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Abstract
An important hurdle to overcome before machine learning models can be reliably deployed in prac-
tice is identifying when samples are different from those seen during training, as the output for
unexpected samples are often confidently incorrect, while not being identifiable as such. This prob-
lem is known as out-of-distribution (OOD) detection. A popular approach for the unsupervised
OOD case is to reject samples with a high Mahalanobis distance with regards to the mean features
of the training data. Recent work showed that the Mahalanobis distance can be thought of as find-
ing the training data invariants, and rejecting OOD samples that violate them [1]. A key limitation
to this approach is that it is limited to linear relations only. Here, we present a novel method capable
of identifying non-linear invariants in the data. These are learned using a reversible neural network,
consisting of alternating rotation and coupling layers. Results on a varied number of tasks show it
to be the best method overall, and achieving state-of-the-art results on some of the experiments.

Background
Given a training set {𝐱𝑖}𝑁𝑖=1 with 𝐱𝑖 ∈ 𝐗, we define an invariant as a non-constant function 𝑔 ∶

𝐗 → ℝ, such that 𝑔(𝐱𝑖) = 0, ∀𝑖. That is, 𝑔 is an invariant if it computes a constant value for the
elements of the training set, but in general may not compute the same constant value for other
elements (e.g., elements of a test set). Our goal then is to find a set of invariants, 𝐺 = {𝑔1,… , 𝑔𝐾},
over the set of training samples.

As noisy real-world data rarely lies in an exact manifold, this is unfeasible in practice even for a
small number of invariants 𝐾 . Instead, we relax the above goal and express it as a minimization
problem to find a set of soft invariants:
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The second equality prevents 𝑔
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from becoming a trivial projection (i.e., effectively making it non-
constant). Once 𝐺 = {𝑔1,… , 𝑔𝐾} is established, any test sample 𝐱 can be scored by computing the
ratios between the test error and the average training error,
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We can further simplify the optimization problem of Eq. (1) by constraining the invariants to the
family of affine functions 𝑔

𝑘
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𝑘
with unitary 𝐚

𝑘
. Under these conditions, Eq. (1) reduces

to a PCA problem. Its solution sets 𝐚
𝑘

to the k-th smallest principal component and the squared
error 𝑒

𝑘
is set to its corresponding eigenvalue. Moreover, the score function Eq. (2) can be re-written

as the square of the Mahalanobis distance using the mean and the covariance of the training feature
vectors [1].

Method
Restricting the invariants to affine functions will only allow us to capture linear relationships.
Nonetheless, datasets might contain non-linear invariants important to OOD detection as well.
Here, we propose a novel framework capable of learning them, which we dub the Volume Preserv-
ing Network (VPN).

By Eq. (1), we have to restrict ourselves to operations with a determinant of 1, to prevent learning
trivial solutions. For this, we borrow from the literature of normalizing flows (e.g. [2]), and build
a bijective, reversible neural network consisting of a combination of rotation and coupling layers
(Our architecture is shown in Figure 1).

The rotation layer learns the weights of a rotation matrix with an optional bias. This layer does
not learn non-linear relations, but is for example capable of emulating PCA. The coupling layers
on the other hand are capable of learning non-linearities. They split the input features into two
parts, 𝑥1 and 𝑥2. Then, 𝑥2 is fed through a multi-layer perceptron (MLP), which outputs a vector of
equal size that is used to translate 𝑥1. Its output is concatenated with 𝑥2 to produce the output 𝑦 .
Formally,

𝑦 = (𝑥1 + MLP(𝑥2), 𝑥2). (4)

See Figure 2 for a visual explanation of the coupling layer. Both of these layers are easily reversible:
the rotation layer by using the transpose of the rotation matrix, and the coupling layer by using
𝑦 = (𝑥1 − MLP(𝑥2), 𝑥2).

We train the reversible VPN with two loss functions. First, the VPN is trained to find a set number
𝐾 of invariants, which comes down to minimizing the 𝐿2 norm of 𝐾 dimensions (Eq. (1)). This loss
function by itself is not sufficient, as the network can simply ignore the other 𝑁 − 𝐾 dimensions,
and might learn uninformative invariants.

To remedy this, we make use of the reversibility of the VPN. By going back from the invariant
representation to the original data space, we obtain a reconstruction 𝑥

′ of the original data point
𝑥 . The second loss aims to minimize this reconstruction error, i.e. 𝐿𝑟𝑒𝑐 = (𝑥 − 𝑥

′
)
2.

We set the number of invariants equal to the number of linear invariants (a lower bound), which
we define as the largest number of principal components, starting from the smallest, that together
explain less than 2% of the variance.
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Figure 1: The VPN architecture
used.
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Figure 2: The coupling layer.

An example application of our VPN on two-dimensional toy data can be seen in Figure 3. The toy

data shown in Figure 3(a) has no linear invariant, i.e. there exists no affine 𝑔
𝑘

for which
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is reasonably close to 0. However, it does have a non-linear invariant, in that all samples lie on part
of the unit circle (with some noise).

After training, passing the data forward through the network gives the invariant representation
shown in Figure 3(b). It can be seen that the network has learned a dimension that is almost con-
stant, which is the non-linear invariant, and the variability is encoded in the other dimension. Here,
the out-of-distributionness of test samples can be scored using Eq. 2, that is computing the ratio
between its value in the invariant dimension to that of the mean of the training set.

From this invariant representation the data can be reconstructed by reversing through the net-
work (Figure 3(c)). Despite the fact that one of the dimensions has almost no variability, the network
is still capable of reconstructing the original input data to a large degree.

(a) (b) (c)

Figure 3: Results on toy data. (a) shows the data, (b) the invariant representation, and (c) the reconstruction from the
invariant representation together with the original data.

Experiments and results

We evaluate our approach on two different tasks. The first is a standard OOD task involving 10
experiments on CIFAR-10, where each experiment takes one of the 10 classes as in-distribution
and uses the remaining 9 as OOD. We extract features from the penultimate layer of a pretrained
ResNet-18, and use those as our training set. Results are shown in Table 1.

1 2 3 4 5 6 7 8 9 10 Mean

IF 84.5 94.4 71.5 72.6 87.1 67.2 85.5 81.4 87.6 93.5 82.5
kNN (k=2) 86.5 95.6 73.8 75.2 87.3 77.6 89.4 84.6 89.7 94.2 85.4
kNN (k=20) 84.8 95.5 70.5 73.3 86.1 76.0 87.7 83.5 89.0 94.3 84.1
LOF (k=2) 81.7 93 76.6 78.3 80.4 76.3 82.6 83.1 89.2 91.6 83.3
LOF (k=20) 87.7 95.7 79.7 79.8 88 78.5 90.6 83.6 92.1 95 87.1
Mahalanobis 90.7 96.4 79.9 81.4 91.7 85.4 92.3 89.5 93.0 96.0 89.6
NL-invs (ours) 91.3 96.6 80.5 81.3 92.0 86.0 92.6 90.3 92.6 96.1 89.9

Table 1: Results on CIFAR-10 in AUC.

For the second task we adapt 10 datasets initially selected for comparing unsupervised anomaly
detectors ([3]) to our purpose. We split the outliers and an equal number of randomly selected
inliers off into a test set, such that the training data only contains normal samples (sometimes also
referred to as semi-supervised anomaly detection). See the results in Table 2.

Aloi Thyroid B-cancer Speech Letter Peng Penl Satellite Shuttle KDD99 Mean

IF 55.3 79.4 100 40.2 59.7 96.9 57.0 96.6 99.7 95.4 78
kNN (k=2) 76.2 71.9 100 76.7 94.1 99.9 99.0 97.1 99.9 100 91.5
kNN (k=20) 66.5 64.5 100 48.4 88.9 100 98.0 98.2 99.9 100 86.4
LOF (k=2) 75.5 73.3 96.0 92.1 91.2 99.6 100 91.3 99.1 97.2 91.5
LOF (k=20) 75.2 66.9 100 48.1 91.2 99.7 100 96.9 99.9 98.5 87.6
Mahalanobis 57.0 66.0 100 45.9 84.6 99.1 58.0 94.1 99.7 94.8 79.9
NL-invs (ours) 55.5 84.8 100 66.0 90.2 99.1 100 94.5 99.9 100 88.6

Table 2: Results on non-image datasets in AUC. B-cancer, Penl and Peng denote the breast-cancer, pen global and pen
local datasets respectively.

Conclusions

We find that the methods behave erratically across tasks. For example, kNN and LOF with 𝑘 = 2 are
the best methods on the non-image datasets, where the Mahalanobis distance scores more than 10
AUC lower on average, while this trend is reversed for CIFAR-10, where the Mahalanobis distance
outperforms kNN and LOF with 𝑘 = 2 by over 4 points. Yet, in both cases our method achieves
competitive results, scoring the highest on CIFAR-10, and third best on the non-image evaluations.

Overall, our method is best across the 20 experiments ran, indicating it to be a promising approach
for unsupervised out-of-distribution detection.
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