
Longitudinal Impact of Sputum Inflammatory Phenotypes on Small Airway Dysfunction and Disease Outcomes in Asthma

Mustafa Abdo, MD, Frauke Pedersen, PhD, Anne-Marie Kirsten, MD, Vera Veith, PhD, Heike Biller, MD, Frederik Trinkmann, MD, Erika von Mutius, MD, Matthias Kopp, MD, Gesine Hansen, MD, Klaus F. Rabe, MD, PhD, Thomas Bahmer, MD, Henrik Watz, MD, on behalf of the ALLIANCE study group

PII: S2213-2198(22)00221-5

DOI: https://doi.org/10.1016/j.jaip.2022.02.020

Reference: JAIP 4108

To appear in: The Journal of Allergy and Clinical Immunology: In Practice

Received Date: 23 September 2021

Revised Date: 2 February 2022 Accepted Date: 3 February 2022

Please cite this article as: Abdo M, Pedersen F, Kirsten AM, Veith V, Biller H, Trinkmann F, von Mutius E, Kopp M, Hansen G, Rabe KF, Bahmer T, Watz H, on behalf of the, ALLIANCE study group, Longitudinal Impact of Sputum Inflammatory Phenotypes on Small Airway Dysfunction and Disease Outcomes in Asthma, *The Journal of Allergy and Clinical Immunology: In Practice* (2022), doi: https://doi.org/10.1016/j.jaip.2022.020.020.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology

Longitudinal Impact of Sputum Inflammatory Phenotypes on Small Airway Dysfunction and Disease Outcomes in Asthma

3 4

1

2

- 5 Mustafa Abdo, MD ¹, Frauke Pedersen, PhD ^{1,2}, Anne-Marie Kirsten, MD ², Vera Veith, PhD ¹, Heike Biller, MD ¹,
- 6 Frederik Trinkmann, MD^{3,4}, Erika von Mutius, MD⁵, Matthias Kopp, MD^{6,7}, Gesine Hansen, MD⁸, Klaus F. Rabe,
- 7 MD, PhD¹, Thomas Bahmer, MD^{1,9}*, Henrik Watz, MD²*, on behalf of the ALLIANCE study group.

8

- 9 LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL),
- 10 Grosshansdorf, Germany
- ² Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center
- for Lung Research (DZL), Grosshansdorf, Germany
- 13 ³Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Translational Lung Research
- 14 Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- 15 ⁴ Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW),
- 16 University Medical Center Mannheim, Heidelberg University, Germany
- 17 5 Dr von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Comprehensive Pneumology Center Munich,
- German Center for Lung Research (DZL), and Institute of Asthma and Allergy Prevention, Helmholtz Centre, both Munich,
- 19 Germany.
- 20 ⁶ Department of Pediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern,
- 21 Switzerland.
- ⁷ Division of Pediatric Pneumology & Allergology, University Hospital Schleswig-Holstein-Campus Luebeck, Airway Research
- 23 Center North (ARCN), German Center for Lung Research (DZL), Luebeck, Germany.
- ⁸ Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Biomedical Research in
- 25 Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- ⁹ University Hospital Schleswig-Holstein-Campus Kiel, department for Internal Medicine I, Airway Research Center North
- 27 (ARCN), German Center for Lung Research (DZL), Kiel, Germany.
- * Authors contributed equally to this work.

29 30

31

Corresponding author:

- 32 Mustafa Abdo, MD. LungenClinic Grosshansdorf,
- 33 Airway Research Center North (ARCN),
- 34 German Center for Lung Research (DZL).
- Wöhrendamm 80, 22927 Grosshansdorf, Germany
- 36 E-Mail: <u>m.abdo@lungenclinic.de</u>; Tel.: 0049 4102 601 2412

37

38

39 40

41

43	Email addresses for all authors:
44	
45	F.Pedersen@pulmoresearch.de
46	A.Kirsten@pulmoresearch.de
47	V.Veith@lungenclinic.de
48	h.biller@lungenclinic.de
49	Frederik.Trinkmann@med.uni-heidelberg.de
50	Erika.Von.Mutius@med.uni-muenchen.de
51	matthias.kopp@insel.ch
52	Hansen.Gesine@MH-Hannover.de
53	k.f.rabe@lungenclinic.de
54	Thomas.Bahmer@uksh.de
55	H.Watz@pulmoresearch.de
56	
57	
58	
30	
59	
60	
60	
61	
62	
02	
63	
64	
0.	
65	Funding:
66	The ALLIANCE infrastructure is provided by the participating sites of the German Centre for Lung
67	Research (DZL) and associated study centers and hospitals. Direct coasts of the ALLIANCE Cohort are
68	being paid by project grants from the German Federal Ministry of Education and Research
69	(Bundesministerium für Bildung und Forschung, BMBF), grant number "82DZL001A4".
70	
71	Word count for abstract: 351
72	Word count for text: 3811
73	
74	
75	

76	
77	Disclosure of conflict of interest
78	
79	Mustafa Abdo, Frauke Pedersen, Vera Veith, Anne-Marie Kirsten and Heike biller report no conflict of interest
80	Frederik Trinkmann received travel support from Actelion, Berlin Chemie, Boehringer Ingelheim, Chiesi,
81	Novartis, Mundipharma, TEVA AstraZeneca, Berlin Chemie, Boehringer Ingelheim, Bristol-Myers Squibb, Chies
82	GlaxoSmithKline, Novartis and Roche, Sanofi aventis, all outside the submitted work. Erika von Mutius reports
83	personal fees from Pharmaventures, OM Pharma S. A., Springer-Verlag GmbH, Elsevier GmbH and Elsevier Ltd
84	Peptinnovate Ltd., European Respiratory Society, Deutsche Pharmazeutische Gesellschaft e. V., Massachusetts
85	Medical Society, Chinese University of Hongkong, Böhringer Ingelheim, Universiteit Utrecht, outside the
86	submitted work. Matthias V. Kopp, Gesine Hansen, Klaus F. Rabe and Henrik Watz reports no relevant conflict
87	of interest. Thomas Bahmer reports grants from BMBF: Unrestricted research grant for the German Center for
88	Lung Research (DZL), during the conduct of the study; personal fees from AstraZeneca, GlaxoSmithKline,
89	Novartis, and Roche, outside the submitted work.
90	
91	
02	
92	
93	
94	
J.	
95	
96	
97	
98	
99	
100	
101	
101	
102	
102	
103	
104	

105	Abstract
106	
107	Background: Little is known about the relationship between airway inflammatory phenotypes and some
108	important asthma features such as small airway dysfunction (SAD).
109	
110	Objective : to describe the longitudinal impact of airway inflammatory phenotypes on SAD and asthma
111	outcomes
112	
113	Methods:
114	We measured eosinophil and neutrophil counts in induced sputum at baseline and one year later to stratify 197
115	adult asthma patients into four inflammatory phenotypes. We conducted a comprehensive assessment of lung
116	function using spirometry, body plethysmography, impulse oscillometry, inert gas single and multiple breath
117	washouts. We compared lung function, asthma severity, exacerbation frequency and symptom control
118	between the phenotypes. We studied the longitudinal impact of persistent sputum inflammatory phenotypes
119	and the change of sputum cell counts on lung function.
120	
121	Results:
122	Patients were stratified into eosinophilic (23%, n=45), neutrophilic (33%, n=62), mixed granulocytic (22%,
123	n=43), and paucigranulocytic (24%, n=47) phenotypes. Eosinophilic and mixed granulocytic asthma patients had
124	higher rates of airflow obstruction and severe exacerbation as well as poorer symptom control than
125	paucigranulocytic asthma patients. All SAD measures were worse in eosinophilic and mixed than in
126	paucigranulocytic asthma patients (all p-values <0.05). Eosinophilic asthma also indicated worse distal airflow
127	obstruction, increased ventilation inhomogeneity (all p-values <0.05), and higher tendency for severe
128	exacerbation (p= 0.07) than neutrophilic asthma. Longitudinally, persistent mixed granulocytic asthma was
129	associated with the worst follow-up measures of SAD compared to persistent neutrophilic, persistent
130	paucigranulocytic or non-persistent asthma phenotypes. In patients with stable FEV1, the mean increase in
131	small airway resistance (R5-20) was greater in persistent mixed granulocytic patients (+103%) than in patients
132	with persistent neutrophilic (+26%), p=0.040, or persistent paucigranulocytic asthma (-41%), p=0.028.
133	Multivariate models adjusted for confounders and treatment with inhaled or oral corticosteroids or anti-
134	eosinophilic biologics indicated that the change of sputum eosinophil rather than neutrophil counts is an
135	independent predictor for the longitudinal change in FEV1, FEF ₂₅₋₇₅ , sReff, RV and LCI.
136	
137	Conclusion:
138	In asthma, airway eosinophilic inflammation is the main driver of lung function impairment and poor disease
139	outcomes, which might also be aggravated by the coexistence of airway neutrophilia to confer a severe mixed
140	asthma phenotype. Persistent airway eosinophilia might be associated with dynamic SAD even in patients with

141

stable FEV1.

142	
143	
144	Highlights box:
145	
146	What is already known about this topic?
147	Airway inflammatory patterns indicate differences in clinical asthma features and phenotypes.
148	
149	What does this article add to our knowledge?
150	• In asthma, eosinophilic airway inflammation is the main driver of SAD and the subsequent poor asthma
151	outcomes.
152	• The coexistence of airway neutrophilia aggravates the impact of eosinophilic airway inflammation on lung
153	function and confers a severe mixed granulocytic asthma phenotype.
154	• Airway eosinophil rather than neutrophil count is the independent predictor of the longitudinal change in
155	all lung function measures, even in patients who are being treated with inhaled or oral corticosteroids or
156	anti-eosinophilic biologics.
157	Persistent airway eosinophilia was associated with dynamic small airway changes even in patients with
158	stable FEV1.
159	
160	How does this study impact current management guidelines?
161	In patients with asthma, SAD should prompt the investigation of airway eosinophilia, either directly or via
162	surrogate markers, even in patients who are under eosinophils targeting therapies. In future clinical trials that
163	are investigating eosinophils targeting therapies, the addition of small airway function markers to the routinely
164	used FEV1 might be more appropriate for the evaluation of lung function. Further research elucidating the
165 166	potential role of eosinophil-neutrophil interaction in the pathophysiology of asthma is warranted.
100	
167	Key words:
168	Eosinophilic asthma, mixed granulocytic asthma, airway inflammation, small airway dysfunction
169	
170	Abbreviations:
171	ACT: asthma control test
172	FEF: forced expiratory flow
173	FeNO: fractional exhaled nitric oxide
174	FEV1: forced expiratory volume in one second
175	LCI: lung clearance index
176	RV: residual lung volume
177	SAD: small airway dysfunction

Introduction

179180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

178

Asthma is a heterogeneous disease that comprises variable airway inflammatory phenotypes (1). Identifying these phenotypes is a cornerstone in understanding the pathophysiology of asthma and in the development of targeted asthma therapy (2). In this context, induced sputum cell count allows a viable noninvasive assessment of asthmatics airway inflammation (3). Based on sputum eosinophil cell count, asthma can be broadly classified as eosinophilic or non-eosinophilic (4). When considering the count of sputum neutrophils in this classification, eosinophilic asthma can be further subdivided into eosinophilic or mixed granulocytic, while non-eosinophilic asthma can be subdivided into neutrophilic or paucigranulocytic (4). Although that both eosinophils and neutrophils, separated or combined, have been incriminated in asthmatics airway inflammation (5, 6), they might have different impact on asthma severity, symptom control and lung function impairment (4). For instance, a recent study has shown that a predominant mixed granulocytic asthma indicates worse lung function (FEV1) than the other phenotypes (7). However, studies on this matter were either cross-sectional (4, 8, 9), or have reported the impact of different asthma phenotypes on airflow obstruction only (3, 7), leaving the relationship between asthma inflammatory phenotypes and a wide spectrum of lung function measures, such as measures of small airway dysfunction, largely unexplored. Small airway dysfunction is a highly prevalent feature of asthma that has been linked to disease severity, poor symptom control, frequent exacerbation and physical inactivity (10-12). Small airway dysfunction entails a spectrum of interrelated distal lung function impairments including increased small airway resistance, decreased lung elastance, the subsequent limitation of airflow in the peripheral airways, air trapping, and ventilation inhomogeneity (12). In light of the increasing recognition of the significant role of small airway dysfunction in asthma, it is important to investigate whether different asthma phenotypes confer different associations with markers of small airway dysfunction. Moreover, longitudinal data are required to elucidate the impact of airway inflammation on small airway dysfunction and the ensuing asthma outcomes.

Therefore, in this study, we sought to investigate the association between different asthma phenotypes, as defined by sputum cell count, and markers of small airway dysfunction. Moreover, we aimed to explore the longitudinal impact of sputum cell counts on the one-year change in lung function and asthma control.

Methods

Study design

Eligible subjects were adults with asthma who participated in the observational multicenter All Age Asthma Cohort (ALLIANCE), a longitudinal cohort of pediatric and adult asthma patients, initiated by the German Centre for Lung Research (DZL). The study was approved by the ethics committee at the medical school-Luebeck university (Az.21-215) and is registered at clinicaltrials.gov (adult arm: NCT02419274). Written informed consent was obtained before enrollment. This analysis included adult patients with mild to severe asthma in whom sputum induction was performed at baseline visit and after one-year of follow-up. The participants had to have stable disease without the presence of acute exacerbations or respiratory tract infections within 4 weeks prior to any study visit. Detailed information on recruitment, inclusion and exclusion criteria of the ALLIANCE cohort were described previously (13).

Airway physiology characteristics

We performed body plethysmography, impulse oscillometry (IOS), single and multiple breath washout (SBW, MBW), followed by forced spirometry in accordance with the latest ERS recommendations (14–17). We studied upper airway obstruction using values of forced expiratory volume in the first second (FEV1), its ratio to the forced vital capacity (FVC), and the IOS- defined airway resistance at 20 Hz (R20). Airflow obstruction was defined as FEV1/FVC less than the lower limit of normal (LLN) (18). Regarding the longitudinal change in FEV1, the latest European Respiratory Society/American Thoracic Society recommendations indicate that in long-term (i.e. ≥1 year), a change of 15% or more in the FEV1 is with high confidence clinically meaningful (19).

Accordingly, patients who had a relative one-year change of less than 15% were classified as stable FEV1. Markers of small airway dysfunction were: spirometric mean forced expiratory flow at 50% and between 25% and 75% of the forced vital capacity (FEF50%, FEF25–75%), residual lung volume (RV%) and the specific effective airway resistance (sReff%) from body plethysmography, small airway resistance (R5Hz-20Hz, kPa/L/s)) and lung elastance indicated by the resonance frequency from IOS. Further measures of small airway dysfunction were markers of ventilation inhomogeneity i.e. the phase III slope (delta N_2/I) derived from N_2 SBW and the lung clearance index (LCI) measured by N_2 MBW test.

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

231

232

233

234

235

236

237

238

Sputum induction and patients' stratification

Sputum induction and processing was done in patients who had a predicted FEV1 of ≥50% following standardized procedures as previously described (20). In summary, the patients inhaled hypertonic saline in ascending concentration (i.e. 3%, 4% and 5%) each for 7 minutes and the induction was discontinued if FEV1 fell by more than 20%. Sputum plugs were collected from all inhalation periods and then pooled, weighed, and treated with four volumes of 0.1% dithiothreitol (DTT, Sputolysin®; Calbiochem, Bad Soden, Germany). Subsequently, total cell counts were determined by haemocytometer and trypan blue staining, (Sigma, Deisenhofen, Germany), and differential cell counts were analyzed on Diff-Quick-stained cytospin preparations (21). Cytospin slide quality was evaluated based on cell morphology, amount of cellular debris and squamous cell contamination and rated using a 5-point scale (low to high: 0, 0.5, 1, 1.5, 2) (22). Samples with slide quality of ≤ 0.5 were excluded from the analysis. Cutoffs of ≥2% and ≥50% were used to define eosinophilic and neutrophilic asthma, respectively (7). Eosinophilic asthma (eosinophils ≥2%) was further subdivided into eosinophilic (neutrophils <50%) or mixed (neutrophils ≥50%) asthma phenotypes. Likewise, noneosinophilic asthma (eosinophils <2%) was also subdivided into neutrophilic (neutrophilis ≥50%) or paucigranulocytic (neutrophils <50%) asthma phenotypes. For the longitudinal analysis, patients with eosinophils ≥2% or neutrophils ≥50% at both baseline and follow-up were classified as persistent

eosinophilic or persistent neutrophilic, respectively. Patients who had both eosinophils ≥2% and
neutrophils ≥50% at baseline and follow-up were classified as <i>persistent mixed</i> , while patients who
had neither persistent eosinophilia nor persistent neutrophilia or who had persistent
paucigranulocytic asthma were classified as non-persistent/persistent paucigranulocytic asthma. We
compared lung function and asthma outcomes between these phenotypes at baseline and follow-up

Asthma severity and asthma control

Severe asthma was defined according to European Respiratory Society/American Thoracic Society recommendations (24). Asthma control was assessed based on self-reported symptoms from the asthma control test (ACT) and the frequency of severe exacerbations during the 12 months preceding a study visit, defined as a burst of systemic corticosteroids for at least 3 days (25).

Statistical analysis

We used one-way analysis of variance, Kruskal Wallis or Fisher exact test to determine the significance of differences among clinical variables between the study groups. For pairwise comparisons, post-hoc analyses were done using either Tukey's test or Dunn's test with Bonferroni correction. To test for statistical dependence between two continuous variables, we used Pearson's test and for skewed variables the Spearman's rank test. We used multivariate linear regressions to determine whether the changes in sputum eosinophil or neutrophil counts is an independent predictor for the longitudinal change in lung function even after adjustment for asthma therapy.

Statistical analyses were performed using R (version 3.6.2, R Foundation, Vienna, Austria). An alpha error of less than 5% was considered statistically significant.

Results

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

284

We performed sputum induction in 214 patients. Sputum samples from 17 patients were excluded from the analysis due to poor slide quality. Overall, 197 patients were included at baseline (mean age, 51 ±18 years; 47% male; 50.2% severe asthma; 88.2% inhaled corticosteroids; 22.8% systemic corticosteroids; 13.2% anti-T2 biological therapy). Detailed demographic and baseline clinical characteristics of the subjects stratified according to sputum inflammatory phenotypes are shown in Table 1. Based on predetermined cutoffs of ≥2% for sputum eosinophils and ≥50% for neutrophils, the frequencies of sputum eosinophilia (45%, n=88) and sputum neutrophilia (53%, n=105) were comparable. Patients were stratified into: eosinophilic (23%, n=45), neutrophilic (33%, n=62), mixed (22%, n=43), and paucigranulocytic (24%, n=47) asthma phenotypes. Despite some difference in the percentage of sputum eosinophils between patients with eosinophilic and mixed asthma, they expressed similar absolute counts of eosinophils and varied in neutrophil counts only (Table 1). Additional markers of T2-inflammation (blood eosinophils, FeNO, serum IgE) were significantly higher in eosinophilic and mixed asthma phenotypes than in non-eosinophilic asthma phenotypes, confirming a T2-high inflammation in sputum-based eosinophilic asthma phenotypes (Table 1). Nonetheless, we also observed some increase of T2-markers in patients who were stratified as neutrophilic asthma indicated by the third quartile values of blood eosinophils (230, 10³/µl), FeNO (28, ppb) and serum IgE (292, ku/l), (Table 1). Patients with both eosinophilic asthma phenotypes (eosinophilic and mixed granulocytic) were older than patients with paucigranulocytic asthma. Otherwise, there were no statistically significant differences between these phenotypes with regard to gender, body mass index or smoking status despite that the neutrophilic phenotype showed a tendency to be associated with overweight and current smoking. Both eosinophilic asthma phenotypes were associated with higher frequencies of severe asthma, higher frequencies of airflow obstruction, worse ACT scores, higher rates of severe exacerbations and higher use and dose of systemic corticosteroids compared with paucigranulocytic asthma (Table 1).

Also, when compared to patients with neutrophilic asthma, patients with mixed granulocytic asthma showed a higher tendency to have airflow obstruction (p=0.09) and patients with eosinophilic asthma had a higher rate for acute severe exacerbation (p=0.042). However, airflow obstruction or rates of acute severe exacerbation were not significantly higher in neutrophilic than in paucigranulocytic asthma patients, p=0.52 and p=0.35, respectively. Moreover, increased sputum eosinophils indicated more severe small airway dysfunction (Figure 1; see Table E1 in this article's Online Repository). Compared to patients with paucigranulocytic asthma, patients with eosinophilic or mixed granulocytic asthma had increased distal airflow obstruction (FEF₂₅₋₇₅%, FEF₅₀%), increased small airway resistance (R₅₋₂₀, sReff %), decreased lung elastance (resonance frequency), increased air trapping (RV %) and ventilation inhomogeneity (LCI, delta N₂/I), (all adj. p-values <0.05, except for RS-20 showed only a tendency, p=0.08). In addition, measures of FEF₂₅₋₇₅% and delta N₂/I were significantly worse in eosinophilic than in neutrophilic asthma patients (both adj. p-values <0.05). We also found that only measures of FEF₅₀% and LCI were worse in neutrophilic than in paucigranulocytic asthma patients (both adj. p= 0.014), while none of the small airway dysfunction measures differed significantly between both eosinophilic asthma phenotypes.

Longitudinal impact of persistent sputum inflammatory phenotypes on lung function

We induced and analyzed sputum samples of 141 patients at one-year follow-up. Samples of six

patients with poor slide quality were excluded from the analysis. Missing follow-up samples were

due to drop outs, patients' refusal for a second sputum induction or due to follow-up FEV1 of < 50%predicted. Based on the longitudinal sputum cell counts, 135 patients were stratified as persistent

eosinophilic (n=29), persistent neutrophilic (n=43) and persistent mixed (n=16) asthma phenotypes.

For the rest of the patients (n=47), they had neither persistent sputum eosinophilia nor neutrophilia

or had persistent paucigranulocytic asthma (Table 2). This longitudinal stratification revealed that the

persistent mixed asthma phenotype was associated with the worst follow-up measures of small

airway dysfunction. Consequently, all follow-up small airway dysfunction markers were significantly

worse in patients with persistent mixed asthma than in patients with non-persistent/persistent paucigranulocytic asthma phenotype, (all adj. p-values < 0.05). We also noted that patients with persistent mixed asthma had worse follow-up asthma control than non-persistent/persistent paucigranulocytic asthma patients indicated by lower ACT score (17.0 ±4.4 vs. 20.9±3.8, adj. p= 0.019) and higher annualized rate of acute severe exacerbation (2.4±3.0 vs. 0.8±2.2, adj. p=0.034). Further, measures of sReff% and delta N2/I were worse in persistent mixed than in persistent neutrophilic asthma patients, (p=0.019 and 0.020), respectively (Table 2). In addition, persistent eosinophilic asthma indicated worse follow-up measures of FEF25-75%, FEF50%, sReff % and RV% than patients with non-persistent/persistent paucigranulocytic asthma, (all adj. p-values < 0.05). None of small airway dysfunction markers or measures of asthma control differed significantly in persistent eosinophilic versus persistent neutrophilic asthma patients.

Longitudinal impact of the change of sputum cell counts on lung function

In a further step, we correlated changes in sputum cell counts with the one-year change in lung function measures. Univariate regressions indicated that the change in sputum eosinophil counts correlates better with the changes in all lung function measures than the change in sputum neutrophil counts (see Table E2 in this article's Online Repository). We also found that the increase in sputum eosinophils confer a stronger impact on both airflow obstruction and small airway dysfunction than the increase in sputum neutrophils, (Table 3). Multivariate regressions adjusted for cofounders and for the change in the dose of inhaled and oral corticosteroids and also for the presence of anti-T2 biological therapy, showed that the change in sputum eosinophils is a stronger predictor for the longitudinal change in lung function than the change in sputum neutrophils in well fit models (multiple R² up to 0.74) as the increase in sputum eosinophils remained an independent predictor for the change in FEV1, FEF₂₅₋₂₇, sReff and RV after adjustment for asthma therapy (Table 3).

Longitudinal association of sputum cells counts with small airway dysfunction in patients

with stable FEV1

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Based on a minimal clinically important difference of 15% for the one-year change in FEV1, we classified the patients into: improved (n=18), declined (n=9) or stable (n=105) FEV1. This longitudinal classification showed increased sputum eosinophils (+2.7% [1.4, 3.7]) in patients who had declined FEV1 versus sputum eosinophils reduction (-15.4% [- 40.0, - 0.18]) in patients who had their FEV1 improved, (p<0.01). We also found that patients with stable FEV1 had a relatively small change in their sputum eosinophil count (0.15% (-0.6 - 1.4]), and that the change in sputum neutrophils count was similar between these patients with improved, declined, or stable FEV1, (p=0.29), (Table E3 available in this article's Online Repository). While the one-year changes in small airway dysfunction markers were all in concordance with the one-year change in FEV1 (Table E3), the longitudinal change in FEV1 might not accurately reflect the magnitude of change in small airway dysfunction (see Table E4 in the Online Repository). Also in this respect, in a subgroup of patients with stable FEV1, in whom the FEV1 change was less than 15%, we identified the presence of dynamic small airways' changes, indicated by the changes in the frequency dependence of resistance (R5-20). The one year change for R5-20 (median and, KPa/L per s) was (+103%, 0.05 [-0.02, 0.11]), (+82%, 0.02 [-0,01, 0.05]), (+26%, 0.0 [-0.04, 0.03]) and (-41%, -0.015 [-0.05,0.02]) in patients with persistent mixed granulocytic, persistent eosinophilic, persistent neutrophilic and non-persistent/persistent paucigranulocytic asthma, respectively, (p=0.038). A pairwise post-hoc comparison indicated that the one year change in R5-20 in persistent mixed granulocytic patients differed significantly from nonpersistent/persistent paucigranulocytic, (p= 0.028) as well as from persistent neutrophilic asthma patients, (p=0.040). In contrast, the one-year changes in FEV1 was similar between these persistent sputum phenotypes (p=0.64). Moreover, nearly half of the patients (n=44/98) had a relative R5-20 change of at least 50% from baseline. An increase of at least 50% in R5-20 was mainly observed in 45% of patients with persistent mixed granulocytic and in 42% of patients with persistent

eosinophilic asthma versus only in 11% and 23% of patients with non-persistent/persistent paucigranulocytic or patients with persistent neutrophilic asthma, respectively, (p=0.046).

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

387

386

Discussion

Small airway dysfunction is a frequent feature of asthma that has been linked to disease severity, poor symptom control and severe exacerbation. Unfortunately, there are limited data evaluating relationships between small airway dysfunction and asthmatics airway inflammation. In this cohort study, the use of sputum induction to typify airway inflammation, combined with the comprehensive assessment of lung function and patients' clinical characteristics was designated to enhance our understanding of different asthma phenotypes and their association with small airway dysfunction. We demonstrated the impact of eosinophilic versus non-eosinophilic asthma on lung function and disease outcomes, while also addressing the presence of mixed granulocytic airway inflammation, which appeared to confer a severe asthma phenotype with the greatest lung function impairment. Overall, airway eosinophilic inflammation was associated with more severe small airway dysfunction, poorer asthma control and more frequent severe exacerbation. These findings were confirmed longitudinally as persistent eosinophilic inflammation indicated sustained small airway dysfunction and poorer asthma control, particularly, in patients with persistently elevated eosinophils and neutrophils i.e. mixed asthma phenotype. Moreover, the change in sputum eosinophils rather than sputum neutrophils was an independent predictor for the longitudinal change of lung function. Furthermore, our data indicates that the paucigranulocytic phenotype predicts a mild asthma phenotype with preserved lung function and better asthma outcomes. In our study, where nearly half of the patients were severe asthmatics, most of them had increased sputum granulocytes, mainly sputum neutrophilia (53%). Despite that the vast majority of the patients had inhaled or oral corticosteroids therapy, a notable proportion of them had sputum eosinophilia (45%). The higher frequency of neutrophilic asthma is consistent with the findings of some previous studies (26, 27) but also in the contrary to others where higher frequencies of

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

eosinophilic or paucigranulocytic asthma were reported (28). In fact, there is a considerable heterogeneity in the reported frequencies of asthma phenotypes which can be attributed to some variations in the granulocyte counts used to define each phenotype. In addition, there are also discrepancies between these studies' cohorts concerning other factors such as asthma severity, the presence of acute exacerbation during sputum induction, and the use of inhaled and oral corticosteroid therapy (9, 29). We also found that airway eosinophilic inflammation was associated with multiple clinical indicators of asthma severity. Airway eosinophilic inflammation, as identified by sputum cell count, has frequently been linked to poor symptom control and severe exacerbations (30, 31). Our data also suggest that in asthma, airway eosinophilic inflammation is closely associated with small airway dysfunction. This important association confirms the pathological findings of previous studies on asthma patients, which demonstrated that the small airways were predominantly infiltrated with activated eosinophils compared to the large airways (32, 33). This finding also emphasizes that targeting eosinophilic airway inflammation should be a mainstream treating strategy of small airway dysfunction in asthma as we observed that anti-T2 biological therapy substantially improves small airway dysfunction (34). Persistent airway eosinophilic inflammation might present in a subgroup of severe asthma patients who are treated with inhaled or even oral systemic corticosteroids (35, 36). Accordingly, our data indicate that persistent airway eosinophilic inflammation confers persistent severe small airway dysfunction and poor asthma control; this was particularly observed in patients with persistent mixed asthma phenotype. The longitudinal analysis revealed that patients with persistent mixed asthma had the worst follow-up measures of small airway dysfunction, poorer symptom control and more frequent exacerbation, when compared to non-persistent eosinophilic or persistent non-eosinophilic airway inflammation. These findings also support the notion that the interplay between airway eosinophils and neutrophils might have a critical role in the pathogenesis of asthma (37, 38). The longitudinal analysis also indicated that the change of sputum eosinophil counts rather than neutrophil count is an independent predictor for the longitudinal change of small airway dysfunction

and airflow obstruction. Multivariate regressions adjusted for the dose of inhaled and oral
corticosteroids and for an adjuvant anti-T2 biological therapy demonstrated that the increase of
sputum eosinophil count has a significant negative impact on lung function.
A further finding was the high concordance between the longitudinal changes in small airway
function markers and the change in the FEV1, which has confirmed the previously described direct
association between small airway dysfunction and upper airflow obstruction (12). Moreover, the
relative change in FEV1 after one year, and the consistent changes in small airway function markers,
were also associated with consistent and significant changes in sputum eosinophils count.
Interestingly, in patients with relatively stable FEV1, we observed dynamic changes in small airways,
indicated by increased frequency dependence of resistance (R5-20), mainly, in patients with
persistent mixed granulocytic asthma. Additionally, the one-year change of at least 50% in R5-20 was
observed in nearly half of the patients who had stable FEV1. Nevertheless, it is important to notice,
that there are no generally accepted normal reference ranges or MCID for the measurements of
impulse oscillometry (39). However, the applied cut-off value of 50% for the change in R5-20 was
beyond its' recently reported mean coefficient of variation of 33.1% (95% CI:19.5 – 46.7) (39) and are
also in line with the cut-off changes that are applied for the diagnosis of airway hyperresponsiveness,
using forced oscillation technique (16). The presence of dynamic small airway changes despite a
relatively stable FEV1 suggests that changes in small airway dysfunction are potential treatment
outcome to investigate in future clinical trials, particularly, in those investigating anti-eosinophilic
asthma therapies.
Airway neutrophilic inflammation is linked to asthma severity and frequent exacerbation (40, 41). To
our knowledge, no previous study has reported a direct association between airway neutrophilic
inflammation and small airway dysfunction in asthma. In our cohort, while all measures of small
airway dysfunction were numerically worse in neutrophilic than in paucigranulocytic asthma patients
only, differences in measures of LCI and FEF ₂₅₇₅ reached statistical significance. In addition, a
coexistent airway neutrophilia in patients with airway eosinophilic inflammation in persistent mixed

asthma was associated with the worst measures of small airway dysfunction. Based on these
findings, it might be reasonable to speculate that airway neutrophilic inflammation plays a role in the
pathogenesis of small airway dysfunction. However, a caveat with this assumption is that some
patients who were stratified as neutrophilic had an anti-T2 biological therapy and some of them had
elevations in T2-markers (blood eosinophils, FeNO and serum IgE), suggesting that some of the
neutrophilic asthma patients had primarily eosinophilic or T2-high asthma. In addition, airway
neutrophilic inflammation might contribute indirectly to small airway dysfunction. We recently
reported that increased extracellular DNA production in asthmatic airway, a collateral mechanism of
airway neutrophilic inflammation, indicates a broad lung function impairment including small airway
dysfunction (6). So far, therapies targeting neutrophilic airway inflammation in asthma failed to
improve asthma outcomes (42), leaving the complicated role of airway neutrophilic inflammation in
asthma and small airway dysfunction uncertain.
In this study, nearly 24% of the patients had paucigranulocytic asthma. As we found, this phenotype
was associated with the best lung function measures and asthma outcomes. In spite of this, 36% of
the patients with paucigranulocytic asthma had airflow obstruction and 38% experienced at least one
severe exacerbation in the previous year. The observed uncoupling of asthma activity from airway
inflammation in the paucigranulocytic asthma phenotype brings to question whether asthma activity
might present independent form active airway inflammation (43) or is it rather a state of repressed
airway inflammation that underestimate the disease progression in a subgroup of the patients.
Considering the high variability of sputum cell counts (44), two sputum samplings might be a
shortcoming of our study and multiple sputum sampling could have demonstrated the relationship
between fluctuations in lung function and sputum cell variability more clearly. Another limitation of
our study was the number of dropouts at follow-up. Nevertheless, to the best of our knowledge, this
is the first longitudinal study that correlated a broad spectrum lung function assessment and
patients' clinical characteristics with sputum inflammatory phenotypes.

490	In summary, in patients with asthma, airway eosinophilic inflammation is the main driver of lung
491	function impairment and poor disease outcomes, which might also be aggravated by the coexistence
492	of airway neutrophilia to confer a severe mixed asthma phenotype. The presence of SAD in patients
493	with asthma should prompt the investigation of airway eosinophilia, either directly or via surrogate
494	markers, even in patients who are being treated with inhaled or oral corticosteroids or even with
495	anti-eosinophilic biologics. The observed dynamic changes in the small airways in patients with
496	relatively stable FEV1 emphasizes the significance of evaluating small airway dysfunction in
497	eosinophilic asthma.
498	
499	
500	
501	
502	
503	
504	
505	
506	
507	
508	Acknowledgments
509	Conception and design of the study: MA, HW, KFR, FT; statistical analysis MA and FT; sputum
510	processing and analysis: FP; acquisition, and interpretation: MA, TB, FT, HW; drafting the manuscript:
511	MA, HW; critically revises the manuscript: KFR, AMK, EvM, MVK, VV,HB and GH. All authors revised
512	the manuscript for intellectual content and approved it for publication. All authors read and
513	approved the final manuscript.
514	
515	

516	
517	
518	Figure legend:
519	
520	Figure 1: Small airway dysfunction in different asthma phenotypes:
521 522 523	Post hoc Dunn's test indicated statistically significant differences in all small airway dysfunction measures between eosinophilic and paucigranulocytic asthma patients as well as between mixed granulocytic and paucigranulocytic asthma
524	patients except for the measure of R5-20; the statistical differences showed a high tendency (p-value =0.08). Measures of
525 526	FEF25-75% and delta N2/I were significantly worse in eosinophilic than in neutrophilic asthma patients (both adj. p-values
520 527	<0.05). Measures of FEF50% and LCI were worse in neutrophilic than in paucigranulocytic asthma patients (both adj. p= 0.014). None of the small airway dysfunction measures differed significantly between both eosinophilic asthma phenotypes
528	(all p-values >0.05). FEV1: forced expiratory volume in first second, FVC: forced vital capacity, FEF50% and FEF25–75: mean
529	forced expiratory flow at 50% and between 25% and 75% of the forced vital capacity, R5-20: small airway resistance (total
530	lung resistance – large airway resistance), X5: lung reactance at 5 Hz, RV: residual volume, sReff: specific effective airway
531	resistance, LCI: lung clearance index from multiple breath washout, delta N2: the slope of phase III nitrogen single-breath
532	washout. Phenotypes: eosinophilic: patients with sputum eosinophils ≥2% and neutrophils <50%, mixed: mixed granulocytic
533	sputum; eosinophils \geq 2% and neutrophils \geq 50%, neutrophilic: sputum eosinophils $<$ 2% and neutrophils \geq 50%, pauci:
534	paucigranulocytic; eosinophils <2% and neutrophils < 50%.
535 536	
537	
538	
539	
540	
541	
542	
543	

References

- 1. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet 2006; 368(9537):804–13.
- 547 2. Svenningsen S, Nair P. Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Front Med
- 548 (Lausanne) 2017; 4:158.
- 3. Hastie AT, Mauger DT, Denlinger LC, Coverstone A, Castro M, Erzurum S et al. Baseline sputum eosinophil +
- 550 neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research
- 551 Program (SARP 3) cohort. J Allergy Clin Immunol 2020; 146(1):222–6.
- 4. Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP et al. Analyses of Asthma Severity Phenotypes
- and Inflammatory Proteins in Subjects Stratified by Sputum Granulocytes. J Allergy Clin Immunol 2010;
- 554 125(5):1028-1036.e13.
- 5. Walford HH, Doherty TA. Diagnosis and management of eosinophilic asthma: a US perspective. J Asthma
- 556 Allergy 2014; 7:53–65.
- 6. Abdo M, Uddin M, Goldmann T, Marwitz S, Bahmer T, Holz O et al. Raised sputum extracellular DNA confers
- lung function impairment and poor symptom control in an exacerbation-susceptible phenotype of neutrophilic
- asthma. Respir Res 2021; 22(1):167.
- 7. Hastie AT, Mauger DT, Denlinger LC, Coverstone A, Castro M, Erzurum S et al. Mixed Sputum Granulocyte
- Longitudinal Impact on Lung Function in the Severe Asthma Research Program. Am J Respir Crit Care Med 2021;
- 562 203(7):882–92.
- 8. Moore WC, Hastie AT, Li X, Li H, Busse WW, Jarjour NN et al. Sputum neutrophils are associated with more
- severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 2013; 133(6):1557-1563.e5.
- 9. Wang F, He XY, Baines KJ, Gunawardhana LP, Simpson JL, Li F et al. Different inflammatory phenotypes in
- adults and children with acute asthma. Eur Respir J 2011; 38(3):567–74.
- 567 10. Abdo M, Trinkmann F, Kirsten A-M, Biller H, Pedersen F, Waschki B et al. The Relevance of Small Airway
- 568 Dysfunction in Asthma with Nocturnal Symptoms. J Asthma Allergy 2021; 14:897–905.
- 569 11. Postma DS, Brightling C, Baldi S, van den Berge M, Fabbri LM, Gagnatelli A et al. Exploring the relevance and
- 570 extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. The
- 571 Lancet Respiratory Medicine 2019; 7(5):402–16.
- 572 12. Abdo M, Trinkmann F, Kirsten A-M, Pedersen F, Herzmann C, Mutius E von et al. Small Airway Dysfunction
- 573 Links Asthma Severity with Physical Activity and Symptom Control. J Allergy Clin Immunol Pract 2021.
- 13. Fuchs O, Bahmer T, Weckmann M, Dittrich A-M, Schaub B, Rösler B et al. The all age asthma cohort
- 575 (ALLIANCE) from early beginnings to chronic disease: a longitudinal cohort study. BMC Pulm Med 2018;
- 576 18(1):140.
- 577 14. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F et al. Standardisation of the
- 578 measurement of lung volumes. Eur Respir J 2005; 26(3):511–22.
- 579 15. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M et al. Consensus statement for inert gas
- washout measurement using multiple- and single- breath tests. Eur Respir J 2013; 41(3):507–22.

- 581 16. Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z, Desager K et al. The forced oscillation technique in
- 582 clinical practice: methodology, recommendations and future developments. Eur Respir J 2003; 22(6):1026–41.
- 17. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A et al. Standardisation of spirometry. Eur
- 584 Respir J 2005; 26(2):319–38.
- 18. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH et al. Multi-ethnic reference values for
- spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40(6):1324–
- 587 43.
- 19. Bonini M, Di Paolo M, Bagnasco D, Baiardini I, Braido F, Caminati M et al. Minimal clinically important
- difference for asthma endpoints: an expert consensus report. Eur Respir Rev 2020; 29(156).
- 590 20. Holz O, Jörres RA, Koschyk S, Speckin P, Welker L, Magnussen H. Changes in sputum composition during
- 591 sputum induction in healthy and asthmatic subjects. Clin Exp Allergy 1998; 28(3):284–92.
- 21. Pedersen F, Marwitz S, Seehase S, Kirsten A-M, Zabel P, Vollmer E et al. HOPE-preservation of paraffin-
- embedded sputum samples--a new way of bioprofiling in COPD. Respir Med 2013; 107(4):587–95.
- 22. Pedersen F, Trinkmann F, Abdo M, Kirsten A-M, Rabe KF, Watz H et al. Influence of Cell Quality on
- 595 Inflammatory Biomarkers in COPD Sputum Supernatant. Int J Chron Obstruct Pulmon Dis 2021; 16:487–93.
- 596 23. Demarche SF, Schleich FN, Paulus VA, Henket MA, van Hees TJ, Louis RE. Asthma Control and Sputum
- 597 Eosinophils: A Longitudinal Study in Daily Practice. J Allergy Clin Immunol Pract 2017; 5(5):1335-1343.e5.
- 598 24. Holguin F, Cardet JC, Chung KF, Diver S, Ferreira DS, Fitzpatrick A et al. Management of severe asthma: a
- 599 European Respiratory Society/American Thoracic Society guideline. Eur Respir J 2020; 55(1).
- 600 25. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ et al. International ERS/ATS guidelines on
- definition, evaluation and treatment of severe asthma. Eur Respir J 2014; 43(2):343–73.
- 26. Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of
- 603 neutrophilic inflammation and increased sputum interleukin-8. Chest 2001; 119(5):1329–36.
- 27. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification
- using induced sputum. Respirology 2006; 11(1):54–61.
- 28. Taylor SL, Leong LEX, Choo JM, Wesselingh S, Yang IA, Upham JW et al. Inflammatory phenotypes in
- 607 patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol 2018;
- 608 141(1):94-103.e15.
- 29. Green RH, Pavord I. Stability of inflammatory phenotypes in asthma. Thorax 2012; 67(8):665–7.
- 30. Jatakanon A, Lim S, Barnes PJ. Changes in sputum eosinophils predict loss of asthma control. Am J Respir
- 611 Crit Care Med 2000; 161(1):64–72.
- 612 31. Deykin A, Lazarus SC, Fahy JV, Wechsler ME, Boushey HA, Chinchilli VM et al. Sputum eosinophil counts
- 613 predict asthma control after discontinuation of inhaled corticosteroids. J Allergy Clin Immunol 2005;
- 614 115(4):720–7.
- 615 32. Hamid Q, Song Y, Kotsimbos TC, Minshall E, Bai TR, Hegele RG et al. Inflammation of small airways in
- 616 asthma. J Allergy Clin Immunol 1997; 100(1):44–51.
- 617 33. Synek M, Beasley R, Frew AJ, Goulding D, Holloway L, Lampe FC et al. Cellular infiltration of the airways in
- asthma of varying severity. Am J Respir Crit Care Med 1996; 154(1):224–30.

619	34. Abdo M, Watz H, Veith V, Kirsten A-M, Biller H, Pedersen F et al. Small airway dysfunction as predictor and
620	marker for clinical response to biological therapy in severe eosinophilic asthma: a longitudinal observational
621	study. Respir Res 2020; 21(1):278.
622	35. Brinke A ten, Zwinderman AH, Sterk PJ, Rabe KF, Bel EH. "Refractory" eosinophilic airway inflammation in
623	severe asthma: effect of parenteral corticosteroids. Am J Respir Crit Care Med 2004; 170(6):601–5.
624	36. McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM et al. A large subgroup of
625	mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med 2012; 185(6):612–9.
626	37. Lefrançais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard J-P et al. IL-33 is processed into
627	mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A 2012; 109(5):1673–8.
628	38. Liu H, Lazarus SC, Caughey GH, Fahy JV. Neutrophil elastase and elastase-rich cystic fibrosis sputum
629	degranulate human eosinophils in vitro. Am J Physiol 1999; 276(1):L28-34.
630	39. Chan R, Misirovs R, Lipworth B. Repeatability of impulse oscillometry in patients with severe asthma. Eur
631	Respir J 2021.
632	40. Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent
633	asthma. Am J Respir Crit Care Med 1999; 160(5 Pt 1):1532–9.
634	41. Fahy JV, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with
635	asthma exacerbation. J Allergy Clin Immunol 1995; 95(4):843–52.
636	42. O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M et al. Efficacy and safety of a CXCR2 antagonist,
637	AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled
638	trial. The Lancet Respiratory Medicine 2016; 4(10):797–806.
639	43. Tliba O, Panettieri RA. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. J
640	Allergy Clin Immunol 2019; 143(4):1287–94.
641	44. Fleming L, Tsartsali L, Wilson N, Regamey N, Bush A. Sputum inflammatory phenotypes are not stable in
642	children with asthma. Thorax 2012; 67(8):675–81.
643	
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	

Table 1: Demographic and clinical characteristics for patients stratified based on sputum cell count

Characteristic	Eosinophilic	Mixed granulocytic	Neutrophilic	Paucigranulocytic	P -value
N baseline	45	43	62	47	-
Age, years	53 (49-59)	57 (50-65)	52 (41-63)	45 (33-55)	0.002
Sex, male%	47	47	47	49	0.99
Body mass index, kg/m ²	27.3 (24.6-29.6)	25.8 (23.0-29.3)	28.2 (24.3-32.0)	26.0 (23.5-29.0)	0.16
Severe asthma,%	67	65	50	21	< 0.001
Current smoker, %	4	2	14	6	0.12
Maintenance OCS use,%	27	35	26	4	0.001
OCS dose, mg	10.0 (6.8-13.1)	10.0 (5.0-10.0)	11.5 (9.4-20)	3.5 (2.7-4.3)	0.027
Controller ICS use, %	96	93	87	77	0.033
ICS dose, μg	500 (400-1000)	500 (400-1000)	500 (318-1000)	500 (250-500)	0.035
Biological therapy,%	15	19	14	4	0.14
Airflow obstruction, %	63	74	50	36	0.002
FEV1, %	71 (61-87)	78 (62-93)	83 (67-102)	96 (85-105)	<0.001
FVC%	101 (90-112)	106 (98-115)	105 (93-104)	110 (100-108)	0.12
FEV1/FVC, %	59 (53-70)	58 (52-67)	68 (55-75)	71 (66-79)	<0.001 [†]
ACT score	17.5 (11-22)	17.0 (14-21)	18.5 (13-22)	22 (10-24)	<0.001
Severe exacerbation,%	78	58	53	38	0.002*
Number of severe exacerbations	2 (1-4)	1 (0-4.5)	1 (0-3)	0 (0-1)	<0.001
Sputum cell count					
Eosinophils, %	16 (7-42)	7 (4-16)	0.3 (0-1.0)	0.2 (0-0.8)	<0.001 ^{†*}
Eosinophils, 10 ⁶ /ml	0.22 (0.08-1.8)	0.23 (0.12-0.59)	0.01 (0.0-0.04)	0 (0-0.1)	<0.001 ^{†*}
Neutrophils, %	30 (24-38)	68 (58-77)	74 (61-86)	30 (17-41)	<0.001*
Neutrophils, 10 ⁶ /ml	0.55 (0.30.1.4)	2.37 (1.1-4.1)	2.74 (1.4-5.2)	0.41 (0.19-0.71)	<0.001*
Macrophages, %	37 (18-54)	15 (9-24)	19 (10-31)	60 (50-72)	<0.001*
Macrophages, 10 ⁶ /ml	0.89 (0.44-1.6)	0.46 (0.25-0.88)	0.65 (0.38-1.3)	0.84 (0.58-1.4)	0.12*
Blood eosinophils, 10³/μl	410 (290-790)	430 (250-570)	130 (80-230)	180 (140-320)	<0.001 ^{†*}
Total serum IgE ku/l	158 (69-477)	165 (46-452)	82 (37-292)	93 (43-230)	0.068
FeNO, ppb	40 (22-77)	42 (25-56)	17.5 (11-28)	20 (14-32)	<0.001 ^{†*}

Values are presented as median and interquartile range. OCS: oral corticosteroids, OCS dose: prednisolone equivalent dose, ICS: inhaled corticosteroids, ICS dose: fluticasone equivalent dose, FEV1: forced expiratory volume in first second, FVC: forced vital capacity, ACT: asthma control test, FeNO: fractional exhaled nitric oxide. Airflow obstruction is defined as FEV1/FVC < LLN. Severe exacerbation: one or more severe exacerbations within 12 months before study visit.

P-values are from ANOVA, Fisher-exact or Kruskal-Wallis-Tests to indicate the statistical significance of the differences in measured parameters between the groups. The post-hoc analysis indicates significant differences (p<0.05) in the pairwise comparison as follows: † Neutrophilic vs. mixed granulocytic, * neutrophilic vs. eosinophilic.

Table 2: Lung function characteristics in asthma patients stratified longitudinally by sputum cell counts

Small airway dysfunction markers	Persistent eosinophilic (n=29)	Persistent Mixed (n=16)	Persistent Neutrophilic (n=43)	Non-persistent/ persistent pauci phenotypes (n=47)	P
FEV, I Baseline	2.48 (2.0-2.98)	2.14 (1.56-2.41)	2.58 (2.14-3.14)	2.98 (2.44-3.52)	<0.01
FU	2.26 (1.88-2.96)	2.17 (1.75-2.39)	2.56 (1.97-3.15)	2.97 (2.44-3.53)	<0.01
FEV1, %					
Baseline	83 (67-91)	76 (65-84)	82 (68-97)	92 (75-101	0.025
FU	81 (66-88)	80 (72-86)	83 (69-95)	95 (85-103)	<0.01
FEF ₂₅₋₇₅ , l					
Baseline	1.29 (0.86-178)	0.94 (0.65-1.32)	1.54 (0.82-2.16)	1.99 (1.34-2.78)	< 0.01
FU	1.22 (0.75-195)	0.92 (0.69-1.07)	1.29 (0.91-2.15)	1.90 (1.47-2.83)	<0.01
FEF ₂₅₋₇₅ , %					
Baseline	37 (27-60)	39 (25-49)	49 (28-72)	58 (49-84)	<0.01
FU	41 (25-54)	35 (29-45)	47 (33-67)	67 (47-83)	<0.01
FEF ₅₀ , %					
Baseline	39 (29-66)	34 (25-41)	46 (28-72)	58 (40-80)	< 0.01
FU	42 (24-55)	35 (23-43)	48 (31-63)	61 (47-87)	<0.01
R5-20, KPa/L per s					
Baseline	0.07 (0.03-0.18)	0.15 (0.09-0.23)	0.09 (0.05-0.18)	0.10 (0.07-0.14)	0.12
FU	0.08 (0.03-0.19)	0.19 (0.09-0.21)	0.10 (0.07-0.15)	0.08 (0.05-0.12)	0.012
Resonance frequency					
Baseline	14 (11-21)	20 (16-22)	15 (10-22)	16 (11-19)	0.22
FU	14 (10-20)	21 (17-23)	16 (12-19)	13 (10-16)	0.01
RV, %					
Baseline	126 (103-139)	126 (120-167)	125 (109-150)	110 (100-128)	<0.01
FU	129 (117-152)	144 (132-219)	125 (110-141)	114 (100-132)	<0.01
sReff, %					
Baseline	122 (94-154)	153 (109-216)	103(75-160)	94 (72-118)	<0.01
FU	118 (88-195)	160 (112-219)	100 (84-154)	88 (70-114)	<0.01 [†]
LCI					
Baseline	6.30 (5.85-6.90)	7.63 (6.35-8.42)	6.40 (5.70-7.30)	5.88 (5.44-6.50)	< 0.01
FU	6.81 (5.74-7.23)	7.20 (6.16-8.39)	6.57 (6.13-6.88)	6.0 (5.67-6.65)	0.015

Delta N2 /L Baseline FU	2.6 (1.9-3.3) 2.3 (1.6-2.8)	4.0 (2.7-6.0) 3.3 (2.3-5.3)	2.5 (1.3-4.5) 2.1 (1.4-3.1)	1.7 (1.3-2.5) 1.8 (1.3-2.9)	<0.01 0.019 [†]
Sputum cell count Eosinophils-BL, % Eosinophils-FU, % Neutrophils-BL, % Neutrophils-FU, %	15.9 (7.6-33.2) 7.4 (3.9 -21.2) 37.0 (24.2-42.1) 48.5 (33.8-64.9)	9.9 (3.8-17.1) 6.6 (4.6-17.1) 69.0 (60.0-77.0) 64.0 (60.0-69.0)	0.5(0.00-1.6) 0.9 (0.00-2.4) 74.0(61.0-83.0) 77.0 (65.0 -85.0)	0.4 (0.0-2.1) 0.5 (0.0-1.4) 43.0 (21.0-47.0) 42.0 (29.0-54.0)	<0.001 <0.001 <0.001 <0.001

Values are presented as median and interquartile range. FU: follow-up. FEF50% and FEF25–75: mean forced expiratory flow at 50% and between 25% and 75% of the forced vital capacity, R5-20: small airway resistance (total lung resistance – large airway resistance), X5: lung reactance at 5 Hz, RV: residual volume, sReff: specific effective airway resistance, LCI: lung clearance index from multiple breath washout, delta N2: the slope of phase III nitrogen single-breath washout.

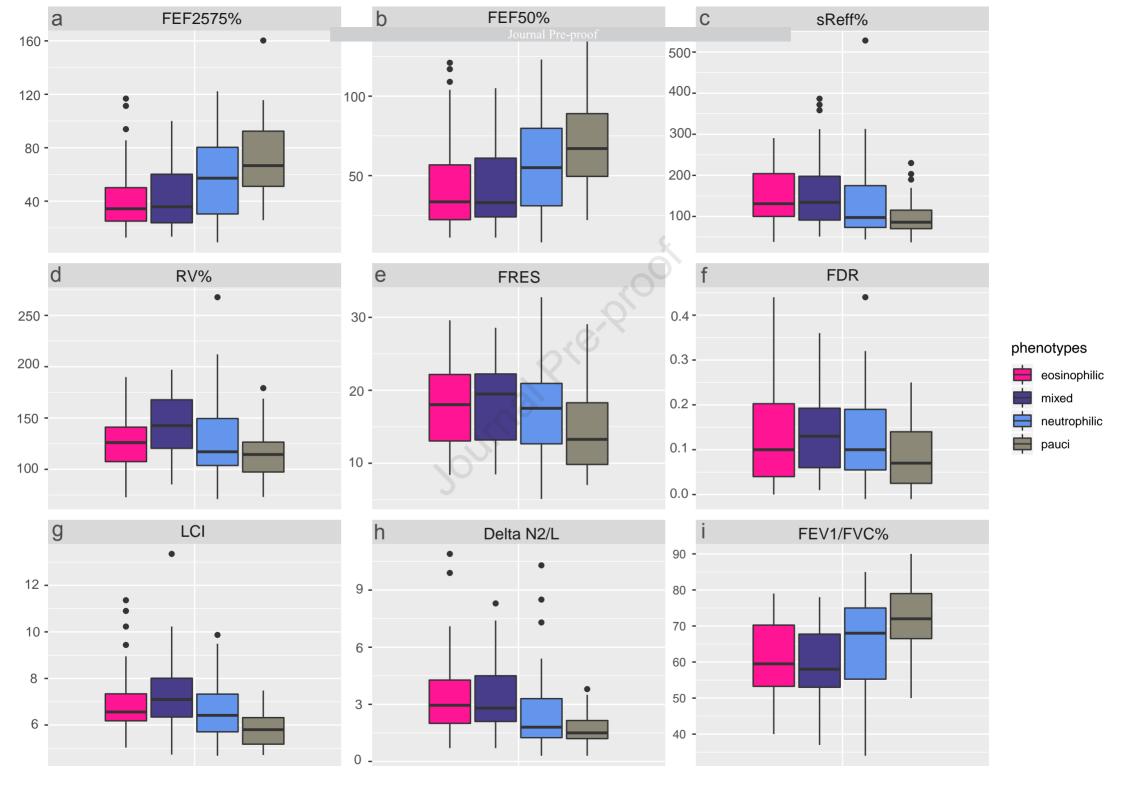

P-values are from ANOVA, Fisher-exact or Kruskal-Wallis-Tests to indicate the statistical significance of the differences in measured parameters between the groups. The post-hoc analysis indicates significant differences (p<0.05) in the pairwise comparison as follows: †: persistent neutrophilic vs. persistent mixed granulocytic, * persistent neutrophilic vs. persistent eosinophilic.

Table 3: Multivariate regressions of the change in sputum granulocytes as predictor of the change in lung function adjusted for asthma therapy

One-year Change in lung function measures	Change in sputum eosinophils		Change in sputum neutrophils		Model
	Standardized coefficient	P-value	Standardized coefficient	P-value	Multiple R ²
ΔFEV1%	-0.588	<0.01	-0.480	0.091	0.72
ΔFEF ₂₅₋₇₅ %	-0.439	<0.01	-0.264	0.21	0.74
ΔLCI%	0.264	0.23	-0.152	0.54	0.59
Δ Delta N2 %	0.081	0.63	0.034	0.90	0.54
RV%	0.414	0.045	0.410	0.17	0.61
sReff%	0.356	0.032	0.395	0.11	0.68
R5-20, KPa/L per s	0.255	0.384	0.159	0.74	0.43

FEV1: forced expiratory volume in first second, FEF25–75: mean forced expiratory flow between 25% and 75% of the forced vital capacity, R5-20: small airway resistance (total lung resistance – large airway resistance), X5: lung reactance at 5 Hz, RV: residual volume, sReff: specific effective airway resistance, LCI: lung clearance index from multiple breath washout, delta N2: the slope of phase III nitrogen single-breath washout.

Multivariate models were adjusted to age, gender, change ICS, change in OCS dose and to presence of anti T2- biological therapy

