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Abstract

Objectives: The Late Iron Age in continental Europe featured complex demographic

processes including, among others, the establishment of transalpine “Celtic” commu-

nities on the Italian peninsula between the 4th and 1st centuries BCE. To date, only

few data are available about mobility and migration in these populations. Here we

explore these topics among the Cenomani of Seminario Vescovile (SV-Verona, Italy,

3rd–1st c. BCE) through a multi-isotopic approach and test the possible associations

with sex, age and funerary treatment.

Materials and methods: We analyzed isotopic ratios of oxygen (δ18O) and carbon

(δ13C) from bone phosphate and collagen, respectively, of 49 individuals (23 males,

17 females, and 9 nonadults). In addition, we explored possible intraindividual lifetime

changes by comparing collagen δ13C from bone and dentine of 26 individuals. We

assessed nonlocality based on individual deviation of isotopic values from the popula-

tion mean plus three times the median absolute deviation from the median (±3MAD).

We then checked for isotopic differences between sexes and type of funerary

treatment using Mann–Whitney tests.

Results: One individual shows isotopic values consistent with a nonlocal origin. Five

more individuals may have originated from a different locality. No statistical

differences separate sexes and types of funerary treatment.

Discussion: Results suggest a local origin of most of the individuals of SV with the

few exceptions pointing especially to an Alpine origin. The low frequency of nonlo-

cals at SV suggest a reduced mobility in this population, or the preeminence of short

distance movements undetected by our analyses.
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1 | INTRODUCTION

The reconstruction of human mobility and migration in the past is a

traditional research topic in anthropology and archaeology. This is

especially due to the biological, social, and cultural relevance of these

processes, and the involved demographic, economic, social, cultural

and political factors (Adey, 2010; Leary, 2014).

Nowadays a standard analytical tool in paleomobility studies is the

application of isotopic analyses. The application of these techniques has

provided various insights about human movements for a large number of

archeological contexts (e.g., Bentley, 2013; Chenery et al., 2010;

Fernández-Crespo et al., 2020; Francisci et al., 2020; Frei et al. 2017;

Lightfoot et al., 2014; Lösch et al., 2014; Milella et al., 2019; Paladin

et al., 2020; Redfern et al., 2016; Siebke et al., 2020; Stark et al., 2020

etc.). Especially during the last decade, a series of isotopic studies have

explored mobility and migration in continental Europe during the Late

Iron Age (ca. 4th–1st c. BCE) (Grupe et al., 2020; Hauschild et al., 2013;

Knipper et al., 2014, 2018; Moghaddam et al., 2016; Moghaddam

et al., 2018; Müller-Scheeßel et al., 2020; Oelze et al., 2012; Scheeres

et al., 2013, 2014; Sorrentino et al., 2018). This body of research has pro-

vided important information about human mobility, especially for Central

Europe. Nonetheless, our understanding of human movements and of

their sociocultural correlates during this period is still fragmentary, espe-

cially for the regions to the south of the Alpine range.

The Late Iron Age (culturally denominated “La Tène”) of Conti-
nental Europe is a period characterized by intense demic and cultural

exchanges between the regions north to the Alps (Transalpine areas)

and those to the south of the Alpine range, like Northeastern Italy

(Cisalpine area) (Kruta, 2009; Vitali, 2004, 2011). These processes are

consistent with the economic relevance of the alpine areas since Pre-

history (Gilck & Poschlod, 2021; Hafner & Schwörer, 2018; Putzer

et al., 2016), and with its role as a gateway for the transit of objects,

people and ideas. For the Iron Age, this is demonstrated by the south-

ward diffusion of material culture (e.g., La Tène swords and brooches)

originating in the transalpine regions (Kruta, 2009; Vitali, 2001). Mod-

ern archeological theories are increasingly critical about traditional

hypotheses about one-way mass migrations at the basis of the

observed archeological patterns, rather privileging more nuanced

interpretation centered on individual or small group moves and grad-

ual processes (Anctil, 2021 and references therein; Isayev, 2017). In

any case, the available data would agree with ancient Greek sources

(Appianus, Dionysius of Halicarnassus) in placing the earliest impor-

tant presence of “Celtic/Latenian” populations in the Italian Peninsula

around the 4th century BCE (Grassi, 2009; Kruta, 1977, 1988).

Little is known about the lifestyle, cultural affiliation, and ethnic

origin of the “Celtic” groups distributed in the Italian peninsula

between the 4th and 1st centuries BCE. Moreover, historical, archeol-

ogical, and anthropological data are available especially for some of

these groups. These include the Boii, the Cenomani, and the Insubri in

the North of the Italian peninsula, and the Senoni in the central

regions (Grassi, 2009). These populations were characterized not only

by their distinct regional distribution and cultural traditions, but also

by heterogeneous relationships (conflicts, alliances, peaceful

coexistence) with indigenous Italic, Etruscan, and Roman groups

(Gambacurta, 2013; Grassi, 2009). Previous anthropological studies

on “Celtic” groups in the Italian Peninsula have especially focused on

Boii and Cenomani. The former, distributed in nowadays Emilia Roma-

gna region have been the subject of paleopathological analyses aimed

at reconstructing patterns of health and well-being (Brasili, 1992;

Brasili et al., 2000) and of paleomobility isotopic studies (Scheeres

et al., 2013; Sorrentino et al., 2018). The study by Scheeres et al. (2013)

focused on strontium and oxygen isotopic ratios, whereas the analysis

of Sorrentino et al. (2018) included a comparison of isotopic (stron-

tium), phenetic (dental non-metrics traits), and archeological variables

(funerary variability). Both studies revealed a high proportion of male

nonlocal individuals in the analyzed samples, and to several individuals

who moved already during childhood. These results offer some

insights into the possible socioeconomic features of these

populations. Particularly, they seem to suggest (a) a dynamic situation

featuring a relatively high frequency of movements, and (b) differ-

ences in the latter between sexes. These conclusions confirm expecta-

tions based on geographic, historical, and archeological data. The

latter point throughout the Iron Age, to a mosaic of contacts and cul-

tural exchanges not only between “Celtic” and local italic populations

but also between Celtic groups distributed on the two sides of the

Alpine range (Butti Ronchetti, 2014; Marzatico, 2014; Ramsl, 2014;

Vitali, 1996, 2001). Various causes were likely at the basis of these

movements. Classical sources, for example, stress the role played by

economic and commercial factors, the attraction on transalpine cul-

tures exercised by Mediterranean products such as grapes, figs, wine,

and oil, and the need to appropriate new lands for cultivation

(Mansuelli, 1978; Vitali, 2011).

Among the economic drivers of mobility, one needs also to

include mercenary service, an activity traditionally attributed to these

groups (Hauschild, 2013; Vitali, 2011). Especially during the 3rd cen-

tury BCE, individuals moved across the Alpine range in the service of

third parties (Polybius II, 19, 1–4 and II, 34, 21 in Vitali, 2011).

When we shift our focus to the Northeast of the Italian Peninsula,

bioarchaeological data on human movements during the late Iron Age

are completely lacking. The work by Laffranchi et al. (2016) and

Laffranchi and colleagues (Laffranchi et al., 2015, 2016, 2018, 2019;

Laffranchi, Charisi, et al., 2020) has contributed to the reconstruction

of the diet, exposure to biomechanical and nonspecific stressors, gen-

der roles and social differentiation among the Cenomani (Verona

area). From the same group, however, no data are yet available about

the presence and frequency of nonlocal individuals, and about the

associated mobility and migration processes.

1.1 | Insights into past human movements from
intraskeletal variability of oxygen and carbon stable
isotope ratios

Together with those of strontium (87Sr/86Sr), isotopic ratios of oxygen

(δ18O) are at the basis of most paleomobility research. By means of

ingestion of drinking water and water contained in food, dental and
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skeletal phosphate acquire during their formation the δ18O signature

of the surrounding environment (D'Angela & Longinelli, 1990, 1993;

Delgado Huertas et al., 1995; Longinelli, 1984). The isotopic composi-

tion of meteoric precipitation displays a strong geographical trend,

being influenced by a set of variables including latitude, distance from

the coast, altitude, temperature, and humidity (Lightfoot &

O'Connell, 2016; Rozanski et al., 1993). Consequently, estimates of

water δ18O based on phosphate isotopic composition can be used to

reconstruct past human movements and/or palaeohydrological

changes (D'Angela & Longinelli, 1990, 1993; Delgado Huertas

et al., 1997; Lightfoot et al., 2014; Lightfoot & O'Connell, 2016;

Reynard & Hedges, 2008). Specifically, a deviation in the isotopic sig-

nals of dental or skeletal tissues from those of the burial location may

provide hints about the possible nonlocal origin of an individual. This

interpretation, however, needs to take into account the possible

effect of various factors on the δ18O values of water sources. These

include, for example, evaporation of surface water and the access of

humans and/or animals to rivers, groundwater, local rainwater pools

preserving the isotopic signal of a different location (e.g., rivers origi-

nating at higher altitudes) (Gat, 1971; Lightfoot & O'Connell, 2016;

Pederzani & Britton, 2019).

Oxygen stable isotopes in archaeology are commonly measured

in tooth enamel or bone bioapatite (carbonate and phosphate). Com-

pared with carbonate, phosphate offers the advantage of being less

prone to taphonomic/diagenetic alterations (Britton et al., 2015; Del-

gado Huertas et al., 1997; Francisci et al., 2020; Kohn &

Cerling, 2002; Luz & Kolodny, 1989). On the other hand, when com-

pared with that from dental enamel, the isotopic composition of bone

phosphate is the weighted average of the last 10–25 years of life

(Longinelli, 1984; Manolagas, 2000). This plays an obvious role in the

type of information that the analysis of these tissues can provide in

paleomobility research. Although less frequently applied, isotopic ana-

lyses of oxygen in bone phosphate have yielded interesting results in

bioarchaeology. Especially for precontact Meso and South American

populations, the application of this method has provided important

information about the degree of residential mobility in these contexts

(Moreiras Reynaga et al., 2021; Toyne et al., 2014; Webb et al., 2013;

White et al., 2000, 2004).

Stable isotopes ratios of carbon (δ13C), although usually applied in

paleodietary research, can also provide insights into paleogeography

(Eerkens et al., 2014; Hakenbeck et al., 2010). Different types of

plants (C3 vs. C4) may indeed present a variable spatial distribution

because of different climatic and environmental conditions and/or dif-

ferent cultivation practices. C3 plants (e.g., wheat, barley, and the

majority of plants and fruits) are typical of cool and wet environments,

whereas C4 plants (e.g., millet, sorghum, maize, etc.) are well adapted to

warm climates, and rare in Europe, with millet being the only known

domesticated one during Prehistory. The relative abundance of C3 versus

C4 plants is therefore highly correlated with, and therefore informative

about, climatic factors (temperature, precipitation) as well as cultivation

strategies (Ehleringer et al., 1997; Laffranchi et al., 2016; Lösch

et al., 2006; Teeri & Stowe, 1976). δ13C ratios can also provide informa-

tion about the consumption of freshwater/marine vs. terrestrial

resources (DeNiro & Epstein, 1978; Schoeninger & DeNiro, 1984;

Smith & Epstein, 1971). Individual δ13C values deviating from those of

the rest of the population may point to the consumption of different

foodstuffs, either due to cultural or social reasons (e.g., intrapopulation

access to C4 vs. C3 plant products based on status, gender, or age) or

because of a different geographic origin. The paleoecological information

content of δ13C, suggested by a large literature (among others DeNiro &

Epstein, 1978; Van der Merwe, 1982; Schoeninger & Moore, 1992) sug-

gests its potential use as a complementary tool in paleomobility research.

When trying to reconstruct past diet and mobility, the interpreta-

tion of isotopic data can be informed by intraskeletal differences in

collagen turnover rate. Ribs show in general a faster turnover rate

than other commonly sampled bones like femur and tibia (Fahy

et al., 2017; Hill & Orth, 1998; Parfitt, 2002). The turnover of dentine

collagen is, conversely, extremely slow, and its isotopic signal reflects

the diet during the time of dentine formation (Beaumont et al., 2013).

Accordingly, the analysis of collagen from dentine and from different

skeletal elements with different remodeling rates can provide informa-

tion about intravitam patterns in access to specific foods and/or resi-

dential patterns.

Such an approach has already provided useful insights from a

large series of archeological contexts (Cheung et al., 2017; Cox &

F IGURE 1 (a) View of SV upon excavation (photo by
S. Thompson, by courtesy of SABAP-VR Soprintendenza archeologia,
belle arti e paesaggio per le province di Verona, Rovigo e Vicenza);
(b) estimated mean δ18ODW value for SV (triangle) and mean δ18O
water values from various sampling stations along the Adige river

(data from Natali et al., 2016)
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Sealy, 1997; Frei et al., 2015; Hedges et al., 2007; Lamb et al., 2014;

Müller et al., 2003; Pollard et al., 2012; Schroeder et al., 2009; Sealy

et al., 1995; Toyne et al., 2017, 2021; Tsutaya et al., 2016; Varalli

et al., 2021).

1.2 | Archeological and anthropological
background

The necropolis of Seminario Vescovile (henceforth SV) was discovered

and excavated between 2005 and 2010 in Verona (NE Italy). Preliminary

typological analysis of grave goods related this context with the

pre-Roman/Celtic culture of the Cenomani. The Cenomani are scarcely

documented in the archeological literature, and almost no information is

available regarding their geographic origin. The only historical data come

from Livius (Livius, Ab Urbe Condita, V, 35.1), who refers to their settling

in the area between the modern cities of Brescia and Verona during the

5th–4th centuries (Kruta&Manfredi, 1999;Malnati et al., 2004). Through-

out the 2nd and 1st centuries BCE this population was progressively

integrated into the Roman cultural and political sphere (Cavalieri

Manasse, 2004; Grassi, 2009; Malnati et al., 2004). Radiocarbon datings

placed the use of SV between the 3rd and 1st century BCE

(Laffranchi, 2016; Laffranchi et al., 2015, 2016, 2019).

With a minimum number of 174 inhumated individuals, SV (Figure 1a

and b) stands out as one of the largest and better-preserved “Celtic”
necropolises in the Italian peninsula. Burials includemostly supine inhuma-

tions, with a small number of individuals either prone or on their side (see

Table S1). In some cases, burials are provided with “funerary structures”
represented by stones marking the edge of the pit and/or covering the

burial surface (cf. Laffranchi et al., 2019 for further details).

Grave goods variability (e.g., pottery, pins, coins, rings, and few

knives, but no weaponry) suggests a rather homogenous society, with

no significant differences between sexes in the type and amount of

grave goods, and an apparent absence of vertical social differences in

burial treatment (see also Laffranchi, 2016; Laffranchi et al., 2019;

Laffranchi, Charisi, et al., 2020).

An intriguing exception is US 2807, the burial of a middle adult

male standing out from the rest of the population for its unique arche-

ological and anthropological features (Laffranchi et al., 2015). These

include (1) his provision with a grave good item (a probable wooden

tub or barrel) that is unique at SV; (2) the oldest 14C datation for now

at SV (2201–2137 cal. BP), and (3) the co-presence of several congen-

ital anomalies (foot polydactyly, bipartite medial cuneiform, dental

agenesis—Laffranchi et al., 2015).

A recent series of anthropological and isotopic works have rev-

ealed further details about the lifestyle and diet of this population.

Patterns of entheseal changes and long bone shape and robusticity

suggest differences between the sexes in the performance of daily

activities and general exposure to biomechanical stress (Laffranchi,

Charisi, et al., 2020). Further biocultural data have been provided by

analyses of linear enamel hypoplasia, stable isotopes ratios of carbon

and nitrogen, and funerary variability (Laffranchi et al., 2016, 2018,

2019). Overall, the picture emerging from these studies is that of a

population featuring a weak social differentiation and whose members

were equally exposed to developmental stressors during growth

(Laffranchi et al., 2019). Diet at SV was characterized by a prolonged

breastfeeding period (Laffranchi et al., 2018), and almost exclusive

reliance on cultivated crops (C4 plants, possibly broomcorn and foxtail

millet). The diet of males featured a higher intake of animal protein,

whereas that of females was characterized by a higher intake of

cereals and vegetal proteins (Laffranchi et al., 2016).

Although no previous study investigated human mobility at SV, vari-

ous factors (geographical, orographic, and archeological) make such an

analysis worthwhile. First, the region stands at the crossroad between the

Alpine range and the Southern Po Plain and is nowadays only 90 Km away

from the Italian Adriatic coast. It features a relatively mild climate, fertile

soils, and is crossed by an important waterway (the Adige River) which

stands as a natural connection between the Cisalpine and Transalpine

areas. The Adige River originates near the Reschen Pass (South Tyrol), has

a course of more than 400 Km for finally flowing into the Adriatic Sea. The

economic, military, and cultural relevance of the area surrounding SV is

further demonstrated by the archeological traces of its occupation before,

during, and after Roman times (Cavalieri Manasse, 2004; Laffranchi, 2016;

Malnati et al., 2004). The archeological traces of coexistence and cultural

contact between the Cenomani and the local Venetic populations, with

transalpine groups, and, toward the last centuries BCE, with the Roman

cultural sphere, contribute to this dynamic picture (Gambacurta & Ruta

Serafini, 2019; Marinetti, 1992; Prosdocimi, 1991; Vitali, 2001). All these

factors make the Northeast of the Italian peninsula in general, and the

region surrounding SV in particular, of great interest from a paleomobility

perspective. This was further suggested by previous analyses of δ13C at

SV. In the context of rather homogenous population values (mean of

�15.3‰ ± 2.2‰ V-PDB), some individuals indeed showed markedly

depleted ratios (between �20 and �19‰ V-PDB), suggestive of their

possible nonlocal origin (Laffranchi, 2016; Laffranchi et al., 2016). This

interpretation was based on various eco-geographical and cultural factors:

(a) the relative proximity of SV to subalpine and alpine regions, (b) the his-

torically documented transalpine origin of Cenomani, and (c) the archeolo-

gical traces documenting contacts between cisalpine and transalpine

cultural spheres throughout the 4th-1st centuries. These considerations

raise the likelihood that some individuals relocated to SV from more

Northern and higher altitude areas. The latter present environmental and

climatic characteristics that make them less suitable for the cultivation of

millet (Ehleringer et al., 1997; Laffranchi et al., 2016; Paladin et al., 2020).

One would therefore expect these nonlocals to show a comparatively

depleted carbon isotopic signature, consistent with larger consumption of

C3 plants. Admittedly, and lacking additional data, this has however

remained an exploratory hypothesis deserving further study. Based on

these premises, the aim of this work is to explore the presence of nonlocal

individuals at SV bymeans of an analysis of stable isotopes ratio of oxygen

from bone phosphate and carbon from bone and dentine collagen. Specifi-

cally, our study tries to address threemain research questions:

1. What is the frequency of potential nonlocals at SV, and what does

it tell about the type of human movements taking place in this

population?
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2. Is there any pattern among assumed nonlocals based on sex

and/or age?

3. Is there an association between the isotopic signature of

nonlocality and the type of funerary treatment?

2 | MATERIAL AND METHODS

Table 1 shows the distribution of the sample by age and sex. We ana-

lyzed 49 individuals representing both sexes and different age classes.

The detailed demographic distribution of SV has been previously publi-

shed by Laffranchi et al. (2016), Laffranchi et al. (2019), and Laffranchi,

Charisi, et al. (2020). Adult age-at-death was estimated based on the

morphological changes of the pubic symphysis, of the auricular surface

of the ilium, and of the sternal end of the 4th left rib or others in case of

absence (Brooks & Suchey, 1990; Buckberry & Chamberlain, 2002; _Işcan

et al., 1984, 1985). We estimated nonadults' age-at-death based on the

development and eruption of deciduous and permanent teeth, using

diaphyseal measurements, and based on the degrees of epiphyseal fusion

(Schaefer et al., 2009; Scheuer & Black, 2000; Ubelaker, 1989). Sex was

determined based on the morphology of pubic symphysis, coxal bones,

and cranial and mandibular dimorphic traits, following standard anthropo-

logical methods collected in Buikstra and Ubelaker (1994).

Following our previous work (see Laffranchi et al., 2019), we

grouped nonadults in NaI (ca. 37–42-weeks-old), NaII (0–1-year-old),

NaIII (>1–5-years-old), NaIV (>5–14-years-old). Adults were sub-

divided in Young Adults (19–34 years old) and Middle Adults (MA:

35–50 years old). Five individuals were possibly aged over 50 years

old, but were included in the MA age class in order to avoid unbal-

ances in sample sizes and associated issues during statistical testing.

2.1 | Stable isotopes analysis (δ13C)

Stable carbon and nitrogen isotope ratios from rib bone collagen from

SV are published and discussed elsewhere (see Laffranchi et al., 2016,

2018, 2019). We refer the reader to these works for a detailed

description of the applied standards and analytical protocols. This

study is based on the analysis of 49 individuals for whom both carbon

and oxygen data are available. Here we add data for a subsample of

26 adult individuals from whom we processed dentine collagen. The

latter was obtained from the dental root (for the major part second

premolars and second/third molars), sectioned transversely straight

below the crown. In order to minimize the breastfeeding signal, we

selected mostly premolars and second/third molars since these teeth

start to mineralize during the first years of life and continue to grow

until adolescence and early twenties (for M3) (Scheid, 2007;

Schroeder et al., 2009). Collagen extraction followed the protocol of

Bocherens et al. (1991, 1997) and the quality criteria suggested by

Ambrose (1990, 1993) Van Klinken (1999), and DeNiro (1985). We

included samples with >1% collagen yield, molar C:N ratio in the range

of 2.9–3.6 (DeNiro, 1985), %C between 30% and 47% and %N

between 11% and 17.3% (Ambrose, 1990; Van Klinken, 1999). Our

aim in analyzing both bone- and dentine collagen was to explore pos-

sible isotopic differences between tissues characterized by different

turnover rates and therefore informative about different times during

the lifetime of an individual (Sealy et al., 1995; Toyne et al., 2017,

2021). If present, these differences may inform about dietary changes

throughout an individual's lifetime. The latter, besides their possible

link to cultural practices or personal preferences, may also result from

individual moves between areas featuring different eco-geographical

conditions (see also Eerkens et al., 2014; Hakenbeck et al., 2010;

Schroeder et al., 2009). The unique features of inhumation US2807

(see Introduction) suggested to analyzed two different teeth (URM2

and LLP4), in order to explore two different phases of the individual's

childhood. The dentine closest to the crown margin of M2 forms

around 3 years, after initial enamel calcification, followed by forma-

tion toward the pulp cavity between �4.5 and 7.5 years. The enamel

calcification of lower P4 is completed around the age of 7 years; the

root (and the dentine) continues to form until the age of 14 years

(Hillson, 1996; Lamb et al., 2014). The dentine isotopic values of inhu-

mation US2807, namely URM2 and LLP4 should therefore provide

information for the age periods roughly between 3 and 7.5 years and

subsequently between 7 and 14 years.

Although nitrogen isotope ratios are available for all individ-

uals, in this study we decided to focus only on δ13C. The potential

bias played on δ15N by the breastfeeding signal would indeed be

too elevated when comparing dentine and bone collagen isotopic

values. This issue is also confirmed when screening the isotopic

ratios from these two tissues (see Table S1). Our choice to focus on

δ13C is also based on the use of carbon as an accessory tracer of

mobility by other studies.

Henceforth, we will refer to δ13C from bone and dentine collagen

as δ13Cbo and δ13Cde respectively. Analysis of nitrogen and carbon

ratios was carried out by means of a Carlo Elba NC1500 (Milan, Italy)

elemental analyzer on line with a Delta Plus XP (ThermoQuest, Bre-

men, Germany) mass spectrometer (EA-IRMS). Commercial CO2 and

N2 were used as the internal standards for the carbon and nitrogen

isotopic analyses (see Laffranchi et al., 2016, 2019 for more details).

TABLE 1 Age and sex distribution of the analyzed individuals

Females Males Sex: NA Total

n % n % n % n %

YA 9 52.9 11 47.8 0 0 20 40.8

MA 8 47.1 12 52.2 0 0 20 40.8

NaI 0 0 0 0 2 22.2 2 4.1

NaII 0 0 0 0 3 33.3 3 6.1

NaIII 0 0 0 0 1 11.1 1 2.0

NaIV 0 0 0 0 3 33.3 3 6.1

Total 17 100 23 100 9 100 49 100

Note: NaI: ca. 37–42 weeks old; NaII: (0–1 year old); NaIII: (>1 to 5 years

old); NaIV: (>5 to 14 years old); YA: young adults (19–34 years old); MA:

middle adults (35–50 years old). Sex: NA: individuals for which it was not

possible to determine sex.
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2.2 | Oxygen (δ18O) analysis

The protocol to analyze oxygen stable isotopes in bone phosphates

follows a complex chemical treatment to purify the samples and to

precipitate them as silver phosphate (Ag3PO4) (Crowson et al., 1991;

Longinelli, 1965; Tudge, 1960). The preparation of the samples and

the MS- measurements were carried out at the Stable Isotope Labora-

tory of the Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR,

Granada). Bone phosphate is known to be particularly resistant to

diagenetic processes. This is for example demonstrated by analyses of

oxygen isotopic ratios from bone phosphate of samples dating

13.000–30.000 years old (Delgado Huertas et al., 1997).

Nonetheless, in this study, we checked for different criteria in order

to authenticate our phosphate isotopic values. First, we selected well-

preserved bone samples from ribs showing no visual signs of dissolution or

recrystallization. The good preservation of the samples, already preliminar-

ily observed macroscopically, and attributable to the fine sand in which

the skeletons were found (Laffranchi, 2016), is also suggested by their col-

lagen isotopic data (C and N), which fit the quality criteria suggested by

Ambrose (1990, 1993) andDeNiro (1985) (see Table S2).

In order to check for recrystallization processes, we then analyzed

five samples by means of a PANalytical X' Pert Pro diffractometer for

powder samples (XR Diffraction Unit of the Instituto Andaluz de

Ciencias de la Tierra -CSIC-UGR, Granada). We selected for this analy-

sis the two samples showing respectively the more positive and more

negative isotopic ratios and three additional ones showing values in

between these extremes.

For each sample we selected 200–300 mg of bone powder, we

removed the organicmatter by treating the sampleswith undiluted hydro-

gen peroxide (H2O2), and left them for a week at room temperature by

stirring them several times a day with a Vortex ZX Classic mixer. This pro-

cess was repeated several times, renewing the H2O2 for a fewweeks until

finally the samples were placed in an oven at a low temperature to

completely evaporate the H2O2. Successively, 2 ml of 2 M hydrofluoric

acid (HF) was added, and after 24 h, the calcium fluoride (CaF2) was

formed, leaving the PO4 in solution. After the centrifugation (to separate

the solid), we added to the resulting solution (without solid) 2.2 ml of 2 M

potassium hydroxide (KOH). This solution was then treated with a buffer

of Silver Nitrate (AgNO3) + Ammonium Nitrate (NH₄NO₃) + Ammonium

Hydroxide (NH₄OH) and put into a thermostatic bath (Julabo sw23) at a

constant temperature of 50� (increasable up to 70�). During this process,

NH3 is released and the phosphates crystallize (Ag3PO4), afterward the

samples (pH less than 7.5 but not less than 6.8) were filtered and dried. An

internal standard of bone phosphate, magmatic apatite, and phosphorite

with known isotopic composition was precipitated (following the same

process described above) to verify that no isotopic fractionation has

occurred during the precipitation process.

Samples (Ag3PO4) mixed with graphite were placed in silver cap-

sules that fall onto a ceramic column containing a glassy carbon tube

at 1450�C to produce CO (Sharp et al., 2001); this system is coupled

on-line via a ConFlo IV interface to a Delta V Plus isotope ratio mass

spectrometer (Thermo-Finnigan, Bremen). The CO was separated by

chromatography using a helium carrier gas stream. Commercial CO

and five different internal and international standards were used for

the oxygen isotopic analyses. To avoid memory effects, each sample

was analyzed six times. We discarded the first three analyses and cal-

culated the average of the last three. For oxygen 12 internal standards

(organic and inorganic material, including Ag3PO4) ranging between

�27.93‰ and +71.4‰ (V-SMOW), contrasted with the IAEA inter-

national references, IAEA-NO-3, IAEA-C3, NBS-127, USGS35 and

USGS34 are commonly used. For this study three internal standards

of +30.2‰, +8.7, and �27.93‰ (V-SMOW) have been used. After

correction of the mass spectrometer daily drift, the calculated preci-

sion from standards systematically interspersed in analytical batches

was better than ±0.2‰ for phosphate oxygen. The standard for

reporting oxygen is V-SMOW.

F IGURE 2 Plot of the analyzed
individuals along δ18Obo and δ13Cbo,
and distribution of adults and
nonadults for each isotopic ratio.
Dotted lines indicate the upper and
lower 3MAD isotopic ranges. US
numbers indicate the individuals
discussed in the text
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To approach the geographical localization of the burials, phosphate

δ18Obo values (V-SMOW) were subsequently converted to the oxygen

isotopic composition of drinking water, also referred to as meteoric water

(δ18Odw vs. V-SMOW). For this, we used the equation provided by Daux

et al. (2008): δ18Odw = 1.54 (± 0.09) � δ18Op � 33.72 (± 1.51). These

values were then comparedwith published δ18Owater data from the river

Adige (D'Angela & Longinelli, 1993; Müller et al., 2003; Natali et al., 2016;

Toncala et al., 2017), from precipitation across Italy (Bowen, 2021; Giustini

et al., 2016; IAEA/WMO, 2015; Longinelli & Selmo, 2003), andwith isoto-

pic ratios obtained from the sampling of local waters. Specifically, we ana-

lyzed δ18O (and δD) from ten water samples representing two different

altitudinal points along the course of the Adige river, three tributaries of

the Adige near Verona, as well as local water sources, well- and tap waters

from the surroundings of SV (Table S3). The isotopic analyses of the water

samples were carried out by injecting 1.8 microliters into a Picarro

L-2140i. The replications of internal standards (contrasted with IAEA

international standards) indicate errors of less than 0.1‰ and 0.5‰ for

δ18O and δD, respectively.

2.3 | Statistical protocol

We first screened our data for the presence of isotopic outliers in δ18Obo,

δ13Cbo, and δ13Cde, by using as criterion the burial communities median

added and subtracted three times the median absolute deviation from the

median (henceforth 3MAD) (Lightfoot & O'Connell, 2016; Milella

et al., 2019). We performed the same procedure focusing on the differ-

ence between δ13Cbo and δ13Cde (henceforth Δ13Cbo�de). We also tested

for differences between δ13C from bone and dentine collagen comparing

the two datasets with aMann–WhitneyU test.

Previous analyses highlighted a significant difference in δ13Cbo

between sexes, a result pointing to a higher contribution of cereals

and vegetal proteins to the diet of females (see Laffranchi

et al., 2016). To minimize the possible bias of dietary differences on

our data, we, therefore, decided to compare sexes for δ18Obo and

Δ13Cbo�de using Mann–Whitney U tests.

We then grouped all individuals according to the presence or

absence of three basic funerary variables: the presence or absence of

grave goods, the position of the skeleton (supine or not), and the pres-

ence of funerary structures (see introduction).

We then compared the resulting groups for δ18Obo and Δ13Cbo�de

through Mann–Whitney U tests. We performed all analyses and plots

in JMP, setting alpha = 0.05.

3 | RESULTS

Table S1 presents all demographic, isotopic, and funerary data. Fig-

ures 2 and 3 plot the ranges of δ18Obo, δ
13Cbo, δ

13Cde, and Δ13Cbo�de.

3.1 | Assessment of sample preservation

All carbon and nitrogen isotopic values fit the quality criteria and these

are presented in Table S2, as recommended by Szpak et al. (2017). Indi-

viduals US3274 and US3244A show the more positive and more

F IGURE 3 Plot of δ18Obo versus
δ13Cde (a), and Δ13Cbo�de (difference
between δ13C values from bone and
dentine collagen) (b). Boxplots
visualize the distribution of each
isotopic variable according to sex.
Dotted lines indicate the upper and
lower 3MAD isotopic ranges. US
numbers indicate the individuals
discussed in the text
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negative δ18Obo values, respectively. The X-ray diffraction patterns of

these samples and the additional three (US 2807, US 3309, and US

3243) selected from those falling inside this range do not show the

presence of recrystallization processes (see Figure S1).

3.2 | Oxygen isotopic ratios

δ18Obo ranges from 16.2‰ to 11.3 ‰ (mean: 14.7 ± 0.8‰ V-

SMOW). Only one individual (US3244A, NaII) with a markedly

depleted isotopic signature (11.0‰ V-SMOW), falls outside the ±3MAD

range, (Figure 2). Even though not statistical outliers, four additional indi-

viduals (US2603, 2807, 2890, and 3309) present particularly depleted

values. These include three males (one young adult and two middle

adults) and one infant of 2–3 months. Another male (US3274: middle

adult) presents the most enriched δ18Obo value (16.0 ‰) (Figure 2).

When converted to δ18ODW these values correspond to a sample average

of �11.03 ± 1.3‰. Converted values for individuals US3244A, 2603,

2807, 2890, 3309, and 3274 are �16.3‰, �12.8‰, �13.1‰,

�12.9‰, �12.8‰, and �8.8‰ V-SMOW, respectively.

F IGURE 4 Plot of δ13Cbo versus
δ13Cde. Male and females are indicated by
triangles and circles, respectively.
Individual deviations from a theoretical
perfect positive correlation between
δ13Cbo and δ13Cde are further highlighted
by means of a color code expressing the
absolute difference between variables

TABLE 2 Results of Mann–Whitney tests for the comparison of δ18Obo and δ13Cbo�de between sexes (a) and funerary treatment (b–d)

(a)
Females Males

n Mean Median SD n Mean Median SD p (Mann–Whitney U test)

δ18Obo 17 15.0 15.1 0.5 23 14.8 14.8 0.7 0.29

Δ13Cbo�de
a 12 �0.7 0.5 2.9 14 0.8 0.7 2.6 0.33

(b)
Supine Prone or on the side

n Mean Median SD n Mean Median SD p (Mann–Whitney U test)

δ18Obo 39 14.7 14.8 0.8 10 14.9 15.0 0.8 0.71

Δ13Cbo�de
a 22 0.0 0.4 3.0 4 0.8 0.8 0.6 0.64

(c)
Without grave goods With grave goods

n Mean Median SD n Mean Median SD p (Mann–Whitney U test)

δ18Obo 9 14.3 14.7 1.2 40 14.8 14.9 0.7 0.18

Δ13Cbo�de
a 2 �2.6 �2.6 4.2 24 0.3 0.7 2.7 0.21

(d)
Burial without structure Burial with structure

n Mean Median SD n Mean Median SD p (Mann–Whitney U test)

δ18Obo 42 14.7 14.8 0.8 7 15.0 15.1 0.7 0.50

Δ13Cbo�de
a 21 0.2 0.8 2.0 5 �0.4 0.3 5.4 0.31

Note: n: number of individuals; SD: standard deviation. Data on δ13Cbo�de are available only for adults.
aOnly adult individuals.
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Oxygen isotopic ratios from our water samples range from

�7.7‰ (Avesa stream, Verona) to �12‰ (Adige River, upper course

Adige River) (Figure S2 and Table S3).

3.3 | Carbon isotopic ratios

δ13Cbo and δ13Cde range respectively from �21.2‰ to �7.7‰ (mean:

�15.15 ± 2.8‰ V-PDB), and from �20.3‰ to �6.7‰ (mean: �14.7

± 3.4‰ V-PDB). We do not find outliers for δ13Cbo although we point

out four individuals, with particularly depleted δ13Cbo values. These

are US3971 (young adult female), US2551 (nonadult, NaIV), and

US2807 (middle adult male) (Figure 2). The only outlier for δ13Cde with

a particularly depleted isotopic value (�20.3‰ V-PDB) is US2890

(young adult male) (Figure 3a).

Males and females show similar ranges for δ13Cde, whereas for

δ13Cbo females show less dispersed values, with one individual

(US3971, young adult female) falling well outside the isotopic range

for this sex (�20.0‰ V-PDB).

Individual Δ13Cbo�de values present an interesting variability

(Figure 3b and 4). First, most of the sample falls in a rather narrow

range (mean: 0.1 ± 2.8), pointing to, on average, a minimal isotopic

shift between bone and dentine. This is further demonstrated by the

lack of statistically significant differences between the two types of

samples for δ13C (Table S4). Three individuals, however, stand out for

their large Δ13Cbo�de values. Two females (US3259 and US2528, both

young adults) show δ13Cbo values that are enriched compared with

their δ13Cde values (Figures 3b and 4). The opposite situation (δ13Cbo

depleted compared with δ13Cde) characterizes the middle adult male

US2894. Smaller values of Δ13Cbo�de are also shown by US2890 and

US905 (young adult males) and US2685 (middle adult female)

(Figures 3b and 4).

Formal statistical tests show no significant difference between

sexes or funerary features for Δ13Cbo�de and δ18Obo (Table 2).

Finally, the comparison of δ13Cde from the two teeth of the

“funerary/paleopathological outlier” US2807 highlights a minimal shift

(0.2‰) from URM2 (�20.1‰V-PDB) to LLP4 (�19.9‰V-PDB).

4 | DISCUSSION

Before discussing our results, it is worth mentioning some issues

affecting our analyses. These relate to the size and demographic com-

position of our sample, and the analyzed elements and tissues.

Our sample size is admittedly small, and this becomes important

when evaluating the power of our statistical analyses. This cautionary

note seems particularly important when considering the sex bias in

our sample (17 females and 23 males). Having larger subsamples of

sexed individuals would allow a more solid exploration of the possible

links between mobility, sex, and gender. Finally, the inclusion of other

stable isotope elements and different skeletal tissues (e.g., δ18O and
87Sr/86Sr from tooth enamel, δ34S from bone collagen) may allow

refining the picture emerged from this study.

4.1 | What is the frequency of potential nonlocals
at SV, and what does it tell about the type of human
movements in this population?

Oxygen isotopic values at SV show a low variability and indicate a

source of drinking water featuring relatively constant and homoge-

neous isotopic characteristics.

Based on the position of the site, and the water isotopic data, it is

plausible to identify this source with the Adige river. This, in turn, sug-

gest that most of the individuals spent their adult life in the surround-

ing of SV. The only individual showing a clearly different δ18Obo value

is US 3244A. This 3–6-months-old nonadult was likely breastfed at

the time of death (as further suggested by the elevated nitrogen isoto-

pic ratio) (also see Laffranchi et al., 2018). On the other end, the

breastfeeding effect seems not to be reflected in the observed δ18Obo

value (Britton et al., 2015) which is the lowest one in the analyzed

sample. The observed δ18Obo value would therefore reflect that of the

mother. Either this infant was born “locally” (i.e., in the surrounding of

SV) from a nonlocal woman, or both arrived at SV from somewhere

else. Although indicating a specific geographic location based on iso-

topic values is notoriously difficult (cf. Lightfoot & O'Connell, 2016;

Milella et al., 2019), some insight may be obtained by comparing cal-

culated δ18ODW with modern data from rivers, springs, and rainwater.

The conversion of δ18Oph to δ18ODW for US3244A results in a value of

�16‰ V-SMOW (Table S1), which indicates a higher altitude (moun-

tain) environment, versus a mean value for the rest of the burial com-

munity of �10.9 ± 1‰ V-SMOW. The latter range is consistent with

local waters (Figure S2) and published δ18O values for the Adige river

in the area of Verona (average: �11.9 ± 0.6 considering the measure-

ments from Parona, 6 km north from SV– Natali et al., 2016), although

slightly different from rainfall δ18O values for the same area (�7.7‰

± 2‰—Longinelli & Selmo, 2003 and �7.1‰ ± 3.1‰—Bowen &

Revenaugh, 2003; Bowen, 2021, http://www.waterisotopes.org).

Giustini et al. (2016) highlight homogenous rainfall oxygen isotopic

values (between �7‰ and �8‰) for the Northeastern Po plain

(Verona: �7.65‰) (see figure 8 and supplementary data in Giustini

et al., 2016). Conversely, the isotopic ratio of US3244A (and/or its

mother we probably did not detect in our burial community) would

point to a location featuring high altitude (Giustini et al., 2016; Natali

et al., 2016). Particularly depleted isotopic values suggestive of moun-

tain environments are also shown by US2603, 2807, 2890, and 3309

(three adult males and one infant of 2–3 months). The particularly

negative δ18O values of these samples allow excluding a diagenetic

effect. Phosphate recrystallization in equilibrium with local meteoric

waters (whose δ18O ranges between �6 and �8—Giustini et al., 2016)

and annual soil temperature of 15�C would make us expect higher or

less negative values than those observed. These results further con-

firm therefore the good quality of our samples.

Regarding the location of these high-altitude environments, the

most likely hypothesis is that these individuals arrived at SV from a

location in the Alpine area. Published δ18O values for the upper

stretch of the Adige river (elevation above 180 m) are indeed on aver-

age �12.9 ± 0.7 V-SMOW, with the most depleted values found at
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sampling locations above 880 m (Figures 1c and S2b) (Natali

et al., 2016). The inverse correlation between elevation and δ18O is

further demonstrated by our water sample from the upper stretch of

the Adige (Bolzano, 262 m: �12.27‰, Figure S2a). Similarly, publi-

shed rainfall δ18O values show the more negative values in the Alpine

area and, for isolated locations, the Central Apennines (Giustini

et al., 2016). Compared with the alpine area the Apennines seem,

however, an unlikely place of origin for US3244A, US2603, 2807,

2890, and 3309 based on the geographic location and the archeolo-

gical features of the analyzed necropolis. First, SV is closer to the Alps,

to which it is connected by a main waterway (Adige). Second, the

available archeological data (still under study) point to a connection

(at least cultural) between SV and transalpine areas. This is for exam-

ple suggested by the presence of pins of transalpine typologies and

ceramics carrying Rhaetian Lepontian inscriptions (Marchesini &

Stifter, 2018; Solinas, 2015).

Another male (US3274: middle adult) presents the most enriched

δ18Obo value (16.0 ‰). When combined with his depleted δ13Cbo and

δ13Cde values this may cautiously suggest his origin from an area lac-

king rivers with high-elevation recharge areas, that is, an area of

plains, surrounded by mountains of low altitude (e.g., more southern

regions—cf. Milella et al., 2019; Prowse et al., 2004). We want to

stress that, given the large 3MAD range at SV, and the large error

associated with the use of δ18ODW for indicating a geographic origin

(Lightfoot & O'Connell, 2016) these hypotheses need to be consid-

ered with caution. Furthermore, our interpretation needs to take into

account a series of factors, besides geographic origin, potentially

influencing the observed δ18Obo values. These include food prepara-

tion techniques (e.g., cooking), consumption of imported foodstuff,

physiological, and metabolic factors, such as body size, nutritional

stress, disease, amount of water in the diet (Brettell et al., 2012; Light-

foot & O'Connell, 2016; Moreiras Reynaga et al., 2021; Pederzani &

Britton, 2019; White et al., 2000).

As mentioned, the choice to (cautiously) consider δ13C as a poten-

tial marker of mobility is suggested by the correlation between this

variable and environmental factors. In the case of SV, the cultivation

of millet, although possible only during spring–summer, resulted in a

strong C4 signal in this population (Laffranchi, 2016; Laffranchi

et al., 2016). The cultivation of millet in the Po plain is documented

since the Bronze Age (Tafuri et al., 2009; Tafuri et al., 2018; Varalli

et al., 2016) and continued to be practiced during Late Antiquity and

early Middle Ages (Ganzarolli et al., 2018; Laffranchi, Mazzucchi,

et al., 2020; Marinato, 2016, 2017, 2019; Maxwell, 2019). In contrast,

the low minimum temperatures characterizing mountain areas make

the latter incompatible with the cultivation of C4 plants (Teeri &

Stowe, 1976). This is further confirmed by a recent isotopic analysis

of Early medieval contexts from the Italian Alps showing a substantial

reliance on C3 plants, and, in general, more depleted carbon isotopic

ratios at higher altitudes (Paladin et al., 2020).

Clearly, δ13C values per se cannot point unambiguously to an indi-

vidual's nonlocal origin, since they may be related to personal dietary

preferences and/or cultural customs. However, in those cases where

both oxygen and carbon isotopic ratios fall outside (or on the edge) of

the sample range, we may try to postulate some more explicit hypoth-

eses. This is the case, for example, of two of the potential nonlocal

males based on δ18Obo (US2807 and 2890), who also show some of

the more depleted δ13Cde values (for US 2807 also for δ13Cbo) in the

sample. Both oxygen and carbon isotopic ratios would support there-

fore a nonlocal origin of these individuals.

The differences between carbon isotopic values from bone and

dentine collagen deserve some further consideration. We recall that

our aim in comparing these types of data was exploring intraindividual

lifetime differences potentially related to changes in diet and/or

mobility. A change in diet between infancy and late adulthood is

indeed suggested for three males (US 905, 2890, and 2894) and three

females (US 2528, 2685, and 3259). Of these six cases, three females'

and two males' Δ13Cbo�de values are consistent with a shift toward a

higher dietary contribution of C4 plants. Previous analyses of SV

highlighted the important dietary contribution of C4 plants (likely mil-

let) in this population (see Laffranchi et al., 2016). Furthermore, all

inhumations at SV have shown a certain variability in δ13C from bone

collagen with an absolute mean difference of minimal 0.4, and maxi-

mal 2.7 (see Laffranchi et al., 2018). In contrast, the Δ13Cbo�de values

for the five individuals discussed here show an absolute difference of

minimum 3 and maximum 8. Considering these data, the depleted

dentine values of these individuals may be related to them having

spent their infancy in a location featuring less availability of C4 plants

followed by their movement (at least during the last years before

death) to SV. A lack of relocation during the last years before death is

also suggested by the fact that Δ13Cbo�de outliers tend to fall in the

δ18O range of the population. The discussion of the isotopic values of

the middle adult male US2894 with a largely positive Δ13Cbo�de

(depleted bone isotopic value) is more difficult. This result may be

related to a specific diet during infancy (e.g., during the weaning pro-

cess) including a high contribution of C4 plant products, followed by

an adult diet more based on C3 resources. We cannot establish if this

was due to dietary preferences, high consumption of proteins from

animals feeding on C3 plants (note that the same individual also shows

the highest nitrogen isotopic value among adults at SV), a recent

movement to SV from somewhere else, or to a combination of these

factors.

Boiling down these considerations to actual numbers, and apply-

ing a parsimonious approach, the frequency of nonlocals would be

somewhere between 1/49 (2%) and 6/49 (12%). Comparative data for

continental European Late Iron Age contexts are available for

Nebringen (Germany, 400–250 BCE), the Glauberg (Germany,

ca. 400 BCE), Monte Bibele (Italy, 5th–3rd c. BCE), Monterenzio

Vecchio (Italy, 4th–3rd c. BCE), Münsingen Rain (Switzerland,

ca. 450–150 BCE), Basel Gasfabrik (Switzerland, 200–80 BCE),

Radovesice I, Radovesice II and Kutná Hora (Bohemia, 380–250 BCE)

(Hauschild et al., 2013; Knipper et al., 2014, 2018; Moghaddam

et al., 2016; Scheeres et al., 2013, 2014; Sorrentino et al., 2018). It

should be noted however that none of these studies used the same

approach employed here. Rather, they usually include the analysis of

strontium and oxygen isotopic ratios from dental enamel, and/ or sul-

fur from bone collagen. The criteria used to define local isotopic
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ranges also differ from those employed in our study (3MAD). All these

considerations make it clear that we can only loosely compare our

results with those from these studies, and just in terms of the relative

numerosity of nonlocals. Frequencies of nonlocals range from a mini-

mum of ca. 11% (4/35) in Radovesice (Scheeres et al., 2014) to higher

frequencies like the 42% (8/19) at the princely seat of Glauberg

(Knipper et al., 2014) and 57% (13/23) at Monterenzio Vecchio

(Sorrentino et al., 2018). SV would therefore lie in the lower range of

these percentages, a result for which we can propose various, and not

mutually exclusive explanations. The aforementioned methodological

differences are important and likely to influence the relative fre-

quency of isotopic outliers in a sample. Differences between the

demographic and the economic composition of analyzed population

may also play a role, especially if the sex, age, and/or social standing

and profession of an individual made them more (or less) likely to

move. The type of network each population is part of (economic, cul-

tural, etc.) is also likely to influence the degree of mobility of its mem-

bers. We also need to question the reliability of our analytical

approach in capturing various scales of human movement. In particu-

lar, an important point to consider is the difference between mobility

and migration (Kern, 2012;Nehlich et al., 2009; Tilly, 1978), two terms

that are often used as synonyms although they indicate different phe-

nomena. We consider mobility processes those involving regional and

periodic moves in one's home region, whereas migrations would

include discrete relocation over long distances (Nehlich et al., 2009;

Tilly, 1978). Climatic similarities make it possible that a large part of

short-distance mobility at SV was left undetected by our analyses,

which would be more sensitive to long-distance movements. The pic-

ture emerging from this study would therefore be an underestimation

of the actual frequency of mobility in the analyzed population.

As mentioned when discussing the limitation of our study, we

plan to extend our analyses by including other elements (strontium,

sulfur) and δ18O from dental enamel. Besides providing a better basis

for comparison with other studies, these data would allow more

insights about the types of mobility in this context.

4.2 | Is there any pattern among assumed
nonlocals based on sex and/or age?

At both Nebringen and Monte Bibele nonlocals or mobile individuals

were mainly males (Scheeres et al., 2013), and a similar conclusion

was reached for Radovesice and Kutná Hora (Scheeres et al., 2014).

For Münsigen Rain (Hauschild et al., 2013; Moghaddam et al., 2016)

the frequency of nonlocals is relatively low (14.7% according to

Hauschild et al., 2013) with an equal distribution between the sexes.

Conversely, data from the Glauberg and Basel Gasfabrik highlight a

higher female mobility (Knipper et al., 2014, 2018). At SV, the four

adults with δ18Obo values deviating from the rest of the burial commu-

nity are males, whereas the six individuals showing large deviations

between dentine and bone collagen include an equal number of both

sexes (three males and three females). Taken together, these results

suggest a slightly higher mobility for males. Our previous works on

entheseal changes (Laffranchi, Charisi, et al., 2020) at SV pointed at

differences between sexes in physical activity. Males appear to have

experienced higher levels of biomechanical stress than females, likely

due to the presence in this society of a sex subdivision of labor. The

involvement of males in different professions and activities may in

turn have influenced their relative likelihood to move.

4.3 | Is there an association between the isotopic
signature of postulated nonlocality and the type of
funerary treatment (body position, presence of grave
goods)?

Our analyses did not highlight any association between isotopic data

and the three selected funerary variables. This in turn suggests a lack

of association between geographic origin and funerary treatment. Our

result is not surprising since social status is unlikely to follow a simplis-

tic dichotomy between “locals” and “nonlocals.” Additional factors,

such as specific geographic origin, the timing of movement, kinship

relationship, in conjunction with processes of cultural integration are

likely to lead to complex, fluid, and heterogeneous scenarios

(Eckardt, 2010; Laffranchi et al., 2019; Levitt, 2018; Milella

et al., 2019).

The unsuitability of simplistic categories and the need for

nuanced interpretation are well exemplified by the “funerary outlier

male” US2807. The isotopic ratios from bones and teeth depict in this

case a diachronic enrichment in δ13C. Furthermore, he stands out for

presenting the most depleted δ13Cbo at SV, and one of the more

depleted δ18Obo. The preliminary archeological interpretation of the

wooden container associated with this burial is of a small tub or barrel,

an object undocumented so far in other necropolises of La Tène chro-

nology in the Italian peninsula (Laffranchi et al., 2015). According to

ancient Roman and Greek sources (Pliny, Strabo, and Caesar), the

wooden barrel was a container largely used among “Celtic”
populations (e.g., for storing wine—Plin., Nat. Hist. XIV, 132). Interest-

ingly, archeological remains of barrels have been found along the

courses of the rivers Rhine, Danube, and Rhone, in Switzerland, along

the French Mediterranean coast, and in Great Britain, and all date

back to the 1st–3rd century AD (Baratta, 1994). The wooden object

associated with the middle adult male (US 2807) may therefore repre-

sent not only a unicum for the Italian peninsula but also one of the

earliest documented barrels in Continental Europe. Further typological

and archeological analyses are needed to corroborate this preliminary

hypothesis, and the study of this particular object as well as the grave

goods typology of SV is ongoing (Salzani, Personal communication).

Comparing this information with the isotopic and radiocarbon

data, it is tempting to propose a specific “residential history” of this

individual. It is possible that the male (US2807) originated from a high

altitude, possibly Alpine region (δ18Obo and δ13C data), and was among

the first “Celtic” settlers in the area of Verona (14C data), where he

died relatively shortly after his arrival (intraskeletal and intertooth

δ13C data; Δ13Cbo�de data). Naturally, although suggestive, this is only

a preliminary hypothesis that will have to be explored more
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extensively through biogeochemical and biomolecular analyses (addi-

tional isotopic analyses, additional radiocarbon dating, and ancient

DNA), and by more detailed scrutiny of the different typological

phases of the necropolis.

5 | CONCLUSIONS

In this study, we investigated the presence of nonlocals at Semi-

nario Vescovile (Northeastern Italy, 3rd–1st century BCE) by means

of an analysis of δ13C from bone and dentine collagen and δ18O

from bone phosphate. Results suggest a nonlocal origin for one

individual, and possibly for other five, with no significant pattern

according to sex or funerary treatment. With one exception, nonlo-

cals appear to have moved to SV from a higher altitude, possibly an

alpine environment. Overall, our results depict a population featur-

ing reduced levels of residential mobility or mostly short-distance

movements. At the same time, the possible alpine origin of the non-

local individuals confirms expectations based on historical sources

and archeological data about the pre-Roman populations of North-

ern Italy. This study is the first to explore residential mobility in a

“Celtic” population in the northeast of the Italian peninsula, a cru-

cial area for the cultural and demic exchanges between Mediterra-

nean and central European territories. Accordingly, our data

contribute to a better understanding of the heterogeneous pro-

cesses shaping the cultural and biological variability of the Italian

peninsula during the last centuries BCE.

This research opens various research questions. These include

(a) what kind of movements (long-vs. short distance mobility, fre-

quency of nonlocals, sex and age patterns) characterized the entire

burial community of SV? (b) What genetic variation characterized SV,

and what genetic relationships linked this population with other,

transalpine “Celtic” groups? (c) What kind of relationship linked mobil-

ity, kinship patterns, and social organization in this context, and how

do these patterns compare with other, transalpine populations?

Planned isotopic, aDNA, and archeological analyses will provide the

opportunity to address these questions.
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