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Simple Summary: Footrot is an infectious hoof disease in sheep, caused by the bacterium Dichelobac-
ter nodosus. The antigentic variation of the fimbrial proteins resulted in the description of up to ten
serogroups (A–I and M). Vaccines against footrot target these fimbrial variants. Commercial vaccines
are covering nine serogroups but have low efficacy compared to vaccines based on two serogroups.
Therefore, our study investigated the prevalence and distribution of the nine serogroups A–I in
German sheep flocks with the aim to detect the predominant serogroups guiding optimized vaccines
based on two serogroups. Serogroup A was most common in our study, followed by serogroups B, H
and C. More than one-third of the animals showed more than one serogroup. In flocks, we found,
on average, 3.10 serogroups in a range of one to six. The nine serogroups were widely distributed
across the flocks, with 50 different combinations across the 83 flocks investigated. The lack of two
predominant serogroups in Germany impairs the nationwide protection against footrot by the usage
of more efficient vaccines based on two serogroups and requires tailor-made flock-specific vaccines.

Abstract: Footrot is one of the major causes of lameness in sheep and leads to decreased animal
welfare and high economic losses. The causative agent is the Gram-negative anaerobic bacterium
Dichelobacter nodosus. The prevalence of D. nodosus in 207 sheep flocks across Germany was 42.9%.
Based on the sequence variation in the type IV fimbrial gene fimA, D. nodosus can be subdivided into
ten serogroups (A–I and M). There are commercially available vaccines covering nine serogroups,
but the efficacy is low compared to bivalent vaccines. The aim of this study was to investigate the
diversity of serogroups in Germany at the flock and animal levels. In total, we detected at least one
serogroup in 819 samples out of 969 D. nodosus-positive samples from 83 flocks using serogroup-
specific singleplex PCR for the serogroups A–I. Serogroup A was most prevalent at the animal level,
followed by serogroups B, H and C. At the flock level, serogroups A and B had the highest prevalence,
each with 64%, but only 40% of flocks had both. The average number of serogroups per animal was
1.42 (range one to five) and, per flock, 3.10 (range one to six). The serogrouping showed within-flock
specific clusters but were widely distributed, with 50 different combinations across the flocks. The
factors associated with the number of serogroups per animal and single serogroups were the load of
D. nodosus, footrot score, sheep breed and flock. Our results indicate that efficient vaccination
programs would benefit from tailor-made flock-specific vaccines and regular monitoring of circulating
serotypes in the flock to be able to adjust vaccine formulations for nationwide progressive control of
footrot in Germany.

Keywords: footrot; sheep; serogroups; Dichelobacter nodosus; Germany; serogroup-specific PCR

Animals 2022, 12, 753. https://doi.org/10.3390/ani12060753 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12060753
https://doi.org/10.3390/ani12060753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-6263-3274
https://orcid.org/0000-0002-1575-5225
https://orcid.org/0000-0002-3516-836X
https://doi.org/10.3390/ani12060753
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12060753?type=check_update&version=1


Animals 2022, 12, 753 2 of 16

1. Introduction

Ovine footrot is a contagious disease, which is primarily caused by the Gram-negative
anaerobic bacterium Dichelobacter nodosus [1,2]. It is one of the major causes of lameness in
sheep and leads to weight loss and reduced wool production [3]. Furthermore, reduced
lambing percentages, reduced lambing survival and higher veterinary costs were reported
for ovine footrot [4]. The clinical signs vary from mild interdigital dermatitis to under-
running of the hoof horn in severe cases [5]. Footrot is very painful and causes lameness,
which implicates that the disease needs to be recognized as an issue for animal welfare [6].

The severity of the clinical signs result from the virulence of the D. nodosus strain,
moist environmental conditions and immune response of the host [7].

Currently, ten serogroups named A–I and M are described for D. nodosus. These
serogroups are based on their type IV fimbrial subunit antigen encoded by fimA [8]. The
fimbrial antigen was shown to be a major protective antigen; however, there is no cross-
protection between different serogroups [9].

The commercially available vaccine Footvax (MSD Animal Health, Kenilworth, NJ,
USA) is a multivalent vaccine containing serogroup antigens A–I [10]. For this vaccine,
a variable response and only partial protection were reported [9,11]. Mono- or bivalent
vaccines generated better results in controlling the clinical disease [9,12]. With an increasing
number of D. nodosus fimbrial antigens in the vaccine formulation, the protective effect
decreases linearly [13]. Schwartzkoff et al. explained this effect with antigenic competition
between different serogroup antigens [14]. Therefore, monovalent products initiate a
better immune response and higher antibody titres than multivalent vaccines. Due to
lower and less persistent antibody titers, the duration of the protective effect was lower
in multicomponent products than in bivalent vaccines; under a severe challenge, it only
offered protection for less than ten weeks [14,15]. Therefore, multivalent vaccines need to
be boostered more often than bivalent vaccines [15]. Furthermore, autogenous vaccines
contain milder adjuvants; therefore, they cause a lower number of local reactions than
Footvax, which is an animal welfare issue [16].

The effect of antigenic competition was also reported when vaccinating with
two bivalent vaccines concurrently [17]. An inter-vaccination interval of two months
for the usage of bivalent vaccines containing different antigens was suggested to avoid
antigenic competition [15].

To the best of our knowledge, there was only one study investigating D. nodosus
serogroups in Germany [18]. This study comprised 82 D. nodosus isolates from nine
flocks located in Southwest Germany and revealed serogroup B to be predominant in
all flocks [18].

The current study is a follow-up to a previous study, where the prevalence of
D. nodosus was determined in 207 sheep flocks across Germany using 9243 swab sam-
ples from the interdigital skin of feet. The prevalence of D. nodosus reported was 42.9% [19].
The aim of this study was therefore to investigate the distribution and prevalence of the
nine serogroups A–I across Germany based on serogroup-specific singleplex PCRs. The
samples were obtained during a previous study on the prevalence of D. nodosus [19] and
included flocks with at least four D. nodosus-positive samples. We tested the distribution
of the serogroups at the flock and animal levels by regions, footrot scores, virulence of
D. nodosus strains, load of D. nodosus and further flock-specific factors. Here, we present
the most representative study of serological diversity of D. nodosus for a large number of
flocks across Germany. The data collected in this study could be useful in the support
ofvaccination programs and to determine the best vaccination strategy.

2. Materials and Methods
2.1. Ethical Approval

This study was carried out according to the approval from the Institutional Animal
Care and Use Committee (IACUC) (33.19-42502-05-19A414) and the respective state veteri-
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nary offices from the different German states. The European Union guidelines for animal
care and the Guidelines of Good Veterinary Practices were followed.

2.2. Sample Collection

The project was announced broadly in meetings of sheep breeding organizations
all over Germany, discussion rounds of sheep breeders and veterinary practitioners,
sheep breeder’s journals (Schäferbrief and Schafzucht) and was published on our web-
site (https://www.tiho-hannover.de/kliniken-institute/institute/institut-fuer-tierzucht-
und-vererbungsforschung/forschung/forschungsprojekte-schaf/moderhinke-mores, ac-
cessed on 11 March 2022).

All sheep owners were invited to participate regardless of the clinical footrot status of
their flocks. Before participation, we obtained informed written consent from all farmers.
All farmers received a questionnaire to give us some background information. The ques-
tionnaire included information about their herdbook membership, flock size, sheep breeds,
other livestock species present on the farm, reports of previous outbreaks of footrot and
strategies for the treatment of diseased animals.

For the investigation of the geographic distribution of the serogroups, the participating
farms were evaluated depending on their location to the three study areas. The study
areas were Northern Germany (federal states Schleswig-Holstein, Lower Saxony and
North Rhine-Westphalia); Eastern Germany (federal states Brandenburg, Saxony, Saxony-
Anhalt and Thuringia) and Southern Germany (Federal states Bavaria, Baden-Württemberg,
Hesse and Rhineland-Palatinate) (Figure 1). Lesions were classified by the footrot scoring
system of the Swiss Consulting and Health Service for Small Ruminants (Supplementary
Table S1) [20].
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Data sampling was from January 2019 to September 2020. Dry and clean cotton
swabs (Sarstedt, Nümbrecht, Germany) in a tube with a screw top and without a transport
medium were used for sampling. The interdigital space between the toes of each sheep was
swabbed along its entire length, then the swab was rotated 90◦ and used for the second
interdigital space. This was repeated until all four feet were sampled. We collected samples
of 9243 sheep from 207 flocks, with flock sizes ranging from 10 to 2400 sheep.

On arrival, swabs were transferred to −20 ◦C storage until processing.

2.3. Detection of D. nodosus by qPCR

For the DNA extraction from the cotton swabs, the Qiagen DNeasy Blood and Tissue
Kit (Qiagen, Hilden, Germany) was used according to the manufacturer’s protocol.

The DNA samples were tested using qPCR to discriminate benign and virulent
D. nodosus strains based on the aprV2/aprB2 gene polymorphisms following the proto-
col of Stäuble et al. [19,21]. The 25-µL reaction mixture containing 22.5-µL TaqMan Fast
Advance MasterMix (Life Technologies, Thermo Fischer Scientific, Waltham, MA, USA)
and 2.5 µL of the extracted sample DNA were pipetted in duplicates into a 96-well plate.
Two non-template samples (pyrogen-free water) were used as negative controls for each
qPCR run. Positive controls were the type strain ATCC 25549T and the field isolate JF5922
provided by the Institute of Veterinary Bacteriology, University of Bern, Bern, Switzer-
land [22]. The amplification was carried out in a 7500 Real-Time PCR System (ABI, Thermo
Fischer Scientific, Waltham, MA, USA).

For the interpretation of the results, we used QuantStudio 3 System Software (Thermo
Fisher Scientific, Waltham, MA, USA) with the threshold set at 0.065. The threshold of the
Ct-value for a sample being positive was set at <40.

2.4. Selection of Samples for Serotyping

The samples taken for the serogroup-specific PCR in this follow-up study were selected
out of the samples that were tested positive for a D. nodosus load in qPCR. A minimum of
four D. nodosus-positive samples per flock was required for flocks to be included in the
present study. Of the 207 flocks sampled, in 59 flocks, D. nodosus was not detectable, and less
than four D. nodosus-positive samples were available in a further 65 flocks. Consequently,
samples from 83 flocks with a minimum of four samples were eligible for determination
of the serogroups. In flocks with a larger number of D. nodosus-positive samples, we used
more samples but not more than 25 samples per flock, resulting in 969 samples with a
median number of 10 samples per flock.

2.5. Serotyping by Serogroup-Specific Singleplex PCR

The 969 samples were tested in 96-well plates separately for each of the nine serogroups
A–I using primers published by Dhungyel et al., one common forward primer and nine
specific reverse primers [23]. Each reaction included 25 µL and was composed of MyTaq
Red Mix (Bioline, London, UK) (12.5 µL), forward primer (0.5 µM) and reverse primer
(0.5 µM). The amplification cycles consisted of an initial denaturation at 94 ◦C for 4 min,
followed by 94 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s for 7 cycles; 94 ◦C for 30 s,
58 ◦C for 30 s and 72 ◦C for 30 s for 35 cycles and a final extension at 72 ◦C for 4 min.
PCRs were performed on a SensoQuest Labcycler (SensoQuest, Göttingen, Germany). Each
PCR reaction included a negative (no template) and a positive control, the latter based
on validated PCR products from each serogroup and were normalized to 20 ng/µL. PCR
products were analyzed on 3% agarose gels stained with ethidium bromide and visualized
under ultraviolet light.

2.6. Statistical Analysis

Statistical analysis of the data was performed using SAS, version 9.4 (Statistical Anal-
ysis System, Cary, NC, USA). Chi-square tests and exact binomial 95% confidence inter-
vals were calculated with the SAS procedure FREQ. We used the SAS procedure GLIM-
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MIX to evaluate associations for the number of serogroups per animal and prevalence
of each serogroup with a random flock within a region effect and, further, fixed effects.
These fixed effects were D. nodosus strains per flock (aprV2, aprB2 or aprV2/aprB2); load of
D. nodosus (determined by log Ct-values); footrot score; region; herdbook member; breed;
flock size; goats, cattle, horses or donkeys on the farm; footrot within the last 12 months;
treatment of diseased sheep with antibiotics, footbaths and vaccines for footrot within
the last 12 months; footrot within the last 3–10 years; treatment of diseased sheep with
antibiotics, footbaths and vaccines for footrot within the last 3–10 years and the number of
animals tested for serogroups (Supplementary Table S2). The models employed to test for
single fixed effects or covariates always contained the random effect of flock within region,
because this random effect was significant for all dependent variates in all models applied.
The final generalized mixed linear model for the number of serogroups per animal with
a multinomial distribution function and a cumulative logit as the link function included
flock within region as a random effect, load of D. nodosus as a covariate and the fixed effects
of region and treatment of diseased sheep with antibiotics within the last 12 months. The
other effects were not significant using stepwise forward and backward selections. The
final models for the prevalence of each serogroup are given in Supplementary Table S3.

A mixed linear multivariable model was employed to estimate the effects on the
load for all D. nodosus and only for aprV2-positive strains. The log mean Ct-values
from the competitive qPCR specific for aprV2 and aprB2 of D. nodosus were applied. The
D. nodosus load was calculated as log(40-Ct+1), resulting in higher values for lower Ct-
values, indicative of a higher D. nodosus load. The mixed linear model included flock within
region as a random effect and fixed effects for footrot scores of the levels 0, 1, 2 and 3–5;
the serogroups A–I as each one linear regression; a region with three factors (north, east
and south); herdbook membership (yes or no) and sheep breeds, including Dorper, Leine,
German Merino Mix, German Merino, German Blackheaded Mutton, Suffolk, Swifter,
Texel, German Grey Heath, German White Heath and other breeds. Breeds with less than
25 animals or present in less than 2 flocks were subsumed under other breeds.

3. Results

All serogroups investigated in our study (A–I) were detected. We obtained a total of
1163 positive PCR results across the nine singleplex PCR assays. Positive PCR results were
obtained for 819 animals from 83 sheep flocks. In 150 animals that were tested positive
for aprV2 and/or aprB2 strains of D. nodosus before, no visible PCR band indicative of
a specific serotype was detected. In all the examined flocks, serogroups were detected.
A summary about flock-level results for the serogroups, D. nodosus strains and footrot
scores is given for each flock in Supplementary Table S4.

3.1. Prevalence of Serogroups on the Flock and Animal Levels

The most prevalent serogroups on the flock level were serogroups A and B, as each
detected in 53 flocks (63.86%). The least prevalent were serogroups D and I, detected in
five (6.02%) and seven flocks (8.43%), respectively (Figure 2).

The most prevalent serogroup on the animal level was serogroup A with 312 pos-
itive animals (38.10%), followed by serogroup B with 255 animals (31.14%) and H with
175 animals (21.37%) (Figure 3).
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3.2. Number of Serogroups Detected at the Flock and Animal Levels

The number of serogroups per flock ranged from one to six. In 28 flocks (33.74%),
three serogroups were detected; 19 flocks (22.89%) had four serogroups, 16 flocks (19.28%)
had two serogroups, ten flocks (12.05%) had a single serogroup and four flocks (4.82%)
had six serogroups present at the same time. On average, 3.10 serogroups per flock were
detected, and a frequency of 87.95% of the flocks had more than one serogroup present
(Figure 4).
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The number of serogroups detected per animal ranged from one to five. We were not
able to determine a serogroup in 150 animals (15.45%). The majority of the 819 typeable di-
agnostic samples (538 samples) contained one serogroup (65.69%). In 27.35% (224 samples),
two serogroups were detected. On one animal (0.12%), five serogroups were detected. The
average number of serogroups was 1.42 serogroups per animal, as 1163 positive singleplex
serogroup PCR results were obtained in 819 samples (Figure 5).
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3.3. Distribution of Serogroups and Number of Serogroups per Animal by aprV2- and
aprB2-Positive Strains of D. nodosus

AprB2-positive strains of D. nodosus were determined in 55 samples (6.72%) with
a serogroup detected, and both strains, aprV2 and aprB2, were determined in 28 samples
(3.42%). In aprV2-positive strains, all serogroups A–I were detected. In samples containing
only the aprB2-positive strains, serogroups D and I were not detected, while in samples
containing both strains, serogroups D and E were not detected. Serogroups A and B were
predominant in samples with aprV2-positive strains, as well as in samples with aprB2-
positive strains (Table 1). Significant differences for serogroup prevalence among the aprV2-
and aprB2-positive strains were observed for serogroups G (p = 0.04) and H (p = 0.004).

Table 1. Distribution of the serogroups in samples containing aprV2-positive strains, aprB2-positive
strains and both strains of D. nodosus. Number (No) and percentage of animals with the respective
serogroup. The percentages refer to the number of animals with the serogroups and the respective
strain (n = 819).

D. nodosus No of Animals
No (%) of Animals with the Respective Serogroup

A B C D E F G H I

aprV2-positive 736 279
(37.91)

224
(30.44)

153
(20.79)

19
(2.58)

31
(4.21)

38
(5.16)

112
(15.22)

169
(22.96)

26
(3.53)

aprB2-positive 55 23
(41.82)

18
(32.73)

7
(12.73)

0
(0)

3
(5.46)

2
(3.64)

11
(20.00)

5
(9.09)

0
(0)

Both 28 10
(35.71)

13
(46.43)

6
(21.43)

0
(0)

0
(0)

2
(7.14)

9
(32.14)

1
(3.57)

2
(7.14)

The number of serogroups per animal ranged from one to three in samples containing
aprB2-positive strains and from one to four in samples containing both strains. One
serogroup per sample was most frequent, with 71.88% of the samples containing aprB2-
positive strains and 58.07% of the samples containing both strains (Table 2). The number
of serogroups per animal was not equally distributed among D. nodosus strains (p = 0.011;
χ2 = 19.74 with eight df (degrees of freedom)). Testing the animals with each one or two
serogroups versus all the others gave significant differences among the D. nodosus strains
(p = 0.015; χ2 = 8.43 with two df and p = 0.002; χ2 = 12.76 with two df).

Table 2. Number (No) and percentage of serogroups per animal by aprV2-positive strains, aprB2-
positive strains or both strains of D. nodosus. The percentages refer to the total number of animals
(n = 969) positive for the respective strain.

D. nodosus No of Animals
No (%) of Serogroups per Animal

0 1 2 3 4 5

aprV2-positive 874 138 (15.79) 474 (54.23) 214 (24.49) 44 (5.03) 3 (0.34) 1 (0.11)
aprB2-positive 64 9 (14.06) 46 (71.88) 4 (6.25) 5 (7.81) 0 (0) 0 (0)

Both 31 3 (9.68) 18 (58.07) 6 (19.36) 3 (9.68) 1 (3.23) 0 (0)

3.4. Distribution of Serogroups and Number of Serogroups in Three Regions of Germany

The different serogroups of D. nodosus were widely dispersed across the different
regions sampled. All nine tested serogroups were detected in the three different regions.
At the animal level, serogroup A was the most prevalent in Northern (42.92%) and Eastern
Germany (41.40%), while, in Southern Germany, it was serogroup B (43.86%).

The four most prevalent serogroups in our sample, A, B, C and H, together amounted
to 81.7% of the total number of serogroups from Northern Germany (728), 84.1% of the
total number of serogroups from Eastern Germany (195) and 62.1% of the total number of
serogroups from Southern Germany (240). The prevalence of serogroups A, C, E, F and
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G were significantly different among the regions at p-values <0.001 (χ2 = 28.95, two df),
<0.001 (χ2 = 27.21, two df), 0.005 (χ2 = 10.79, two df), 0.026 (χ2 = 7.26, two df) and < 0.001
(χ2 = 34.77, two df), respectively.

In the samples from Southern Germany, there is a higher prevalence of serogroup G
(32%) compared to Northern (11.91%) and Eastern Germany (11.47%) (Table 3).

Table 3. Distribution of the serogroups by the three different regions of Germany at the animal level.
Number and percentage of animals with the respective serogroups. The percentages refer to the
number of animals with serogroups detected in the respective regions (n = 819).

Region No of
Flocks

No of
Animals

No (%) of Animals with the Respective Serogroup

A B C D E F G H I

North 52 487 209 (42.92) 149 (30.60) 126 (25.87) 9 (1.85) 17 (4.49) 33 (6.78) 58 (11.91) 111 (22.79) 16 (3.29)
East 14 157 65 (41.40) 45 (28.66) 19 (12.10) 3 (1.91) 3 (1.91) 4 (2.55) 18 (11.47) 35 (22.29) 3 (1.91)
South 17 175 39 (22.29) 61 (43.86) 20 (11.43) 7 (4.00) 14 (8.00) 5 (2.86) 56 (32.00) 29 (16.57) 9 (5.14)

When the three regions were compared at the flock level, the results were similar to
those at the animal level (Supplementary Table S5).

The number of serogroups per animal ranged from one to three in animals from
Eastern and Southern Germany, while four and five serogroups per sample were found
in the animals from Northern Germany. Three serogroups per animal showed the highest
prevalence, with 6.92% in Northern Germany as well (Table 4). The number of serogroups
was significantly unequally distributed among the regions (p < 0.001; χ2 = 27.23, eight df),
as well as when comparing animals with one (p < 0.001; χ2 = 17.80, two df), two (p = 0.002;
χ2 = 12.37, two df) or more than two (p = 0.003; χ2 = 11.82, two df) serogroups against all
other animals with a serogroup determined.

Table 4. Number (No) and percentage of serogroups per animal in the three regions. The percentages
refer to the total number of animals tested positive for D. nodosus in the respective regions (n = 969).

Region No of Animals
No (%) of Serogroups per Animal

0 1 2 3 4 5

North 578 97 (16.78) 291 (50.35) 145 (25.09) 40 (6.92) 4 (0.69) 1 (0.17)
East 193 20 (10.36) 135 (69.95) 29 (15.03) 9 (4.66) 0 (0) 0 (0)

South 198 33 (16.67) 112 (56.57) 50 (25.25) 3 (1.51) 0 (0) 0 (0)

3.5. Distribution of Serogroups and Number of Serogroups per Animal by Clinical Footrot Score

For 887 animals, footrot scores on a scale from zero to five were collected (Supplementary
Table S1). For 741 animals, footrot scores and serotype data were available; consequently,
in 146 animals, there were clinical data but no information on serotypes.

Most of the selected samples for the investigation of serogroups scored one (36.98%),
followed by scoring zero (29.31%) and scoring two (18.26%).

In these 741 samples, we detected, in total, 1054 serogroups. Serogroups A–I, except
for serogroup D, were determined in animals with all six footrot scores. Serogroup D was
only detected in animals with scores one to three (Table 5). The prevalence of serogroups A,
C, D, E, F, G, H and I was significantly different among the footrot scores at p-values <0.001
(χ2 = 27.77, five df), 0.004 (χ2 = 17.28, five df), 0.037 (χ2 = 11.88, five df), <0.001 (χ2 = 21.82,
five df), 0.016 (χ2 = 13.97, five df), <0.001 (χ2 = 24.39, five df), 0.047 (χ2 = 11.24, five df) and
0.004 (χ2 = 17.45, five df), respectively.
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Table 5. Distribution of serogroups by animals and footrot scores. Number (No) and percentage
of animals with the respective serogroups. The percentages refer to the number of animals with
serogroups detected and footrot scores.

Footrot
Score

No of
Animals

No (%) of Animals with the Respective Serogroups

A B C D E F G H I

0 187 78 (41.71) 59 (31.55) 45 (24.06) 0 (0) 1 (0.54) 9 (4.81) 25 (13.37) 35 (18.72) 4 (2.14)
1 268 111 (41.42) 101 (37.69) 42 (15.67) 1 (0.37) 13 (4.85) 11 (4.10) 30 (11.19) 65 (24.25) 6 (2.24)
2 152 41 (26.97) 53 (34.87) 49 (32.24) 2 (1.32) 5 (3.29) 4 (2.63) 25 (16.45) 39 (25.66) 4 (2.63)
3 79 15 (18.99) 19 (24.05) 17 (21.52) 3 (3.80) 10 (12.66) 6 (7.60) 13 (16.46) 27 (34.18) 7 (8.86)
4 31 5 (16.13) 6 (19.35) 7 (22.58) 0 (0) 3 (9.69) 4 (12.90) 8 (25.81) 6 (19.36) 4 (12.90)
5 24 6 (25.00) 8 (33.33) 3 (12.50) 0 (0) 1 (4.17) 4 (14.82) 11 (45.83) 2 (8.33) 1 (4.17)

The number of serogroups per animal ranged from one to three within all the scores.
Four and five serogroups were detected in samples from sheep with scores of one to three.
For all scores, one serogroup per animal was most common, with 49.23–65.63% of the
total number of animals with the respective scores (Table 6). There were no significant
differences in the distribution of the number of serogroups among the footrot scores.

Table 6. Number (No) and percentage of serogroups per animal by the clinical footrot scores. The
percentages refer to the total number of animals with the respective scores.

Footrot Score No of Animals
No (%) of Serogroups per Animal

0 1 2 3 4 5

0 260 73 (28.08) 128 (49.23) 49 (18.85) 10 (3.85) 0 (0) 0 (0)
1 328 60 (18.29) 174 (53.05) 77 (23.48) 16 (4.89) 1 (0.31) 0 (0)
2 162 10 (6.17) 104 (64.20) 30 (18.52) 15 (9.26) 2 (1.24) 1 (0.62)
3 81 2 (2.47) 46 (56.79) 29 (35.80) 3 (3.70) 1 (1.23) 0 (0)
4 32 1 (3.13) 21 (65.63) 8 (25.00) 2 (6.25) 0 (0) 0 (0)
5 24 0 (0) 15 (62.50) 6 (25.00) 3 (12.50) 0 (0) 0 (0)

3.6. Generalized Linear Multivariable Model for Number of Serogroups and Serogroups

The final model showed an increase in number of serogroups, with a higher load of
D. nodosus (0.0953 ± 0.0281) and a higher number of serogroups with the use of antibiotics
within the last 12 months (0.1875 ± 0.0605) compared to no use of antibiotics. Significant
effects for the prevalence of serogroups are shown in Supplementary Table S3. A load
of D. nodosus had a significant effect on serogroups A, C, F and G. Breed was significant
for serogroups A, B and C. Footrot score was significantly related to the prevalence of
serogroups A, B, E and H. The random flock within region effect was significant for
all dependent variates and explained between 21.9 (number of serogroups) and 66.1%
(serogroup H) of the variance.

3.7. Load of D. nodosus

We used a mixed linear multivariable model to estimate the effects on the load for
all D. nodosus strains and only for aprV2-positive strains. With increasing footrot scores,
the loads of all and aprV2-positive strains of D. nodosus significantly increased (Table 7). A
significant lower load of all and aprV2-positive strains of D. nodosus was associated with
serogroups A and C. Animals with serogroup G showed a significantly higher increase
in the loads of all D. nodosus. The variance among flocks within region was significantly
different from zero and explained 56 and 60% of the total variation for the loads of the all
and aprV2-positive strains of D. nodosus.
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Table 7. Source of variation, effect estimates with their standard errors (SE) and p-values for loads of
all and aprV2-positive strains of D. nodosus from the mixed linear multivariable model.

Source of Variation All D. nodosus AprV2-Positive Strains of D. nodosus Only

Estimate ± SE p-Value * Estimate ± SE p-Value *

Footrot score

0 0 0

1 0.1338 ± 0.04990 0.0075 0.1454 ± 0.0395 0.0003

2 0.3546 ± 0.05982 <0.0001 0.3561 ± 0.0471 <0.0001

3–5 0.4209 ± 0.07450 <0.0001 0.4036 ± 0.0578 <0.0001

Serogroup

A −0.1911 ± 0.0501 0.0001 −0.0899 ± 0.0411 0.0307

B −0.0449 ± 0.0521 0.3886 0.0159 ± 0.0420 0.7058

C −0.1915 ± 0.0595 0.0013 −0.1164 ± 0.0494 0.0188

D −0.0131 ± 0.1984 0.9474 −0.0394 ± 0.1514 0.7949

E −0.0021 ± 0.0987 0.9831 0.0899 ± 0.0793 0.2577

F 0.2188 ± 0.1124 0.0519 0.0499 ± 0.0916 0.5861

G 0.1280 ± 0.0638 0.0453 0.0741 ± 0.0519 0.1535

H −0.0121 ± 0.0613 0.8432 0.0095 ± 0.0488 0.8456

I −0.1575 ± 0.1220 0.1973 −0.1092 ± 0.0997 0.2738

* significant p-Values are in bold.

3.8. Prevalence of Serogroup Combinations across Flocks

There were 50 combinations of serogroups across the flocks (Supplementary Table S6).
In 33 flocks (39.76%), eight different combinations were observed more than twice. In seven
of the eight combinations, serogroup A was present, which reflects that this is the serogroup
with the highest prevalence. The combination of serogroups A, B and H together in one
flock occurred most frequently, namely in seven flocks.

In 10 flocks (12.05%), only one serogroup was found. Serogroups A, B, C and H were
found as singletons twice and serogroups F and G each once. Serogroups D, E and I were
only detected together with other serogroups. Only four combinations of serogroups were
each present in more than three flocks, with one combination (A, B, H) in seven flocks.

3.9. Theoretical Protection of Bivalent Vaccines in Germany

According to the distribution of the serogroup combinations in our study, a bivalent
vaccine containing serogroups A and B would fully protect six of the examined flocks
(7.23%) and partially protect 67 of the examined flocks (80.72%). Consequently, 87.95%
of the flocks could gain full protection by the usage of such a bivalent vaccine. Sim-
ilar results could be expected when using a bivalent vaccine containing serogroups B
and H: eight flocks (9.64%) would be fully protected, and 56 flocks (67.47%) would be
partially protected.

When using two bivalent vaccines containing the four most prevalent serogroups:
A, B, C and H one after another with an adequate inter-vaccination interval, 37 of the
examined flocks (44.58%) could gain full protection. In addition, 43 flocks (51.81%) would
be partially protected by the usage of this vaccine. In only three flocks (3.61%), none of
these four serogroups were detected and hence, no protection would be provided.

4. Discussion

Our study confirmed the presence of at least nine different D. nodosus serogroups in
Germany. In that respect, sheep flocks were characterized by different serogroup combina-
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tions, as well as a wide combinatorial diversity of serogroups across Germany. In 57/83
flocks, different serogroup combinations were found. The prevalence of the serogroups
varied between flocks and geographical locations with 50 different serogroup combina-
tions across the flocks. The large proportion of variance between flocks was indicative of
serogroup patterns specific for flocks. Therefore, a single uniform bivalent vaccine does not
present the best vaccine solution, and tailor-made vaccines to be amended for individual
flocks are indicated to control footrot via the vaccine route. The use of a commercial vaccine
has to be flanked via other control measures, such as regular footbaths to control footrot.

The sheep farmers in the study participated voluntarily. Therefore, the sample collec-
tion was not completely randomized. In addition, due to management and logistics of the
sample collections, there was no equal distribution of the flocks across the German states.

For the detection of D. nodosus, we used the qPCR method published by Stäuble et al. [21].
This sensitive and specific method for the detection of D. nodosus has been applied success-
fully in other studies [24–27]. The method we used for the serogroup-specific PCR was
published by Dhungyel et al. [23], which supplied sensitive results in recent studies [28–30].

A total of 150 samples tested negative, showing no serogroup-specific PCR ampli-
fication. It is possible that part of the negative samples contained serogroup M, which
currently cannot be detected by PCR, as suitable primers could not be identified. Therefore,
serogroup M is generally not tested in such studies [27,28,30]. For the identification of
serogroup M, culturing and slide agglutination would be necessary. In Australia, the
prevalence of serogroup M was thereby found to be 40% [31]. In Nepal, Ghimire et al.
found serogroup M at a prevalence of 6.2% [32]. In Norway, serogroup M was not detected
in sheep samples but in cattle [33].

In our study with samples of sheep flocks across Germany, serogroup A was most
prevalent, followed by serogroups B, H and C. At the flock level, the same four serogroups
were most frequently observed.

A German study on 66 typeable strains out of 82 isolated strains from nine footrot-
affected flocks revealed the highest prevalence for serogroup B with 64.4%, followed by C
(9.6%) and G (2.4%). For the latter study, D. nodosus was cultivated from hoofhorn samples.
Other serogroups detected were A, E and H but each only once. Serogroups D, F and I
were not identified [18]. Due to the low number of flocks and application of other methods,
the results are not comparable to our study results.

Our results are in agreement with studies from Sweden and Norway, where serogroup
A was predominant [29,33]. In Australia, New Zealand, India and Bhutan, serogroup
B was most frequently observed [28,34–36], while, in Great Britain, serogroups B and
H [27,30,37,38] were the most prevalent.

On average, each sample contained 1.42 serogroups (range one to five) and each flock
3.10 serogroups (median = 3, range one to six). The number of samples tested per flock
was not significantly correlated with the outcome of the present study. The number of
serogroups detected per flock was slightly higher than in a recent study from the UK [30]
and slightly lower than in a report on 24 lowland English sheep farms with clinical footrot
with a median of five and a mean value of 4.4 [27]. Comparing the results between our
and the latter two studies indicated that, with an increasing number of D. nodosus-positive
samples per flock, the number of serogroups detected per flock also increased. We found a
median of three serogroups per flock with a median of 10 D. nodosus-positive samples per
flock. Monaghan et al. found a median of five serogroups per flock, with a median of 16 D.
nodosus-positive samples per flock, and Prosser at al. found a median of two serogroups
per flock, with a median of four D. nodosus-positive samples per flock [27,30].

The number of serogroups per flock ranged likewise from one to six in studies from
Australia and the UK [30,39]. Other studies from the UK reported lower numbers of
serogroups per flock [37,38]. This difference may be caused by different methods, sampling
designs, sheep breeds investigated and livestock production systems. In the latter men-
tioned studies, serotyping was performed on cultured isolates, while, in our study and
previous reports from the UK [25,28], serotyping was performed directly on swab samples.
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The distribution of serogroups on samples containing aprV2-positive strains, aprB2-
positive strains and both strains needs to be reviewed critically because of the low number
of samples containing aprB2-positive and both strains. In a Swedish study on 78 D. nodosus
samples, with 66 isolates containing aprB2-positive strains and 12 isolates containing
aprV2-positive strains, serogroups A, B, C, E, G and H were detected in the aprB2-positive
strain samples, and all samples with serogroup A harbored aprB2-positive strains [29]. A
Norwegian study on 214 aprB2-positive isolates and 305 aprV2-positive isolates revealed
a greater serogroup diversity of aprB2-positive versus aprV2-positive isolates [33]. These
results are not in agreement with our results, because we found a greater serogroup
diversity with aprV2-positive than with aprB2-positive strains. In aprB2-positive strains,
serogroups D and I were not detected, but serogroup I was detected on samples with both
strains. However, serogroup I has been detected with aprB2-positive strains from Norway
before [33]. Therefore, the absence of this serogroup is probably due to the low number
of samples. Serogroup D has also not been detected with aprB2-positive strains in other
studies [29,33]. This may indicate that this serogroup occurs only with aprV2-positive
strains. Probably, this is caused by the low number of samples and that serogroup D
is very rare. Our results are not in agreement with a recent study from the UK, which
reported serogroups C and E being more likely present in samples with both aprV2- and
aprB2-positive D. nodosus strains [27]. In agreement with our study, serogroup H was more
likely with aprV2-positive D. nodosus strains.

The only previous study on D. nodosus serogroups in Germany was restricted to
nine flocks in Southwest Germany [18]. The present study includes a large number of
flocks across Germany and should give a much more detailed insight into the diversity of
serogroups than this previous report. All nine serogroups were detected in all three regions
of Germany. An overdominance of serogroup B was ruled out in the current study. The
participating farmers in our study often purchased sheep from distant locations and did
not quarantine sheep after arrival; therefore, the pathogen is widely spread across sheep
flocks in Germany [19].

In an Australian study, multivalent and bivalent vaccination strategies were compared,
with the result that the duration of protection achieved by multivalent vaccines is less than
with bivalent vaccines. Therefore, bivalent vaccines are a good option for the prevention
of footrot [15]. We found 50 different combinations of serogroups, and only eight of them
occurred more than twice. Similar results were reported by Prosser et al., who found 50
combinations in 138 flocks from the UK [30]. This high amount of different combinations
of the serogroups prevents successful vaccination with a single bivalent vaccine. With
a bivalent vaccine containing serogroups A and C, six flocks (7.23%) would gain full
protection, and 67 flocks (80.72%) would gain partial protection. For the effective usage of
one bivalent vaccine in Germany, there is a lack of dominance of two serogroups. Therefore,
an effective prophylactic protection needs flock-specific vaccines. An alternative may be
the usage of two bivalent vaccines with an adequate inter-vaccination interval, but this
approach would need further investigation. In an Australian study, a two-month interval
was reported to be sufficient to avoid antigenic competition [15]. In our study with two
bivalent vaccines containing the four most prevalent serogroups: A, B, C and H, 80 of the
83 flocks would get full or partial protection.

Our results are restricted to serogroups A–I, as the prevalence of serogroup M could
not be estimated. In 37/83 flocks, we found samples with untypeable serogroups. In nine
flocks, more than five samples were untypeable, and in 11/83 and 5/83 flocks, more than
30% and 50% of the samples were untypeable, respectively. The pattern of the untypeable
serogroups suggests that they are randomly distributed across the flocks and cluster in
a few flocks. In these flocks, a further increase in the number of serogroups should
be expected.
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5. Conclusions

In conclusion, D. nodosus serogroups are randomly distributed across German sheep
flocks. There is a lack of predominance of one or two serogroups in flocks together, which
would enable the usage of one bivalent vaccine. Flock-specific vaccination or the use of
two bivalent vaccines containing all four most prevalent serogroups in a combination is
necessary for a nationwide protection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/ani12060753/s1: Figure S1. Visualization of serogroup A on a gel. Table S1: Footrot
scoring system according to the Swiss Consulting and Health Service for Small Ruminants. Table S2:
p-values of F-tests using a generalized mixed linear model with flock within region as the random
effect for the number of serogroups per animal (N serogroup) and prevalence of each serogroup
with each one of the following effects: D. nodosus strains, footrot score, region, herdbook member,
breed, flock size, goats on the form, cattle on the farm, horses or donkeys on the farm, treatment of
diseased sheep with antibiotics for footrot within the last 12 months, treatment of diseased sheep with
footbaths for footrot within the last 12 months, treatment of diseased sheep with vaccines for footrot
within the last 12 months, treatment of diseased sheep with antibiotics for footrot within the last
3–10 years, treatment of diseased sheep with footbaths for footrot within the last 3–10 years, treatment
of diseased sheep with vaccines for footrot within the last 3–10 years and number of animals tested
for serogroups. Table S3: p-values of F-tests and the relative proportion of variance between flocks
(flock variance in %) for the final generalized mixed linear model for the number of serogroups per
animal (N serogroup) and prevalence of each serogroup. Table S4: Distribution of the serogroups by
the three different regions of Germany at the flock level.
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