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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) homotrimeric spike
(S) protein is responsible for mediating host cell entry by binding to the angiotensin-converting
enzyme 2 (ACE2) receptor, thus being a key viral antigen to target in a coronavirus disease 19
(COVID-19) vaccine. Despite the availability of COVID-19 vaccines, low vaccine coverage as well
as unvaccinated and immune compromised subjects are contributing to the emergence of SARS-
CoV-2 variants of concern. Therefore, continued development of novel and/or updated vaccines is
essential for protecting against such new variants. In this study, we developed a scalable bioprocess
using the insect cells-baculovirus expression vector system (IC-BEVS) to produce high-quality S
protein, stabilized in its pre-fusion conformation, for inclusion in a virosome-based COVID-19 vaccine
candidate. By exploring different bioprocess engineering strategies (i.e., signal peptides, baculovirus
transfer vectors, cell lines, infection strategies and formulation buffers), we were able to obtain
~4 mg/L of purified S protein, which, to the best of our knowledge, is the highest value achieved
to date using insect cells. In addition, the insect cell-derived S protein exhibited glycan processing
similar to mammalian cells and mid-term stability upon storage (up to 90 days at −80 and 4 ◦C
or after 5 freeze-thaw cycles). Noteworthy, antigenicity of S protein, either as single antigen or
displayed on the surface of virosomes, was confirmed by ELISA, with binding of ACE2 receptor,
pan-SARS antibody CR3022 and neutralizing antibodies to the various epitope clusters on the S
protein. Binding capacity was also maintained on virosomes-S stored at 4 ◦C for 1 month. This
work demonstrates the potential of using IC-BEVS to produce the highly glycosylated and complex
S protein, without compromising its integrity and antigenicity, to be included in a virosome-based
COVID-19 vaccine candidate.

Keywords: IC-BEVS; spike protein; virosomes; protein production

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic
virus responsible for the coronavirus disease 2019 (COVID-19). In March 2020, COVID-19
was declared a pandemic by the World Health Organization (WHO) and, as of March 2022,
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more than 400 million persons were infected worldwide and 6 million people have died [1,2].
Although vaccines against COVID-19 have been already approved for human use [3], the
emergence of new SARS-CoV-2 variants demands constant update or development of novel
vaccine formulations.

Antigens displayed on particles, especially if present as repeat arrays, elicit stronger
immune responses when compared to free soluble antigens, thus being a potentially
complementary approach to the recently approved protein-based Novavax vaccine [4,5].
This repetitive unit display was successfully applied in licensed virosomal vaccines with
an effective and long-lasting immunogenicity and an excellent safety profile [6,7]. In this
particular case, virosomes were lipid-based particles derived from reconstituted influenza
virus membranes with a diameter of about 100 nm, which acted as carrier to a variety of
antigens. This vaccine modality combines the advantages of a virus-like particle with the
benefits of in vitro assembly from purified components, allowing to present antigens and
adjuvants on the same particle while minimizing unspecific immune activation [8–11].

The SARS-CoV-2 homotrimeric spike (S) protein is the key antigen to target in a
COVID-19 vaccine [12] since it mediates host cell infection by binding to the angiotensin-
converting enzyme 2 (ACE2) [13,14]. S protein is highly glycosylated, with its glycans
playing an important role in protein folding, stability, immune recognition and evasion due
to epitope shielding [15–17].

Developing a virosomal-based vaccine against COVID-19 requires the production of
significant amounts of high-quality and stable S protein, thus encouraging the use of high-
yield expression systems and/or the design of new, improved production and purification
strategies to meet such demand.

Different expression systems have been reported for full-length S protein production,
the majority being mammalian cell-based [18]. The insect cell-baculovirus expression
vector system (IC-BEVS) can be a valid alternative as it is commonly regarded as a low-cost
and scalable production platform with an already proven track record [19,20]. Proteins
expressed in insect cells can undergo post-translational modifications such as protein
N-glycosylation; however, they present smaller and less processed glycans, designated
as paucimannose glycans, respective to mammalian cells [21]. The production yields
achieved (<1.5 mg/L of culture) in IC-BEVS are still below the desirable levels for the
development and manufacturing of vaccines at commercial-scale [12,22]. In addition,
different studies have described difficulties in obtaining stable, soluble S protein trimers
due to their tendency to disassemble upon storage [18].

In this work, aiming to develop a scalable bioprocess to produce high-quality S protein
for inclusion in a virosome-based COVID-19 vaccine candidate, different signal peptides,
baculovirus transfer vectors, cell lines, infection strategies and formulation buffers were
explored. An in-depth characterization of the produced protein was performed to assess its
stability, oligomeric state and binding capacity to ACE2 receptor and selected neutralizing
SARS-CoV-2 antibodies. In addition, the S protein was covalently coupled via its His-tag to
a click chemistry lipid present in the virosomal membrane. The particle binding capacity to
selected neutralizing SARS-CoV-2 antibodies was assessed.

2. Materials and Methods
2.1. Cell Lines and Culture Media

Insect Sf -9 (Invitrogen, Waltham, MA, USA), ExpiSf9™ (Thermo Fisher Scientific,
Waltham, MA, USA) and SuperSf9-2 (Oxford Expression Technologies, Oxford, UK) cells
were routinely sub-cultured at 0.4–1 × 106 cell/mL every 3–4 days when cell density
reached 2–5 × 106 cell/mL in 500 mL shake flasks (10% working volume, w/v) in a Innova
44R incubator (orbital motion diameter of 2.54 cm- Eppendorf) at 27 ◦C and 100 rpm.
Sf-900TM II SFM (Thermo Fisher Scientific, Waltham, MA, USA) and ExpiSf TM CD (Thermo
Fisher Scientific, Waltham, MA, USA) media were used to culture Sf -9 and SuperSf9-2 cells,
and ExpiSf9™ cells, respectively.
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2.2. Recombinant Baculovirus
2.2.1. Expression Vectors

SARS-CoV-2 spike (S) protein sequence (GenBank MN 908947) is described in Sup-
plementary Information: The S protein sequence was modified by eliminating the furin
cleavage site between S1 and S2, introducing the mutations K968P and V987P, truncation of
the protein after Q1208 and introduction of the HIV gp160 derived fusion clamp (Watterson
et al., 2021) after Q1028, followed by the 6 histidine tag (6his-tag), for an S protein with an
expected MW of 140 kD. Three signal peptides were tested: (1) honeybee melittin (BVM)
insect-derived; (2) gp67 of Autographa californica nuclear polyhedrosis virus (AcMNPV);
and (3) native S signal peptide. Three baculovirus transfer vectors were tested: (1) pOET1,
the S protein gene is under the control of AcMNPV polyhedrin (polh) promoter; (2) pOET3,
the S protein gene is under the control of AcMNPV basic (p6.9) promoter; and (3) pOET5,
one copy of the S protein gene is under the control of AcMNPV polh promoter and another
copy is under the control of p10 promoter. The five different expression plasmids evaluated
in this study, synthetized by GenScript, are described in Table 1.

Table 1. List of expression plasmids used for baculovirus generation.

Expression Plasmid Signal Peptide rBac Transfer Vector

rBac 1 BVM pOET3
rBac 2 gp67 pOET3
rBac 3 native pOET3
rBac 4 BVM pOET1
rBac 5 BVM pOET5

BVM—honeybee melittin; rBac—recombinant baculovirus.

2.2.2. Baculovirus Generation

Recombinant baculoviruses (rBac) were generated using the flashback ULTRATM

system (Oxford Expression Technologies, Oxford, UK) according to the manufacturer’s
instruction. Amplification of baculovirus stocks was performed as described elsewhere [23].
Briefly, Sf -9 cells were infected at cell concentration of 1 × 106 cells/mL and at a multiplicity
of infection (MOI) of 0.01–0.1 pfu/cell. When cell viability reached 80–85%, cultures were
harvested, centrifuged at 200× g for 10 min at 4 ◦C. The pellet was discarded, and the
supernatant was centrifuged at 2000× g for 20 min at 4 ◦C. The resulting supernatant was
stored at 4 ◦C until further use.

2.3. Protein Production and Purification

S protein production using Sf -9, ExpiSf9™ and SuperSf9-2 was performed in shake
flasks (SF; 500 mL, 10% w/v) and in 20 L stirred tank bioreactors (STB). Cells were seeded at
0.3–0.6 × 106 cells/mL and infected with rBac at different cell concentrations at the time of
infection (CCI, 1 × 106 and 2 × 106), and MOI (0.1 and 1 pfu/cell).

Bioreactor cultures were performed in a computer-controlled BIOSTAT® Cplus 20 L
vessel (Sartorius, Göttingen, Germany) equipped with two Rushton impeller and a ring-
sparger for gas supply. The pH was monitored (not controlled) along culture time. The
partial pressure of oxygen (pO2) was set to 30% of air saturation and was maintained by
varying the agitation rate (70 to 250 rpm), the percentage of O2 in the gas mixture (0 to 100%)
and the gas flow rate was set to 0.01 vessel volumes per minute (vvm). The temperature
was kept at 27 ◦C and the working volume was 20 L. Cell concentration and viability were
measured daily, and culture samples processed and stored as described elsewhere [24]. The
bioreactor culture was harvested 2–3 days post-infection when cell viabilities reached 70%.

Purification of secreted S protein was carried out on ÄKTA systems (Cytiva, Marl-
borough, MA, USA) as described elsewhere (Castro et al., 2021). Cell culture bulk was
harvested by filtering through 0.45 and 0.22 µm Sartopore 2 (Sartorius, Göttingen, Ger-
many). Tangential flow filtration (TFF) was used to concentrate and dialyze the clarified
supernatants to 50 mM sodium phosphate supplemented with 500 mM NaCl and 20 mM
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imidazole, at pH 7.4 (binding buffer). S protein was purified by immobilized metal ion
affinity chromatography on a Histrap HP or Nickel Sepharose HP column (5 mL volume;
Cytiva, Marlborough, MA, USA) equilibrated with binding buffer. Two washing steps
with 35 and 50 mM imidazole were performed, and S protein was eluted with a linear
gradient up to 500 mM imidazole. The eluate was concentrated using a Vivaflow®200 of
50 kDa crossflow device (Sartorius, Göttingen, Germany), incubated 30 min at 4 ◦C with
5 mM EDTA and purified by size exclusion chromatography (SEC) using Superdex 200 (GE
Healthcare, Chicago, IL, USA) previously equilibrated with 10 mM HEPES, 150 mM NaCl,
at pH 7.2. The eluate was concentrated using Vivaflow®200 of 50 kDa crossflow device
and filtered through a polyethersulfone membrane with 0.2 µm. Purified S protein was
formulated in 10 mM HEPES, 150 mM NaCl at pH 7.2 with 10% glycerol, and stored at
−80 ◦C until further analysis.

2.4. Virosomes Preparation

Virosomes were prepared as described earlier [25]. Briefly, inactivated influenza virus
A/Brisbane/59/2007 (Seqirus, Parkville, Australia) was solubilized with the detergent
octaethyleneglycol-mono(n-dodecyl)ether (OEG) and the viral nucleocapsid was removed
by centrifugation. To the supernatant, the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) (Merck) and the click chemistry lipid dicyclobenzooctyl-phosphatidylethanolamine
(DBCO-PE) (Avanti Polar Lipids, Alabaster, AL, USA) were dissolved in OEG, and added
OEG was then removed by batch chromatography on polystyrene beads (BioBeads SM2) as
described; resulting homogenous virosomes were sterilized by 0.22 µm filtration.

2-azidoethyl thiophosphodichlorate (ATPD) was synthesized and purified as described
(Jia, S. et al., 2020) by Acme Bioscience (Palo Alto, CA, USA). S protein was dialyzed against
50 mM HEPES pH 8.5 for 4 h and then mixed with ATPD at a 200:1 ratio of ATPD to protein
for 1 h at RT. The product was dialyzed overnight against 2000 volumes of buffer (145 mM
NaCl, 5 mM HEPES, 1 mM EDTA, pH 7.4). The resulting S-azide conjugate product was
incubated with virosomes for at least 24 h at 25 ◦C resulting in covalent coupling of S to
virosomes through azide-DBCO-PE click chemistry.

2.5. Analytics
2.5.1. Cell Concentration and Viability

Cell concentration and viability were analyzed by trypan blue dye exclusion method [26]
using a Cedex HiRes Analyzer (Roche, Basel, Switzerland).

2.5.2. Baculovirus Titration

Baculovirus titers were determined using the MTT assay [27,28].

2.5.3. Protein Concentration

The concentration of purified S protein was determined by spectrophotometry at
280 nm on the mySPEC (VWR).

2.5.4. Western Blot

Culture samples were centrifuged at 200× g for 10 min and supernatants collected and
stored at −80 ◦C until further analysis. Western blot analysis was performed as reported
elsewhere [29]. For S identification, the human monoclonal antibody SARS-CoV-2 spike
protein (MA5-35948, Thermo Scientific, Breda, The Netherlands) was used at dilution of
1:3000. For 6his-tag recognition on S proteins identification, a mouse monoclonal anti-
body anti-6His tag (MA1-21315, Thermo Scientific, Breda, The Netherlands) was used at
a dilution of 1:1000. As secondary antibody, an anti-mouse IgG (A3438, Sigma, Amster-
dam, The Netherlands) and an anti-human IgG antibody (A9544, Sigma, Amsterdam, The
Netherlands) conjugated with alkaline phosphatase were used at a dilution of 1:5000.
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2.5.5. Differential Scanning Fluorimetry

Differential scanning fluorimetry (DSF) was performed in a QuantStudio 7 Flex Real-
Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA), with excitation and emis-
sion wavelengths of 580 and 623 nm, respectively, using a MicroAmpTM EnduraPlateTM

Optical 96-Well Fast Clear Reaction Plate with Barcode (Thermo Fisher Scientific, Waltham,
MA, USA). The samples were heated from 25 ◦C to 90 ◦C with stepwise increments of
0.016 ◦C per second, followed by the fluorescence read out. For each well, 20 µL final
volume with 4 µg of S protein and 4-fold of ROX™ Passive Reference Dye (Thermo Fisher
Scientific, Waltham, MA, USA) was prepared with protein purification buffer. The assays
were carried out in triplicates and the results were analyzed in the Protein Thermal ShiftTM

Software V1.3.

2.5.6. HPLC-SEC

Purified S protein was analyzed using a HPLC system equipped with Photodiode
Array Detector (Waters, Milford, MA, USA). S protein samples were injected in a XBridge
BEH 450 Å SEC 3.5 µm HPLC column (Waters) equilibrated in 10 mM HEPES with 150 mM
NaCl at pH 7.2. The system flow rate was maintained at 0.86 mL/min and eluted proteins
were detected at 280 nm. Twenty micrograms of protein was injected in each HPLC run.

2.5.7. Site-Specific Glycosylation Analysis

Purified S protein was analyzed by LC-MS as described in [30]. For glycans identi-
fication, the N-glycans database described in CFG Functional Glycomics Gateway (http:
//www.functionalglycomics.org/fg/, accessed on 2 October 2021) with Spodoptera taxo-
nomic restriction was used. MS data were analyzed using the BioPharmaView software
(BPV, Version 3.0, SCIEX) and the protein sequence of spike. Glycans were identified using
MS1 data (considering a peptide deconvolution tolerance of 10 ppm, XIC m/z width of
0.025 Da and m/z tolerance of 5 ppm) and fragmentation MSMS data (considering a MSMS
tolerance of 0.03 Da). All MSMS data were manually examined for the presence of MSMS
specific glycan marker ions. The data was also manually examined for consistence in
retention time information and spectrum quality.

2.5.8. ELISA

For the epitope mapping ELISA on S protein, ELISA plates (Nunc high-binding,
Thermo-Fisher) were coated overnight with purified S protein at 0.5 µg/mL in phosphate
buffered saline (PBS). The plates were then washed with PBS containing 0.05% Tween-
20 (PBST, Sigma, Amsterdam, The Netherlands) and blocked with 5% Protifar (Nutrica,
Utrecht, The Netherlands) in PBST for 2 h at RT. After washing in PBST, human monoclonal
antibodies and ACE-2-Fc chimeric protein were added for one hour at RT, and revealed
with goat anti-human antibodies coupled to horse radish peroxidase (HRP).

Coupling of the S protein to the virosomes was assessed by an ELISA in which
the mouse monoclonal antibody 395-F2-04/03 (CePower) toward the hemagglutinin on
virosomes was used to coat ELISA plates for capturing virosomes. The plates were then
washed with PBST and blocked with 5% Protifar (Nutrica, Utrecht, The Netherlands) in
PBST, then incubated with virosomes for 1 h at RT and further processed as described
above. During the ELISA, the virosomes remained intact.

Antibodies tested were: ACE2-NN-IgGFc (Absolute Antibody, Redcar, UK), CR3022
(Abcam, Cambridge, UK), all SARS-CoV-2 antibodies (courtesy of prof. Sanders, Academic
Medical Center, Amsterdam, The Netherlands) [31].

2.6. Statistical Analysis

Data were expressed as mean ± standard deviation. Differences were tested by One-
Way ANOVA with post hoc Tukey’s multiple comparison analysis method and Dunnett’s
multiple comparison test (adjusted p-value < 0.05 was considered statistically significant) or

http://www.functionalglycomics.org/fg/
http://www.functionalglycomics.org/fg/
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by t-test unpaired assuming Gaussian distribution (adjusted p-value < 0.05 was considered
statistically significant).

3. Results
3.1. SARS-CoV-2 Spike Protein Production in Insect Cells

Aiming to improve S protein production yields in insect cells, different signal pep-
tides, baculovirus transfer vectors, cell lines, infection strategies and formulation buffers
were evaluated.

3.1.1. Infection Strategy

To identify the best infection strategy, Sf -9 cells were infected at cell concentrations
at infection (CCI) of 1 and 2 × 106 cell/mL with recombinant baculovirus rBac 1 (Table 1)
using multiplicities of infection (MOI) of 0.1 and 1 pfu/cell, and their growth and S protein
expression kinetics assessed in small-scale shake flasks (SF) (Figure 1). Traditional profiles
of insect cell growth and viability upon infection were observed, with S protein being
identified by Western blot only in experiments at CCI of 2 × 106 cell/mL (Supplementary
Figure S1A). Maximum S protein titers and specific production rates were achieved for
CCI = 2 × 106 cell/mL and MOI = 1 pfu/cell (Figure 1A) and, therefore, this infection
strategy was used in subsequent studies.

3.1.2. Signal Peptide

Three different signal peptides were explored: the insect BVM (rBac 1), the rBac gp67
(rBac 2), and the native SARS-CoV-2 S protein signal peptide (rBAC 3) (Table 1). Insect Sf -9
cells were infected at CCI = 2 × 106 cell/mL with each rBac at MOI = 1 pfu/cell, and their
growth and S protein expression kinetics assessed in small-scale SF (Figure 1). Traditional
profiles of insect cell growth and viability upon infection were observed (Supplementary
Figure S1B), with S protein being only identified by Western blot in samples following in-
fection with rBac 1 (Figure 1B); thus, baculovirus constructs using the BVM signal sequence
were used for subsequent experiments.

3.1.3. Baculovirus Transfer Vectors and Cell Lines

Three baculovirus transfer vectors, i.e., pOET1, pOET3 and pOET5 (Table 1), and three
insect cell lines, i.e., Sf -9, SuperSf9-2 and ExpiSf9™, were evaluated for S protein production
in small-scale SF using CCI = 2 × 106 cell/mL and MOI = 1 pfu/cell (Figure 1). While
baculovirus transfer vectors seem to have negligible impact on cell growth kinetics, the
same does not withstand for the cell lines tested (Supplementary Figure S1C). Despite these
differences, the S protein could be identified by Western blot in all experiments performed.
Noteworthy, maximum S protein titer and specific production rate was achieved using
SuperSf9-2 cells and rBac 5, where the S protein gene is duplicated and under the AcMNPV
very late promoter polyhedrin (polh) and the p10 (Figure 1C).

3.1.4. Formulation Buffer

Three formulation buffers were evaluated for S protein storage (Table 1): Buffer (A)
10 mM HEPES + 150 mM NaCl at pH 7.2; Buffer (B) 10 mM HEPES + 150 mM NaCl at pH
7.2, 10% glycerol; and Buffer (C) 10 mM HEPES + 150 mM NaCl at pH 7.2, 10% sucrose.
S protein thermal denaturation was analyzed by DSF, with Buffers B and C showing
consistently higher melting temperatures than Buffer A irrespective of storage time (up
to 30 days) and temperature (−80 and 4 ◦C) (Figure 2). Noteworthy, S protein stored in
Buffer A showed extensive degradation after two freeze-thaw cycles, being impossible to
estimate its melting temperature, contrasting with S protein stored in Buffers B and C that
only showed a 1 ◦C reduction in its melting temperature. For being slightly better, Buffer B
was selected as formulation buffer for subsequent experiments.



Pharmaceutics 2022, 14, 854 7 of 15
Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 16 
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infections (MOIs). (B) Identification of S protein in culture supernatant samples collected at time of 
harvest by Western blot; numbers 1–3 denote culture replicates. (C) Identification of S protein in 
culture supernatant samples collected at time of harvest by Western blot; numbers 1, 4 and 5 denote 
rBAC used (upper panel), and S protein titers (bars) and specific production rates (circles) using 
different cell lines and baculoviruses (lower panel). Color code: blue, yellow and green represents 
data using rBAC 1, 4 and 5, respectively. For Western blot analysis, a mouse monoclonal 6-Histag 
antibody was used; positive control (CTL) is an in-house purified protein with a hexahistidine tag 
in the C-terminal at 0.2 and 0.1 μg; Ladder (L) is SeeBlue™ Plus2 Pre-stained Protein Standard. The 
expected MW of S protein monomer is approximately 140 kDa. Data are expressed as mean ± stand-
ard deviation (relative to three biological replicates, n = 3). 

Figure 1. Production of SARS-CoV-2 spike (S) protein in small-scale shake flasks. (A) S protein
titers and specific production rates at different cell concentrations at infection (CCIs) and multiplicity
of infections (MOIs). (B) Identification of S protein in culture supernatant samples collected at
time of harvest by Western blot; numbers 1–3 denote culture replicates. (C) Identification of S
protein in culture supernatant samples collected at time of harvest by Western blot; numbers 1, 4
and 5 denote rBAC used (upper panel), and S protein titers (bars) and specific production rates
(circles) using different cell lines and baculoviruses (lower panel). Color code: blue, yellow and
green represents data using rBAC 1, 4 and 5, respectively. For Western blot analysis, a mouse
monoclonal 6-Histag antibody was used; positive control (CTL) is an in-house purified protein with
a hexahistidine tag in the C-terminal at 0.2 and 0.1 µg; Ladder (L) is SeeBlue™ Plus2 Pre-stained
Protein Standard. The expected MW of S protein monomer is approximately 140 kDa. Data are
expressed as mean ± standard deviation (relative to three biological replicates, n = 3).
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Figure 2. SARS-CoV-2 spike (S) protein thermal stability. Differential scanning fluorimetry analysis
of S protein formulated in three different buffers: Buffer A: 10 mM HEPES + 150 mM NaCl at pH 7.2
(orange); Buffer B: 10 mM HEPES + 150 mM NaCl at pH 7.2, 10% glycerol (blue); and Buffer C: 10 mM
HEPES + 150 mM NaCl at pH 7.2, 10% sucrose (green). Data are expressed as mean ± standard
deviation (relative to three replicates measurements, n = 3).

3.2. Scale-Up SARS-CoV-2 Spike Protein Production

The feasibility of producing S protein in SuperSf9-2 cells was demonstrated in con-
trolled, scalable 20 L stirred-tank bioreactors (STB); small-scale SF were used as control.

Cell growth and viability kinetics were comparable in both culture systems (Figure 3A).
In addition, S protein could be identified by Western blot in both STB and SF cultures, with
apparent similar band intensities (Figure 3B).

S protein produced in the 20 L STB was purified and a final production yield of
4.1 mg/L could be achieved, with removal of >95% of infectious particles, total deoxyri-
bonucleic acid (DNA) and baculovirus genome copies. Purified S protein showed purity
above 95% and a molecular weight of 383 kDa suggesting that S protein is in trimer
conformation.

3.2.1. Glycosylation Pattern of S Protein

Purified S protein was characterized by LC-MS for determination of site-specific
glycosylation and glycan composition for all N-linked glycan sites previously described
in the literature [15,17,30]. The glycosylation sites of S protein and their main glycan
processing, subdivided into high mannose and complex/paucimannose-type glycosylation,
are presented in Figure 3C. 21 N-glycosylation sites were found occupied and the detailed
glycan compositions are described in Supplementary Table S1. A mixture of high mannose-
and complex/paucimannose-type glycans was found at glycosylation sites N 68_81, N172,
N241, N1081; the remaining 15 sites were dominated by processed, complex-type glycans.
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Figure 3. Production of SARS-CoV-2 spike (S) protein in a 20 L stirred-tank bioreactor (STB). (A) Cell
growth kinetics upon infection. (B) Identification of S protein in supernatant samples collected at day
1, 2 and at time of harvest (H, 63 hpi) from STB and shake-flask (SF) cultures by Western blot; a mouse
monoclonal 6-Histag antibody and a human monoclonal SARS-CoV-2 S antibody were used; positive
controls were an in-house purified protein with a hexahistidine tag in the C-terminal at 0.2, 0.1 and
0.05 µg (CTL + 1) and an in-house purified spike protein with a hexahistidine tag in the C-terminal
at 1 and 0.5 ng (CTL + 2); Ladder (L) is SeeBlue™ Plus2 Pre-stained Protein Standard; the expected
MW of S protein monomer is approximately 140 kDa; STB and SF denote stirred-tank bioreactor. SF
denote samples from shake-flask control 1 and 2, respectively. (C) Site-specific glycan analysis of S
protein by mass spectrometry; glycans were grouped in categories: high mannose glycan series—M9
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to M5; Man9GlcNAc2 to Man5GlcNAc2 (green), and complex/paucimannose glycans (pink).
(D) HPLC-SEC analysis of S protein upon storage at different temperatures and upon ×5 freeze-thaw
(T/T) cycles; dashed grey line represents the retention time of a protein standard mix: (1) thyroglobu-
lin (660 kDa), (2) uracil (112 kD), (3) ovalbumin (44.2 kDa) and (4) ribonuclease A (13.7 kDa). (E) S pro-
tein thermal stability using differential scanning fluorimetry; data are expressed as mean ± standard
deviation (relative to three replicates measurements, n = 3). (F) Binding of non-overlapping human
neutralizing antibodies recognizing epitopes in the receptor binding domain of S protein (i.e., ACE2-
NN-IgGFc, CR3022, all SARS-CoV-2 antibodies) or an ACE2-Fc chimeric protein binding to S protein
bound to ELISA plates, and developed with goat anti-human HRP.

3.2.2. Mid-Term Storage Stability of S Protein

Mid-term storage stability of purified S protein was assessed by HPLC-SEC and DSF.
HPLC-SEC analysis revealed a single peak in all conditions tested, thus, suggesting that S
protein trimer conformation is maintained up to 90 days when stored at −80 ◦C and 4 ◦C
or after 5 freeze-thaw cycles (Figure 3D). Stability of S protein was further confirmed by
DSF data, in which a marginal variation (~1.5 ◦C) in S protein melting temperatures could
be observed between all conditions explored (Figure 3E).

3.2.3. Epitope Mapping of S Protein

The quality of purified S protein was confirmed by epitope mapping. ELISA plates
were coated with the protein and epitopes from non-overlapping antigenic clusters on the
protein were detected with human monoclonal antibodies known to neutralize SARS-CoV2
with high affinity [31]. The pan-SARS antibody CR3022 [32] and an ACE2-Fc chimeric
protein were used to test S protein binding to its receptor (Figure 3F). ELISA data indicate
that insect-derived S protein is capable of binding to ACE2 receptor and, importantly, it is
recognized by CR3022 monoclonal antibody and by all the other tested anti-S neutralizing
antibodies directed toward various epitope clusters.

3.3. Conjugation of SARS-CoV-2 Spike Protein to Virosomes

Purified S protein was covalently coupled to virosomes through DBCO-azide click
chemistry, and the presence of S protein on the virosomes through the exposure of key
epitopes on the protein and the binding of an ACE2-Fc were confirmed by ELISA (Figure 4).
Results indicate that the S protein as displayed on the surface of the virosomes is capable
of binding to the ACE2 receptor and is also recognized by CR3022 and by all the tested
neutralizing antibodies toward various epitope clusters. This binding capacity is also
preserved on virosomes-S stored at 4 ◦C for 1 month, as similar IC50 values were obtained
for t = 0 and t = 1 month, thus demonstrating an enhanced stability of virosomes-S.
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Figure 4. Binding of antibodies to S protein presented on virosomes. Virosomes bound to ELISA
plates coated with anti-hemagglutinin were incubated with non-overlapping human neutralizing
antibodies recognizing epitopes in the receptor binding domain of S, or with an ACE2-Fc chimera
and developed with goat anti-human HRP; panel A at production of virosomes, panel B one month
after storage at 4 ◦C.

4. Discussion

The production of the full-length recombinant S protein of SARS-CoV-2 S has been
attempted in mammalian (e.g., HEK293, CHO) and insect (e.g., Sf -9 and High Five) cells;
however, despite several bioprocess strategies being explored to date e.g., low culture
temperature, new cell lines, most induce modest to no improvements in production
yields [33,34].

In this study, we have explored different signal peptides, baculovirus transfer vectors,
insect cell lines and infection strategies for S protein production. Specific production rates
were maximized using BVM signal peptide, pOET5 baculovirus transfer vector, SuperSf9-2
cell line and CCI = 2 × 106 and MOI = 1 pfu/cell. While the cell line is known to enhance
expression of highly unstable proteins [20,35], its improved phenotype has never been
demonstrated for S protein production; all other variables herein studied have not yet been
explored or reported yet to date. Noteworthy is that the production yield achieved was
~4 mg/L, which, to the best of our knowledge, is the highest value obtained for full-length
S protein production using IC-BEVS.

In this study, aiming to obtain a stable and folded trimer form of S protein in its pre-
fusion conformation, we have combined the elimination of the S1 and S2 furin cleavage site
with the addition of double proline mutation to prevent unfolding [36] and the HIV gp160
derived fusion clamp [37]. To further increase S protein stability, particularly upon storage,
a screening study of formulation buffers was performed. Buffers B and C, which include
glycerol and sucrose as cryoprotectants, respectively, have shown to outperform buffer A
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(without cryoprotectant) in all conditions tested (i.e., −80 and 4 ◦C, and after 2 freeze-thaw
cycles). Glycerol and sucrose act as stabilizers by inhibiting protein aggregation, shifting the
native protein ensemble to more compact states and reducing local backbone fluctuations,
resulting in protein stabilization in extreme thermal or chemical environments [38,39]. The
list of approved drug products using glycerol as cryoprotectant is extensive as it facilitates
drug uptake by the cells while having low toxicity associated [40] and as such, Buffer B
(containing glycerol) was selected as the formulation buffer for S protein in our study. S
protein thermal stability was assessed by DSF, with melting temperatures varying between
44–46 ◦C in agreement with literature data [30,41,42]. This method is commonly used
to assess protein stability and readily applied for formulation buffer screening [43]. S
protein aggregation was assessed using HPLC-SEC, which is one of the more robust and
reproducible methods for tracing protein aggregates [44]. The chromatograms showed
only one main form of S protein with approximately 400 kDa, consistent with its tertiary
structure. Noteworthy, S trimeric form could be maintained for up to 90 days at −80
and 4 ◦C or after five freeze-thaw cycles, contrasting to other reports in which S protein
aggregation was observed after 1 day at 4 ◦C [30,42].

The results obtained in this study reveal that most N-glycosylation sites in S protein
were occupied and that N-glycans included complex/paucimannose glycans and high
mannose glycans. In addition, five sites had more than 40% oligomannose type, similar
to previous studies using Sf -9 cells [15] and mammalian HEK293 cells [17]. The S protein
produced in insect cells, either as single antigen or displayed on the surface of the virosomes
is bound by ACE2 receptor, pan-SARS antibody CR3022 [32] and neutralizing antibodies
to the various epitope clusters [31] in ELISA, as proxy for its antigenicity integrity and
biological activity [45]. Additionally, binding capacity was also maintained on virosomes-S
stored at 4 ◦C for 1 month. These results suggest that S protein covalently coupled via its
His tag to a click chemistry lipid present in the virosomal membrane results in an oriented
display of the protein and properly exposes its receptor binding domain (RBD) involved
in ACE2 binding on target cells, thus, theoretically favoring the induction of relevant
neutralizing antibodies toward RBD for blocking cell infection.

5. Conclusions

This study demonstrates the potential of IC-BEVS for the expression of high-quality
SARS-CoV-2 S protein to be included into a virosome-based COVID-19 vaccine candi-
date. The bioprocessing engineering strategies herein adopted allowed the production
of ~4 mg/L of full-length S protein, which, to the best of our knowledge, is the highest
value achieved to date using insect cells. In addition, the insect Sf -9 cells derived S pro-
tein exhibited glycan processing similar to mammalian cells and mid-term stability upon
storage. Furthermore, the S protein displayed on the surface of the virosomes was capable
of binding to the ACE2 receptor and was recognized by a broad array of neutralizing
antibodies, even after storage of the virosomes-S at 4 ◦C for 1 month. To validate these
particles as a COVID-19 vaccine candidate, immunogenicity and safety-toxicology studies
in adequate animal models should be performed.
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//www.mdpi.com/article/10.3390/pharmaceutics14040854/s1, Figure S1: Production of SARS-CoV-
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glycosylation sites of SARS-CoV-2 S protein.
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