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Deep Transfer Learning: A Fast and Accurate Tool to Predict
the Energy Levels of Donor Molecules for Organic
Photovoltaics

Gareth John Moore,* Olivier Bardagot, and Natalie Banerji

Molecular engineering is driving the recent efficiency leaps in organic
photovoltaics (OPVs). A presynthetic determination of frontier energy levels
makes the screening of potential molecules more efficient, exhaustive, and
cost-effective. Here, a convolutional neural network is developed to predict
the highest occupied and lowest unoccupied molecular orbital
(HOMO/LUMO) levels of donor molecules for OPV. The model takes a 2D
structure image and returns a prediction of its HOMO/LUMO levels
comparable to experimental values. Insufficient experimental datasets are
overcome with transfer learning where the model is initially trained on the
large Harvard Clean Energy Project dataset and then fine-tuned using
experimental data from the Harvard Organic Photovoltaic dataset. Error
margins on predicted HOMO/LUMO levels below 200 meV are achieved,
without any chemical knowledge implemented. Noticeably, the model outputs
have higher accuracy and precision than corresponding density functional
theory (DFT) estimations. The model and its limitations are further tested on
a home-built dataset of commercially available donor polymers reported in
OPVs (e.g., P3HT, PTB7-Th, PM6, D18). The results demonstrate both the
practical utility of this model, to foster rational molecular engineering for OPV
optimization, and the potential for deep learning techniques, in general, to
revolutionize the energy materials research and development sector.

1. Introduction

With the burning of fossil fuels massively contributing to the cur-
rent global warming crisis, the design, optimization and imple-
mentation of renewable alternatives for energy generation is criti-
cal to curb its already devastating effects.[1] Organic photovoltaics
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(OPV) offer a cost-effective, lightweight,
flexible and renewable light-to-electrical en-
ergy conversion process, and with efficien-
cies over 19%,[2] show promise as one of the
viable alternatives to fossil fuels.[3] Much of
these efficiency improvements have come
from molecular engineering based on em-
pirically determined design rules and trial-
and-errormethods. It has been shown, how-
ever, that the energies of the frontier molec-
ular orbitals (Highest Occupied Molecular
Orbital or HOMO, and Lowest Unoccu-
pied Molecular Orbital or LUMO) can be
used as a good approximation of the ex-
pected power conversion efficiency of ma-
terials in OPV devices.[4] Consequently, a
presynthetic determination of these ener-
gies makes screening of potential materi-
als more efficient. The theoretical determi-
nation of the HOMO/LUMO levels of or-
ganicmolecules is traditionally achieved us-
ing Density Functional Theory (DFT) based
calculations.[5] However, the accuracy of
DFT simulations is limited by the inher-
ent trade-off between over-delocalization
and under-binding.[6] Besides, DFT simu-
lations are computationally expensive and

time consuming, thereby limiting the usefulness of DFT for
large scale OPV power conversion efficiency predictions and
material screening. To address these limitations, deep learning
methods,[7] along with the development of ever larger datasets,
have emerged as a promising alternative for the development
of highly predictive quantitative structure-property relationship
(QSPR) models in the field of OPV.[8]

In this work a QSPR deep learning model, in the form of a
deep convolutional neural network, is developed to predict the
HOMO/LUMO levels of organic molecules intended for use in
OPV applications. The deep learning model takes the SMILES
(simplified molecular-input line-entry system) of a molecule as
input, converts it to a 2D RGB image, uses the convolutional lay-
ers of the network to extract features from the image and then
converts the features into energy levels using a deep dense neu-
ral network.
All of the relevant information for predicting the frontier en-

ergy levels of a molecule is contained in the SMILES string, how-
ever, this string necessarily needs to be converted into a numeri-
cal form to be used as training data for a neural network. Previous
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Figure 1. A) Illustration of the convolutional neural network, showing the preprocessing step, the convolutional network (with rectified linear unit
(ReLU) activation function), max-pooling, global averaging, and fully connected layers (with activation functions). B) Examples of (left) a molecular
image, (middle) the output of two filters after the first max-pooling layer and, (right) the output of the model.

attempts include converting SMILES to a numerical vector repre-
senting the letters of the SMILES by Paul et al. who were able to
predict the HOMO levels of donor molecules using a Long Short
Term Memory (LSTM) type network.[9] However, even though
converting the SMILES to an image significantly increases the
amount of data without increasing the amount of information,
there are some advantages of the image representation. First, it
allows the use of powerful computer vision techniques such as
Convolutional Neural Networks (CNNs) to extract the informa-
tion about the molecule, it also represents potential nonbinding
interactions and conformational effects in a more accessible way
than a SMILES string. Images representations of molecules and
CNN’s was used by Sun et al. to predict the theoretical photocon-
version efficiencies of donor molecules for OPV applications.[10]

Lastly, it was shown by Sun et al. that expanded molecular rep-
resentations of over 1000 bits (a typical SMILES contains 250
bits) result in high prediction accuracy for a number of different
model architectures, with the largest representation performing
the best.[10]

The model takes advantage of a machine learning technique
called transfer learning,[11] whereby it is first trained on a large
dataset (500 000 molecules) with HOMO/LUMO estimated by
DFT simulations and then fine-tuned on a smaller dataset (194
molecules) with experimentally measuredHOMO/LUMO levels.
The deep learning model shows an accuracy below 200 meV,
with accuracy and precision superior to DFT-estimated energies.

The validity of the QSPR model was carefully evaluated and con-
firmed using commercially available polymers (such as P3HT,
PTB7-Th, PNTz4T, J71, PM6, D18, Figure 5D) to ensure its prac-
tical utility. As a result, the deep learning model offers an effi-
cient way to accurately and almost instantly (≈170 ms on a per-
sonal computer) predict the frontier energy levels of molecules,
without the need for molecular geometry optimization and large
computing clusters, thereby allowing fast and reliable screening
of donor molecules for OPV applications. This model, and mod-
els of this kind, is expected to find rapid use in both academic
and industrial laboratories to realize molecular engineering at a
lower cost and in a fraction of the time.

2. Experimental Section

2.1. The Deep Learning Model

Deep learning has emerged as a powerful tool for solving a vari-
ety of problems of machine learning and artificial intelligence,
both in everyday[12] and scientific applications.[13] Deep learn-
ing made use of multilayer stacks of modules (in this case con-
volutional layers and fully connected neurons, Figure 1A) that
mapped an input and output through nonlinear functions.[14] By
havingmany layers andmillions of trainable parameters, the sys-
tem was able to model increasingly complex processes in ways
that were both sensitive to minute details and invariant to noise.
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Figure 1A illustrates the architecture of the model used in this
work, where it is broken up into two distinct parts, the convolu-
tional network and the deep dense network.[7b] This model took
SMILES (or InChI, International Chemical Identifier) as input
and generated standardized RGB molecular images as a prepro-
cessing step. The convolutional network was used as a way of au-
tomatically creating a nonlinear, trainable feature extracting func-
tion without the need for explicit feature engineering or hard-
coded pattern recognition. Carbons were represented in black
and each heteroatom in its own color (e.g., oxygen in red, sulfur
in yellow, nitrogen in blue) and representative letter (e.g., oxy-
gen “O”, sulfur “S”, nitrogen “N”), this allowed for heteroatoms
to be easily picked out as features even with the relatively low
image resolution (100×100×3) which reduced the computational
requirements. The convolutional layers slidmultiple initially ran-
dom filters over the image, transforming it such that features
like edges, large shapes (e.g., conjugated backbones, Figure 1B
middle left), or color change (e.g., heteroatoms, Figure 1B mid-
dle right) were highlighted. Then, it downsampled the data using
a max-pooling layer until it was in a form appropriate for input
into the dense network (1D array). Finally, the result of the con-
volutional network (or feature map) was fed into the deep dense
network, which consisted of layers of fully connected neurons
each containing trainable weights and activation functions that
introduced nonlinearity into the model.[14] The deep dense net-
work had around 18 million trainable parameters starting with
an input array of 512 feature elements, from the convolutional
network, and outputting 2 numbers that were trained to repre-
sent the HOMO and LUMO levels of the input molecule (details
in Section S1, Supporting Information). This work made use of
a supervised learning technique where the model parameters (or
weights and biases) were iteratively optimized based on the re-
sults of a loss function that quantified the difference between
the known true output and the predicted output. [13,14] Here, the
loss function was calculated as themean squared error (MSE) be-
tween the true and predicted values (details in Section S2, Figures
S1 and S2, Supporting Information).

2.2. Datasets and Training

The ultimate objective of this work was to train a deep learn-
ing model able to predict the HOMO and LUMO energy levels
of a molecule with experimental (not theoretical) values taken
as “true.” The main constraint was the lack of a large enough
dataset containing experimentally measured values. With rela-
tively small training sets, deep learning models were unlikely to
learn in a way that gave meaningful predictivity. In order to over-
come this constraint, a technique called transfer learning was
employed.[11,15] In transfer learning, a model is trained on a large
and general dataset where basic functions, which require many
iterations and large amounts of data to learn, are acquired. The
model was then retrained (fine-tuned) on a smaller more spe-
cific dataset using the previously learned weights to initialize the
model.[11b,15,16] The second training, or fine-tuning, was done us-
ing a significantly smaller learning rate as the weights were as-
sumed to be already close to optimal.
Here, the data used for the initial phase of training (phase

I, Figure 2) were 500 000 randomly sampled molecules from

Figure 2. Schematic of phase I and phase II of training using the HCEP
dataset and HOPV15 dataset respectively, with the learned weights being
transferred from the first to the second phase of training.

the Harvard Clean Energy Project (HCEP) dataset.[17] The HCEP
dataset consisted of around 2.3 million artificially generated po-
tential donor molecules, for use in OPV devices. All molecules
were designed combinatorically from 26 molecular building
blocks. The HOMO and LUMO levels of these molecules were
estimated using DFT at different levels (details in Section S3.1,
Supporting Information).
The deep learning model was then fine-tuned (phase II, Fig-

ure 2) on a subset (194 molecules) of the Harvard organic photo-
voltaic dataset (HOPV15)[18] with the weights being carried over
from the first Phase I. The HOPV15 dataset consisted of around
350 molecules whose HOMO and LUMO levels were been i)
experimentally measured (extracted from literature) and ii) esti-
mated using DFT in a range of conformations with four different
functionals used for each conformation. A subset of theHOPV15
dataset was used in the training of themodel (194 out of 350) con-
sisting of only donor polymers to avoid the difficulty of unifying
the SMILES of polymer and small molecule donors, as well as
to represent the almost ubiquitous use of polymer donors, over
small molecule donors, in OPV. The 194 molecules were con-
verted into 5464 unique images representing all possible confor-
mational representations of each molecule for training in Phase
II. This data augmentation step ensured that the model was in-
variant to the specific SMILES chosen to represent a molecule, as
one molecule could have multiple SMILES associated with it (de-
tails in point 2.3 and Table S2, Supporting Information). Phase
II uses these experimental values i) as “true” for training and the
resulting predictions of the model are later compared with the
values from DFT ii). The dataset was created to represent a mea-
surably diverse range of donor polymers used in the field of OPV
(details in point 3.2 of the Supporting Information).
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2.3. Testing and External Validation

Validation of QSPRmodels needed to be done rigorously in order
to assess their predictivity.[19] Validationwas done using three cal-
culations: the square of the correlation coefficient (R2), the root
mean squared error (RMSE), and the standard error of predic-
tion (SEP). The R2 value is a measure of correlation between the
true and predicted values, while the RMSE can be understood as
the accuracy and the SEP as the precision of prediction.[19] The
first step for validation was to split the dataset into a subset for
training and a subset for testing. By doing so, the predictivity of
the model could be assessed on a test set never exposed to the
model and yet still representative of the entire dataset.[20] In this
work, phase I was trained on 500 000 molecules and tested on 10
000 extra molecules (2%), and phase II was trained on 162 poly-
mers and tested on 32 extra polymers (20%). In both training
phases, the training and testing polymers were split with ran-
dom sampling, but specifically in a way that the distribution of
the HOMO and LUMO values was roughly the same. The train-
ing dataset was further split into training and validation sets and
early stopping was employed to minimize overfitting (described
in Section S2.1, Supporting Information). Then, to ensure the
robustness of the model, a Y-scrambling test was done.[21] Here,
the dependent variables (HOMO and LUMO values) were ran-
domly scrambled and associated with the “wrong” structures
(SMILES), in a way that the structure–property relationships no
longer hold, and the model was retrained. If the correctly trained
deep learning model shows high R2 and the Y-scrambled model
shows low R2 values, it implies that the model outputs are nei-
ther overfitting nor chance correlations, but that there is neces-
sarily a learnt link between the input (structure) and the output
(properties).[8g,20]

2.4. The “use-case” Dataset

While it would be sufficient to test the deep learning model
only on the test set from the HOPV15 dataset, from litera-
ture, an additional dataset was built with the aim of testing the
model in a real use-case scenario. The so-called “use-case” dataset
consisted of 26 donor polymers used in OPVs that are com-
mercially available (i.e., including Chemical Abstracts Service
or CAS numbers) and have both experimentally measured and
DFT-estimated HOMO/LUMO energy levels published in peer-
reviewed journals. The polymers were strictly not in theHOPV15
dataset but were composed of atoms and building-blocks repre-
sented in the Phase II training set (Figure S6, Supporting Infor-
mation). Note that experimental values of the “use-case” dataset
were exclusively determined by cyclic voltammetry (CV).[22] CV
allowed an estimation of HOMO/LUMO energy levels with an
error margin generally considered to be about ±100 mV.[23] More
accurate techniques exist, such as ultraviolet photoelectron spec-
troscopy (UPS) or inverse photoelectron spectroscopy (IPES);
however, CV was undoubtedly the most commonly used tech-
nique in the field of organic electronics due to the relative
ease of measurement.[24] More details are given in Section S3.3
(Supporting Information) and a full list of the molecules with
all values and predictions is given in Table S3 (Supporting
Information).

3. Results

3.1. Phase I

In Phase I of training, molecules with DFT-estimated HOMO
and LUMO levels from the large HCEP dataset are used to train
the deep learning model with randomly initialized weights (Fig-
ure S1, Supporting Information). The goal of this phase is to
leverage the large volume of data so that the model learns to ex-
tract important features from the molecular images and learns
to convert those features into HOMO and LUMO energy level
predictions. In order to evaluate the performance of the model at
this stage, we generate predictions on the test set from the HCEP
dataset. R2 values close to 1 (Figure 3A,B) with SEP and RMSE
values around 30meV (Figure 3C) are found for the prediction of
HOMO and LUMO levels, thereby illustrating the accuracy and
precision of the prediction after phase I of training. This result
is followed up by an R2 value of 0.990 with SEP and RMSE of
around 45meV for the bandgap (Figure S3, Supporting Informa-
tion), showing not only the individual predictions, but also their
relative positions to be highly accurate and precise. The results
from the Y-scrambling test shows R2 values of 7.28×10–6 and
9.18×10–5 for the HOMO and LUMO levels respectively (Table
1). The R2 values close to zero indicate that there is very little
correlation between the predicted and “true” values, and that the
Y-scrambling model is only able to predict random values within
the range of the training data. The Y-scrambling test confirms
that there is no overfitting and, more specifically, that there is a
structure–property relationship in the dataset and that this rela-
tionship is necessarily learned by the model. Note that no chem-
ical knowledge was implemented at any time.

3.2. Phase II

After phase I of the training, the deep learning model demon-
strates an ability to predict DFT-estimated frontier energy lev-
els of molecules represented in the HCEP dataset. The goal of
this work is, however, to be able to predict experimentally equiv-
alent HOMO/LUMO values of polymers in order to increase the
potential utility of this model. To do so, phase II fine-tunes the
model on polymers already reported in OPVs using experimen-
tally determined HOMO/LUMO values as “true” values (Figure
S2, Supporting Information). The model is fine-tuned on 162
polymers from the HOPV15 dataset, which are expanded to 6850
SMILES with 4595 (67%) unique images (see Section S2.3, Sup-
porting Information, for details) with 32 polymers left for test-
ing. By starting with the weights learned in phase I, for both the
convolutional network and the deep dense network, the model
can leverage the predictive structure–property relationship learnt
from phase I and fine-tune itself to have better predictability for
the new, experimental, dataset used in phase II. Note that trans-
ferring the weights only for the convolutional network or only for
the deep dense network does not provide satisfying results (Ta-
ble S1, Supporting Information). Since the HCEP and HOPV15
datasets have an incomplete overlap both in atoms and molecu-
lar building blocks present in the molecules, phase II training
is expected to induce fine-tuning of the weights in the convo-
lutional layers that extract the features of the polymers. Simi-
larly, as the HCEP uses DFT and HOPV15 uses experimental
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Figure 3. Results of both phases of deep learning model training. Phase I shows the predicted versus DFT-estimated A) HOMO and B) LUMO levels
for the training set (triangles) and test set (circles). C) Distribution of the prediction errors with the HOMO level error shown in blue and the LUMO
level error in orange. Phase II shows the results of the fine-tuning on HOPV15 dataset with the predicted versus experimentally measured D) HOMO
and E) LUMO levels. F) Distribution of the prediction errors in phase II.

methods to define “true” values, the weights in the deep dense
layers are also expected to be adjusted in phase II to accommo-
date the new structural features and to give predictions in accor-
dance with experimental data. Additionally, the fine tuning of the
model on HOPV15 polymers, represented by a single monomer,

with CV values as “true” forces the model to account for the de-
crease of the bandgaps with the average increase of the conju-
gation length (i.e., number of repeating units). As a result, the
model learns to take into account both the shape of themonomer
and the effect of polymerization on energy levels (Figure S4, Sup-
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Table 1. Performance of the deep learning model trained on the HCEP dataset in phase I and HOPV15 in phase II including Y-scrambling for both phases
and training without transfer leaning for phase II.

Phase I—HCEP Phase II—HOPV15

Learning Y-scrambling Transfer learning Nontransfer learning Y-scrambling

R2 (HOMO) 0.991 7.28×10–6 0.639 0.0223 7.28×10–4

R2 (LUMO) 0.993 9.18×10–5 0.617 0.0366 5.86×10–4

R2 (Gap) 0.987 1.32×10–4 0.477 0.0401 3.39×10–5

Figure 4. Distribution of the prediction errors of the HOMO (top) and LUMO (bottom) levels for the deep learning model (black) as well as DFT-
estimated values for all conformers using various functionals from the HOPV15 dataset (colors). The difference in counts results from the multiple DFT
values (one for each conformer) reported for a given molecule with a given functional in the HOPV15 dataset.

porting Information), which is in sharp contrast with determin-
istic DFT simulations.[25] For both HOMO and LUMO predic-
tions after phase II training (Figure 3D,E respectively), satisfying
R2 values are obtained: greater than 0.9 for the training set, and
greater than 0.6 for the test set, which indicates a good correla-
tion between the prediction and true values. More importantly,
SEP and RMSE values below 170 and 190 meV are achieved for
the HOMO and LUMO levels respectively (Figure 3F). In other
words, with this model, the frontier energy levels of any newly
designed donor polymer composed of atoms and building blocks
seen in the HOPV15 training set, can be predicted with, on aver-
age, an error of less than 200 meV compared to the experimental
value. Such finding offers a fast and accurate tool to guide molec-
ular engineering for OPV optimization.
The decrease in the predictability of the model after phase

II, compared to phase I, comes from the effects of the smaller
dataset (despite transfer learning), polymerization effects and the
measurement error in experimental CV data. Machine learned
models inherently carry through the error from training data and
it is impossible, therefore, not improve on its accuracy. As in
phase I, the validity of the phase II results and the importance of
using the transfer learning technique are confirmed by attempt-
ing to train the model without transferring the weights from the
phase I model (nontransfer learning) and Y-scrambling tests. In-

deed, lowR2 values are obtained when themodel is not initialized
with the previously learned weights (Non-Transfer Learning, Ta-
ble 1). This illustrates the necessity of the transfer learning and
confirms that the HOPV15 dataset is not large enough to train
this kind of deep learning model alone, even with the data aug-
mentation techniques described above. The data augmentation
step did, however, result in a model showing good molecular
conformation and orientation invariance (Table S2). Lastly, the
poor R2 values from the Y-scrambling test again demonstrates
the learned relationship between the new chemical structures
and the experimental values of the frontier energy levels (Table 1).

3.3. Comparison with DFT from HOPV15 Dataset

After exploring the results of the phase II training against ex-
perimental data, the model is compared to the common method
for energy level estimation, DFT simulations. The error distribu-
tions, i.e., the distributions of the difference between predicted
(deep learning model or DFT) and experimental “true” values,
are shown in Figure 4. The distributions of the absolute val-
ues are shown in Figure S5 (Supporting Information). For the
DFT-estimated results, we see rather poor accuracy of the predic-
tion leading to large RMSE values (Table 2), which are illustrated
by the shift in the error distributions from zero (Figure 4). The
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Table 2. Comparison of the performance of the deep learning model and
the various DFT estimations for the HOMO level, LUMO level and the
bandgap ( = LUMO − HOMO), showing the standard error of prediction
(SEP) and the root mean square error (RMSE).

Method HOMO [meV] [SEP /
RMSE]

LUMO [meV]
[SEP/RMSE]

Gap
[meV][SEP/RMSE]

This model 164/163 190/188 246/245

DFT: PBE0 292/309 381/814 530/978

DFT: B3LYP 288/324 370/791 515/753

DFT: BP86 269/652 339/367 449/637

DFT: M06-2X 307/1003 407/1407 589/2376

low RMSE values and the error distributions centered around
zero for the deep learning model clearly indicate its better ac-
curacy compared to this level of DFT in predicting experimental
HOMO/LUMO levels. Even if the shifts in energy values obtained
by DFT can conceivably be improved by an empirical correction
factor, the precision remains inferior to the model as highlighted
by the SEP values (Table 2). Indeed, all the DFT methods show
comparable SEP values (between 269 and 407 meV) for the esti-
mation of the HOMO and LUMO levels (Table 2), while the SEP
values for themodel predictions are around half of that (164meV
and 190 meV for the HOMO and LUMO levels, respectively). In
particular, the better accuracy and precision of the deep learning
model for both the HOMO and LUMO levels is emphasized by

Figure 5. Results of testing the deep learning model on the “use-case” dataset. Deviation of the A) HOMO and B) LUMO level predicted compared to
the experimental values. C) Distributions of the prediction errors for the values outputted by the deep learning model (Model) and the values estimated
by DFT (DFT) extracted from literature. “Measured” correspond to energy levels determined experimentally (by cyclic voltammetry (CV)) and extracted
from peer-reviewed journals. D) Schematic comparison of the model and DFT predictions compared to experimental values of commonly used donor
polymers in OPVs. PM6 and D18 are not part of the “use-case” dataset as they are partly composed of building blocks, highlighted in red in their chemical
structures, not represented in the HOPV15 training set.
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Table 3. Comparison of the results of the deep learning model and pub-
lished DFT of molecules from the “use-case” testing dataset. The table
shows SEP and RMSE of the HOMO, LUMO, and bandgap ( = LUMO −
HOMO).

Method HOMO [meV]
[SEP/RMSE]

LUMO [meV]
[SEP/RMSE]

Gap [meV] [
SEP/RMSE]

This model 121/125 154/156 186/182

DFT 329/500 390/727 506/549

the low SEP (precision, 246 vs 449meV) and lowRMSE (accuracy,
245 vs 637 meV) obtained for the predicted bandgap compared
to BP86, the best performing DFT functional for predicting the
bandgap (Table 2). We can therefore conclude that the deep trans-
fer learning model is not only more accurate but also more pre-
cise than any of the DFT methods used in the HOPV15 dataset.

3.4. External Validation: Comparison with DFT from Literature
(“use-case” Dataset)

In order to validate this claim, the deep learning model is tested
on the “use-case” dataset made up of 26 commercially available
donor polymers whose HOMO/LUMO levels were both exper-
imentally determined by CV measurements and calculated us-
ing DFT based on routinely used hybrid functionals (B3LYP or
PBE0) and advanced basis sets (mainly 6-31G), published in peer-
reviewed journals (details in Tables S3 and S4, Supporting Infor-
mation). The model undergoes no further training. The predic-
tions of both the deep learning model and DFT simulations are
compared to the experimental CV data. TheR2 values of circa 0.56
for theHOMOand 0.63 for the LUMO levels (Figure 5A,B respec-
tively) confirm the practical predictability of thismodel.[20] Again,
the distribution of the prediction errors is better centered around
zero than for DFT simulations (Figure 5C). More importantly,
the SEP and RMSE values under 160 meV for both HOMO and
LUMO model predictions compared to 390 meV for DFT (Table
3) demonstrate the ability of the deep learning model to outper-
form routinely used DFT simulations in determining the frontier
energy levels of this set of polymers. Compared tomachine learn-
ing models that predict DFT-B3LYP HOMO/LUMO levels with
RMSE of around 200 meV, the model presented here offers state-
of-the-art accuracy for predicting experimental HOMO/LUMO
levels with RMSE of 125 meV and 156 meV respectively (Ta-
ble 3).[8c] The list of predicted values for eachmolecule (including
PCE11, PCDTBT, F8T2,MEH-PPV, TQ1, etc.) is given in Table S3
(Supporting Information). The performance of the deep learning
model compared toDFT is illustrated graphically in Figure 5D for
a few polymers of broad interest: P3HT, PTB7-Th, PNTz4T, J71,
PM6, and D18 (PCE18).
The limitations of this deep transfer learning model, however,

must be considered. It is mainly limited by the broadness of the
training data, in that its ability to give consistently good predic-
tions decreases when tested on polymers containing atoms or
building blocks that are not represented in the training data (over-
lap of building blocks are shown in Figure S6, Supporting Infor-
mation). As an example, D18, which has a dithienobenzothiadi-
azole unit not represented in the HOPV15 training set, shows a

better HOMO level prediction but an overall worse model predic-
tion than the B3LYP-based DFT estimation. Indeed, the LUMO
level is significantly under-estimated most likely because wide-
bandgap polymers such as D18 are not present in the training
set.[26] Note that PM6 contains a benzo[1,2-c:4,5-c′]dithiophene-
4,8-dione unit also not represented in the HOPV15 training set
and yet the deep learning model remains more accurate than
B3LYP-basedDFT.[27] TheHOMO/LUMOpredictions of 16 other
polymers used in OPVs that are commercially available, but not
fully represented in the training set, is given in Table S4 (includ-
ing PCE12, PCE13, J61, DRCN5T, PDBT-T1, etc.) with statistical
analysis in Figure S7 and Table S5 (Supporting Information). Fi-
nally, it is crucial to remember that, unlike the model presented
here, the capabilities of DFT simulations go far beyond the sim-
ple prediction of HOMO/LUMO energy levels. DFT allows the
estimation of electronic distribution of each orbital, dipole mo-
ment, electronic coupling, molecular electrostatic potential, opti-
cal absorption, and many more complex properties.[28]

4. Conclusion and Outlook

In this work, a QSPR deep transfer learningmodel is successfully
created which takes the SMILES of a molecule as input, converts
it to an RGB image, and predict its HOMO/LUMO levels with an
accuracy (RMSE) of below 200 meV. This model makes use of a
convolutional neural network architecture and transfer learning
techniques in order to train on experimental data despite the rela-
tively small dataset. The practical use of thismodel is successfully
validated on real-use donor polymers used in OPVs from both
the HOPV15 dataset (test set) and an external “use-case” dataset
made up of commercially available polymers with frontier en-
ergy levels reported in literature. The model predictions are also
compared to the results of DFT simulations, using four differ-
ent functionals, and DFT results reported in literature, whereby
the model is found to be substantially more accurate and pre-
cise. This suggests that this deep learning model performs bet-
ter at predicting the frontier energies of this class of molecules
than the computationally expensive and time consuming DFT
simulations. As a result, this model offers a reliable and quick
way of screening potential donor polymers for optimizing OPVs,
thereby saving costly and time-consuming synthesis and experi-
mental testing.
One downside of models created using deep learning tech-

niques is our inability to extract how the model converts the im-
age into the energy values. Nevertheless, our findings suggest
that with enough data, parameters and a well optimized model,
there is enough information in the 2D diagram of a molecule to
predict its HOMO/LUMO energies. Currently the major limita-
tion hindering the broad adoption of this model is the limited
training set, as it does not process atoms and molecular building
blocks that are not represented in the training data consistently.
We believe that if one could gather the data already available in
peer-reviewed journals and train this model on it, the model will
grow in accuracy for a wide variety of newly designed materials.
Considering that no chemical knowledge is implemented, we do
not see any limitations in extending the use of this model to ac-
ceptor molecules.[29] In particular, the prediction of the LUMO
level of accepting small molecules, such as nonfullerene accep-
tors, would be of high interest for the design of efficient donor-
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acceptor systems for bulk heterojunction solar cells. In general,
the expansion of datasets in size and diversity would greatly im-
prove the prediction power and practical utility of these kinds of
QSPR models.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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