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Abstract
Probabilistic weather forecasts from ensemble systems require statistical postprocessing to yield calibrated and sharp

predictive distributions. This paper presents an area-covering postprocessing method for ensemble precipitation predic-

tions. We rely on the ensemble model output statistics (EMOS) approach, which generates probabilistic forecasts with a

parametric distribution whose parameters depend on (statistics of) the ensemble prediction. A case study with daily

precipitation predictions across Switzerland highlights that postprocessing at observation locations indeed improves high-

resolution ensemble forecasts, with 4:5% CRPS reduction on average in the case of a lead time of 1 day. Our main aim is to

achieve such an improvement without binding the model to stations, by leveraging topographical covariates. Specifically,

regression coefficients are estimated by weighting the training data in relation to the topographical similarity between their

station of origin and the prediction location. In our case study, this approach is found to reproduce the performance of the

local model without using local historical data for calibration. We further identify that one key difficulty is that post-

processing often degrades the performance of the ensemble forecast during summer and early autumn. To mitigate, we

additionally estimate on the training set whether postprocessing at a specific location is expected to improve the prediction.

If not, the direct model output is used. This extension reduces the CRPS of the topographical model by up to another 1:7%

on average at the price of a slight degradation in calibration. In this case, the highest improvement is achieved for a lead

time of 4 days.

Keywords Ensemble postprocessing � Ensemble model output statistics � Precipitation accumulation � Censored logistic

regression � Weighted scoring rule estimator � Continuous ranked probability score

1 Introduction

Today, medium-range weather forecasts are generated by

Numerical Weather Prediction (NWP) systems which use

mathematical (or physics-based, numerical) models of the

atmosphere to predict the weather. NWP forecasts are

affected by considerable systematic errors due to the

imperfect representation of physical processes, limited

spatio-temporal resolution, and uncertainties in the initial

state of the climate system. This initial condition uncer-

tainty and the fact that the atmosphere is a chaotic system,

where small initial errors can grow into large prediction

errors, make weather forecasting challenging (Wilks and

Vannitsem 2018). Therefore, attention has turned to prob-

abilistic weather forecasting to quantify weather-dependent
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Probabilistic forecasts are generated using different

forecasting scenarios (referred to as ensemble members)

based on slightly perturbed initial conditions and perturbed

physical parameterizations in the NWP system. Unfortu-

nately, such ensemble forecasts are not able to capture the

full forecasting uncertainty as it is difficult to represent all

sources of error reliably and accurately (Buizza 2018).

Hence ensemble forecasts are often biased and over-con-

fident (Wilks 2018). Statistical postprocessing can be used

to calibrate ensemble forecasts. A proper postprocessing

method providing accurate weather forecasts is funda-

mental for risk quantification and decision making in

industry, agriculture and finance. One example is flood

forecasting, where reliable precipitation forecasts are a

necessary prerequisite for predicting future streamflow

(e.g. Aminyavari and Saghafian 2019).

The objective of statistical postprocessing is to find

structure in past forecast-observation pairs to correct sys-

tematic errors in future predictions. Various approaches to

postprocess ensemble predictions have been developed

over the last years, a selection of them is listed for example

in Wilks (2018). His overview covers parametric approa-

ches that assume a predictive distribution belonging to a

class of probability distributions and nonparametric

approaches that avoid such distributional assumptions. For

the class of parametric methods, the two main approaches

he lists are Bayesian model averaging (BMA; Raftery et al.

2005) and Ensemble model output statistics (EMOS;

Gneiting et al. 2005). The BMA approach generates a

predictive probability density function (PDF) using a

weighted average of PDFs centred on the single ensemble

member forecasts. There are numerous applications of this

method, for example in the studies about ensemble pre-

cipitation postprocessing of Sloughter et al. (2007) and

Schmeits and Kok (2010). The EMOS approach provides a

predictive PDF using a parametric distribution whose

parameters depend on the ensemble forecast. One of the

most frequently used EMOS models is the Nonhomoge-

neous Gaussian regression approach (NGR; Gneiting et al.

2005). While in a homogeneous regression model the

variance of the predictive distribution is assumed to be

constant, in the inhomogeneous approach it is expressed as

a function of the ensemble variance. The NGR model, that

assumes a Gaussian predictive distribution, has been

extensively applied to postprocess temperature forecasts,

see for instance Baran (2013) or Hemri et al. (2014). For

precipitation, as a non-negative quantity, EMOS with a

left-censoring of the forecast distribution at zero is usually

applied. A range of parametric distributions have been

explored for precipitation postprocessing including the

censored Generalized Extreme Value distribution

(Scheuerer 2014) , the censored shifted Gamma

distribution (Baran and Nemoda 2016), and the censored

Logistic distribution (Messner et al. 2014).

We seek to postprocess precipitation forecasts for all of

Switzerland. With its complex topography as shown in

Fig. 1, Switzerland provides a challenging case for pre-

cipitation forecasting. From a climatic perspective, the

study area can be classified into different regions for which

precipitation characteristics differ quite considerably. First

and foremost, the Alps separate the country into a northern

and southern part. The Alpine ridge often creates strong

contrasts with intense precipitation on the windward slopes

and dry conditions downwind. The intensity of such

orography-induced precipitation also differs with much

more intense precipitation frequently occuring in the south

due to the advection of warm, humid air masses from the

Mediterranean. The large inner-alpine valleys on the other

hand are often shielded from advection of precipitation and

thus tend to exhibit much drier climates than the sur-

rounding areas. In addition to pronounced spatial vari-

ability, precipitation in Switzerland also exhibits a strong

seasonal cycle. While passing fronts and large-scale pre-

cipitation dominate in the cold part of the year, in summer

and autumn, convection and thunderstorms frequently

occur. Convection is usually initiated away from the

highest peaks on the northern and southern slope of the

Alps and in the Jura mountains in the northwest. During a

typical summer day, isolated showers and storms therefore

start to appear there and subsequently spread according to

the prevailing upper-level winds. Due to its chaotic nature

and spatial heterogeneity, predicting convective precipita-

tion is one of the key challenges in weather forecasting.

Starting from an EMOS model, we aim to provide a

postprocessing method that enables spatially comprehen-

sive yet locally specific forecasts. To discuss alternatives to

achieve this, we distinguish between global models that use

all available forecast observation pairs to estimate model

coefficients, local models that use data from a specific

location only, and semi-local models that use weighting to

Fig. 1 The relief of the study area with respect to global coordinates

(WGS84)
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pool information in a suitably defined neighbourhood. The

second represents the most locally specific approach and

local models therefore generally outperform global models

(Thorarinsdottir and Gneiting 2010). It is important to note,

however, that by using local models alone, calibration at

unobserved sites is not possible. Here we use a semi-local

approach to enable local effects without binding the model

to the stations.

An ensemble postprocessing algorithm allowing for

training data to be weighted individually has first been

introduced by Hamill et al. (2008). In their study, they

calibrate ensemble precipitation forecasts using logistic

regression (for a given threshold) whereby in the fitting

procedure, the training data pairs are weighted with respect

to the relationship of their ensemble mean and the thresh-

old in question. Another ensemble postprocessing study

where the training data is assigned with individual weights

has been presented by Lerch and Baran (2018). Using an

EMOS approach to postprocess ensemble wind speed

predictions, they weight the training data pairs depending

on the similarity of their location of origin and the pre-

diction location. Thereby, they measure the similarity of

two locations with distances based on the geographical

location, the station climatology and the station ensemble

characteristics. As an alternative to the distance based

weighting approach, Lerch and Baran (2018) suggest to

cluster the observational sites based on the same similarity

measures and to perform the postprocessing for each

cluster individually. The motivation behind the two semi-

local approaches of Lerch and Baran (2018) is to solve

numerical stability issues of the local model, which

requires long training periods since only the data of one

station is used for training, they do not aim for an area-

covering postprocessing method as this study does. But our

study not only has another underlying motivation, we are

also using new similarity measures and focus on a rich set

of topographical features that are relevant for postpro-

cessing in an area with complex topography such as

Switzerland (Fig. 1).

Over the last years, other approaches enabling postpro-

cessing at unobserved sites have been developed. For the

interpolation technique, the postprocessing parameters of a

local model are spatially interpolated using geostatistical

methods. The introduction of geostatistical interpolation

for a BMA postprocessing framework has been provided

by Kleiber et al. (2011) as Geostatistical Model Averaging.

Their methodology developed for normally distributed

temperature forecasts has been modified by Kleiber et al.

(2011) to allow its application to precipitation forecasts.

For EMOS models, a geostatistical interpolation procedure

has been presented in Scheuerer and Büermann (2013) and

extended in Scheuerer and König (2014). Both studies base

on locally adaptive postprocessing methods avoiding

location-specific parameters in the predictive distribution.

Instead, they use local forecast and observation anomalies

(with respect to the climatological means) as response and

covariates for the regression to get a site-specific postpro-

cessing method. Consequently, they do not have to inter-

polate the parameters but the anomalies. This method has

been modified by Dabernig et al. (2017) using a stan-

dardized version of the anomalies and accounting addi-

tionally for season-specific characteristics. In contrast, in

the study of Khedhaouiria et al. (2019), the regression

coefficients are fitted locally and then interpolated geo-

statistically. In their study, this two-step procedure of

interpolating the coefficients is compared with an inte-

grated area-covering postprocessing method relying on

Vector Generalized Additive Models (VGAM) with spatial

covariates. A comprehensive intercomparison of all the

proposed approaches for area-covering postprocessing is

beyond the scope of this study, instead we discuss avenues

for future research in Sect. 5.

In addition to the area-covering applicability, the sea-

sonal characteristics of the considered weather quantity

present a challenge for the EMOS models. In this context,

the temporal selection of the training data plays an

important role. The already mentioned studies of Scheuerer

and Büermann (2013) and Scheuerer and König (2014)

have been using a rolling training period of several tenths

of days. This means that the model has to be refitted every

day and that only part of the training data can be used for

the fitting. In the study of Dabernig et al. (2017) which is

also based on anomalies, a full seasonal climatology is

fitted and subtracted such that the daily fitting can be

avoided and the whole training data set can be used during

the regression. In the work of Khedhaouiria et al. (2019),

the post-processing parameters are also fitted for every day

individually. They account for seasonality by adding sine

and cosine functions of seasonal covariates. We have tested

similar approaches for our case study and used different

choices of training periods, additional regression covari-

ables and a weighting of the training data to account for the

seasonality. Our case study highlights that a key difficulty

of postprocessing ensemble precipitation forecasts lies in

summer and early autumn, when in many places postpro-

cessing leads to a degradation of the forecast quality, be it

using a local or global approach. The presented seasonal

approaches account for seasonal variations in the postpro-

cessing but do not enable its renouncement. For this reason,

we introduce a novel approach referred to as Pretest. The

later first evaluates whether a postprocessing at a given

station in a given month is expected to improve forecast

performance. A comparison of the performances shows

that for our case study the Pretest approach performs best

(see supplementary material for details).
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In summary, the aim of this paper is to provide cali-

brated and sharp precipitation predictions for the entire

area of Switzerland by postprocessing ensemble forecasts.

The postprocessing model should account for seasonal

specificities and while it is developed at observation loca-

tions, it should also be applicable at unobserved locations

and thereby allow to produce area-covering forecasts. The

remainder of this paper is organized as follows: Sect. 2

introduces the data, the notation and the verification tech-

niques. The elaboration of the postprocessing model is

presented in Sect. 3. In Sect. 4 we show the results of the

external model validation; a discussion of the presented

methodology follows in Sect. 5. Finally, in Sect. 6 the

presented approach and application results are summarised

in a conclusion.

2 Data, notation and verification

2.1 Data

This study focusses on postprocessing of ensemble pre-

cipitation predictions from the NWP system COSMO-E

(COnsortium of Small-scale MOdelling). At the time of

writing, this is the operational probabilistic high-resolution

NWP system of MeteoSwiss, the Swiss national weather

service (Meteo Schweiz 2018). COSMO-E is run at 2x2km

resolution for an area centered on the Alps extending from

northwest of Paris to the middle of the Adriatic. An

ensemble of 21 members is integrated twice daily at

00 : 00 and 12 : 00 UTC for five days (120 hours) into the

future. Boundary conditions for the COSMO-E forecasts

are derived from the operational global ensemble predic-

tion system of the European Centre for Medium-range

Weather forecasting (ECMWF).

We focus on daily precipitation amounts in Switzerland.

As suggested by Messner (2018), the ensemble predictions

and the observations of the daily precipitation amount are

square-root transformed before the postprocessing. We use

observed daily precipitation at MeteoSwiss weather sta-

tions to calibrate the ensemble forecasts. This paper relies

on two observation datasets, one for the elaboration of the

methodology and one for the subsequent assessment of the

models of choice. The datasets are presented in Table 1.

The first dataset (subsequently referred to as Dataset 1)

consists of ensemble forecasts and verifying observations

for the daily precipitation amount between January 2016

and July 2018 whereby a day starts and ends at 00 : 00

UTC. The data is available for 140 automatic weather

stations in Switzerland recording sub-daily precipitation.

The second dataset provides the observed daily precipita-

tion amounts of 327 additional stations (on top of the 140

ones of Dataset 1) that record only daily sums. For

historical reasons, these daily sums are aggregated from

06 : 00 UTC to 06 : 00 UTC of the following day. For the

purpose of uniformity, these daily limits are adopted for all

stations in Dataset 2. The larger number of stations from

Dataset 2 is only available from June 2016 to July 2019.

All stations from Dataset 1 are also part of Dataset 2. The

stations of both datasets are depicted in Fig. 2.

Since COSMO-E makes forecasts for five days into the

future, the different intervals between the forecast initial-

ization time and the time for which the forecast is valid

have to be taken into account. This is referred to as forecast

lead time. The possible lead times for a prediction initial-

ized at 00 : 00 UTC are 1, 2, 3, 4, 5 days and 1.5, 2.5, 3.5

and 4.5 days for one initialized at 12 : 00 UTC respec-

tively. Figure 3 illustrates the possible lead times for both

datasets. For Dataset 2 the forecast lead times increase

from 24 hours to 30 hours for the first day due to the

different time bounds of aggregation. Also, only four

complete forecasts can be derived from each COSMO-E

forecast with Dataset 2. We use Dataset 1 reduced to

forecast-observation pairs with lead time equals 3 for the

elaboration of the methodology. This selection procedure

depends strongly on the dataset bearing the danger of

overfitting. To assess this risk, the models of choice will be

evaluated with Dataset 2. This is done for all lead times

between 1 and 4.

In addition to the forecast-observation pairs and the

station location (latitude, longitude, and altitude), topo-

graphical indices derived from a digital elevation model

with 25m horizontal resolution are used. The topographical

indices are available on 7 grids with decreasing horizontal

resolution from 25m to 31km describing the topography

from the immediate neighbourhood (at 25m resolution) to

large-scale conditions (at 31km). The topographical indices

include the height above sea level (DEM), a variable

denoting if the site is rather in a sink or on a hill (TPI),

variables describing aspect and slope of the site and vari-

ables describing the derivative of the site in different

directions.

2.2 Notation

In this paper, the observed precipitation amount (at any

specified location and time) is denoted as y. y is seen as a

realization of a non-negative valued random variable Y.

The K ensemble members are summarized as

x ¼ ðx1; :::; xKÞ. Predictive distributions for Y are denoted

by F and stand either for cumulative distribution functions

(CDFs) or probability density functions (PDFs). In litera-

ture, a capital F is used to refer indistinguishably to the

probability measure or its associated CDF, a loose con-

vention that we follow for simplicity within this paper. A
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Table 1 The properties of Dataset 1 and Dataset 2

Dataset 1 Dataset 2

Purpose Elaboration methodology

(Sect. 3)

Assessment (Sect. 4)

Available months Jan 2016–Jul 2018 Jun 2016–Jul 2019

Aggregation period 00 : 00 UTC–00 : 00 UTC 06 : 00 UTC–06 : 00 UTC

Ensemble forecasts:

Spatial resolution 2 9 2 km 2 9 2 km

Temporal resolution Hourly accumulation Hourly accumulation

Observations:

Available stations 140 467 (140 stations of Dataset 1,

327 additional stations)

Temporal resolution Hourly accumulation Hourly accumulation for the 140

stations of Dataset 1

Daily accumulation for the 327

additional stations

Model training: Sect. 3.1 Sect. 3.2–3.4

Stations Global models: All stations

Dataset 1 (140)

Global models: Cross-validation, remove

prediction station (139 stations each)

Global models: Stations of

Datatset 1 (140)

Local model: Station of

interest (1 station each)

Local model: Station of interest (1 station

each)

Local model: Station of interest

(1 station each)

Months Cross-Validation, remove

prediction month

12 months prior to prediction month 12 months prior to prediction

month

(30 months each, using Jan

2016–Jul 2018)

(using Jan 2016–Jun 2018) (using Jun 2016–Apr 2019)

Model validation: Sect. 3.1 Sect. 3.2–3.4

Stations All stations Dataset 1 (140) All stations Dataset 1 (140) Additional stations of Dataset 2

(327)

Months Jan 2016–Jul 2018 Jan 2017–Jul 2018 Jun 2017–May 2019

Fig. 2 The 140 stations of Dataset 1 (points) and the additional 327

stations of Dataset 2 (triangles)

(a) Dataset 1

(b) Dataset 2

Fig. 3 The lead times of Dataset 1 and Dataset 2, which classify the

forecasts with respect to the time interval between the prediction time

(circle) and the predicted day
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forecast-observation pair written as ðxi; yiÞ refers to a raw

ensemble forecast and the corresponding observation. A

pair written as ðFi; yiÞ generally indicates here, on the other

hand, that the forecast is a postprocessed ensemble

prediction.

2.3 Verification

To assess a postprocessing model, the conformity of its

forecasts and the associated observations is rated. In the

case of probabilistic forecasts, a predictive distribution has

to be compared with single observation points. We follow

Gneiting et al. (2007) by aiming for a predictive distribu-

tion maximizing the sharpness subject to calibration.

Calibration refers to the statistical consistency between

forecasts and observations (Gneiting et al. 2007; Tho-

rarinsdottir and Schuhen 2018) and while several notions of

calibration do exist (see Gneiting et al. 2007 for a detailed

discussion with examples highlighting their differences),

the notion of probabilistic calibration can probably be

considered as the most common one. As recalled in

Gneiting et al. (2007), ‘‘probabilistic calibration is essen-

tially equivalent to the uniformity of the PIT values’’

(Probability Integral Transform; Dawid 1984). In practice,

the n available forecast-observation pairs ðFi; yiÞ with i ¼
1; 2; :::; n out of the test dataset are examined by having a

look at the histogram of the PIT values

F1ðy1Þ; :::;FnðynÞ: ð1Þ

While a flat histogram with equally populated bins is

necessary for a forecasting method to be ideal, ‘‘checks for

the uniformity of the PIT values have been supplemented

by tests for independence’’ (Gneiting et al. 2007, referring

to Frühwirth-Schnatter 1996 and Diebold et al. 1998). To

investigate the calibration of the raw ensemble, the discrete

equivalent of the PIT histogram called verification rank

histogram is used (Hamill and Colucci 1997). It is gener-

ated by ranking the values

fx1; x2; :::; xK ; yg ð2Þ

of every ensemble-observation pair. A histogram of the

ranks of the observations shows how they are distributed

within the ensemble. Again, a flat histogram indicates a

calibrated forecasting method.

Hamill (2001) pointed out that the flatness of the PIT

histogram is necessary but not sufficient for a forecast to be

ideal. Gneiting et al. (2007) took these results as a moti-

vation to aim for a predictor which maximizes the sharp-

ness while being calibrated. Sharpness relates to the

concentration of the predictive distribution; a more con-

centrated predictive distribution means a sharper forecast.

Being a characteristic of the forecast only and not

comparing it with the actual observations, sharpness is

typically considered in conjunction with calibration rather

than individually (Wilks 2011).

Accuracy The accuracy of a forecast is assessed with

summary measures addressing both calibration and sharp-

ness simultaneously. These functions called Scoring Rules

map each forecast-observation pair (F, y) to a numerical

penalty, where a smaller penalty indicates a better forecast

and vice versa (Thorarinsdottir and Schuhen 2018). Let

S : F � Y ! R [ f1g ð3Þ

be a Scoring Rule, where Y is a set with possible values of

the quantity to be predicted and F a convex class of

probability distributions on Y:The Scoring Rule is said to

be proper relative to the class F if

EY �GSðG; YÞ� EY �GSðF; YÞ; ð4Þ

where F;G 2 F are probability distributions and G in

particular is the true distribution of the random observation

Y. The subscript Y �G at the expected value denotes that

the expected value is computed under the assumption that

Y has distribution G (Gneiting et al. 2007).

We will focus on two popular Scoring Rules: The

Continuous Ranked Probability Score (CRPS; Matheson

and Winkler 1976) and the Brier Score (Brier 1950). The

CRPS is a generalization of the absolute error for proba-

bilistic forecasts. It can be applied to predictive distribu-

tions with finite mean and is defined as follows

(Thorarinsdottir and Schuhen 2018):

CRPSðF; yÞ ¼
Z 1

�1
FðxÞ � I½y;1ÞðxÞ
� �2

dx; ð5Þ

where IAðxÞ denotes the indicator function for a set A � R

which takes the value 1 if x 2 A and 0 otherwise. To

compare the performance of the postprocessing models

with the one of the raw ensemble, we need a version of the

CRPS for a predictive distribution Fens given by a finite

ensemble x1; :::; xK . We use the following definition by

Grimit et al. (2006):

CRPSðFens; yÞ ¼
1

K

XK
k¼1

jxk � yj

� 1

2K2

XK
k¼1

XK
l¼1

jxk � xlj:
ð6Þ

In practice, competing forecasting models are compared by

calculating the mean CRPS values of their predictions over

a test dataset. The preferred method is the one with the

smallest mean score. We use a Skill Score as in Wilks

(2011) to measure the improvement (or deterioration) in

accuracy achieved through the postprocessing of the raw

ensemble:
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SkillðF;Fens; yÞ ¼ 1� CRPSðF; yÞ
CRPSðFens; yÞ

; ð7Þ

where the SkillðF;Fens; yÞ characterizes the improvement in

forecast quality by postprocessing (CRPS(F, y)) relative to

the forecast quality of the raw ensemble (CRPSðFens; yÞ).
The definition of the CRPS given in Equation (5) cor-

responds to the integral over another Scoring Rule: The

Brier Score assesses the ability of the forecaster to predict

the probability that a given threshold u is exceeded. The

following definition of the Brier Score is taken from

Gneiting et al. (2007):

BSðF; yjuÞ ¼ ðFðuÞ � I½y;1ÞðuÞÞ2 ð8Þ

If the predictive distribution Fens is provided by a finite

ensemble x1; :::; xK , we use the following expression for the

Brier Score:

BSðFens; yjuÞ ¼
� 1

K

XK
k¼1

I½xk ;1ÞðuÞ
�
� I½y;1ÞðuÞ

( )2

: ð9Þ

3 Postprocessing model

The aim of this chapter is to find a suitable postprocessing

model by comparing the forecast quality of different

approaches on the basis of Dataset 1.

3.1 Censored logistic regression

In this section, we present a conventional ensemble post-

processing approach as a starting point for later extensions.

We compared several EMOS models and Bayesian Model

Averaging in a case study with Dataset 1 whereby a cen-

sored inhomogeneous Logistic regression (cNLR; Messner

et al. 2014) model turned out to be the most promising

approach. The performance of the models has been asses-

sed by cross-validation over the months of Dataset 1. Of

the 31 months available, the months are removed one at a

time from the training data set and the model is trained

with the remaining 30 months. Predictive performance is

then assessed based on comparison between the observa-

tions at each left-out month from the models trained on the

remaining months. The basic models are tested in two

versions: For the global version, the model is trained with

the data of all stations allowing the later application of the

model to all stations simultaneously. The local version

requires that models are trained individually for each sta-

tion with the past data pairs of this station. More details on

the alternative approaches to the cNLR model and the

results from the comparison of approaches can be found in

the supplementary material.

The cNLR approach is a distributional regression model:

We assume that the random variable Y describing the

observed precipitation amount follows a probability dis-

tribution whose moments depend on the ensemble forecast.

To choose a suitable distribution for Y, we take into

account that the amount of precipitation is a non-negative

quantity that takes any positive real value (if it rains) or the

value zero (if it does not rain). These properties are

accounted for by appealing to a zero censored distribution.

We assume that there is a latent random variable Y� sat-

isfying the following condition (Messner et al. 2016):

Y ¼
Y� for Y� [ 0;

0 for Y� � 0:

�
ð10Þ

In this way, the probability of the unobservable random

variable Y� being smaller or equal than zero is equal to the

probability of Y being exactly zero.

For the choice of the distribution of Y�, we have com-

pared different parametric distributions: a Logistic, Gaus-

sian, Student, Generalized Extreme Value and a Shifted

Gamma distribution. For the Logistic distribution, which

has achieved the best results, Y� �Lðm; sÞ with location m

and scale s has probability density function

f ðy;m; sÞ ¼
exp

�
� y�m

s

�

s
�
1þ exp

�
� y�m

s

��2
: ð11Þ

The expected value and the variance of Y� are given by:

EðY�Þ ¼ m; VarðY�Þ ¼ s2p2

3
: ð12Þ

The location m and the scale s of the distribution have to be

estimated with the ensemble members. We note that in the

COSMO-E ensemble, the first member x1 is obtained with

the best estimate of the initial conditions whereas the other

members are initialized with randomly perturbed initial

conditions. The first member is thus not exchangeable with

the other members and it is therefore reasonable to consider

this member separately. Members x2; x3; :::; x21 are

exchangeable, meaning that they have no distinct statistical

characteristics. Within the location estimation, they can

therefore be summarized by the ensemble mean without

losing information (Wilks 2018). Taking this into account,

we model the location m and the scale s of the censored

Logistic distribution as follows:

m ¼ b0 þ b1x1 þ b2x; ð13Þ

logðsÞ ¼ c0 þ c1SDðxÞ; ð14Þ

where x is the ensemble mean and SDðxÞ is the ensemble

standard deviation. The five regression coefficients are

summarized as w ¼ ðb0; b1; b2; c0, c1Þ.
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Optimization and implementation: Let ðFi; yiÞ be n

forecast-observation pairs from our training dataset

(i ¼ 1; 2; :::; n). The predictive distributions Fi are censored

Logistic with location and scale depending on the ensemble

forecasts xi’s and the coefficient vector w. We use Scoring

Rule estimation (Gneiting et al. 2005) for the fitting of w.
Therefore we select a suitable Scoring Rule and express the

mean score of the training data pairs as a function of w.
Then, w is chosen such that the training score is minimal.

In this study, the Scoring Rule of choice is the CRPS. For

the implementation of the cNLR model we use the

R-package crch by Messner et al. (2016).

3.2 Topographical extension

A case study with Dataset 1 showed that the performance

of the local cNLR model is better than the one of the global

cNLR model (see supplementary material). Similar results

have been presented for example by Thorarinsdottir and

Gneiting (2010) in a study about wind speed predictions.

The local model, however, cannot be used for area-cover-

ing postprocessing. To improve the performance of the

global model, it is enhanced with topographical covariates.

The idea is to fit the regression coefficients only with

training data from weather stations which are topographi-

cally similar to the prediction site.

We assume that the training dataset consists of n fore-

cast-observation pairs ðFi; yiÞ with i ¼ 1; 2; :::; n. The glo-

bal cNLR model estimates w by minimizing the mean

CRPS value of all these training data pairs. To select only

or favour the training pairs from similar locations, we use a

weighted version of the mean CRPS value1 as the cost

function c, which is minimized for the fitting of the coef-

ficient vector w:

cðw; sÞ ¼
Xn
i¼1

wiðsÞCRPSðFw
i ; yiÞ: ð16Þ

CRPSðFw
i ; yiÞ refers to the CRPS value of data pair ðFw

i ; yiÞ
where the predictive distribution Fw

i depends on the coef-

ficient vector w. We use ðFi; yiÞ as shorthand for ðFw
i ; yiÞ.

The weight wiðsÞ of training data pair ðFi; yiÞ depends on

the similarity between the location it originated and the

location s where we want to predict. We set wiðsÞ ¼ 1 if

training data pair i originated in one of the L closest (be it

with respect to the euclidean distance or to some other

dissimilarity measure) stations to the prediction site s. For

the training pairs from the remaining stations, we set

wiðsÞ ¼ 0. This ensures that the training dataset is restricted

to the data from the L stations which are most similar to the

prediction site s. Consequently, the coefficient vector w�ðsÞ
which minimizes cðw; sÞ depends on the location s.

Following Lerch and Baran (2018), the similarity

between locations is quantified with a distance function,

which, in our case, is intended to reflect the topography of

the respective locations. From the topographical dataset we

have about 30 variables in 8 resolutions at our disposal. To

get an insight regarding which ones to use, we examine the

topographical structure of the raw ensemble’s prediction

error. We compare the observed daily precipitation

amounts with the ensemble means and take the station-wise

averages of these differences. These preliminary analyses

were made with the first year (2016) of Dataset 1. The

mean prediction errors per station are depicted in Fig. 4.

The topographical structure of the ensemble prediction

(a) The station-wise means of the observations minus the ensemble
means dependent on the coordinates of the station

(b) The same means as in (a) dependent on the height above the sea
level (DEM) in resolution 31km, the solid line depicts the best linear
function through the points

Fig. 4 The station-wise means of the observations minus the

ensemble means for the data from 2016 of Dataset 1

1 Literature knows another kind of weighted CRPS value: Threshold

and quantile weighted versions of the CRPS are used when wishing to

emphasize certain parts of the range of the predicted variable. The

threshold weighted version of the CRPS is given by

CRPSuðF; yÞ ¼
Z 1

�1
FðxÞ � I½y;1	ðxÞ
� �2

uðxÞdx; ð15Þ

where u is a non-negative weight function on the real line (Gneiting

and Ranjan 2011, consult their paper for the analogous definition of

the quantile weighted version of the CRPS).
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error seems to be linked to the mountainous relief of

Switzerland.

In a first approach, we define the similarity of two

locations via the similarity in their distances to the Alps. It

turns out that such an approach depends on numerous

parameters (we refer the reader to the supplementary

material for more details). The proposed alternative is to

focus on the variable DEM describing the height above sea

level and use the values provided by a grid with low res-

olution (here 31 km horizontal grid spacing). This ensures,

that the small-scale fluctuations in the height are ignored

such that the large-scale relief is represented. Figure 4

shows the same station-wise means as Fig. 4, but this time

the values of each station are plotted versus their height

above the sea level (DEM) in resolution 31km. The best fit

with a polynomial is achieved by modelling the ensemble

mean bias as a linear function of the DEM variable; the

solid line is depicting this linear function.

The linear dependency appearing in Fig. 4 motivates the

following choice of a distance function to measure the

similarity between two locations. Let us define a function

DEM which maps a location s to its height above the sea

level in the resolution 31km:

DEM : D ! R; s 7!DEMðsÞ; ð17Þ

where D � R2 is a set with all the coordinate pairs lying in

Switzerland. The similarity of locations s1 and s2 is then

measured by the following distance:

dDEMðs1; s2Þ ¼ jDEMðs1Þ � DEMðs2Þj: ð18Þ

Based on this distance, we determine the L stations of the

training data set which are most similar to the prediction

location, i.e. the stations which have the smallest distances

dDEM . Let

D1
dDEM

ðsÞ�D2
dDEM

ðsÞ� :::�Dm
dDEM

ðsÞ ð19Þ

be the ordered distances dDEMðs; sjÞ between the m stations

from the training data and the prediction location s. Let si
be the location of the station where forecast-observation

pair ðFi; yiÞ originated. Then, the weights with respect to

the distance dDEM are defined as:

wL
i ðsÞ ¼

1 for dDEMðs; siÞ�DL
dDEM

ðsÞ;
0 otherwise:

�
ð20Þ

These weights ensure that the data pairs, which originated

at one of the L most similar stations, get weight 1 and the

remaining get weight 0.

Besides this approach, several other topographical

extensions of the cNLR model have been tested (with

Dataset 1): For their spatial modelling, Khedhaouiria et al.

(2019) propose to vary the postprocessing parameters by

expressing them as a function of spatial covariates. We

have applied a similar approach and integrated the topo-

graphical covariates in the location estimation of the cNLR

model. To reduce the number of predictor variables, the

topographical variables have been summarized by Princi-

pal Components. Additionally, we used the glinternet

algorithm of Lim and Hasti (2013) to uncover important

additive factors and interactions in the set of topographical

variables. A more basic weighted approach has been based

on Euclidean distances in the ambient (two and three

dimensional) space. All extensions of the cNLR model

have been compared with the local and the global fit of this

very model.

As the target of this work is to develop an area-covering

postprocessing method, the extended and the global models

are trained with data where the predicted month and the

predicted station are left out. This simulates the situation

where postprocessing must be done outside a weather

station, i.e. without past local measurements. The training

period is set to the last year (12 months) before the pre-

diction month. Consequently, forecasting performance can

only be assessed with (test) data from 2017 and 2018. The

case study with Dataset 1 showed that all other topo-

graphical approaches are less successful than the DEM

approach, more details and the results can be found in the

supplementary material (in the section about extension

approaches).

3.3 Seasonal extension

In addition to our efforts to quantify similarities between

locations, we also aim to investigate ways of further

improving postprocessing outside of measurement net-

works by accounting for seasonal specificities. To examine

the seasonal behavior of the local and the global cNLR

model, we focus on their monthly mean CRPS values and

Fig. 5 The monthly skill of the local and the global cNLR model

which compares the monthly mean CRPS value of the model with the

one of the raw ensemble, the values describe the reduction or increase

of the mean CRPS value in percent
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compare them with the ones of the raw ensemble. Figure 5

shows the monthly skill of the global and the local cNLR

model. We use the mean over all the stations from Data-

set 1 and depict the months between January 2017 and July

2018 such that we have 12 months of training data in each

case. A positive skill of 10% means for example that the

mean CRPS value of the raw ensemble is reduced by 10%

through postprocessing, a negative skill indicates analo-

gously that the mean CRPS value is higher after the post-

processing. The global model has negative skill in February

and March 2017 and between June and October 2017. The

values are especially low in July and August 2017. The

local model has a positive skill in most months, the post-

processing with this model decreases the forecasting per-

formance only between June and September 2017. We use

these results as a first indication that the postprocessing of

ensemble precipitation forecasts is particularly challenging

in summer and early autumn.

Next, we are interested in whether there are regional

differences in the model performance within a month. The

global cLNR model is used as we will extend this model

afterwards. We plot the maps with the station-wise means

of the skill exemplary for the month with the best skill

(February 2018) and the one with the worst (July 2017).

The maps depicted in Fig. 6 show that the skill of the

global cNLR model varies between different weather sta-

tions. Again, the structure seems to be related to the

mountainous relief of Switzerland. We note that for both

months the skill in the Alpine region is distinctly higher

than in the flat regions.

We use this knowledge to develop an approach which

tries firstly to clarify whether the postprocessing in a given

month at a given prediction location is worthwhile. The

idea is to ‘‘pretest’’ the model with data of similar stations

and from similar months by comparing its performance

with that of the raw ensemble. For this purpose, the year of

training data is first reduced to the data pairs from topo-

graphically similar stations, whereby the similarity is

measured with the distance dDEM defined in Eq. (18).

Afterwards, this training dataset is split into two parts:

Traintrain and Traintest. The model is adapted a first time

with the dataset Traintrain. Afterwards, the performance of

this model is assessed with the second part (Traintest) by

comparing the mean CRPS of the model with the mean

CRPS of the raw ensemble.

The months of the Traintest dataset are selected such

that they are seasonally similar to the prediction month. To

split the training dataset, three approaches are compared:

– Pretest 1: Pretest with the same month as the prediction

month from the year before (Example: January 2017 for

January 2018)

– Pretest 2: Pretest with the month before the prediction

month (Example: December 2017 for January 2018)

– Pretest 3: Pretest with both of these months (Example:

January 2017 and December 2017 for January 2018).

Let us define the set of indices of training data pairs out of

Traintest:

hðiÞ ¼ fi 2 f1; 2; :::; ng : ðxi; yiÞ is in Traintestg; ð21Þ

with cardinality H. Let further ðxi; yiÞ be a forecast-

observation pair where the forecast is the raw ensemble.

ðFi; yiÞ is a pair with a postprocessed forecast. If

1

H

X
i2hðiÞ

CRPSðxi; yiÞ�
1

H

X
i2hðiÞ

CRPSðFi; yiÞ; ð22Þ

then the pretesting algorithm decides that the raw ensemble

is not postprocessed in the given month at the given

location. On the contrary if

1

H

X
i2hðiÞ

CRPSðxi; yiÞ[
1

H

X
i2hðiÞ

CRPSðFi; yiÞ; ð23Þ

then the pretesting algorithm decides that the raw ensemble

is postprocessed in the given month at the given location,

the fit is done a second time with the whole year of training

data.

The Pretest approach has been compared with several

other seasonal approaches: In a basic approach, we reduce

the training period to months from the same season as the

Fig. 6 The station-wise skill of the global cNLR model for July 2017

and February 2018 which compares the mean CRPS value of the

model with the one of the raw ensemble, the values describe the

change in percent
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prediction month. Another approach uses the sine-trans-

formed prediction month as an additional predictor variable

to model the yearly periodicity, an approach comparable to

the one of Khedhaouiria et al. (2019). The third approach

reduces the training data to pairs which have a similar

prediction situation (quantified with the ensemble mean

and the ensemble standard deviation). The methodology for

the comparison has been the same as for the topographical

extensions introduced in Sect. 3.2. The Pretest approach

turns out to be the most promising method for our case

study with Dataset 1, more details and the comparison

results can be found in the supplementary material.

3.4 Model adjustment

For the subsequent evaluation of postprocessing models

with Dataset 2, we select a few postprocessing approaches

to document the impact of increasing complexity on fore-

cast quality. We will use the raw ensemble and the local

such as the global version of the cNLR model as baselines.

Further on, we will evaluate the cNLR model extended by

the DEM similarity (cNLR DEM). Finally, we will test this

same model extended a second time with the pretest

approach (cNLR DEM?PT). For the last two models, we

have to fix the amount L of similar stations we use for the

topographical extension. For the last model we need to fix

additionally the pretesting split. To determine the amount

of similar stations in use, the numbers which are multiples

of ten between 10 and 80 have been tested (compare

Fig. 7). We use the data from August 2017 to July 2018

(seasonally balanced) from Dataset 1 and choose the

number resulting in the lowest mean CRPS. For the cNLR

DEM model (no Pretest) we determine L ¼ 40. For the

cNLR DEM?PT model, we combine the different

pretesting splits with the same numbers for L. The cNLR

DEM?PT model with the lowest mean CRPS value uses

Pretest 3 and L ¼ 40.

4 External validation

This chapter presents the evaluation of the different post-

processing models. As already announced, the independent

Dataset 2 is used to take into account the risk of overfitting

during the elaboration of the methodology.

4.1 Methodology

We are interested in the area-covering performance of the

models. Therefore, we are particularly interested in the

performance at locations which cannot be used in model

training (as no past data is available). This is the reason

why we assess the models only with the 327 additional

stations of the second dataset. None of these stations have

been used during the model elaboration in Sect. 3. When

determining L in chapter 3.4 we used a training dataset

with 139 stations (139 instead of 140 as we trained without

the past data from the prediction station). For this reason

we carry on with using only the 140 stations of the first

dataset to train the models. This rather conservative

approach could be opposed by a Cross Validation over all

467 stations, for which, however, another choice of

L would probably be ideal.

The local version of the cNLR model is not able to

perform area-covering postprocessing and needs the addi-

tional stations in the training from Dataset 2. Despite this,

it is fitted and assessed as a benchmark here. We train the

models for each of the 327 stations and each month

between June 2017 and May 2019. This ensures that we

have one year of training data for each month and that we

have seasonally balanced results. An individual fitting per

station is necessary as the selection of the most similar

stations used in the DEM approaches depends on the sta-

tion topography. The model must also be adapted monthly,

as the pretesting procedure (and the training period) depend

on the prediction month.

During the postprocessing, we used consistently the

square root of the precipitation amount. The CRPS value,

which is in the same unit as the observation, refers to this

transformation as well. To get an idea of the actual order of

magnitude, the values are converted into the original size,

in which the precipitation amount is measured in mm. As a

first step, 21 forecasts are drawn from the fitted censored

Logistic model. Afterwards, these values and the corre-

sponding observations are squared and the mean CRPS is

calculated as for the raw ensemble. The Brier Score, which

assesses the ability of the forecaster to predict if a given

precipitation accumulation amount is exceeded, is also

evaluated for the squared sample of the predictive distri-

bution. The thresholds used within the Brier Score focus onFig. 7 The mean CRPS values for the cNLR DEM (? Pretest) models

comparing different numbers for L and the different pretesting splits
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three precipitation accumulations: No rain (\ 0.1 mm/d) ,

moderate rain ([ 5 mm/d) and heavy rain ([ 20 mm/d).

4.2 Results

First of all, let us give an overview of the different models.

Figure 8 depicts the mean CRPS values for the different

postprocessing approaches and lead times. We refer to

Chapter 3.4 for a recap of the model adjustments con-

cerning the DEM and DEM ? Pretest model. For lead time

1, the global cNLR model is able to reduce the mean CRPS

value by 2:3%. A further improvement is achieved by the

local and the DEM model, which show equivalent perfor-

mances and reduce the mean CRPS value by 4:5% com-

pared to the raw ensemble. Even slightly better results are

delivered by the DEM ? Pretest model which reduces the

mean CRPS value by 4:8%. The skill of the global model

decreases with increasing lead time. While the skill is still

positive for lead times 1, 1.5 and 2, the model performs

roughly equally as the raw ensemble for lead time 2.5.

From lead time 3, the mean CRPS value of the global

model is even higher than the one of the raw ensemble. The

local and the DEM model perform about the same for lead

times between 1 and 2.5, for lead times above 3 the DEM

model performs slightly better. The DEM?Pretest model

performs best for all lead times. It reduces the mean CRPS

value between 4:8% for lead time 1 and 2:0% for lead

time 4. It is noticeable that the DEM ? Pretest model

achieves a near constant improvement in the mean CRPS

of approx. 0.07 for all lead times. Relatively—i.e. as a Skill

Score—this corresponds to less and less of the total fore-

cast error. We note additionally, that the improvement

which is achieved through the extension of the DEM model

with the Pretest depends on the lead time. While the Pretest

reduces the mean CRPS of the DEM model only by 0:4%

for lead time 1, the obtained reduction corresponds to a

proportion of 1:7% for lead time 4.

Figure 8 summarizes the average performance of the

models over all months. To assess the seasonal perfor-

mance of the different approaches, the monthly means of

the Skill Score are plotted in Fig. 9. We use the raw

ensemble forecast as reference and depict the results for

lead time 1 and lead time 4. For lead time 1, we note that

the DEM ? Pretest model is the only one with non-nega-

tive skill in almst all months, implying that this model only

rarely degrades the quality of the ensemble prediction.

While the model delivers in summer and early autumn

equivalent results as the raw ensemble, the monthly mean

CRPS value can be reduced by up to 20% in winter months.

The same improvement is achieved with the models

without Pretest, but they have a slightly worse overall

performance as they degrade forecast performance during

summer and autumn. For longer lead times (illustrated

exemplarily for lead time 4, right panel of Fig. 9), post-

processing is less successful in improving forecast quality

with forecasts in summer often deteriorating for all but the

DEM ? Pretest method. With pretesting the seasonal cycle

in quality improvements is much less apparent for lead

time 4 than for lead time 1. This is likely due to the

combination of calibration ? pretesting which is performed

at individual stations, which guarantees (in expectation)

that the quality of postprocessed forecasts is at least as

good as that of the direct model output. If, on the other

hand, there is considerable miscalibration of forecasts even

if only at a few stations, this can be exploited. We also

detect noticeable differences in the improvements which

are achieved by extending the DEM model with the Pretest

between lead times 1 and 4: The improvement for lead time

4 is higher in most months, especially for June to August

2017 and August to October 2018.

We have also examined the spatial skill of the models.

Therefore, we have compared the station-wise mean CRPS

of the models with the one of the raw ensemble. The skill,

which is very similar at neighbouring stations, increases in

the Alps and is marginal or non-existent in the Swiss pla-

teau. The resulting spatial distribution of the skill looks

similar as the mean bias depicted on Fig. 4, the maps are

therefore not shown here.

As proposed by Thorarinsdottir and Schuhen (2018), we

use more than one Scoring Rule for the assessment of our

postprocessing methods and apply the Brier Score to

Fig. 8 Mean CRPS values for the raw ensemble and the different

postprocessing models dependent on the lead time, the assessment is

based on the data from June 2017 to May 2019 of Dataset 2
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evaluate forecast quality of specific events. For precipita-

tion forecasts, the ability to predict whether it will rain or

not is of particular interest, this is captured by the Brier

score for daily rainfall\ 0.1 mm (precision of observation

measurements). We extend the assessment by also con-

sidering forecasts of moderate and heavy precipitation

characterized by daily rainfall above 5 mm/d and 20 mm/d.

Figure 10 illustrates the skill of the different postprocess-

ing models by comparing the mean Brier Scores of the

different models, thresholds and lead times with the ones of

the raw ensemble forecasts. The assessment with the Brier

Score confirms that the improvement achieved with the

DEM ? Pretest model is higher than the one with the other

models. Only for lead times 1 and 1.5 and moderate or

heavy rainfall, the local model outperforms the DEM ?

Pretest approach. Overall, the skill decreases with

increasing threshold and increasing lead time. This is to be

expected given that the postprocessing focuses on

improving forecasts on average and exceedances of high

thresholds are relatively rare (4% of the observed daily

rainfall falls in the heavy rainfall category). Also, we use

square-root transformed precipitation in the optimization

which further reduces the importance of heavy precipita-

tion events in the training set. The plot confirms further that

the global model performs worst, for moderate or heavy

rainfall and a lead time above 1.5 respectively 2.5 even

worse than the raw ensemble. As in measures of the CRPS,

the local and the DEM model score comparable for all

thresholds and lead times between 2.5 and 4. For smaller

lead times, the local model performs better for all

thresholds.

Raw ensemble forecasts are often underdispersed and

have a wet bias (Gneiting et al. 2005). This holds for the

ensemble precipitation forecasts used in this study as well.

Fig. 9 Reduction and increase (in %) of the monthly mean CRPS value of the raw ensemble by the different postprocessing approaches, the

assessment is done with the data from June 2017 to May 2019 of Dataset 2

Fig. 10 Skill of the different postprocessing approaches and lead

times, depicted through the reduction and increase (in %) of the mean

Brier Score of the raw ensemble for the thresholds of 0.1mm/d, 5mm/

d and 20mm/d. The data from June 2017 to May 2019 in use is taken

from Dataset 2
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Figure 11 (right) shows the verification rank histograms for

the raw ensemble. Again, we use the data from June 2017

to May 2019 of Dataset 2 for this assessment and depict the

results for lead time 1. We note that the histogram for the

raw ensemble has higher bins at the left and right marginal

ranks and higher bins for the ranks which lie in the first half

of 1, 2, ...,21. Therefore, it indicates that the ensemble

forecasts are underdispersed and tend to have a wet bias.

This raises the question whether the results of the DEM ?

Pretest model are still calibrated.

To be able to evaluate the calibration of the full pre-

dictive distribution of the postprocessing models, we do not

use the reverse transformation of the square root for this

assessment. Additionally, we have to use a randomized

version of the PIT as our predictive distribution has a

discrete component (Thorarinsdottir and Schuhen 2018):

lim
y"Y

FðyÞ þ V
�
FðYÞ � lim

y"Y
FðyÞ

�
; ð24Þ

where V �U ½0; 1	ð Þ and y " Y means that y approaches

Y from below.

Figure 11 shows the PIT histograms for the DEM and

the DEM?Pretest model. As expected, the PIT histogram

of the Pretest model lies between the one of the raw

ensemble and the one of the DEM model without Pretest.

The first and the last bins, which are higher than the other

bins, indicate that the Pretest model is underdispersed.

However, it seems much less gravely than for the raw

ensemble. Since the remaining tested seasonal approaches

produce worse results, this slight miscalibration of the

DEM ? Pretest model is a disadvantage we have to accept

for the moment.

Finally, we want to get an idea of the acceptance

behaviour of the DEM ? Pretest model. Figure 12 shows

when and where the DEM ? Pretest model does (light

point) and does not (dark point) postprocess the raw

ensemble. Again, we focus on the results of lead time 1.

The plots show that the months where the model uses the

raw ensemble lie mostly in summer and autumn. The

postprocessing during these months is accepted at stations

which lie in bands of different widths parallel to the Alps.

The model postprocesses the raw ensemble at all stations

during almost all months in between December and May,

the only exception are March and April 2019. Therefore, it

appears that the Pretest approach can address the seasonal

difficulties of postprocessing ensemble precipitation

forecasts.

5 Discussion

To enable area-covering postprocessing, we use a model

that weights the training data depending on the similarity

between its location of origin and the prediction location.

This basic principle could be applied to any postprocessing

problem where the prediction and the observation locations

do not match. However, some of the choices made in this

case study are quite specific and data dependent, in par-

ticular the presented procedure used to determine the

number of most similar stations with which the models are

trained. The models use a similarity based weighted CRPS

estimator to fit the regression coefficients. The clarification

of the asymptotic behaviour of such an estimator could

help determining the ideal number of stations to train with

and making the elaboration of the methodology less sen-

sitive to the data in use.

Fig. 11 The PIT histograms for the DEM and DEM ? Pretest models

and the verification rank histogram for the raw ensemble forecasts

(the lead time in use is 1)

Fig. 12 Maps depicting the acceptance behaviour of the DEM?-

Pretest model. The model evaluates for each of the 327 stations and

24 months of the test dataset if a postprocessing the raw ensemble

seems worthwhile, the maps show when and where the model does

(light point) and does not (dark point) postprocess the raw ensemble

(the lead time in use is 1)
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The Pretest, which decides whether a postprocessing is

worthwhile in a given setting has the disadvantage that the

calibration of the resulting forecast is not guaranteed. Yet,

although numerous alternative seasonal approaches have

been tested, the CRPS of the Pretest model could not be

levelled. In addition, making a Pretest means that the

model must be adjusted twice, which is computationally

expensive. But the strength of this approach is that it is

fairly universally applicable also to problems outside

meteorology—given that one is willing to accept some loss

in model calibration for the obtained gain in accuracy.

There are various directions in which the model could

be further expanded: More meteorological information

could be added such as covariates describing the large-

scale flow. Further meteorological knowledge could also be

incorporated by supplementing the DEM-distance with a

further distinction between north and south of the Alps, for

instance. The scale estimation of the final model is based

only on the standard deviation of the ensemble. This esti-

mation could be further extended with additional predictors

to ensure that the ensemble dispersion is adjusted with

respect to the prediction setting as well (as done for the

location estimation in the alternative extension

approaches).

The evaluation with the Brier Score displays that for the

case of no rain, all postprocessing models perform better

than the raw ensemble. For the case of moderate rain, the

global model is superseded by far by the models integrating

a local aspect (local, DEM and DEM ? Pretest model). The

differences between the local and global models are more

moderate for the case of heavy rain, but while all local

approaches exceed the performance of the raw ensemble,

this is not the case with the global model. Investigating

further the behaviour of different approaches on the range /

threshold of interest and eventually developing a postpro-

cessing method with a focus on rare events would open

exciting avenues of research. The work of Friederichs et al.

(2018) offers an introduction to ensemble postprocessing of

extreme weather events, an exemplary application for

extreme rainfall intensity can be found in Shin et al.

(2019). To avoid local fluctuations and reflect the spatial

dependencies between neighbouring locations, Shin et al.

(2019) use a spatial extreme model, namely a max-

stable process. The indicated potential to link postpro-

cessing of extreme weather events to area-covering

approaches is left for future research.

6 Conclusion

The aim of this case study was to produce improved

probabilistic precipitation forecasts at any place in

Switzerland by postprocessing COSMO-E ensemble

forecasts enhanced with topographical and seasonal infor-

mation. During the elaboration of the methodology, a

censored nonhomogeneous Logistic regression model has

been extended step by step; the final model combines two

approaches.

A semi-local approach is used for which only data

within a neighbourhood around the prediction location are

used to establish the postprocessing model. The training

data used to fit the regression coefficients is weighted with

respect to the similarity between its location of origin and

the prediction location. This similarity is determined based

on the smoothed elevation, i.e. the topographical variable

DEM in a resolution of 31km. Using this approach, the

weighting of the training data can be adapted for any

prediction location and the model can be applied to the

entire area of Switzerland thus fullfilling the first require-

ment of this study.

In addition, a seasonal Pretest ensures that the model

only postprocesses the raw ensemble forecast when a gain

is expected—as assessed in the training sample. This

extension addresses the second objective of this study and

ensures that the postprocessing model accounts for sea-

sonal specificities such as enhanced frequency of convec-

tive precipitation in the summer months. As such, the

Pretest represents a flexible approach to successively

integrate data-driven methods when a benchmark—here

direct output from NWP—is available. This situation is

expected to frequently arise in applications where training

data is limited.

The resulting final model is able to outperform a local

version of the cNLR model and reduces the mean CRPS of

the raw ensemble (depending on the lead time) by up to

4:8%. Forecast quality might be further improved by add-

ing meteorological and additional topographic predictors to

more specifically address spatio-temporal variability of

precipitation formation.
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