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Abstract 

Background:  The debate of whether machine learning models offer advantages over standard statistical methods 
when making predictions is ongoing. We discuss the use of a meta-learner model combining both approaches as an 
alternative.

Methods:  To illustrate the development of a meta-learner, we used a dataset of 187,757 people with depression. 
Using 31 variables, we aimed to predict two outcomes measured 60 days after initiation of antidepressant treat-
ment: severity of depressive symptoms (continuous) and all-cause dropouts (binary). We fitted a ridge regression and 
a multi-layer perceptron (MLP) deep neural network as two separate prediction models (“base-learners”). We then 
developed two “meta-learners”, combining predictions from the two base-learners. To compare the performance 
across the different methods, we calculated mean absolute error (MAE, for continuous outcome) and the area under 
the receiver operating characteristic curve (AUC, for binary outcome) using bootstrapping.

Results:  Compared to the best performing base-learner (MLP base-learner, MAE at 4.63, AUC at 0.59), the best per-
forming meta-learner showed a 2.49% decrease in MAE at 4.52 for the continuous outcome and a 6.47% increase in 
AUC at 0.60 for the binary outcome.

Conclusions:  A meta-learner approach may effectively combine multiple prediction models. Choosing between 
statistical and machine learning models may not be necessary in practice.
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Background
Since routinely collected clinical, imaging, and multi-
omics information have entered the big data era [1], 
more and more analyses in medical research are under-
taken using machine learning models [2–5]. The debate 

between machine learning and statistical models is, 
however, ongoing. Several articles have compared these 
approaches and provided an assessment of their relative 
performance [6–13]. Generally, machine learning mod-
els are expected to perform better when there are many 
potentially relevant predictors, and especially when there 
are non-linear relationships between predictors and the 
outcomes as well as interactions between predictors. 
However, they may be more sensitive to initial, randomly 
allocated parameters, and noise in the training dataset 
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than conventional statistical models, i.e., they may be 
more prone to overfitting [14]. Such issues may put con-
straints on their generalizability [15]. Another commonly 
criticized issue is their lack of transparency, as they sac-
rifice interpretability for predictive power [16]. Further-
more, when it comes to clinical predictions, particularly 
in low-dimensional settings with large datasets consisting 
of mostly linearly separable predictors, there is no evi-
dence of superior performance of machine learning over 
statistical models [8, 17, 18]. However, this has been dis-
puted by other researchers, who claimed that such results 
were due to the specific choices of datasets and mod-
els [19, 20]. In any case, an arguably good strategy is to 
deploy machine learning models only when there are sus-
pected non-linear relationships and interactions. In prac-
tice, of course, it is not easy to decide a priori whether 
this is the case and whether machine learning methods 
may offer any benefit over simpler approaches.

Here we suggest that choosing between the two meth-
ods may not be necessary. Instead, a combined approach, 
i.e., a “meta-learner”, can be employed to take the best 
out of its world. In this paper, we used a dataset from 
patients with depression to illustrate the development of 
two meta-learners using a machine learning and a sta-
tistical model as base-learners. In what follows, we first 
present the dataset and then describe in detail the devel-
opment of the meta-learners.

Methods
Table 1 provides a glossary of all terms used in the paper. 
Below we describe methods in more detail.

Study design and patients
We aimed to predict two outcomes: severity of depressive 
symptoms (continuous outcome) and all-cause dropout 
rate (binary outcome) measured 60 days after the ini-
tiation of antidepressant treatment. We used data from 
QResearch, a primary care research database in the UK 
(https://​www.​qrese​arch.​org/). From patients registered in 
QResearch since 1st Jan 1998, we included patients aged 
> 18 years, who were diagnosed with depression and pre-
scribed fluoxetine [21]. We excluded patients with a pre-
vious episode of depression or a previous prescription of 
antidepressants in the year before. We identified 187,757 
patients for the all-cause dropout analysis, 16,384 of 
whom were used for the severity of depressive symptoms 
analysis. Detailed inclusion and exclusion criteria can be 
found in Additional file 1.

All-cause dropout was defined as discontinuation of 
fluoxetine within 60 days due to any reason. Patients 
were assumed to have discontinued treatment if they 1) 
had a gap of more than 30 days between the end of the 
previous prescription and the start of the next prescrip-
tion, 2) switched to another antidepressant, or 3) were 
prescribed an additional antidepressant, a mood sta-
bilizer, or an antipsychotic (augmentation). The sever-
ity of depressive symptoms was measured with Patient 
Health Questionnaire-9 (PHQ-9), which ranges from 0 to 
27 [22]. If a patient did not have outcome data reported 
60 days after the diagnosis of depression, we considered 
a valid measurement of any outcome recorded between 
21 and 90 days. We transformed other depression rating 
scales into PHQ-9 scores using validated approaches [23, 

Table 1  Glossary

Term Definition

Area under the receiver operat-
ing characteristic curve (AUC)

A discrimination metric for classification problems, measuring the area under the entire receiver operating character-
istic curve. AUC ranges from 0 to 1 with higher values indicating better performance.

Base-learner A single, stand-alone statistical or machine learning model built for predicting a continuous or a binary outcome.

Bootstrapping Random sampling data with replacement.

Calibration-in-the-large A method for measuring the agreement between observed outcomes and predictions for classification problems, 
where the average predicted probability is compared with the observed event rate. A mismatch indicates that the 
model over- or underestimates the risk on average.

Deep neural network A type of machine learning model that resembles how neurons in human brain work.

Mean absolute error (MAE) MAE measures the average magnitude of errors, i.e., the difference between true/observed values and their predic-
tions. Lower MAE indicates better performance.

Meta-learner A statistical or machine learning model that uses as input the output of other models (i.e., base-learners), to predict 
an outcome of interest.

Multi-layer perceptron (MLP) The simplest deep neural network model with multiple stacked hidden layers.

Overfitting The case when a model fits too closely to the data used to develop the model (training data), but performs badly on 
new, testing data.

Permutation feature importance A method to evaluate the importance of predictors used in machine learning models, by measuring the decrease in 
model performance when the predictor’s values are randomly shuffled.

Ridge regression A statistical regression model which uses a penalized likelihood. The penalty has the effect of shrinking the estimated 
coefficients so that the model does not yield extreme predictions.

https://www.qresearch.org/
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24]. A description of the clinical and demographic char-
acteristics of patients is shown in Additional file 1: Tables 
S1 and S2.

We selected candidate predictors for the models based 
on a review of the current literature [25]. We considered 
baseline characteristics such as demographic variables, 
condition-specific variables (e.g., depression severity), 
information relevant to previous treatments and comor-
bidities. A detailed list of predictors and a mock data-
set of five patients are presented in Additional  file  1: 
Table S3.

Base‑learners to generate predictions
We used two base-learners to develop the meta-learn-
ers (Fig.  1. Meta-learner architecture.), although more 
models could be used in practice. Patient baseline infor-
mation and observed outcomes were used to train the 
base-learners. Predictions from the base-learners were in 
turn used as sole predictors in meta-learners. The statis-
tical base-learner was a ridge regression with restricted 
cubic splines (four knots) for the continuous predictors 
(i.e., age, BMI, baseline depression severity). The machine 
learning base-learner was a multi-layer perceptron 
(MLP) deep neural network (3 hidden layers, 256 neu-
rons per layer).

To prepare the training set (base-learner predictions) 
for a meta-learner and, at the same time, prevent over-
fitting when training a meta-learner, base-learner pre-
dictions should be made on out-of-sample data. One 
approach is to randomly split the original dataset into 
two sets and develop base-learners using one. Next, use 
the base-learners to make predictions on the other set 
and train the meta-learner on this set only. This simple 
approach is however wasteful and can be problematic 
for smaller datasets. To fully leverage data, resampling 
is commonly used to generate out-of-sample predic-
tions for all patients in the dataset [26, 27]. In this 
paper, we used bootstrapping [28]. Specifically, we cre-
ated a bootstrap sample where we separately fitted the 

base-learners and made predictions on out-of-sample 
patients, i.e., patients included in the original dataset 
but not included in this bootstrap sample. We repeated 
the procedure many times, obtaining multiple predic-
tions for each patient and from each base-learner. We 
averaged these predictions so that for each patient we 
obtained a single out-of-sample prediction from each 
base-learner. These predictions were then used to train 
the meta-learners.

Developing meta‑learners
Meta-learners belong to the family of so-called ensem-
ble learning methods. In ensemble learning, multiple 
base-learners are combined in a sequential or paral-
lel manner to develop a new model. A meta-learner is 
expected to yield better predictive performance than 
each of its parts [29]. Various combination techniques, 
such as majority voting and weighted averaging, can 
be deployed for combining predictions from base-
learners. Meta-learners that use base-learners of more 
diverse structures are generally expected to perform 
better [27, 30, 31].

Here we focused on one of the ensemble learn-
ing techniques, i.e., stacked generalization, to con-
struct meta-learners. In this way, meta-learners can 
be any statistical or machine learning model. They 
take as input predictions generated by base-learners 
and output a single prediction (Fig.  1. Meta-learner 
architecture.).

We explored two meta-learners. The first meta-learner 
was a simple linear (or logistic, for the binary outcome) 
regression model, where we used the out-of-sample pre-
dictions obtained from the base-learners as the only two 
predictors to predict outcomes. The second meta-learner 
was an MLP (3 hidden layers, 256 neurons per layer), 
where the same predictors and observed outcomes were 
used for training. The implementation of the MLP is 
detailed in Additional file 1: Table S5.

Fig. 1  Meta-learner architecture. Patient-level baseline information was used to independently develop the base-learners (i.e., a ridge regression 
model and an MLP). Their predictions were in turn used as sole predictors of the meta-learners. We explored two different types of meta-learners, 
namely linear regression (logistic regression for the binary outcome), and MLP. MLP: multi-layer perceptron
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Model evaluation metrics and measuring the importance 
of predictors
To evaluate model performance for the base- and 
meta-learners, we used mean absolute error (MAE) 
for PHQ-9 prediction, and the area under the receiver 
operating characteristic curve (AUC) and calibration-
in-the-large for dropout prediction. Readers should 
note that percent changes of AUC reported in the 
paper were calculated after subtracting the baseline of 
AUC (0.5) from all estimates. Implementation details 
are given below.

In statistical models, the importance of each predic-
tor can be assessed by the change in a metric, when 
this predictor is omitted from the model. An alterna-
tive approach to estimate the importance of a predictor 
is the permutation feature importance method [32, 33], 
which measures the decrease in a model’s performance 
when a predictor in the testing data is randomly shuf-
fled. The model is fitted on the training data as usual, and 
predictions are generated from the testing data. Since 
values of this predictor are randomly shuffled in the test-
ing data, the model generally yields worse predictions, 
e.g., increased MAE or decreased AUC. More substan-
tial changes to these metrics indicate a more predictive 
covariate. Here, in addition to evaluating the importance 
of each predictor for the MLP base-learner, we used this 
method to estimate the importance of each base-learner 
for the MLP meta-learner.

Multiple imputations for missing data
We did not exclude subjects with missing predictors as 
this would greatly reduce the study sample size, preci-
sion and power [34]. We deployed a multiple imputation 
method [35] with additive regressions to impute miss-
ing values. We followed previous recommendations [34, 
36–39] and included outcome data for imputation. For 
continuous predictors, we used restricted cubic splines 
to match the statistical analysis method. We generated 
10 imputed datasets. Regarding the type of missingness, 
we compared the observed outcomes for patients with 
missing covariates to those with observed covariates. 
Results are shown in Tables S6 and S7 in Additional file 1. 
Although the missing at random assumption is generally 
untestable [40], the multiple imputation approach poten-
tially offers some protection from bias [41]. We did not 
use the imputed PHQ-9 outcomes for model develop-
ment or evaluation.

Evaluation of model performance
We generated 20 bootstrap samples from each of the 
imputed datasets (200 samples in total) and fitted ridge 

regression (with splines as indicated above) and MLP 
base-learners using all 31 predictors.

In more detail, for each imputed dataset we cre-
ated a random bootstrap sample. The base-learners 
were developed in the bootstrap sample (i.e., this was 
the training set). We used out-of-sample patients, i.e., 
patients not included in the bootstrap sample, to make 
predictions using the developed models. By construc-
tion, a bootstrap sample has the same size as the origi-
nal dataset and contains on average approximately 70% 
of the patients found in the original dataset, leaving 
approximately 30% of the patients for testing. We cal-
culated measures of performance (MAE, AUC, calibra-
tion) for each base-learner. We repeated this bootstrap 
procedure 20 times per imputed dataset. In the end, 
we summarized measures of performance for the base-
learners, after averaging the 200 sets of values. At this 
point, for each patient, we had obtained multiple, out-
of-sample predictions from each of the base-learners. 
Next, we averaged these predictions from each base-
learner at the patient level. These two predictions per 
patient (i.e., one per base learner) were used as inputs 
to develop the two meta-learners.

To evaluate the uncertainty around the estimated 
measures of performance of the meta-learners, we per-
formed an additional bootstrap analysis (details are given 
in Additional file 1). Finally, we used permutation feature 
importance to assess the importance of predictors. For 
each base- and meta-learner, we randomly selected 10 
models already trained on their corresponding bootstrap 
samples as described above, and shuffled each predictor 
of their associated out-of-sample data 100 times.

As a sensitivity analysis, we evaluated different data 
pre-processing techniques, namely data standardization 
and data normalization, and compared them to using 
non-pre-processed data, through the ridge regression 
base-learner for PHQ-9 score prediction.

Internal‑external validation
To evaluate the generalizability of our model’s perfor-
mance and to ensure the transportability of their results 
in different (but similar) settings, we further compared 
the base- and meta-learners using a so-called internal-
external cross-validation method [42, 43]. More specifi-
cally, our dataset was collected in 10 different regions of 
England. We took one region out of the data at a time 
and used the remaining 9 regions to develop all base- and 
meta-learners. We then tested all models on the left-out 
region. Next, we cycled through all regions, leaving a dif-
ferent region out each time. In the end, we reported the 
measures of performance by region as well as the overall 
average. Details are given in Additional file 1.



Page 5 of 10Liu et al. BMC Psychiatry          (2022) 22:337 	

Implementation details
All analyses were carried out on a desktop computer with 
an Intel Xeon Gold 6246 12 cores CPU and an Nvidia 
Tesla V100 32G GPU. Data cleaning was implemented in 
Stata [44]. Imputation and ridge regression base-learner 
fitting were carried out using Hmisc in R [45]. MLP base-
learner training, meta-learner training, model evaluation 
and feature importance calculation were conducted in 
TensorFlow and Python [46, 47].

We provide additional details on how to use the meta-
learner to predict for a new patient in Additional file 1. 
We provide online code for developing a meta-learner in 
Python: https://​github.​com/​ocean​lq/​Meta-​learn​er.

Results
Overall, in our illustrative example, we found that the 
meta-learners led to better predictive performance as 
compared to any of the base-learners, for both the con-
tinuous and the binary outcome. Below we present 
results in detail.

Severity of depressive symptoms (PHQ‑9 score)
We provide histograms of the predicted PHQ-9 scores 
from each base- and meta-learner in Fig. 2. Generally, we 
observed a modest predictive performance for all mod-
els and predictions of the meta-learners were very simi-
lar to each other. We also provide pairwise scatterplots 
to compare predictions among the various models, as 
well as between predicted and observed outcomes (Addi-
tional file 1: Fig. S1).

We show estimates of all performance measures with 
95% CIs in Table  2 and Additional  file  1: Fig. S2. Both 
meta-learners had lower MAEs compared to the base-
learners. The MAEs of predicted PHQ-9 score for the 
base-learners were almost identical, around 4.63 on the 
PHQ-9 scale. Compared with the best performing base-
learner (MLP), the decrease of MAE was 2.11% for the 
linear regression meta-learner, at 4.54 in PHQ-9, and 
2.49% for the MLP meta-learner at 4.52. Results from 
the internal-external cross-validation are reported in 
Additional  file  1: Table  S8. The base-learner performed 

Fig. 2  Histograms of predicted Patient Health Questionnaire-9 (PHQ-9) scores. A Ridge regression base-learner. B Multi-layer perceptron (MLP) 
base-learner. C Linear regression meta-learner without regularization. D MLP meta-learner

https://github.com/oceanlq/Meta-learner
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similarly to what they had performed in the whole data-
set. Again, we saw that both meta-learners had lower 
MAEs compared to the base-learners, and that, as 
expected, they performed slightly worse than the meta-
learners in the main analysis described above. Com-
pared with the best performing base-learner (MLP), the 
decrease of MAE was 1.86% for the linear regression 
meta-learner, at 4.55 in PHQ-9, and 2.27% for the MLP 
meta-learner at 4.53. The heterogeneity of model perfor-
mance was relatively small, with the MLP meta-learner 
performing best in the Yorkshire and Humber region, 
with the MAE at 4.23, and worst in the North East Eng-
land region, with the MAE at 4.73.

The permutation feature importance analysis of the 
patient predictors used in the two base-learners led 
to similar conclusions, identifying PHQ-9 baseline 
score to be the dominant predictor, with an increase 
of around 20% in MAE, 25 times larger than the sec-
ond most important predictor (Townsend depriva-
tion index). Moreover, demographic variables were 

generally found to be more predictive than variables 
related to comorbidities. Detailed results of all analyses 
are provided in Additional  file  1: Figs. S5, S7, S9, S11 
and Tables S10, S12. We also performed a permutation 
feature importance analysis on the two meta-learners, 
to assess the relative importance of base-learner pre-
dictions, as shown in Table  3. Conclusions were simi-
lar for both ridge and MLP meta-learners, showing 
that the statistical base-learner contributed much more 
than the machine learning one (around 80 times more 
for the ridge meta-learner, 14 times more for the MLP 
meta-learner), indicating that although the base-learn-
ers performed similarly, the meta-learners mainly used 
the ridge base-learner predictions, and only partly the 
prediction from the MLP base-learner, for minor cor-
rection and fine-tuning non-linear patterns.

Results from the sensitivity analysis that used differ-
ent data pre-processing techniques are presented in 
Additional file 1: Table S14. All results were very simi-
lar to the main analysis.

Table 2  Evaluation on post treatment Patient Health Questionnaire (PHQ-9) and all-cause dropout predictions made by the statistical, 
machine learning base-learners and meta-learners

* Mean absolute error.
† Confidence interval, calculated as the 2.5th to the 97.5th percentile of bootstrap estimates.
‡ Area under the receiver operating characteristic curve.
§ Multi-layer perceptron.

PHQ-9 score MAE* [95% CI†] Dropout AUC​‡ [95% CI]

Base-learner ridge regression 4.64 [4.57, 4.71] 0.597 [0.594, 0.601]

Base-learner MLP§ 4.63 [4.57, 4.71] 0.598 [0.594, 0.601]

Meta-learner linear/logistic regression 4.54 [4.48, 4.60] 0.604 [0.600, 0.606]

Meta-learner MLP 4.52 [4.45, 4.59] 0.604 [0.600, 0.606]

Table 3  Permutation feature importance values of the meta-learners

** Patient Health Questionnaire-9.
†† Mean absolute error.
‡‡ Multi-layer perceptron.
§§ Area under the receiver operating characteristic curve.

Outcome Meta-learner Base-learner Change of 
measures 
(%)

PHQ-9,** measured by MAE†† Linear regression Ridge regression 24.78

MLP‡‡ 0.30

MLP Ridge regression 31.70

MLP 2.34

Dropout, measured by AUC​§§ Logistic regression Ridge regression 0.83

MLP 5.21

MLP Ridge regression 0.42

MLP 2.67
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All‑cause dropouts
We provide histograms of the predicted probabilities 
of dropout from all models in Fig. 3, and pairwise scat-
terplots to visualize their agreement in Additional file 1: 
Fig. S3. From the plots, it is obvious that all models had 
a low discrimination ability. Predictions from the meta-
learners were very similar to each other, although predic-
tions from the two base-learners were not always in good 
agreement.

Next, we found that the AUCs of the base-learners 
were very similar to each other as well. Both meta-learn-
ers had slightly higher AUCs compared to the base-learn-
ers (Table 2 and Additional file 1: Fig. S4). The increase 
of AUC was around 6.50% for both meta-learners, with 
the MLP meta-learner performing slightly better than the 
logistic regression meta-learner. The observed dropout 
ratio in our dataset was 37.50%. We examined calibra-
tion-in-the-large by comparing this value with the aver-
age probability of an event estimated from our models. 
We found that all models gave values very close to the 

observed, within 37 to 38%. We report results from the 
internal-external cross-validation in Additional  file  1: 
Table  S9. Again, we saw that both meta-learners had 
slightly higher AUCs compared to the base-learners, but 
slightly worse than the meta-learners in the main analy-
sis. Compared with the best performing base-learner 
(MLP), the increase of AUC was around 5.10% for both 
meta-learners. Finally, we found small evidence of vari-
ability in model performance across different regions, 
with the MLP meta-learner performing best in the North 
West England region, with the AUC at 0.61, and worst in 
the Yorkshire & Humber region, with the AUC at 0.59.

The permutation feature importance for the predic-
tors of the two base-learners gave similar results. Eth-
nicity was the most predictive variable, with an AUC 
decrease of 3 and 2% for ridge and MLP base-learners 
respectively, followed by Townsend deprivation with a 
decrease of around 2%. The decrease was below 0.5% for 
all other predictors. Detailed results are shown in Addi-
tional  file  1: Figs. S6, S8, S10, S12 and Tables S11, S13. 

Fig. 3  Histograms of predicted probabilities of dropout. Colors are according to observed outcomes. A Ridge regression base-learner. B Multi-layer 
perceptron (MLP) base-learner. C Logistic regression meta-learner without regularization. D MLP meta-learner
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The permutation feature importance evaluation on the 
two meta-learners is shown in Table 3. In contrast to the 
PHQ-9 prediction, we found that for this outcome, for 
both meta-learners the machine learning base-learner 
contributed around 6 times more than the statistical 
model one.

Discussion
A prevalent view among practitioners is that statistical 
methods are more suitable when the number of predic-
tors is relatively small, while machine learning models are 
more useful for bigger datasets and when non-linear rela-
tionships among the predictors and the outcome are sus-
pected [48]. Accordingly, in a recent paper, Austin et al. 
[17] showed in simulations that in the “large N, small p” 
setting, statistical learning methods perform well, sug-
gesting that more complicated methods may bring small 
benefits. Recently, however, there has been a call for an 
integration of the two approaches, so that they can com-
plement rather than antagonize each other [49]. This 
paper took a step in this direction. We presented how 
meta-learners based on ensemble learning can effectively 
synthesize statistical and machine learning models for 
predicting continuous or binary outcomes, and poten-
tially improve performance. Thus, our results suggest 
that choosing between statistical and machine learning 
models with respect to predictive tasks in the medical 
domain may not always be necessary.

More specifically, we showed that a meta-learner, even 
the simplest one, can potentially give better predictive 
performance than its constituent parts, i.e., the base-
learners. As an illustrative example, we used a dataset 
from patients with depression, where we aimed to predict 
depression severity and probability of dropping out from 
antidepressant treatment due to any reason at 60 days. 
Both outcomes are generally relevant for clinical decision 
making, i.e., for deciding upon treatment initiation.

In our example, we found that the MLP meta-learner 
performed slightly better than the linear (logistic) regres-
sion meta-learner, for both outcomes in both cases, 
indicating the MLP meta-learner picked up some nonlin-
earity from the base-learner predictions. Thus, for better 
predictive performance, a more advanced meta-learner 
might be preferable in practice [50]. We also conducted 
further analyses, where we reused patient-level covari-
ates as additional predictors for the meta-learners (Addi-
tional  file  1: Table  S15). We found that incorporating 
the patient covariates as additional meta-learner input 
may potentially further benefit the performance of a 
meta-learner.

One general limitation of the meta-learners we pre-
sented is the increased complexity in terms of model 
building, which requires expertise in different domains. 

Moreover, although in our example we saw some increase 
in performance when using the meta-learners, this gain 
was clinically insignificant. One possible explanation is 
that in this dataset the outcomes were mostly linearly 
dependent on the predictors, so that both statistical and 
machine learning base-learners utilized the full potential 
of the dataset, thus not leaving much room for the meta-
learners to improve performance. Another reason for 
the modest gain in performance might be that in terms 
of stacked generalization, the biggest gains are usually 
observed when base-learners have high variability, i.e., 
when they are trapped in different local minimums and 
generate uncorrelated, diverse predicted values [27]. In 
our example, however, both base-learners seem to have 
reached a global minimum, generated optimal perfor-
mance on their own and predicted broadly similar pre-
dictions. One important limitation of this study was that 
one predictor, namely the PHQ-9 baseline score, had 75% 
missing values. In this case, multiple imputations might 
introduce bias and possibly a complete case analysis 
might have been preferable. We decided, however, not to 
exclude this predictor from our analysis because it was a 
priori deemed to be one of the most important patient 
baseline characteristics. Moreover, excluding patients 
with missing PHQ-9 baseline scores would considerably 
reduce our sample size.

Finally, readers should note that in this paper we did 
not predict relative effects between treatments. This 
would require having in the dataset patients on different 
treatments, the inclusion of treatment itself as a predic-
tor in the model, and the use of causal inference meth-
ods. Ideally, randomized data should be used for such 
an aim – although observational data could also be used 
thanks to methodological advancements in recent years. 
However, in this paper we did not consider relative treat-
ment effects at all, and we only focused on the case of 
predicting an absolute outcome.

Conclusion
The proposed meta-learner has the potential to efficiently 
combine statistical and machine learning models for 
joint prediction. With appropriate adjustment, the meta-
learner may be employed as a handy alternative solution 
to predictive tasks in the medical domain. As practical 
advice, we corroborate previous recommendations [51] 
by suggesting the use of classical statistical methods for 
most clinical research questions, which typically do not 
involve large datasets or many potential predictors. Fol-
lowing Occam’s razor, we especially recommend classical 
methods when there is a prior indication that predic-
tors mainly affect the outcome in an additive manner 
and when interactions between them can either be pre-
specified or play a relatively smaller role. Conversely, for 
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larger datasets, and especially when non-additive effects 
are suspected, researchers can explore both statistical 
methods and machine learning approaches and follow a 
meta-learner approach to combine, rather than compare, 
the two methods. An interesting area of future research 
is to further explore the performance of meta-learners in 
simulated datasets and assess their performance on addi-
tional real examples.
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