurement. Other experiments may include a local variation of perfusion
e.g. with adrenaline injections [49].

In conclusion, MI-LSD proved highly accurate in silico and showed consistently plausible
estimates of sO2 in vivo. Our preliminary study shows that MI-LSD has the potential to be a
robust tool enabling quantitative OA oximetry imaging in humans.
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