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1 Introduction

In the study of strongly coupled systems it is often convenient to introduce control param-
eters with the goal of organizing perturbatively an analytic computation in an appropriate
limit. In the case of the O(2N) vector model, in the limit N → ∞ one obtains an ex-
pansion around a semiclassical description in terms of a collective field [1–7]. Remarkably,
this semiclassical description captures the qualitative features of the quantum behavior of
the system. However, it is nonetheless useful to introduce yet another control parameter
in order to extract physical information from this semiclassical description. We choose to
work in a sector of large global charge Q here [8],1 working in the double-scaling limit
N →∞, Q→∞ with Q/N fixed [10–13].2

In this work (and the companion paper [24]) we use this technology to derive the
large-N effective potential without having to resort to Feynman-diagram techniques. The
large-N effective potential of the O(2N) has been studied in a variety of works, starting
from the seminal work of Coleman, Jackiw and Politzer [25]. Since we are interested in the

1For a review of the large charge expansion see [9].
2Also other double-scaling limits, e.g. involving the ε expansion have proved useful in the context of the

large charge expansion, see [14–23].
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consistency of the theory in various dimensions and want to calculate scaling dimensions
via the state-operator correspondence, it is natural for us to study the effective potential in
terms of the vector field, as done in [26, 27], instead of the Stratonovich collective field used
in [25]. Our observation is that these two effective potentials are related by a Legendre
transform. In our fixed-charge analysis, the latter is identified with the grand potential.
In this way we can describe the phase diagram of the vector model in the presence of φ2

and φ4 operators in any dimension in a compact way, generalizing previous computations
that typically concentrate on the behavior around the fixed points [26, 27]. This goes far
beyond previous applications of the large charge expansion, which has to date been mostly
studied at the conformal point only, with few exceptions [28–30].

Here we concentrate on the interval 4 < D < 6 in Euclidean space (see [31, 32]).
Imposing the convexity of the effective potential, we find that the standard φ4 model
is not ultraviolet (uv) complete if we require unitarity, consistently with recent obser-
vations [12, 33, 34]. We also present a possible completion in terms of a complexified
effective potential, describing the flow to a non-unitary conformal field theory (cft) for
which we compute the (complex) dimensions of the lowest operators of given charge, find-
ing complete agreement with the existing literature [12, 33–35]. This is reminiscent of
complex cfts obtained from the merging and annihilation of perturbative fixed points,
corresponding to walking renormalization group (rg) flows and weakly first-order phase
transitions [19, 36–44]; however, in the case at hand, it seems that the mechanism of the
generation of complex dimensions is different since it is related to instabilities of the theory.
Having access to the phase diagram, we also find a previously unknown metastable massive
phase for the model on the cylinder R×Sd, much in the spirit of [33], and we show that the
cft remains unstable also in the small-charge regime in which the conformal dimensions
are real [12, 34, 35, 45, 46].

More in general, having a non-perturbative description of the effective potential, we
can relate the stability of the model to the convexity of its free energy and — at criticality,
via the state-operator correspondence — to the convexity of the conformal dimension ∆(Q)
of the lowest operator of given charge. This provides further evidence in favor of the recent
proposal by Aharony and Palti related to the weak gravity conjecture [47], confirming the
recent large-charge analysis in [48].

The outline of this paper is as follows. In section 2 we discuss classical arguments
for the convexity of the effective potential. We then go on to apply this knowledge to the
context of a theory at fixed charge Q. There we encounter two Legendre transforms: one
that relates the effective potential to the grand potential and one that relates the grand
potential to the free energy. We discuss these relations qualitatively and discuss the issue
of convexity.

In section 3 we apply the acquired knowledge to the φ4-theory with a global O(2N)
symmetry in the large-N limit. We discuss the theory and the effective potential for
spacetime dimensions 2 < D < 4 and 4 < D < 6. Using Legendre transforms we show
that the behavior and the properties of the effective potential varies significantly between
the two cases. We argue that, while the theory flows to a Wilson-Fisher (wf) fixed-point
for 2 < D < 4, in 4 < D < 6 the φ4-theory is not unitary. We discuss the case D = 5 in
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detail and explicitly compute the effective potential as a Legendre transform of the known
grand potential. We show that the effective potential exhibits a branch cut and becomes
complex in the uv.

In section 4 we investigate the strongly coupled fixed points. We use a perturbative
definition of the Legendre transform to compute the scaling dimension in both the large
Q/N and the small Q/N regime. We first discuss D = 3 and D = 5 for both regimes and
compare the resulting scaling dimensions. We show that the results for D = 5 are un-
sound: for large Q/N the theory is non-unitary and for small Q/N the free energy/scaling
dimension appears to be non-convex in Q. Meanwhile, for D = 3, the scaling dimension is
perfectly sound, convex and shows no violation of unitarity. In addition, a resurgent analy-
sis can be performed to interpolate between the small Q/N and the large Q/N regime [13].
We then also discuss the spacetime dimensions D = 4± ε and D = 6± ε and compute the
leading term of the scaling dimension.

In the appendix we present the resurgent analysis for the theory in D = 5 using the
techniques of [13], extending from the two-sphere to higher dimensions.

2 Effective actions, Legendre transforms and convexity

Convexity of the effective potential. To start, let us review some classical arguments
on the convexity of the effective potential [49–51]. Consider the theory of a complex scalar
field φ, invariant under a U(1) symmetry that acts linearly, φ→ eiεφ. We want to formulate
the theory in terms of an effective potential. Using the standard procedure we add a linear
source term to the path integral and write the generating functional

Z[J ] = 〈0|0〉J =
∫
Dφ e−S[φ]−

∫
JφdDx∫

Dφ e−S[φ] . (2.1)

The logarithm of Z[J ] is the connected generating functional

W [J ] = logZ[J ]. (2.2)

It is convenient to consider the Legendre dual of W [J ]. We define the classical field

φc = δW

δJ
(2.3)

and the effective action

Γ[φc] = W ∗[φc] = Jφc −W [J ]
∣∣∣∣
J=J(φc)

. (2.4)

Expanding Γ[φc] around the value φc = const. we find

Γ[φc] =
∫

dDx [V (φc) + Z(φc) ∂µφ∗c ∂µφc + . . .], (2.5)

where V is the effective potential. The U(1) symmetry requires all the functions to depend
only on the absolute value |φc|, so that V (φc) = V (|φc|).

– 3 –
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As long the path integral has a positive definite measure, W [J ] is a convex function.
This is in general true for the logarithm of the partition function as function of any pa-
rameter that enters linearly in the action. The argument is based on Hölder’s inequality:
if dµ is a positive measure, then for f and g positive functions one has

∫
dµ fλg1−λ ≤

(∫
dµ f

)λ(∫
dµ g

)1−λ
, (2.6)

where 0 ≤ λ ≤ 1. For a given field theory, we define the normalized measure

dµ = Dφ e−S[Φ]∫
Dφ e−S[φ] (2.7)

and consider the expectation value

Z[α] = 1
Z[0]

〈
exp

[∫
dDx

∑
i

αi(x)fi(φ)
]〉

= 1
Z[0]

∫
Dφ e−S[Φ] exp

[∫
dDx

∑
i

αifi(φ)
]

=
∫

dµ exp
[∫

dDx
∑
i

αifi(φ)
]
,

(2.8)
where the αi are functions of x. For 0 < λ < 1, take

Z[λα+ (1− λ)β] =
∫

dµ exp
[∫

dDx
∑
i

(λαi + (1− λ)βi)fi(φ)
]
. (2.9)

By the inequality,

Z[λα+ (1− λ)β] ≤

( ∫
dµ exp

[∫
dDx∑i αifi(φ)

])λ
( ∫

dµ exp[
∫

dDx∑i βifi(φ)]
)λ−1 = Z[α]λZ[β]1−λ, (2.10)

and taking the logarithm,

log(Z[λα+ (1− λ)β]) ≤ λ log(Z[α]) + (1− λ) log(Z[β]). (2.11)

The Legendre transform of a convex function is convex. It follows that Γ[φc] is convex
and since this property has to remain true for constant φc, also the effective potential V (φc)
must be a convex function.3

3This is true also in finite volume. For strongly-coupled systems that are studied numerically, it is
convenient to introduce another quantity, the constraint effective potential U :

e−U(φ) =
∫
Dφ̂ δ

(
1
V

∫
dDx

(
φ− φ̂

))
e−S[φ̂], (2.12)

which is related to the effective potential by a Legendre transform. U(φ) is in general not convex but
coincides with V (φc) in the decompactification limit [52].

– 4 –
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Fixed charge and Legendre transforms. We want to study our system in a sector of
fixed charge. We start with an effective action with a canonical kinetic term

Γ[φc] =
∫

dDx [∂µφ∗c∂µφc − V (|φc|)]. (2.13)

Then the conserved U(1) charge has the form

Q = i

∫
dD−1x

(
φ̇∗cφc − φ∗c φ̇c

)
. (2.14)

To study the system at fixed charge, we make the ansatz4

|φc| = Φ, arg(φc) = −imτ, (2.15)

which corresponds to a ground state with fixed chemical potential.5 To compute the energy
of the ground state as a function of Q, we can solve the problem in two steps. First we
eliminate Φ using the equations of motion (eom) for the radial mode,

d
d(Φ2)

[
m2Φ2 − V (Φ)

]
= m2 − dV

d(Φ2) = 0, (2.16)

to write the vacuum expectation value (vev) of the Lagrangian as function of m2 alone,

ω(m) = Φ2m2 − V (Φ)
∣∣∣∣
Φ=Φ(m)

. (2.17)

Then we write the corresponding energy density f using the momentum associated to m
(i.e. the charge density ρ):

ρ = δω

δm
= 2mΦ2(m), (2.18)

f(ρ) = [ρm− ω(m)]m=m(ρ). (2.19)

An effective action with canonical kinetic term clearly does not represent the general case.
In the O(2N) model at leading order in N the effective action in terms of the fundamental
field φ is non-local (see [27, 53, 54]), but when evaluated on our ansatz it still takes the
form in eq. (2.17), which is what we base our analysis on.

It is easy to recognize two Legendre transforms. If we introduce the notation

x = |φc|2, Υ(x) = V (
√
x), y = m2, $(y) = ω(√y), (2.20)

the chain of transformations becomes

V (φc) = Υ(|φc|2)→ Υ∗(m2) = $(m2) = ω(m)→ ω∗(ρ) = f(ρ). (2.21)

For convex functions, the direction of the arrows can be interchanged, since the Legendre
transform is an involution, and we can, for example, compute the effective potential from
the knowledge of ω(m), as we will do in the following.

The minimization condition derived above admits in general complex solutions. There
are two possible stances we can take:

4The imaginary unit in the argument is due to the Wick rotation.
5This ansatz implies spontaneous symmetry breaking that can also happen in finite volume and finite

N in the limit of large charge (see the discussion in appendix B in [9]).
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• We define the Legendre transform as

f∗(y) = sup
x

(xy − f(x)). (2.22)

In this case, f∗(y) takes values on the extended real line R∪ {±∞} and the result is
always real.

• We use the naive definition as seen above which leads in general to multivalued
complex functions.

The two definitions coincide as long as f(x) is smooth and convex. In this case, the
Legendre transform is an involution and preserves convexity. In general, the definition
with the supremum always leads to a convex function. While in the context of classical
thermodynamics it is clear that the supremum definition is the physical one [50], the
situation is less clear-cut for quantum systems, since also complex saddles of the path
integral have a meaning, as exemplified by resurgence theory [55].

As discussed above, of all the functions that we have defined only V (φc) is always
convex for a unitary theory. In the following we will use this property as a necessary
condition for the unitarity of a given theory. Note however that the convexity of V and
the convexity of Υ are related in a non-trivial way:

d2Υ
dy2 = 1

4φ2
c

(
d2V

dφ2
c

− 1
φc

dV
dφc

)
. (2.23)

For large values of φc, the effective potential has to be an increasing function, therefore Υ
does not have to be convex in general.

3 φ4 theory in D < 6 dimensions

In this section we apply our general considerations to the case of the O(2N)-symmetric
φ4 model in D spacetime dimensions in the limit of large N . In this case it is possible to
compute directly the grand potential ω(m) that appeared in eq. (2.17) and use it to derive
the effective potential.

We start with the action for N complex scalar fields φi on Rt ×M,

S[φi] = −
∫

dτ dM
[
gµν(∂µφi)†(∂νφi)− r(φ†iφi)−

u

2N (φ†iφi)2
]
. (3.1)

Depending on D, the quartic term is either relevant or irrelevant (from the p.o.v. of the
free theory):

• For 2 < D < 4, the operator is relevant. If we fine-tune r = R(D − 2)/(4(D − 1))
(the conformal coupling), the theory flows from a free theory in the uv for u = 0 to
a strongly-coupled cft for u→∞ (the wf fixed point).

• For 4 < D < 6, the operator is irrelevant. If we fine-tune r, the expectation is that
the flow connects an infrared (ir) free fixed point at u = 0 to a strongly-coupled cft
in the ir for u → ∞. In the following we will show that this latter theory is not
unitary.

– 6 –
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Following [10], we want to compute the free energy of the model restricted to the
completely symmetric representation, which corresponds to the energy of the homogeneous
ground state in the sector of total fixed charge Q [18, 56]. In the double-scaling limit of
large N and large Q with Q/N fixed (which can be large or small), this free energy is the
Legendre transform of the grand potential Ω(m) = VMω(m), whose leading-order behavior
can be computed formally generalizing Stratonovich’s construction. As shown in [10, 24],

ω(m) = (2N)
[
− 1

2VM
ζ(−1/2 | M,m) +

(
m2 − r

)2
4u

]
, (3.2)

where ζ(s | M,m) is the zeta function for the operator (4M −m2).
Since we want to write the effective action in flat space, we can use the zeta function

on a torus of side L. It is convenient to write ζ(s | TD−1,m) as a Mellin integral,

ζ(s | TD−1,m) = 1
Γ(s)

∫ ∞
0

dt
t
tse−m

2t Tr
[
et4

]
, (3.3)

and the heat kernel in terms of Weyl’s asymptotic expansion,

Tr
[
et4

]
= VTD−1

(4πt)(D−1)/2 +O
(
e−L

2/(4t)
)

(3.4)

so that
ζ(s | TD−1,m) =

VTD−1Γ(s− D−1
2 )

(4π)(D−1)/2Γ(s)
mD−1−2s. (3.5)

The grand potential ω is then given by

ω(m) = (2N)
[

Γ(−D
2 )

2(4π)D/2
mD + (m2 − r)2

4u

]
. (3.6)

This function contains all the information about the leading-N behavior of the phase
diagram of the vector model with quadratic and quartic operators. If we fine-tune r to the
conformal coupling, it describes the flow that joins the Gaussian (u→ 0) and the strongly
coupled (u→∞) fixed points.

The only non-trivial function is the coefficient Γ(−D/2) of the first term. It is positive
if 4n − 2 < D < 4n, negative if 4n < D < 4n + 2 and diverges for D even (see figure 1).
This is consistent with the fact that there is no wf point for even dimensions.

Starting from the grand potential we can use the technology developed in the previous
section to write an effective potential V (φc) for the vector model in terms of 2N classical
fields φac . V (φc) is determined by the condition that at fixed charge it must reproduce the
physics in the double-scaling limit described by ω in eq. (3.2) [24]. While ω was obtained
from a fixed-charge computation, V (φc) is valid for any value of the charge. The O(2N)
symmetry requires that the potential depends only on the invariant combination φacφac , that
by a slight abuse of notation we will indicate in the following as φ2

c :

φ2
c =

2N∑
i=1

φacφ
a
c . (3.7)

– 7 –
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D

Figure 1. The leading term in the grand potential on the torus ∝ Γ(−D/2) for 0 < D < 7. The
function is positive for 2 < D < 4, 6 < D < 8, etc.

As we have seen in section 2, the effective potential has to be a convex function.
Following the chain of transformations in eq. (2.21) we can turn this into a consistency
condition on the convexity of $. To identify a possible flex in $, we compute the second
derivative and find:

$′′(y) = D(D − 2)N
4(4π)D/2

Γ(−D/2)y(D−4)/2 + N

u
, (3.8)

which has a zero for positive y only when Γ(−D/2) < 0. In figure 1, Γ(−D/2) is plotted
and we see that it is positive in certain intervals of the dimension and negative in others.
We focus here on the intervals 2 < D < 4 and 4 < D < 6.

3.1 2 < D < 4

For 2 < D < 4 the gamma function is positive, Γ(−D/2) > 0. It follows that $ is convex
for all values of y. All the Legendre transforms are well-defined, and the theory fulfills our
necessary condition for unitarity. As shown in [24], in D = 3 we can compute the effective
potential explicitly,

V (φc) = Nu3

3× 210π4

(
1 + 96π2

(
φ2
c

Nu
+ r

u2

)
+ 1536π4

(
φ2
c

Nu
+ r

u2

)2

−
(

1 + 64π2
(
φ2
c

Nu
+ r

u2

))3/2)
,

(3.9)

In the critical r = 0 case this result had originally been found in [27] from a resummation
of infinitely many Feynman diagrams.

This expression becomes more transparent if we look at the limits of small u and large
u, for example at r = 0.

– 8 –



J
H
E
P
0
2
(
2
0
2
2
)
1
5
2

• For small values of u, the effective potential reproduces the standard large-N loop
expansion around the Gaussian fixed point [27],

V (φc) = u

2N φ4
c

[
1− 1

3π

√
Nu

φc
+O(u)

]
. (3.10)

• For large values of u we have a perturbative expansion in 1/u around the wf point,

V (φc) = 16π2

3N2 φ
6
c

[
1− 24π2 φ

2
c

Nu
+O

(
u−2

)]
. (3.11)

In 2 < D < 4, the condition of convexity is always fulfilled. This is however only a
necessary condition for unitarity. In fact, it appears that for D = 4 − ε the theory is not
unitary [57] even though the effective potential is convex.

3.2 4 < D < 6

For 4 < D < 6, the gamma function is negative, Γ(−D/2) < 0, so $ and has a flex for
positive values of y:

$′′(ȳ) = 0 for ȳ(D−4)/2 = 4(4π)D/2
uD(D − 2)|Γ(−D/2)| . (3.12)

The flex separates a convex region for small values of u around the free ir fixed point
from a concave region for large u, around the conjectural strongly coupled uv fixed point
(figure 2)). Using x = $′(y) we can express the position of the flex in terms of φc:

x̄ = φ̄2
c = (D − 4)(4π)D/(D−4)N(

D
4

∣∣∣Γ(−D
2 )
∣∣∣)2/(D−4)

(D − 2)(D−2)/(D−4)
u−(D−2)/(D−4) − Nr

u
. (3.13)

In this situation, we need to use the supremum definition of Legendre transform eq. (2.22):

Υ(x) = sup
y>0

(xy −$(y)). (3.14)

For x < x̄, the supremum is obtained by differentiating the argument at fixed x and
expressing y as function of x:

x = $′(y). (3.15)

For x > x̄, on the other hand, there is no value of y such that x = $′(y) (see figure 2).
The supremum is then obtained by minimizing $, but this function is not bounded below,
so the supremum is +∞.6

For r < 0 (the broken phase), the tree-level potential takes a double-well shape. Ow-
ing to the supremum definition of the Legendre transform, the non-convex region of the
tree-level potential becomes constant in the effective potential V (φc) in analogy with the

6Technically we are using the notion of convex conjugate, defined on the extended real line R∪ {±∞}).
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$ $′

y

y

x̄

Figure 2. The function $(y) (left) and its first derivative $′(y) (right) on flat space (the torus).
The function $(y) has a flex at y = ȳ that separates a convex region for y < ȳ from a concave
one. The maximization condition x = $′(y) admits two solutions for x < x̄ = $′(ȳ) and no real
solutions for x > x̄; the physical branch corresponds to the first intersection (right).

r > 0 r = 0 r < 0

V V V

φc φc φc

Figure 3. Effective potential in five dimensions: unbroken (r > 0), critical (r = 0) and broken
phase (r < 0). The dotted lines represent the tree-level potential, the red lines represent the effective
potential that is always convex. In the shaded region the effective potential is infinite, signaling the
breakdown of the effective field theory (eft) which requires a uv completion.

classical Maxwell rule for coexisting phases [24, 51]. All in all, in the unbroken phase and
at criticality (i.e. for r ≥ 0) we have

Υ(x) =

xy −$(y)|y=y(x) for x < x̄,
+∞ for x ≥ x̄.

(3.16)

In the broken phase r < 0, there are three distinct regions:

Υ(x) =


−Nr2

2u for 0 < x < − rN
u ,

xy −$(y)|y=y(x) for − rN
u < x < x̄ ,

+∞ for x ≥ x̄,
(3.17)

see figure 3.
For concreteness, we consider the case of D = 5, where we have Γ(−5/2) = −8

√
π/15,

so that the grand potential is

ω(m) = (2N)
(
− m5

120π2 + (m2 − r)2

4u

)
(3.18)
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and there is a flex for

ȳ = (4π)4

u2 , x̄ = (4π)4

3u3 N − rN

u
. (3.19)

The effective potential describes a box with infinitely high walls of width

2φ̄c = 2
√
N

3
(4π)2

u3/2

√
1− 3ru2

(4π)4 , (3.20)

signaling the breakdown of the eft which requires a uv completion. The infinite walls
hide the unphysical region corresponding to large values of u that contains the ostensible
fixed point.

Within the box, the effective potential can be computed explicitly and expressed in
terms of trigonometric functions:

V (φc) = Υ(φ2
c) = sup

y∈R+
(φ2
cy −$(y))

= 211π8N

5u5

(
4 sin

(10θ + π

6

)
+ 20 sin

(4θ + π

6

)
+ 10 cos

(4θ + π

3

)
+ 20 cos

(
θ + π

3

)
− 20 cos(θ)− 7

)
− Nr2

2u ,

(3.21)
where

cos(θ) = 1− 2φ
2
c

φ̄2
c

− 6ru2

(4π)4

(
1− φ2

c

φ̄2
c

)
. (3.22)

This result is much more transparent if we expand it in a series for small u and small r,
i.e. around the free ir fixed point. The effective potential contains all the (infinitely many)
leading-N corrections to the tree-level potential:

V (φc) =
(
φ2
cr + Nr5/2

60π2 . . .

)
+
(
φ4
c

2N + φ2
cr

3/2

24π2 + Nr3

1152π4 . . .

)
u

+
(
φ4
c

√
r

32Nπ2 + φ2
cr

2

384π4 . . .

)
u2 + . . . (3.23)

In the critical phase (r = 0) we have an expansion in the only possible dimensionless
combination (u3/2φc):

V (φc) = uφ4
c

2N

1+ 4
5

(
u3/2φc

24π2
√
N

)
+
(

u3/2φc

24π2
√
N

)2

+ 3
2

(
u3/2φc

24π2
√
N

)3

+ 5
2

(
u3/2φc

24π2
√
N

)4

+ . . .

.
(3.24)

This expansion can also be interpreted in terms of Feynman diagrams around the free ir
fixed point.

Beyond φc = φ̄c (which vanishes in the uv limit u → ∞), the effective potential
obtained with the supremum definition of the Legendre transform is literally infinite. In
other words, the theory needs a uv completion.
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We can however decide to extend the effective potential to a complex function and
admit complex solutions for the maximization condition

x = $′(y). (3.25)

Now this equation describes a Riemann surface and x = x̄ is a branch point that is joined
to infinity by a branch cut. For example, we can choose one of the branches and can expand
the complex function V (φc) = Υ(

√
φc) around u→∞, where the strongly coupled uv cft

is expected to live, to find

V (φc) = 12
5

(
3π2

N

)2/3

e2πi/3φ10/3
(

1 + 10eπi/3
(
Nπ4

3

)1/3 1
φ2/3u

+ 80e2πi/3
(
Nπ4

3

)2/3 1
φ4/3u2 −

1600Nπ4

9φ2u3 +O
(
u−4

))
. (3.26)

In the next section we will use the leading term of this expansion to compute the conformal
dimension of the lowest operator of given charge Q and show perfect agreement with the
results in the literature.

4 The strongly-coupled fixed point

We have seen in section 2 that the free energy density (at fixed charge density) can be
obtained via a Legendre transform of the grand potential density ω that we have used for
the effective potential, but this time with respect to the variable m. Since at the conformal
point we are interested in the scaling dimensions, we use the free energy instead of its
density:

F (Q) = sup
m>0

(Qm− Ω(m)), (4.1)

where Ω(m) = VMω(m). Since the Legendre transform preserves homogeneity, the free
energy as function of the charge F = F (Q) has the same functional form as the free energy
density as function of the charge density f = f(ρ) in eq. (2.19). In a cft, the physics on
Rd+1 is equivalent to the physics on the cylinder R × Sd(r0) and the free energy on the
sphere is identified via the state-operator correspondence with the conformal dimension of
the lowest operator of given charge Q:7

∆(Q) = r0FSd(Q). (4.2)

In general the convexity of Ω as a function ofm2 — discussed in the previous section —
and the convexity of Ω as a function of m are non-trivially related. There might be regions
in which Ω(m) is not convex, however this does not signal a breakdown of the theory. The
supremum definition of the Legendre transform always leads to a free energy that is convex
as a function of a positive charge Q (or at worst equal to +∞). It is important to note

7One can alternatively derive the conformal dimensions directly from the effective potential using the
Callan-Symanzik equations, as it is done for example in [58].
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that the fixed-chemical potential regime described by Ω(m) and the fixed-charge regime
described by F (Q) are in general different. Regions in which Ω(m) is not convex cannot
be reached by fixing the charge (see e.g. the discussion in the appendix of [9]).

Even if Ω is convex, there can be regions that are not accessible at fixed charge. The
charge is positive and the maximization equation Q = Ω′(m) has no solutions for values
of m where Ω(m) is decreasing. We will see that this is the case for the model in D = 3
dimensions. The boundary of the accessible region (where Ω′(m) > 0) is at m2 = 1/(4r2

0).
This is precisely the value to which r needs to be fine-tuned to flow to the conformal fixed
point. More in general, Ω can also have concave regions even in a well-defined theory. An
explicit example is the massive phase in D = 3 which is investigated in [24].

The grand potential is again given in terms of a zeta function, this time for the Lapla-
cian on the sphere:

Ω(m) = −Nζ(−1/2|Sd,m). (4.3)

For d even, there exist both a series expansion with a finite radius of convergence for small
values of m, and an asymptotic expansion for m→∞. We will separately discuss the cases
d = 2 and d = 4 that, as we have seen in the previous section, correspond respectively to
a well-defined and a non-unitary theory.

4.1 Three dimensions: the zeta function on S2

The zeta function for the two-sphere has been discussed in [10, 13]. It cannot be expressed
in terms of elementary functions, but we can give an asymptotic expansion for large values
of m and a convergent expansion at small m:

• At large m we write ζ(s | S2,m) as a Mellin transform of the heat kernel:

ζ(s | S2,m) = 1
Γ(s)

∫ ∞
0

dt
t
tse−m

2t Tr
[
et4S2

]
. (4.4)

Using the known form of the asymptotic expansion for small t of the heat kernel,

g(t) = Tr
[
et(4−1/4r2

0)] ∼ r2
0
t
−
∞∑
n=1

(−1)n(1− 21−2n)
n!r2n−2

0
B2nt

n−1 ≡ r2
0
t

∞∑
n=0

an

(
t

r2
0

)n
,

(4.5)
we derive the large-m asymptotic expansion for the grand potential

Ω(m) = −Nζ(−1/2 | S2,m2) = 2N
r0

(
m2r2

0 −
1
4

)3/2 ∞∑
n=0

Ωn

(m2r2
0 − 1/4)n , (4.6)

where the coefficients are given by

Ωn = − 1
4π
∑
k 6=0

(−1)k
(kπ)2nΓ

(
n+ 1

2

)
Γ
(
n− 3

2

)
. (4.7)
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Figure 4. The grand potential Ω(m) (left) and its first derivative Ω′(m) (right) on the two-
sphere. The function Ω(m) is convex for all values of m and has a minimum for m = 1/(2r0). The
maximization condition has a solution with Q ≥ 0 in the region m ≥ 1/(2r0) (right).

• In the opposite limit of small m, one can instead derive a convergent expansion from
the definition in terms of eigenvalues:

Ω(m) =−Nζ(−1/2|S2,m) = −N
∞∑
l=0

(2l + 1)
(
l(l + 1)
r2

0
+m2

)−s ∣∣∣∣∣
s=−1/2

=− 2Nr2s
0

∞∑
k=0

(
−s
k

)
ζ(2s+ 2k − 1; 1/2)

(
m2r2

0 −
1
4

)k∣∣∣∣∣
s=−1/2

, (4.8)

where ζ(s; a) is the Hurwitz zeta function

ζ(s; a) =
∞∑
n=0

(n+ a)−s. (4.9)

The explicit form of the convergent expansion shows that Ω(m) is always convex and has
a minimum for m = 1/(2r0), where it also vanishes:

Ω(m)
∣∣∣∣
m=1/(2r0)

= 0, Ω′(m)
∣∣∣∣
m=1/(2r0)

= 0. (4.10)

We can perform the Legendre transform order by order and find a solution to the max-
imization condition Q = Ω′(m) (i.e. ρ = ω′(m)) for positive values of Q in the region
m > 1/(2r0) (see figure 4). The boundary m2 = 1/(4r2

0) is precisely the value of the
conformal coupling m2 = R/8 to which r needs to be fine-tuned in the uv action for the
model to flow to the wf fixed point in the ir.

The explicit expressions for F (Q) in the asymptotic Q � 1 and in the convergent
Q� 1 regions have been computed in [10]:

r0
F (Q)
2N = 2

3

(
Q

2N

)3/2
+ 1

6

(
Q

2N

)1/2
− 7

720

(
Q

2N

)−1/2
+ . . . (4.11)

r0
F (Q)
2N = 1

2

(
Q

2N

)
+ 4
π2

(
Q

2N

)2
+ 16

(
π2 − 12

)
3π4

(
Q

2N

)3
+ . . . (4.12)

A resurgence analysis has been performed in [13] to interpolate between the two regions.
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4.2 Five dimensions: the zeta function on S4

For d = 4 we have seen in the previous section that the Legendre transform leads to an
inaccessible region that hides the expected non-trivial uv fixed point. One can however
continue the effective potential V (φc) analytically and study the behavior of the theory
around u → ∞ starting from the zeta function on S4 in analogy to the three-dimensional
case above.

4.2.1 Expansions of the zeta function

The heat kernel traces for even-dimensional spheres are related by a recursion relation [59]
which we can use starting from the results of the two-sphere:

Tr
[
e4S2n t

]
(t) =

∑
l≥0

[
2l + 2n− 1

2n− 1

2n−2∏
k=1

l + k

k

]
e−l(l+2n−1)t/r2

0

= e(n−1/2)2t/r2
0

(2n− 1)!

n−1∑
j=0

βj;n(−1)jr2j
0

djg(t)
dtj ,

(4.13)

where g(t) is the trace of the heat kernel that we have seen above,

g(t) = Tr
[
et(4S2 −1/4r2

0)], (4.14)

and the coefficients βj;n are defined by the relationship

2s
(2n− 1)!

n−3/2∏
j= 1

2 ,
3
2 ,...

(
s2 − j2

)
= 2s

(2n− 1)!

n−1∑
j=0

βj;ns
2j . (4.15)

From a generalization of this relation one can derive a similar formula for the zeta function
on a generic sphere:8

ζ(s | S2n,m) = r2s
0

(2n− 1)!

n−1∑
j=0

βj;n

j∑
k=0

(
j

k

)
(−1)k

(
m2r2

0 − (n− 1/2)2
)j−k

× r2k
0 ζ

(
s− k

∣∣∣∣ S2,
√
m2 − (n2 − n)r−2

0

)
.

(4.16)

Once more there are two interesting regimes:

Large m. For large values of m (which corresponds to large values of Q/N) we can
expand the trace of the heat kernel in the small t-limit, since the Mellin integral localizes
around t = 0. On the four-sphere the relation eq. (4.13) gives (β0;2 = −1

4 , β1;2 = 1)

Tr
[
e4S4 t

]
= e9/4r2

0t

6

(
β0;2 − β1;2r

2
0

d
dt

)
g(t). (4.17)

8This expression relies on an integration by parts and needs to be suitably continued for m2r2
0 <

(n− 1/2)2.

– 15 –



J
H
E
P
0
2
(
2
0
2
2
)
1
5
2

The zeta function in the Mellin representation is then

ζ(s | S4,m) = − 1
Γ(s)

∫ ∞
0

dt
t
tse−m

2t

(
e9/4r2

0t

24 g(t) + e9/4r2
0t

6 r2
0

dg(t)
dt

)

= r2s
0

6(s− 1)(s− 2)
(
m2r2

0 −
9
4
)2−s

+ r2s
0

24
∑
k≥0

(−1)k
(
22k+1−1

)
B2k

22k−1
(
m2r2

0 − 9
4

)k+s−1
Γ(s+ k − 1)

Γ(s)k!

[(22k−1−1
)

(22k+1−1) −
kB2k+2

(k + 1)B2k

]
.

(4.18)
This expansion is asymptotic and can be studied using resurgence, see appendix A.

Small m. The other interesting limit is for small values of m, where the zeta function is
expanded into a convergent series valid in the regime 0 < mr0 < 3/

√
2:

ζ(s | S4,m) =
∑
l≥0

[
2l + 3

3

2∏
k=1

l + k

k

](
l(l + 3)
r2

0
+m2

)−s

= r2s
0
3
∑
k≥0

(
−s
k

)[
ζ (2s+ 2k − 3; 3/2)− 1

4ζ (2s+ 2k − 1; 3/2)
](

m2r2
0 −

9
4

)k
.

(4.19)
The two limits can be understood as expansions of a single function that can be

obtained using resurgence techniques, as we show in appendix A. This function can be
written in terms of the principal value of an integral involving Bessel’s functions. The
grand potential for example has the form

Ω(m)
2N = −m

4r3
0

24π P.V.
∞∫
0

dy
y sin(y)

(
2K4(2mr0y) +

(
2 + 1

m2r2
0

)
K2(2mr0y)

)
. (4.20)

4.2.2 Free energy and conformal dimensions

One interesting observation is that in the regime where the small-m expansion is convergent
and can be trusted, the zeta function on the four-sphere has a more interesting behavior
than the two-sphere case: there is a maximum and a minimum, i.e. a convex and a concave
region separated by a flex (see figure 5). This happens for the values

r0mmin ≈ 0.9927 . . . r0mfl ≈ 1.266 . . . r0mmax = 3
2 . (4.21)

The value of the flex can also be found with quite good precision using an optimal truncation
of the large-m expansion of the grand potential (see appendix A). Note however that
this expansion cannot reproduce the whole structure of Ω(m) and in particular it cannot
reproduce the maximum at r0mmax = 3/2.

By an argument that is by now familiar, the Legendre transform is non-trivial only for
values of Q smaller than

Qfl
2N = Ω′(mfl) ≈ 0.05029 . . . (4.22)
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Figure 5. The grand potential Ω(m) (left) and its first derivative Ω′(m) (right) on the four-sphere.
The function Ω(m) is convex for m ≤ mfl ≈ 1.266 . . . , has a minimum for mr0 = mminr0 ≈ 0.9927
and a maximum for mr0 = mmaxr0 = 3/2. The maximization condition admits two solutions
for 0 ≤ Q < Qfl = Ω′(mfl) ≈ (2N) · 0.5029 . . . and no solutions beyond Q = Qfl (right). The
leftmost solution gives a convex function, but does not satisfy F (0) = 0 since F (0) = −Ω(mmin) ≈
0.017 · · · > 0.

The free energy is equal to +∞ for Q > Qfl since in this case, Ω(m) is not bounded below:

F (Q)
2N =

Qm− Ω(m)|m=m(Q) for 0 < Q < Qfl ≈ (2N) · 0.05029 . . .
+∞ for Q > Qfl.

(4.23)

However, the function F (Q)/(2N) that we obtain in this way cannot be describing the
conformal dimension of operators of fixed charge in a cft. By the state-operator cor-
respondence, r0F (0) is the dimension of the identity operator and has to vanish, while
we have

r0F (0)
2N = − 1

2N Ω(mmin) ≈ 0.01699 . . . 6= 0. (4.24)

The appearance of the constant term means that we are not at the critical point. Expanding
in Q, we find

r0F (Q)
2N ≈ 0.01699 . . . + 0.9903 . . . Q2N + 1.516 . . .

(
Q

2N

)2
+ . . . (4.25)

We see that the leading term in Q is linear, which means that we are in a massive phase.
Alternatively, we could decide to ignore convexity and use the naive definition of Leg-

endre transform and expand around the maximum m2
max = 9/(4r2

0), which is precisely the
value of the conformal coupling and where Ω(mmax) = 0. In this case we would find

r0F (Q) = 2N
[

3
2

(
Q

2N

)
− 32

3π2

(
Q

2N

)2
+O

(
Q3
)]
. (4.26)

This same result has been found in [12] (where Qfl has been identified as the critical value
above which ∆(Q) becomes complex), and it is consistent with the conformal dimension
of the Q-th power of a field of dimension 3/2 (see also [35]). It would be interesting to
understand better the meaning of this expression. On the one hand we are discussing a uv
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continuation obtained via a hard-to-justify complex effective potential; on the other hand
we are expanding around a maximum, in a concave region of Ω(m) that one would not
expect to contribute to the Legendre transform. Once more we can try and continue F (Q)
to a complex function and look at Qfl as the beginning of a branch cut. In this way we can
study the behavior for large values of Q using the large-m expansion in each of the four
branches. Using the expansion in eq. (4.18) we find

∆(Q) = r0FS4(Q) = 2N
[
f1

4
√

3
5

(
Q

2N

) 5
4
− f2√

3

(
Q

2N

) 3
4
]
, (4.27)

where the phases f1 and f2 depend on the choice of the branches:

branch 1 branch 2 branch 3 branch 4
f1 eiπ/4 e−iπ/4 e3πi/4 e−3πi/4

f2 e3iπ/4 e−3iπ/4 eπi/4 e−πi/4
(4.28)

which again agrees with the results in [12]. The branch choice here must correspond to
the one that we have already made in eq. (3.26) since the coefficient of the φ10/3 term in
the effective potential completely fixes the coefficient of the Q5/4 term in the conformal
dimension. To see that, observe that at criticality, for dimensional reasons, the effective
potential must have the form

V (φc) = κφ10/3 , (4.29)

which corresponds to a fixed-charge vacuum energy on the torus

ET 4 = 27/4√3κ3/8

5N1/4L
Q5/4 . (4.30)

But since the ground state is homogeneous, this implies that the leading term in the large-
charge expansion of the energy on the four-sphere is

ES4

∣∣∣∣
Q5/4

= L

V
1/4
S4

ET 4 = 2κ3/8

31/855/8√πr0
= ∆(Q)

r0

∣∣∣∣
Q5/4

. (4.31)

In particular, the special choice we have made in eq. (3.26) corresponds to the first branch
in eq. (4.28).

4.2.3 A phase transition on the cylinder

Further insights on the nature of the critical point can be obtained moving away from the
limit u → ∞. One possible interpretation for a complex effective potential (obtained via
the naive Legendre transform) is in terms of unstable states (see e.g. [60]). If we follow a
given state while changing a parameter in the theory, it can be that at some point the state
becomes unstable and its energy develops and imaginary part that can be understood in
terms of decay rates. Something similar happens here, were states that are perfectly fine
at small u become unstable in the uv. Having an explicit (convergent) expansion for the
zeta function on the sphere at small m we can see how this happens and the implications
for the free energy on the sphere at fixed (small) charge Q.
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Figure 6. The grand potential Ω on the cylinder R× S4
r0

for r = 9/(4r2
0) at different values of u.

For u < 256r0, the point m = 3/(2r0) is a local minimum. For larger values of u a new minimum
appears for m < 3/(2r0).

In general, if a function Ω(m) has a critical point for m = mc, its Legendre transform F (Q)
can be expanded around Q = 0 in terms of local properties of Ω:

F (Q) =
[
−Ω(mc) +mcQ+ 1

2Ω′′(mc)
Q2 + . . .

]∣∣∣∣
mc=3/(2r0)

. (4.32)

Keeping only the first two terms, this is the free energy of a fixed-charge state for a system
describing a particle of mass mc.

If we fine tune r = 9/(4r2
0), which is the conformal coupling on the sphere, the grand

potential takes the form

Ω(m) = (2N)
(
−1

2ζ(−1/2|S4,m) + VS4
(m2 − 9/(4r2

0))2

4u

)
. (4.33)

The zeta function and its first derivative vanish at m2 = 9/(4r2
0) and around that point we

have the perturbative expansion:

Ω(m) = 2N
r0

[
π2

384

(256r0
u
− 1

)(
m2r2

0 −
9
4

)2
+ (π2 − 12)π2

2832

(
m2r2

0 −
9
4

)3
+ . . .

]
. (4.34)

The nature of the critical point mc = 3/(2r0) changes with the value of u. For u < 256r0 we
have a local minimum, which turns into a local maximum for larger values of the coupling
where a new local minimum appears for m < 3/(2r0) (see figure 6).

The supremum definition of the Legendre transform tracks the position of the min-
imum: for small values of u the free energy is determined by the behavior around m =
3/(2r0),

r0F (Q) = 3
2Q+ 192u

π2(256r0 − u)
Q2

2N + . . . (4.35)

as long as the coefficient of Q2 is positive. For large u, the free energy depends on the
local properties of the grand potential around the new minimum appearing at m < 3/(2r0)
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which, as we have seen, describes a massive phase in the u→∞ limit. However, this new
minimum is metastable and, for large enough charge, the free energy becomes infinite since
the grand potential is not bounded below.

Using the naive definition of Legendre transform, on the other hand, for large u we
can choose between two branches, one of which is still centered around m = 3/(2r0) and
corresponds to a concave (unstable) region of the grand potential. For small values of Q,
the free energy is still real, but the coefficient of Q2 is negative, which is a sign of instability.
When expanding around a maximum, generically the free energy is concave as function of
the charge. It seems that the absence of convexity is a general feature of an expansion
around an unstable state, consistently with the conjecture of [47].

4.3 D = 4 + ε and D = 6− ε

In section 3.2 we have seen that for 4 < D < 6 the expected uv fixed point cannot be
reached unless we continue the effective potential to a complex function with a branch cut.
Just like we have done in the case of D = 5, we can still compute the free energy on the
sphere, that we naturally identify with the conformal dimension of the lowest operator of
given charge:

∆(Q) = r0Ω∗(Q), Ω(m) = −Nζ(−1/2|SD−1,m). (4.36)

In the limit of large charge, the zeta function can be computed perturbatively in terms
of geometrical invariants for any real value of D using Weyl’s asymptotic expansion for a
manifold of dimension d = D − 1) [61–64]:

Tr
[
e4M t

]
=

∑
n=0, 1

2 ,1,
3
2 ,...

KMn tn−
d
2 , (4.37)

where the KMn are the heat kernel coefficients. These coefficients can be expressed in
terms of the geometry of the manifold. For manifolds without boundaries the half-integer
coefficients KMk/2 vanish. The first two integer coefficients can be written in closed form as

KM0 = VM
(4π)d/2

, KM1 = 1
6

1
(4π)d/2

∫
M

dxR. (4.38)

The leading term in the asymptotic expansion of the zeta function on the d-sphere then
reads

ζ(s | Sd,m) =
∑
n≥0

KSd

n

Γ(s+ n− d
2)

Γ(s) md−2n−2s = KSd

0
Γ(s− d/2)

Γ(s) md−2s + . . . (4.39)

As we have observed in section 3, for s = ±1/2 and d odd, the Gamma function in the
numerator diverges. We can however resort to analytical continuation in d and study the
behavior around D = 4 and D = 6, i.e. we expand the gamma function around the spatial

– 20 –



J
H
E
P
0
2
(
2
0
2
2
)
1
5
2

dimensions for d = 3± ε and d = 5± ε. The geometrical invariants are

KS3±ε
0 m3±ε = 2−2∓ε√π

Γ(2± ε
2) (r0m)3±ε =

√
π

4

[
1±

(
γEM

2 − log(2)− 1
2 + log(r0m)

)
ε

]
(r0m)3,

(4.40)

KS5±ε
0 m5±ε = 2−4∓ε√π

Γ(3± ε
2) (r0m)5±ε =

√
π

32

[
1∓

(
log(2) + 3

4 −
γEM

2 − log(r0m)
)
ε

]
(r0m)5.

(4.41)

Using the fact that Γ(ε − n) = (−1)nε−1/n! + O
(
ε0
)
, the first order result for the zeta

functions we are looking for is

ζ
(
1/2 | S3±ε,m

)
= ±ε−1 r

3
0m

2

2 + . . . , ζ
(
−1/2 | S3±ε,m

)
= ±ε−1 r

3
0m

4

8 + . . . , (4.42)

ζ
(
1/2 | S5±ε,m

)
= ∓ε−1 r

5
0m

4

32 + . . . , ζ
(
−1/2|S5±ε,m

)
= ∓ε−1 r

5
0m

6

192 + . . . . (4.43)

Around D = 4, the minimization condition gives Q/N = ∓(r0m)3/(2ε), and, as ex-
pected, there is a solution for positive charge only in D < 4. The corresponding conformal
dimension of the lowest operator of charge Q is∆−ε(Q) = 3N

21/3 ε
1/3
(
Q

2N

)4/3
+ . . . for D = 4− ε,

∆+ε(Q) = 3N
21/3 e

iπ(2k+1)/3ε1/3
(
Q

2N

)4/3
+ . . . for D = 4 + ε,

(4.44)

where k = 0, 1, 2 depends on the choice of one of the three possible branches.
Similarly, around D = 6, the minimization gives Q/N = ±(r0m)5/(32ε), where now

the positive-charge solution exists for D > 6. The corresponding conformal dimension of
the lowest operator is∆−ε(Q) = 26/55N

3 eiπ(2k+1)/5ε1/5
(
Q

2N

)6/5
+ . . . for D = 6− ε,

∆+ε(Q) = 26/55N
3 ε1/5

(
Q

2N

)6/5
+ . . . for D = 6 + ε,

(4.45)

where now k = 0, 1, 2, 4, 5 corresponds to the five possible branches.
These results agree with those in [12, 18]. As expected from the general argument of

section 3, for 4 < D < 6, the Legendre transform requires an analytic continuation and
leads to complex conformal dimensions.

5 Conclusions

In this paper we have discussed the phase diagram of the large-N ϕ4 vector model in
2 < D < 6. Since we are working in the double-scaling limit N →∞, Q→∞, Q/N fixed,
we are able to do this without resorting to diagrammatic techniques and obtain a closed-
form result which resums all the contributions at leading order in N . Having calculated
the grand potential Ω, we find the effective potential, which is independent of the charge
fixing, via a Legendre transform. The convexity properties of Ω are related to the unitarity
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of the theory: in a unitary theory, the effective potential is always convex and the Legendre
transform preserves convexity. For 2 < D < 4, Ω is convex as a function of m2, while for
4 < D < 6 it has a flex and is not bounded from below. This is consistent with earlier
observations that in this range of dimensions the theory is non-unitary in the uv and flows
to a complex cft. Since we have access to the phase diagram, we can also study the free
energy on the cylinder. In D = 5 we find a new metastable massive phase that appears at
high energy.

There is a number of ways in which our observations can be extended:

• The metastable phase and instabilities in 4 < D < 6 could be explored in terms of
instantons on the cylinder, extending the treatment in [33] beyond the critical point.

• Our construction is formally valid in any dimension. In 0 < D < 2 the function Ω is
convex, but it is unclear to us what is the fate of the theory in the ir.

• Similarly, for 6 < D < 8, Ω is again convex, but generically we do not expect a
unitary theory since the collective Stratonovich field violates the unitarity bound.
More in general, the convexity of Ω is satisfied for 4n− 2 < D < 4n.

• In this work, we have restricted ourselves to canonical kinetic terms when calculating
the effective potential. It would be interesting to see if one can make statements also
for general kinetic terms.

• All the physics is already encoded in the grand potential. If we could extract all the
information meaningfully from Ω, it may be possible to avoid calculating the effective
potential altogether.

We leave these points for future investigation.
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A Resurgence of the four-sphere

Borel resummation. Borel resummation is a tool to transform an asymptotic expansion
into a resurgent function (see [65] for an introduction). Suppose we have a factorially
divergent asymptotic series

Φ0(t) =
∑
n

ant
n, an ∼

∑
k

Sk
2πi

βk

Anβk+bk
k

∑
l≥0

al;kA
l
kΓ
(
nβk + bk − l

)
. (A.1)
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The assumption is that the asymptotic expansion can be completed into a trans-series of
the form

Φ(Sk, t) = Φ0(t) +
∑
k 6=0

σke
− Ak

t1/βk t−bk/βkΦk(t), Φk(t) ∼
∑
l≥0

al;kt
l/βk , (A.2)

where the σk are ambiguities that arise from the fact that for any value of these parameters
the trans-series corresponds to the same asymptotic series Φ0(t). The closed-form Borel
transform of a series is defined by

B[Φ0](y) =
∑
n≥0

an

Γ
(

maxk(bk) · n+ maxk(βk)
)yn, (A.3)

and the (directional) Borel resummation of the series Φ0 is defined as

Sθ[Φ0](z) = 1
maxk(βk)

∫ eiθ∞

0

dζ
ζ

(
ζ

z

) b
β

exp
[
−
(
ζ

z

) 1
β

]
B[Φ0](ζ). (A.4)

This reproduces the asymptotic expansion Φ0(t) for z = teiθ, t → 0+, but now defines a
function computable for all values of t (and θ).

Ambiguities arise if the Borel transform presents singularities along the integration
path eiθ[0,∞].9 One then defines lateral summations S±θ by deforming the contour around
the singularities, the new paths we denote by C±θ . This indicates a branch cut of the
(directional) Borel resummation at z = teiθ with discontinuity

(
S−θ − S

+
θ

)
[Φ0](t). The

discontinuity is purely non-perturbative, and it includes the exponential corrections, plus
the expansions Φk(t) around them and the Stokes constants Sk as coefficients. Given a
Borel resummable asymptotic series, the discontinuity provides the structure of the non-
perturbative terms in the trans-series and hence the Borel resummed expansions S±θ [Φk](t)
around the exponential corrections. However, this will not remove the ambiguities in the
choice of the parameters σ±k . To promote the asymptotic expansion into a full trans-series
we need in general to impose extra conditions.

Zeta function on the four sphere. The large charge expansion in D = 4 + 1 on the
four-sphere is an asymptotic series and can be computed starting from the result on the
two-sphere as we have seen in section 4.2. We can therefore make use of the same resurgent
techniques used in [13] to study the non-perturbative corrections to the asymptotic series.

The asymptotic expansion of the heat kernel trace

Tr
[
et(4S2 −1/(4r2

0))] ∼ r2
0
t

ΦS2(t) (A.5)

on the two-sphere is

ΦS2(t) =
∑
n≥0

aS
2

n

tn

r2n
0
, aS

2
n = (1− 21−2n)B2n

(−1)n+1n! =
Γ
(
n+ 1

2
)

√
π

∑
k 6=0

(−1)k+1

(πk)2n (A.6)

9Additionally, the behavior at the endpoints {0, eiθ∞} might be of importance as well.
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On the four-sphere, using eq. (4.17), we find that the asymptotic expansion heat kernel
trace

Tr
[
et(4S4 −9/(4r2

0))] ∼ r4
0
t2

ΦS4(t) (A.7)

is given by

ΦS4(t) = 1
6 +

∑
n≥1
k 6=0

(−1)k

(πk)2n
1

6
√
π

[
Γ
(
n+ 3

2

)
− 3

2Γ
(
n+ 1

2

)
+ (πk)2

4 Γ
(
n− 1

2

)]
tn

r2n
0
, (A.8)

which we can use to extract the heat kernel coefficients (see also [66]).
Comparing this to eq. (A.1) we see that

Ak = (πk)2, bk = 3
2 , βk = 1,


Sk
2πia0;k = (−1)k|k|3 π5/2

6
Sk
2πia1;k = (−1)k+1|k|

√
π

4
Sk
2πia2;k = (−1)k|k|

√
π

24

, al>2;k = 0. (A.9)

The trans-series of the four-sphere heat kernel trace therefore has to include exponentials
of the form

exp. corr. ∼ 2ie−
(πr0k)2

t

(
r2

0π

t

)7/2

(−1)k|k|
(
k2

6 −
t

4r2
0π

2 + t2

24r4
0π

2

)
. (A.10)

To compute the exponential terms we perform the Borel resummation of the heat
kernel. On the two-sphere the Borel resummation of the asymptotic expansion is given
by [13]10

S0[ΦS2
0 ](t) = 2r0√

πt

∞∫
0

dy ye
−
y2r2

0
t

sin(y) . (A.11)

This we can use, along with eq. (4.17), to directly infer that the Borel resummation of the
asymptotic expansion on the four-sphere is

S0[ΦS4
0 ](t) = 2r3

0√
πt3

∞∫
0

dy ye
−
y2r2

0
t

sin(y)

[
t

4r2
0
− y2

6 −
t2

24r4
0

]
. (A.12)

The integral is ill-defined and has simple poles at ζ = kπ, k ∈ Z. The discontinuity is given
by the Residue theorem as

(
S−0 − S

+
0

)
[Φ](t) = 2i t

2

r4
0

(
r2

0π

t

) 7
2 ∑
k 6=0

(−1)k|k|e−
k2r2

0π
2

t

[
|k|2

6 − t

4π2r2
0

+ t2

24π2r4
0

]
.

(A.13)
10In order to avoid a Borel transform with branch cuts one performs the mapping ζ → ζ2 in eq. (A.4).
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This agrees with the form of the exponential corrections in eq. (A.10). The Borel resummed
trace of the heat kernel (with ambiguities) reads

2r7
0√
πt7

∫
C±0

dy ye
−
r2

0y
2

t

sin(y)

[
t

4r2
0
− y2

6 −
t2

24r4
0

]

+ i

(
r2

0
π

t

) 7
2 ∑
k 6=0

σ±k (−1)k|k|
π2 e−

k2r2
0π

2

t

[
k2π2

3 − t

2r2
0

+ t2

12r4
0

]
. (A.14)

It is possible to fix the ambiguities in the heat kernel trace and therefore also in all the
other quantities that we will be interested in. We can do it two ways. Either one finds a
path-integral definition where the trans-series structure arises automatically (see [13]), or
one imposes the reality of the heat kernel trace.11 The result is

Tr
[
et(4S4 −9/(4r2

0))] = 2r7
0√
πt7

P.V
∫
C±0

dyye
−
r2

0y
2

t

sin(y)

[
t

4r2
0
− y2

6 −
t2

24r4
0

]
. (A.15)

To compute the lateral Borel resummation of the zeta function we directly apply the
Mellin transform to the Borel resummed trace of the heat kernel. But to change the order
of integration for s = ±1/2 the integral needs to be analytically continued by extracting
the first three terms of the asymptotic expansion. We get

ζ±
(
s
∣∣S4,m

)
= 2r2s

0√
πΓ(s)

∞∫
0

dt
∫
C±0

dy e
−m2r2

0t−
y2
t

t
9
2−s

[
y

sin(y)

(
− y2

6 + t

4 −
t2

24

)
− y2

3 + y4

18

+ 17y6

5400

]
+ 1

6
r4

0m
4−2s

(s− 1)(s− 2) −
1
24
r2

0m
2−2s

(s− 1) −
17

2880m
−2s.

(A.16)
We exchange the order of integration for s = −1/2. The result can be identified with
the (non-standard) Borel resummation of the asymptotic series Ω0(m)/(2N) of the grand
potential Ω(m)/(2N). We have

S±0
[ Ω0
2N

]
(m) =− r3

0m
4

24π

∫
C±0

dy
y2

[
y

sin(y)

(
2
[
K4(2r0my) +K2(2r0my)

]
+ K2(2r0my)

(r0m)2

)

+
(

8− 4y2

3 −
17y4

225

)
K4(2r0my)

]
+ 2

45r
4
0m

5 + 1
36r

2
0m

3 − 17
2880m, (A.17)

11In general the reality condition is not guaranteed to fix the non-perturbative corrections completely
because there is always the possibility of 2iσ±k having a real part as well. But in our case it turns out to be
sufficient.
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whereKn(x) is the modified Bessel function of the second kind of order n. The discontinuity
is given by

(
S−0 − S

+
0

) [ Ω0
2N

]
(m) = i

r3
0m

4

12
∑
k 6=0

(−1)k
|k|

(
2
[
K4(2πr0mk) +K2(2πr0mk)

]
+ 1

(r0m)2K2(2πr0mk)
)
. (A.18)

For our purposes it is sufficient to only consider the leading non-perturbative terms ap-
pearing in the free energy. To do so we will use Hankel’s asymptotic expansion for the
modified Bessel functions of the second kind

Kα(z) ∼
√
π

2z e
−z
(

1 + (4α2 − 1)
8z

(
1 + 1

2
(4α2 − 32)

8z

(
1 + 1

3
(4α2 − 52)

8z
(
1 + . . .

))))
,

(A.19)

for −3π/2 < arg(z) < 3π/2. The first non-perturbative exponential terms are

ω(m) ⊃ ir
3
0m

4

12
(−1)k
|k|

(
4 + 1

(r0m)2

) 1√
4r0m|k|

e−2πr0m|k| ∼ i(r0m) 7
2

6r0

(−1)k

|k|
3
2
e−2πr0m|k|.

(A.20)
If we use the first term of the order-by-order Legendre transform of the perturbative part,
i.e. q = −(r0m)4/9, r0f(q) = r0mq + (r0m)5/45, with q = Q/2N , then the leading correc-
tion to the free energy per degree of freedom (dof) is

r0f(q) ⊃ i q̃
7/8

6
√
f1

(−1)k

|k|
3
2
e−2πf1q̃1/4|k|, (A.21)

where q̃ = 9q and f1 is the complex phase coming from the negative sign in the first
equation and the fact that one has to pick a branch for the root. Finally, following the
reality prescription for the heat kernel trace, we can put the grand potential into the form

ω(m) = −r
3
0m

4

24π P.V.
∞∫
0

dy
y sin(y)

(
2
[
K4(2my) +K2(2my)

]
+ 1

(r0m)2K2(2my)
)
. (A.22)

Optimal truncation. An alternative approach to get a meaningful result from an asymp-
totic series is to truncate it. A commonly applied rule of thumb to find a finite sum that is
as close as possible to the “actual” value is to truncate at the term that gives the smallest
contribution. For an asymptotic series ∑ anx

n , if we suppose that the coefficients an
diverge as (βn)!A−n, then the optimal truncation is at

N(x) ≈ 1
β
|Ax|1/β , (A.23)

with error ε(x) ∼ exp(−(Ax)1/β). For the special case x ∼ 1 we can simply look at the
ratio of consecutive coefficients of the terms in the asymptotic expansion. Once this ratio
exceeds one we truncate the series. For the zeta function ζ(s | S4,m) in terms of the
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variable m̃2 = r2
0m

2 − 9/4 ∼ 1 the optimal truncation is after the third term for s = 3/2,
after the fourth for s = 1/2 and after the fifth for s = −1/2.

To go beyond that we need to rely on our resurgent analysis. For the trace of the heat
kernel, using the large order behavior of the Bernoulli numbers, given by (1−21−2n)B2n

(−1)n+1n! ∼
2√
nπ

n!
π2n , one finds that β = 1 and A = π2, and hence

N(t) ≈ π2r−2
0 t, ε(t) ∼ exp

(
−π2r−2

0 t
)
. (A.24)

The asymptotic expansion of the grand potential is found by Mellin transforming the
asymptotic expansion of the heat kernel trace

ζ
(
s
∣∣S4,m

)
∼ r2s

0 (m̃2)2−s∑
n≥0

aS
4

n

Γ(n+ s− 2)
Γ(s) (m̃2)−n, (A.25)

Ω(m)
2N ∼ r−1

0 (m̃2)
5
2
∑
n≥0

aS
4

n

Γ
(
n− 5

2
)

4
√
π

(m̃2)−n = −(m̃2) 5
2

45r0
+ (m̃2) 5

2

r0

∑
n≥1

Ωn

2N (m̃2)−n,

(A.26)

where m̃2 = r2
0m

2 − 9/4. The coefficients Ωn/(2N) in closed form are written as (n ≥ 1)

Ωn

2N =
∑
k 6=0

(−1)k

(πk)2n+3
(π|k|)3

24π Γ
(
n− 5

2

)[
Γ
(
n+ 3

2

)
− 3

2Γ
(
n+ 1

2

)
+ (πk)2

4 Γ
(
n− 1

2

)]
.

(A.27)
The double factorial first needs to be resolved in order to match with the general higher-
order trans-series coefficients, but already makes it clear that the coefficients grow like
(2n)!. Once the double factorial structure is resolved, then the leading term is

Ωn

2N =
∑
k 6=0

(−1)k

(2π|k|)2n− 1
2

1
12π

√
|k|

(Γ(2n− 1/2) + . . .). (A.28)

What we can read off already is that

Ak = (2πk), bk = −1
2 , βk = 2, Sk

2πia0;k = (−1)k

24π
√
|k|
. (A.29)

This tells us that the optimal truncation is

N(µ) ≈ 1
2
∣∣∣2πm̃2

∣∣∣1/2, ε(m̃) ∼ exp
(
−
√

2πm̃2
)
. (A.30)

For r2
0m

2&3/2, i.e. m̃2&3/2, the optimal truncation is at the first term, so that Ω(m)/(2N)
∼ − (m̃2)

5
2

45r0
. This way we recover the maximum of the grand potential Ω(3/2)/(2N) = 0 at

m = 3/2 from its asymptotic expansion using the optimal truncation.12

12To be precise we cannot see that it is a maximum since Ω(3/2)′/(2N) ∼ −(r0m) (m̃2)
3
2

9

∣∣
m=3/2

= 0.
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Figure 7. The truncated asymptotic expansion of the grand potential Ω(m) (red) and its second
derivative Ω′′(m) (orange) on the four-sphere.There is a flex for m ≈ 1.290.

Flex from large charge. The second derivative of the grand potential reads (we use
the identity ζ ′(s | M,m) = −2msζ(s+ 1 | M,m) here)

Ω′′(m)
2N = −1

2
(
ζ(1/2 | S4,m)−m2ζ(3/2 | S4,m)

)
. (A.31)

It is clear that the asymptotic expansion in terms of m̃2 = r2
0m

2 − 9/4 cannot reproduce
the flex at m ≈ 1.266 < 3/2. So we further expand in an asymptotic expansion in terms
of m. Around m ∼ 1 the optimal truncation can be found by looking again at the ration
of consecutive coefficients. This ratio starts exceeding the value one after the sixth term.
Up to this term the grand potential is

Ω(m)
2N = −r

4
0m

5

45 + r2
0m

3

9 − 29m
45 + 37m−1

756r2
0

+ 149m−3

15120r4
0

+ 179m−5

55440r6
0
. (A.32)

Expanded up to the sixth term the second derivative of the grand potential reads

Ω′′(m)
2N = −4r4

0m
3

9 + 2r2
0m

3 + 37m−3

378r2
0

+ 149m−5

1260r4
0

+ 179m−7

1848r6
0
. (A.33)

The m−1 term is of course missing and it also cancels exactly between the two zeta func-
tions.

The asymptotic expansions of Ω(m) and Ω′′(m) are shown in figure 7. Numerically
one finds that the asymptotic expansion of Ω′′(m) has a zero at r0m ≈ 1.290, i.e. the
asymptotic expansion of ω(m) has a flex at r0m ≈ 1.290. This is very close to the actual
value of r0mfl ≈ 1.266. Looking at the graph it is clear though that the asymptotic
expansion does not reproduce the maximum of the grand potential at r0m = 3/2. The
error of the optimal truncation at m̃2 ≈ 1 is given by ε(m̃2 ∼ 1) ∼= e−

√
2π = 0.08.
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