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DeepSleepNet-Lite: A Simplified Automatic
Sleep Stage Scoring Model With

Uncertainty Estimates
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and Francesca Dalia Faraci , Member, IEEE

Abstract— Deep learning is widely used in the most
recent automatic sleep scoring algorithms. Its popularity
stems from its excellent performance and from its ability
to process raw signals and to learn feature directly from
the data. Most of the existing scoring algorithms exploit
very computationally demanding architectures, due to their
high number of training parameters, and process lengthy
time sequences in input (up to 12 minutes). Only few
of these architectures provide an estimate of the model
uncertainty. In this study we propose DeepSleepNet-Lite,
a simplified and lightweight scoring architecture, process-
ing only 90-seconds EEG input sequences. We exploit, for
the first time in sleep scoring, the Monte Carlo dropout
technique to enhance the performance of the architec-
ture and to also detect the uncertain instances. The
evaluation is performed on a single-channel EEG Fpz-Cz
from the open source Sleep-EDF expanded database.
DeepSleepNet-Lite achieves slightly lower performance,
if not on par, compared to the existing state-of-the-art archi-
tectures, in overall accuracy, macro F1-score and Cohen’s
kappa (on Sleep-EDF v1-2013 ±30mins: 84.0%, 78.0%, 0.78;
on Sleep-EDF v2-2018 ±30mins: 80.3%, 75.2%, 0.73). Monte
Carlo dropout enables the estimate of the uncertain pre-
dictions. By rejecting the uncertain instances, the model
achieves higher performance on both versions of the data-
base (on Sleep-EDF v1-2013 ±30mins: 86.1.0%, 79.6%, 0.81;
on Sleep-EDF v2-2018 ±30mins: 82.3%, 76.7%, 0.76). Our
lighter sleep scoring approach paves the way to the appli-
cation of scoring algorithms for sleep analysis in real-time.

Index Terms— Sleep scoring, deep learning, model uncer-
tainty estimation.
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I. INTRODUCTION

GOOD sleep plays a crucial role in human well-being, and
sleep disorders represent a significant and an increasing

public health problem [1]. Polysomnography (PSG) is used
in sleep medicine as a diagnostic tool, so as to objectively
analyze the quality of sleep and the common sleep patholo-
gies - e.g. sleep breathing disorders, narcolepsy, sleep-related
movement disorders [2]. Electroencephalography (EEG), elec-
trooculography (EOG), electromyography (EMG) and electro-
cardiography (ECG) signals are essential for the PSG exam.
The physicians extract sleep cycle information through the
well-known sleep stage scoring procedure, according to the
AASM guidelines [3]. The whole-night sleep recording is
divided into 30-second windows, called epochs, and each
epoch is classified into one of the following five sleep stages:
wakefulness W, stage N1, stage N2, stage N3, and stage R
(REM sleep). This manual sleep stage classification is obvi-
ously time-consuming and is affected by human error - several
works report high values of inter- and intra-scorer vari-
abililty [5]. Since 1960, a wide variety of techniques have
been devised in an effort to automate this procedure. Still,
up to now, no system has completely replaced the physician.

In the last decades, deep learning algorithms have been
widely used to solve the sleep scoring task automatically.
A thorough review of the application of deep learning archi-
tectures to sleep scoring can be found in [6]. Autoen-
coders [7], deep neural networks (DNNs) [8], convolutional
neural networks (CNNs) [9]–[16], recurrent neural networks
(RNNs) [17] and several combination of them [18]–[26] have
been recently proposed. The main advantage of all these
networks is the ability to learn features directly from raw data,
by taking into account the temporal dependency among the
sleep stages. However, the architectures of these models are
quite complex, a high number of parameters need to be trained.
The most recent ones process lengthy time sequences in
input - i.e. up to 12 minutes - using RNNs, thus requiring extra
resources to buffer the PSG input and making them unsuitable
in home-monitoring and in real-time applications. As a rule,
deep architectures with a high number of layers and parameters
need to be trained on large databases to prevent overfitting.
In different scenarios sleep datasets have a limited number of
labeled PSG samples available. Lighter architectures may be
better suited if the model needs to be trained from scratch.
We found only two architectures [14], [21] performing the
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automatic sleep scoring and also providing an estimate of the
model uncertainty. In [14] they use an additional classification
block-2 (i.e. multilayer perceptron in cascade to the deep
convolutional scoring architecture) to output the final sleep
stage and the associated relative confidence score. In contrast,
[21] trains 16 different models and uses the relative model
variance to estimate the uncertain predictions. It is important
to know the level of confidence of each prediction, as it could
be the key to identify the misclassified sleep stages.

In this paper, we propose DeepSleepNet-Lite, a simplified
and lightweight automatic sleep scoring architecture. It pro-
vides the predicted sleep stages along with an estimate of their
uncertainty. The major advantage is that it does not require
any additional computation over the baseline architecture to
provide the estimate.

The two main contributions of this paper are: 1) the opti-
mization of a simple feed-forward sleep scoring architecture,
that processes only 90-second single-channel EEG in input;
2) the application of the Monte Carlo dropout sampling
technique, using dropout at test time to capture the model
uncertainty and to enhance the performance of the scoring
system. In Section II we describe the architecture, the training
algorithm and the regularization techniques used in our scoring
system. In Section III we briefly present the label smoothing
technique used to calibrate the scoring architecture. Moreover
we propose a new conditional probability distribution com-
puted over the targets (i.e. our prior knowledge), and used
to smooth our labels. In Section IV we present the Monte
Carlo dropout sampling technique, and its application within
our sleep scoring system to estimate the uncertainty of the
model. In the last sections, we demonstrate the efficiency
of label smoothing and Monte Carlo dropout techniques in
both calibrating and enhancing the performance of our model.
We also demonstrate the efficiency of the uncertainty estimate
procedure, by showing that it is able to identify the most
challenging sleep stage predictions. We finally show that
DeepSleepNet-Lite achieves performance on par with most
up-to-date scoring systems.

II. DEEPSLEEPNET-LITE

The architecture of DeepSleepNet-Lite is strongly inspired
by DeepSleepNet from Supratak [18]. Unlike the original
network, we have employed only the first representation
learning part, and trained it with a sequence-to-epoch learning
approach. The architecture receives in input a sequence of PSG
epochs, and predicts the corresponding target of the central
epoch of the sequence. In [27] we had already shown that the
first representation learning part of the architecture, trained
with a small temporal context - 90-second epochs, does most
of the work on a small-sized database.

A. The Architecture

The representation learning architecture consists of two
parallel CNNs employing small (C N NθS ) and large (C N NθL )
filters at the first layer. The small filter has been used to
extract high-time resolution patterns, while the large filter
has been used to extract high-frequency resolution patterns.
The idea behind the use of the small and large filter sizes

Fig. 1. An overview of the representation learning architecture from [18],
with our sequence-to-epoch input-output training approach.

comes from the way the signal processing experts define
the trade-off between temporal and frequency precision in
the feature extraction procedure [28]. Each CNN section
consists of four convolutional layers and two max-pooling
layers. Each convolutional layer executes three operations: a
one-dimensional convolution of the filters with the 90-second
epochs, a batch normalization [29] and an element-wise rec-
tified linear unit (ReLU) activation function. The filter size,
the number of filters and the stride size of each conv layer are
defined in Fig. 1. The pooling layer is used to downsample the
input. In each max-pool unit the pooling size and the stride
size are specified.

The 90-second EEG signal xi is given in input to the convo-
lutional neural networks C N NθS and C N NθL . The parameters
θ of each convolutional neural network are independently
trained, so as to return in output two feature vectors hi

S and
hi

L . The outputs are concatenated in fi, then forwarded to the
softmax layer.

hi
S = C N NθS (xi) (1)

hi
L = C N NθL (xi) (2)

fi = hi
S||hi

L (3)

The softmax function, together with the cross-entropy loss
function, is used to train the model to output the logits zi
and the probability for the five mutually exclusive classes that
correspond to the five sleep stages.

zi = WTfi + b (4)

p̂i,k = ex p(zi,k)

�jex p(zi,j)
(5)

where θ = {W,b} are the parameters of the softmax layer, j
is the index of the vector z, p̂i,k is the output probability of
class k associated to x(t), the centred 30-second signal in xi.
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Fig. 2. (top) 90-s EEG raw signal. (bottom) 90-s EEG vertically flipped.

All the model specifications are reported in Fig. 1, equally
to the first representation learning in [18].

B. Training Algorithm

The architecture is trained end-to-end via backpropagation,
using the sequence-to-epoch learning approach. Classification
algorithms learn to predict the most represented class in the
training set, leading to the so called class imbalance problem.
Here the least represented classes are balanced by using two
techniques: (i) data augmentation, by flipping vertically the
data input (i.e. multiply by −1 the original signal, see Fig. 2)
belonging to the least represented classes, then (ii) oversam-
pling randomly the data so that all the sleep stages are equal in
number to the most represented class. In our model, the input
is a sequence of three 30-second epochs, and the output is
the corresponding target of the central epoch at time (t). So,
we refer to the target of the central epoch to compute the most
or least represented classes.

The model is trained using mini-batch Adam gradient-based
optimizer [30] with a learning rate lr . The training procedure
runs up to a maximum number of iterations, as long as the
break early stopping condition is satisfied - further details in
the next subsection II-C.

C. Regularization Techniques and Training Parameters

Dropout. Commonly used as regularizer in convolutional
neural networks, it prevents overfitting and co-adaptation of
the feature maps [31]. During the training procedure a certain
number of neurons are randomly removed, dropping units
with a probability p. We fix the probability of dropping a
connection equal to 50%, i.e. p = 0.5.

Early stopping. It provides guidance on how many iterations
can be run before the model begins to overfit [32]. The training
procedure should be stopped as soon as the performance
(i.e. F1-score) on the validation set is lower than it was in
the previous iteration step. However, in this study, before
hastily stopping the learning procedure, the algorithm runs for
an additional number of iterations (by fixing the so called
patience parameter). The model with the highest performance
is the one we finally save.

L2 weight decay. This technique simply adds a term to the
loss function that penalizes the weight values; by doing so it
avoids the exploding gradient phenomena [33]. The lambda
defines the degree of penalty and it has been set to 10−3.

All the training parameters are fixed as in [18]. The Adam
optimizer’s parameters beta1 and beta2 have been set to 0.9
and 0.999 respectively. The mini-batch size has been set to
100. During the batch normalization procedure, the � value
of 10−5 has been added to the mini-batch variance. In order
to compute the mean and variance of the training samples,
the moving average has been implemented using a fixed decay
rate value of 0.999. The learning rates parameter lr has been
fixed to 10−4. The maximum number of iterations has been
set to 100, with the early stopping patience parameter equal
to 50.

III. MODEL CALIBRATION

Along with the estimated sleep stage, the model should
also provide a calibrated confidence - i.e. the probability
associated to the predicted stage should mirror its ground
truth correctness likelihood. We adopted label smoothing [34]
to calibrate our model. It has been shown to be a suitable
technique to improve model calibration [35].

In a standard training of a neural network, the cross-entropy
loss is minimized using the hard targets yk (i.e. hot encoded
targets, ‘1’ for the correct class and ‘0’ for the other). For
a network trained with label smoothing, the hard targets are
weighted with the uniform distribution 1/K (eq. 6), and the
cross-entropy loss is minimized using the weighted mixture of
the targets (eq. 7).

yk
LSu = yk · (1 − α) + α/K (6)

H(y, p) =
K∑

k=1

−yk
LSu · log( p̂k) (7)

where α is the smoothing parameter, K is the total number of
classes, yk

LSu the targets smoothed with the uniform distribu-
tion, and p̂k the softmax output probabilities.

A. Conditional Probability Distribution
in Label Smoothing

In our study, we introduce a new distribution to smooth the
labels, by mainly taking into account the importance in sleep
scoring of the transitions from one sleep stage to the other. The
idea is to compute the conditional probability distribution over
the five sleep stages of all the sequences of epochs:

M = P(stage(t)|stage(t − 1), stage(t + 1)) (8)

where in M we have the conditional probability values for
each possible combination of sequences of three sleep stages.
In detail, we compute the probability to be in a stage at time t
given the previous (t −1) and the next (t +1) sleep stages over
the whole database. The matrix M is K × K × K dimensional,
where K is the total number of sleep stages.

As stated previously, the architecture takes in input a
sequence of three epochs, and outputs the corresponding target
of the central epoch yk,(t). So, during the training procedure,
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TABLE I
CONDITIONAL PROBABILITY VALUES COMPUTED OVER THE

SEQUENCES, EXTRACTED FROM THE SLEEP-EDF V1-2013
DATASET, WITH THE LABEL AT TIME (t − 1) FIXED

IN AWAKE. i.e. MW, K × K

given the knowledge of the sleep stage at time (t − 1) and
the sleep stage at time (t + 1), the hot encoded yk,(t) will
be smoothed with the corresponding conditional probability
vector from M.

In Table I we report an example of the conditional proba-
bility values computed over the sequences extracted from the
Sleep-EDF v1-2013 dataset (see section V), with the label
at time (t − 1) fixed in sleep stage awake. We highlight in
light-green an example of the conditional probability vector
to use when we had awake W at time (t − 1) and N1 at time
(t + 1), which results in the following smoothed target:

yk
LSs = yk · (1 − α) + α · MW, K , N1 (9)

The cross-entropy loss is minimized using the weighted
mixture of the hard targets with these conditional probability
distributions.

The smoothing parameter α for the uniform distribution and
the conditional probability distribution weighting has been set
to 0.1 and 0.2 respectively. These two values gave us the
highest performance. In both, we explored α values up to 0.5.

IV. ESTIMATING UNCERTAINTY

In order to estimate the model uncertainty, we exploit the
dropout regularization technique. As explained above, during
the training procedure, at each iteration, dropout removes a
certain number of units within our network at random. It ran-
domly samples a certain number of sub-networks, so that each
time the model’s architecture is slightly different. In a standard
application, dropout is used only during the training phase.
At test time, instead, all the trained neurons and connections
are used - i.e. all the weights of the whole network. The
output could be interpreted as an averaging ensemble of all the
sub-networks. We employ, for the first time in sleep staging,
the Monte Carlo (MC) dropout [36], to quantify the model
uncertainty, and to further enhance the performance of the
scoring architecture. Monte Carlo refers to a specific class of
algorithms that rely on random sampling, to provide estimates
and distributions of numerical quantities. MC dropout simply
consists in applying the randomized sampling even at test
time. The different sub-networks could be interpreted as Monte
Carlo samples extracted from the space of all the possible
models. As a result, by applying dropout N times at inference
time (with the probability of dropping a connection p = 0.5),
we would get N different predictions. We compute the mean
and the variance of the N predictions for each sleep stage k

μi,k =
∑N

n=1 p̂n,i,k

N
(10)

TABLE II
NUMBER AND PERCENTAGE OF 30-SECOND EPOCHS

PER SLEEP STAGE OF THE SLEEP-EDF DATASETS

WITH DIFFERENT TRIMMING

σ 2
i,k =

∑N
n=1( p̂n,i,k − μi,k)

2

N
(11)

where p̂n,i,k is the output probability for the sleep stage k of
the n-th prediction for the input xi. The final prediction ŷi of
the model will be given by max(μμμi).

The uncertain predictions will be then estimated by
analysing both their computed mean and variance. The selec-
tion procedure of the uncertain sleep stages is explained in
detail in subsection VI-D. The selected uncertain predictions
could be then presented to the physician for a secondary
review.

V. DATA

Sleep-EDF (SC). The Sleep-EDF Sleep Cassette is a subset
of the open source Sleep-EDF dataset [37]. The PSG data
belong to 78 subjects (37 males and 41 females) aged from
25 to 101 years. Except for the first nights of subjects
36 and 52, and for the second night of subject 13, for all the
subjects are available two whole nights, resulting in 153 PSG
recordings. Each recording includes two scalp EEG channels
(Fpz-Cz and Pz-Cz), one EOG (horizontal) channel, one
submental chin EMG channel and one oro-nasal respiration
channel. The recordings are manually scored by sleep experts
on 30-second epochs according to Rechtschaffen and Kales
scoring rules [38], resulting in the eight classes Wake, N1,
N2, N3, N4, REM, MOVEMENT and UNKNOWN. In order
to use the AASM standard [3], we have merged the N3 and
N4 stages into a single stage N3, and we have excluded the
MOVEMENT and UNKNOWN classes. In many recordings
there were long wake periods before the patients went to sleep
and after they woke up. We have done experiments with the
two common ways these periods are trimmed in literature:
1) only in-bed parts are employed [4], i.e. from light-off time
to light-on time; 2) 30 minutes of data before and after in-bed
parts are taken into account in the experiments [18]. In our
study we have considered the EEG Fpz-Cz channel, with a
sampling rate of 100 Hz and without any pre-processing.

In order to facilitate the comparison with many existing
deep learning based scoring algorithms, in this work we use
the last expanded version published in 2018, and also the
previous upload of the Sleep-EDF database published in 2013.
In the older upload there were only 39 PSG recordings from
20 subjects. In Table II we report a summary of the total
number and percentage of the epochs per sleep stage.
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TABLE III
SUMMARY OF THE SLEEP-EDF DATASET AND THE DATA SPLIT

TABLE IV
OVERALL PERFORMANCE AND CALIBRATION MEASURE OF THE

MODELS OBTAINED FROM 20-FOLD CROSS-VALIDATION

WITH AND WITHOUT MC ON SLEEP-EDF V1-2013 ±30mins
DATASET. BEST SHOWN IN BOLD

VI. RESULTS

A. Experiment Design

Our validation procedure is in line with the state-of-
the-art methods considered in Table VIII in subsection VI-E.
In fact, we evaluate our model using the k-fold cross-validation
scheme. We set k equal to 20 for v1-2013 and 10 for
v2-2018 Sleep-EDF datasets. In Table III we summarize the
data split for each dataset. We decide to further standardize
the experiments by considering in each fold the same subject
IDs used in [26]. We believe that in such small datasets,
the subjects involved in the training/validation/test set may
have an impact on the final results.

The following experiments are conducted:

• base. The model is trained not considering model cali-
bration, and without label smoothing.

• base+LSu. The model is trained taking into account
the confidence calibration, using label smoothing with
uniform distribution - i.e. the hard targets are weighted
with the uniform distribution.

• base+LSs. The model is trained taking into account
the confidence calibration, using label smoothing with
our statistical analysis done on the sequences of sleep
stages - i.e. the hard targets are weighted with the con-
ditional probability distribution.

These three models, differently trained, have been evaluated
with and without using the MC dropout sampling technique.
In Table IV subsection VI-C we present the results obtained
for the three models, and the impact of MC dropout at
inference time.

The models have been implemented in TensorFlow
1.14, and trained on a single workstation running Ubuntu
18.04.2 with a Intel Core i7-8700K CPU, an NVIDIA GTX
1080 GPU with 8 GB memory and 32 GB RAM memory.

B. Metrics
Performance. The per-class F1-score, the overall accuracy

(Acc.), the macro-averaging F1-score (MF1) and the Cohen’s
kappa (k) have been computed from the predicted sleep stages

from all the folds to evaluate the performance of our model
[39], [40]. In our experiments the weighted-averaging F1-score
has been also reported, taking into account also the label
imbalance problem. It computes the average of the metric
weighted by the number of true instances for each label. The
F1-score computed in this way is not a realistic weighted
average of the precision and recall, but it takes into account
the high imbalance between the sleep stages.

Calibration. We evaluated the calibration of our model
using the expected calibration error (ECE) proposed in [41].
It approximates the difference in expectation between accuracy
acc and confidence con f , where with confidence it refers to
the softmax output probabilities.

More in detail, we first divide the predictions into M
equally spaced bins (size 1/M), then for each bin we compute
the accuracy acc(Bm) and we define the average predicted
probability value con f (Bm):

acc(Bm) = 1

|Bm| ·
K∑

i∈Bm

1(ŷi = yi) (12)

con f (Bm) = 1

|Bm| ·
K∑

i∈Bm

p̂i (13)

where yi and ŷi are the true and predicted labels for the sample
i , Bm is the group of samples whose predicted probability
values falls into the interval Im = (m−1

M , m
M ], and p̂i is the

predicted probability value for sample i .
Then we finally compute the weighted average of the acc

and con f difference of the M bins,

EC E =
M∑

m=1

|Bm|
n

· |acc(Bm) − con f (Bm)| (14)

where n is the number of samples in each bin.
Clearly, perfectly calibrated models have acc(Bm) =

con f (Bm) for all m ∈ {1, .., M}, resulting in EC E = 0.

C. Analysis of Experiments

In table IV we report the overall performance and the
calibration measure of three different models, with and without
Monte Carlo dropout at inference time, to which we refer w/o
MC and w/ MC respectively. In the following, we analyse
only the results obtained on the Sleep-EDF v1-2013 ±30mins
dataset, since the findings are still valid for its expanded
v2-2018 ±30mins version.

In our tests w/o MC, we show the efficiency of label
smoothing in calibrating the model. The con f value refers to
the average of all the predicted probability values. In both
LSu and LSs models, the con f probability better reflects
the ground truth correctness likelihood - i.e. accuracy value.
Indeed, it results in a better ECE value 0.023 and 0.071,
compared to the higher 0.111 for the base model. The overall
performance are preserved or even improved.

By using MC at test time, we show the efficiency of
label smoothing and MC techniques in both calibrating and
enhancing the performance of the model. It is quite interesting
the impact of MC dropout: an increase in overall metrics and
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Fig. 3. F1-score against the number of Monte Carlo samples N of the
three models (base, base+LSu and base+LSs) evaluated on Sleep-EDF
v1-2013 dataset. Monte Carlo sampling converges after 30 samples
without further significant improvement on the average of the three
models.

TABLE V
CONFUSION MATRIX OBTAINED FROM 20-FOLD CROSS-VALIDATION

ON SLEEP-EDF V1-2013 ±30mins DATASET

a decrease in the average predicted probability values. This
justifies a better calibrated model by using our conditional
probability distribution smoothing technique LSs - i.e. ECE
value equal to 0.031.

In Fig. 3 we report the F1-score against the number of
Monte Carlo samples N , evaluated over all our experiments.
Interesting how Monte Carlo sampling outperforms the exper-
iments done without applying MC after approximately three
samples, on the average of the three models. On average we
get a plateau after 30 samples, so we decided to set N equal
to 30.

From here on, all the results will refer to the best of our
models base+LSu, by using MC sampling at test time.

In Tables V and VI we report the confusion matrix and
the per-class performance of the best of our models evalu-
ated on Sleep-EDF v1-2013 ±30mins and v2-2018 ±30mins
respectively. The i-th row and the j-th column indicates the
percentage number of 90-s EEG instances with the true label
being i-th class and the predicted label being j-th class.
In bold we highlight the percentage number of instances well
classified. As expected [42], the lowest performance has been
obtained for the N1 sleep stage, i.e. F1-score 44.4% and
46.0%; most of the N1 have been wrongly classified in awake,
N2 and REM. The F1-score for all the other sleep stages were
in range between 82.4% and 88.2% on v1-2013 ±30mins, and
between 76.4% and 91.5% on v2-2018 ±30mins.

D. Uncertainty Estimate
MC dropout enables the estimate of the uncertain pre-

dictions. In order to select the uncertain instances, at first,
we used the variance (σ 2 of the predicted probability values

TABLE VI
CONFUSION MATRIX OBTAINED FROM 10-FOLD CROSS-VALIDATION

ON SLEEP-EDF V2-2018 ±30mins DATASET

TABLE VII
PER-CLASS σ2 AND μ OF THE PREDICTED PROBABILITY VALUES

COMPUTED ON SLEEP-EDF V1-2013 ±30mins AND

V2-2018 ±30mins DATASETS

obtained from the N sampling). The selection procedure (also
referred to as query procedure) simply rely on the setting of a
threshold value q%, that corresponds to the percentage number
of epochs - for each PSG recording - to select and to send
potentially to the physician for a secondary review. The epochs
with the highest values of variance will be the q% selected.
We also tried to use the mean (μ of the predicted probability
values obtained from the N sampling) to select the uncertain
instances. In this case the epochs with the lowest mean values
will be the q% selected.

The selected epochs, in both cases, correspond to the predic-
tions where the averaging ensemble of the models outputs the
higher uncertainty. In Fig. 4 we report the F1-score computed
over the remaining epochs against the percentage number of
selected instances. We have fixed the q% threshold value to
5%, because it was considered to be a reasonable number of
epochs (54 on average for each PSG recording) to select and
to eventually present to the physician for a secondary review.
The results show that by using μ in the selection procedure
we obtain higher performance. In Fig. 5 we also report, for
each q% number of selected instances, the percentage of mis-
classified and correctly classified epochs among the selected
ones. As illustrated, by using μ, the percentage number of
misclassified epochs are greater than the correctly classified up
to the selection threshold q% equal to 10%. Whilst, by using
σ 2, the percentage number of selected epochs q% radically
decreases to 2%.

In Table VII we also report the average of the per-class
σ 2 and μ predicted probability values, to have an over-
all estimate of the model uncertainty, evaluated on both
Sleep-EDF v1-2013 ±30mins and v2-2018 ±30mins datasets.
As expected, the results show that the model has more
difficulty in classifying N1 and REM epochs, while provides
greater confidence in classifying W, N2 and N3 sleep stages
(lower variance and higher predicted probability values).

E. Comparison With State-of-the-Art
In Table VIII we compare our best model with the other

state-of-the-art methods evaluated on the two versions of the
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Fig. 4. F1-score computed over the remaining epochs after the query procedure against the percentage number of epochs to select. In light green
and in light blue the F1-score performance in case the selection procedure has been done using the variance (σ2 query ) and the mean (μ query )
respectively. The performance refers to the best of our model evaluated on Sleep-EDF v1-2013 ±30mins dataset.

Fig. 5. Percentage of misclassified and correctly classified epochs among the q% selected. In light green and in light blue the percentage values
in case the selection procedure has been done using the variance (σ2 query ) and the mean (μ query ) respectively. The performance refers to the
best of our models evaluated on Sleep-EDF v1-2013 ±30mins dataset.

Sleep-EDF database. We report the results for each exper-
imental scenario: 1) only in-bed recordings; 2) additional
30 minutes recordings before and after in-bed. We have consid-
ered only the methods using deep learning based architectures,

raw single channel Fpz-Cz, same evaluation procedure (i.e.
k-fold cross-validation) and using independent training and
test sets. We decided to further standardize our experiments
by considering in each fold the same subject IDs used in [26].
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TABLE VIII
COMPARISON BETWEEN OUR METHOD AND THE OTHER DEEP LEARNING-BASED AUTOMATIC SLEEP SCORING SYSTEMS USING RAW SINGLE

CHANNEL FPZ-CZ, EVALUATED ON SLEEP-EDF DATASETS WITH OVERALL ACCURACY (ACC.), MACRO F1-SCORE (MF1), COHEN’S KAPPA

(K) AND PER-CLASS F1-SCORE. THE BEST PERFORMANCE METRICS FOR EACH DATASET ARE INDICATED IN BOLD

All the results indicated by † are not directly comparable,
since they use a different set of subject IDs in their training/
evaluation/ testing procedure. The sleep scoring algorithms
are compared across the overall metrics (Acc., MF1, Cohen’s
Kappa and F1-score) and the per-class F1-score. The proposed
DeepSleepNet-Lite achieves slightly lower performance, if not
on par, compared to the state-of-the-art models on all the
Sleep-EDF datasets. The results confirm what we had already
partially observed in [27] on the Sleep-EDF v1-2013: the first
epoch processing block from DeepSleepNet, trained with a
small temporal context in input, still succeed in solving the
classification task on the small-sized database. Indeed, on both
v1-2013 and v2-2018 in-bed recordings, our model achieves
an overall accuracy only below 1.3% compared to the recent
state-of-the-art XSleepNet2 [26]. We are not surprised to see
our lighter architecture to overperform DeepSleepNet: one of
the reasons could be that in [18] they have not implemented
any early stopping procedure, and they save their model only
at the latest iteration step, thus not mitigating the overfitting
phenomenon. The number of training parameters of our lighter
model are significantly reduced, ∼0.6M compared to the
others TinySleepNet [25] ∼1.3M, SleepEEGNet [23] ∼2.6M,
FCNN+RNN [26] ∼5.6M, Naive Fusion and XSleepNet2
∼5.8M [26] and DeepSleepNet [18] ∼24.7M. Nevertheless,

SeqSleepNet [24] is still the network with the lowest number
of parameters ∼0.2M. We did not report the number of
training parameters for IITNet [22] since it was not available
in literature.

F. Comparison Among Our Methods

In Table IX we report the results of our best model evaluated
on the two versions of the Sleep-EDF database - in both
experimental scenarios. The outcomes refer to the performance
of the model evaluated before the selection procedure and
after the selection procedure, by using σ 2 and μ query values.
We report the results obtained after the selection procedure on
both the kept and rejected set of epochs. As a consequence of
what we have observed in Fig. 5, on both Sleep-EDF v1-2013
and v2-2018, the model shows an increase in performance
over the kept epochs, and a significant decrease on the rejected
epochs (below 50% by using μ query). These results highlight
the efficiency of the query procedure to select a larger number
of misclassified epochs among the selected one. The best
performance for each dataset are indicated in bold. We obtain
an overall accuracy equal to 86.1% on v1-2013 ±30mins
(84.5% on in-bed only) and equal to 82.3% on v2-2018
±30mins 80.9% on in-bed only).



2084 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE IX
COMPARISON AMONG OUR METHODS USING RAW SINGLE CHANNEL FPZ-CZ, EVALUATED ON SLEEP-EDF DATASETS WITH OVERALL

ACCURACY (ACC.), MACRO F1-SCORE (MF1), COHEN’S KAPPA (K), WEIGHTED-AVERAGING F1-SCORE (F1) AND PER-CLASS

F1-SCORE. THE BEST PERFORMANCE METRICS FOR EACH DATASET ARE INDICATED IN BOLD

VII. DISCUSSION

Our simplified deep learning approach to sleep scoring
achieves performance slightly lower, if not on par, compared
to the existing state-of-the-art methodologies evaluated on the
Sleep-EDF database. Besides being trained on a small number
of parameters, our method does not require any extra resources
to buffer the sequences in input, since it processes sequences
of only 90-seconds EEG. Therefore, we may assume that an
automatic sleep scoring system does not necessarily have to
encode such long temporal structures, rather intrinsic patterns
of short-term PSG recordings may be sufficient.

However, as a result of further experiments carried out on
larger and more heterogeneous databases (e.g. Physio2018
[43], [44] and SHHS [45], [46]), we can state that these
observations are mainly valid on small-sized dataset (i.e. low
heterogeneity between subjects).

The major advantage of the proposed approach is that
it also provides an estimate of the model uncertainty by
exploiting existing layers of the architecture. Unlike the exist-
ing confidence estimation algorithms for sleep scoring [14],
[21], the Monte Carlo dropout is easy to implement and it
does not require any additional computation over the baseline
architecture. Moreover, it produces interpretable outputs, i.e.
mean and variance of the predicted probability values. A clear
disadvantage for this approach - as for other ensemble learning
based algorithms - is that it needs to be executed N times,
obviously increasing the evaluation time by N. However,
in a real-time application, it may still be a valid solution
because the evaluation of a single sequence takes only a few
milliseconds.

The results obtained in subsection VI-C, in case our model
is trained by smoothing the labels through the conditional
probability distribution, are still to be further investigated. The
impact of this prior knowledge, inserted during the training of

our architecture, is not so obvious. It seems to improve the
calibration process of the model while maintaining its overall
good performance. Even if with this technique we succeed
to better calibrate our network, we do not equally succeed
in obtaining higher performance using it in combination with
Monte Carlo dropout. Therefore, unlike what we expected,
it is not always the case that a better calibrated architecture
leads to higher performance, or even, to a better estimate of
the model uncertainty.

VIII. CONCLUSION AND FUTURE WORKS

We propose DeepSleepNet-Lite a simplified and lightweight
automatic sleep scoring architecture, providing the predicted
sleep stages along with an estimate of their uncertainty. The
scoring system is based on raw single channel EEG, and it
processes 90-seconds time sequences. Although the proposed
simple feed forward architecture has proven to be as efficient
as RNNs based architectures, we cannot conclude that by using
only this first representation learning block we will reach
equally good results on larger databases. The Monte Carlo
dropout technique allows us to enhance the performance of the
architecture and to identify a relevant number of misclassified
epochs among the ones selected during the query procedure.
DeepSleepNet-Lite has a low capacity, i.e. low number of
training parameters, hence is less prone to overfitting on a
small dataset. Therefore the need to further investigate its
robustness on larger database. It would be interesting to
simulate the query procedure on the recent state-of-the-art
architectures, e.g. XSleepNet2, to assess its benefit on them.
Our lightweight sleep scoring approach paves the way to
real-time applications and to home-monitoring scenarios.
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