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Abstract
Learning Generalizable Visual Patterns Without Human Supervision

Simon JENNI, Ph.D. in Computer Science

Universität Bern, 2021

Owing to the existence of large labeled datasets, Deep Convolutional Neural
Networks have ushered in a renaissance in computer vision. However, almost all
of the visual data we generate daily - several human lives worth of it - remains unla-
beled and thus out of reach of today’s dominant supervised learning paradigm. This
thesis focuses on techniques that steer deep models towards learning generalizable
visual patterns without human supervision. Our primary tool in this endeavor is
the design of Self-Supervised Learning tasks, i.e., pretext-tasks for which labels do
not involve human labor. Besides enabling the learning from large amounts of un-
labeled data, we demonstrate how self-supervision can capture relevant patterns
that supervised learning largely misses. For example, we design learning tasks that
learn deep representations capturing shape from images, motion from video, and 3D
pose features from multi-view data. Notably, these tasks’ design follows a common
principle: The recognition of data transformations. The strong performance of the
learned representations on downstream vision tasks such as classification, segmen-
tation, action recognition, or pose estimation validate this pretext-task design.

This thesis also explores the use of Generative Adversarial Networks (GANs)
for unsupervised representation learning. Besides leveraging generative adversarial
learning to define image transformation for self-supervised learning tasks, we also
address training instabilities of GANs through the use of noise.

While unsupervised techniques can significantly reduce the burden of supervi-
sion, in the end, we still rely on some annotated examples to fine-tune learned repre-
sentations towards a target task. To improve the learning from scarce or noisy labels,
we describe a supervised learning algorithm with improved generalization in these
challenging settings.

https://www.unibe.ch
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Chapter 1

Introduction

“They think that intelligence is about noticing things are relevant (detecting
patterns); in a complex world, intelligence consists in ignoring things that are
irrelevant (avoiding false patterns)"

— Nassim Nicholas Taleb

Applications of computer vision can increasingly be found in our everyday lives.
Phones unlock automatically by recognizing our faces. We can search our photo li-
braries for pictures of our pets without ever labeling them as such. The mail deliv-
ered to our doorstep relies on an algorithm to decipher handwritten addresses. Cars
now observe their surroundings and brake automatically in case we run the risk of
hitting an obstacle. Algorithms might analyze the X-ray images from a recent visit
to the doctor, possibly finding patterns a human expert would miss.

Vision systems need to recognize patterns in visual data accurately to solve any
of those tasks. Nowadays, computer vision relies predominantly on deep Convolu-
tional Neural Networks (CNNs), a model loosely inspired by the visual system in the
brain, to learn visual representations. Through the hierarchical composition of many
simple building blocks (artificial neurons), CNNs become capable of pattern recog-
nition at a level even surpassing humans in some cases. However, with the ability to
find patterns comes the danger of discovering false patterns. This is especially true
for supervised learning - today’s dominant paradigm - where correlations between
high-dimensional inputs and sparse targets can be plentiful. As a result, current
methods rely on large quantities of human-annotated examples and regularization
to prevent overfitting and to generalize well to unseen examples. Indeed, much of
the recent success of computer vision can be attributed to the availability of large-
scale human-labeled datasets and effective training and regularization strategies.

Collecting tens of thousands of human-annotated examples for any given vision
application is not feasible. How come deep learning has seen widespread adoption
nonetheless? A key feature of deep learning is its ability to transfer knowledge ac-
quired through learning some task to a novel task of interest. This so-called "transfer
learning" can significantly reduce the demand for human supervision on a down-
stream vision task (e.g., object detection or segmentation). Therefore, it is the current
best practice to fine-tune the parameters of a network that was pre-trained on large-
scale object recognition datasets for most vision problems. Transfer learning works
reasonably well when the learning tasks and data distributions are aligned between
pre-training and transfer learning. However, can supervised learning actually make
use of web-scale visual data for learning? What if the relevance of visual patterns
differs significantly between pre-training and transfer tasks?
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FIGURE 1.1: Problems with learning from sparse human labels. We
show training examples from ImageNet (a) and HMDB51 (b) along
with their class labels above. A single label does not capture the com-
plexities of images and videos well. This can lead to ambiguities (a)

and a failure to capture relevant patterns, e.g., motion in (b).

1.1 Limitations of Supervised Representation Learning

Besides its success, supervised representation learning has some severe limitations.
Gathering human annotations does not scale to the massive amounts of visual data
we produce every day. For example, it is estimated that around 500 hours of video
are uploaded to YouTube every minute.1 However, even sparse human annotations
become prohibitive on billions of images (both in terms of time spent and cost).
Therefore, a finite number of labeled training examples might not represent all the
relevant discriminative visual patterns. This is especially true for rarely occurring
instances, i.e., examples in the long tail of the data distribution. Furthermore, for
data and tasks that differ significantly from pre-training, knowledge transfer is very
limited. This is the case for many vision applications of interest, e.g., in medicine,
multi-camera systems in autonomous driving, or satellite imagery. Given how data-
hungry deep neural networks are, are medical doctors destined to labeling millions
of X-ray images for machines to learn from?

Another less obvious issue is the lack of control over what visual patterns su-
pervised networks capture when predicting a single label from its input (see Figure
1.1). To what degree, for example, does object classification rely on texture, shape,
or scene composition? How vital are motion patterns to action classification? All
these features are relevant, but evidence suggests that texture dominates in image
classification [1] and appearance likewise in action recognition [2]. However, an
over-reliance on a single feature can lead to poor generalization. What if, in down-
stream tasks, a network should recognize different poses of objects with identical
appearance? What if a network that relies on correlations between foreground and
background textures observes an object in a novel environment at test time? Other
visual patterns such as shape, motion, and scene composition could disambiguate
these cases but might not be captured well through supervised learning.

As a result of the shortcomings, the knowledge captured through supervised
classification tasks might be too shallow for the increasingly more complex vision
tasks we aim to tackle. Indeed, humans do not appear to rely predominantly on
supervised learning for visual learning, so why should we expect supervised classi-
fication tasks to produce human-level visual understanding.

1Source: https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-
every-minute/
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FIGURE 1.2: Recurring patterns in natural visual data. Our visual
world is full of recurring patterns, symmetries, and structure. Simi-
lar texture patterns can be found inside, and across images (a), shape
and pose patterns are shared among different classes (b), and pat-
terns of scene composition appear with regularity (c). Through self-
supervised learning, we aim to exploit and learn from this natural

structure.

1.2 Self-Supervision: Learning Without Human Annotations

Self-Supervised Learning (SSL) presents a viable alternative to supervised represen-
tation learning. In SSL, learning tasks are designed for which supervision can be
generated automatically without human labor. Provided these tasks can learn rele-
vant visual patterns, SSL can leverage arbitrarily large unlabeled datasets, solving
supervised learning’s scaling issues. Can we also hope to gain more control over
what features are learned through SSL? If supervision is not provided through hu-
man annotators, what sources of learning signals are there?

Our visual world is very structured (see Figure 1.2); texture patterns reappear in
the same image and among images of similar categories. Likewise, we can observe
similar shape, motion, and scene composition patterns regularly all around us. This
natural structure can be exploited through SSL by designing learning tasks for which
the solution requires an understanding of these recurring patterns. For example,
a scene’s spatial structure could be captured by learning to arrange several image
patches correctly [3], [4]. Provided the right task design, SSL can capture any regular
visual pattern, even those not well captured through supervised learning.

How can we then design SSL tasks to learn specific task-relevant visual features
(e.g., motion and pose features for action recognition)? At present, there is a limited
understanding of what characterizes effective pretext task designs and how the task
design influences the learned representations’ properties. It appears to be more of
an art, with task designs based on intuitions and trial and error. This lack of de-
sign principles makes it difficult to predict if an SSL task will produce features that
perform well on a given data domain and vision problem.
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1.3 Learning Generalizable Visual Patterns

In the context of supervised learning, generalization refers to the ability of a learn-
ing algorithm to learn task-relevant patterns that perform well also on unseen data
while ignoring patterns that do not. Since increasing the amount of training data
is often not feasible, this is primarily achieved through regularization, i.e., by lim-
iting the learning algorithms’ capacity. The design of CNNs and the methodology
of transfer learning can be seen as a form of regularization: they introduce induc-
tive biases in the network structure and network weights, respectively. While deep
CNNs generalize surprisingly well given their high capacity, overfitting remains an
issue, especially in challenging situations where examples are scarce, or the labels
are noisy.

While it is well understood what it means for a representation to generalize in the
supervised setting, its corresponding meaning in the unsupervised learning setting
is less clear. Unsupervised methods - by definition - can use any available amount of
data, making overfitting to the training data a non-issue. Nonetheless, the learned
features can still generalize poorly to vision tasks other than the pre-training task.
Rather than overfitting to data, we thus run the risk of overfitting to learning tasks in
SSL. Special care must be taken in the task design to avoid trivial solutions, so-called
"shortcuts”, where networks exploit unintended patterns in the data. These are often
low-level, non-semantic features that networks converge to easily but are not useful
in general. Therefore, the challenge is to design learning tasks that push models
towards learning patterns relevant to a range of downstream vision problems.

Aside from SSL, generative adversarial learning has become a popular ap-
proach for unsupervised representation learning. Generative Adversarial Networks
(GANs) are capable of photo-realistic image synthesis and found applications in
various vision problems, including SSL tasks. The training of GANs is difficult,
however, as it is susceptible to poor hyper-parameter choices. As a result, GANs of-
ten cannot generalize to the complete data distribution, i.e., they cannot cover all the
modes of the data distribution. The training instability stems from non-overlapping
supports of the data and generator distributions. This, in turn, results in overconfi-
dent discriminators and either vanishing or exploding loss gradients, depending on
the GAN objective.

1.4 Thesis Contributions

In this thesis, we study techniques to steer deep models towards learning general-
izable visual data patterns, even without human supervision. The primary focus
of this study lies in the design of self-supervised learning tasks. Besides enabling
learning on vast amounts of unlabeled data, we demonstrate how SSL can steer deep
models towards learning specific task-relevant patterns. For example, we develop
SSL tasks that produce representations with induced biases towards shape, motion,
and 3D pose features. Importantly, we base the design of these pretext tasks on a
shared pattern: The recognition of data transformations. This design provides con-
trol over what patterns should be learned by manipulating selected visual data pat-
terns through chosen transformations. We demonstrate this methodology on natural
images, videos, and multiview data. The learned representations are evaluated on
various vision tasks, including classification, detection, segmentation, action recog-
nition, and 3D human pose estimation.
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The thesis further addresses issues of generalization in supervised learning and
the training of GANs. Generative adversarial training is an integral part of the pro-
posed SSL tasks on images, where we use it to define image transformations. We
address the training instability and improve the generalization of GANs through
the use of noise. To address supervised learning issues in cases where training data
is scarce, or labels are noisy, we describe a training algorithm that encapsulates the
principle of cross-validation in every parameter update.

1.4.1 Chapter Outline

Chapter 2: Background. We provide a general overview of prior works in unsu-
pervised visual representation learning, the central theme of this thesis. Chapter
2 discusses autoencoders, GANs, SSL via proxy tasks on images and videos, and
recent advances based on the contrastive learning framework. More discussions of
prior works specific to a given chapter are given in separate sections of the remain-
ing chapters.

Chapter 3: Learning Visual Patterns by Damaging Them. In classic SSL tasks,
some part of the data serves as a self-supervision signal. Some, for example, predict
the spatial arrangement from image tiles or color channels from gray-scale images.
In Chapter 3 we introduce a novel approach where we purposefully introduce
non-trivial defects in images and train a neural network to recognize and localize
them. Image defects are produced by corrupting an autoencoder’s latent codes and
then locally repairing them via adversarial training. The resulting images exhibit
semantic defects such as missing object parts. By recognizing such defects, CNNs
learn a representation that captures object semantics.

Chapter 4: Learning by Recognizing Image Transformations. Why do tasks that
recognize image rotations or corruptions learn good representations? We investigate
this question in Chapter 4. We observe that recognizing such data transformations
is often not possible from local image statistics (e.g., textures) and requires global
statistics (e.g., shape). Following this insight, we design image transformations that
preserve local but distinctly alter global image statistics. Our experiments suggest
that CNNs trained to recognize such transformations capture shape better than su-
pervised networks.

Chapter 5: Learning Motion via Temporal Transformations. Supervised learning
on video via action recognition is biased towards appearance because actions are
often recognizable from a single frame. As a result, motion is not well represented,
although it is essential to video understanding. In Chapter 5, we propose as SSL task
the recognition of alterations of the natural frame order and changes of the playback
speed. Since frame appearance is preserved and only motion is altered, recogniz-
ing such temporal transformations induces a bias towards motion in the learned
representation. Representations with such a motion bias generalize well to action
recognition and temporal reasoning tasks (e.g., the ordering or the synchronization
of frame sequences).

Chapter 6: Self-Supervised Learning of 3D Pose Features. SSL is most useful in
situations where annotations are costly. One such example is 3D human pose es-
timation, where motion capture systems provide ground-truth. In Chapter 6 we
describe an SSL task that exploits multi-view synchronized video data to learn 3D
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pose features. As a task, we learn to recognize if two views of a scene represent a
rigid or a non-rigid transformation of the 3D geometry. Rigid transformations can be
obtained from synchronized views, whereas non-rigid ones from unsynchronized or
flipped views. The learned representations generalize well to monocular 3D human
pose estimation with few labeled examples.

Chapter 7: Stabilizing Generative Adversarial Training With Random Noise.
Generative adversarial learning has proven helpful in many vision problems, in-
cluding SSL. However, the training of GANs is highly sensitive to hyperparameters
(e.g., network architectures and learning rates). We explore the use of noise to stabi-
lize GAN training in Chapter 7. In our method, both real and generated examples
are augmented by adding samples of varying noise distributions. The result is a
filtering of the underlying distributions. This reduces the instability by extending
the supports of data and generator distributions. The method consistently improves
standard GAN models and provides increased robustness to poor hyperparameter
settings.

Chapter 8: Generalizing from Limited and Noisy Labels. Models pre-trained using
SSL can transfer well, even with few labeled examples to downstream tasks. How-
ever, this supervised transfer can still lead to poor performance due to overfitting
when labels are scarce or noisy. In Chapter 8 we describe a learning algorithm that
exhibits better generalization than standard Stochastic Gradient Descent (SGD) in
these circumstances. We introduce weights on training mini-batches in our approach
and optimize those weights to minimize the loss on separate validation batches. The
resulting training algorithm demonstrates increased robustness to label noise and
better generalization on small labeled datasets.

The list of publications associated with each chapter:

1. Chapter 3 - “Self-supervised feature learning by learning to spot artifacts” [5],
in CVPR 2018.

2. Chapter 4 - “Steering self-supervised feature learning beyond local pixel statis-
tics” [6], in CVPR 2020.

3. Chapter 5 - “Video representation learning by recognizing temporal transfor-
mations” [7], in ECCV 2020.

4. Chapter 6 - “Self-supervised multi-view synchronization learning for 3d pose
estimation” [8], in ACCV 2020.

5. Chapter 7 - “On stabilizing generative adversarial training with noise” [9], in
CVPR 2019.

6. Chapter 8 - “Deep bilevel learning” [10], in ECCV 2018.
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Chapter 2

Background

“If you would understand anything, observe its
beginning and its development."

— Aristotle

This chapter provides an overview of prior works in unsupervised representa-
tion learning, which is the primary focus of this thesis. Before fully-supervised deep
representation learning became feasible with the introduction of AlexNet [11], un-
supervised pre-training was the de-facto standard approach for training deep neu-
ral networks. In fact, the unsupervised layer-wise pre-training in Deep Belief Nets
(DBN) [12] sparked the renewed interest in neural networks. Each layer in a DBN
is composed of a Restricted Boltzmann Machine (RBM) [13], each being trained in
sequence (hence the term layer-wise pre-training). Efficient training of such stacks
of RBMs was made possible through contrastive divergence learning [14]. Such un-
supervised, layer-wise pre-training is not commonly used today since several opti-
mization techniques have made the end-to-end training of deep networks feasible.

We will limit our further discussion of unsupervised techniques to deep learn-
ing approaches that remain in common usage today. After a brief review of au-
toencoders (an example of a classic unsupervised learning approach), we will focus
our attention on generative adversarial learning, self-supervised learning via proxy
tasks, and finally, discuss some recent contrastive learning approaches.

2.1 Autoencoders

The autoencoder is a classic model for unsupervised representation learning [15].
An autoencoder consists of two parts: an encoder and a decoder. Together these are
tasked to faithfully reconstruct the training data, with reconstruction quality typi-
cally measured via mean-squared-error. Trivial learning (e.g., by learning the iden-
tity function) is prevented by introducing constraints on the encoding, e.g., by lim-
iting the encodings’ dimensionality. Such bottlenecks drive the learning of general
input patterns (the structure of the data) in order to preserve as much information
as possible. The simplest autoencoder consists of a single dense layer as the en-
coder and a single dense layer as the decoder. This model is, in fact, equivalent to
classic Principal Component Analysis (PCA) if the hidden layer does not contain a
non-linearity and the model is trained by minimizing the squared reconstruction er-
ror. Naturally, deep autoencoders (also called stacked autoencoders) with multiple
layers learn better representations. Similar to DBNs, such deep autoencoders can
be trained layer-wise [16]. For vision tasks, convolutional layers would typically be
used [17].
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There exist multiple extensions of the basic autoencoder model, two notable ex-
amples being the denoising autoencoder (DAE) [18] and the variational autoencoder
(VAE) [19]. In a denoising autoencoder, the input to the encoder is corrupted (e.g.,
by adding random noise), and the autoencoder is trained to reconstruct the uncor-
rupted input. In VAEs, the hidden state of the model is assumed to be multivariate
Gaussian with a diagonal covariance matrix. Furthermore, the hidden state distribu-
tion is pushed towards a standard Normal prior via a KL-Divergence loss term. As a
result, VAEs are generative models that allow a random sampling of the learned data
distribution (by decoding samples of a standard Normal). It turns out that represen-
tations learned through VAEs can capture and disentangle the factors of variation
reasonably well on some datasets [20]. Numerous extensions and variations of VAEs
have been proposed. For example, a variant with discrete hidden states [21], and an
approach using adversarial training to enforce the prior on the hidden variables [22].

Remark. We will often use the term autoencoder to refer to a general network design
pattern (i.e., encoder-decoder architectures) that is common in image restoration and
translation tasks [23]. The goal in these cases is not typically to learn a good repre-
sentation but rather to achieve some specific image processing.

2.2 Generative Adversarial Learning

The introduction of the generative adversarial network (GAN) model by Goodfel-
low et al. [24] sparked many exciting new developments in computer vision. The
original GAN is an unsupervised generative model consisting of two components:
1) a generator network that generates samples similar to the training data from
random noise (typically Standard Normal noise), and 2) a discriminator network
that critiques samples from the generator on how similar they are to the training
data. These two networks are trained in an adversarial two-player game, at the
equilibrium of which the generator should faithfully model the data distribution.

Adversarial Feature Learning. Radford et al. [25] introduced a convolutional GAN
model that allowed training at higher resolution and resulted in much-improved
sample quality. Besides showing that GANs learn useful discriminative features in
the discriminator network, they also showed that the latent generator representation
has very desirable properties. For example, interpolations in the learned latent space
result in seamless, natural interpolations in image space. Furthermore, the repre-
sentation even allows for semantically meaningful arithmetic operations analogous
to what has been observed for word representations in natural language processing
[26]. Directions in the latent space thus tend to separate factors of variation. To
leverage this representation, Donahue et al. [27] train a network to learn the inverse
mapping of the generator. Learning this inverse mapping also improves training
and mode coverage, resulting in state-of-the-art unconditional image generation on
ImageNet [28].

Learnable Loss Functions. The principles of adversarial learning have found wide-
spread adoption in image restoration and translation tasks. It turns out that the
discriminator can act as a "learnable" loss function, quantifying the perceptual
dissimilarity to some reference distribution. In this way, adversarial learning has
been applied to classic image restoration tasks to enforce image realism, e.g., in
super-resolution [29], deblurring [30], or image inpainting [31]. More importantly,
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this principle can also be applied to image translation tasks, i.e., to translate cor-
responding images between two domains (sketch-to-image as an example). This
methodology was first proposed on paired data [23], i.e., when corresponding im-
ages in the two domains are available. Through cycle-consistency constraints, this
idea can also be extended to the unpaired case [32].

Addressing Training Difficulties. While GANs have been shown to produce very
high-quality samples, they are notoriously difficult to train. The community thus
focused on addressing GAN training’s inherent instability. Early works introduced
a set of techniques and heuristics [33], or proposed improved architectural designs
and hyper-parameter settings [25]. For example, [33] proposed using one-sided label
smoothing and the injection of Gaussian noise into the layers of the discriminator.
Arjovsky et al. [34] then provided a theoretical analysis of the unstable training and
the vanishing gradients phenomena. They argued that the primary source of insta-
bility stems from the fact that the real and the generated distributions have disjoint
supports or lie on low-dimensional manifolds. In the case of an optimal discrimi-
nator, this will result in zero gradients that stop the generator’s training. They also
proposed a way to reduce such difficulties by introducing noise.

Besides heuristics, a considerable number of alternative GAN objectives were
proposed to address training difficulties. [35] built on the work of [34] and intro-
duced the Wasserstein GAN (WGAN). The WGAN optimizes an integral probabil-
ity metric that is dual to the Wasserstein distance. This formulation requires the dis-
criminator to be Lipschitz-continuous, which is realized through weight-clipping.
In [36] a better way to enforce the Lipschitz constraint via a gradient penalty over
interpolations between real and generated data was introduced (WGAN-GP). These
improvements enabled the usage of deep residual networks in GAN architectures,
which helped further boost image quality. Several other loss functions and GAN
models have been proposed, claiming superior stability and sample quality over a
vanilla GAN (e.g., [37], [38], [39], [40]). However, large-scale studies [41] found no
clear empirical evidence in favor of alternative GAN models in terms of robustness
to hyper-parameter settings and peak performance across different datasets.

Instead of novel GAN objectives, some authors focused on general regulariza-
tion techniques. [42] introduced a stabilizing regularizer based on a gradient norm
penalty similar to the approach by [36]. Another popular GAN regularization tech-
nique that bounds the Lipschitz constant of the discriminator is the spectral normal-
ization introduced by [43]. This technique allowed the training of very large network
architectures on ImageNet [44].

Another line of work promotes a progressive training of GANs, where the model
architecture and its output resolution grow during training [45], [46]. This approach
proved especially effective for very high-resolution image generation.

2.3 Self-Supervised Learning via Proxy Tasks

In this section, we discuss self-supervised learning approaches. These are unsuper-
vised feature learning methods that rely on either naturally occurring or artificially
introduced supervision as a means to learn visual representations. Self-supervised
learning appeared in the machine learning literature more than two decades ago
[47], [48]. We will first discuss methods for learning image representations in Sec-
tion 2.3.1 and then discuss video representation learning methods in Section 2.3.2.
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2.3.1 Methods for Learning Image Representations

Self-supervised learning methods on images have arguably garnered the majority
of attention in the literature. Consequently, numerous sources of free supervision
have been explored. We provide an overview of some of the most popular types of
learning signals below.

Methods Exploiting Spatial Structure. The pioneering work by Doersch et al. [3]
proposed the task of relative patch localization. A Siamese network architecture
is fed two image patches and has to recognize their relative location among nine
possible classes. [4] generalized this approach to a 3× 3 grid of image patches by
training a similar Siamese architecture to solve jigsaw puzzles. Several variations of
these patch-based methods can be found (e.g., [49], [50], [51]).

Another approach to learning image representations based on the spatial struc-
ture is to separate an image patch from its context (i.e., the image region surrounding
the patch) and train a network to predict the patch appearance from its context [31].
Image representations are learned in the context encoder network, which is trained
using an adversarial loss. [52] showed that the discriminator in such an inpainting
task also learns good image representations.

Spatial structure can also be exploited through consistency constraints as demon-
strated in [53] where supposed visual primitives are counted. These counts are then
assumed to be consistent, i.e., the count on a large patch is assumed to be equal (or
less than) the sum of counts on sub-patches.

A simple yet surprisingly effective learning signal is the orientation of an image,
which has been used in the rotation prediction task of [54]. They train a network
to recognize multiples of 90◦ rotations. This task exploits the photographer bias,
i.e., our tendency to capture images in an upright orientation that reflects how we
observe the world most of the time. Much of this approach’s effectiveness can also
be attributed to the lack of shortcuts (low-level data artifacts that give away the
correct label), which plague many other tasks [3], [4], [53].

Methods Exploiting Color. Aside from spatial self-supervision, color has also been a
popular learning signal. The colorization of grey-scale images - an interesting vision
problem by itself - has been shown to produce valuable features [55]. This task is
posed as the prediction of color channels given the lightness channel for images
represented in LAB color space. Because the learned representation can only access
part of the data (only the color channels), [56] proposed to additionally predict the
inverse mapping (lightness from color) and fusing the two learned representations.
Further improvements on color proxy tasks are proposed in [57].

An interesting modification of this task can be found in [58], where the task is to
colorize a grey-scale video given a single colored reference frame. It turns out that
networks learn to track objects across multiple frames by solving this task.

Methods Exploiting Video. Videos provide unique possibilities for learning im-
age representations. Natural changes in an object’s appearance and pose occurring
over time can be leveraged for representation learning. One approach is via track-
ing image-patches and then using matching (i.e., tracked) image-patches for metric
learning [59]. Three patches are used as input, where two patches are matched via
tracking, and the third one is arbitrarily chosen. [60] extended this idea to using
more than one negative example with the contrastive learning framework.
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The approach by [61] used motion extracted from video clips to segment images
and then used the resulting segmentation masks as the supervisory signal.

Methods Exploiting Audio. Another popular source of natural supervision can
be found in the sound accompanying video frames. [62] trained a network to pre-
dict summary statistics of the sounds corresponding to a video frame. [63], [64]
proposed to learn visual and aural representations jointly by training a two-stream
architecture to recognize if an audio snippet and image correspond (i.e., they are
temporally aligned). They also demonstrated how the learned representations can
be used to perform tasks like sound source localization. Similar ideas were explored
in [65], [66].

Naturally, the above-listed works and learning signals are not exhaustive. There
exist, for example, some methods that assume an interactive environment and ex-
ploit an agent’s interaction with the environment for self-supervised learning [67],
[68]. A detailed discussion of methods that exploit knowledge of unique training
instances is deferred to Section 2.4. These methods learn to tell apart different train-
ing examples while learning invariance to data augmentations [69], [70]. Clustering
methods [50], [71], [72] work in a similar fashion but aim at learning additional in-
variances among groups of examples (with groups formed based on the similarity
in the evolving representation space). Several works also proposed to use combi-
nations of the above learning signals, e.g., in a multi-task learning setting [73], [74],
[75].

2.3.2 Methods for Learning Video Representations

The self-supervised learning of video representations has attracted much attention
in the vision community in recent years. Videos are attractive for SSL because hu-
man annotations are even more costly than on images, e.g., action labels typically
also require to specify the temporal extent of the action in the video. Dense annota-
tions for localization tasks across multiple frames quickly become prohibitive, and
methods that can leverage large amounts of unlabeled video for learning become
very attractive. Besides the potential practical benefits, the added temporal dimen-
sion in videos also provides novel opportunities for self-supervised learning signals.

Several works have adapted SSL methods from domains such as images or nat-
ural language to videos, e.g., rotation prediction [76], dense predictive coding [77],
and language models [78]. However, here we are more interested in methods that
were explicitly designed for videos and thus use temporal supervision or leverage
auxiliary signals accompanying a video (e.g., optical flow or audio).

The temporal ordering of video frames provides natural supervisory signals. For
example, Misra et al. [79] proposed learning to distinguish a natural order of frames
from a shuffled one. This idea has been extended to longer sequences for posture
and behavior analysis using LSTM architectures [80]. The above approaches classify
the correctness of a temporal order directly from one sequence. An alternative is
to feed several sequences, some of which are modified, and ask the network to tell
them apart [81]. Other works predict the permutation of a sequence of frames [82],
or both the spatial and temporal ordering of frame patches [49], [83]. Rather than
considering arbitrary reorderings of frames, [84] showed that solely predicting if a
video is played forward or backward learns strong representations. Similarly, the
prediction of playback speed was shown to be a good self-supervision signal [85],
[86], [87].
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Supervision can also come from additional signals obtained along with the video
frames. For example, videos also come with audio. Similar to the image-based ap-
proaches [63], [64], Korbar et al. [88] learned audio and video representations by
learning to synchronize audio and video signals. Other methods used optical flow
to generate supervision signals. For example, [89] predicted motion and appearance
statistics, [90] predicted future atomic 3D flows given an input sequence, and [91]
used geometry in the form of flow fields and disparity maps on synthetic and 3D
movies.

2.4 Contrastive Representation Learning

Current state-of-the-art methods in unsupervised image representation learning are
primarily based on contrastive learning. The origin of these methods can be traced-
back to instance discrimination tasks [69]. The goal is to recognize each distinct
training example while also being invariant to common data augmentations. Simi-
lar to the supervised training of image classifiers, the set of data augmentations (e.g.,
random cropping, horizontal flipping, or color-jittering) define desired invariances
in the learned representation. These learned invariances likely explain much of the
excellent performance in transfer to classification. However, properties of the con-
trastive loss function and the embedding space are also crucial [92].

Wu et al. [70] proposed a non-parametric formulation of this task based on a
noise-contrastive estimation that allowed scaling instance discrimination to a large
number of instances. [93] then suggested several improvements regarding archi-
tecture designs, stronger augmentations, and instance discrimination among large
mini-batches. Some methods lessen the need for large batches by sampling nega-
tives from a queue of past momentum-encoded examples [94]. Others remove the
need for explicit negatives altogether [95], [96]. Several recent works proposed a con-
trastive learning beyond instance-level discrimination, i.e., they learn a grouping or
clustering of examples using the contrastive framework [97], [98]. While the learn-
ing of transformation invariance is fundamental to contrastve learning, [99] showed
that it could be beneficial also to learn distinctiveness to image transformations de-
pending on the downstream tasks.

Several authors have also explored the use of contrastive learning on videos.
Some propose a natural extension of the above image-based methods to videos by
adding spatially consistent temporal cropping to the set of augmentations [100].
Others proposed to treat temporally augmented clips as distinct instances [101],
[102] to learn features sensitive to temporal input patterns (i.e., video dynamics).
The combination of contrastive learning with other SSL tasks via multi-task learning
was also explored [103], [104], [105].

Another exciting line of work considers multi-modal data to perform contrastive
learning across different modalities or "views". Such views can, for example, come
from depth and surface normals [106]. On videos, [107] proposed a joint contrastive
training between the raw RGB frames and corresponding optical flow. Other ap-
proaches rely on weak supervision in the form of text [108] or exploit the audio
accompanying the video [109], [110]. Related methods extract different "views" of
the data from different intermediate layers of the network [111], [112].
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Chapter 3

Learning Visual Patterns by
Damaging Them

“When patterns are broken, new worlds emerge."

— Tuli Kupferberg

Self-supervised learning methods have emerged as a viable alternative to the su-
pervised learning paradigm [3], [4], [31], [55], [59]. These methods typically design
a pretext task through the following strategy: one withholds some information about
the input data and then trains a network to recover it. For example, some methods
withhold image regions [31], color [55] or both grayscale and color values [56]; others
withhold the location of patches [3], [4], or external information such as egomotion
[113].

However, these task designs have their shortcomings. For one, by withholding
part of the data, networks trained on these tasks do not have full access to all the
information present in the data. Networks trained on a colorization task will thus
not be able to exploit color information. Likewise, networks trained on patch-based
learning tasks remain restricted to features at the patch level. Furthermore, these
pretext tasks are often ambiguous as the desired mappings are one-to-many. A given
gray-scale image, for example, can have many corresponding colorized versions.
Similarly, a patch in the center of an image can be in-painted in several plausible
ways, each solution varying in the exact textures and shapes used.

This chapter describes a novel self-supervised approach to learn features by
classifying images as "real" or "with artifacts". As artifacts, we consider a non-trivial
damaging of natural visual patterns, which could, for example, result in the re-
moval of object parts or the distortion of shape and texture (see Figure 3.1). Note
that all the information in real images is preserved in this task, and the objective is
an unambiguous binary classification. We aim to create image artifacts such that a
model capable of spotting them would require an accurate representation of objects
and thus build features that could transfer well to tasks like object classification,
detection, and segmentation. One approach to creating artifacts could be to use clas-
sic inpainting algorithms [114]. Besides being computationally inefficient on large
inpainting regions, these methods are unsuitable for training because they may in-
troduce low-level statistics that a neural network could quickly learn to detect. This
would seriously limit what the network learns about objects. Therefore, instead of
editing images at the pixel level, we tamper with their feature representation and

Material from: S. Jenni, and P. Favaro. "Self-Supervised Feature Learning by Learning to Spot
Artifacts." In IEEE Conference on Computer Vision and Pattern Recognition 2018. © 2018 IEEE
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FIGURE 3.1: Images with and without artifacts. We show a mixture
of real images (green border) and images with synthetic artifacts (red
border). Is a good object representation necessary to tell them apart?

create corrupt images so that the texture is locally unnoticeable but globally incor-
rect, as illustrated in Figure 3.1.

To generate artifacts, we first train an autoencoder to reproduce images. Then,
we randomly drop entries from the encoded feature (at the bottleneck) so that in-
formation about the input image is lost. We then add a repair neural network to the
decoder to help it render a realistic appearance. The repair network in-paints the
feature representations at every layer of the decoder, but its limited capacity can not
fully recover the missing information. In this way, a network cannot detect image ar-
tifacts through local analysis. We then train a discriminator to distinguish real from
corrupt images.

Moreover, we also train the discriminator to predict a mask, which indicates the
dropped feature entries. This mask prediction implicitly helps the discriminator fo-
cus on the essential details in the image. We also use the dropped entries’ true mask
to make sure that the repair network operates only on the features corresponding to
the dropped entries. The repair network and the discriminator then learn in an ad-
versarial fashion. However, in contrast to other adversarial schemes, we make sure
that the repair network cannot confuse the discriminator. Furthermore, we transfer
features from the discriminator since this is the model that learns an approximation
of the distribution of images.

Contributions. Our contributions can be summarized as follows: 1) we introduce
a novel feature learning framework based on detecting images with artifacts, which
does not require human annotation; 2) we introduce a method to create images
with non-trivial artifacts; 3) we demonstrate that these features achieve state-of-the-
art performance on several transfer learning evaluations (ILSVRC2012 [115], Pascal
VOC [116] and STL-10 [117]).
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Real/
Corrupted?

X + + + + +

FIGURE 3.2: Overview of the model architecture. Two autoencoders
{E, D1, D2, D3, D4, D5} output either real images (top row) or images
with artifacts (bottom row). A discriminator C learns to distinguish
them. The corrupted images are generated by masking the encoded
feature φ(x) and then by using a repair network {R1, R2, R3, R4, R5}
distributed across the layers of the decoder. The mask also restricts
the repair network to change only the dropped entries of the feature
(see Figure 3.3 for more details). The discriminator and the repair
network (both shaded in blue) train in an adversarial fashion on the
real/corrupt classification loss. The discriminator is also trained to
output the mask used to drop feature entries so that it learns to local-

ize all artifacts.

3.1 Background

This chapter relates to several machine learning topics: adversarial training, autoen-
coders, and self-supervised learning. We briefly discuss relevant prior works fusing
these concepts here and refer to Chapter 2 for a broader exposition.

Our approach leverages adversarial training for self-supervised feature learning.
Donahue et al. [27] also fuse those two techniques by extending the GAN model with
an encoder network that learns the inverse mapping of the generator. They also
show that transferring the discriminator features in the standard GAN setting leads
to significantly worse performance. In contrast, the method we propose shows that
by limiting the generator network’s capabilities to local alterations, the discriminator
network can learn significantly better visual representations.

The work of Pathak et al. [31] also shows similarities, as it combines autoencoders
with an adversarial loss for the proxy task of inpainting (i.e., to generate the content
in an image region given its context). They, however, aim to learn image representa-
tions in the encoder of the autoencoder performing the inpainting. In contrast, our
model’s autoencoder component is solely used for training data generation and not
for representation learning.

3.2 Architecture Overview

We briefly summarize the components of the architecture that we introduce in the
next sections. Let x be a training image from a dataset and x̂ be its version with arti-
facts. As a model, we use a neural network consisting of the following components
(see also Figure 3.2)
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1. Two autoencoder networks {E, D1, D2, D3, D4, D5}, where E is the encoder and
D = {D1, D2, D3, D4, D5} is the decoder, pre-trained to reproduce high-fidelity
real images x; the output of the encoder E on an image x is denoted φ(x);

2. A spatial mask Ω to be applied to the feature output of E; the resulting masked
feature is denoted φ̂(x) = Ω� φ(x) + (1−Ω)� (u ∗ φ(x)), where u is some
uniform spatial kernel so that u ∗ φ(x) is a feature average, and � denotes the
element-wise product in the spatial domain (the mask is replicated along the
channels);

3. A discriminator network C that learns to classify images x as real and images x̂
as fake (with artifacts); we also train the discriminator to output the mask Ω,
so that it learns to localize all artifacts;

4. A repair network {R1, R2, R3, R4, R5} that attaches to the decoder layers of one
of the autoencoder networks; the output of any layer Ri is masked by Ω so that
it affects only masked features.

The repair network and the discriminator learn in an adversarial fashion on the
real/corrupt classification loss.

3.3 Learning to Spot Artifacts

Our main objective is to train a classifying network (the discriminator) to learn an
accurate distribution of real images. Prior work [25] showed that a discriminator
trained to distinguish real from fake images develops features with interesting ab-
straction capabilities. In our work, we build on this observation and exploit a way to
control the level of corruption of the fake images (see Section 3.3.1). Thus, we train
a classifier to discriminate between real and corrupt images (see Section 3.3.3). As
illustrated earlier, we hope that the classifier learns features suitable for other tasks
such as object classification, detection, and segmentation by solving this task. In the
next sections, we describe our model more in detail and present the design choices
to avoid learning trivial features.

3.3.1 The Damage & Repair Network

In our approach, we would like to create corrupt images that are not too unrealistic;
otherwise, a classifier could distinguish them from real images by detecting only
low-level statistics (e.g., unusual local texture patterns). At the same time, we would
like to have as much variability as possible so that a classifier can build a robust
model of real images.

To address the second concern, we randomly corrupt real images of an existing
dataset. To address the first concern, instead of editing images at the pixel-level, we
corrupt their feature representation and partly repair the corruption by fixing only
the low-level details. We encode an image x in a feature φ(x) ∈ RM×N×L, where
φ(x) = E(x), and then at each spatial coordinate in the M×N domain we randomly
drop all the L channels with a given probability θ ∈ (0, 1). This defines a binary mask
matrix Ω ∈ {0, 1}M×N of what feature entries are dropped (Ωij = 0) and which ones
are preserved (Ωij = 1). The dropped feature channels are replaced by the corre-
sponding entries of an averaged feature computed by convolving φ(x) with a large
uniform kernel u. As an alternative, we also replace the dropped feature channels
with random noise. Experimentally, we find no significant difference in performance
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(A) (B) (C)

FIGURE 3.3: Influence of the repair network. We show two exam-
ples of corrupt output images obtained from our Damage & Repair
network. (A) shows two original images. At the bottom-left corner
of those images, we display the masks applied to the encoded feature
φ(x). These masks drop on average about 50% of the encoded feature.
(B) shows the corrupt output images. The repair network assists the
decoder in inpainting texture that is only locally unnoticeable. How-
ever, on the global scale, the objects are no longer recognizable as
valid instances. (C) shows the output of the decoder when the repair
network is not active. In this case, the artifacts are evident and easy

to detect by exploiting low-level statistics.

between these two methods. The mask Ω is generated online during training, and
thus the same image x is subject to a different mask at every epoch. If we fed the
corrupt feature directly to the decoder D the output would be extremely unrealistic
(see Figure 3.3 (c)). Thus, we introduce a repair network that partially compensates
for the loss of information due to the mask. The repair network introduces repair
layers Ri between layers of the decoder Di. These layers receive as input the corrupt
feature or the outputs of the decoder layers and are allowed to fix only entries that
were dropped. More precisely, we define the input to the first decoder layer D1 as

φ̂(x) + (1−Ω)� R1(φ̂(x)), (3.1)

where φ̂(x) = Ω � φ(x) + (1−Ω) � (u ∗ φ(x)) and u is a large uniform filter. At
the later layers D2, D3, and D4 we upsample the mask Ω with the nearest neighbor
method and match the spatial dimension of the corresponding intermediate output,
i.e., we provide the following input to each layer Di with i = 2, 3, 4

Di−1 + (1−Ui−1(Ω))� Ri(Di−1), (3.2)

where Ui−1 denotes the upsampling (with the nearest neighbor method) to the spa-
tial dimensions of the output of Di−1. Finally, we also design our encoder E so that
it encodes features that are spatially localized and with limited overlap with one an-
other. To do so, we define the encoder E = {E1, E2, E3, E4, E5}with five layers where
E1 uses 3× 3 convolutional filters with stride 1 and the remaining four layers E2, E3,
E4, and E5 use 2× 2 convolutional filters with stride 2. As shown in Figure 3.4, this
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FIGURE 3.4: Encoder design. We show the input image on the left,
and on the right, we show the corresponding feature encoding φ(x).
We use 5 layers, where the first one uses 3× 3 convolutional filters
with stride 1 and the remaining 4 use 2× 2 convolutional filters with
stride 2. As can be observed, this results in almost separate receptive
fields for each feature entry of φ(x). Each entry corresponds to an
18× 18 pixels patch in the original input and overlaps 2 pixels with
the neighboring patches (1 pixel each side). This encoding ensures a

strong spatial locality to each entry of the encoded features.

design limits the receptive field of each encoded feature entry to an 18× 18 pixels
patch in the input image with a 2 pixels overlap with neighboring patches. Thus,
dropping one of these feature entries is essentially equivalent to dropping one of the
18× 18 pixels patches in the input image.

Figure 3.3 shows two examples of real images and corresponding corrupt im-
ages obtained under different conditions. Figure 3.3 (a) shows the original images
and the mask Ω, where M, N = 8, inset on the bottom-left corner. The dropping
probability is θ = 0.5. Figure 3.3 (b) shows the resulting corrupt images obtained by
our complete architecture. Notice that locally it is impossible to determine whether
the image is real or corrupt. Only by looking at a larger region and exploiting prior
knowledge of what real objects look like can we determine that the image is cor-
rupt. For comparison purposes, we show in Figure 3.3 (c) and (d) the corresponding
corrupt images obtained by disabling the repair network and by using the repair
network without the mask restriction, respectively.

3.3.2 Replication of Real Images

Given the corrupt images generated as described in the previous section, we should
be ready to train the discriminator C. The real images could indeed be just the orig-
inal images from the same dataset used to create the corrupt ones. One potential
issue with this scheme is that the discriminator may learn to distinguish real from
corrupt images based on image processing patterns introduced by the decoder net-
work. These patterns may be unnoticeable to the naked eye, but neural networks
seem to be quite good at spotting them. For example, networks have learnt to detect
chromatic aberration [3] or downsampling patterns [53].

To avoid this issue, we use the same autoencoder {E, D} used to generate corrupt
images to replicate real images. Since the same final decoder layer generates the real
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and corrupt images, we expect both images to share the same processing patterns.
This should discourage the discriminator from focusing on such patterns.

We therefore pre-train this autoencoder and make sure that it has a high capac-
ity, so that images are replicated with high accuracy. The training of E and D is a
standard optimization with the following least-squares objective

Lauto = ∑
x∼p(x)

|D(E(x))− x|2. (3.3)

3.3.3 Training the Discriminator

As just discussed in Section 3.3.2, to replicate real images we use an autoencoder
{E, D} and, as described in Section 3.3.1, to create corrupt images we use a damage
& repair autoencoder {Ω� E, D̂}, where D̂ = {R1, D1, R2, D2, R3, D3, R4, D4, R5, D5}.
Then, we train the discriminator and the repair subnetwork R = {R1, R2, R3, R4, R5}
via adversarial training [24]. Our discriminator C has two outputs, a binary prob-
ability Cclass ∈ [0, 1] for predicting real vs corrupt images and a prediction mask
Cmask ∈ [0, 1]M×N to localize artifacts in the image. Given an image x, training the
discriminator C and the repair network R involves solving

Lclass = min
R

max
C

∑
x∼p(x)

log Cclass(D(φ(x))) + log(1− Cclass(D̂(φ̂(x)))). (3.4)

We also train the discriminator to predict the mask Ω by minimizing

Lmask = min
C

∑̂
x

∑
ij

Ωij log σ
(

Cmask
ij (x̂)

)
+ (1−Ωij) log

(
1− σ(Cmask

ij (x̂))
)

where x̂ = D̂(φ̂(x)) and σ(z) = 1/(1 + e−z) is the sigmoid function.

3.3.4 Implementation

Let (64)3c2 denote a convolutional layer with 64 filters of size 3× 3 at a stride of
2. The architecture of the encoder E is then defined by (32)3c1-(64)2c2-(128)2c2-
(256)2c2-(512)2c2. The decoder network D is given by (256)3rc2-(128)3rc2-(64)
3rc2-(32)3rc2-(3)3c1 where rc denotes resize-convolutions (i.e., bilinear resizing
followed by standard convolution). Batch normalization [118] is applied at all layers
of E and D except the last convolutional layer of D. All convolutional layers in E and
D are followed by the leaky-ReLU activation f (x) = max(x/10, x). The filtering of
φ(x) with u is realized using 2D average pooling with a kernel of size 3× 3.

The discriminator network C is based on the standard AlexNet architecture [11]
to allow for a fair comparison with other methods. The network is identical to the
original up to conv5. We drop pool5 and use a single 3× 3 convolutional layer for the
mask prediction. For the classification, we remove the second fully-connected layer.
Batch normalization is only applied after conv5 during unsupervised training and
removed in transfer experiments. The standard ReLU activation is used throughout
C. The repair layers follow a similar design as the residual blocks found in ResNet
[119]. We illustrate their design in Figure 3.5.

Adam [120] with an initial learning rate of 3 · 10−4 is used for the optimization.
During training, we linearly decay the learning rate to 3 · 10−6. We set β1 = 0.5 and
keep all other parameters at their default values. The autoencoder is pre-trained for
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FIGURE 3.5: The repair block. We use a residual block design. We
concatenate the drop mask to the input of the first convolutional layer.
We also gate the output of the last convolutional layer with the same
drop mask. This design ensures that the repair block can alter only

corrupted regions.

80 epochs, and the damage & repair network is trained for 150 epochs on random
128× 128 crops of the 1.3M ImageNet [115] training images.

3.4 Experiments

In this section we first report ablation experiments regarding our damage & repair
approach and then compare to prior self-supervised methods in Section 3.4.2.

3.4.1 Ablation Analysis

We validate our design choices by performing transfer learning for classification on
STL-10 [117]. All results were obtained with models trained for 400 epochs on the
unlabeled training set and supervised transfer learning for 200 epochs on the labeled
training set. We use the standard AlexNet architecture during transfer learning ex-
cept that we drop the pool5 layer to handle the smaller image size. The weights
in the convolutional layers are transferred while the fully-connected layers are ran-
domly initialized. We perform the following set of experiments:

(a) Input image as real: We show that it is better to use autoencoded images as real
examples for discriminator training. The rationale here is that the discrimina-
tor could exploit the decoder network’s pixel patterns to decide between real
and corrupted images. We also observed common GAN artifacts in this setting
(see Figure 3.6). In our model, the inputs to the discriminator pass through the
same convolutional layer.

(b) Without mask prediction: This experiment demonstrates that the additional
self-supervision signal provided through the drop mask improves perfor-
mance.

(c) Distributed vs. local repair network: Here, we illustrate the importance of dis-
tributing the repair network throughout the decoder. In the local case, we
apply the five repair layers consecutively before the first decoder layer. We
observe more low-level artifacts in this setup (see Figure 3.6h).
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TABLE 3.1: Ablation experiments on STL-10. Influence of dif-
ferent architectural choices on the classification accuracy on STL-
10 [117]. Convolutional layers were pre-trained on the proposed self-

supervised task and kept fixed during transfer for classification.

Ablation experiment Accuracy

(a) Input image as real 74.99%
(b) Without mask prediction 78.44%
(c) Distributed vs. local repair network 77.51%
(d) 3× 3 encoder convolutions 79.84%
(e) No gating in repair layers 79.66%
(f) No history of corrupted examples 79.76%
(g) Dropping rate = 0.1 70.92%
(h) Dropping rate = 0.3 76.26%
(i) Dropping rate = 0.7 81.06%
(j) Dropping rate = 0.9 79.60%

Baseline 79.94%

(d) 3× 3 encoder convolutions: In this experiment, we let the encoder features
overlap. We replace the 2 × 2 convolutions with 3 × 3 convolutions. This
change increases the receptive field from 18× 18 to 33× 33 and results in an
overlap of 15 pixels. We observe a small decrease in transfer performance.

(e) No gating in repair layers: We demonstrate the influence of training without
gating the repair network output with the drop mask. Without gating, the
repair network can potentially affect all image regions.

(f) No history of corrupted examples: Following [121] we keep a buffer of cor-
rupted images and replace half of the corrupted examples in the mini-batch
with samples from the buffer. Removing the history has a small negative effect
on performance.

(g)-(j) Dropping rate: We show how different dropping rates influence the perfor-
mance on classification. Five different dropping rates are considered: 0.1, 0.3,
0.5 (the baseline), 0.7 and 0.9. We observe that the dropping rate has a strong
influence on the performance of the learned features. A value of around 0.7
gives the best results, and low drop rates lead to a significant decrease in per-
formance. With low dropping rates, it is unlikely that object parts are cor-
rupted. This makes the examples less valuable for learning semantic content.

The resulting transfer learning performance of the AlexNet discriminator on
STL-10 is shown in Table 3.1. In Figure 3.6 we show renderings for some of the
generative models.

3.4.2 Transfer Learning Experiments

We perform transfer learning experiments for classification, detection, and seman-
tic segmentation on standard datasets with our pre-trained AlexNet discriminator
weights. We use a dropping probability of θ = 0.7 in all experiments.
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base drop70 drop90drop10 drop30 gtrealgt local(A)
base drop70 drop90drop10 drop30 gtrealgt local(B)

base drop70 drop90drop10 drop30 gtrealgt local(C)
base drop70 drop90drop10 drop30 gtrealgt local(D)

base drop70 drop90drop10 drop30 gtrealgt local(E)
base drop70 drop90drop10 drop30 gtrealgt local(F)

base drop70 drop90drop10 drop30 gtrealgt local(G)
base drop70 drop90drop10 drop30 gtrealgt local(H)

FIGURE 3.6: Renderings with the damage and repair network. Col-
umn (A) shows the input image. Columns (B)-(F) show results with
dropping rates of 0.1, 0.3, 0.5, 0.7 and 0.9. Column (G) shows results
when input images are used as real examples. Note that this intro-
duces commonly observed GAN artifacts. Finally, column (H) shows

results with the local instead of distributed repair network.

Classification on STL-10

The STL-10 dataset [117] is designed with unsupervised representation learning in
mind and is a common baseline for comparison. The dataset contains 100,000 un-
labeled training images, 5,000 labeled training images evenly distributed across 10
classes for supervised transfer and 8,000 test images. The data consists of 96× 96
color images. We randomly resize the images and extract 96× 96 crops. Unsuper-
vised training is performed for 400 epochs and supervised transfer for an additional
200 epochs.

We follow the standard evaluation protocol and perform supervised training on
the ten pre-defined folds. We compare the resulting average accuracy to state-of-the-
art results in Table 3.2. We can observe an increase in performance over the other
methods. Note that the models compared in Table 3.2 do not use the same network
architecture, making it difficult to attribute the difference in performance to a spe-
cific cause. It nonetheless showcases the potential of the proposed self-supervised
learning task and model.

Classification, Detection and Segmentation on PASCAL VOC

The Pascal VOC2007 and VOC2012 datasets consist of images coming from 20 object
classes. They are relatively challenging benchmarks due to the high variability in
size, pose, and objects’ position in the images.

We transfer only the convolutional layers of the AlexNet and randomly initialize
the fully-connected layers. The data-dependent rescaling proposed by Krähenbühl
et al. [128] is used in all experiments, as is standard practice. The convolutional
layers are fine-tuned, i.e., not frozen. This experiment demonstrates the usefulness
of the discriminator weights as initialization for other tasks. A comparison to the
state-of-the-art feature learning methods is shown in Table 3.3.
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TABLE 3.2: Comparison to prior works on STL-10. Following the
guidelines in [117] the average accuracy from models trained on the
ten pre-defined folds is reported. We train a linear classifier on top of

conv5 features for a fair comparison with the other methods.

Model Accuracy SD

Dosovitskiy et al.[69] 74.2% ±0.4
Dundar et al.et al.[122] 74.1% -
Huang et al.[123] 76.8% ±0.3
Swersky et al.[124] 70.1% ±0.6
Zhao et al.[125] 74.3% -

Ours (conv1-conv5 frozen) 76.9% ±0.2
Ours (conv1-conv5 finetuned) 80.1% ±0.3

Classification on VOC2007. For multilabel classification, we use the framework
provided by Krähenbühl et al. [128]. The fine-tuning is performed on random crops
of the ’trainval’ dataset. The final predictions are computed as the average prediction
of 10 random crops per test image. With an mAP of 69.8%, we achieve state-of-the-
art performance on this task.

Detection on VOC2007. The Fast-RCNN [129] framework is used for detection. We
follow the guidelines in [128] and use multi-scale training and single-scale testing.
All other settings are kept at their default values. With an mAP of 52.5%, we achieve
the second-best result.

Semantic Segmentation on VOC2012. We use the standard FCN framework [130]
with default settings. We train for 100,000 iterations using a fixed learning rate of
10−4. Our discriminator weights achieve a state-of-the-art result with a mean inter-
section over union (mIU) of 38.1%.

Layerwise Performance on ImageNet & Places

We evaluate the quality of representations learned at different depths of the net-
work with the evaluation framework introduced in [55]. We freeze all convolutional
layers and train multinomial logistic regression classifiers on top of them. The con-
volutional layers’ outputs are resized such that the flattened features are of similar
size (≈ 9200). A comparison to other models on ImageNet is given in Table 3.4.
Our model outperforms all other approaches in this benchmark. Note also that our
conv1 features perform even slightly better than the supervised counterparts. To
demonstrate that the learned representations generalize to other input data, we also
performed a transfer to the Places [131] dataset. This dataset contains 2.4M images
from 205 scene categories. As can be seen in Table 3.5 we outperform all the other
methods for layers conv2-conv5. Note also that we achieve the highest overall accu-
racy with 37.3%.

3.4.3 Qualitative Analysis of the Features

To better understand what the discriminator has learned we use different network
visualization techniques. We show the learnt conv1 filters as well as maximally acti-
vating image-patches [132], [133] for some neurons of each convolutional layer in
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TABLE 3.3: Transfer learning experiments on Pascal VOC. We re-
port results for classification, detection, and segmentation on Pascal
VOC2007 and VOC2012 compared to state-of-the-art feature learning

methods.

Classification Detection Segmentation
Model [Ref] (mAP) (mAP) (mIU)

Krizhevsky et al.[11] [55] 79.9% 56.8% 48.0%
Random [31] 53.3 43.4% 19.8%
Agrawal et al.[126] [27] 54.2% 43.9% -
Bojanowski et al.[127] [127] 65.3% 49.4% -
Doersch et al.[3] [27] 65.3% 51.1% -
Donahue et al.[27] [27] 60.1% 46.9% 35.2%
Jayaraman & Grauman [113] [113] - 41.7% -
Krähenbühl et al.[128] [128] 56.6% 45.6% 32.6%
Larsson et al.[57] [57] 65.9% - 38.0%
Noroozi & Favaro [4] [4] 67.6% 53.2% 37.6%
Noroozi et al.[53] [53] 67.7% 51.4% 36.6%
Owens et al.[62] [62] 61.3% 44.0% -
Pathak et al.[31] [31] 56.5% 44.5% 29.7%
Pathak et al.[61] [61] 61.0% 52.2% -
Wang & Gupta [59] [128] 63.1% 47.4% -
Zhang et al.[55] [55] 65.9% 46.9% 35.6%
Zhang et al.[56] [56] 67.1% 46.7% 36.0%

Ours - 69.8% 52.5% 38.1%

Figure 3.7. We observe prominent edge-detectors in the conv1 filters, much like
what can be observed in a supervised AlexNet. Figure 3.8 shows nearest neighbor
retrievals obtained with our conv5 features.

We use Grad-CAM [134] in Figure 3.9 to illustrate what image regions the dis-
criminator focuses on when deciding between real and with artifacts. We can ob-
serve that the discriminator often looks for missing or existing object parts.

3.5 Discussion

This chapter has demonstrated how to learn features by classifying images into ’real‘
or ’with artifacts.‘ The image artifacts are carefully constructed so that they require
a high-level understanding of image semantics and are not recognizable from low-
level features. This classification task is designed to use images without human an-
notation and thus can exploit large readily-available image datasets. Our approach
to generating non-trivial artifacts combines autoencoders and an assistive network
(the repair network) with adversarial networks. The transfer (via fine-tuning) of
features learned by the classification network achieves state-of-the-art performance
on several benchmarks on ILSVRC2012, Pascal VOC and STL-10, demonstrating the
effectiveness of the proposed task.

Fundamentally, the task we introduced in this chapter is the recognition of a type
of image manipulation. In the next chapter, we investigate other tasks where the goal
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TABLE 3.4: Linear classifier experiments on ImageNet. We report
validation set accuracy of linear classifiers on frozen convolutional
features after unsupervised pre-training. Results for the other meth-

ods are taken from [53].

Model\Layer conv1 conv2 conv3 conv4 conv5

Krizhevsky et al.[11] 19.3% 36.3% 44.2% 48.3% 50.5%
Random 11.6% 17.1% 16.9% 16.3% 14.1%

Doersch et al.[3] 16.2% 23.3% 30.2% 31.7% 29.6%
Donahue et al.[27] 17.7% 24.5% 31.0% 29.9% 28.0%
Krähenbühl et al.[128] 17.5% 23.0% 24.5% 23.2% 20.6%
Noroozi & Favaro [4] 18.2% 28.8% 34.0% 33.9% 27.1%
Noroozi et al.[53] 18.0% 30.6% 34.3% 32.5% 25.7%
Pathak et al.[31] 14.1% 20.7% 21.0% 19.8% 15.5%
Zhang et al.[55] 13.1% 24.8% 31.0% 32.6% 31.8%
Zhang et al.[56] 17.7% 29.3% 35.4% 35.2% 32.8%

Ours 19.5% 33.3% 37.9% 38.9% 34.9%

is to recognize classes of image transformations and provide insights into why and
when such tasks learn useful features.
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TABLE 3.5: Linear classifier experiments on Places. We report val-
idation set accuracy of linear classifiers on frozen convolutional fea-
tures after unsupervised pre-training. Results for the other methods

are taken from [53].

Model\Layer conv1 conv2 conv3 conv4 conv5

Places-labels et al.[11] 22.1% 35.1% 40.2% 43.3% 44.6%
ImageNet-labels et al.[11] 22.7% 34.8% 38.4% 39.4% 38.7%
Random 15.7% 20.3% 19.8% 19.1% 17.5%

Doersch et al.[3] 19.7% 26.7% 31.9% 32.7% 30.9%
Donahue et al.[27] 22.0% 28.7% 31.8% 31.3% 29.7%
Krähenbühl et al.[128] 21.4% 26.2% 27.1% 26.1% 24.0%
Noroozi & Favaro [4] 23.0% 31.9% 35.0% 34.2% 29.3%
Noroozi et al.[53] 23.3% 33.9% 36.3% 34.7% 29.6%
Owens et al.[62] 19.9% 29.3% 32.1% 28.8% 29.8%
Pathak et al.[31] 18.2% 23.2% 23.4% 21.9% 18.4%
Wang & Gupta [59] 20.1% 28.5% 29.9% 29.7% 27.9%
Zhang et al.[55] 16.0% 25.7% 29.6% 30.3% 29.7%
Zhang et al.[56] 21.3% 30.7% 34.0% 34.1% 32.5%

Ours 23.3% 34.3% 36.9% 37.3% 34.4%
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(A) conv1 weights (B) conv1

(C) conv2 (D) conv3

(E) conv4 (F) conv5

FIGURE 3.7: Visualization of the learned features. Learned fea-
tures for neurons in different layers of the AlexNet after unsupervised
training are visualized. We show conv1 weights and maximally acti-

vating image-patches for five neurons at each layer.
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FIGURE 3.8: Nearest-neighbor retrievals on the ImageNet valida-
tion set. Nearest-neighbors were obtained using cosine-similarity on

conv5 features from the AlexNet discriminator.

FIGURE 3.9: Grad-CAM visualization. We show a visualization
of image features contributing to the decision between real images
(green border) and images with artifacts (red border). The discrimi-
nator appears to focus on object parts such as legs and heads as well

as geometric shapes.



29

Chapter 4

Learning by Recognizing Image
Transformations

“If you just focus on the smallest details, you will
never get the big picture right."

— Leroy Hood

The previous chapter demonstrated how the self-supervised classification of im-
ages into whether they were transformed through some corruption process or kept
untouched could yield good image representations. This chapter discusses how
self-supervised learning can address another fundamental limitation of learning
through labels: Depending on the training procedure and dataset, it might yield
features that describe mostly local statistics (e.g., textures) and thus have limited
generalization capabilities. An illustration of this issue is shown in Figure 4.1. On
the bottom row, we show images that have been transformed such that local statis-
tics of the corresponding image on the top row are preserved, but global statistics
are not.2 Experimentally, we find that features pre-trained with ImageNet labels
[115] have difficulties in telling real images apart from the transformed ones. This
simple test illustrates that focusing on local image statistics could mostly solve the
classification task on ImageNet. We might not notice such a problem when evalu-
ating these features on tasks and datasets that are solvable based on similar local
statistics. However, more general classification settings would certainly expose such
a limitation. [1] also pointed out this problem and showed that training supervised
models to focus on the global statistics (which they refer to as shape) can improve
the generalization and the robustness of the learned image representation.

Thus, to address this fundamental shortcoming and to limit the need for human
annotation, this chapter describes a novel self-supervised learning (SSL) method.
The training task in our method is to discriminate variations of global image statistics.
To this end, we transform images so that local statistics are mostly unchanged while
global statistics are clearly altered. This way, we make sure that the discrimination
of such transformations is not possible by working on just local patches. Instead, it
requires using the whole image, learning also the global image statistics. We illus-
trate this principle in Figure 4.3. Incidentally, several existing SSL tasks can be seen
as learning from such transformations, e.g., context prediction [31], rotation predic-
tion [54], solving jigsaw puzzles [4], and the spotting artifacts task from Chapter 3.

Material from: S. Jenni, H. Jin, and P. Favaro. "Steering Self-Supervised Feature Learning Beyond
Local Pixel Statistics." In IEEE Conference on Computer Vision and Pattern Recognition 2020. © 2020 IEEE

2The transformed images are obtained by partitioning an image into a 4× 4 grid, randomly per-
muting the tiles, and training a network to inpaint a band of pixels across the tiles through adversarial
training [24].
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FIGURE 4.1: The importance of global image statistics. Top row:
Natural images. Bottom row: Images transformed such that local
statistics are preserved while global statistics are significantly altered.
An accurate image representation should be able to distinguish these
two categories. A linear binary classifier trained to distinguish orig-
inal versus transformed images on top of conv5 features pre-trained
on ImageNet labels yields an accuracy of 78%. If instead, we use fea-
tures pre-trained with our proposed self-supervised learning task, the
classifier achieves an accuracy of 85%. Notice that our self-supervised
pre-training did not use this transformation and that the transformed

images were built independently of either feature.

We cast the task of discriminating changes in the global image statistics as the
self-supervised recognition of several image transformations (see Figure 4.2). As
a novel image transformation, we introduce Limited Context Inpainting (LCI). LCI
selects a random patch from a natural image, substitutes the center with noise (thus
preserving a small outer boundary of pixels), and trains a network to inpaint a realis-
tic center through adversarial training. While LCI can inpaint a natural center of the
patch that seamlessly blends with the preserved boundaries, it is unlikely to provide
a meaningful match with the rest of the original image. Hence, this mismatch can
only be detected by learning the global statistics of the image. Our formulation is
also highly scalable and allows us to incorporate more transformations as additional
categories easily. In fact, we also include the classification of image warping and
image rotations (see examples of such transformations in Figure 4.3). An illustration
of the proposed training scheme is shown in Figure 4.2.

Contributions. Our proposed method has the following original contributions: 1)
we introduce a novel self-supervised learning principle based on image transforma-
tions that only global observations can detect; 2) we introduce a novel transforma-
tion according to this principle and demonstrate its impact on feature learning ex-
perimentally; 3) we formulate the method so that it can easily scale with additional
transformations; 4) our proposed method achieves a state of the art performance in
transfer learning on several data sets; in particular, for the first time, we show that
our trained features, when transferred to Places, achieve performance on par with
features trained through supervised learning with ImageNet labels.

4.1 Background

We discuss how our approach relates to the most relevant prior works here and refer
to Chapter 2 for more background discussion.
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FIGURE 4.2: Learning global statistics. We propose to learn image
representations by training a convolutional neural network to classify
image transformations. The transformations are chosen such that lo-
cal image statistics are preserved while global statistics are distinctly

altered.

Connections to prior SSL approaches. Several self-supervised tasks can be seen as
the prediction of some form of transformation applied to an image. Gidaris et al. [54]
as an obvious example, predict the number of 90° rotations applied to an image. [3],
[4] predict transformations at the level of image patches. Recently, Zhang et al. [135]
proposed to predict the parameters of a relative projective transformation between
two images using a Siamese architecture. Finally, the task introduced in Chapter 3
also fits this framework. This chapter shows that we can form new and more chal-
lenging learning tasks that learn better features by predicting a combination of novel
and previously explored image transformations.

The damage&repair network from Chapter 3 has some similarities to the LCI
transformation. In Chapter 3 we generated image artifacts by erasing and locally
repairing hidden representations of an autoencoder. The LCI approach is different
in two important ways. First, it more strongly limits the context of the inpainter and
is by design a local operation. Second, a separate patch discriminator allows stable
adversarial training independent of the feature learning component.

Recognizing image manipulations. Several works have considered the detection of
image manipulations in the context of image forensics [136], [137], [138], [139]. For
example, Wang et al. [137] predict subtle face image manipulations based on local
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(a) (b) (c) (d)

FIGURE 4.3: Selected image transformations. Examples of local
patches from images that were (a) warped, (b) locally inpainted, (c)
rotated, or (d) not transformed. The bottom row shows the origi-
nal images; the middle row shows the corresponding transformed
images, and the top row shows a detail of the transformed image.
By only observing a local patch (top row), is it possible in all of the
above cases to tell if and how an image has been transformed, or is it
instead necessary to observe the whole image (middle row), i.e., the

global pixel statistics?

warping. Zhou et al. [138] detect image tampering generated using semantic masks.
In these cases, transformations are usually subtle and do not change the global image
statistics in a predictable way (images are manipulated to appear realistic). The aim
is therefore antithetical to ours.

4.2 Learning Features by Discriminating Global Image Trans-
formations

We aim to learn image representations without human annotation by recognizing
variations in global image statistics. We do so by distinguishing between natural
images and images that underwent several different image transformations. Our
principle is to choose image transformations that: 1) preserve local pixel statistics
(e.g., texture), but alter the global image statistics of an image and 2) can be recog-
nized from a single transformed example in most cases. In this exposition, we choose
the following transformations: limited context inpainting, warping, rotations, and
the case of no transformation. We will introduce these transformations in detail in
the next sections.

Formally, given a set of unlabeled training images {xi}i=1,...,N and a set of image
transformations {Tj}j=0,...,K, we train a classifier C to predict the transformation-label
j given a transformed example Tj ◦ xi. In our case we set K = 5. We include the
identity (no-transformation) case by letting T0 ◦ x .

= x. We train the network C by
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FIGURE 4.4: Training of the Limited Context Inpainting (LCI) net-
work. A random patch is extracted from a training image x, and all
but a thin border of pixels is replaced by random noise. The inpainter
network F fills the patch with realistic textures conditioned on the re-
maining border pixels. The resulting patch is replaced back into the
original image, generating an image with natural local image statis-

tics but unnatural global statistics.

minimizing the following self-supervised objective

LSSL(T0, . . . , T5)
.
= min

C

1
6N

N

∑
i=1

5

∑
y=0

`cls

(
C
(
Ty ◦ xi

)
, y
)

, (4.1)

where `cls is the standard cross-entropy loss for a multi-class classification problem.

4.2.1 Limited Context Inpainting

The first transformation that we propose to use in Equation (4.1) is the local inpaint-
ing operation LCI. The aim here is to modify images only locally, i.e., at the scale
of image patches. We train an inpainter network F conditioned only on a thin bor-
der of pixels of the patch (see Figure 4.4). The inpainted patch should be realistic
on its own and blend in at the boundary with the surrounding image, but should
not meaningfully match the content of the whole image (see an example in Fig-
ure 4.3 (b)). The inpainter F is trained using adversarial training against a patch
discriminator D (which ensures that we match the local statistics) and the transfor-
mation classifier C. The patch to be inpainted is randomly selected at a uniformly
sampled location ∆ ∈ Ω, where Ω is the image domain. Then,W∆ ⊂ Ω is a square
region of pixels around ∆. We define ei as the original patch of pixels atW∆ and ri
as the corresponding inpainted patch

ei(p− ∆) .
= xi(p), ∀p ∈ W∆ (4.2)

ri
.
= F(ei � (1−m) + z�m) (4.3)

with m a mask that is 1 in the center of the patch and 0 at the boundary (2 to 4
pixels in our baseline), z ∼ N (0, I) is a zero-mean Gaussian noise, and � denotes
the Hadamard (pixel-to-pixel) product. The LCI transformation T5 is then defined
as

(T5 ◦ xi)(p) .
=

{
xi(p) if p /∈ W∆

ri(p− ∆) if p ∈ W∆.
(4.4)
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Finally, to train the inpainter F, we minimize the cost

Linp =
1
N

N

∑
i=1

`GAN(ri, ei) + λborder |(ri − ei) ◦ (1−m)|2 −LSSL(T0, . . . , T5),

where λborder = 50 is a tuning parameter to regulate the importance of autoencoding
the input boundary, and `GAN(·, ·) is the hinge loss for adversarial training [140],
which also includes the maximization in the discriminator D.

Remark. In contrast to prior SSL methods [5], [31], [52], here we do not take the
features from the networks that we used to learn the transformation (e.g., D or F).
Instead, here we take features from a separate classifier C that has only a partial role
in the training of F. This separation has several advantages: 1) a separate tuning
of training parameters is possible; 2) GAN tricks can be applied without affecting
the classifier C; (3) GAN training can be stable even when the classifier wins (LSSL
saturates w.r.t. F).

4.2.2 Random Warping

In addition to the LCI, a local image transformation, we consider random global
warping as our T4 transformation. A warping is a smooth deformation of the im-
age coordinates defined by n pixel coordinates {(ui, vi)}i=1,...,n, which act as control
points. We place the control points on a uniform grid of the image domain and then
randomly offset each control point by sampling the shifts from a rectangular range
[−d, d] × [−d, d], where d is typical 1/10-th of the image size. The dense flow field
for warping is then computed by interpolating between the offsets at the control
points using a polyharmonic spline [141]. Warping affects the local image statistics
only minimally: in general, it is difficult to distinguish a warped patch from a patch
undergoing a change in perspective. Therefore, the classifier needs to learn global
image statistics to detect image warping.

4.2.3 Image Rotations

Finally, we consider as T1, T2, and T3 image rotations of 90°, 180°, and 270°. This
choice is inspired by Gidaris et al. [54] who proposed RotNet, a network to predict
image rotations by multiples of 90°. This was shown to be a simple yet effective
SSL pretext task. These transformations are predictable because the photographer
bias introduces a canonical reference orientation for many natural images. They
also require global statistics as local patches of rotated images often do not indicate
the image’s orientation because similar patches can be found in the untransformed
dataset.

Remark. There exist, however, several settings in which the prediction of image ro-
tations does not result in useful features. Many natural images, for example, do not
have a canonical image orientation. Thus, in these cases, the prediction of image
rotations is an ill-posed task. There also exist entire data domains of interest, where
the image orientation is ambiguous, such as satellite and cell imaging datasets. Even
when a clear upright image orientation exists, this method alone can lead to non-
optimal feature learning. As an example, we show that the prediction of image rota-
tions on CelebA [142], a dataset of face images, leads to significantly worse features
than can be learned through the prediction of other transformations (see Table 4.3).
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(A) (B)

FIGURE 4.5: Image statistics on CelebA. (a) The mean image ob-
tained from 8000 samples from CelebA. (b) Four local patches ex-
tracted from the mean image. Because these patterns always appear
with the same orientation in the dataset, it is possible to distinguish

rotated images using only these local statistics.

This limitation’s main reason is that local patches can be found in the dataset always
with the same orientation (see Figure 4.5). For instance, the classifier can easily dis-
tinguish rotated faces by only detecting one eye or the mouth.

4.2.4 Preventing Degenerate Learning

As was observed by Doersch et al. [3], networks trained to solve a self-supervised
task might do so by using very local statistics (e.g., localization by detecting the chro-
matic aberration). Such solutions are called shortcuts and are a form of degenerate
learning as they yield features with poor generalization capabilities. When introduc-
ing artificial tasks, such as the discrimination of several image transformations, it is
vital to ensure that the trained network cannot exploit (local) artifacts introduced by
the transformations to solve the task. For example, the classifier could learn to recog-
nize processing artifacts of the inpainter F in order to recognize LCI transformed im-
ages. Although adversarial training should help prevent this behavior, we find that
it is not sufficient by itself. To further prevent such failure cases, we also train the
network F to autoencode image patches by modifying the loss Linp in Equation (5.1)
as Linp,AE = Linp + λAE

1
N ∑N

i=1 |F(ei)− ei|2, where λAE = 50 is a tuning parameter to
regulate the importance of autoencoding image patches. We also create artificial un-
transformed images by substituting a random patch with its autoencoded version.
In each mini-batch to the classifier, we replace half of the untransformed images with
these patch-autoencoded images. In this manner, the classifier will not focus on the
small artifacts (which could even be invisible to the naked eye) to discriminate the
transformations. We also replace half of the original images in a minibatch with
these patch-autoencoded images before applying the rotation during training.

4.3 On the Choice of Transformations

Our goal is to learn features by discriminating images undergoing different trans-
formations. We pointed out that this approach should use transformations that are
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distinguishable only by observing large regions of pixels and is scalable, i.e., it can
be further refined by including more transformations. In this section, we would like
to make these two aspects clearer.

Determining suitable transformations. We find that the choice of what transfor-
mations to use depends on the data distribution. An example of such dependency
in the case of RotNet on CelebA is shown in Figure 4.5. Intuitively, an ideal transfor-
mation is such that any transformed local patch should be found in the original dataset, but
any transformed global patch should not be found in the dataset. This is also the key idea
behind the design of LCI.

Introducing additional transformations. As we will show in the Experiments
section, adding more transformations (as specified above) can improve the perfor-
mance. An important aspect is that the classifier must be able to distinguish the
different transformations. Otherwise, its task is ambiguous and can lead to degen-
erate learning. Put in simple terms, a transformed global patch should be different from
any other global patch (including itself) transformed with a different transformation. We
verify that our chosen transformations satisfy this principle. LCI and image warping
cannot produce rotated images, and warping is a global deformation, while LCI is a
local one.

4.4 Experiments

We perform an extensive experimental evaluation of our formulation on several es-
tablished unsupervised feature learning benchmarks. For a fair comparison with
prior work, we implement the transformation classifier C with a standard AlexNet
architecture [11]. Following previous work, we remove the local response normal-
ization layers and add batch normalization [118] to all layers except for the final
one. We made no other modifications to the original architecture (we preserve the
two-stream architecture). We remove the max-pooling layer after conv5 and use
SAME padding throughout the network for experiments on lower resolution im-
ages. We used the standard data-augmentation strategies (random cropping and
horizontal flipping). Self-supervised pre-training of the classifier was performed us-
ing the AdamW optimizer [143] with parameters β1 = 0.5, β2 = 0.99 and a weight
decay of 10−4. We decayed the learning rate from 3 · 10−4 to 3 · 10−7 over the course
of training using cosine annealing [144]. The training of the inpainter network F
and patch-discriminator D was done using the Adam optimizer [120] with a fixed
learning rate of 2 · 10−4 and β1 = 0.5. The size of the patch boundary is set to 2
pixels in experiments on STL-10 and CelebA. On ImageNet, we use a 4-pixel bound-
ary. Details for the network architectures and additional results are provided in the
supplementary material.

4.4.1 Ablation Experiments

Limited Context Inpainting

We perform ablation experiments on STL-10 [117] to validate several design choices
for the joint inpainter and classifier training. We also illustrate the effect of the patch-
size on the performance of the learned features. We pre-train the transformation
classifier for 200 epochs on 64× 64 crops of the unlabeled training set. The mini-
batch size was set to 64. We then transfer the frozen conv5 features by training a



4.4. Experiments 37

TABLE 4.1: Ablation experiments for LCI on STL-10. We perform
ablations for different design choices of Limited Context Inpainting
(LCI) on STL-10 [117]. We pre-train an AlexNet to predict if an image
has been transformed with LCI or not and transfer the frozen conv5

features for linear classification.

Ablation Accuracy

(a) 32× 32 patches 61.2%
(b) 40× 40 patches 70.6%
(c) 56× 56 patches 75.1%

(d) Pre-trained and frozen F 63.7%
(e) No adversarial loss w.r.t. C 68.0%
(f) No patch autoencoding 69.5%

Baseline (48× 48 patches ) 76.2%

TABLE 4.2: Combinations of image transformations on STL-10. We
report the test set accuracy of linear classifiers trained on frozen fea-
tures for models trained to predict different combinations of image

transformations on STL-10.

Initialization conv1 conv2 conv3 conv4 conv5

Random 48.4% 53.3% 51.1% 48.7% 47.9%

Warp 57.2% 64.2% 62.8% 58.8% 55.3%
LCI 58.8% 67.2% 67.4% 68.1% 68.0%
Rot 58.2% 67.3% 69.3% 69.9% 70.1%

Warp + LCI 59.3% 68.1% 69.5% 68.5% 67.2%
Rot + Warp 57.4% 69.2% 70.7% 70.5% 70.6%
Rot + LCI 58.5% 69.2% 71.3% 72.8% 72.3%

Rot + Warp + LCI 59.2% 69.7% 71.9% 73.1% 73.7%

linear classifier for 500 epochs on randomly cropped 96 × 96 images of the small
labeled training set. Only LCI was used as a transformation in these experiments.
The results of the following ablations are reported in Table 4.1:

(a)-(c) Varying patch-size: We vary the size of the inpainted patches. We observe
that small patches lead to a significant drop in feature performance. Smaller
patches are easy to inpaint, and the results often do not alter the global image
statistics;

(d)-(f) preventing shortcuts: Following Section 4.2.4, we show how adversarial
training of F is necessary to achieve good performance by removing the feed-
back of both D and C in (d) and only C in (e). We also demonstrate the
importance of adding autoencoded patches to the non-transformed images in
(f);



38 Chapter 4. Learning by Recognizing Image Transformations

TABLE 4.3: Combinations of image transformations on CelebA. We
report the average precision of linear classifiers trained to predict fa-
cial attributes on frozen features of models trained to predict different

combinations of image transformations on CelebA.

Initialization conv1 conv2 conv3 conv4 conv5

Random 68.9% 70.1% 66.7% 65.3% 63.2%

Warp 71.7% 73.4% 71.2% 68.8% 64.3%
LCI 71.3% 73.0% 72.0% 71.1% 68.0%
Rot 70.3% 70.9% 67.8% 65.6% 62.1%

Warp + LCI 72.0% 73.9% 73.3% 72.1% 69.0%
Rot + Warp 71.6% 73.6% 72.0% 70.1% 66.4%
Rot + LCI 71.3% 72.7% 71.9% 70.8% 66.7%

Rot + Warp + LCI 71.8% 74.0% 73.5% 72.5% 69.2%

Combination of Image Transformations

We perform additional ablation experiments on STL-10 and CelebA [142] where C
is trained to predict different combinations of image transformations. These experi-
ments illustrate how our formulation can scale with the number of considered trans-
formations and how the transformations’ effectiveness depends on the data domain.

We pre-train the AlexNet to predict image transformations for 200 epochs on
64× 64 crops on STL-10 and 100 epochs on 96× 96 crops on CelebA using the stan-
dard data augmentations. For transfer, we train linear classifiers on top of the frozen
convolutional features (without resizing the feature-maps) to predict the ten object
categories in the case of STL-10 and predict the 40 face attributes of CelebA. Trans-
fer learning is performed for 700 epochs on 64× 64 crops in the case of STL-10 and
100 epochs on 96× 96 crops in the case of CelebA. We report results for STL-10 in
Table 4.2 and for CelebA in Table 4.3.

We can observe that the discrimination of many image transformations generally
leads to better feature performance on both datasets. When considering each of the
transformations in isolation, we see that not all of them generalize equally well to
different data domains. Rotation prediction especially performs significantly worse
on CelebA than on STL-10. The performance of LCI, on the other hand, is good on
both datasets.

4.4.2 Unsupervised Feature Learning Benchmarks

We compare our proposed model to state-of-the-art methods on the established fea-
ture learning benchmarks. We pre-train the transformation classifier for 200 epochs
on the ImageNet training set. We randomly cropped images to 128× 128, and re-
moved the last max-pooling layer during pre-training to preserve the feature map’s
size before the fully-connected layers. We used a batch size of 96 and trained on 4
GPUs.

Pascal VOC. We finetune our transformation classifier features for multi-label clas-
sification, object detection, and semantic segmentation on the Pascal VOC dataset.
We follow the established experimental setup and use the framework provided by
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TABLE 4.4: Transfer learning experiments on PASCAL VOC. We re-
port transfer learning results for classification, detection, and segmen-
tation on PASCAL VOC compared to state-of-the-art feature learning

methods (* use a bigger AlexNet).

Classification Detection Segmentation
Model [Ref] (mAP) (mAP) (mIoU)

Krizhevsky et al.[11] [55] 79.9% 59.1% 48.0%
Random [31] 53.3% 43.4% 19.8%
Agrawal et al.[126] [27] 54.2% 43.9% -
Bojanowski et al.[127] [127] 65.3% 49.4% -
Donahue et al.[27] [27] 60.1% 46.9% 35.2%
Feng et al.[75] [75] 74.3% 57.5% 45.3%
Gidaris et al.[54] [54] 73.0% 54.4% 39.1%
Jayaraman & Grauman [113] [113] - 41.7% -
Jenni & Favaro [5] [5] 69.8% 52.5% 38.1%
Krähenbühl et al.[128] [128] 56.6% 45.6% 32.6%
Larsson et al.[57] [57] 65.9% - 38.0%
Noroozi & Favaro [4] [4] 67.6% 53.2% 37.6%
Noroozi et al.[53] [53] 67.7% 51.4% 36.6%
Noroozi et al.[50] [50] 72.5% 56.5% 42.6%
Mahendran et al.[145] [145] 64.4% 50.3% 41.4%
Mundhenk et al.[51] [51] 69.6% 55.8% 41.4%
Owens et al.[62] [62] 61.3% 44.0% -
Pathak et al.[31] [31] 56.5% 44.5% 29.7%
Pathak et al.[61] [61] 61.0% 52.2% -
Wang & Gupta [59] [128] 63.1% 47.4% -
Zhan et al.[146] [146] - - 44.5%
Zhang et al.[55] [55] 65.9% 46.9% 35.6%
Zhang et al.[56] [56] 67.1% 46.7% 36.0%

Doersch et al.[3]* [27] 65.3% 51.1% -
Caron et al.[71]* [71] 73.7% 55.4% 45.1

Ours - 74.5% 56.8% 44.4

Krähenbühl et al. [128] for multilabel classification, the Fast-RCNN [129] framework
for detection and the FCN [130] framework for semantic segmentation. We absorb
the batch-normalization parameters into the associated layers’ parameters in the
AlexNet and apply the data-dependent rescaling by Krähenbühl et al. [128], as is
standard practice. The results of these transfer learning experiments are reported in
Table 4.4. We achieve state-of-the-art performance in classification and competitive
results for detection and segmentation.

Linear Classifier Experiments on ImageNet and Places. To measure our SSL task’s
quality, we use the transformation classifier as a fixed feature extractor and train a
linear classifier on top of each convolutional layer. These experiments are performed
both on ImageNet (the dataset used for pre-training) and Places [131] (to measure
how well the features generalize to new data). We follow the same setup as the
state-of-the-art methods and report the accuracy achieved on a single crop. Results
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TABLE 4.5: Linear classifier experiments on ImageNet. We report
validation set accuracy on ImageNet with linear classifiers trained on
frozen convolutional layers. † indicates multi-crop evaluation and *

use a bigger AlexNet.

Model\Layer conv1 conv2 conv3 conv4 conv5

ImageNet Labels 19.3% 36.3% 44.2% 48.3% 50.5%
Random 11.6% 17.1% 16.9% 16.3% 14.1%

Donahue et al.[27] 17.7% 24.5% 31.0% 29.9% 28.0%
Feng et al.[75] 19.3% 33.3% 40.8% 41.8% 44.3%
Gidaris et al.[54] 18.8% 31.7% 38.7% 38.2% 36.5%
Huang et al.[147] 15.6% 27.0% 35.9% 39.7% 37.9%
Jenni & Favaro [5] 19.5% 33.3% 37.9% 38.9% 34.9%
Noroozi & Favaro [4] 18.2% 28.8% 34.0% 33.9% 27.1%
Noroozi et al.[53] 18.0% 30.6% 34.3% 32.5% 25.7%
Noroozi et al.[50] 19.2% 32.0% 37.3% 37.1% 34.6%
Tian et al.[106] 18.4% 33.5% 38.1% 40.4% 42.6%
Wu et al.[70] 16.8% 26.5% 31.8% 34.1% 35.6%
Zhang et al.[55] 13.1% 24.8% 31.0% 32.6% 31.8%
Zhang et al.[56] 17.7% 29.3% 35.4% 35.2% 32.8%
Zhang et al.[135] 19.2% 32.8% 40.6% 39.7% 37.7%

Doersch et al.[3]* 16.2% 23.3% 30.2% 31.7% 29.6%
Caron et al.[71]* 12.9% 29.2% 38.2% 39.8% 36.1%
Zhuang et al.[72]*† 18.7% 32.7% 38.1% 42.3% 42.4%

Ours 20.8% 34.5% 40.2% 43.1% 41.4%
Ours† 22.4% 37.4% 43.1% 46.6% 46.0%

for ImageNet are shown in Table 4.5 and for Places in Table 4.6. Our learned features
achieve state-of-the-art performance for conv1, conv2 and conv4 on ImageNet. On
Places we achieve the best results on conv1, conv3 and conv4. Our results on conv4
in particular are the best overall and even slightly surpass the performance of an
AlexNet trained on ImageNet using supervision.

ResNet Experiments on STL-10. We performed additional experiments with a more
modern network architecture on STL-10. We followed the setup of [149] and trained
a ResNet-34 [119] for 200 epochs on the 100K unlabeled training images of STL-10.
We then fine-tuned the network for 300 epochs on the 5K labeled training images
and evaluated using the 8K test images. The training parameters are the same as in
our experiments with AlexNet. We used data augmentation and multi-crop eval-
uation similar to [149]. Results and comparison to prior work are shown in Table 4.7.

Nearest Neighbor Evaluation. Features learned in deep CNNs through supervised
learning tend to distribute so that their Euclidean distance relates closely to the se-
mantic visual similarity of the images they correspond to. We want to see if also our
SSL features enjoy the same property. Thus, we compute the nearest neighbors of
our SSL and SL features in conv5 features space on the validation set of ImageNet.
Results are shown in Figure 4.7. We also show a quantitative comparison of k-nearest
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TABLE 4.6: Linear classifier experiments on Places. We report vali-
dation set accuracy on Places with linear classifiers trained on frozen
convolutional layers. † indicates multi-crop evaluation and * the use

of a bigger AlexNet.

Model\Layer conv1 conv2 conv3 conv4 conv5

Places Labels 22.1% 35.1% 40.2% 43.3% 44.6%
ImageNet Labels 22.7% 34.8% 38.4% 39.4% 38.7%
Random 15.7% 20.3% 19.8% 19.1% 17.5%

Donahue et al.[27] 22.0% 28.7% 31.8% 31.3% 29.7%
Feng et al.[75] 22.9% 32.4% 36.6% 37.3% 38.6%
Gidaris et al.[54] 21.5% 31.0% 35.1% 34.6% 33.7%
Jenni & Favaro [5] 23.3% 34.3% 36.9% 37.3% 34.4%
Noroozi & Favaro [4] 23.0% 31.9% 35.0% 34.2% 29.3%
Noroozi et al.[53] 23.3% 33.9% 36.3% 34.7% 29.6%
Noroozi et al.[50] 22.9% 34.2% 37.5% 37.1% 34.4%
Owens et al.[62] 19.9% 29.3% 32.1% 28.8% 29.8%
Pathak et al.[31] 18.2% 23.2% 23.4% 21.9% 18.4%
Wu et al.[70] 18.8% 24.3% 31.9% 34.5% 33.6%
Zhang et al.[55] 16.0% 25.7% 29.6% 30.3% 29.7%
Zhang et al.[56] 21.3% 30.7% 34.0% 34.1% 32.5%
Zhang et al.[135] 22.1% 32.9% 37.1% 36.2% 34.7%

Doersch et al.[3]* 19.7% 26.7% 31.9% 32.7% 30.9%
Caron et al.[71]* 18.6% 30.8% 37.0% 37.5% 33.1%
Zhuang et al.[72]*† 18.7% 32.7% 38.2% 40.3% 39.5%

Ours 24.1% 33.3% 37.9% 39.5% 37.7%
Ours† 25.5% 35.3% 40.1% 42.1% 40.3%

TABLE 4.7: Comparison to prior works on STL-10. We report test
set accuracy obtained with a ResNet-34 on STL-10 and compare with
other published results. Note that the methods do not all use the same

network architecture.

Method Accuracy

Dosovitskiy et al.[69] 74.2%
Dundar et al.et al.[122] 74.1%
Hjelm et al.[148] 77.0%
Huang et al.[123] 76.8%
Jenni & Favaro [5] 80.1%
Ji et al.[149] 88.8%
Oyallon et al.[150] 87.6%
Swersky et al.[124] 70.1%
Zhao et al.[125] 74.3%

Ours 91.8%

neighbor classification on the Places validation set in Figure 4.6. We report the leave-
one-out cross-validation (LOOCV) accuracy for different values of k. This can be
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FIGURE 4.6: Nearest-neighbor accuarcy on Places. We report leave-
one-out cross-validation (LOOCV) accuracy for k-nearest neighbor
classifiers on the Places validation set. We compare our self-
supervised transformation classifier’s performance against features
of a supervised network for different values of k. Both networks were

pre-trained on ImageNet.

done efficiently by computing (k + 1)-nearest neighbors using the complete dataset
and by excluding the closest neighbor for each query. The concatenation of features
from five 128× 128 crops (extracted at the resolution we trained the networks on) is
used for nearest neighbors. The features are standardized, and cosine similarity is
used for nearest neighbor computation.

4.5 Discussion

This chapter introduced the self-supervised feature learning task of discriminating
natural images from images transformed through local inpainting, image warping,
and rotations. This approach is based on the principle that trained features general-
ize better when their task requires recognizing natural image’s global pixel statistics.
Substantial experimental evaluation supports this principle: trained features achieve
state-of-the-art performance on several transfer learning benchmarks (Pascal VOC,
STL-10, CelebA, and ImageNet) and even slightly outperform supervised training
on Places. The recognition of distinct transformations of visual patterns provides a
flexible framework for designing self-supervised learning tasks. In the next chapter,
we explore a similar methodology on videos by learning to recognize transforma-
tions of the temporal domain.
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FIGURE 4.7: Comparison of nearest neighbor retrieval. The left-
most column shows the query image. Odd rows: Retrievals with our
features. Even rows: Retrievals with features learned using ImageNet
labels. We computed nearest neighbors on the validation set of Ima-

geNet with conv5 features using cosine similarity.





45

Chapter 5

Learning Motion via Temporal
Transformations

“A body in motion tends to stay in motion unless
acted on by an outside force."

— Isaac Newton

In Chapters 3 and 4, we focused on self-supervised learning tasks that learn vi-
sual representations of single images. Single images carry crucial information about
a scene, such as an object’s appearance (e.g., shape and texture). However, by observ-
ing only static images, we miss an essential aspect of the visual world: the temporal
evolution of scenes. When we observe a temporal sequence of image frames, i.e., a
video, it is possible to understand much more about the objects and the scene. In fact,
by moving, objects reveal their 3D shape (through a change in the occlusions), their
behavior (how they move due to the laws of physics or their inner mechanisms), and
their interaction with other objects (e.g., how they deform, break, or clamp). How-
ever, learning such information is non-trivial. Even when labels related to motion
categories are available (such as in action recognition), there is no guarantee that
the trained model will learn the desired information. Instead, it might merely focus
on a single iconic frame and recognize a key pose or some notable features strongly
correlated to the action [2].

This chapter describes how to build representations of videos that capture more
than the information contained in a single frame. To this end, we design tasks that
learn an accurate model of motion by learning to distinguish an unprocessed video
from a temporally-transformed one. Since similar frames are present in both the
unprocessed and transformed sequence, the only piece of information that discrim-
inates between them is their temporal evolution. This idea has been exploited in the
past [79], [81], [82], [84], [151]. Furthermore, it is also related to work in time-series
analysis, where dynamic time warping is used as a distance for temporal sequences
[152].

We analyze different temporal transformations and evaluate how learning to dis-
tinguish them yields a useful representation for classifying videos into meaningful
action categories. Our main finding is that the most effective temporal distortions
require observing the largest number of frames to be identified. For instance, substi-
tuting the second half of a video with its first half in reverse order can be detected
by comparing the three frames around the temporal symmetry. In contrast, distin-
guishing when a video is played backward from when it is played forward [84] may

Material from: S. Jenni, G. Meishvili, and P. Favaro. "Video Representation Learning by Recog-
nizing Temporal Transformations." In European Conference on Computer Vision 2020. © Springer Nature
Switzerland AG 2020
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(a)
0 1 2 3 4 5

(b)
0 2 4 6 8 10

(c)
0 4 8 12 16 20

(d)
0 8 16 24 32 40

(e)
8 0 3 4 10 6

(f)
0 8 16 24 18 10

(g)
0 5 13 18 22 24

FIGURE 5.1: Learning from temporal transformations. The frame
number is indicated below each image. (a)-(d) speed: skip 0 frames
(a), 1 frame (b), 3 frames (c), or 7 frames (d). (e) random: frame
permutation. (f) periodic: forward-backward motion (at the selected
speed). (g) warp: variable frame skipping while preserving the order.

require observing many frames. Thus, one can achieve powerful video representa-
tions through the pseudo-task of classifying temporal distortions that differ in their
long-range motion dynamics. Towards this goal, we investigate four different tem-
poral transformations of a video, which we illustrate in Figure 5.1:

1. Speed: Select a subset of frames with uniform sub-sampling (i.e., with a fixed
number of frames in between every pair of selected frames) while preserving
the order in the original sequence;

2. Random: Select a random permutation of the frame sequence;

3. Periodic: Select a random subset of frames in their natural (forward) temporal
order and then a random subset in the backward order;

4. Warp: Select a subset of frames with a random sub-sampling (i.e., with a ran-
dom number of frames in between every pair of selected frames) while pre-
serving the natural (forward) order in the original sequence.

We use these transformations to verify and illustrate the hypothesis that learning to
distinguish them from one another (and the original sequence) is useful to build a
representation of videos for action recognition. For simplicity, we train a neural net-
work that takes videos of the same duration as input and outputs two probabilities:
one is about which one of the above temporal transformations the input sequence
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is likely to belong to and the second is about identifying the correct speed of the
chosen speed transformation.

In the experiments section, we transfer features of standard 3D-CNN architec-
tures (C3D [153], 3D-ResNet [154], and R(2+1)D [155]) pre-trained through the above
pseudo-task to standard action recognition data sets such as UCF101 and HMDB51,
with improved performance compared to prior works. We also show that features
learned through our proposed pseudo-task capture long-range motion better than
features obtained through supervised learning.

Contributions. Our contributions can be summarized as follows: 1) we introduce
a novel self-supervised learning task to learn video representations by distinguish-
ing temporal transformations; 2) we study the discrimination of the following novel
temporal transformations: speed, periodic and warp; 3) we show that our features
are a better representation of motion than features obtained through supervised
learning and achieve state-of-the-art transfer learning performance on action recog-
nition benchmarks.

5.1 Background

Several prior works have explored the temporal ordering of video frames as a super-
visory signal. Misra et al. [79] first explored this direction by recognizing shuffled
sequences, which corresponds to recognizing the random transformation in our
framework. Another related work focuses on predicting the arrow of time in videos
[84], i.e., if frames are played in forward or backward order. We also observed three
concurrent publications that also exploit the playback speed as a self-supervision
signal [85], [86], [87]. In contrast to these prior works, our work studies a broader
range of temporal transformations. This encourages the learning of longer-range
motion patterns since many of the temporal transformations we consider are not
distinguishable based only on short-range motion patterns. As a result, our experi-
ments show that our features’ increased temporal extent (in frames) correlates to the
transfer learning performance in action recognition. We refer to Chapter 2 for more
discussion of prior unsupervised approaches on video.

5.2 Learning Video Dynamics

Recent work [89] illustrated how careful learning of motion statistics led to a video
representation with good transfer performance on several tasks and data sets. The
learning of motion statistics was made explicit by extracting optical flow between
frame pairs, computing flow changes, and then identifying the region where some
key attributes (e.g., maximum magnitude and orientation) of the time-averaged
flow-change occurred. In this chapter, we also aim to learn from motion statistics.
However, we focus our attention entirely on the temporal evolution without specify-
ing motion attributes of interest or defining a task based on appearance statistics. We
hypothesize that these important aspects could be implicitly learned and exploited
by the neural network to solve the lone task of discriminating temporal transfor-
mations of a video. Our objective is to encourage the neural network to capture
long-range motion statistics well. To do so, we train the network to discriminate
videos where the image content is preserved, but not the temporal evolution. For
example, we ask the network to distinguish a video at the original frame rate from
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3D-CNN

speed 0

speed 1

speed 2

speed 3

random

periodic

warp

motion type 

speed type 

speed
random
periodic
warp

speed 0
speed 1
speed 2
speed 3

randomized
selector

FIGURE 5.2: Training a 3D-CNN to distinguish temporal transfor-
mations. In each mini-batch, we select a video speed (out of 4 possi-
ble choices), i.e., how many frames are skipped in the original video.
Then, the 3D-CNN receives as input mini-batch a mixture of 4 possi-
ble transformed sequences: speed (with the chosen frame skipping),
random, periodic and warp. The network outputs the probability
of which motion type a sequence belongs to and the probability of

which speed type the speed-transformed sequence has.

when it is played four times faster. Due to the laws of physics, executing the same
task at different speeds leads to different motion dynamics compared to when a
video is just played at different speeds (e.g., compare marching vs. walking played
at a higher speed). Capturing the subtleties of these motions’ dynamics requires
more than estimating motion between 2 or 3 frames. Moreover, these subtleties are
specific to the moving object, and thus they require object detection and recognition.

In our approach, we transform videos by sampling frames according to differ-
ent schemes, which we call temporal transformations. To support our learning hy-
pothesis, we analyze transformations that require short- (i.e., temporally local) and
long-range (i.e., temporally global) video understanding. As we will illustrate in the
experiments section, short-range transformations yield representations that transfer
to action recognition with lower performance than long-range ones.

5.2.1 Transformations of Time

Figure 5.2 illustrates how we train our neural network (a 3D-CNN [153]) to build a
video representation (with 16 frames). In this section, we focus on the inputs to the
network. As mentioned above, our approach is based on distinguishing different
temporal transformations. We consider four fundamental types of transformations:
Speed changes, random temporal permutations, periodic motions, and temporal
warp changes. These transformations boil down to picking a sequence of temporal
indices to sample the videos in our data set. Vτ

κ ⊂ {0, 1, 2, . . . } denotes the chosen
subset of indices of a video based on the transformation τ ∈ {0, 1, 2, 3} and with
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speed κ.

Speed (τ = 0): In this first type, we artificially change the video frame rate, i.e., its
playing speed. We achieve that by skipping a different number of frames. We con-
sider 4 cases, speed 0, 1, 2, 3 corresponding to κ = 0, 1, 2, 3 respectively, where we
skip 2κ − 1 frames. The resulting playback speed of speed κ is therefore 2κ times the
original speed. In the generation of samples for the neural network training, we first
uniformly sample κ ∈ {0, 1, 2, 3}, the playback speed, and then use this parameter
to define other transformations. This sequence is used in all experiments as one of
the categories against either other speeds or one of the other transformations below.
The index sequence V0

κ is thus ρ + [0, 1 · 2κ, 2 · 2κ, . . . , 15 · 2κ], where ρ is a random
initial index.

Random (τ = 1): In this second temporal transformation, we randomly permute
the indices of a sequence without skipping frames. We fix κ = 0 to ensure that the
maximum frame skip between two consecutive frames is not too dissimilar to other
transformations. This case is used as a reference, as random permutations can often
be detected by observing only a few nearby frames. Indeed, in the Experiments
section, one can see that this transformation yields a low transfer performance. The
index sequence V1

0 is thus ρ + permutation([0, 1, 2, . . . , 15]). This transformation is
similar to that of the pseudo-task of Misra et al. [79].

Periodic (τ = 2): This transformation synthesizes motions that exhibit approximate
periodicity. To create such artificial cases we first pick a point 2 · 2κ < s < 13 · 2κ

where the playback direction switches. Then, we compose a sequence with the
following index sequence: 0 to s and then from s − 1 to 2s − 15 · 2κ. Finally,
we sub-sample this sequence by skipping 2κ − 1 frames. Notice that the ran-
domization of the midpoint s in the case of κ > 0 yields pseudo-periodic se-
quences, where the frames in the second half of the generated sequence often do not
match the frames in the first half of the sequence. The index sequence V2

κ is thus
ρ + [0, 1 · 2κ, 2 · 2κ, . . . , s̄ · 2κ, (s̄− 1) · 2κ + δ, . . . , (2s̄− 15) · 2κ + δ]), where s̄ = bs/2κc,
δ = s− s̄ · 2κ, and ρ = max(0, (15− 2s̄) · 2κ − δ).

Warp (τ = 3): In this transformation, we pick a set of 16 ordered indices with a
non-uniform number of skipped frames between them (we consider sampling any
frame, so we let κ = 0). In other words, between any of the frames in the generated
sequence, we have a random number of skipped frames, each chosen independently
from the set {0, . . . , 7}. This transformation creates a warping of the temporal di-
mension by varying the playback speed from frame to frame. To construct the index
sequence V3

0 we first sample the frame skips sj ∈ {0, . . . , 7} for j = 1, . . . , 15 and set
V3

0 to ρ + [0, s1, s1 + s2, . . . , ∑15
j=1 sj].

5.2.2 Training

Let φ denote our network, and let us denote with φm (motion) and φs (speed) its two
softmax outputs (see Figure 5.2). To train φ we optimize the following loss

−Eκ∼U [0,3],p∈V0
κ ,q∈V1

0 ,s∈V2
κ ,t∈V3

0 ,x

[
log
(
φm

0
(
xp
)

φm
1
(
xq
)

φm
2 (xs) φm

3 (xt)
)]

(5.1)

−Eκ∼U [0,3],p∈V0
κ ,x
[

log
(
φs

κ

(
xp
)) ]
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TABLE 5.1: Ablation experiments. We train a 3D-CNN to distinguish
different sets of temporal transformations. The learned features’ qual-
ity is evaluated through transfer learning for action recognition on
UCF101 (with frozen convolutional layers) and HMDB51 (with fine-

tuning of the whole network).

speed UCF101 HMDB51
Pre-Training Signal loss (conv frozen) (conv fine-tuned)

Action Labels UCF101 - 60.7% 28.8%

Speed YES 49.3% 32.5%

Speed + Random NO 44.5% 31.7%
Speed + Periodic NO 40.6% 29.5%
Speed + Warp NO 43.5% 32.6%
Speed + Random YES 55.1% 33.2%
Speed + Periodic YES 56.5% 36.1%
Speed + Warp YES 55.8% 36.9%

Speed + Random + Periodic NO 47.4% 30.1%
Speed + Random + Warp NO 54.8% 36.6%
Speed + Periodic + Warp NO 50.6% 36.4%
Speed + Random + Periodic YES 60.0% 37.1%
Speed + Random + Warp YES 60.4% 39.2%
Speed + Periodic + Warp YES 59.5% 39.0%

Speed + Random + Periodic + Warp NO 54.2% 34.9%
Speed + Random + Periodic + Warp YES 60.6% 38.0%

where x is a video sample, the sub-index denotes the set of frames. This loss is the
cross entropy both for motion and speed classification (see Figure 5.2).

5.2.3 Implementation

Following prior work [89], we use the smaller variant of the C3D architecture [153]
for the 3D-CNN transformation classifier in most of our experiments. Training was
performed using the AdamW optimizer [143] with parameters β1 = 0.9, β2 = 0.99
and a weight decay of 10−4. The initial learning rate was set to 3 · 10−4 during pre-
training and 5 · 10−5 during transfer learning. We decayed the learning rate by a
factor of 10−3 throughout training using cosine annealing [144] both during pre-
training and transfer learning. We use batch-normalization [118] in all but the last
layer. Mini-batches are constructed such that all the different coarse time warp types
are included for each sampled training video. The batch size is set 28 examples (in-
cluding all the transformed sequences). The speed type is uniformly sampled from
all the considered speed types. Since not all the videos allow sampling of all speed
types (due to their short video duration), we limit the speed type range to the maxi-
mal possible speed type in those examples. We use the standard pre-processing for
the C3D network. In practice, video frames are first resized to 128× 171 pixels, from
which we extract random crops of size 112× 112 pixels. We also apply random hor-
izontal flipping of the video frames during training. We use only the raw, unfiltered
RGB video frames as input to the motion classifier and do not use optical-flow or
other auxiliary signals.
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5.3 Experiments

Datasets and Evaluation. In our experiments, we consider three datasets. Kinet-
ics [156] is a large human action dataset consisting of around 500K videos. Video
clips are collected from YouTube and span 600 human action classes. We use the
training split for self-supervised pre-training. UCF101 [157] contains around 13K
video clips spanning 101 human action classes. HMDB51 [158] contains around 5K
videos belonging to 51 action classes. Both UCF101 and HMDB51 come with three
pre-defined train and test splits. We report the average performance over all splits
for transfer learning experiments. We use UCF101 train split 1 for self-supervised
pre-training. For transfer learning experiments, we skip three frames corresponding
to transformation speed 2. For the evaluation of action recognition classifiers in
transfer experiments, we use as prediction the maximum class probability averaged
over all center-cropped sub-sequences for each test video. More details are provided
in the supplementary material.

Understanding the Impact of the Temporal Transformations. We perform abla-
tion experiments on UCF101 and HMDB51, where we vary the number of different
temporal transformations the 3D-CNN is trained to distinguish. The 3D-CNN is
pre-trained for 50 epochs on UCF101 with our self-supervised learning task. We
then perform transfer learning for action recognition on UCF101 and HMDB51. On
UCF101, we freeze the weights of the convolutional layers and train three randomly
initialized fully-connected layers for action recognition. This experiment treats the
transformation classifier as a fixed video feature extractor. On HMDB51, we fine-
tune the whole network, including convolutional layers, on the target task. This
experiment, therefore, measures the quality of the network initialization obtained
through self-supervised pre-training. In both cases, we again train for 50 epochs on
the action recognition task. The results of the ablations are summarized in Table 5.1.
For reference, we also report the performance of network weights learned through
supervised pre-training on UCF101.

We observe that when considering the impact of a single transformation across
different cases, the types warp and speed achieve the best transfer performance.
With the same analysis, the transformation random leads to the worst transfer per-
formance on average. We observe that random is also the most straightforward
transformation to detect (based on training performance – not reported). As can be
seen in Figure 5.1 (e), this transformation can lead to drastic differences between
consecutive frames. Such examples can therefore be easily detected by only com-
paring pairs of adjacent frames. In contrast, the motion type warp can not be dis-
tinguished based solely on two adjacent frames and requires modeling long-range
dynamics. We also observe that distinguishing a larger number of transformations
generally leads to increased transfer performance. The effect of the speed type
classification is quite noticeable. It leads to a very significant transfer performance
increase in all cases. This is also the most challenging pseudo task (based on the
training performance – not reported). Recognizing the speed of actions is challeng-
ing since different action classes naturally exhibit widely different motion speeds
(e.g., “applying makeup” vs. “biking”). This task might often require a deeper
understanding of the physics and objects involved in the video. Notice also that
our pre-training strategy leads to a better transfer performance on HMDB51 than
supervised pre-training using action labels. This suggests that the video dynam-
ics learned through our pre-training generalize well to action recognition and that
such dynamics are not well captured through the lone supervised action recognition.
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TABLE 5.2: Comparison to prior work on self-supervised video rep-
resentation learning. Whenever possible, we compare to results re-
ported with the same data modality we used, i.e., unprocessed RGB

input frames. * are our reimplementations.

Method Ref Network Train Dataset UCF101 HMDB51

Shuffle&Learn [79] [79] AlexNet UCF101 50.2% 18.1%
O3N [81] [81] AlexNet UCF101 60.3% 32.5%
AoT [84] [84] VGG-16 UCF101 78.1% -
OPN [82] [82] VGG-M-2048 UCF101 59.8% 23.8%
DPC [77] [77] 3D-ResNet34 Kinetics 75.7% 35.7%
SpeedNet [86] [86] S3D-G Kinetics 81.1% 48.8%
AVTS [88] (RGB+audio) [88] MC3 Kinetics 85.8% 56.9%

Shuffle&Learn [79]* - C3D UCF101 55.8% 25.4%
3D-RotNet [76]* - C3D UCF101 60.6% 27.3%
Clip Order [159] [159] C3D UCF101 65.6% 28.4%
Spatio-Temp [89] [89] C3D UCF101 58.8% 32.6%
Spatio-Temp [89] [89] C3D Kinetics 61.2% 33.4%
3D ST-puzzle [83] [83] C3D Kinetics 60.6% 28.3%
Ours - C3D UCF101 68.3% 38.4%
Ours - C3D Kinetics 69.9% 39.6%

3D ST-puzzle [83] [83] 3D-ResNet18 Kinetics 65.8% 33.7%
3D RotNet [76] [76] 3D-ResNet18 Kinetics 66.0% 37.1%
DPC [77] [77] 3D-ResNet18 Kinetics 68.2% 34.5%
Ours - 3D-ResNet18 UCF101 77.3% 47.5%
Ours - 3D-ResNet18 Kinetics 79.3% 49.8%

Clip Order [159] [159] R(2+1)D UCF101 72.4% 30.9%
PRP [87] [87] R(2+1)D UCF101 72.1% 35.0%
Ours - R(2+1)D UCF101 81.6% 46.4%

Transfer to UCF101 and HMDB51. We compare to prior work on self-supervised
video representation learning in Table 5.2. A fair comparison to much of the prior
work is difficult due to the use of very different network architectures and train-
ing and transfer settings. We opted to compare with some commonly used net-
work architectures (i.e., C3D, 3D-ResNet, and R(2+1)D) and re-implemented two
prior works [79] and [76] using C3D. We performed self-supervised pre-training on
UCF101 and Kinetics. C3D is pre-trained for 100 epochs on UCF101 and 15 epoch on
Kinetics. 3D-ResNet and R(2+1)D are pre-trained for 200 epochs on UCF101 and 15
epochs on Kinetics. We fine-tune all the layers for action recognition. Fine-tuning is
performed for 75 epochs using C3D and for 150 epochs with the other architectures.
When pre-training on UCF101, our features outperform prior work on the same net-
work architectures. Pre-training on Kinetics leads to improvements in all cases.

Long-Range vs Short-Range Temporal Statistics. To illustrate how well our video
representations capture motion, we transfer them to other pseudo-tasks that focus
on videos’ temporal evolution. One task is the classification of the synchronization
of video pairs, i.e., how many frames one video is delayed from the other. A second
task is the classification of two videos into which one comes first temporally. These
two tasks are illustrated in Figure 5.3.
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(a)

(b)

FIGURE 5.3: Time-related pseudo-tasks. (a) Synchronization prob-
lem: The network is given two sequences with a time delay (4 frames
in the example), and a classifier is trained to determine the delay. (b)
The before-after problem: The network is given two non-overlapping
sequences, and it needs to determine which comes first (the bottom

sequence after the top one in the example).

TABLE 5.3: Time-related pseudo-tasks. We examine how well
features from different pre-training strategies can be transferred to
time-related tasks on videos. As tasks, we consider synchroniz-
ing two overlapping videos and the temporal ordering of two non-
overlapping videos. We report the accuracy for both tasks on the
UCF101 test set and report Mean Absolute Error (MAE) for the syn-

chronization task. * are our reimplementations.

Sync. Before-After
Method Accuracy MAE Accuracy

Action Labels (UCF101) 36.7% 1.85 66.6%
3D-RotNet [76]* 28.0% 2.84 57.8%
Shuffle&Learn [79]* 39.0% 1.89 69.8%
Ours 42.4% 1.61 76.9%

For the synchronization task, two temporally overlapping video sequences x1
and x2 are separately fed to the pre-trained C3D network to extract features ψ(v1)
and ψ(v2) at the conv5 layer. These features are then fused through ψ(v1)− ψ(v2)
and fed as input to a randomly initialized classifier consisting of three fully-
connected layers trained to classify the offset between the two sequences. We
consider random offsets between the two video sequences in the range of -6 to +6.
For the second task we construct a single input sequence by sampling two non-
overlapping 8 frame sub-sequences xi1 and xi2, where xi1 comes before xi2. The
network inputs are then either (xi1, xi2) for class “before” or (xi2, xi1) for the class
“after”. We reinitialize the fully-connected layers in this case as well.

In Table 5.3 we compare the performance of different pre-training strategies on
the time-related pseudo-tasks. We see that our self-supervised features perform bet-
ter at these tasks than supervised features and other self-supervised features, thus
showing that they capture the temporal dynamics in the videos well.
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(a)

(b)

(c)

FIGURE 5.4: Visualization of active pixels. The first row in each
block corresponds to the input video. Rows two and three show the
output of our adaptation of Guided Backpropagation [160] when ap-
plied to a network trained through self-supervised learning and su-
pervised learning, respectively. In all three cases, we observe that the
self-supervised network focuses on image regions of moving objects
or persons. In (a), we can also observe how the self-supervised model
is detecting long-range dynamics. On the other hand, the supervised

model focuses a lot on static frame features in the background.

Visualization. What are the attributes, factors, or features of the videos that self-
supervised and supervised models are extracting to perform the final classification?
To examine what the self-supervised and supervised models focus on, we apply
Guided Backpropagation [160]. This method allows us to visualize which part of
the input has the most impact on the model’s final decision. We slightly modify the
procedure by subtracting the median values from every frame of the gradient video
and taking the result’s absolute value. We visualize the pre-trained self-supervised,
and supervised models on several test samples from UCF101. As one can see in
Figure 5.4, a model pre-trained on our self-supervised task tends to ignore the
background and focuses on persons performing an action and on moving objects.
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Models trained with supervised learning, on the other hand, tend to focus more on
the appearance of foreground and background. Another observation we make is
that the self-supervised model identifies the location of moving objects/people in
the past and future frames. This is visible in row number 2 of blocks (a) and (c) of
Figure 5.4, where the network tracks the possible locations of the moving ping-pong
and billiard balls, respectively. A possible explanation for this observation is that
our self-supervised task only encourages the learning of dynamics. The appearance
of non-moving objects or static backgrounds is not useful to solve the pretext task
and is thus ignored.

Learning Dynamics vs. Frame Features. The visualizations in Figure 5.4 indi-
cate that features learned through motion discrimination focus on the dynamics in
videos and not so much on static content present in single frames (e.g., background)
when compared to supervised features. To further investigate how much the fea-
tures learned through the two pre-training strategies rely on motion, we performed
experiments where we remove all the dynamics from videos. To this end, we create
input videos by replicating a single frame 16 times (resulting in a still video) and
train the three fully-connected layers on conv5 features for action classification on
UCF101. Features obtained through supervised pre-training achieve an accuracy of
18.5% (vs. 56.5% with dynamics), and features from our self-supervised task achieve
1.0% (vs. 58.1%). Although this experiment’s setup is somewhat contrived (since the
input domain is altered), it still illustrates that our features rely almost exclusively
on motion instead of features present in single frames. This can be advantageous
since motion features might generalize better to variations in the background ap-
pearance in many cases.

Nearest-Neighbor Evaluation. We perform an additional quantitative evaluation of
the learned video representations via the nearest-neighbor retrieval. The features are
obtained by training a 3D-ResNet18 network on Kinetics with our pseudo-task and
are chosen as the output of the global average pooling layer, which corresponds to
a vector of size 512. For each video, we extract and average features of 10 temporal
crops. To perform the nearest-neighbor retrieval, we first normalize the features
using the training set statistics. Cosine similarity is used as the metric to determine
the nearest neighbors. We follow the evaluation proposed by [49] on UCF101. Query
videos are taken from test split 1, and all the videos of train split 1 are considered as
retrieval targets. A query is considered correctly classified if the k-nearest neighbors
contain at least one video of the correct class (i.e., same class as the query). We report
the mean accuracy for different values of k and compare to prior work in Table 5.4.
Our features achieve state-of-the-art performance.

Qualitative Nearest-Neighbor Results We show some examples of nearest neighbor
retrievals in Figure 5.5. Frames from the query test video are shown in the leftmost
block of three columns. The second and third blocks of three columns show the top
two nearest neighbors from the training set. We observe that the retrieved examples
often capture the semantics of the query well. This is the case even when the action
classes do not agree (e.g., last row).
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TABLE 5.4: Video retrieval performance on UCF101. We compare to
prior work in terms of k-nearest neighbor retrieval accuracy. Query
videos are taken from test split 1, and retrievals are computed on train
split 1. A query is correctly classified if the query class is present in
the top-k retrievals. We report mean retrieval accuracy for different

values of k.

Method Network Top1 Top5 Top10 Top20 Top50

Jigsaw [4] AlexNet 19.7 28.5 33.5 40.0 49.4
OPN [82] AlexNet 19.9 28.7 34.0 40.6 51.6
Büchler et al. [49] AlexNet 25.7 36.2 42.2 49.2 59.5
Clip Order [159] R3D 14.1 30.3 40.0 51.1 66.5
SpeedNet [86] S3D-G 13.0 28.1 37.5 49.5 65.0
PRP [87] R3D 22.8 38.5 46.7 55.2 69.1
Ours 3D-ResNet18 26.1 48.5 59.1 69.6 82.8

FIGURE 5.5: Examples of retrievals in UCF101. Leftmost block of 3
columns: Frames from the query sequences. Second and third blocks

of 3 columns: Frames from the two nearest neighbors.
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5.4 Discussion

This chapter has introduced a novel task for the self-supervised learning of video
representations by distinguishing between different types of temporal transforma-
tions. This learning task is based on the principle that recognizing a transformation
of time requires an accurate model of the underlying natural video dynamics. This
idea is supported by experiments that demonstrate that features learned by distin-
guishing temporal transformations capture video dynamics better than supervised
learning. Such features generalize well to classic vision tasks such as action recogni-
tion or time-related tasks such as video synchronization.

The approach in this chapter was based on single-view videos. In the following
chapter, we will explore yet another data modality by learning image representa-
tions that capture 3D properties of the scene from multi-view video data.
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Chapter 6

Self-Supervised Learning of 3D
Pose Features

“Synchronicity is an ever present reality for those
who have eyes to see."

— Carl Jung

The ability to accurately reconstruct the 3D human pose from a single real im-
age opens a wide variety of applications, including computer graphics animation,
postural analysis and rehabilitation, human-computer interaction, and image un-
derstanding [161]. State-of-the-art methods for monocular 3D human pose esti-
mation employ neural networks. They require large training datasets where each
sample is a pair consisting of an image and its corresponding 3D pose annotation
[162]. The collection of such datasets is expensive, time-consuming, and because
it requires controlled lab settings, the diversity of motions, viewpoints, subjects, ap-
pearance, and illumination, is limited (see Figure 6.1). Ideally, to maximize diversity,
one should collect data in the wild. However, in this case, precise 3D annotation is
challenging to obtain and might require costly human intervention.

In this chapter, we overcome the above limitations via self-supervised learning.
Our objective is to build a latent representation of an image that can successfully
transfer to 3D human pose estimation via fine-tuning. The performance of the trans-
ferred representations depends on how related the self-supervised pretext task is to
the target task. Thus, to build latent representations relevant to 3D human poses, we
propose a pretext task that implicitly learns 3D structures. To collect data suitable to
this goal, examples from nature point towards multi-view imaging systems. In fact,
the visual system in many animal species hinges on the presence of two or multiple
eyes to achieve a 3D perception of the world [163], [164]. 3D perception is often ex-
emplified by considering two views of the same scene captured simultaneously and
by studying the correspondence problem. Thus, we take inspiration from this set-
ting and pose the task of determining if two images have been captured at the same
time. In general, the main difference between two views captured simultaneously
and when they are not is that a rigid transformation always describes the former
but the latter potentially not (e.g., in the presence of articulated or deformable mo-
tion or multiple rigid motions). Therefore, we propose as pretext task the detection
of synchronized views, which translates into a classification of rigid versus non-rigid
motion.

Material from: S. Jenni, and P. Favaro. "Self-Supervised Multi-View Synchronization Learning for
3D Pose Estimation." In Asian Conference on Computer Vision 2020. © Springer Nature Switzerland AG
2021
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(A) Desired subject invariance. (B) Desired pose equivariance.

FIGURE 6.1: Monocular 3D human pose estimation. An ideal re-
gressor would be able to generalize across subjects regardless of their
appearance, as shown in (a), and be sensitive to small pose variations,

such as those shown in (b).

As shown in Figure 6.1, we aim to learn a latent representation that can general-
ize across subjects and that is sensitive to small pose variations. Thus, we train our
model on pairs of images where the subject identity is irrelevant to the pretext task.
Instead, slight pose variations define the difference between the task categories. To
do so, we use two views of the same subject as the synchronized (i.e., rigid mo-
tion) pair and two views taken at different (but not too distant) time instants as
the unsynchronized (i.e., non-rigid motion) pair.3 Since these pairs share the same
subject (and appearance) in all images, the model cannot use this as a cue to learn
the correct classification. Because the pair of unsynchronized images is close in
time, the deformation is relatively small and forces the model to discriminate small
pose variations. Furthermore, to make the representation sensitive to the human
poses’ left-right symmetries, we also introduce in the pretext task the classification
of two synchronized views into horizontally flipped or not as a second goal. This
formulation of the SSL task allows to potentially train a neural network on data
captured in the wild by merely using a synchronized multi-camera system. As we
show in our experiments, the learned representation successfully embeds 3D human
poses, and it further improves if we also remove the background from the images.
We train and evaluate our SSL pre-training on the Human3.6M dataset [162], and
find that it yields state-of-the-art results when compared to other methods under
the same training conditions. We demonstrate quantitatively and qualitatively that
our trained model is sensitive to small pose variations and can generalize across
subjects. Finally, we believe that this approach could easily be incorporated in other
methods that exploit additional labeled data (e.g., 2D poses).

Contributions. Our contributions are: 1) a novel self-supervised learning task for
multi-view data to recognize when two views are synchronized and/or flipped; 2)
extensive ablation experiments to demonstrate the importance of avoiding shortcuts

3If the subject does not move between the two chosen time instants, the unsynchronized pair would
also be undergoing a rigid motion and thus create ambiguity in training. However, these cases can be
easily spotted as they only require detecting no motion over time. Besides standing still, the probability
that a moving subject performs a rigid motion is extremely low. In practice, we found experimentally
that a simple temporal sub-sampling was sufficient to avoid these scenarios.
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via the static background removal and the effect of different feature fusion strategies;
3) our method achieves state-of-the-art performance on 3D human pose estimation
benchmarks.

6.1 Background

In this section, we briefly review literature in unsupervised learning, human pose
estimation, and synchronization, that is relevant to our approach.

Unsupervised Learning of 3D. Recent progress in unsupervised learning has shown
promising results for learning implicit and explicit generative 3D models from natu-
ral images [165], [166], [167]. The focus in these methods is on modeling 3D and not
performance on downstream tasks. Our goal is to learn general-purpose 3D features
that perform well on downstream tasks such as 3D pose estimation.

Synchronization. Learning the alignment of multiple frames taken from different
views is an important component of many vision systems. Classical approaches are
based on fitting local descriptors [168], [169], [170]. More recently, methods based on
metric learning [171], or that exploit audio [172] have been proposed. We provide a
simple learning-based approach by posing the synchronization problem as a binary
classification task. Our aim is not to achieve synchronization for its own sake but to
learn a useful image representation as a byproduct.

Monocular 3D Pose Estimation. State-of-the-art 3D pose estimation methods make
use of large annotated in-the-wild 2D pose datasets [173] and datasets with ground
truth 3D pose obtained in indoor lab environments. We identify two main cate-
gories of methods: 1) methods that learn the mapping to 3D pose directly from
images [174], [175], [176], [177], [178], [179], [180], [181], [182] often trained jointly
with 2D poses [183], [184], [185], [186], [187], and 2) methods that learn the mapping
of images to 3D poses from predicted or ground truth 2D poses [188], [189], [190],
[191], [192], [193], [194], [195], [196]. To deal with the limited amount of 3D annota-
tions, some methods explored the use of synthetic training data [197], [198], [199]. In
our transfer learning experiments, we follow the first category and predict 3D poses
directly from images. However, we do not use any 2D annotations.

Weakly Supervised Methods. Much prior work has focused on reducing the need
for 3D annotations. One approach is weak supervision, where only the 2D anno-
tation is used. These methods are typically based on minimizing the re-projection
error of a predicted 3D pose [200], [201], [202], [203], [204], [205], [206]. Some meth-
ods require multi-view data to resolve ambiguities and constrain the 3D [200], [201],
[202]. Other methods rely on unpaired 3D data used via adversarial training [204],
[205]. [203] solely relies on 2D annotation and uses an adversarial loss on random
projections of the 3D pose. Our aim is not to rely on a weaker form of supervision
(i.e., 2D annotations). Instead, we leverage multi-view data to learn a representation
that can transfer with only a few annotated examples to the 3D estimation tasks
with a good performance.

Self-Supervised Methods for 3D Human Pose Estimation. Here, we consider ap-
proaches that do not make use of any additional supervision, e.g., in the form of 2D
pose annotation. These are methods that learn representations on unlabeled data
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and can be transferred via fine-tuning using a limited amount of 3D annotation.
Rhodin et al. [207] learn a 3D representation via novel view synthesis, i.e., by recon-
structing one view from another. Their method relies on synchronized multi-view
data, knowledge of camera extrinsics, and background images. Mitra et al. [208] use
metric learning on multi-view data. The distance in feature space for images with
the same pose but a different viewpoint is minimized while the distance to hard
negatives sampled from the mini-batch is maximized. By construction, the result-
ing representation is view-invariant (the local camera coordinate system is lost), and
the transfer can only be performed in a canonical, rotation-invariant coordinate sys-
tem. We also exploit multi-view data in our pre-training task. Unlike [207], our task
does not rely on knowledge of camera parameters and unlike [208], we successfully
transfer our features to pose prediction in the local camera system.

6.2 Unsupervised Learning of 3D Pose-Discriminative Fea-
tures

Our goal is to build image features that allow us to discriminate different 3D human
poses. We achieve this objective by training a network to detect if two views depict
the same scene up to a rigid transformation. We consider three different cases: 1)
the two views depict the same scene at the same time (rigid transformation); 2) the
two views show the same scene, but at a different time (non-rigid transformation is
highly likely); 3) the two views show the same scene, but one view is horizontally
mirrored (a special case of a non-rigid transformation), which, for simplicity, we
refer to as flipped.

To train such a network, we assume we have access to synchronized multi-view
video data. The dataset consists of N examples (in the Human3.6M dataset N =

S× A, where S is the number of subjects and A the number of actions) {x(i)ν,t}i=1,...,N ,
where ν ∈ V (i) = {1, . . . , ν(i)} indicates the different views of the i-th example and
t ∈ T (i) = {1, . . . , t(i)} indicates the time of the frame. Let F denote the neural
network trained to solve the self-supervised task. We will now describe the different
self-supervision signals.

6.2.1 Classifying Synchronized and Flipped Views

To train our neural network we define three types image pairs, each corresponding
to a different 3D deformation:

Synchronized Pairs. In this case, the scenes in the two views are related by a rigid
transformation. This is the case when the two images are captured at the same
time instant, i.e., they are synchronized. The input for this category is a sample
pair xp = (x(i)ν1,t, x(i)ν2,t), where i ∈ {1, . . . , N}, ν1 6= ν2 ∈ V (i), and t ∈ T (i), i.e., a
pair with different views taken at the same time.

Unsynchronized Pairs. Pairs of images that are captured at different times (i.e.,
unsynchronized) are likely to undergo a non-rigid deformation (by assuming
that objects are non static between these two time instants). To create such im-
age pairs we sample xn = (x(i)ν1,t1

, x(i)ν2,t2
), where i ∈ {1, . . . , N}, ν1 6= ν2 ∈ V (i),

and t1, t2 ∈ T (i) such that dmin < |t2 − t1| < dmax, where dmin and dmax define
the range in time for sampling unsynchronized pairs. In our experiments, we
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FIGURE 6.2: An overview of the proposed self-supervised task. We
train a network F to learn image representations that transfer well
to 3D pose estimation by learning to recognize if two views of the
same scene are synchronized and/or flipped. Our model uses a siamese
architecture. The inputs are pairs of frames of the same scene un-
der different views. Frames are denoted by xν,t, where ν indicates
the viewpoint and t the time (x̄ν,t denotes a flipped frame). Pairs are
classified into whether the frames are synchronized or not synchronized,

and whether one of the frames was flipped or not.

set dmin = 4 and dmax = 128 and sample uniformly within this range.

Flipped Pairs. The last class of image pairs consists of images from two views which
are synchronized, but where one of them has been horizontally mirrored. Let x̄
denote the image obtained by applying horizontal mirroring to the sample x.
Flipped pairs are defined as x f = (x(i)ν1,t, x̄(i)ν2,t) or x f = (x̄(i)ν1,t, x(i)ν2,t), where i ∈
{1, . . . , N}, ν1 6= ν2 ∈ V (i) and t ∈ T (i). In the case of approximately symmetric
objects (such as with human bodies) and in the absence of background cues
(since we mirror the entire image), distinguishing this relative transformation
between views requires accurate 3D pose discriminative features.

Although both unsynchronized and flipped pairs exhibit non-rigid deforma-
tions, they have distinct characteristics. In flipped pairs, the 3D pose in the second
view is heavily constrained by the one in the first view. In contrast, given a non-
negligible temporal gap between the frames, the 3D pose is much less constrained
in the case of unsynchronized views.

We define our self-supervised learning task as a combination of the classifica-
tion of image pairs into synchronized vs. unsynchronized and flipped vs. not flipped.
Let F1(x) denote the predicted probability of synchronization in x and F2(x) the pre-
dicted probability of no flipping in x (both implemented via a sigmoid activation).
The final loss function is then given by

LSSL = −∑
j

log F1
(
x(j)

p
)

F2
(
x(j)

p
)
+ log

(
1− F1

(
x(j)

n
))

+ log
(

1− F2
(
x(j)

f

))
. (6.1)
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An illustration of the training is shown in Figure 6.2. Note that although x f is a syn-
chronized pair, we do not optimize the synchronization head F1 on these examples.
The reason for leaving this term undefined is that we equate synchronization to rigid
motion, which does not hold in the case of x f .

6.2.2 Static Backgrounds Introduce Shortcuts

A common issue with self-supervised learning is that neural networks exploit low-
level cues to solve the pretext task when allowed to do so. In this case, they often do
not learn semantically meaningful features. Such shortcuts have been observed in
prior work, where, for instance, chromatic aberration [31] was used as a cue to solve
a localization task.

In our self-supervised learning task, we observed that the dataset’s shared image
background could be used as a shortcut. This issue is most evident in the flipping
task: Because the background is shared among all examples in the dataset, it is easier
to use texture in the background to determine image flipping. As a result, the net-
work focuses on the background (instead of the foreground object), which decreases
its generalization performance. It is further possible that the network learns to de-
tect and associate the person’s absolute position by focusing on the background as a
cue for the synchronization task.

We propose two solutions: one is background removal and the other is background
substitution. Since the dataset consists of non-moving cameras, we compute the back-
ground as the median image per view. Background removal is then performed via
simple per-pixel thresholding. Although the resulting separation is not of high qual-
ity, we found it sufficient for our purpose. Similarly, background substitution intro-
duces an additional step where the background from a random view is used to re-
place the original (removed) one. Both approaches are evaluated in our experiments.
We expect that background removal would not be necessary for data captured in the
wild with synchronized moving cameras or with a large variety of backgrounds.

6.2.3 Implementation

We implement the network F using a Siamese architecture. As a shared backbone
architecture Φ we use standard ResNet architectures [119]. Samples (x(j)

ν1,t1
, x(j)

ν2,t2
)

are hence encoded into features vectors (Φ(x(j)
ν1,t1

), Φ(x(j)
ν2,t2

)). In our experiments
we use the output of the global average pooling as the feature representation, i.e.,
Φ(x) ∈ R2048. To fuse the features we choose to use element-wise multiplication
followed by a ReLU activation. We found this fusion mechanism to perform better
than feature concatenation, which is often used in prior work [4], [31], [135]. The
fused feature is fed as input to linear layers ω1 and ω2 to produce the final outputs.
To summarize, we define Fi(x) = ωi(ReLU(Φ(x(j)

ν1,t1
)�Φ(x(j)

ν2,t2
))), where � denotes

the element-wise product.
The training images use the standard image resolution for ResNet architectures

of 224× 224 pixels. For a fair comparison with prior work, we extract crops centered
on the subject. We perform random horizontal flipping consistently to both frames
in the input pair (this operation is performed before preparing the flipped pairs).
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6.2.4 Transfer to 3D Human Pose Estimation

We transfer the learned image representation to 3D human pose regression via fine-
tuning. The training set in this case consists of a set of image4 and target pairs
{(x(i), y(i))}i=1,...,Np with target 3D joint positions y(i) ∈ Rnj×3 represented in the
local camera coordinate system. The number of joints is set to nj = 17 in our exper-
iments on Human3.6M. As in prior work [201], [207], [208], we fix the root joint (at
the pelvis) to zero. We effectively only regress the 16 remaining joints and correct
this in evaluation metrics by scaling the per-joint errors by 17

16 . We normalize the
target poses for training using the per-joint mean and standard deviation computed
on the training set as proposed in [182]. During the evaluation, we un-normalize
the predicted pose accordingly. To predict the 3D pose we simply add a single lin-
ear layer ωp on the feature encoding Φ(x(i)) resulting in our normalized prediction
P(x(i)) = ωp(Φ(x(i))). The network P is trained to minimize the mean-squared error

on the training set, i.e., Lpose =
1

Np
∑

Np
i=1 ‖P(x(i))− y(i)‖2

2.
We again extract crops centered on the subject as in prior work [201], [207], [208].

Since this corresponds to a change of the camera position, we correct for this by
rotating the target pose accordingly, i.e., to virtually center the camera on the root
joint. We apply random horizontal flipping jointly to the input images, and the
corresponding target 3D poses as a form of data augmentation.

6.3 Experiments

Dataset. We perform an extensive experimental evaluation on the Human3.6M
dataset [162]. The dataset consists of 3.6 million 3D human poses with the corre-
sponding images. The data is captured in an indoor setting with four synchronized
and fixed cameras placed at each corner of the room. Seven subjects perform 17
different actions. As in prior work, we use the five subjects with the naming con-
vention S1, S5, S6, S7, and S8 for training and test on subjects S9 and S11. We filter
the training dataset by skipping frames without significant movement. On average,
we skip every fourth frame in the training dataset. On the test set, we follow prior
work and only evaluate our network on one every 64 frames.

Metrics. To evaluate our method on 3D human pose regression, we adopt the estab-
lished metrics. We use the Mean Per Joint Prediction Error (MPJPE) and its variants
Normalized MPJPE (NMPJPE) and Procrustes MPJPE (PMPJPE). In NMPJPE, the
predicted joints are aligned to the ground truth in a least-squares sense with respect
to the scale. PMPJE uses Procrustes alignment to align the poses both in terms of
scale and rotation.

6.3.1 Ablations

We perform ablation experiments to validate several design choices for our self-
supervised learning task. We illustrate the effect of background removal concerning
the shortcuts in the case of non-varying backgrounds (as is the case for Human3.6M).
We also demonstrate the impact of the two self-supervision signals (flipping and
synchronization) by themselves and in combination and explore different feature
fusion strategies.

4We drop the subscripts ν, t indicating viewpoint and time in this notation.
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TABLE 6.1: Ablation experiments. We investigate the influence of
scene background (a)-(d), the impact of the different self-supervision
signals (e)-(g), the use of varying fusion strategies (h)-(k), and the
importance of synchronized multiview data (l) and (m). The exper-
iments were performed on Human3.6M using only subject S1 for

transfer learning.

Ablation MPJPE NMPJPE PMPJPE

(a) Random with background 167.8 147.1 124.5
(b) Random without background 165.5 145.4 114.5
(c) SSL with background 138.4 128.1 100.8
(d) SSL without background 104.9 91.7 78.4

(e) Only flip 129.9 117.6 101.1
(f) Only sync 113.7 102.4 80.3
(g) Both sync & flip 104.9 91.7 78.4

(h) Fusion concat 180.0 162.5 130.5
(i) Fusion add 169.4 158.4 122.8
(j) Fusion diff 108.2 93.9 80.4
(k) Fusion mult 104.9 91.7 78.4

(l) Single-view SSL 158.3 142.0 106.9
(m) Multi-view SSL 104.9 91.7 78.4

The baseline model uses background removal, the combination of both self-
supervision signals, and element-wise multiplication for feature fusion. The net-
works are pre-trained for 200K iterations on all training subjects (S1, S5, S6, S7, and
S8) using our SSL task and without using annotations. We use a ResNet-18 archi-
tecture [119] and initialize with random weights (i.e., we do not rely on ImageNet
pre-training). Transfer learning is performed for an additional 200K iterations us-
ing only subject S1 for supervision. We freeze the first three residual blocks and
only finetune the remaining layers. Training of the networks was performed using
the AdamW optimizer [143] with default parameters and a weight decay of 10−4.
We decayed the learning rate from 10−4 to 10−7 throughout training using cosine
annealing [144]. The batch size is set to 16.

We perform the following set of ablation experiments and report transfer learn-
ing performance on the test set in Table 6.1:

(a)-(d) Influence of background removal: We explore the influence of background
removal on the performance of randomly initialized networks and networks
initialized with weights from our self-supervised pre-training. We observe that
background removal provides only a relatively small gain in the case of train-
ing from scratch. The improvement in the case of our self-supervised learning
pre-training is much more substantial. This suggests that the static background
introduces shortcuts for the pretext task;

(e)-(f) Combination of self-supervision signals: We compare networks initialized
by pre-training (e) only to detect flipping, (f) only to detect synchronization,
and (g) on the combination of both. We observe that the synchronization by
itself leads to better features compared to flipping alone. This correlates with
the pretext task performance, where we observe that the accuracy on the flip-
ping task is higher than for synchronization. Interestingly, the combination of



6.3. Experiments 67

TABLE 6.2: Comparison to prior work. We compare to other prior
work. All methods are pre-trained on all the training subjects of Hu-
man3.6M. Transfer learning is performed either using all the training
subjects or only S1 for supervision. Methods using large amounts of
data with 2D pose annotation are italicized. * indicates the use of an
ImageNet pre-trained ResNet-50. † indicates a viewpoint invariant

representation of the 3D pose.

Supervision Method MPJPE NMPJPE PMPJPE

All

Chen et al.[202]* 80.2 - 58.2
Kocabas et al.[200]* 51.8 51.6 45.0
Rhodin et al.[201]* 66.8 63.3 51.6
Rhodin et al.[201]* - 95.4 -
Rhodin (UNet) et al.[207] - 127.0 -
Rhodin et al.[207]* - 115.0 -
Mitra et al.[208]*† 94.3 92.6 72.5
Ours 79.5 73.4 59.7
Ours* 72.6 68.5 54.5
Ours* (with background) 64.9 62.3 53.5

S1

Chen et al.[202]* 91.9 - 68.0
Kocabas et al.[200]* - 67.0 60.2
Rhodin et al.[201]* - 78.2 -
Rhodin et al.[201]* - 153.3 128.6
Rhodin (UNet) et al.[207] 149.5 135.9 106.4
Rhodin et al.[207]* 131.7 122.6 98.2
Mitra et al.[208]*† 121.0 111.9 90.8
Ours 104.9 91.7 78.4
Ours* 101.2 89.6 76.9
Ours* (with background) 101.4 93.7 82.4

both signals gives a substantial boost. This result suggests that both signals
learn complementary features;

(h)-(k) Fusion of features: Different designs for the fusion of features in the Siamese
architecture are compared. We consider (h) concatenation, (i) addition, (j) sub-
traction, and (k) element-wise multiplication. We observe that multiplication
performs the best. Multiplication allows a simple encoding of similarity or dis-
similarity in feature space solely via the sign of each entry. The fused feature
is zero (due to the ReLU) if the two input features do not agree on the sign;

(l)-(m) Necessity of multi-view data: We want to test how important synchronized
multi-view data is for our approach. We compare to a variation of our task,
where we do not make use of multi-view data. Instead, we create artificial
synchronized views via data augmentation. Therefore, the images in the input
pairs are from the same camera view but with different augmentations (i.e.,
random cropping, scaling, and rotations). This setup corresponds to using
a 2D equivalent of our self-supervised learning task. We observe drastically
decreased feature performance in this case.
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6.3.2 Comparison to Prior Work

We compare our method to prior work by Rhodin et al. [201], [207] and Mitra et
al. [208] on Human3.6M. To the best of our knowledge, these are the only methods
using the same training settings as in our approach. Other approaches, which we
also report, train their networks with additional weak supervision in the form of 2D
pose annotation (see Table 6.2).

We train the networks on our self-supervised learning task for 200K iterations
on all training subjects (S1, S5, S6, S7, and S8). Our comparison uses two different
protocols: 1) All, where transfer learning is performed on all the training subjects,
and 2) S1, where only subject S1 is used for transfer learning. We use two differ-
ent network architectures: 1) a ResNet-18 initialized with random weights, i.e., no
ImageNet pre-training, and 2) a ResNet-50 initialized with ImageNet pre-trained
weights. Since prior work transfers to images with backgrounds, we include results
with a ResNet-50 fine-tuned on images with backgrounds. To reduce the domain gap
between pre-training and transfer and eliminate shortcuts, we pre-train on images
with removed backgrounds and images with substituted backgrounds. We keep the
ratio without and with substituted backgrounds to 50:50 during pre-training. We
freeze the first 3 residual blocks during transfer learning and fine-tune the remain-
ing layers for 200K iterations using a mini-batch size of 16. Training of the networks
was again performed using the AdamW optimizer [143] with default parameters, an
initial learning rate of 10−4 with cosine annealing, and a weight decay of 10−4.

The results and the comparisons to prior work are provided in Table 6.2. We
observe that our fine-tuned network generalizes well and outperforms the relevant
prior work [201], [207], [208] by a considerable margin. Note that our ResNet-18 is
the only method besides [207] that does not rely on any prior supervision. Inter-
estingly, our model with substituted backgrounds performs better than our model
with removed backgrounds in protocol All and worse in protocol S1. The difference
is most severe in the scale-sensitive metric MPJPE. We hypothesize that the back-
grounds might be useful to learn the correct absolute scale, given several different
training subjects. We also list methods that make use of large amounts of additional
labeled 2D pose data. Using all the training subjects for transfer learning, we even
outperform the weakly supervised approach [202]. We show some qualitative pre-
dictions for the two test subjects in Figure 6.3.

6.3.3 Evaluation of the Synchronization Task

Generalization Across Subjects. We qualitatively evaluate how well our model gen-
eralizes to new subjects on the synchronization prediction task. The idea is to look
for synchronized frames, where the two frames contain different subjects. A query
image x(q) of a previously unseen test subject is chosen. We look for the training
image x(a) of each training subject that maximizes the predicted probability of syn-
chronization, i.e., a = arg maxi F1((x(q), x(i))). Note that we did not explicitly train
our network for this task and that it only received pairs of frames as input containing
the same subject during training.

We show example retrievals in Figure 6.6. We can observe that the retrieved
images often show very similar poses to the query image. The retrieved images
also cover different viewpoints. The method generalizes surprisingly well across
subjects and manages to associate similar poses across subjects. These examples
indicate a certain degree of invariance to the person’s appearance. As discussed in
the Introduction, such an invariance is welcome in 3D human pose estimation and
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FIGURE 6.3: Examples of predictions. We show predictions on un-
seen test subjects (S9 and S11) of a model pre-trained using our self-
supervised learning task and fine-tuned for 3D pose estimation. We
provide the test images on the first row, the ground truth poses on
the second row, the predictions of a model fine-tuned on all training
subjects on the third row, and the predictions of a model fine-tuned

only on the subject S1 on the last row.

could explain the good performance in the transfer experiments.

Synchronization Performance on Test Subjects. We evaluate the performance of
the synchronization network also on the test subjects. To this end, we sample syn-
chronized and unsynchronized pairs in equal proportion with varying time gaps.
We plot the accuracy in Figure 6.4. Note that we use all the frames in the test ex-
amples in this case. As expected, we see an increase in performance with a more
extensive temporal gap between the two frames. We also show some qualitative
samples of synchronization retrievals in Figure 6.5.

6.4 Discussion

In this chapter, we described a novel self-supervised learning method to tackle
mono-cular 3D human pose estimation. Our approach delivers high performance
without requiring large manually labeled datasets with 2D or 3D pose annotations.
To avoid such detailed annotation, we exploit a novel self-supervised task that leads
to a representation that supports 3D pose estimation. Our task is to detect when
two views have been captured simultaneously (and thus, the scene is related by a
rigid transformation) and when they are horizontally flipped with respect to one
another. We show on the well-known Human3.6M dataset that these two objectives
build features that generalize across subjects and are highly sensitive to slight pose
variations.
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FIGURE 6.4: Synchronization performance on unseen test subjects.
We evaluate the pre-trained synchronization network on test subjects
S9 and S11. Unsynchronized pairs are created with a time difference
sampled from the interval [∆t − 7, ∆t + 8]. We also show the accuracy

on two training subjects S1 and S5.

FIGURE 6.5: Synchronization retrievals on test subjects. Query im-
ages are shown on the top row, and the corresponding predicted syn-

chronized frames are shown in the row below.

The task design proposed here, again, has some similarities to the tasks proposed
in the previous chapters. We again pose the recognition of how samples were trans-
formed. However, here we are considering a relative transformation between two
views of the same scene, and the transformation concerns non-rigid deformations
resulting from moving subjects.
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FIGURE 6.6: Generalization across subjects. We investigate if a net-
work trained on our self-supervised synchronization task generalizes
across different subjects. The left-most column shows the query im-
age from test subject S9. The remaining columns show images of
training subjects S1, S5, S6, S7, and S8, respectively, for which our

model predicts the highest probability of being synchronized.
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Chapter 7

Stabilizing Generative Adversarial
Training With Random Noise

“When some systems are stuck in a dangerous impasse, randomness
and only randomness can unlock them and set them free."

— Nassim Nicholas Taleb

Since the seminal work of [24], generative adversarial networks (GAN) have
been widely used and analyzed due to the quality of the samples they produce when
applied to the space of natural images.

In Chapters 3 and 4, we have seen how one can use generative adversarial learn-
ing to define image transformations for self-supervised representation learning. Un-
fortunately, GANs still prove difficult to train. In fact, a vanilla implementation does
not converge to a high-quality sample generator, and heuristics used to improve the
generator often exhibit unstable behavior. These training issues have led to substan-
tial work to understand GANs better (see, for instance, [34], [42], [209]). In partic-
ular, [34] points out how the unstable training of GANs is due to the (limited and
low-dimensional) support of the data and model distributions. In the original GAN
formulation, the generator trains against a discriminator in a minimax optimization
problem. The discriminator learns to distinguish real from fake samples, while the
generator learns to generate fake samples that fool the discriminator. When the sup-
port of the data and model distributions is disjoint, the generator stops improving
as soon as the discriminator achieves perfect classification. These non-overlapping
supports prevent the propagation of useful information to the generator through
gradient descent (see Figure 7.1a).

The recent work by [34] proposes extending the distributions’ support by adding
noise to both generated and real images before they are fed as input to the discrim-
inator. This procedure results in a smoothing of both data and model probability
distributions which indeed increases their support extent (see Figure 7.1b). For sim-
plicity, let us assume that the data’s probability density function is well defined and
let us denote it with pd. Then, samples x̃ = x + ε, obtained by adding noise ε ∼ pε

to the data samples x ∼ pd, are also instances of the probability density function
pd,ε = pε ∗ pd, where ∗ denotes the convolution operator. The support of pd,ε is
the Minkowski sum of the supports of pε and pd and thus larger than the support
of pd. Similarly, adding noise to the samples from the generator probability den-
sity pg leads to the smoothed probability density pg,ε = pε ∗ pg. Adding noise is a
relatively well-known technique that has been used in maximum likelihood meth-
ods but is considered undesirable as it yields approximate generative models that

Material from: S. Jenni, and P. Favaro. "On Stabilizing Generative Adversarial Training with
Noise." In IEEE Conference on Computer Vision and Pattern Recognition 2019. © IEEE 2019
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(A)

(B)

(C)

FIGURE 7.1: Addressing the limited support of the data distribu-
tion in GANs. (a) When the probability density functions of the real
pd and generated data pg do not overlap, the discriminator can easily
distinguish samples. The gradient of the discriminator with respect
to its input is zero in these regions, which prevents any further im-
provement of the generator. (b) Adding samples from an arbitrary
pε to those of the real and the generated data results in the filtered
versions pd ∗ pε and pg ∗ pε. Because the supports of the filtered dis-
tributions overlap, the gradient of the discriminator is not zero, and
the generator can improve. However, the high-frequency content of
the original distributions is missing. (c) By varying pε, the genera-
tor can learn to match the data distribution accurately thanks to the

extended supports.

produce low-quality blurry samples. Indeed, most formulations with additive noise
boil down to finding the model distribution pg that best solves pd,ε = pg,ε. However,
this usually results in a low quality estimate pg because pd ∗ pε has lost the high fre-
quency content of pd. An immediate solution is to use a form of noise annealing. The
noise variance is initially high and is then reduced gradually during the iterations so
that the original distributions, rather than the smooth ones, are eventually matched.
This results in improved training, but as the noise variance approaches zero, the op-
timization problem converges to the original formulation. As a result, the algorithm
may be subject to the usual unstable behavior.

In this chapter, we design a novel adversarial training procedure that is stable
and yields accurate results. We show that under some general assumptions, it is
possible to modify both the data and generator probability densities with additional
noise without affecting the original noise-free formulation’s optimality conditions.
As an alternative to the original formulation, with z ∼ N (0, Id) and x ∼ pd,a

min
G

max
D

Ex[log D(x)] + Ez[log(1− D(G(z)))], (7.1)



Chapter 7. Stabilizing Generative Adversarial Training With Random Noise 75

Discriminator D
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FIGURE 7.2: Simplified scheme of the proposed GAN training. We
also show a noise generator N that is explained in detail in Sec-
tion 7.2.1. The discriminator D needs to distinguish both noise-free

and noisy real samples from fake ones.

where D denotes the discriminator, we propose to train a generative model G by
solving the following optimization

min
G

max
D

∑
pε∈S

Eε∼pε

[
Ex∼pd [log D(x + ε)]

]
+ (7.2)

Eε∼pε

[
Ez∼N (0,Id)[log(1− D(G(z) + ε))]

]
,

where we introduced a set S of probability density functions. If we solve the inner-
most optimization problem in Problem (7.2), then we obtain the optimal discrimina-
tor

D(x) =
∑pε∈S pd,ε(x)

∑pε∈S pd,ε(x) + pg,ε(x)
, (7.3)

where we have defined pg as the probability density of G(z), where z ∼ N (0, Id). If
we substitute this in the problem above and simplify, we have

min
G

JSD
(

1
|S| ∑pε∈S pd,ε, 1

|S| ∑pε∈S pg,ε

)
, (7.4)

where JSD is the Jensen-Shannon divergence. We show that, under suitable assump-
tions, the optimal solution of Problem (7.4) is unique and pg = pd. Moreover, since
1/|S|∑pε∈S pd,ε enjoys a larger support than pd, the optimization via iterative meth-
ods based on gradient descent is more likely to achieve the global minimum, regard-
less of the support of pd. Thus, our formulation enjoys the following properties: 1)
It defines a fitting of probability densities that is not affected by their support; 2)
It guarantees the exact matching of the data probability density function; 3) It can
be easily applied to other GAN formulations. A simplified scheme of the proposed
approach is shown in Figure 7.2.

In the next sections, we introduce our analysis in detail and then devise a com-
putationally feasible approximation of the Problem (7.2). Our method is evaluated
quantitatively on CIFAR-10 [210], STL-10 [117], and CelebA [142], and qualitatively
on ImageNet [211] and LSUN bedrooms [212].
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7.1 Background

We briefly review similar GAN stabilization approaches that also rely on transfor-
mations of the data here and refer to Chapter 2 for a general overview of the rele-
vant GAN literature. Arjovsky et al. [34] first identified the disjoint supports of the
real and fake data distributions as the culprit behind unstable GAN training. As
a solution, they proposed the use of additive Gaussian noise. [209] made similar
observations and proposed the use of “instance noise” which is a similar use of ad-
ditive noise that is gradually reduced during training. Another approach that relies
on transforming the discriminator inputs is given by [213]. Rather than using addi-
tive noise, they propose to learn a "lens" network that transforms real samples and
is trained against the discriminator. As in [34] and [209], the strength of the trans-
formation is reduced during training. Our approach is also based on additive noise.
However, in contrast to the Gaussian noise used in [34] and [209], we additionally
learn the optimal noise distribution. Furthermore, different from all the above ap-
proaches, we do not require decreasing the transformation magnitude. This leads to
more stability throughout the complete training process.

7.2 Matching Filtered Distributions

We are interested in finding a formulation that yields as optimal generator G a sam-
pler of the data probability density function (pdf) pd, which we assume is well de-
fined. The main difficulty in dealing with pd is that it may be zero on some data
space neighborhoods. An iterative optimization of Problem (7.1) based on gradi-
ent descent may yield a degenerate solution, i.e., such that the model pdf pg only
partially overlaps with pd (a scenario called mode collapse). It has been noticed that
adding samples of an arbitrary distribution to both real and fake data samples dur-
ing training helps reduce this issue. In fact, adding samples ε ∼ pε corresponds to
blurring the original pdfs pd and pg, an operation known to increase their support
and thus their likelihood to overlap. This increased overlap means that iterative
methods can exploit useful gradient directions at more locations and are more likely
to converge to the global solution. By building on this observation, we propose to
solve Problem (7.2) instead and look for a way to increase the support of the data
pdf pd without losing the optimality conditions of the original formulation of Prob-
lem (7.1).

Our result below proves that this is the case for some choices of additive noise.
We consider images of m× n pixels and with values in a compact domain Ω ⊂ Rm×n

since image intensities are bounded from above and below. Then, also the support
of the pdf pd is bounded and contained in Ω. This implies that pd is also L2(Ω).

Theorem 1. Let us choose S such that Problem (7.4) can be written as

min
pg

JSD
(

1
2
(pd + pd ∗ pε),

1
2
(pg + pg ∗ pε)

)
, (7.5)

where pε is a zero-mean Gaussian function with a positive definite covariance Σ. Let us also
assume that the domain of pg is restricted to Ω (and thus pg ∈ L2(Ω)). Then, the global
optimum of Problem (7.5) is pg(x) = pd(x), ∀x ∈ Ω.
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Algorithm 1: Distribution Filtering GAN (DFGAN)
Input: Training set D ∼ pd, number of discriminator updates ndisc, number of

training iterations N, batch-size m, learning rate α, noise penalty λ
Output: Generator parameters θ
Initialize generator parameters θ, discriminator parameters φ and noise-generator

parameters ω ;
for 1 . . . N do

for 1 . . . ndisc do
Sample {x1, . . . , xm} ∼ pd, {x̃1, . . . , x̃m} ∼ pg and {ε1, . . . , εm} ∼ pε ;
Lr

D = ∑m
i=1 ln(D(xi)) + ln(D(xi + εi));

L f
D = ∑m

i=1 ln(1− D(x̃i)) + ln(1− D(x̃i + εi));
Lε = ∑m

i=1 |εi|2;

φ← φ +∇φLr
D(φ, ω) +∇φL f

D(φ, ω);

ω ← ω−∇ω

(
Lr

D(φ, ω) + L f
D(φ, ω) + λLε(ω)

)
;

end
Sample {x̃1, . . . , x̃m} ∼ pg and {ε1, . . . , εm} ∼ pε ;

L f
G = ∑m

i=1 ln(D(x̃i)) + ln(D(x̃i + εi));

θ ← θ +∇θ L f
G(θ);

end

Proof. The global minimum of the Jensens-Shannon divergence is achieved if and
only if

pd + pd ∗ pε = pg + pg ∗ pε. (7.6)

Let pg = pd + ∆. Then, we have
∫
|∆(x)|2dx < ∞. By substituting pg in Equa-

tion (7.6) we obtain ∆ ∗ pε = −∆. Since ∆ and pε are in L2(Ω), we can take the
Fourier transform of both sides, compute their absolute value and obtain

∣∣∆̂(ω)
∣∣ | p̂ε(ω)| =

∣∣∆̂(ω)
∣∣ , ∀ω ∈ Ω̂. (7.7)

Because pg and pd integrate to 1,
∫

∆(x)dx = 0 and ∆̂(0) = 0. Suppose ∃ω 6=0 such

that ∆̂(ω) 6= 0. Since pε is Gaussian, | p̂ε(ω)| =
∣∣∣e− 1

2 ω>Σ−1ω
∣∣∣ < 1, which contradicts

the optimality condition (7.7). Thus, ∆(x) = 0, ∀x ∈ Ω and we can conclude that
pg(x) = pd(x), ∀x ∈ Ω.

7.2.1 Formulation

Based on the above theorem we consider two cases:

1. Gaussian noise with fixed/learned standard deviation σ: pε(ε) = N (ε; 0, σId);

2. Learned noise from a noise generator network N with parameters σ: pε(ε)
such that ε = N(w, σ), with w ∼ N (0, Id).

In both configurations we can learn the parameter(s) σ. We do so by minimizing the
cost function after the maximization with respect to the discriminator. The min-
imization encourages large noise since this would make pd,ε(ω) more similar to
pg,ε(ω) regardless of pd and pg. This would not be very useful to gradient de-
scent. Therefore, to limit the noise magnitude we introduce as a regularization
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FIGURE 7.3: Wall clock time vs IS for GANs with and without dis-
tribution filtering. The models use the architecture specified in Table
7.2 and were trained on CIFAR-10. The computational overhead in-
troduced by our method does not negatively affect the speed of con-

vergence.

term the noise variance Γ(σ) = σ2 or the Euclidean norm of the noise output im-
age Γ(σ) = Ew∼N (0,Id)|N(w, σ)|2, and multiply it by a positive scalar λ, which we
tune.

The proposed formulations can then be written in a unified way as:

min
G

min
σ

max
D

λΓ + Ex

[
log D(x) + Eε log D(x + ε)

]
+

Ez

[
log[1− D(G(z))] + Eε log[1− D(G(z) + ε)]

]
.

(7.8)

7.2.2 Implementation

Implementing our algorithm only requires a few minor modifications of the stan-
dard GAN framework. We perform the update for the noise-generator and the dis-
criminator in the same iteration. Mini-batches for the discriminator are formed by
collecting all the fake and real samples in two separate batches, i.e., {x1, . . . , xm, x1 +
ε1, . . . , xm + εm} is the batch with real examples and {x̃1, . . . , x̃m, x̃1 + ε1, . . . , x̃m +
εm} the fake examples batch. The complete procedure is outlined in Algorithm 1.
The noise-generator architecture is typically the same as the generators’, but with
a reduced number of convolutional filters. Since the inputs to the discriminator
are doubled when compared to the standard GAN framework, the DFGAN frame-
work can be 1.5 to 2 times slower. Similar and more severe performance drops are
present in existing variants (e.g., WGAN-GP). Note that by constructing the batches
as {x1, . . . , xm/2, xm/2+1 + ε1, . . . , xm + εm} the training time is instead comparable to
the standard framework, but it is much more stable and yields an accurate generator.
For a comparison of the runtimes, see Figure 7.3.

7.2.3 Batch-Normalization and Mode Collapse

The current best practice is to apply batch normalization to the discriminator sep-
arately on the real and fake mini-batches [214]. Indeed, this showed much better
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(A) (B)

FIGURE 7.4: How a separate normalization of fake and real mini-
batches discourages mode collapse. In (A), no normalization is ap-
plied, and mode collapse is observed. Since the covered modes are
indistinguishable, the generator receives no signal that encourages
better mode coverage. In (B), separate normalization of the real and
fake data is applied. The mismatch in the batch statistics (mean and
standard deviation) can now be detected by the discriminator, forcing

the generator to improve.

results than feeding mini-batches with a 50/50 mix of real and fake examples in our
experiments. The reason for this is that batch normalization implicitly considers the
distribution of samples in each mini-batch. To see this, consider the example in Fig-
ure 7.4. In the case of no separate normalization of fake and real batches, we can
observe mode-collapse. The modes covered by the generator are indistinguishable
for the discriminator, which observes each example independently. There is no sig-
nal to the generator that leads to better mode coverage in this case. Since the first two
moments of the fake and real batch distribution are not matching, a separate normal-
ization will help the discriminator distinguish between real and fake examples and
encourage better mode coverage by the generator.

Using batch normalization in this way turns out to be crucial for our method as
well. Indeed, when no batch normalization is used in the discriminator, the genera-
tor will often produce noisy examples. This is not easy to detect by the discriminator
since it judges each sample independently. To mitigate this issue, we apply sepa-
rate normalization of the noisy real and fake examples before feeding them to the
discriminator. We use this technique for models without batch normalization (e.g.,
SNGAN).

7.3 Experiments

We compare and evaluate our model using two common GAN metrics: the Inception
Score IS [33] and the Fréchet Inception Distance FID [215]. Throughout this section,
we use 10K generated and real samples to compute IS and FID. To get a measure
of the training’s stability, we report the mean and standard deviation of the last five
checkpoints for both metrics (obtained in the last 10% of training).
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TABLE 7.1: Ablation experiments on CIFAR-10 and STL-10. We per-
form ablation experiments on CIFAR-10 and STL-10 to demonstrate
the effectiveness of our proposed algorithm. The experiments (a)-(c)
show results where only filtered examples are fed to the discrimina-
tor. Experiment (c) corresponds to the previously proposed noise-
annealing and improves the standard GAN training. Our approach
of feeding both filtered and clean samples to the discriminator shows

a clear improvement over the baseline.

Experiment
CIFAR-10 STL-10

FID IS FID IS

Standard GAN 46.1± 0.7 6.12± .09 78.4± 6.7 8.22± .37

(a) Noise only: ε ∼ N (0, I) 94.9± 4.9 4.68± .12 107.9± 2.3 6.48± .19
(b) Noise only: ε learned 69.0± 3.4 5.05± .14 107.2± 3.4 6.39± .22
(c) Noise only: ε ∼ N (0, σI), σ→ 0 44.5± 3.2 6.85± .20 75.9± 1.9 8.49± .19

(d) Clean + noise: ε ∼ N (0, I) 29.7± 0.6 7.16± .05 66.5± 2.3 8.64± .17
(e) Clean + noise: ε ∼ N (0, σI) with learnt σ 28.8± 0.7 7.23± .14 71.3± 1.7 8.30± .12
(f) DFGAN (λ = 0.1) 27.7± 0.8 7.31± .06 63.9± 1.7 8.81± .07
(g) DFGAN (λ = 1) 26.5± 0.6 7.49± .04 64.0± 1.4 8.52± .16
(h) DFGAN (λ = 10) 29.8± 0.4 6.55± .08 66.9± 3.2 8.38± .20

(i) DFGAN alt. mini-batch (λ = 1) 28.7± 0.6 7.3± .05 67.8± 3.2 8.30± .11

7.3.1 Ablations

To verify our model we perform ablation experiments on two common image
datasets: CIFAR-10 [210] and STL-10 [117]. For CIFAR-10 we train on the 50K
32 × 32 RGB training images and for STL-10 we resize the 100K 96 × 96 training
images to 64 × 64. The network architectures resemble the DCGAN architectures
of [25] and are detailed in Table 7.2. All the models are trained for 100K generator
iterations using a mini-batch size of 64. We use the ADAM optimizer [120] with a
learning rate of 10−4 and β1 = 0.5. Results on the following ablations are reported
in Table 7.1:

(a)-(c) Only noisy samples: In this set of experiments, we only feed noisy examples
to the discriminator. In experiment (a) we add Gaussian noise and in (b) we
add learned noise. In both cases, the noise level is not annealed. While this
leads to stable training, the resulting samples are of poor quality, which is re-
flected by high FID and low IS. The generator will also tend to produce noisy
samples since there is no incentive to remove the noise. Annealing the added
noise during training as proposed by [34] and [209] leads to an improvement
over the standard GAN. This is demonstrated in experiment (c). The added
Gaussian noise is linearly annealed during the 100K iterations in this case;

(d)-(i) Both noisy and clean samples: The second set of experiments consists of
variants of our proposed model. Experiments (d) and (e) use a simple Gaus-
sian noise model; in (e) the standard deviation of the noise σ is learned. We
observe a drastic improvement in the quality of the generated examples even
with this simple modification. The other experiments show the results of our
full model with a separate noise-generator network. We vary the weight λ of
the L2 norm of the noise in experiments (f)-(h). Ablation (i) uses the alternative
mini-batch construction with faster runtime as described in Section 7.2.2;
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TABLE 7.2: Network architectures used for experiments on CIFAR-
10 and STL-10. Images are assumed to be of size 32× 32 for CIFAR-10
and 64× 64 for STL-10. We set M = 512 for CIFAR-10 and M = 1024
for STL-10. Layers in parentheses are only included for STL-10. The
noise-generator network follows the generator architecture with the
number of channels reduced by a factor of 8. BN indicates the use of

batch-normalization [118].

Generator CIFAR-10/(STL-10)

z ∈ R128 ∼ N (0, I)
fully-conn. BN ReLU 4× 4×M

(deconv 4× 4 str.=2 BN ReLU 512)
deconv 4× 4 str.=2 BN ReLU 256
deconv 4× 4 str.=2 BN ReLU 128
deconv 4× 4 str.=2 BN ReLU 64

deconv 3× 3 str.=1 tanh 3

Discriminator CIFAR-10/(STL-10)

conv 3× 3 str.=1 lReLU 64
conv 4× 4 str.=2 BN lReLU 64
conv 4× 4 str.=2 BN lReLU 128
conv 4× 4 str.=2 BN lReLU 256
conv 4× 4 str.=2 BN lReLU 512

(conv 4× 4 str.=2 BN lReLU 1024)
fully-connected sigmoid 1

7.3.2 Application to Different GAN Models

We investigate the possibility of applying our proposed training method to several
standard GAN models. The network architectures are the same as proposed in the
original works with only the necessary adjustments to the given image-resolutions
of the datasets (i.e., truncation of the network architectures). The only exception
is SVM-GAN, where we use the architecture in Table 7.2. Note that for the GAN
with minimax loss (MMGAN) and WGAN-GP, we use the architecture of DCGAN.
Hyper-parameters are kept at their default values for each model. The models are
evaluated on two common GAN benchmarks: CIFAR-10 [210] and CelebA [142].
The image resolution is 32× 32 for CIFAR-10 and 64× 64 for CelebA. All models
are trained for 100K generator iterations. For the alternative objective function of
LSGAN and SVM-GAN we set the noise generator’s loss to be the negative of the
discriminator loss, as is the case in our standard model. The results are shown in
Table 7.3. We can observe that applying our training method improves performance
in most cases and even enables the training with the original saturation-prone min-
imax GAN objective, which is very unstable otherwise. Note also that applying our
method to SNGAN [43] (the current state-of-the-art) leads to an improvement on
both datasets. We also evaluated SNGAN with and without our method on 64× 64
images of STL-10 (same as in Table 7.1). Our method boosts the performance from
an FID of 66.3± 1.1 to 58.3± 1.4. We show random CelebA reconstructions from
models trained with and without our approach in Figure 7.5.

7.3.3 Robustness to Hyperparameters

We test the robustness of DFGANs to various hyperparameters by training on
CIFAR-10 with the settings listed in Table 7.4. The network is the same as specified
in Table 7.2. The noise penalty term is set to λ = 0.1. We compare to a model without
our training method (Standard), a model with the gradient penalty regularization
proposed by [42] (GAN+GP), and a model with spectral normalization (SNGAN).
To the best of our knowledge, these methods are the current state-of-the-art in terms
of GAN stabilization. Figure 7.6 shows that our method is stable and accurate across
all settings.
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TABLE 7.3: Application to established GAN models on CIFAR-10
and CelebA. We apply our proposed GAN training to various pre-
vious GAN models trained on CIFAR-10 and CelebA. The same net-
work architectures and hyperparameters as in the original works are
used (for SVM-GAN, we used the network in Table 7.2). We observe
that our method increases performance in most cases, even with the
suggested hyperparameter settings. Note that our approach also al-
lows successful training with the original minimax MMGAN loss in-

stead of the commonly used heuristic (e.g., in DCGAN).

Model
CIFAR-10 CelebA

FID IS FID

MMGAN [24] > 450 ∼ 1 > 350
DCGAN [25] 33.4± 0.5 6.73± .07 25.4± 2.6
WGAN-GP [36] 37.7± 0.4 6.55± .08 15.5± 0.2
LSGAN [37] 38.7± 1.8 6.73± .12 21.4± 1.1
SVM-GAN [140] 43.9± 1.0 6.25± .09 26.5± 1.9
SNGAN ([43] 29.1± 0.4 7.26± .06 13.2± 0.3

MMGAN +DF (λ = 0.1) 33.1± 0.7 6.91± .05 16.6± 1.9
DCGAN + DF (λ = 10) 31.2± 0.3 6.95± .11 14.7± 1.0
LSGAN + DF (λ = 10) 36.7± 1.2 6.63± .17 19.9± 0.4
SVM-GAN + DF (λ = 1) 28.7± 1.1 7.31± .11 12.7± 0.7
SNGAN + DF (λ = 1) 25.9± 0.3 7.47± .08 10.5± 0.4

(A) Original GAN without DF (B) Original GAN with DF

(C) DCGAN without DF (D) DCGAN with DF

FIGURE 7.5: Comparison of reconstructions with and without dis-
tribution filtering. Left column: Random reconstructions from mod-
els trained on CelebA without distribution filtering (DF). Right col-

umn: Random reconstructions with our proposed method.

Robustness to Network Architectures. To test the robustness of DFGANs against
non-optimal network architectures, we modified the networks in Table 7.2 by dou-
bling the number of layers in both generator and discriminator. This leads to signif-
icantly worse performance in terms of FID in all cases: 46 to 135 (Standard), 33 to
111 (SNGAN), 28 to 36 (GAN+GP), and 27 to 60 (DFGAN). However, SNGAN+DF
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FIGURE 7.6: Results of robustness experiments on CIFAR-10. We
compare the standard GAN (1st column), a GAN with gradient
penalty (2nd column), a GAN with spectral normalization (3rd column)
and a GAN with our proposed method (4th column). Results are re-
ported in Fréchet Inception Distance FID (top) and Inception Score IS

(bottom).

TABLE 7.4: Hyperparameter settings for the robustness experi-
ments. We list the settings used to evaluate the robustness of our
proposed GAN training method. We vary the learning rate α, the nor-
malization in G, the optimizer, the activation functions, the number
of discriminator iterations ndisc and the number of training examples

ntrain.

Exp. LR α BN in G Opt. ActFn ndisc ntrain

a) 2 · 10−4 FALSE ADAM (l)ReLU 1 50K
b) 2 · 10−4 TRUE ADAM tanh 1 50K
c) 1 · 10−3 TRUE ADAM (l)ReLU 1 50K
d) 1 · 10−2 TRUE SGD (l)ReLU 1 50K
e) 2 · 10−4 TRUE ADAM (l)ReLU 5 50K
f) 2 · 10−4 TRUE ADAM (l)ReLU 1 5K

leads to good results with an FID of 27.6.

7.3.4 Qualitative Results

We trained DFGANs on 128× 128 images from two large-scale datasets: ImageNet
[211] and LSUN bedrooms [212]. The network architecture is similar to the one in
Table 7.2 with one additional layer in both networks. We trained the models for
100K iterations on LSUN and 300K iterations on ImageNet. Random samples of
the models are shown in Figure 7.8. Figure 7.7 shows some examples of the noise
produced by the noise generator at different stages during training. These examples
resemble the image patterns that typically appear when the generator diverges.
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FIGURE 7.7: Examples of the generated noise patterns. We show
samples of the generated noise (top row) and corresponding noisy
training examples (rows 2 to 4). The columns correspond to different
iterations. The noise varies over time to continually challenge the

discriminator.

FIGURE 7.8: Reconstructions from DFGANs trained on 128 × 128
images. We show samples from DFGANs trained on 128× 128 im-
ages from the LSUN bedrooms dataset (top) and ImageNet (bottom).
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7.4 Discussion

We have introduced a novel method to stabilize generative adversarial training that
results in more accurate generative models. Our approach is rather general and can
be applied to existing GAN formulations with an average improvement in gener-
ated sample quality and variety and training stability. Since GAN training aims to
match probability density distributions, we add random samples to both generated
and real data to extend the densities’ support and thus facilitate their matching
through gradient descent. We demonstrated that the proposed training algorithm
leads to more robustness to training parameters and achieves consistently improved
FID and IS scores on several standard datasets and GAN models.
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Chapter 8

Generalizing from Limited and
Noisy Labels

“The growth of knowledge depends entirely upon
disagreement."

— Karl Popper

A core objective in machine learning is to build models that generalize well, i.e.,
that have the ability to perform well on new unseen data. A common strategy to
achieve generalization is to employ regularization, which is a way to incorporate ad-
ditional information about the space of suitable models. Regularization, in principle,
prevents the estimated model from overfitting the training data. However, recent
work [216] showed that current regularization methods applied to neural networks
do not work according to conventional wisdom. In fact, it has been shown that neu-
ral networks can learn to map data samples to arbitrary labels despite using regu-
larization techniques such as weight decay, dropout, and data augmentation. While
the lone model architecture of a neural network seems to have an implicit regulariz-
ing effect [217], experiments suggest that it can overfit on any dataset, given enough
training time. This poses a limitation to any trained neural network’s performance,
especially when labels are partially noisy.

In this chapter, we introduce a novel learning framework that reduces overfit-
ting by formulating training as a bilevel optimization problem [218], [219]. Although
the mathematical formulation of bilevel optimization is often involved, our final
algorithm is a relatively straightforward modification of the current training meth-
ods. Bilevel optimization differs from the conventional one in that one of the con-
straints is also an optimization problem. The primary objective function is called the
upper-level optimization task, and the optimization problem in the set of constraints
is called the lower-level optimization task. In our formulation, the lower-level prob-
lem is a model parameter optimization on samples from the training set, while the
upper-level problem works as a performance evaluation on samples from a separate
validation set. The optimal model is thus the one that is trained on one dataset but
performs well on a different one, a property that closely follows the definition of
generalization.

In the optimization procedure, we introduce a scalar weight for each sample
mini-batch. The purpose of these variables is to find the linear combination of a
subset of mini-batches from the training set that can best approximate the validation
set error. They can also be seen as a way to 1) discard noisy samples and 2) adjust
the parameter optimization path. Finally, these weights can also be interpreted as

Material from: S. Jenni, and P. Favaro. "Deep Bilevel Learning." In European Conference on Computer
Vision 2018. © Springer Nature Switzerland AG 2018
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validation mini-batches

data set

training mini-batchesX

i2T t

!i`i(✓)

X

j2Vt

`j(✓) ✓ = ✓t � ✏
X

i2T t

!ir`i(✓
t)

stochastic gradient descent 
with mini-batch adaptive weights

!i /
X

j2Vt

r`j(✓
t)>r`i(✓

t)

|r`i(✓t)|2 + µ̂

mini-batch weights
r`j(✓

t)

r`i(✓
t)

if gradients agree 
the mini-batch weights 
are positive and large

FIGURE 8.1: The training procedure of our bilevel formulation. We
sample mini-batches from the data set at each iteration, which we
split into validation and training batches. The validation batches de-
fine the weights of the loss gradient used in the stochastic gradient de-
scent to update the model parameters. If the gradients of the training
batches and those of the validation batches agree, then the weights
are large and positive. Vice versa, if they disagree, the weights might

be zero or negative.

hyper-parameters. Hence, bilevel optimization can be seen as an integrated way to
continuously optimize for both the model parameters and the hyper-parameters, as
done in cross-validation.

In its general form, bilevel optimization is known to present computational chal-
lenges. To address these challenges, we propose to approximate the loss objectives
at every iteration with quadratic functions. These approximations result in closed-
form solutions that resemble the well-known SGD update rules. Essentially, our
bilevel optimization computes loss gradients on the training set and then prescribes
adjustments to the learning rates of the SGD iteration so that the updated parameters
perform well on the validation set. As we will show later, these adjustments depend
on how well the gradients computed on the training set “agree” with the gradients
computed on the validation set (see Figure 8.1). It is illustrative to consider how
the agreement or disagreement between gradient directions can benefit the learning
from noisy labels: we would expect gradients on correctly labeled examples to agree
on average, while a disagreement could indicate the presence of label noise.

Our method can be easily integrated into current training procedures for neural
networks, and our experiments show that it yields models with better generalization
on several network architectures and datasets.

8.1 Background

We give an overview of prior work relating to three main aspects of the approach:
1) generalization properties of deep networks and how learning algorithms affect
them; 2) memorization of corrupt labels as a particular case of overfitting; 3) bilevel
optimization in the context of deep learning.
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Understanding Generalization in Deep Learning. Although convolutional neu-
ral networks trained using stochastic gradient descent generalize well in practice,
Zhang et al. [216] experimentally demonstrated that these models can fit random
labelings of the training data. This is true even when using standard explicit reg-
ularization techniques. Several works gave possible explanations for the apparent
paradox of good generalization despite the models’ high capacity. Kawaguchi et
al. [220] provided an explanation based on model-selection (e.g., network archi-
tecture) via cross-validation. Their theoretical analysis also resulted in new gen-
eralization bounds and regularization strategies. Zhang et al. [221] attributed the
generalization properties of CNNs to characteristics of the stochastic gradient de-
scent optimizers. Their results showed that SGD favors flat minima, which in turn
correspond to large (geometrical) margin classifiers. In contrast, we argue that
current training schemes for neural networks can avoid overfitting altogether by
exploiting cross-validation during the optimization.

Combating Memorization of Noisy Labels. The memorization of corrupted labels
is a form of overfitting that is of practical importance since labels are often unreli-
able. Several authors have therefore addressed the problem of learning with noisy
labels. Rolnick et al. [222] showed that neural networks can be robust to even high
levels of noise provided good hyper-parameter choices. They specifically demon-
strated that larger batch sizes are beneficial in the case of label noise. Patriani et
al. [223] addressed label noise with a loss correction approach. Nataranjan et al. [224]
performed a theoretical study of the binary classification problem under the pres-
ence of label noise and proposed approaches to modify the loss accordingly. Jindal
and Chen [225] used dropout and augmented networks with a softmax layer that
models the label noise and is trained jointly with the network. Sukhabar et al. [226]
introduced an extra noise layer into the network that adapts the network output to
match the noisy label distribution. Reed et al. [227] tackled the problem by augment-
ing the classification objective with a notion of consistency given similar percepts.
Besides approaches that explicitly model the noise distribution, several regulariza-
tion techniques have proven effective in this scenario. Jiang et al. [228] introduced a
regularization technique to counter label noise. They train a network (MentorNet)
to assign weights to each training example. Another recent regularization technique
was introduced by Zhang et al. [229]. Their method is a form of data augmentation
where two training examples are mixed (both images and labels) in a convex combi-
nation. Azadi et al. [230] proposed a regularization technique based on overlapping
group norms. Their regularizer demonstrates good performance but relies on fea-
tures trained on correctly labeled data. Our method differs from the above because
we avoid memorization by encouraging only model parameter updates that reduce
errors on shared sample patterns rather than example-specific details.

Bilevel Optimization. Various authors have considered bilevel optimization to
solve for hyper-parameters based on the performance on a validation set [231],
[232]. Domke [233] introduced a truncated bilevel optimization method where the
lower-level is approximated by running an iterative algorithm for a given number of
steps and subsequently computing the gradient on the validation loss via algorith-
mic differentiation. Our method uses the limiting case of using a single step in the
lower-level problem. Ochs et al. [234] introduced a similar technique to the case of
non-smooth lower-level problems by differentiating the iterations of a primal-dual
algorithm. Maclaurin et al. [235] addressed the issue of expensive caching required
for this kind of optimization by deriving an algorithm to exactly reverse SGD while
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storing only a minimal amount of information. Kunish et al. [236] applied bilevel
optimization to learn parameters of a variational image denoising model. We do not
use bilevel optimization to solve for existing hyper-parameters, but rather introduce
and solve for new hyper-parameters by assigning weights to stochastic gradient
samples at each iteration.

Meta Learning. Our proposed algorithm has some similarity to the meta-learning
literature [237], [238], [239]. Most notably, the MAML algorithm by Finn et al. [237]
also incorporates gradient information of two datasets. However, it does so in dif-
ferent ways: their method uses second-order derivatives whereas we only use first-
order derivatives. In general, our approach’s purpose and data are quite different
from the meta-learning setting: we have only one task, while in meta-learning, there
are multiple tasks.

8.2 Learning to Generalize

We are given m sample pairs (x(k), y(k))k=1,...,m, where x(k) ∈ X represents input data
and y(k) ∈ Y represents targets/labels. We denote with φθ : X 7→ Y a model that
depends on parameters θ ∈ Rd for some positive integer d. In all our experiments
this model is a neural network and θ collects all its parameters. To measure the
performance of the model, we introduce a loss function L : Y ×Y 7→ R per sample.
Since we evaluate the loss L on b mini-batches Bi ⊂ {1, . . . , m}, i = 1, . . . , b, where
Bi ∩ Bj = Ø for i 6= j, we redefine the loss as

`i(θ) , ∑k∈Bi
L
(

φθ

(
x(k)
)

, y(k)
)

. (8.1)

At every iteration, we collect a subset of the mini-batches U t ⊂ {1, . . . , b}, which
we partition into two separate sets: one for training T t ⊂ U t and one for validation
V t ⊂ U t, where T t ∩V t = Ø and T t ∪V t = U t. Thus, mini-batches Bi in the training
set have i ∈ T t and those in the validation set have i ∈ V t. In all our experiments,
the validation set V t is always a singleton (one mini-batch).

8.2.1 Bilevel Learning

At the t-th iteration, SGD uses only one mini-batch to update the parameters via

θt+1 = θt − ε̂∇`i(θ
t), (8.2)

where ε̂ > 0 is the SGD learning rate and i ∈ U t. Instead, we consider the subset
T t ⊂ U t of mini-batches and look for the linear combination of the losses that best
approximates the validation error. We introduce an additional coefficient ωi per
mini-batch in T t, which we estimate during training. Our task is to find parameters
θ of our model by using only mini-batches from the training set T t ⊂ U t, and to
identify coefficients (hyper-parameters) ωi so that the model performs well on the
validation set V t ⊂ U t. We thus propose to optimize

θ̂, ω̂ = arg minθ,ω ∑j∈V t `j(θ(ω)) + µ
2 |ω|2

subj. to θ(ω) = arg minθ̄ ∑i∈T t ωi`i(θ̄)
|ω|1 = 1,

(8.3)
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where ω is the vector collecting all ωi, i ∈ T t and µ > 0 is a parameter to regulate
the distribution of the weights (large values would encourage a uniform distribution
across mini-batches and small values would allow more sparsity). Notice that the
lower-level problem’s solution does not change if we multiply all the coefficients
ωi by the same strictly positive constant. Therefore, to fix the magnitude of ω we
introduced the L1 normalization constraint |ω|1 = 1.

A classical method to solve the above bilevel problem is to solve a linear system
in the second-order derivatives of the lower-level problem, the so-called implicit dif-
ferentiation [233]. This step leads to solving a very high-dimensional linear system.
To avoid these computational challenges, in the next section, we introduce a proxi-
mal approximation. Notice that when we compare the bilevel formulation (8.3) with
SGD in the experiments, we equalize computational complexity by using the same
number of visits per sample.

8.2.2 A Proximal Formulation

To simplify the bilevel formulation (8.3) we propose to solve a sequence of approx-
imated problems. The parameters estimated at the t-th approximated problem are
denoted θt+1. Both the upper-level and the lower-level problems are approximated
via a first-order Taylor expansion of the loss function based on the previous param-
eter estimate θt, i.e., we let

`i(θ) ' `i(θ
t) +∇`i(θ

t)>(θ − θt). (8.4)

Since the above Taylor expansion holds only in the proximity of the previous param-
eter estimates θt, we also introduce proximal quadratic terms

∣∣θ − θt
∣∣2. By plugging

the linear approximation (8.4) and the proximal terms in Problem (8.3) we obtain the
following formulation

θt+1, ω̂ = arg min
θ,ω

∑j∈V t `j(θ
t) +∇`j(θ

t)>(θ(ω)− θt) +
|θ(ω)−θt|2

2λ + µ
2 |ω|2

s.t. θ(ω) = arg minθ̄ ∑i∈T t ωi
[
`i(θ

t) +∇`i(θ
t)>(θ̄ − θt)

]
+
|θ̄−θt|2

2ε
|ω|1 = 1,

(8.5)
where the coefficients λ, ε > 0. The lower-level problem is now quadratic and can
be solved in closed-form. This yields an update rule identical to the SGD step (8.2)
when ωi = 1

θ(ω) = θt − ε ∑i∈T t ωi∇`i(θ
t). (8.6)

Now we can plug this solution in the upper-level problem and obtain

ω̂ = arg minθ,ω ∑j∈V t,i∈T t −ωi∇`j(θ
t)>∇`i(θ

t) +
|∑i∈T t ωi∇`i(θ

t)|2
2λ/ε + µ

2ε |ω|2
s.t. |ω|1 = 1.

(8.7)
We simplify the notation by introducing λ̂ = λ/ε and µ̂ = µ/ε. To find the optimal
coefficients ω we temporarily ignore the normalization constraint |ω|1 = 1 and
solve the unconstrained optimization. Afterward, we enforce the L1 normalization
to the solution. As a first step, we compute the derivative of the cost functional with
respect to wi and set it to zero, i.e., ∀i ∈ T t

0 = ∑j∈V t −∇`j(θ
t)>∇`i(θ

t) + 1
λ̂

∑k∈T t ωk∇`k(θ
t)>∇`i(θ

t) + µ̂ωi. (8.8)
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We now approximate the second sum by ignoring all terms such that k 6= i, i.e.,

0 = ∑j∈V t −∇`j(θ
t)>∇`i(θ

t) +
(

1
λ̂
|∇`i(θ

t)|2 + µ̂
)

ωi (8.9)

so that we can obtain the weight update rule

∀i ∈ T t, ωi ← ∑j∈V t
∇`j(θ

t)>∇`i(θ
t)

|∇`i(θt)|2/λ̂+µ̂
, ω̂ = ω/|ω|1. (8.10)

Since eq. (8.8) describes a linear system, it could be solved exactly via several iter-
ative methods, such as Gauss-Seidel or successive over-relaxation [240]. However,
we found that using this level of accuracy does not substantially improve the model
performance to justify the additional computational cost. We can then combine the
update rule (8.10) with the update (8.6) of the parameters θ and obtain a new gradi-
ent descent step

θ(ω) = θt − ε ∑i∈T t ω̂i∇`i(θ
t). (8.11)

Notice that εω̂i can be seen as a learning rate specific to each mini-batch. The update
rule for the weights follows a very intuitive scheme: if the gradients of a mini-batch
in the training set ∇`i(θ

t) agree with the gradients of a mini-batch in the validation
set ∇`j(θ

t), then their inner product ∇`j(θ
t)>∇`i(θ

t) > 0 and their corresponding
weights are also positive and large. This means that we encourage updates of the
parameters that also minimize the upper-level problem. When these two gradients
disagree, that is, if they are orthogonal ∇`j(θ

t)>∇`i(θ
t) = 0 or in the opposite di-

rections∇`j(θ
t)>∇`i(θ

t) < 0, then the corresponding weights are also set to zero or
a negative value, respectively (see Figure 8.1 for a general overview of the training
procedure). Moreover, these inner products are scaled by the gradient magnitude of
mini-batches from the training set, and division by zero is avoided when µ > 0.

Remark 1. Attention must be paid to the sample composition in each mini-batch since we
aim to approximate the validation error with a linear combination of a few mini-batches. In
fact, if samples in a mini-batch of the training set are relatively independent of samples in
mini-batches of the validation set (for example, they belong to very different categories in a
classification problem), then their inner product will tend to be very small on average. This
would not allow any progress in the estimation of the parameters θ. We ensure that samples
in each mini-batch from the training set have overlapping labels with samples in mini-batches
from the validation set at each iteration.

8.3 Implementation

To implement our method we modify SGD with momentum [241]. First, at each
iteration t we sample k mini-batches Bi in such a way that the distributions of la-
bels across the k mini-batches are identical (in the experiments, we consider k ∈
{2, 4, 8, 16, 32}). Next, we compute the gradients∇`i(θ

t) of the loss function on each
mini-batch Bi. V t contains only the index of one mini-batch and T t all the remain-
ing indices. We then use ∇`j(θ

t), j ∈ V t, as the single validation gradient and com-
pute the weights ωi of ∇`i(θ

t), i ∈ T t, using eq. (8.10). The re-weighted gradient
∑i∈T t ωi∇`i(θ

t) is then fed to the neural network optimizer.
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8.4 Experiments

We perform extensive experiments on several common datasets used for training
image classifiers. Section 8.4.1 shows ablations to verify several design choices. In
Sections 8.4.2 and 8.4.3 we follow the experimental setup of Zhang et al. [216] to
demonstrate that our method reduces sample memorization and improves perfor-
mance on noisy labels at test time. In Section 8.4.4 we show improvements on small
datasets. The datasets considered in this section are the following:

CIFAR-10 [210]: It contains 50K training and 10K test images of size 32× 32 pixels,
equally distributed among 10 classes.

CIFAR-100 [210]: It contains 50K training and 10K test images of size 32× 32 pixels,
equally distributed among 100 classes.

Pascal VOC 2007 [116]: It contains 5,011 training and 4,952 test images (the trainval
set) of 20 object classes.

ImageNet [242]: It is a large dataset containing 1.28M training images of objects
from 1K classes. We test on the validation set, which has 50K images.

We evaluate our method on several network architectures. On Pascal VOC and Im-
ageNet, we use AlexNet [11]. Following Zhang et al. [216], we use CifarNet (an
AlexNet-style network), and a small Inception architecture adapted to the smaller
image sizes of CIFAR-10 and CIFAR-100. We refer the reader to [216] for a detailed
description of those architectures. We also train variants of the ResNet architecture
[119] to compare to other methods.

8.4.1 Ablations

We perform extensive ablation experiments on CIFAR-10 using the CifarNet and
Inception network. The networks are trained on both clean labels and labels with
50% random noise. We report classification accuracy on the training labels (clean
or noisy) and the accuracy on the clean test labels. The baseline in all the ablation
experiments compares 8 mini-batches and uses µ = 0.01 and λ = 1. Both networks
have a single dropout layer, and the baseline configuration uses the same dropping
in all the compared mini-batches. The networks are trained for 200 epochs on mini-
batches of size 128. We do not use data augmentation for CifarNet, but we use
standard augmentations for the Inception network (i.e., random cropping and per-
turbation of brightness and contrast). Therefore, the case of the Inception network
is closer to the common setup for training neural networks, and the absence of aug-
mentation in the case of CifarNet makes overfitting more likely. We use SGD with
a momentum of 0.9 and an initial learning rate of 0.01 in the case of CifarNet and
0.1 for Inception. The learning rate is reduced by a factor of 0.95 after every epoch.
Although the validation and training sets split the selected mini-batches into two
separate sets in our formulation, after one epoch, mini-batches used in the valida-
tion set could be used in the training set and vice versa. We test the case where we
manually enforce that no examples (in mini-batches) used in the validation set are
ever used for training and find no benefit. We explore different sizes of the sepa-
rate validation and training sets. We define as validation ratio the fraction of samples
from the dataset used for validation only. Figure 8.2 demonstrates the influence of
the validation ratio (top row), the number of compared mini-batches (second row),
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the size of the compared mini-batches (third row), and the hyper-parameter µ (bot-
tom row). We can observe that the validation ratio has only a small influence on the
performance. We see an overall negative trend in the test accuracy with the increas-
ing size of the validation set. This is probably due to the corresponding reduction
of the training set size. The number of mini-batches has a much more pronounced
influence on the network’s performance, especially in the case of CifarNet, where
overfitting is very likely. Note that we keep the number of training steps constant
in this experiment. Hence, the case with more mini-batches corresponds to smaller
batch sizes. While the performance on noisy labels increases with the number of
compared mini-batches, we observe a decrease in performance on clean data. We
want to mention that the case of 2 mini-batches is rather interesting since it amounts
to flipping (or not) the sign of the single training gradient based on the dot product
with the single validation gradient. To test whether the performance with a grow-
ing number of batches is due to the batch sizes, we perform experiments where we
vary the batch size while keeping the number of compared batches fixed at 8. Since
this modification leads to more iterations, we adjust the learning rate schedule ac-
cordingly. Notice that all comparisons use the same overall number of times each
sample is used. We can observe a behavior similar to the case of the varying number
of mini-batches. This suggests that small mini-batch sizes lead to better generaliza-
tion in the presence of label noise. Notice also the special case where the batch size
is 1, which corresponds to per-example weights. Besides inferior performance, we
found this choice to be computationally inefficient and interfering with batch-norm.
Interestingly, the parameter µ does not seem to influence the performance of both
networks significantly. Overall the performance on clean labels is quite robust to
hyper-parameter choices except for the size of the mini-batches.

In Table 8.1, we also summarize the following set of ablation experiments:

a) No L1-constraint on ω: We show that using the L1 constraint |ω|1 = 1 is ben-
eficial for both clean and noisy labels. We set µ = 0.01 and λ = 1 for this
experiment in order for the magnitude of the weights ωi to resemble the case
with the L1 constraint. While tuning of µ and λ might lead to an improvement,
the use of the L1 constraint allows plugging our optimization method without
adjusting the learning rate schedule of existing models;

b) Weights per layer: In this experiment, we compute a separate ω
(l)
i for the gra-

dients corresponding to each layer l. We then also apply L1 normalization to
the weights ω

(l)
i per layer. While the results on noisy data with CifarNet im-

prove in this case, the performance of CifarNet on clean data and the Inception
network on both datasets clearly degrades;

c) Mini-batch sampling: Here, we do not force the distribution of (noisy) labels in
the compared mini-batches to be identical. The poor performance, in this case,
highlights the importance of identically distributed labels in the mini-batches;

d) Dropout: We remove the restriction of equal dropping in all the compared mini-
batches. Somewhat surprisingly, this improves performance in most cases.
Note that unequal dropping lowers the influence of gradients in the deep fully-
connected layers. Therefore this gives more weight to gradients of early convo-
lutional layers in the dot-product. Also, dropout essentially amounts to having
a different classifier at each iteration. Our method could encourage gradient
updates that work well for different classifiers, possibly leading to a more gen-
eral representation.
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FIGURE 8.2: Ablation experiments on CIFAR-10. We report classifi-
cation accuracy with CifarNet (a small AlexNet style network) (left)
and a small Inception network (right). We vary the size of the vali-
dation set (1st row), the number of mini-batches being compared (2nd
row), the mini-batch size (3rd row) and the hyper-parameter µ (4th
row). The networks were trained on clean as well as 50% noisy labels.
The amount of label noise during training is indicated in parentheses.
We show the accuracy on the clean or noisy training data but always
evaluate it on clean data. Note that the baseline of using the full train-
ing data as the validation set is indicated with dashed lines on the top

row.
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TABLE 8.1: Results of ablation experiments on CIFAR-10. Models
were trained on clean labels and labels with 50% random noise. We
report classification accuracy on the clean or noisy training labels and
clean test labels. The generalization gap (the difference between train-
ing and test accuracy) on clean data is also included. We also show
results of the baseline model and of a model trained with standard

SGD.

Experiment
CifarNet Inception

Clean 50% Random Clean 50% Random
Train Test Gap Train Test Train Test Gap Train Test

SGD 99.99 75.68 24.31 96.75 45.15 99.91 88.13 11.78 65.06 47.64
Baseline 97.60 75.52 22.08 89.28 47.62 96.13 87.78 8.35 45.43 73.08
a) L1 96.44 74.32 22.12 95.50 45.79 79.46 77.07 2.39 33.86 62.16
b) ω per Layer 97.43 74.36 23.07 81.60 49.62 90.38 85.25 5.13 81.60 49.62
c) Sampling 72.69 68.19 4.50 16.13 23.93 79.78 78.25 1.53 17.71 27.20
d) Dropout 95.92 74.76 21.16 82.22 49.23 95.58 87.86 7.72 44.61 75.71

TABLE 8.2: Experiments with random pixel permutations. We re-
port performance of the Inception network when trained on data with
random pixel permutations (fixed per image). We observe much less

overfitting using our method when compared to standard SGD.

Model Train Test Gap

SGD 50.0 33.2 16.8
Bilevel 34.8 33.6 1.2

8.4.2 Fitting Random Pixel Permutations

Zhang et al. [216] demonstrated that CNNs could fit the training data even when
images undergo random permutations of the pixels. Since object patterns are de-
stroyed under such manipulations, learning should be minimal (restricted to simple
statistics of pixel colors). We test our method with the Inception network trained
for 200 epochs on images undergoing fixed random permutations of the pixels and
report a comparison to standard SGD in Table 8.2. While both variants’ test accuracy
is similar, the network trained using our optimization shows a tiny generalization
gap.

8.4.3 Memorization of Partially Corrupted Labels

The problem of label noise is of practical importance since the labeling process is
often unreliable, and incorrect labels can be introduced in the process. Providing
methods that are robust to noise in the training labels is therefore of interest. This
section reports experiments on several datasets (CIFAR-10, CIFAR-100, ImageNet)
with different forms and levels of label corruption and using different network
architectures. We compare to other state-of-the-art regularization and label-noise
methods on CIFAR-10 and CIFAR-100.

Random Label Corruptions on CIFAR-10 and CIFAR-100. We test our method
under different levels of synthetic label noise. For a noise level π ∈ [0, 1] and a
dataset with c classes, we randomly choose a fraction of π examples per class and



8.4. Experiments 97

TABLE 8.3: Comparison to prior works. We compare to state-of-
the-art regularization techniques and methods for dealing with label

noise on 40% corrupted labels.

Method Ref. Network CIFAR-10 CIFAR-100

Reed et al. [227] [228] ResNet 62.3% 46.5%
Golderberger et al. [243] [228] ResNet 69.9% 45.8%
Azadi et al. [230] [230] AlexNet 75.0% -
Jilang et al. [228] [228] ResNet 76.6% 56.9%
Zhang et al. [229] - PreAct ResNet-18 88.3% 56.4%

Standard SGD - PreAct ResNet-18 69.6% 44.9%
Dropout (p = 0.3) [244] - PreAct ResNet-18 84.5% 50.1%
Label Smoothing (0.1) [245] - PreAct ResNet-18 69.3% 46.1%
Bilevel - PreAct ResNet-18 87.0% 59.8%
Bilevel + [229] - PreAct ResNet-18 89.0% 61.6%

FIGURE 8.3: CifarNet on CIFAR-10/100 with varying label noise.
We report performance with CifarNet trained on data with varying
amounts of random label noise. We observe that our optimization
leads to higher test accuracy and less overfitting in all cases when

compared to standard SGD.

uniformly assign labels of the other c− 1 classes. Note that this leads to entirely ran-
dom labeling in the case of 90% label noise on CIFAR-10. Networks are trained on
datasets with varying amounts of label noise. We train the networks with our bilevel
optimizer using eight mini-batches and using the training set for validation. The
networks are trained for 100 epochs on mini-batches of size 64. Learning schedules,
initial learning rates, and data augmentation are identical to those in sec. 8.4.1. The
results using CifarNet are summarized in Figure 8.3 and the results for Inception in
Figure 8.4. We observe a consistent improvement over standard SGD on CifarNet
and significant gains for Inception on CIFAR-10 up to 70% noise. On CIFAR-100,
our method leads to better results up to a noise level of 50%. We compare to
state-of-the-art regularization methods and methods for dealing with label noise in
Table 8.3. The networks used in the comparison are variants of the ResNet architec-
ture [119] as specified in [228] and [229]. An exception is [230], which uses AlexNet,
but relies on having a separate large dataset with clean labels for their model. We
use the same architecture as the state-of-the-art method by Zhang et al. [229] for our
results. We also explored the combination of our bilevel optimization with the data
augmentation introduced by [229] in the last row. This results in the best perfor-
mance on both CIFAR-10 and CIFAR-100. We also include results using Dropout
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FIGURE 8.4: Inception on CIFAR-10/100 with varying label noise.
We report performance with an Inception network trained on data
with varying amounts of random label noise. On CIFAR-10, our op-
timization leads to substantially higher test accuracy in most cases
when compared to standard SGD. Our method also shows more ro-

bustness to noise levels up to 50% on CIFAR-100.

TABLE 8.4: Experiments with more realistic label noise on ImageNet.

Method 44% Noise Clean

SGD 50.75% 57.4%
Bilevel 52.69% 58.2%

[244] with a low keep-probability p as suggested by Arpit et al. [246] and results
with label-smoothing as suggested by Szegedy et al. [245] .

Modelling Realistic Label Noise on ImageNet. In order to test the method on more
realistic label noise, we perform the following experiment: We use the predicted
labels of a pre-trained AlexNet to model realistic label noise. Our rationale here is
that predictions of a neural network will make similar mistakes as a human annota-
tor would. To obtain a high noise level, we leave dropout active when making the
predictions on the training set. This results in approximately 44% label noise. We
then retrain an AlexNet from scratch on those labels using standard SGD and our
bilevel optimizer. This experiment’s results and comparison on clean data are given
in Table 8.4. The bilevel optimization leads to better performance in both cases,
improving over standard SGD by nearly 2% in case of noisy labels.

Experiments on Real-World Data with Noisy Labels. We test our method on the
Clothing1M dataset introduced by Xiao et al. [247]. The dataset consists of fashion
images belonging to 14 classes. It contains 1M images with noisy labels and addi-
tional smaller sets with clean labels for training (50K), validation (14K), and testing
(10K). We follow the same setup as the state-of-the-art by Patrini et al. [223] using an
ImageNet pre-trained 50-layer ResNet. We achieve 69.9% after training only on the
noisy data and 79.9% after fine-tuning on the clean training data. These results are
comparable to [223] with 69.8% and 80.4% respectively.

8.4.4 Generalization on Small Datasets

Small datasets pose a challenge since deep networks will easily overfit in this case.
We test our method under this scenario by training an AlexNet on the multi-label
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FIGURE 8.5: Classification on varying fractions of Pascal VOC. We
train an AlexNet for multi-label classification on varying fractions of
the Pascal VOC 2007 trainval set and report mAP on the test set
and the complete trainval set. Our optimization technique leads to
higher test performance and a smaller generalization gap in all cases.

classification task of Pascal VOC 2007. Training images are randomly cropped to an
area between 30% to 100% of the original and then resized to 227× 227. We linearly
decay the learning rate from 0.01 to 0 and train for 1K epochs on mini-batches of size
64. We use the bilevel optimization method with four mini-batches and without a
separate validation set. In Figure 8.5 we report the mAP obtained from the average
prediction over ten random crops on varying fractions of the original dataset. We
observe a small but consistent improvement over the baseline in all cases.

8.5 Discussion

Neural networks seem to benefit from additional regularization when compared to
alternative models in machine learning. However, neural networks still suffer from
overfitting, and current regularization methods have a limited impact. We introduce
a novel regularization approach that implements the principles of cross-validation
as a bilevel optimization problem. This formulation is computationally efficient
and can be incorporated with other regularizations. It consistently improves the
generalization of several neural network architectures on challenging datasets such
as CIFAR10/100, Pascal VOC 2007, and ImageNet. In particular, we show that the
proposed method is effective in avoiding overfitting with noisy labels.
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Chapter 9

Conclusions

“What I cannot create, I do not understand."

— Richard P. Feynman

In this thesis, we studied techniques to learn representations of visual data, even
without human supervision. Along the way, our aim was always to capture visual
patterns that generalize to new data and new vision tasks. The primary tool towards
this goal was the design of self-supervised learning tasks. In Chapter 3 we described
a novel SSL approach based on the recognition and localization of corruptions in
natural images. We then identified, as a general principle for SSL, the recognition
of data transformations in Chapter 4. These transformations are chosen such that
they alter the visual patterns we want the network to learn. To steer deep neural
networks towards learning global image statistics we thus designed transformations
that alter global statistics but preserve local statistics in Chapter 4. Following the
same principle, we designed SSL tasks that learn motion from video in Chapter 5
by recognizing data transformations that affect the temporal domain. In Chapter 6
we then built representations of 3D shape by learning to recognize if the geometric
transformation between two views of the same scene is rigid or non-rigid. All these
instances of the proposed SSL design pattern illustrate its effectiveness for learning
features that generalize to downstream vision tasks with few labeled examples.

Aside from self-supervised learning, this thesis also addressed generalization is-
sues in supervised learning and generative adversarial training. In Chapter 7 we de-
scribed how GAN training could be stabilized by adding random noise to the input
images of the discriminator. Coincidentally, this again corresponds to a transforma-
tion of the data. In this case, however, the aim was not to make the discriminator
focus on the transformation but rather to blur the boundary between fake and real
examples. Finally, Chapter 8 addressed overfitting in the supervised learning setting
when labels are scarce or unreliable. Our proposed algorithm improves generaliza-
tion by modulating the magnitudes and signs of training gradients based on their
agreement with a validation gradient.

Self-supervised learning has made tremendous progress recently and is fast
approaching or surpassing the performance of supervised pre-training. Effective
SSL techniques will allow us to tackle more complex vision tasks for which large
supervised datasets are impractical. It is, therefore, our belief that self-supervised
learning is an important stepping stone on the path towards artificial systems with
visual perception and reasoning capabilities that match or surpass those of humans.
With some luck, we might also further our understanding of human perception and
learning on the way. Towards this goal, we outline below three possible directions
that continue this work.
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Learning from Video. SSL on images produces representations that capture well
the semantics of images as measured by recognition or localization tasks. However,
the visual understanding of current systems is still far from human capabilities, and
mostly devoid of common sense reasoning (e.g., about human interactions) or an
understanding of the laws of nature (i.e., Newtonian physics). Such understand-
ing is crucial for artificial vision but difficult, if not impossible, to gain from static
images. SSL on videos has the potential to evolve richer visual representations by
observing the world in motion, similar to humans. The processing and learning
from video poses computational challenges that might require novel architectures to
achieve long-term reasoning. Indeed, current 3D convolutional networks typically
only process a relatively small number of frames corresponding to a few seconds
of video. We also largely lack benchmarks beyond action recognition to measure
deeper visual understanding.

Directly Solving Vision Tasks via Self-Supervision. While self-supervised pre-
training often drastically reduces the demand for supervision in transfer learning,
large differences in the pre-training and target tasks can hamper its effectiveness.
Furthermore, some tasks may require a level of dense supervision that is even pro-
hibitive for transfer learning (e.g., segmentation or pose-estimation on videos). One
solution to these problems is the design SSL tasks that directly solve vision prob-
lems of interest. Such tasks could, for example, exploit motion cues in videos for
segmentation, multi-view data for 3D correspondence learning, or audio-visual data
to predict object interactions.

Going Beyond Hand-Crafted Self-Supervised Learning Tasks. The optimal visual
representation for a given transfer learning task likely depends on the target task,
i.e., there might not be a universally optimal representation. In this case, the prop-
erties of features (e.g., learned invariances and equivariances) will depend on the
target task and require the design of targeted SSL tasks, which at present relies on
intuition and trial and error. A more desirable system would adapt the parameters
of a flexible SSL framework towards learning only those patterns relevant to the tar-
get task. This could be achieved through a meta-learning algorithm that optimizes
feature performance in transfer learning. The design of such a framework could
build on the learning of invariances and equivariances to predefined or learned data
transformations, as explored in this thesis.
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