
ABSTRACT

Conformation traits are functional traits known to 
affect longevity, production efficiency, and profitabil-
ity of dairy goats. However, genetic progress for these 
traits is expected to be slower than for milk production 
traits due to the limited number of herds participat-
ing in type classification programs, and often lower 
heritability estimates. Genomic selection substantially 
accelerates the rate of genetic progress in many species 
and industries, especially for lowly heritable, difficult, 
or expensive to measure traits. Therefore, the main ob-
jectives of this study were (1) to evaluate the potential 
benefits of the implementation of single-step genomic 
evaluations for conformation traits in Canadian Alpine 
and Saanen dairy goats, and (2) to investigate the ef-
fect of the use of single- and multiple-breed training 
populations. The phenotypes used in this study were 
linear conformation scores, on a 1-to-9 scale, for 8 
traits (i.e., body capacity, dairy character, fore udder, 
feet and legs, general appearance, rear udder, medial 
suspensory ligament, and teats) of 5,158 Alpine and 
2,342 Saanen does. Genotypes were available for 833 
Alpine and 874 Saanen animals. Averaged across all 
traits, the use of multiple-breed analyses increased 
validation accuracy for Saanen, and reduced bias of ge-
nomically enhanced breeding values (GEBV) for both 
Alpine and Saanen compared with single-breed analy-
ses. Little benefit was observed from the use of GEBV 
relative to pedigree-based EBV in terms of validation 
accuracy and bias, possibly due to limitations in the 
validation design, but substantial gains of 0.14 to 0.21 
(32–50%) were observed in the theoretical accuracy 
of validation animals when averaged across traits for 
single- and multiple-breed analyses. Across the whole 
genotyped population, average gains in theoretical ac-

curacy for GEBV compared with EBV across all traits 
ranged from 0.15 to 0.17 (32–37%) for Alpine and 0.17 
to 0.19 (40–41%) for Saanen, depending on the model 
used. The largest gains were observed for does without 
classification records (0.19–0.22 or 50–55%) and bucks 
without daughter classification records (0.20–0.27 or 
57–82%), which have the least information contribut-
ing to their traditional EBV. The use of multiple-breed 
rather than single-breed models was most beneficial for 
the Saanen breed, which had fewer phenotypic records 
available for the analyses. These results suggest that 
the implementation of genomic selection could increase 
the accuracy of breeding values for conformation traits 
in Canadian dairy goats.
Key words: genomic selection, classification, single-
step genomic BLUP, single-step genomic predictions, 
small ruminants

INTRODUCTION

The profitability of both livestock sectors and in-
dividual farming operations is closely related to the 
efficiency of production. Consequently, breeding pro-
grams in many species and countries began with a 
focus primarily on production traits (e.g., milk, meat, 
fiber). However, genetic antagonisms between produc-
tion traits and other functionally and economically 
important traits such as conformation, reproduction, 
and health have become apparent (Rauw et al., 1998; 
Brito et al., 2021). This has led to the incorporation of 
more traits in the breeding objectives of many species 
(Brown et al., 2007; Newman et al., 2009; Miglior et 
al., 2017). Although functional traits may not directly 
affect producer revenue, they are often economically 
important because of their relationship with longevity 
and cost of production (e.g., veterinary care). Antago-
nistic genetic relationships have been reported between 
milk yield and some conformation traits in dairy goats 
(McLaren et al., 2016), whereas some conformation 
traits were favorably correlated with productive and 
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functional productive life (Castañeda-Bustos et al., 
2014). Genetic progress for functional traits has tra-
ditionally been relatively slow because they are often 
less heritable than production traits, are measured at a 
later age, and evaluated with lower accuracy due to the 
challenges of data collection (e.g., low participation in 
phenotype recording programs and subjectivity in the 
trait definitions). Thus, methods to improve objective 
phenotyping and the accuracy of breeding values are 
critical to increase the rate of genetic gain for function-
ally relevant traits.

In Canadian dairy goats, Massender et al. (2022) 
demonstrated that selection accuracy for breeding 
candidates could be increased by 35 to 54% from the 
implementation of single-step genomic evaluations for 
milk production traits. However, they hypothesized 
that the benefits may be even higher for other economi-
cally important traits that are less heritable or where 
few phenotypic records are collected (Van Eenennaam 
et al., 2014; Miglior et al., 2017; Brito et al., 2021), such 
as conformation traits.

In dairy species, type classification programs have 
long been used by breed societies to provide a measure 
of the conformation of animals relative to a defined 
standard. The traits scored are related to character-
istics that animals need to have long and productive 
lives (Sewalem et al., 2004, 2005; Miglior et al., 2017). 
These programs have provided a way for phenotypic 
information to be gathered for the genetic evaluation 
of conformation traits. For Canadian dairy goat breeds, 
the optional type classification system is managed by 
the Canadian Goat Society (Guelph, ON, www​.goats​
.ca). This program is a nonselective system for reg-
istered or registerable first lactation does in partici-
pating herds. Later lactation does and bucks may also 
be classified at the owner’s discretion (Canadian Goat 
Society, 2020). All traits are scored on a linear scale 
with 1 and 9 representing the biological extremes of the 
trait, similarly to the classification system for Canadian 
dairy cows (www​.holstein​.ca). The Canadian Dairy 
Goat Genetic Improvement Program (Sullivan, 2000) 
provides genetic evaluations for 8 linear conformation 
traits: body capacity (BC), dairy character (DC), fore 
udder (FU), feet and legs (FL), general appearance 
(GA), rear udder (RU), suspensory ligament (SL), 
and teats (TE). Only a doe’s first classification record, 
scored in either first or second lactation, is used in the 
single-trait multiple-breed genetic evaluation models 
(Sullivan, 2000). The models include fixed effects of 
breed, parity, age class, and a covariate of DIM and 
random effects of herd-year-classifier and animal addi-
tive genetic effect.

Although pedigree-based genetic evaluations for 
conformation traits in dairy goats have been available 

since the early 1990s in Canada (Sullivan, 2000), low 
participation in classification due to cost and challenges 
with administering the program have hindered the ge-
netic evaluation of these traits. Relatively few animals 
are evaluated for conformation traits each year and the 
accuracy of genetic evaluations are, consequently, low. 
Given that conformation traits are the only function-
ally relevant traits currently evaluated for Canadian 
dairy goats, and that there are known negative genetic 
correlations between production and conformation 
traits in dairy goats (McLaren et al., 2016), increasing 
the number of animals evaluated and the accuracy of 
genetic evaluations would be beneficial to the Canadian 
dairy goat sector. Single-step genomic evaluation has 
been previously found to substantially increase the the-
oretical accuracy of breeding values for milk production 
traits in this population (Massender et al., 2022), and 
would enable more herds not currently participating in 
the classification program to receive genetic evaluations 
for these traits. Nevertheless, research is needed to de-
termine the optimal approach for the implementation 
of genomic selection for type traits in this population. 
In this context, the objectives of this study were (1) to 
evaluate the potential benefits of the implementation of 
single-step genomic evaluations for conformation traits 
in Canadian Alpine and Saanen dairy goats, and (2) to 
investigate the effect of the use of single- and multiple-
breed training populations.

MATERIALS AND METHODS

Phenotypes

The data used in this research were obtained from 
industry organizations or samples collected by commer-
cial producers; thus, institutional animal care approval 
was not required. Records for Alpine and Saanen does 
collected through the Canadian Goat Society’s Clas-
sification Program were obtained from the Canadian 
Centre for Swine Improvement (Ottawa, ON, Canada), 
which manages the Canadian Dairy Goat Genetic Im-
provement Program. Classification records included 
the 8 traits used in the Canadian Dairy Goat Genetic 
Improvement Program, as previously described. Phe-
notypic quality control was performed using the R 
software version 4.0.4 (https:​/​/​r​-project​.org) to remove 
incomplete or duplicate records, does from contempo-
rary groups (based on herd-year-classifier) with less 
than 2 animals, records collected on does less than 300 
d of age, or that were not in lactation at the time of 
recording. Approximately 80% of records were collected 
on first lactation does, whereas about 20% were col-
lected in later lactations (2 to 5). Few does had records 
collected in both first and later lactations, thus, only 
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a doe’s first record was used. In routine genetic evalu-
ations, only classification records measured in either 
first or second lactation are used. The final data set 
retained 94% of available records and included 5,158 
and 2,342 Alpine and Saanen does, respectively (Table 
1). The single-breed data sets were also combined for 
multiple-breed analyses.

Genotypes

The tissue sample collection procedures and geno-
types used in this study were previously described by 
Massender et al. (2022). In total, 1,707 animals were 
genotyped, of which 833 were Alpine (78 bucks, 755 
does) and 874 were Saanen (97 bucks, 777 does) ani-
mals. There were 289 Alpine and 291 Saanen does with 
both conformation phenotypes and genotypes (Table 2). 
Genotypic quality control was performed within breed, 
as described in Massender et al. (2022). The quality 
control procedures retained 45,221 (84.8%) SNP for 
the multiple-breed data set, and 44,598 (83.6%) and 
43,598 (81.7%) SNP for the Alpine and Saanen breeds, 
respectively.

Pedigree

Pedigree information was obtained from the Cana-
dian Livestock Records Corporation (Ottawa, ON, 
Canada, www​.clrc​.ca). The pedigree was trimmed to 
only include ancestors of animals with records or geno-
types and a pedigree analysis was performed with the 
pedigree package (Coster, 2013) available in the R soft-
ware. The pedigrees for Alpine and Saanen had 11,486 
and 6,270 animals, respectively, whereas the multiple-
breed pedigree had 17,362 animals. Few ancestors were 
shared between the 2 breeds, and genotyped animals 
had a deeper pedigree on average than phenotyped ani-

mals (17.8–20.3 vs. 12.9–15.3 generations on average; 
Table 2). The average pedigree depth (in generations) 
was higher for Saanen than Alpine. Almost all animals 
(>94%) with records or genotypes had known parents. 
The seekparentf90 package from the blupf90 family of 
programs (Misztal et al., 2014) was used to identify and 
correct pedigree errors found in 59 genotyped parent-
progeny pairs by searching for matching animals among 
all genotyped individuals. The parents of animals with 
a pedigree conflict were then set to missing if no better 
match was found (45 of 59).

Statistical Analyses

Genetic parameters and breeding values were es-
timated using single-trait animal models, through 
the airemlf90 and blupf90 programs (Misztal et al., 
2014), respectively. Genetic parameters were estimated 
using a single-step genomic BLUP (ssGBLUP) ap-
proach with all available genomic and pedigree data 
and default scaling and blending parameters for the 
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Table 1. Descriptive statistics for linear conformation traits by breed

Breed   Trait   Abbreviation Mean ± SD Range CV (%)

Alpine (n = 5,158)   Body capacity   BC 5.8 ± 1.2 2.0–9.0 21.3
  Dairy character   DC 6.4 ± 1.1 2.0–9.0 17.1
  Feet and legs   FL 5.5 ± 1.2 1.0–9.0 21.2
  Fore udder   FU 5.0 ± 1.5 1.0–9.0 30.3
  General appearance   GA 5.8 ± 1.3 1.0–9.0 22.2
  Rear udder   RU 5.5 ± 1.4 1.0–9.0 26.2
  Suspensory ligament   SL 5.9 ± 1.4 1.0–9.0 23.0
  Teats   TE 5.1 ± 1.9 1.0–9.0 36.2

Saanen (n = 2,342)   Body capacity   BC 6.2 ± 1.2 2.0–9.0 19.0
  Dairy character   DC 6.6 ± 1.2 1.0–9.0 17.9
  Feet and legs   FL 5.8 ± 1.2 1.0–9.0 20.1
  Fore udder   FU 5.6 ± 1.4 1.0–9.0 25.2
  General appearance   GA 6.1 ± 1.3 1.0–9.0 20.6
  Rear udder   RU 5.8 ± 1.4 1.0–9.0 24.2
  Suspensory ligament   SL 6.3 ± 1.4 1.0–9.0 21.8
  Teats   TE 5.5 ± 1.7 1.0–9.0 31.4

Table 2. Number of animals with phenotypes, genotypes, and both 
genotypes and phenotypes; average pedigree depth (generations); and 
number (%) of animals with known sires and dams, by breed

Item Alpine Saanen

Animals with phenotypes 5,158 2,342
  Average pedigree depth 12.9 15.3
  Known sires 1,090 (99.9%) 597 (98.5%)
  Known dams 3,401 (98.6%) 1,572 (97.1%)
Animals with genotypes 833 874
  Average pedigree depth 17.8 20.3
  Known sires 227 (99.4%) 203 (97.1%)
  Known dams 640 (98.8%) 587 (96.7%)
Animals with both 289 291
  Average pedigree depth 18.7 20.3
  Known sires 90 (100.0%) 90 (95.9%)
  Known dams 236 (100.0%) 226 (94.8%)

www.clrc.ca
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H matrix (Misztal et al., 2009, 2020; Aguilar et al., 
2010; Lourenco et al., 2020). The H matrix is a hy-
brid relationship matrix combining both pedigree (A) 
and genomic (G) relationship matrices (Legarra et al., 
2009). The model for each trait included fixed effects of 
parity (first or later), and linear covariates of doe age 
(d) and DIM, similarly to the models currently used 
in the official genetic evaluations (Sullivan, 2000). The 
random effects included contemporary group (herd-
year-classifier), and animal additive genetic effect. The 
H matrix included all available pedigree information 
and accounted for inbreeding in A−1. For the multiple-
breed analyses, the phenotypes recorded on Alpine and 
Saanen animals were considered a single-trait with a 
pooled training population. In such analyses, the breed 
effect (Alpine or Saanen) was added to the model and 
multiple-breed genetic parameter estimates were used. 
Therefore, the general model used for the analysis of 
each trait is described as follows:

	 y = Xb + Zuu + Zww + e,	

where y is a vector of phenotypes, b is a vector of fixed 
effects, u is a vector of random animal additive genetic 
effects, w is a vector of random contemporary group 
effects, and e is a vector of random residuals. The X, 
Zu, and Zw design matrices relate observations to fixed, 
animal additive genetic, and contemporary group ef-
fects, respectively. It was assumed that the animal ad-
ditive genetic effects were normally distributed with a 
mean of zero and a variance equal to Hσu

2 ,  where σu
2 is 

the additive genetic variance. As described in Mas-
sender et al. (2022), the optimal blending (α and β) 
and scaling (τ and ω) factors were defined based on 
validation accuracy and bias. The optimal values for 
the blending and scaling factors were the same as found 
in Massender et al. (2022) for the milk production traits 
(i.e., α = 0.95, β = 0.05, τ =1.0, and ω = 0.8) and only 
the results from the analyses predicted with the opti-
mal parameters are presented. The random contempo-
rary group and residual effects were assumed to be 
normally distributed with a mean of zero and variance 
Iσw
2  and Iσe

2, respectively, where I is an identity matrix, 
and σw

2  and σe
2 are the estimated contemporary group 

and residual variances.

Validation Analyses

Genotyped animals were divided into training and 
validation populations based on their year of birth and 
average theoretical accuracy of their pedigree-based 
EBV across all traits, calculated with multiple-breed 
analyses and all available data (EBV_full). Animals 

born after 2012 with an average EBV_full theoretical 
accuracy ≥0.40 were eligible for the validation popula-
tion, whereas all other animals were retained in the 
training population. Using a lower threshold compared 
with that reported in Massender et al. (2022) was nec-
essary to ensure a sufficient validation population size, 
due to the lower heritability of the conformation traits 
compared with the production traits and the limited 
number of phenotypic records available. In total, 225 
Alpine and 268 Saanen animals were eligible for the 
validation populations.

The same validation approaches as described in Mas-
sender et al. (2022) were used in this study. Briefly, 
forward validation included all eligible animals for each 
breed in the validation population, whereas for forward 
cross-validation, 10 random subsets of the eligible vali-
dation animals were taken, and the validation analyses 
were replicated 10 times. After animals were assigned 
to either training or validation populations, reduced 
data sets were created by removing all phenotypes of 
validation animals and their descendants. Thereafter, 
genomically enhanced breeding values (GEBV) and 
EBV were predicted using both full (GEBV_full and 
EBV_full) and reduced (GEBV_val and EBV_val) 
data sets. For the traditional BLUP analyses, the H 
matrix described in the model above was replaced by 
A. The validation and theoretical accuracy analyses 
used the tidyverse packages (Wickham et al., 2019) 
available in the R software.

The EBV_full and GEBV_full, predicted from the 
full data sets, were used as an approximation of the 
animal’s true breeding value in the validation analyses. 
Validation accuracy (VAL_ACC) was calculated for 
the validation animals as in Equation 1, as proposed by 
Legarra and Reverter (2018):

	 VAL ACC    
cov G EBV  G EBV

F
_

, ( )

( )
,i

i full ival

ui

=
( )( )

−1 2σ
	 [1]

where VAL_ACCi is the estimated validation accuracy 
for the ith trait, calculated using the covariance be-
tween EBV or GEBV analyzed with full, (G)EBVi full, 
and reduced, (G)EBVi val, data sets for the ith trait, the 
average inbreeding coefficient for animals in the valida-
tion population within each scenario F( ), and the esti-
mated additive genetic variance for the ith trait σui

2( ). 
Bias, defined as the inflation or deflation of breeding 
values computed from reduced data sets relative to the 
full data sets, was calculated as the regression coeffi-
cient (b1) of the regression of GEBV_full or EBV_full 
on GEBV_val or EBV_val [i.e., (G)EBVfull = b0 + 
b1(G)EBVval], respectively, minus one. For the forward 
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cross-validation approach, average validation accura-
cies and biases and their corresponding standard devia-
tions are presented from across the 10 replicates.

Theoretical Accuracy Analyses

The amount of information gained from the inclu-
sion of genomic information was quantified by compar-
ing average theoretical accuracies of EBV and GEBV 
calculated with both reduced and full data sets. This 
was assessed as individual accuracies are the ones used 
by breeders for selection decisions. Theoretical accura-
cies (THE_ACC) for breeding values of individual 
animals were calculated from the standard errors of 
prediction, obtained from the blupf90 software (Misztal 
et al., 2014), using the formula (Equation 2) proposed 
by Van Vleck (1993):

	 THE ACC_   ,,
,

i j
i j

j ui

s

f
= −

( )
+( )

1
1

2

2σ
	 [2]

where THE_ACCi,j  is the estimated theoretical accu-
racy for the ith trait EBV of the jth animal, fj is the 
inbreeding coefficient for the jth animal, σui

2  is the esti-
mated additive genetic variance for the ith trait, and 
(si,j) is the standard error of prediction for the ith trait 
EBV of the jth animal. After the theoretical accuracies 
were calculated for all animals in both pedigree and 
genomic scenarios, the population was divided into 
various population subsets (e.g., validation animals, 
does with or without records, bucks with or without 
daughter records) and average theoretical accuracies 
within these subsets were calculated for each trait and 
averaged across traits. It should be noted that the 
theoretical accuracy calculation used ignores the effect 
of selection-induced gametic phase disequilibrium (Bij-
ma, 2012). Consequently, the absolute theoretical ac-
curacy values presented may overestimate the selection 
response that would be observed in practice and it is 
the difference between scenarios that is of interest in 
this study.

RESULTS AND DISCUSSION

Genetic Parameters

Heritability estimates for the conformation traits 
were low to moderate, ranging from 0.11 ± 0.03 for 
BC and FL in Saanen to 0.31 ± 0.03 for GA in Alpine 
(Table 3). The heritability estimates were consistently 
the same or lower for Saanen as they were for Alpine, 
whereas the multiple-breed heritability estimates 

tended to be intermediary. The intermediary results 
were expected, given the differences in heritability 
estimates and number of phenotypic records between 
the 2 breeds. The conformation traits recorded, and 
their definitions, differ between countries, which makes 
comparisons challenging. It is worth noting, as shown 
in Supplemental Table S1 (https:​/​/​doi​.org/​10​.7910/​
DVN/​KHHVPT; Massender, 2022a), that the confor-
mation traits evaluated in Canada are composite major 
category scores that incorporate multiple linear confor-
mation traits. This differs from other countries, such as 
France, the United Kingdom, and the United States, 
where the component traits are usually evaluated di-
rectly (Manfredi et al., 2001; Wiggans and Hubbard, 
2001; McLaren et al., 2016).

In multiple-breed analyses of American dairy goats, 
Luo et al. (1997) reported that conformation traits, 
scored on a 1-to-50 scale, were moderately to highly 
heritable, including traits related to GA (0.27 for rump 
width to 0.52 for stature), DC (0.24), rear legs (0.21), 
FU attachment (0.25), RU (0.19 for RU arch to 0.25 
for udder depth and RU height), SL (0.33), and teats 
(0.36 for teat placement to 0.38 for teat diameter). The 
heritability estimates reported in this research followed 
similar trends with traits related to stature (i.e., GA) 
being the most heritable, although the heritability es-
timates for DC, SL, and TE were lower than reported 
by Luo et al. (1997). In French Alpine and Saanen 
animals, heritability estimates for structure related 
traits, such as GA and BC, ranged from 0.03 for back 
in Saanen to 0.50 for thoracic perimeter in Alpine with 
standard deviations (SD) lower than 0.05 (Manfredi 
et al., 2001). For mammary system related traits, heri-
tability estimates in French Alpines and Saanen have 
been reported to be moderate to high by Manfredi et 
al. (2001), ranging from 0.15 for teat angle to 0.52 for 
teat length (SD <0.05); Rupp et al. (2011), ranging 
from 0.20 for teat angle to 0.50 for teat length (SE 
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Table 3. Heritability estimates (h2 ± SE) for Alpine, Saanen, and 
Alpine and Saanen combined

Trait1 Alpine Saanen
Alpine  

and Saanen

BC 0.22 ± 0.03 0.11 ± 0.03 0.19 ± 0.02
DC 0.16 ± 0.02 0.16 ± 0.04 0.17 ± 0.02
FL 0.17 ± 0.03 0.11 ± 0.03 0.16 ± 0.02
FU 0.28 ± 0.03 0.23 ± 0.04 0.26 ± 0.02
GA 0.31 ± 0.03 0.21 ± 0.04 0.27 ± 0.02
RU 0.22 ± 0.03 0.14 ± 0.03 0.19 ± 0.02
SL 0.18 ± 0.02 0.13 ± 0.04 0.15 ± 0.02
TE 0.18 ± 0.03 0.12 ± 0.04 0.16 ± 0.02
1Traits: body capacity (BC), dairy character (DC), feet and legs (FL), 
fore udder (FU), general appearance (GA), rear udder (RU), suspenso-
ry ligament (SL), and teats (TE). Genetic parameters were estimated 
using the single-step method with default parameters.

https://doi.org/10.7910/DVN/KHHVPT
https://doi.org/10.7910/DVN/KHHVPT
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<0.02); and Carillier et al. (2014), ranging from 0.40 
for udder shape to 0.57 for udder floor position (SE 
<0.02). Interestingly, the relative heritability of traits 
for the Alpine and Saanen breeds seems to be trait-
specific in the French populations, unlike the present 
results where the heritability estimates for Saanen were 
consistently lower. In a composite population designed 
by crossing Alpine, Saanen, and Toggenburg animals, 
McLaren et al. (2016) reported that heritability esti-
mates (± SE) for feet and leg traits (0.02 ± 0.02 for 
front legs to 0.25 ± 0.05 for back feet set) were gen-
erally lower than for mammary system traits (0.15 ± 
0.04 for udder attachment to 0.38 ± 0.05 for udder 
depth). In Italian Alpine and Saanen goats, heritability 
estimates for mammary system traits estimated with 
a Bayesian approach were moderate but tended to be 
lower than some of the other studies described (Bif-
fani et al., 2020), ranging from 0.12 (lower and upper 
bounds of the 95% highest posterior density region: 
0.07–0.17) for udder floor position in Saanen to 0.38 
(0.31–0.46) for teat length in Alpine. Overall, it can be 
concluded that heritability estimates for conformation 
traits of dairy goat breeds vary considerably, depending 
on trait, statistical model, and population. However, 
the heritability estimates reported in the present study 
tended to be on the lower end of results reported in the 
literature.

It should be noted that the results of the validation 
and theoretical analyses, here after described, are both 
dependent on the genetic parameter estimates. Given 
the low number of phenotypic records available, the 
results should be interpreted with caution, as bias in 
the genetic parameter estimates would influence these 
results. Although this study represents a first step in 
the implementation of genomic evaluations for confor-
mation traits in Canadian dairy goats, this highlights 
the importance of repeating these analyses in the future 
to validate the results as more phenotypic and geno-
typic information becomes available for analysis.

Validation Accuracy

On average, validation accuracies for both EBV (0.31 
± 0.02 to 0.38 ± 0.02; Table 4) and GEBV (0.18 ± 0.02 
to 0.35 ± 0.02; Table 4) were relatively low, indicat-
ing that predictions from validation data sets were not 
highly correlated with predictions using the full data 
sets. This result could be due to the small number of 
phenotyped individuals in the population and low to 
moderate heritability of the traits, such that the inclu-
sion of own or offspring phenotypes causes substantial 
changes in EBV and GEBV. Trends observed for both 
forward cross-validation and forward validation ap-
proaches were similar, as also reported in Massender et 

al. (2022). The low SD across replicates also suggests 
that the accuracy estimates were similar regardless 
of replicate. Therefore, there was little benefit to the 
inclusion of additional animals in the training popula-
tion by using the forward cross-validation approach. 
However, it is possible that the differences in training 
population sizes in this study were not large enough 
to observe a benefit from the forward cross-validation 
approach.

Carillier et al. (2013) reported validation accura-
cies for udder conformation traits, calculated as the 
Pearson correlation between daughter yield deviations 
(DYD) and GEBV, ranging from 0.33 for FU to 0.43 
for RU attachment for French bucks of the Alpine and 
Saanen breeds using a multiple-step GBLUP approach. 
Using a ssGBLUP approach, Carillier et al. (2014) re-
ported higher validation accuracies, calculated as the 
Pearson correlation between GEBV and DYD, across 
both breeds ranging from 0.50 to 0.66 in French Alpine 
and Saanen goats. Teissier et al. (2019) reported valida-
tion accuracies ranging from 0.36 to 0.62 with the same 
statistic in the same population. The use of weighted 
single-step GBLUP provided a small gain in validation 
accuracy for traits in Saanen previously associated with 
a major QTL, whereas validation accuracies were lower 
for Alpine using the weighted ssGBLUP approach (Mar-
tin et al., 2018; Teissier et al., 2019). Recently, Teissier 
et al. (2020) reported some further gains in validation 
accuracy from the use of haplotypes rather than single 
SNP in a weighted ssGBLUP approach in the same 
population. These methodologies could be explored 
in the Canadian population to improve validation ac-
curacies in the future. Mucha et al. (2018) reported 
generally lower validation accuracies, calculated as the 
correlation between de-regressed proofs and ssGEBV, 
for conformation traits in a UK composite population 
created by crossing Alpine, Saanen, and Toggenburg 
animals. Validation accuracies ranged from 0.18 for 
teat shape to 0.48 for teat placement for mammary sys-
tem traits and 0.04 to 0.55 for FL traits (Mucha et al., 
2018). The results reported by Mucha et al. (2018) were 
more similar to the present results, suggesting that size 
of the training population as well as the number of 
phenotyped animals may be factors contributing to the 
lower validation accuracies observed in these results. 
The UK population had a similar number of pheno-
typed animals (6,723) to the present study and training 
and validation populations were comprised predomi-
nantly of does (Mucha et al., 2018). In contrast, the 
French dairy goat breeding scheme has greater use of 
artificial insemination and participation in phenotype 
recording than the Canadian dairy goat populations 
(e.g., 150,676 records for conformation traits reported 
in Teissier et al., 2019) enabling the development of 
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a training population consisting of bucks with highly 
accurate EBV.

The use of single- or multiple-breed models had little 
effect on validation accuracy estimates for Alpine (0.38 
± 0.02 and 0.38 ± 0.02 for EBV, and 0.35 ± 0.02 and 
0.34 ± 0.02 for GEBV; Table 4) or Saanen EBV (0.31 
± 0.02 and 0.32 ± 0.02). However, interestingly, there 
was an average gain in accuracy of 0.06 points (33%) 
across traits from the use of multiple-breed analyses 
relative to single-breed analyses for GEBV in Saanen. 
It follows that the Saanen breed would benefit more 
from the use of multiple-breed models, given that there 
were substantially fewer phenotypic records available 
for this breed when compared with Alpine. This result 
was only observed for the GEBV analyses and not the 
EBV analyses, which indicates that the inclusion of 
additional genotypes in the multiple-breed models was 
beneficial for the Saanen breed, rather than gains being 
attributable to the higher heritability estimates from 
the multiple-breed models or the inclusion of additional 
phenotypic records. The Alpine and Saanen breeds 
share a common history and were managed together 
until a few decades ago (Carillier et al., 2013; Brito 
et al., 2015, 2017), which is not reflected in the pedi-
gree information available, as demonstrated by the few 
ancestors shared between the 2 pedigrees. Thus, the 
genomic relationship matrix could be capturing rela-
tionships that are not reflected in the pedigrees to in-
crease the information contributing to the prediction of 
GEBV. When comparing GEBV in the French Alpine 
and Saanen breeds, Carillier et al. (2014) reported very 
similar results from single and multiple-breed analyses 
with trait-specific differences of less than or equal to 
0.02.

The observed validation accuracies for GEBV pre-
dicted with either single or multiple-breed analyses 
were the same or lower than EBV for both Alpine and 
Saanen when averaged across traits, ranging from 0.16 
to 0.35 for GEBV and 0.29 to 0.38 for EBV, depend-
ing on the analyses (Table 4). The average validation 
accuracy across traits was similar for both EBV and 
GEBV for Alpine and lower for Saanen GEBV, but the 
differences in validation accuracies varied considerably 
by trait, breed, and statistical approach used (Table 
4). Previously, Carillier et al. (2013) reported percent 
gains in validation accuracy for GEBV predicted us-
ing a multiple-step GBLUP approach relative to EBV 
ranging from 7 to 21% for mammary system traits. The 
lack of gain in validation accuracy for GEBV compared 
with EBV in the present results was also observed for 
the milk production traits (Massender et al., 2022), and 
is likely attributable to the structure of the training 
population and limitations of the validation design. 
Previously, Vermette et al. (2013) reported gains in 

validation accuracy relative to EBV across conforma-
tion traits to be about 0.32 points in Canadian Al-
pine goats using a multiple-step GBLUP approach. 
However, the gains varied across traits, ranging from 
decreases of 0.35 points for DC to gains of up to 0.57 
points for BC. The authors noted that the results of 
the analysis should be interpreted with caution due to 
the very small validation population used in that report 
(Vermette et al., 2013), similarly to the present results. 
Consequently, these validation analyses should be rep-
licated with larger training populations in the future 
to more accurately estimate the realized benefits of the 
inclusion of genomic information in the Canadian Dairy 
Goat Genetic Improvement Program.

Validation Bias

The level of bias observed varied considerably by 
breed and trait but was similar for both EBV and 
GEBV, ranging from an average across all traits of 
−0.07 ± 0.09 to −0.02 ± 0.06 for EBV and −0.19 ± 
0.10 to −0.04 ± 0.07 for GEBV using the forward cross-
validation approach (Table 5). The negative values for 
bias estimated for most traits indicate that there was 
inflation of breeding values predicted from reduced data 
sets relative to full data sets. The SD between replicates 
for the forward cross-validation approach were large, 
often larger than the estimates, indicating that the 
magnitude of the bias estimates depended substantially 
on the specific subset of the validation population that 
was used in a replicate. This was also demonstrated by 
the larger bias estimates from the forward validation 
approach (Table 5). Although the size of the validation 
population was restricted by the small number of geno-
typed animals, this finding demonstrates that the size 
of the validation populations may have been too small 
to obtain consistent estimates of the level of bias. The 
bias estimates in the present study are within the wide 
range reported in literature for mammary system con-
formation traits. Carillier et al. (2013, 2014) reported 
regression coefficients ranging from 0.73 to 0.92 and 
0.60 to 1.51, respectively, equivalent to bias estimates 
of −0.27 to −0.08 and −0.40 to 0.51 as defined in the 
present study, across breeds. The wide range of bias es-
timates reported in the literature are likely attributable 
to the small genomic training population sizes that are 
common in dairy goat populations, limiting the design 
of validation analyses, but could also reflect differences 
in selection intensity between various goat populations.

The use of multiple-breed rather than single-breed 
analyses, once again was of benefit for Saanen, but 
also had a small benefit for Alpine when averaged 
across traits. Comparing GEBV relative to EBV, 
absolute values for bias decreased by an average of 
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0.03 points (43%) for Alpine and 0.13 points (68%) 
for Saanen across traits, however, the difference was 
trait dependent. Carillier et al. (2014) also observed 
trait-dependent differences in validation bias between 
single-breed and multiple-breed models. Identifying the 
levels of bias allows genomic evaluations to be rescaled 
to ensure that GEBV of young breeding candidates 
are not inflated or deflated relative to older animals. 
However, the bias observed in the present study was 
only moderate, on average, possibly due to the use of 
optimal scaling parameters in the H matrix.

Theoretical Accuracy Analyses

Validation Population. The animals in the valida-
tion population in the reduced data sets represent pos-
sible selection candidates (i.e., young animals without 
own or daughter records), thus, the average theoretical 
accuracy of validation animals provides an indication 
of selection accuracy. It should be noted that these 
theoretical accuracies may overestimate the selection 
response that could be observed in practice due to 
selection-induced gametic phase disequilibrium (Bijma, 
2012). However, given the limitations of the validation 
analyses, comparing average theoretical accuracies be-
tween EBV and GEBV provides an indication of the 
potential benefits of genomic selection.

Average theoretical accuracies by trait and breed are 
presented in Table 6 for the validation animals used 
in the forward cross-validation approach and in Sup-
plemental Table S2 (https:​/​/​doi​.org/​10​.7910/​DVN/​
4S56HC; Massender, 2022b) for all eligible animals 
using the forward validation approach. Comparing the 
average theoretical accuracies between EBV_val and 
GEBV_val shows the amount of information gained 
from the inclusion of genomic information. Gains in av-
erage theoretical accuracy of GEBV relative to EBV for 
validation animals ranged from 0.11 to 0.23 (22–58%), 
depending on the trait and breed, with average gains of 
0.14 (32%) and 0.18 (43%) for Alpine, and 0.18 (46%) 
and 0.21 (50%) for Saanen in single and multiple-breed 
analyses, respectively. However, it should be noted that 
the use of optimal scaling parameters (i.e., ω = 0.8) 
may have inflated the gains observed in theoretical ac-
curacy of GEBV relative to EBV.

The multiple-breed predictions had higher average 
theoretical accuracies for validation animals for all 
traits. Across all traits there were average gains of ap-
proximately 0.04 for Alpine and 0.03 for Saanen from the 
use of multiple-breed analyses relative to single-breed 
analyses. Previously, Massender et al. (2022) reported 
that gains in average theoretical accuracy were similar 
for single and multiple-breed analyses of milk produc-

tion traits in the same population. The differences in 
these results between trait groups may be attributable 
to the fact that the number of phenotyped animals 
and trait heritability estimates are both considerably 
lower for the conformation traits when compared with 
the milk production traits. Consequently, these results 
suggest that the multiple-breed models had greater 
information contributing to the predictions from the 
inclusion of both additional phenotypes and genotypes.

Full Population. Average theoretical accuracy 
across all traits for various genotyped and nongeno-
typed subsets of the population are presented in Table 
7. Across the whole genotyped population, average 
gains in selection accuracy for GEBV_full relative to 
EBV_full were 0.15 to 0.17 (32–37%) for Alpine and 
0.17 to 0.19 (40–41%) for Saanen in single and multiple-
breed analyses, respectively (Table 7). The SD of theo-
retical accuracy across animals within each subset also 
decreased for GEBV compared with EBV, indicating 
that the GEBV estimates were more consistent than 
the EBV estimates. In line with the results reported 
by Massender et al. (2022), the largest gains in average 
theoretical accuracy were observed for the subsets of 
the population with the least information contribut-
ing to their EBV, does without records (0.19–0.22 or 
50–55% gain) and bucks without daughter records 
(0.20–0.27 or 57–82% gain). This shows the gains in 
selection accuracy that could be expected from the 
implementation of genomic selection for conformation 
traits in the Canadian dairy goat populations. Once 
again, limited gains in theoretical accuracy (<0.02) 
were observed for nongenotyped animals of any popu-
lation subset, highlighting the need for producers to 
genotype more animals to observe the full benefits of 
genomic selection.

The gain in average theoretical accuracy of GEBV_
full relative to EBV_full by trait in both points and 
percentages are presented in Table 8 for both single- 
and multiple-breed analyses. The gains in accuracy 
were consistently higher for multiple-breed analyses in 
Alpine but were slightly more variable for Saanen. The 
gains in accuracy were generally highest for the least 
heritable traits (i.e., DC, FL, SL, TE) and lowest for 
the most heritable traits (i.e., FU and GA). It is well 
accepted that the implementation of genomic selection 
is most beneficial to lowly heritable traits, as can be 
observed in these results.

Future Research and Recommendations. The 
results of the present study for conformation traits, and 
as previously described by Massender et al. (2022) for 
milk production traits, demonstrate that an increase 
in selection accuracy could be expected from the use 
of single-step GEBV relative to traditional EBV in the 
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Canadian dairy goat populations. Although the results 
presented here, and in Massender et al. (2022), suggest 
there are advantages to the implementation of genomic 

evaluations, they should be interpreted with caution 
due to the small genomic training population sizes. It 
is well established that the size and structure of ge-
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Table 8. Theoretical accuracy gain in points (percent) of single-step genomic breeding values (GEBV) relative 
to pedigree-based EBV by trait for subsets of the genotyped population, predicted with single- or multiple-
breed analyses and full data sets1

Trait2

Alpine

 

Saanen

Single- 
breed

Multiple- 
breed

Single- 
breed

Multiple- 
breed

Whole population          
  BC 0.15 (32) 0.17 (37)   0.18 (45) 0.18 (38)
  DC 0.16 (37) 0.18 (41)   0.17 (39) 0.19 (42)
  FL 0.16 (36) 0.18 (42)   0.19 (49) 0.20 (45)
  FU 0.14 (28) 0.17 (36)   0.14 (29) 0.18 (38)
  GA 0.13 (25) 0.16 (32)   0.15 (31) 0.17 (33)
  RU 0.15 (32) 0.16 (34)   0.17 (40) 0.18 (38)
  SL 0.16 (36) 0.18 (41)   0.17 (40) 0.19 (42)
  TE 0.16 (36) 0.18 (42)   0.19 (48) 0.19 (43)
  Average 0.15 (32) 0.17 (37)   0.17 (40) 0.19 (41)
Does with records          
  BC 0.08 (13) 0.10 (17)   0.13 (27) 0.11 (19)
  DC 0.10 (18) 0.10 (17)   0.10 (18) 0.12 (21)
  FL 0.09 (16) 0.11 (20)   0.14 (29) 0.13 (24)
  FU 0.06 (9) 0.09 (15)   0.08 (13) 0.11 (19)
  GA 0.05 (7) 0.07 (10)   0.09 (15) 0.08 (12)
  RU 0.08 (13) 0.09 (15)   0.12 (23) 0.10 (17)
  SL 0.08 (13) 0.10 (17)   0.11 (20) 0.13 (23)
  TE 0.09 (16) 0.11 (20)   0.13 (27) 0.13 (24)
  Average 0.08 (13) 0.09 (15)   0.11 (20) 0.11 (19)
Does without records          
  BC 0.18 (46) 0.21 (55)   0.21 (58) 0.22 (54)
  DC 0.19 (53) 0.21 (57)   0.18 (45) 0.22 (55)
  FL 0.20 (56) 0.22 (61)   0.22 (63) 0.23 (59)
  FU 0.17 (41) 0.21 (54)   0.17 (40) 0.21 (50)
  GA 0.17 (40) 0.20 (49)   0.18 (43) 0.19 (42)
  RU 0.18 (46) 0.21 (55)   0.20 (53) 0.21 (50)
  SL 0.18 (47) 0.21 (57)   0.20 (53) 0.22 (55)
  TE 0.19 (51) 0.22 (61)   0.21 (58) 0.23 (59)
  Average 0.19 (50) 0.21 (55)   0.20 (53) 0.22 (54)
Bucks with daughter records          
  BC 0.10 (18) 0.11 (20)   0.15 (32) 0.14 (25)
  DC 0.11 (21) 0.13 (25)   0.13 (25) 0.15 (28)
  FL 0.11 (21) 0.13 (25)   0.15 (33) 0.15 (29)
  FU 0.08 (13) 0.10 (17)   0.10 (17) 0.13 (23)
  GA 0.07 (11) 0.10 (16)   0.11 (20) 0.11 (18)
  RU 0.10 (18) 0.11 (20)   0.14 (28) 0.13 (23)
  SL 0.10 (18) 0.13 (25)   0.14 (28) 0.15 (28)
  TE 0.11 (21) 0.13 (25)   0.15 (32) 0.15 (29)
  Average 0.10 (18) 0.12 (22)   0.13 (25) 0.14 (25)
Bucks without daughter records          
  BC 0.19 (53) 0.23 (66)   0.25 (86) 0.27 (82)
  DC 0.21 (64) 0.23 (68)   0.23 (72) 0.27 (84)
  FL 0.21 (64) 0.24 (73)   0.26 (93) 0.27 (84)
  FU 0.18 (47) 0.22 (61)   0.22 (63) 0.26 (76)
  GA 0.18 (46) 0.21 (54)   0.22 (65) 0.25 (69)
  RU 0.19 (53) 0.22 (61)   0.24 (77) 0.26 (76)
  SL 0.20 (59) 0.23 (68)   0.24 (77) 0.27 (84)
  TE 0.20 (59) 0.24 (73)   0.25 (86) 0.27 (84)
  Average 0.20 (57) 0.23 (66)   0.24 (77) 0.27 (82)
1The GEBV used in this analysis were predicted using the optimal scaling factors for the H matrix (i.e., 0.95, 
0.05, 1.0, and 0.8 for α, β, τ, and ω, respectively). 
2Traits are body capacity (BC), dairy character (DC), feet and legs (FL), fore udder (FU), general appearance 
(GA), rear udder (RU), suspensory ligament (SL), and teats (TE).
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nomic training populations is one of the major factors 
influencing the accuracy of genomic evaluations (e.g., 
Goddard, 2012).

Additionally, the size of the training population 
limited the design of the validation analyses. The 
small training and validation populations, low average 
accuracy of the proxies of true breeding values (i.e., 
EBV_full and GEBV_full), and high completeness of 
pedigree may all have contributed to the limited gains 
in validation accuracy observed for GEBV relative to 
EBV, contrary to expectations. These analyses should 
be repeated as more genotypic and phenotypic informa-
tion becomes available. Although considerable benefits 
were observed from the use of GEBV relative to EBV 
in terms of average theoretical accuracy, it is important 
to remember that the actual values may overestimate 
the accuracy that would be observed in selected popula-
tions (Bijma, 2012). Nevertheless, based on the results 
of this research, as well as the substantial international 
results demonstrating the benefits of genomic selection 
for countless traits and species, the implementation of 
genomic selection is recommended to accelerate genetic 
improvement for these traits.

The implementation of genomic selection will also 
enable herds that have not traditionally participated 
in phenotype recording programs to receive genetic 
evaluations and will hopefully increase producer in-
volvement in the Canadian Dairy Goat Genetic Im-
provement Program. However, the implementation of 
genomic selection and its continued success will depend 
on the ability of the industry to invest resources into 
phenotype recording programs and the genotyping of 
animals to further expand the genomic training popula-
tion. Phenotyping and genotyping are often viewed as 
a great expense relative to the value of the individual 
animal by Canadian dairy goat producers, which is a 
barrier to the successful implementation of this tool. 
However, new animals with phenotypic information 
(i.e., individual or daughter records) must be added to 
the genomic training population to reestimate marker 
effects and maintain the relationship between the train-
ing population and the population under selection or 
less gains in accuracy may be observed in the future 
(Muir, 2007; Habier et al., 2013).

Traditionally, pedigree-based genetic evaluations in 
the Canadian Dairy Goat Genetic Improvement Pro-
gram have been predicted across breeds. Massender et 
al. (2022) observed no advantage to the use of multiple-
breed models for more highly heritable milk production 
traits. However, the results of this study support the 
continued analysis of genetic evaluations across breeds 
for conformation traits as the multiple-breed analyses 
were found to have similar or higher validation accura-
cies, lower validation biases, and higher average theo-

retical accuracies than the single-breed analyses. The 
use of multiple-breed models will also be simpler to 
implement for routine genetic evaluations, allow com-
parisons between breeds, and will increase the size of 
the genomic training population.

International collaboration is another method to 
increase the size of genomic training populations. How-
ever, conformation trait genetic evaluations are not 
easily comparable between Canada and other countries 
because the traits evaluated, and the trait definitions, 
often differ between countries. Furthermore, the con-
formation traits evaluated in the Canadian Dairy Goat 
Genetic Improvement Program are inconsistent with 
the traits currently scored on farm. This may cause 
confusion for producers and reduce confidence in the 
genetic evaluations, especially for newer producers 
that are unfamiliar with the older system. It is recom-
mended that the conformation traits evaluated be re-
viewed to improve consistency with the current on-farm 
classification system and facilitate international genetic 
evaluations, given the emphasis on sharing phenotypes 
and genotypes from various countries.

Although conformation traits are the only function-
ally relevant traits currently evaluated for Canadian 
dairy goats, the implementation of genomic selection 
offers great potential to expand the breeding objective 
to include even more traits (e.g., fertility and health 
traits) that are difficult or expensive to measure across 
the whole population. The research of additional traits 
requires time and resources; however, it may help to 
build interest in the genetic evaluation system and in-
crease the number of herds using genetic evaluations to 
inform their selection decisions. This would increase the 
rate of genetic improvement for economically impor-
tant traits across the industry, and ultimately, lead to 
a more productive, healthy, and sustainable dairy goat 
population.

CONCLUSIONS

This study evaluated the potential benefits of the 
implementation of genomic evaluations for linear con-
formation traits in Canadian Alpine and Saanen dairy 
goats. The results suggest that with the limited num-
ber of phenotypic records available and small genomic 
training population size, multiple-breed rather than 
single-breed analyses generally maintained or increased 
validation accuracy, decreased validation bias, and 
increased average theoretical accuracy. The differences 
between the single- and multiple-breed analyses were 
more evident for Saanen than Alpine. Gains in theoreti-
cal accuracy for GEBV relative to EBV were observed, 
especially for breeding candidates (e.g., does without 
records and bucks without daughter records). Thus, the 
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implementation of genomic evaluations would be ex-
pected to increase the rate of genetic improvement for 
functionally relevant conformation traits in Canadian 
dairy goats.
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