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Abstract. Climate model biases in the representation of albedo variations between land cover classes contribute
to uncertainties on the climate impact of land cover changes since pre-industrial times, especially on the associ-
ated radiative forcing. Recent publications of new observation-based datasets offer opportunities to investigate
these biases and their impact on historical surface albedo changes in simulations from the fifth phase of the Cou-
pled Model Intercomparison Project (CMIP5). Conducting such an assessment is, however, complicated by the
non-availability of albedo values for specific land cover classes in CMIP and the limited number of simulations
isolating the land use forcing. In this study, we demonstrate the suitability of a new methodology to extract the
albedo of trees and crops–grasses in standard climate model simulations. We then apply it to historical runs from
17 CMIP5 models and compare the obtained results to satellite-derived reference data. This allows us to identify
substantial biases in the representation of the albedo of trees and crops–grasses as well as the surface albedo
change due to the transition between these two land cover classes in the analysed models. Additionally, we re-
construct the local surface albedo changes induced by historical conversions between trees and crops–grasses for
15 CMIP5 models. This allows us to derive estimates of the albedo-induced radiative forcing from land cover
changes since pre-industrial times. We find a multi-model range from 0 to −0.17 W m−2, with a mean value of
−0.07 W m−2. Constraining the surface albedo response to transitions between trees and crops–grasses from the
models with satellite-derived data leads to a revised multi-model mean estimate of−0.09 W m−2 but an increase
in the multi-model range. However, after excluding one model with unrealistic conversion rates from trees to
crops–grasses the remaining individual model results vary between −0.03 and −0.11 W m−2. These numbers
are at the lower end of the range provided by the IPCC AR5 (−0.15± 0.10 W m−2). The approach described
in this study can be applied to other model simulations, such as those from CMIP6, especially as the evaluation
diagnostic described here has been included in the ESMValTool v2.0.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1210 Q. Lejeune et al.: Biases in the albedo sensitivity to deforestation in CMIP5 models

1 Introduction

The landscape transformations imposed by anthropogenic
activities have the potential to modify the climate (Foley et
al., 2005; Mahmood et al., 2014). Since pre-industrial times,
important land cover changes (LCCs) have predominantly
led to the replacement of forests by shorter vegetation types
such as crops and grasses over large inhabited areas (Hurtt
et al., 2011; Kaplan et al., 2011; Pongratz et al., 2008; Ra-
mankutty and Foley, 1999). Associated alterations of land
surface properties such as albedo, roughness, and evapora-
tive fraction have modified climate conditions through the
so-called biogeophysical effects (Lejeune et al., 2017; de
Noblet-Ducoudré et al., 2012; Pongratz et al., 2010). The
overall climate impact of the biogeophysical effects of histor-
ical LCC remains a matter of debate (Duveiller et al., 2018b;
Lejeune et al., 2017; de Noblet-Ducoudré et al., 2012; Pit-
man et al., 2009) due to uncertainties regarding the mag-
nitude of the imposed land cover perturbations (Schmidt et
al., 2012), the resulting alterations in land surface properties,
the interplay between radiative (related to albedo) and non-
radiative processes (related to changes in evaporative fraction
and roughness), and the influence of atmospheric feedbacks
and non-local effects (Winckler et al., 2017, 2019).

Concerning the surface albedo more specifically, model
studies concluded that historical LCCs have led to large-scale
increases in this variable (Betts et al., 2007; Boisier et al.,
2013) because trees have a lower albedo than shorter veg-
etation types, especially in the presence of snow (Cescatti
et al., 2012; Li et al., 2015). This has resulted in a cool-
ing effect, and climate models have simulated an associated
global radiative forcing (RF) close to −0.2 W m−2 (Betts et
al., 2007; Davin et al., 2007; Pongratz et al., 2009). How-
ever, Myhre et al. (2005) and Kvalevåg et al. (2010) have
argued that climate models usually overestimate the albedo
difference between natural vegetation and croplands in com-
parison to satellite-derived observational evidence. This is
consistent with the weaker radiative forcing of−0.09 W m−2

due to anthropogenic land cover change found by Myhre et
al. (2005), after combining a radiative transfer model with re-
constitutions of past surface albedo changes based on satel-
lite observations of the current vegetation land cover and
its albedo, as well as a dataset for potential natural vegeta-
tion. The Fifth Assessment Report (AR5) of the IPCC over-
all estimated that LCCs since 1750 have rather led to an RF
of −0.15± 0.10 W m−2 (Myhre et al., 2013). A substantial
spread in the surface albedo response to historical LCC has
also been identified amongst the models participating in the
LUCID project (de Noblet-Ducoudré et al., 2012). The diver-
sity of model parameterisations was estimated to be respon-
sible for about half of it, while the remaining uncertainties
result from differences in the magnitude of the prescribed
land cover.

More recent model intercomparison efforts such as the
fifth phase of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al., 2012) offer new opportunities to as-
sess the magnitude of these model disagreements and our
understanding of the impact of historical LCC on surface
albedo and the associated RF. Nevertheless, such an inves-
tigation is complicated by the fact that the modelling groups
participating in CMIP5 have not provided data on the albedo
of specific land cover classes but only mean surface albedo
values over grid cells, which often contain various land cover
classes. Only a few modelling groups have conducted exper-
iments to isolate the historical land use forcing. In parallel
to recent model developments, studies giving insights from
satellite data on the climate effect of LCC have been pub-
lished (Alkama and Cescatti, 2016; Duveiller et al., 2018c;
Li et al., 2015). They provide high-resolution information
on the potential changes in various surface variables in re-
sponse to land cover transitions, which constitutes a very
good benchmark to evaluate how this aspect is represented in
climate models. The analyses described in this study thus rely
on both climate model runs and satellite-based observational
datasets to pursue two main objectives: (1) the validation of
a methodology to systematically evaluate the representation
of the surface albedo difference resulting from conversions
between the dominant land cover classes in climate models
(i.e. trees and crops–grasses) in standard climate model runs
(such as from CMIP), with the view to being integrated in
the ESMValTool v2.0 (Eyring et al., 2020), and (2) the as-
sessment of the radiative forcing from historical LCC using
historical CMIP5 model simulations and observations to con-
strain model biases.

This study is therefore divided into several parts. First, we
present the employed methods and data. In particular, we in-
troduce a new methodology to extract the surface albedo for
two different land cover classes (trees or crops–grasses), or
the potential surface albedo change caused by conversions
between these land cover classes, in simulations for which
climate variables are only available at the grid cell level
(Sect. 2). Second, we evaluate how well this methodology
performs by using climate model simulations that also pro-
vide sub-grid-cell albedo values for specific underlying land
cover classes as a test bed (Sect. 3). Third, we apply this ap-
proach to CMIP5 simulations to extract the surface albedo
when the underlying vegetation is either trees or crops–
grasses and the surface albedo change due to transitions be-
tween these land cover classes simulated for present-day con-
ditions, and we compare the obtained results to satellite-
derived reference data (Sect. 4). Fourth, we reconstruct the
surface albedo changes since pre-industrial times in CMIP5
models and calculate the associated RF (Sect. 5). We also
discuss the spread in the obtained model results in light of
the biases identified in Sect. 4 and apply an observational
constraint based on satellite-derived evidence to refine our
estimates of the RF from surface albedo changes induced by
historical LCC. Finally, we compare our findings to those of
previous studies and discuss their limitations and potential
for follow-up analyses (Sect. 6).
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2 Methods and data

2.1 Observational data

2.1.1 Albedo of land cover classes

In this study we evaluate the monthly surface albedo simu-
lated by climate models for two land cover classes, crops–
grasses (merged into one single land cover class) and trees,
using reference estimates obtained from satellite measure-
ments. It is important to note that in the analysed models and
in satellite products the surface albedo is influenced by both
the vegetation canopy and the soil reflectance, with the latter
contribution being especially important in regions or periods
for which the leaf area index is low. For the sake of simplic-
ity, in this study the formulation “albedo of a specific land
cover class” is used when referring to this mixed contribu-
tion of the soil and canopy to the surface albedo.

The observed surface albedo for both trees and crops–
grasses is derived using the 300 m resolution land cover in-
formation provided by GlobCover v2.3 (Arino et al., 2012),
collected between January 2005 and June 2006, in combina-
tion with the mean of the white-sky (bi-hemispherical) and
black-sky (directional–hemispherical) shortwave albedo data
at 0.05◦ resolution from GlobAlbedo (Lewis et al., 2012),
available at a monthly timescale for the 1998–2011 period.
An optimal estimation approach and a gap-filling technique
based on the NASA Moderate Resolution Imaging Spectro-
radiometer (MODIS) surface anisotropy dataset were used
to integrate data derived from the Advanced Along-Track
Scanning Radiometer (AATSR), SPOT4-VEGETATION,
SPOT5-VEGETATION2, and MERIS instruments (Lewis et
al., 2013; Muller et al., 2013). GlobAlbedo products gener-
ally showed good agreement with estimates from MODIS
(global R2 of 0.85) and were assessed to be of very good
quality overall; problems associated with snow detection
were identified but led to the most significant artefacts at very
high latitudes (> 70◦; Muller et al., 2013).

To extract the albedo from specific land cover classes at a
resolution of 2◦ (i.e. approximately equal to that of the model
simulations), the GlobCover original data are first regridded
from their original 300 m resolution to a regular 0.0025◦ grid.
We also group some classes provided in the detailed classi-
fication from GlobCover into two broad land cover classes
(trees and crops–grasses), which are comparable to those for
which the land cover fraction was reported by CMIP5 mod-
elling groups. Details on how this grouping was performed
are provided in Table S1 in the Supplement. Then, for each
0.05◦ grid cell of the GlobAlbedo dataset which is occupied
by at least 95 % of either trees or crops–grasses according to
the GlobCover product, the seasonal cycle of albedo for this
specific land cover class is approximated from the monthly
surface albedo climatology for this grid cell computed over
the full period covered by GlobAlbedo. The results are then
aggregated at 2◦ resolution; i.e. for each 2◦ grid cell the
albedo climatology of a specific land cover class is derived

by calculating area-weighted averages over the 0.05◦ resolu-
tion grid cells it contains and for which a land-cover-specific
seasonal cycle of albedo was previously identified. Although
we have not considered in our analysis the so-called “mo-
saic” classes representative of heterogeneous landscapes in
the GlobCover data, the employed 95 % threshold means that
up to 5 % of each selected 0.05◦ grid cell may contain land
cover types other than those belonging to the tree or crop–
grass classes, thus potentially introducing a small error when
retrieving their exact albedo values.

2.1.2 Albedo changes associated with land cover
transitions

The dataset of Duveiller et al. (2018a) – hereafter re-
ferred to as D18 – was used to evaluate the potential
monthly surface albedo changes arising from land cover
transitions between trees and crops–grasses as simulated
by CMIP5 models for present-day conditions. This 1◦ res-
olution observational dataset was derived by “unmixing”
the monthly surface albedo climatology over the 2008–
2012 period from collection v005 of the NASA MODIS
MCD43C3 product (Schaaf et al., 2002) using land cover
information for the year 2010 from the European Space
Agency (ESA) Climate Change Initiative (CCI) land cover
dataset (ESA Land Cover CCI Product User Guide version 2,
Tech. Rep., 2017, available at: http://maps.elie.ucl.ac.be/
CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf, last ac-
cess: 12 December 2020). The methodology is based on a
“space-for-time” analogy; i.e. it assumes that surface albedo
changes that would arise from a land cover transition from
trees to crops–grasses, for example, can be approximated
by spatial differences between albedo values of trees and
crops–grasses over neighbouring areas, assuming the two
land cover classes experience a similar background climate.
The albedo product that served as input to construct the
D18 dataset had been filtered for quality using the provided
quality flags; the underlying logic was to favour higher-
quality retrieval without excluding too many values.

We used a version of the D18 dataset that is based on a
generic vegetation classification (IGBPgen) with only four
land cover classes: trees, shrubs, crops–grasses, and savan-
nas. Imprecisions in land cover datasets are mostly confined
to misclassifications between land cover types within these
broad classes (e.g. between two types of trees) or the dif-
ficulty of properly identifying medium-sized or mixed-type
vegetation (i.e. shrub or savanna-like; see, for example, Bon-
temps et al., 2011). In contrast, these products are best at dis-
tinguishing very distinct land cover classes such as trees and
crops–grasses. Therefore, the satellite-derived albedo values
of these two broad classes (retrieved following the methodol-
ogy presented in Sect. 2.1.1) and their differences (obtained
from the D18 data) are characterised by relatively low uncer-
tainties. Cescatti et al. (2012) identified a slight overall un-
derestimation (by 0–0.03) of the MODIS albedo compared
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to in situ data from FLUXNET (Baldocchi et al., 2001) for a
dozen crop–grass sites in the northern mid-latitudes, but it is
difficult to exactly quantify the biases of satellite-based sur-
face albedo products as there is not a sufficiently extensive
network of in situ measurements to serve as a benchmark.

For the part of the analysis in which we estimate the
observation-constrained RF associated with historical LCC
in CMIP5 simulations, we used an extended version of the
dataset originally presented by D18 that has a broader spa-
tial coverage in order to increase the spatial overlap between
model and observational results. The product from D18 was
gap-filled by training a random forest classifier to reproduce
the data according to similarities in local climate and then
using the climate information to predict the surface albedo
changes due to specific land cover transitions wherein gaps
existed in the data, following the methodological steps de-
scribed by Duveiller et al. (2020). Some precautions were
taken to ensure that these predicted outputs remain realis-
tic. First, all areas containing neither of the two land cover
classes involved in a given transition were removed. Second,
the random forest is only used for interpolation, i.e. only us-
ing combinations of climate indicator values that are actu-
ally observed for the considered transition. Finally, a clear
systematic bias of the classifier was corrected by applying a
simple linear regression.

2.2 Climate model simulations from CMIP5

In this study, we reconstruct two different quantities in
CMIP5 models: (1) the simulated present-day albedo of trees
and crops–grasses, to evaluate the surface albedo change
arising from a potential transition between these two classes
against observational data, and (2) the historical surface
albedo changes associated with transitions between trees and
crops–grasses, followed by an assessment of their conse-
quences in terms of radiative forcing.

The simulated monthly surface albedo climatology for
trees and crops–grasses under present-day conditions is
reconstructed from historical “all-forcing” simulations of
17 CMIP5 models (Taylor et al., 2012) for which the re-
quired information on land cover, downwelling shortwave ra-
diation, upwelling shortwave radiation, and snow cover frac-
tion is available (see Sect. 2.3.1). A list of these models and
those included in further parts of the analysis is available in
Table S2. Land fractions covered by crops, grasses, and pas-
tures were provided separately by CMIP5 modelling groups
but were considered one land cover class (crops–grasses) in
this study to ensure consistency with the observational data
from D18. In the specific case of the HadGEM2-ES model,
the land cover fraction covered with “anthropogenic grass”
(representative of agricultural land as this model does not
simulate crops) was not available either via the grassFrac or
cropFrac variables but was reconstituted from another pub-
licly available variable (landCoverFrac). Present-day surface
albedo values and snow cover fractions are extracted from the

last 5-year period common to all models (i.e. 2000–2004),
i.e. spanning a period similar in length and as close as pos-
sible to that covered by the albedo dataset used in D18. For
four models (GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M,
and HadGEM2-ES), the snow cover fraction outputs were
not available but have been calculated from the snow mass
values following the technique suggested and validated by
Qu and Hall (2007): the snow cover fraction is assumed to
be 1 at locations where the snow mass equals 60 kg m−2 and
to evolve as a linear function of snow mass where it is be-
tween 0 and 60 kg m−2. If several ensemble members differ-
ing only in terms of their initial conditions were available for
one specific model, their ensemble mean was considered in
the analysis.

We also reconstructed the surface albedo changes asso-
ciated with historical transitions between trees and crops–
grasses between pre-industrial conditions (equivalent to
those of 1860 in CMIP5 and extracted from the first 200 years
of the “piControl” experiments) and the 1981–2000 time pe-
riod of historical all-forcing experiments. The reconstruc-
tion algorithm is applied to all CMIP5 models for which the
required information on land cover, downwelling radiation,
and upwelling shortwave radiation is available for at least
two ensemble members of the analysed experiments (see
Sect. 2.3.2 for a description of the reconstruction methodol-
ogy). Since GFDL-ESM2G and GFDL-ESM2M are two very
similar versions of the same model with only one ensemble
member each, we have in this case treated them as ensemble
members of the same model (referred to as GFDL-ESM2).
In order to be able to compute the RF constrained by obser-
vations, the reconstructed historical surface albedo changes
associated with transitions between trees and crops–grasses
were regridded to 1◦×1◦ resolution. We have focused on the
transitions between trees and crops–grasses for consistency
with the observational data of D18 but also assessed the sen-
sitivity of our results when considering the historical impact
of overall changes in tree cover (e.g. also including replace-
ment of trees by shrubs or bare soil). Additionally, factorial
experiments isolating the climate forcing of historical LCC
were available for four models: CanESM2, CCSM4, GFDL-
ESM2, and IPSL-CM5A-LR. These experiments constitute
benchmarks to evaluate the reconstructed historical surface
albedo changes; the validity of the reconstruction is thus dis-
cussed further below and in the Supplement.

2.3 Principle of the reconstruction method

2.3.1 Reconstruction of the simulated present-day
albedo of specific land cover classes

The present-day albedo values from trees and crops–grasses
(αtr and αcg) in CMIP5 historical simulations are recon-
structed using an “unmixing” method similar to those pre-
viously applied to satellite-derived observational data to ex-
tract the land surface characteristics of specific land cover
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types, including albedo (Chen and Dirmeyer, 2019; Li et al.,
2015), and notably to obtain the data from D18 used as a ref-
erence for the evaluation of CMIP5 models in this study. We
include information on the land fraction covered by shrubs
in the methodology but do not reconstruct the albedo of this
land cover class (αsh) because of its limited spatial occur-
rence.

Concretely, for every land grid cell i we considered spatial
windows of 25 grid cells (5 in both the latitudinal and lon-
gitudinal dimensions) centred over i, hereafter referred to as
“big boxes” (see Fig. 1). Within each big box, for each month
we thus have a sample of up to 25 values for surface albedo
(α) and the land cover fractions occupied by each of the three
considered land cover classes (lcftr, lcfsh, lcfcg) over the same
simulation period. Multi-linear regressions of α against lcftr,
lcfsh, and lcfcg are then performed in order to obtain αtr, αsh,
and αcg.

Variations in snow cover lead to large variations in surface
albedo; therefore, we focus on the identification of the albedo
of trees and crops–grasses over grid cells with a snow cover
fraction less than 0.1 (considered snow-free) or greater than
0.9 (considered snow-covered). For both albedo and snow
cover fraction, we consider monthly climatological values
for the 2000–2004 analysis period. In each big box and for a
given month, if the grid cell at the centre i is snow-free the
regression is conducted by considering only snow-free grid
cells following

αsf
= βsf

0 + lcf tr×β
sf
1 + lcf sh×β

sf
2 + lcf cg×β

sf
3 , (1)

where lcf tr, lcf sh, and lcf cg are vectors containing up to
25 values, the β coefficients are specific to each big box and
each month, and the superscript “sf” stands for snow-free.
Similarly, if i is snow-covered the regression is conducted by
considering only snow-covered grid cells:

αsc
= βsc

0 + lcf tr×β
sc
1 + lcf sh×β

sc
2 + lcf cg×β

sc
3 , (2)

where the superscript “sc” stands for snow-covered.
αtr and αcg over the central grid cell i of the big box

are eventually reconstructed by extrapolating the partial lin-
ear regression lines for cases in which lcf tr, lcf sh, and
lcf cg are equal to 100 % in the case that i is snow-free:

αsf
tr (i)= βsf

0 +β
sf
1 × 100%, (3)

αsf
cg(i)= βsf

0 +β
sf
3 × 100%; (4)

or, if i is snow-covered,

αsc
tr (i)= βsc

0 +β
sc
1 × 100%, (5)

αsc
cg(i)= βsc

0 +β
sc
3 × 100%. (6)

This reconstruction method can only perform well over big
boxes with sufficient land cover information. Therefore, each
predictor (lcf tr, lcf sh, lcf cg) is only included in the regres-
sion (i.e. its corresponding term is included in Eq. 1 or 2) if its

value is greater than 0 in at least two snow-free (if i is snow-
free) or snow-covered grid cells (if i is snow-covered). More-
over, the regressions are only conducted in the big boxes
that have at least 15 grid cells (either snow-free or snow-
covered) in which the sum of all the included predictors ex-
ceeds 90 %. After this reconstruction a few remaining albedo
values which are physically impossible (i.e. either smaller
than 0 or larger than 1) are filtered out. In a last step, grid
cells for which the standard error of the regression is higher
than 0.01, or for which the land fraction covered by trees and
crops–grasses is lower than 20 %, are discarded.

The potential surface albedo change associated with a tran-
sition between trees and crops–grasses δαtr→cg is eventually
calculated by looking at the difference between the recon-
structed albedo of trees and crops–grasses for each grid cell
in which both values were derived. As the fractions covered
by trees and crops–grasses covary, the error associated with
this difference strongly decreases compared to those of the
albedo values of single land cover classes. The applied filter-
ing criteria thus differ in this case: we only discard grid cells
for which the land fractions covered by trees or by crops–
grasses are lower than 10 % and for which the standard error
of the regression is higher than 0.001.

A diagnostic enabling the automated reconstruction of the
albedo difference between trees and crops–grasses in CMIP
simulations following the methodology described in this sec-
tion has been implemented in the ESMValTool v2.0 (more
details available in Eyring et al., 2020).

2.3.2 Reconstruction of the simulated surface albedo
changes due to historical deforestation

A similar approach based on local regression is used to re-
construct the simulated historical surface albedo changes as-
sociated with transitions between trees and crops–grasses
that occurred between pre-industrial times and the 1981–
2000 period (1αtr→cg). It has previously been used to de-
rive local changes in temperature due historical LCC in
CMIP5 simulations (Lejeune et al., 2018). In this case, the
spatial predictors used to explain historical surface albedo
changes (1α) are the historical transition rate between trees
and crops–grasses (lcctr→cg), latitude (lat), longitude (long),
and elevation (elev) such that, for each month,

1α = γ0+ lcctr→cg× γ1+ lat × γ2+ long× γ3+ elev× γ4, (7)

where lcctr→cg, lat , long, and elev are vectors containing
up to 25 values, and the γ coefficients are specific to each
big box and each month. The regressions are conducted in
big boxes containing at least 15 land grid cells to improve
the quality of the reconstruction (Fig. 1). The surface albedo
change associated with historical, local transitions between
trees and crops–grasses over the central grid cell i of a big
box is then obtained by scaling the results of this local regres-
sion with the historical conversion rate from trees to crops–

https://doi.org/10.5194/esd-11-1209-2020 Earth Syst. Dynam., 11, 1209–1232, 2020
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Figure 1. Description of the two employed reconstruction methodologies; snc stands for snow cover fraction, α for albedo, lcf for land cover
fraction, and lcc for land cover conversion. The suffixes tr, sh, and cg stand for trees, shrubs, and crops–grasses, respectively, with long for
longitude, lat for latitude, and elev for elevation.

grasses experienced over i (compared with pre-industrial
conditions):

1αtr→cg(i)= lcctr→cg(i)× γ1. (8)

An uncertainty range for 1αtr→cg is also computed by ap-
plying the regression to each ensemble simulation of a given
model. Additionally, for each ensemble simulation and each
big box, a jackknife resampling is conducted: as many times
as there are land grid cells with non-missing values in the big
box, an additional regression is computed after leaving out
a different grid cell each time (Efron, 1982). The obtained
estimates of 1αtr→cg thus amount to between 16 and 26 –
depending on the number of land grid cells in the big box
– multiplied by the number of ensemble members. We then
retain the median of these estimates, which increases the ro-

bustness of our results by eliminating strong dependencies
on single model grid cells.

2.4 Computation of the radiative forcing of historical
conversions between trees and crops–grasses

The radiative forcing (RF), expressed here in watts per square
metre (W m−2), is defined as the net change in the energy
balance of the Earth system due to some imposed pertur-
bation (Myhre et al., 2013). In our case, this perturbation
is a modification of surface albedo arising from land cover
changes, in particular transitions between trees and crops–
grasses, which affects the amount of reflected shortwave ra-
diation leaving the Earth system at the top of the atmosphere.
By how much this amount changes depends on a so-called ra-
diative kernel Kαs (Soden et al., 2008), defined in this case
as the differential response in outgoing shortwave radiation

Earth Syst. Dynam., 11, 1209–1232, 2020 https://doi.org/10.5194/esd-11-1209-2020
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at the top of the atmosphere to an incremental change in sur-
face albedo δαs (Bright and O’halloran, 2019):

RF=−Kαs × δαs. (9)

We employ the monthly CERES-based albedo change ker-
nel (CACK) v1.0. Based on a novel, simplified parameterisa-
tion of shortwave radiative transfer (Bright and O’Halloran,
2019), it is driven with a 16-year (2001–2016) climatology
of downwelling shortwave radiation values at the surface
and the top of the atmosphere obtained from the Clouds
and the Earth’s Radiant Energy System (CERES) Energy
Balance and Filled (EBAF) 1◦ resolution products (CERES
Science Team, 2018). CACK (hereafter also referred to
as KCACK

αs
) is more easily understandable and easier to ap-

ply than kernels derived from climate models, while be-
ing able to mimic them more faithfully than five previously
employed analytical, semi-empirical, and empirical kernels
(Bright and O’Halloran, 2019). The reconstructed surface
albedo changes caused by historical conversions between
trees and crops–grasses1αtr↔cg are also monthly; therefore,
the associated annual mean RFtr↔cg can be written as fol-
lows:

RFtr↔cg =−
1

12

12∑
m=1

KCACK
αs,m ×1αtr↔cg,m, (10)

where the subscript “m” denotes monthly values.
We derive two types of RF estimates in the analysed

CMIP5 models. For the first one (“unconstrained”), which
is purely model-based, we used the 1αtr→cg from histor-
ical conversion rates between trees and crops–grasses that
were derived with the reconstruction method described in
Sect. 2.3.2. The second one is constrained by observations
and was computed by combining the historical conversion
rates implemented in the models lcctr→cg with the potential
surface albedo change associated with a transition between
trees and crops–grasses from D18 (δαD18

tr→cg), such as

1αconstrained
tr↔cg,m = lcctr→cg× δα

D18
tr→cg,m (11)

and

RFconstrained
tr↔cg =−

1
12
× lcctr→cg×

12∑
m=1

KCACK
αs,m

× δαD18
tr→cg,m. (12)

2.5 Additional simulations to evaluate the reconstruction
method

We employ two additional offline simulations conducted
with the Community Land Model version 4.5 (CLM4.5; Ole-
son et al., 2013) to evaluate the ability of the reconstruc-
tion method presented in Sect. 2.3.1 to extract the simulated
albedo of trees and crops–grasses. The simulations were

conducted at 1.9◦× 2.5◦ resolution, forced by the CRUN-
CEP v4 atmospheric forcing dataset (Harris et al., 2014) for
the years 1997 to 2010, and keeping the 2002–2010 period
for the analysis. The default land cover map of CLM4.5 was
kept constant at the state of 2000 throughout the simulation
period (Lawrence and Chase, 2007). Grid cells in CLM4.5
are divided into tiles of different land units (glacier, wetland,
vegetated, lake, and urban); the vegetated land unit comprises
tiles of different plant functional types (PFTs) including sev-
eral types of trees, shrubs, grasses, and crops, which all re-
ceive the same atmospheric forcing. Surface albedo values
were output for each tile in these simulations, enabling us
to extract a sub-grid albedo value for each land cover class
(trees or crops–grasses, similarly as in Malyshev et al., 2015;
Meier et al., 2018). For each grid cell and each month, the
albedo values for these two land cover classes are computed
as the area-weighted mean albedo across each PFT pertain-
ing to the respective class over the analysis period. This ref-
erence value, later referred to as a “sub-grid” estimate, can
then be compared to the albedo values obtained by apply-
ing the reconstruction method on these CLM4.5 simulations.
The results of this evaluation are described in Sect. 3.

3 Evaluation of the methodology to reconstruct the
simulated albedo of individual land cover classes

3.1 Reconstruction of the albedo of trees and
crops–grasses

The reconstructed July albedo estimates for trees and crops–
grasses are close to the sub-grid reference values in the
CLM4.5 simulations for the grid cells in which the recon-
struction method yields results (Fig. 2). The main patterns
of the spatial variability of the albedo of both land cover
classes of interest, such as their latitudinal variations, are
captured by the reconstruction method. Globally the recon-
structed and sub-grid albedo estimates are highly correlated
(R2
= 0.91 for trees and 0.75 for crops–grasses). Differences

between them indicate the “error” of the reconstruction, thus
allowing for the computation of a global root mean square
error (RMSE) that considers all grid cells for which a recon-
structed estimate could be derived. For the month of July,
the global RMSE equals 0.0085 in the case of trees and
0.0097 for crops–grasses. Locally, the error is higher over
some areas with stronger albedo gradients such as western
Europe, the southeastern United States in the case of trees,
and western Russia in the case of crops–grasses. Neverthe-
less, the absolute error rarely exceeds ∼ 0.03 or ∼ 20 % of
the sub-grid values over these regions (Fig. S1 in the Supple-
ment).

In January, the reconstructed albedo estimates still closely
resemble the reference values from the sub-grid model out-
puts (Fig. 3). However, the presence of snow increases both
the mean value and the spatial variability of albedo, which re-
sults in higher RMSEs over grid cells located north of 40◦ N
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Figure 2. Sub-grid (left) and reconstructed (middle) estimates of the present-day (2002–2010) albedo of trees (upper row) and crops–grasses
(lower row) in the CLM4.5 simulations for the month of July. The scatter plots (right) indicate the relationship between reconstructed (y
axis) and sub-grid estimates (x axis), with each dot indicating the results of a grid cell for which both methods could be applied. Note that
albedo values have been multiplied by 100 to facilitate readability.

Figure 3. Same as Fig. 2, but for the month of January. The scatter plots in this case only display the results for the grid cells north of 40◦

(i.e. over areas considered snow-covered). Note that the scale is different.

(0.037 for trees and 0.0295 for crops–grasses as indicated in
the right panel), leading to global RMSEs of 0.019 and 0.013.
As a result, within one big box used for the reconstruction,
the dispersion between the surface albedo values from indi-
vidual grid cells is higher. This renders the extraction of the
correct albedo values of specific land cover classes with the
regression-based reconstruction method more difficult. The
spatial coverage of the reconstruction method also dimin-
ishes during months with a higher snow cover because our
methodology excludes grid cells which are neither consid-
ered snow-free nor snow-covered from the reconstruction, as
is the case in western Europe and the northeastern United
States in January. The absolute error of the reconstruction

method reaches a maximum of ∼ 0.1 or ∼ 30 %–40 % over
localised parts of eastern Siberia during this month (Fig. S2).

3.2 Reconstruction of the surface albedo change arising
from conversions between trees and crops–grasses

Overall, the reconstructed estimates of the July surface
albedo change associated with a conversion between trees
and crops–grasses also show a good correspondence with
the sub-grid reference values (Fig. 4). The global RMSE in-
creases up to 0.0189 in this case because it is a combination
of the errors from the reconstruction of the albedo of both
trees and crops–grasses. The magnitude of this error needs to
be assessed in relation to the local albedo difference between
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Figure 4. Sub-grid (left) and reconstructed (middle) estimates of the present-day (2002–2010) potential albedo change associated with a
transition from trees to crops–grasses in the CLM4.5 simulations for the month of July. The scatter plots (right) indicate the relationship
between reconstructed (y axis) and sub-grid estimates (x axis), with each dot indicating the results of a grid cell for which both methods
could be applied. Note that absolute differences have been multiplied by 100 to facilitate reading.

Figure 5. Same as Fig. 4, but for the month of January. The scatter plots in this case only display the results for the grid cells north of 40◦

(i.e. over areas considered snow-covered). Note that the scale is different.

trees and crops–grasses. Previous studies using satellite ob-
servations have shown that this difference roughly ranges be-
tween 0.03 and 0.07 over mid-latitudes during summer (Du-
veiller et al., 2018c; Li et al., 2015). This means that in most
regions the local difference between the reconstructed and
sub-grid estimates remains less than the albedo difference be-
tween trees and crops–grasses but can attain similar magni-
tudes in some regions such as western Europe and the north-
eastern United States (Fig. S3).

For January, the reconstructed and sub-grid estimates of
the deforestation-induced surface albedo change remain sim-
ilar to each other (Fig. 5), with a global RMSE that slightly
increases to 0.025 and reaches 0.0505 on average north of
40◦ N. The relative error between the reconstructed and sub-
grid albedo values is similar as in July over localised tropi-
cal and subtropical areas where it can reach 80 %, whereas
it mostly remains limited to ±10 % over snow-covered re-
gions (Fig. S4). This is because the absolute error remains of
similar magnitude as in July in snow-free regions, while the
surface albedo change induced by deforestation increases in
the presence of snow due to the snow-masking effect of trees.

Overall, the reconstruction method yields similar esti-
mates of the absolute albedo of trees and crops–grasses
(Sect. 3.1), as well as a similar albedo difference between
these two land cover classes as the sub-grid reference val-
ues in the analysed CLM4.5 simulations (this section). It is
nevertheless associated with an error that varies with the sea-
son and more particularly with the presence of snow. These

uncertainties introduced through the reconstruction method
need to be kept in mind in the upcoming section, wherein
the reconstruction method is applied to CMIP5 simulations
and the resulting albedo estimates of trees and crops–grasses
as well as the difference between the two are compared to
satellite-derived reference values.

4 Present-day potential surface albedo changes
associated with a transition from trees to
crops–grasses in CMIP5 models and observations

4.1 Evaluation of the present-day albedo of trees and
crops–grasses in CMIP5 models

4.1.1 Albedo of trees

The reconstructed albedo of trees varies considerably across
the analysed CMIP5 models for the month of July, espe-
cially over the middle to high latitudes (Fig. 6). Estimates
derived from CanESM2, HadGEM2-ES, and the models
from the MPI suite (MPI-ESM-LR, MPI-ESM-MR, MPI-
ESM-P) show the highest similarities with the observed ones
over regions where results from our reconstructions and
observation-based data can be compared. The climate mod-
els which use the CLM as a land surface scheme (CCSM4,
CESM1-CAM5, CESM1-FASTCHEM, CESM1-WACCM,
NorESM1-M, NorESM1-ME) and MIROC5 all underesti-
mate the albedo of trees over middle to high latitudes. They
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Figure 6. Present-day July albedo of trees retrieved from the combination of observational data from GlobAlbedo (over the 1998–2011 pe-
riod) and GlobCover (2005–2006, top left corner), as well as in the analysed CMIP5 models (the climatology over the 2000–2004 period
was considered). Note that the albedo values have been multiplied by 100 to facilitate readability.

indeed simulate values lower than 0.1, whereas the estimates
derived from observational data always remain above 0.1 and
mostly range between 0.12 and 0.16 over these regions. On
the other hand, the models from the GFDL suite (GFDL-
CM3, GFDL-ESM2G, GFDL-ESM2M) exhibit higher tree
albedo values than the in the reference data, especially over
tropical regions where the overestimation can be as high
as ∼ 0.1. Lastly, our results indicate strong spatial variations
in the case of MIROC-ESM and MIROC-ESM-CHEM, with
negative biases over the high latitudes and Southeast Asia.
The magnitude of these differences between reconstructed
and reference estimates is significantly higher than the re-
construction error, which has been assessed from the analy-

sis of the CLM4.5 simulations (global RMSE of 0.0085; see
Sect. 3.1).

For January, surface albedo increases over the regions
where snow is present are reflected in the reference data
(Fig. 7). A latitudinal gradient can especially be noted, as
the values derived from GlobCover and GlobAlbedo typi-
cally barely exceed 0.15 in western Europe but are higher
than 0.3 in Scandinavia and even reach ∼ 0.5 in northern
Siberia. Our results show that CanESM2 and the climate
models using the CLM also simulate higher tree albedo
values over snow-covered regions, with values that remain
within the range indicated by observations for this time of
the year. However, the models from the GFDL suite, espe-
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Figure 7. Same as Fig. 6, but for the month of January. Note that the scale is different.

cially GFDL-CM3, present an overestimation of these quan-
tities, a behaviour that is even more pronounced in MIROC5,
which exhibits values exceeding 0.5 north of ∼ 50◦ N and
even reaching ∼ 0.7 in areas located close to the Arctic
Ocean. Such biases have already been reported for GFDL-
ESM2M and MIROC5 and are linked to unrealistic parame-
terisations of snow canopy and vegetation masking (Thack-
eray et al., 2015). They are significantly higher than the typ-
ical error of the reconstruction method identified for this
month north of 40◦ N (∼ 0.037). Unfortunately, in the case
of HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM, and
the models from the MPI suite (MPI-ESM-LR, MPI-ESM-
MR, and MPI-ESM-P) the spatial coverage of the reconstruc-
tion method is too low to be able to draw meaningful com-
parisons with observations over snow-covered areas.

4.1.2 Albedo of crops–grasses

There are also important variations among the simulated
albedo of crops and grasses in the CMIP5 models we have
analysed, pointing to significant model biases in comparison
to observation-derived reference estimates. Overall, the mod-
els that employ the CLM tend to underestimate this quan-
tity over large parts of the tropics and the mid-latitudes in
the Northern Hemisphere in July, with reconstructed albedo
values of ∼ 0.13–0.14, whereas observations rather indicate
values of at least 0.15 and even approaching 0.25 over the Sa-
hel and central Asia (Fig. 8). This discrepancy appears less
pronounced over the tropical parts of Africa and America lo-
cated in the Southern Hemisphere, despite the lower avail-
ability of observational estimates over these regions. Our re-
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Figure 8. Present-day July albedo of crops–grasses according to the combined observational data from GlobAlbedo (over the 1998–2011 pe-
riod) and GlobCover (2005–2006, top left corner), as well as in the analysed CMIP5 models (the climatology over the 2000–2004 period
was reconstructed). Note that the albedo values have been multiplied by 100 to facilitate readability.

sults also reveal that MIROC5 more systematically under-
estimates the albedo of crops–grasses, which remains less
than 0.15 worldwide in this model. In contrast, the mod-
els from the MPI suite simulate albedo values that are con-
sistently greater than those of the observations, exceeding
0.2 over large regions of the world. These overestimations
are often higher in the GFDL models, especially over cen-
tral Asia, the southern part of South America, and the south-
ern tip of Africa, although these three models present an
opposite behaviour over equatorial regions of America and
Africa with remarkably low albedo values. Importantly, these
numerous reported differences between the reconstructed
model estimates and the reference values from observations

are significantly higher than the error of the reconstruction
method derived from the analysis of the CLM4.5 simulations
(∼ 0.01 in the case of crops–grasses for the month of July;
see Sect. 3.1). The albedo values simulated by HadGEM2-
ES, MIROC-ESM, and MIROC-ESM-CHEM appear closer
to the observational estimates over the regions where those
are available. Lastly, the spatial coverage of the reconstruc-
tion is low in the case of CanESM2, which prevents us from
drawing robust conclusions for this model.

Results for the month of January indicate that the mod-
els that include the CLM, MIROC5, and those from the MPI
and GFDL suites all represent the increase in the albedo of
crops–grasses over snow-covered areas, which is indicated
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Figure 9. Same as Fig. 8, but for the month of January. Note that the scale is different.

by observational estimates (Fig. 9). The limited spatial cov-
erage of the latter over the high latitudes, however, makes it
difficult to evaluate whether the magnitude of this increase is
correctly represented. Over the tropical regions, the models
including the CLM simulate an opposite pattern compared to
that shown for the month of July, i.e. an underestimation of
the albedo of crops–grasses in the Southern Hemisphere but
more realistic estimates in the Northern Hemisphere. This
suggests that these models simulate variations of the annual
cycle that are too high for this variable over tropical regions.

4.2 Evaluation of the surface albedo changes induced
by a transition from trees to crops–grasses in
CMIP5 models

The observational dataset from D18 indicates that the con-
version of trees into crops–grasses leads to a higher local
albedo over each region of the world it covers, with some
spatial variations in the magnitude of this increase. In July,
this increase is lowest (< 0.01) over eastern Asia and south-
western Siberia and highest (∼ 0.1) over the western part of
North America (Fig. 10). Our reconstructions indicate that
most of the analysed CMIP5 models simulate the albedo in-
crease induced by the replacement of trees by crops–grasses
over most regions of the world. However, there are biases
that are significantly higher than the typical error of the re-
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Figure 10. Potential present-day July albedo change associated with a transition from trees to crops–grasses according to the observational
dataset of Duveiller et al. (2018a, derived from satellite data collected over the 2008–2012 period; top left corner) and in the analysed CMIP5
models (the climatology over the 2000–2004 period was reconstructed). Note that the absolute differences have been multiplied by 100 to
facilitate readability.

construction method derived from its evaluation on CLM4.5
simulations (∼ 0.02 in July; see Sect. 3.2). At this time of
the year, the CanESM2, HadGEM2-ES, and MIROC5 mod-
els show the closest resemblance to the observational ref-
erence data. Nevertheless, they overestimate the albedo in-
crease due to the conversion of trees into crops–grasses over
some regions such as eastern Asia, and the reconstructed re-
sults are available over limited areas for these models. As a
result of their strong overestimation of the albedo of crops–
grasses (see Sect. 4.1), the models from the MPI suite ex-
hibit significant positive biases in the deforestation-induced
albedo increases across the globe in July, with values reach-

ing ∼ 0.1 over large areas. Positive biases of a lower mag-
nitude, although still significant, are also found over spe-
cific regions in the models using the CLM as a land sur-
face scheme, consistently with the evaluation of the sub-grid
albedo difference in CLM4.5 by Meier et al. (2018). Over
the mid-latitudes, this is due to the underestimation in the
albedo of trees, whereas it can be related to the excessively
high albedo of crops–grasses over the tropical regions of the
Southern Hemisphere for this time of the year. Lastly, the
MIROC-ESM, MIROC-ESM-CHEM, and GFDL models ex-
hibit a strong spatial variability in the reconstructed signals.
In contrast with the observational data, which consistently
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Figure 11. Same as Fig. 10, but for January. Note that the scale is different.

indicate an increase in surface albedo after conversions of
trees into crops–grasses, our estimates suggest that the for-
mer two simulate the opposite behaviour over extensive ar-
eas of central Asia but also the western parts of Canada and
the United States and south of 25◦ S in Africa, America, and
Western Australia. As for the GFDL models, similarly to the
models from the MPI suite they exhibit an overestimation of
the albedo of crops–grasses in July (Sect. 4.1.2) but also an
overestimation of the albedo of trees in many regions, and
both tend to compensate in some regions. This leads to the
described spatial variability in the biases associated with the
deforestation-induced albedo increase, which can even be-
come negative over Europe, although their limited magnitude
suggests interpreting them with caution in light of the error

of the reconstruction method. The negative biases over the
equatorial band can, however, be directly linked to the very
low albedo of crops–grasses reported in these regions and for
these models (Sect. 4.2.2).

Compared to July, the observations of D18 for the month
of January indicate a higher albedo increase following con-
version of trees into crops–grasses over the middle to high
latitudes where snow is present, the magnitude of which
is overestimated by ∼ 0.05–0.1 by the CMIP5 models in-
cluding the CLM (Fig. 11). This is slightly higher than the
typical error of the reconstruction method (∼ 0.05 north of
40◦ N) and in line with the findings of Meier et al. (2018).
These models also consistently simulate a localised, likely
non-significant albedo decrease following the replacement of
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Figure 12. Radiative forcing from historical conversions between trees and crops–grasses (from the pre-industrial to the 1981–2000 period)
in the analysed CMIP5 models (in W m−2), obtained by applying the reconstruction method (see the description of the methodology in
Sect. 2.4). The numbers in the bottom left corner of each map indicate the global mean radiative forcing. For the computation of the model
mean, if several CMIP5 models contain the same land surface model they were attributed a lower weight so that the sum of their weights
equals 1.

trees by crops–grasses over eastern Europe, a feature that
is not present in the observations. Strikingly, our results
suggest that MIROC-ESM and MIROC-ESM-CHEM simu-
late strong albedo decreases (below −0.3) over large snow-
covered regions at this time of the year, a behaviour that is in
strong contradiction to what observational data indicate. In
line with the overestimation of the albedo of trees over high
latitudes represented by MIROC5, this model also simulates
albedo decreases as a response to tree replacement by crops–
grasses over parts of Europe.

5 Implications for the radiative forcing from
historical deforestation

Our reconstructions of the RF from transitions between trees
and crops–grasses since pre-industrial times indicate a large
spread within the CMIP5 models which were considered in
this analysis (Fig. 12), with estimates of the global mean RF
ranging between 0 and −0.17 W m−2. This dispersion is due
to differences in two factors across the models: their lo-
cal surface albedo responses to a transition between trees
and crops–grasses and the historical conversion rates be-
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Figure 13. Same as Fig. 12, but for the observation-constrained radiative forcing from historical conversions between trees and crops–
grasses.

tween these two land cover classes that the models simu-
late or prescribe (depending on whether they used a dynamic
vegetation module or not). In Eq. (8), the former factor is
represented by γ1 and the latter by lcctr→cg. Observation-
constrained estimates of the RF from the historical con-
version rates in CMIP5 models were obtained by replacing
the reconstructed values of γ1 by those from D18 (Fig. 13;
see also Sects. 2.3.2 and 2.4 for more information on the
methodology). The differences between the unconstrained
and constrained RF values therefore reflect the model bi-
ases in the local surface albedo response to a present-day
conversion from trees to crops–grasses, which have been de-
scribed in Sect. 4.2 for a subset of the models considered here
for the months of July and January. Hence, the constrained

global RF estimates from the models using the CLM as
a land surface scheme (CCSM4, CESM1-CAM5, CESM1-
FASTCHEM, NorESM1-M) and those from the MPI suite
(MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P) are less nega-
tive than the unconstrained estimates by 0.01–0.02 and 0.04–
0.07 W m−2, respectively, reflecting the fact that these mod-
els were found to overestimate the surface albedo increase
via this land cover transition. On the other hand, the low sur-
face albedo response exhibited by MIROC5 in snow-covered
regions can be related to the slightly more negative RF (by
0.01 W m−2) obtained for this model after constraining it
with the observational data from D18. Similarly, the mix of
surface albedo decreases and increases following a present-
day transition from trees to crops–grasses that have been
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identified for MIROC-ESM in both January and July can
also explain the fact that the global reconstructed RF equals
zero for this model, whereas it reaches −0.23 W m−2 after
applying the same observational constraint. As for GFDL-
CM3 and GFDL-ESM2, the unconstrained global RF val-
ues become more negative by 0.05–0.06 W m−2 once con-
strained with the observations from D18, reflecting the lo-
cally low or negative surface albedo sensitivity to conver-
sions of trees into crops–grasses described in Sect. 4.2 but
also suggesting other important biases at very high lati-
tudes, where the reconstructed model estimates could not be
derived. The constrained global RF is more negative (less
negative) than the unconstrained estimate by 0.03 W m−2

(0.02 W m−2) in the case of CanESM2 (HadGEM2-ES). We
have previously identified a close resemblance to observa-
tions but limited spatial coverage of the reconstructed results
for these two models; however, this additional RF analysis
suggests that they underestimate (in the case of CanESM2)
or slightly overestimate (in the case of HadGEM2-ES)
the deforestation-induced surface albedo change over areas
where this response could not be reconstructed. Lastly, the
constrained and unconstrained estimates of the IPSL-CM5A-
LR and IPSL-CM5A-MR models are very similar, suggest-
ing that the surface albedo response to a conversion between
trees and crops–grasses simulated by these models is close to
the observed values.

Although it solely reflects the model spread in the
historical conversion rates between trees and crops–
grasses (lcctr→cg), the dispersion between the constrained es-
timates of the global RF is higher than between the uncon-
strained ones (Fig. 14). This is due to the MIROC-ESM in
particular, for which the lcctr→cg value constitutes an out-
lier among the whole set of models but which at the same
time exhibits significant biases in its surface albedo response
to these LCCs. Thus, the unconstrained RF equals zero for
this model, which is in line with a globally averaged sur-
face albedo response to transitions between trees and crops–
grasses that is also equal to zero, as described above in this
section. In contrast, MIROC-ESM also exhibits the strongest
constrained estimate (with −0.23 W m−2) because of the
strong historical conversion rates it simulates, which exceeds
50 % over large areas of Australia, North America, southeast-
ern Brazil, central Asia, and southern Africa (Fig. S5).

The extremely high historical conversion rates from trees
to crops–grasses in MIROC-ESM cast doubt on the global
RF obtained for this model. In Fig. 14 we therefore also show
the model spread after omission of the results of this model,
which is equal to 0.16 W m−2 for the unconstrained estimates
and only 0.08 W m−2 for the constrained ones. Constraining
based on the D18 data also leads to a slightly more negative
model mean value (−0.09 W m−2 instead of−0.07; note that
the models including the same land surface scheme and land
cover maps are considered to be just one model for the com-
putation of the mean).

Figure 14. Spread in the unconstrained (left bar) and observation-
constrained (middle bar) estimates of the global radiative forcing
from historical conversions between trees and crops–grasses (from
the pre-industrial to the 1981–2000 periods) for the CMIP5 models
shown (Figs. 11 and 12; W m−2) and the IPCC AR5 estimate of
the global radiative forcing from historical land use changes (mean
estimate and spread as in Myhre et al., 2013). The dots on the left
and middle bars show the model mean results for the unconstrained
and observation-constrained estimates, respectively, and the aster-
isks mark the results for the MIROC-ESM, while the lengths of the
bars indicate the spread between the remaining values (i.e. exclud-
ing MIROC-ESM).

For most CMIP5 models, our reconstructions indicate that
the historical impact of conversions between trees and crops–
grasses on surface albedo is very similar to that arising from
all changes in tree cover (i.e. also including, for example,
the replacement of trees by shrubs and bare soil or vice
versa; see Figs. S6–S20). Moreover, we also find a simi-
lar effect for surface albedo variations from all LCCs (i.e.
also including transitions between shrubs, crops–grasses, and
bare soil) by comparing experiments with and without the
land cover forcing, available for four of the analysed models
(CanESM2, CCSM4, GFDL-ESM2, and IPSL-CM5A-LR;
see Figs. S6, S7, S11, and S13). Since it solely considers the
transition between trees and crops–grasses, our methodology
likely also slightly overestimates the RF for MPI-ESM-LR,
MPI-ESM-MR, and MPI-ESM-P (Figs. S17–S19) because
these three models represent an expansion of both trees and
crops–grasses over high latitudes. Despite these limitations,
our analysis shows that the reconstructed RF from historical
transitions between trees and crops–grasses is overall a good
approximation of the RF from all LCCs for most of the anal-
ysed CMIP5 models (see also Fig. S21).
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6 Discussion and conclusions

The conclusions that can be drawn from the presented anal-
ysis are manifold. First, we introduced a methodology to
derive the albedo of trees and crops–grasses from Earth
system model (ESM) simulations that only provide mean
surface albedo values over grid cells containing a mix of
land cover classes. This “reconstruction” method employs
multi-linear regressions to disentangle local information on
land cover and surface albedo within moving windows (“big
boxes”) encompassing several grid cells. It assumes that spa-
tial albedo variations between neighbouring trees and crops–
grasses within a big box are good proxies for the potential
surface albedo change arising from a transition between these
two land cover classes. We then demonstrated that in the
Community Land Model the estimated albedos of trees and
crops–grasses from the reconstruction method are close to
the values provided at the sub-grid-cell level. Consequently,
as a second step we reconstructed the present-day albedo of
trees and crops–grasses in CMIP5 simulations for 17 mod-
els and compared the obtained results with reference values
from observations. Despite the relatively low spatial cover-
age of the reconstructed estimates in some models, especially
over regions where snow is present, we were able to identify
substantial model biases for the months of January and July,
which are significantly higher than the error of the recon-
struction method. We found that they are further reflected
in the representation of the surface albedo change induced
by a transition between trees and crops–grasses in the same
CMIP5 models. Finally, we investigated how such model
biases influence the surface albedo change due to histori-
cal transitions between trees and crops–grasses as simulated
by CMIP5 models and the associated radiative forcing. To
do so, we used another reconstruction methodology, already
employed in previous studies, to assess how surface albedo
has been modified as a result of the replacement of trees by
crops–grasses since pre-industrial times in 15 CMIP5 models
(including most of those analysed in the previous step). We
then derived the associated historical RF by using a recently
published kernel, which constitutes a simple parameterisa-
tion found to mimic the behaviour of climate models, and
applied it to CERES radiation observations. An observational
constraint was also applied to these estimates, by replac-
ing the reconstructed surface albedo response to a conver-
sion from trees to crops–grasses in the models by that of the
observational dataset previously used for the model evalua-
tion. The comparison of the unconstrained and observation-
constrained RF in the individual models revealed differences
reflecting some of the model biases that we had previously
described. Moreover, the observational constraint leads to a
multi-model mean RF associated with the historical replace-
ment of trees by crops–grasses that is slightly reduced from
−0.07 to −0.09 W m−2 and a model range spanning from
−0.03 to −0.11 W m−2 after excluding one model outlier
with unrealistically high historical conversion rates between

trees and crops–grasses. Considering all variations in tree
cover or even all land cover changes gives very similar re-
sults because of the simplified representation of land cover
in CMIP5 models.

Our RF estimates were derived with all-forcing simula-
tions in which climate evolves mostly due to other forcings
(Myhre et al., 2013), and they are thus theoretically not ex-
actly comparable with results from studies that assess the im-
pact of historical LCC in isolation from other forcings. How-
ever, our finding that the reconstructed albedo values are sim-
ilar to those derived with LCC-only experiments conducted
within CMIP5 (see Figs. S6 and S7) indicates that changes
in background climate from other forcings have had little in-
fluence on the overall LCC-induced surface albedo changes
over the 1860–2000 period. This confirms earlier similar con-
clusions (Boisier et al., 2012; de Noblet-Ducoudré et al.,
2012) and also suggests that the reconstructed RF values
are similar to those that can be calculated based on LCC-
only experiments (Fig. S21) and are thus comparable to es-
timates from previous model-based studies. The identified
range of −0.03 to −0.11 W m−2 for the global RF is at
the lower end of that of −0.15± 0.10 W m−2 provided by
the IPCC AR5 (i.e. less negative than its best estimate; see
Fig. 14). This result confirms that the LCC forcing is unlikely
to have played a large role historically for global mean im-
pacts (Myhre et al., 2013; Smith et al., 2020), while still be-
ing important at local to regional scales (Boisier et al., 2012;
de Noblet-Ducoudré et al., 2012; Pongratz et al., 2010). It
is also lower than the estimates close to −0.2 W m−2 from
Betts et al. (2007), Davin et al. (2007), and Pongratz et
al. (2009). Myhre et al. (2005) and Kvalevåg et al. (2010)
suggested that these climate-model-based studies had over-
estimated the simulated surface albedo response to historical
LCC. In this regard, our study reveals that such an overesti-
mation does exist for some CMIP5 models but is not system-
atic across the analysed ensemble. Our model mean result
is equal to and lower than those of Myhre et al. (2005) and
Ghimire et al. (2014), respectively, who both used satellite
data to reconstruct past surface albedo changes and found
RFs of −0.09 and −0.15 W m−2 when considering all LCCs
since pre-agricultural times. It is also slightly less negative
than – although within the uncertainty range of – the multi-
model mean RF of −0.14 W m−2 estimated within the Ra-
diative Forcing Model Intercomparison Project (RFMIP) as
part of the sixth phase of CMIP (CMIP6; Smith et al., 2020),
which also found that it would translate into an effective ra-
diative forcing of −0.09 W m−2 after adjustment of the state
of the troposphere (clouds, water vapour content, etc.).

Additionally, some of these differences and part of the
model spread identified in this study arise from different sim-
ulated historical conversion rates from trees to crops–grasses.
Despite being based on the same Land Use History A prod-
uct (LUHa; Hurtt et al., 2011), the LCC trajectories in the
analysed CMIP5 historical simulations reflect varying inter-
pretations of this dataset. LUHa gives gridded information
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on annual transitions between four types of land use (pri-
mary land, secondary land, crop, and pasture) for the 1500–
2005 period, which were derived with the Global Land use
Model (GLM) based on historical data. These transitions
were specifically designed to provide common reference land
use trajectories for all historical CMIP5 simulations. The
CMIP5 models may, however, have considered primary and
secondary land to be covered by either trees or crops–grasses,
or even shrubs or bare soil, depending on the land cover dis-
tributions that were prescribed or simulated in a given re-
gion or under a given climate. These different interpretations
of common land use input data substantially contribute to
the spread in the surface albedo variations due to historical
LCC. This result had already been identified for the mod-
els participating in the LUCID project (Boisier et al., 2012)
and more generally for the biogeophysical effect of future
LCC on climate in RCP4.5 and RCP8.5 simulations from
CMIP5 (Brovkin et al., 2013; Davies-Barnard et al., 2014;
Di Vittorio et al., 2014). Solutions have been put forward
to reduce the room for interpretation of the imposed land
cover forcing in future model intercomparison efforts, such
as a direct coupling between the integrated assessment mod-
els producing land cover scenarios and Earth system models
(Di Vittorio et al., 2014) or the provision of more detailed
land cover information (including the land cover fractions
allocated to several specific land use states) in the frame of
CMIP6 (Lawrence et al., 2016). These may bring the multi-
model mean RF estimate of LCC-induced historical albedo
changes closer to the −0.15 W m−2 put forward by Ghimire
et al. (2014), who combined the LUHa product with an ob-
servational constraint based on satellite data. The fact that
Smith et al. (2020) found a slightly more negative multi-
model mean RF (−0.14 W m−2) than our best estimate us-
ing RFMIP experiments may suggest it, but further analysis
of CMIP6 simulations, notably within the Land Use Model
Intercomparison Project (LUMIP; Lawrence et al., 2016),
are needed before robust conclusions can be drawn. Further-
more, there are also uncertainties about the HYDE3.1 dataset
(Klein Goldewijk et al., 2011) on which the LUHa prod-
uct is based, as significant differences with the land cover
reconstructions from Kaplan et al. (2011) and Pongratz et
al. (2008) have been identified (Schmidt et al., 2012).

The analysis of the biases in the representation of the
albedo of trees and crops–grasses in CMIP5 models per-
formed in this study focused on the months of January and
July, during which the snow cover fraction is rather correctly
represented in CMIP5 models (Thackeray et al., 2015). It
could, however, be repeated for other months, especially in
spring and autumn when misrepresentations of the timing of
snow accumulation and melt as well as snow ageing pro-
cesses, leaf area index parameterisations, and the ensuing
vegetation-masking effect on snow have been identified over
the boreal latitudes (Thackeray et al., 2014, 2015; Wang et
al., 2016).

When interpreting the findings presented in this study, it
also needs to be kept in mind that the RF framework is not
sufficient to capture the impact of LCC on climate variables
other than albedo, as it cannot represent their non-radiative
biogeophysical effects (i.e. that solely affect the partitioning
between latent and sensible heat fluxes; see e.g. Davin et al.,
2007). Moreover, in this study we have focused our atten-
tion on local LCC-induced surface albedo changes, although
those also led to an important cooling even over oceanic ar-
eas in global-scale deforestation experiments conducted with
the IPSL model (Davin and de Noblet-Ducoudré, 2010).

In conclusion, we demonstrated the suitability of a new
methodology to extract the albedo of trees and crops–grasses
in ESM simulations that only provide mean surface albedo
values over grid cells containing a diversity of land cover
classes. After applying it to historical CMIP5 simulations,
we identified significant model biases in the representation
of the albedo of both trees and crops–grasses as well as
the surface albedo change arising from a transition between
these two land cover classes. Additionally, we reconstructed
local surface albedo modifications due to historical LCC.
Since these reconstructions are affected by model biases,
we used the observed surface albedo response to transitions
between trees and crops–grasses to derive an observation-
constrained RF of historical LCC in CMIP5 models. Com-
pared to IPCC AR5 estimates, our results point to a slightly
less strong global mean RF, with some remaining uncer-
tainty due to the various magnitudes of LCC implemented
in the analysed models. With the release of new ESM simu-
lations within CMIP6 (Eyring et al., 2016), new opportuni-
ties arise to assess whether the biases identified in this study
have been corrected in the latest generation of ESMs. In
that respect, the reconstruction methodology developed for
this analysis, which has been implemented as a diagnostic
in the ESMValTool v2.0 (Eyring et al., 2020), should allow
for a more straightforward model evaluation. Additionally,
the new approach to harmonise the forcing from historical
LCCs in CMIP6 may enable us to identify a refined estimate
of their RF. We advance the idea that combining recently re-
leased observational evidence and model results as proposed
in this study will be useful in this context in order to further
reduce uncertainties on the climate impact of historical LCC
on both global and local scales.
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