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Abstract 21 

T cells are established contributors to the pathogenesis of atopic dermatitis (AD) and psoriasis, yet whether they are the key 22 

drivers or simply unwitting participants remains incompletely understood. Conversely, malignant T cells are the undisputed 23 

culprits of cutaneous T cell lymphoma (CTCL), a group of diseases that share key clinical, histopathological and molecular 24 

features with inflammatory skin disease (ISD). Here, we compare the pathogenesis of ISD and CTCL and discuss the resulting 25 

insights. Recurrent, skin-limited disease implicates skin-resident T cells (TRM) in both ISD and CTCL. In CTCL, malignant T cells 26 

recruit benign T cells into inflammatory skin lesions, a disease-amplifying function also proposed for pathogenic T cells in ISD. 27 

Mechanistically, cytokines produced by malignant T cells in CTCL and by pathogenic T cells in ISD, respectively, are likely both 28 

necessary and sufficient to drive skin inflammation and pruritus, which in turn promotes skin barrier dysfunction and 29 

dysbiosis. Therapies for ISD target T cell effector functions but do not address the chronicity of disease while treatments for 30 

CTCL target malignant T cells but not primarily the symptoms of the disease. By integrating our understanding of ISD and 31 

CTCL, important insights into pathogenesis and therapy can be made which may improve the lives of sufferers of both disease 32 

groups.  33 
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1. What do we know? 34 

• ISD and CTCL share key clinical and molecular features and T cells are at the heart of pathogenesis in both disease 35 

groups 36 

• ISD are increasingly well understood and amendable to targeted therapies whereas CTCL lacks efficient, let alone 37 

curative, therapeutic options. 38 

• Comparative analysis of ISD and CTCL provides insight into the pathogenesis of both disease groups 39 

2. What is still unknown? 40 

• What is the role of T cell-derived cytokines in cutaneous manifestation and progression of CTCL? Can lessons from 41 

cytokine blockade in ISD be transferred to novel CTCL treatment approaches? 42 

• Curative approaches in CTCL aim at eradicating malignant (skin-resident) T cells. Can similar approaches be applied 43 

to ISD with the aim of curing, rather than suppressing disease? 44 

• In early stage CTCL, few clonal malignant T cells cause infiltration of large amounts of bystander T cells, which are 45 

necessary for clinical disease manifestation. Could a minor population of potentially auto-antigen-specific, 46 

pathogenic T cells cause disease in ISD via similar mechanisms as in CTCL? 47 

• The signals and pathways that govern (pathogenic) T cell activation in ISD remain incompletely understood. Can 48 

insights into oncogenic signaling in malignant CTCL cells be transferred to pathogenic T cells in ISD to open up new 49 

therapeutic targets and opportunities? 50 

 51 

Abbreviations 52 

AD  Atopic dermatitis 53 
AHR  Aryl hydrocarbon receptor 54 
CTCL  Cutaneous T cell lymphoma  55 
DC  Dendritic cell 56 
EATL  Enteropathy-associated T cell lymphoma 57 
ISD  Inflammatory skin disease  58 
JAK  Janus kinase  59 
MALT  Mucosa-associated lymphoid tissue lymphoma 60 
MAPK  Mitogen-activated protein kinase 61 
MF  Mycosis fungoides 62 
MMAE  Monomethyl auristatin E 63 
PUVA  Psoralen plus UVA 64 
scRNA-seq Single cell RNA sequencing 65 
SOCS  Suppressor of cytokine signaling 66 
SS  Sézary Syndrome  67 
STAT  Signal transducer and activator of transcription proteins  68 
TCM   Central memory T cell 69 
TCR  T cell receptor 70 
TH2  T helper type 2 cell 71 
TRM  Resident memory T cells 72 
UVA  Ultraviolet light 73 

  74 
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Introduction 75 

Chronic inflammatory skin diseases (ISDs) comprise a wide range of cutaneous disorders that clinically manifest in variable 76 

combinations of erythema, plaques, scaling, pruritus, and pain. ISDs also accompany a variety of histopathological features, 77 

including epidermal thickening, spongiosis, parakeratosis and, near universally, T cell infiltration. The two most common T 78 

cell driven-ISDs are atopic dermatitis (AD) and psoriasis and, for the purposes of this review, ISD will refer to AD and psoriasis 79 

unless otherwise specified. Cutaneous T cell lymphoma (CTCL) encompasses a similarly heterogeneous collection of T cell 80 

malignancies of the skin. Arguably the best understood variants of CTCL are mycosis fungoides (MF) and Sézary syndrome 81 

(SS), which have distinct and overlapping phenotypes that are discussed in this review. ISD and CTCL demonstrate striking 82 

epidemiological, clinical, and molecular parallels and respond to similar treatments, despite being elicited by distinct causes. 83 

Drawing comprehensive parallels between ISDs and CTCL generates important insights into the pathogenesis of both disease 84 

groups that may both inform and inspire new therapeutic approaches. 85 

 86 

Clinical, epidemiological, and genetic parallels between ISD and CTCL 87 

Clinical parallels 88 

ISD and CTCL, in particular MF, share many basic skin morphologies (Figure 1). Both may present as erythematous patches, 89 

papules, and plaques, whereas only CTCL may develop skin tumors(1-3). Secondary morphologies may be eczematous or 90 

papulosquamous in nature in both disease groups. Thus, AD and psoriasis are at the forefront of the clinical differential 91 

diagnosis of MF. Erythrodermic CTCL, mostly caused by SS, may resemble primary or secondary erythroderma, which can also 92 

be observed in both AD and psoriasis(4). 93 

 Certain clinical features are typical for CTCL and distinguish them from ISDs. For instance, CTCL patches may be 94 

hypopigmented or hyperpigmented. Postlesional hyper- or hypopigmentation also occurs in ISD, but typically only after the 95 

inflammatory component of the lesion has resolved. MF tends to occur in non-sun-exposed areas, which may help to 96 

distinguish it from typical AD lesions on the flexor surfaces and typical psoriasis lesions on the extensor aspects of the knees 97 

and elbows(1, 2). The clinical presentation of MF is generally more variable than that of chronic ISD and tends to change 98 

morphology more substantially over the course of the disease (e.g. development of tumors and ulcerations). 99 

In terms of symptoms, lesions from both CTCL and ISDs, in particular AD and other forms of eczema, are often pruritic 100 

and pruritus is a key determinant of poor quality of life in both disease groups. Erythroderma in particular, either in SS or ISD, 101 

is associated with agonizing pruritus(1, 2). 102 

 103 

Epidemiological and genetic parallels between ISD and CTCL 104 

Patients with a history of ISD have an increased risk of developing CTCL(5). Psoriasis patients in particular have a strongly 105 

increased hazard ratio (up to HR >6)(6), but also severe AD is associated with non-Hodgkin-lymphoma, including CTCL(7, 106 

8).Especially early stage CTCL can be misdiagnosed as ISD, given its clinical and histological similarities, and this might explain 107 
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part of the epidemiological connection. However, even when taking this bias into account, the epidemiological link remains 108 

strong and prompts the search for additional explanations. These include common genetic background, chronic inflammatory 109 

environment in the skin, and long-term side effects of ISD treatment, as discussed below.  110 

The genetic background of both ISD and CTCL is increasingly well understood. Risk loci predisposing for psoriasis or 111 

AD are enriched for genes related to keratinocyte differentiation, innate immune signaling, cytokine mediated signaling, and 112 

T cell activation and differentiation(1, 9-11). Genetic alterations in CTCL comprise of copy number variations and single-113 

nucleotide variants that affect similar pathways, particularly T cell receptor (TCR) signaling and the nuclear factor kappa B 114 

(NF-κB) pathway, the MAP kinase pathway, and JAK–STAT signaling(3, 12). At the single gene level, CTCL shares genetic 115 

alterations with both psoriasis and AD in the STAT3 gene (Figure 2). STAT3 is a key mediator of T cell responses to 116 

interleukins(13), underscoring the importance of cytokines in the pathogenesis of both disease groups.  117 

Another putative mechanistic link between ISD and CTCL is chronic inflammation. Chronic inflammation can act as 118 

promotor of tumor development(14). Many cancers arise at sites of chronic infection or chronic inflammation(15), wherein 119 

inflammatory cells are thought to establish a microenvironment that drives the neoplastic process. Interestingly, in some 120 

murine models of CTCL, skin tumors only form in the setting of skin inflammation(16). Although the role of inflammation in 121 

driving CTCL in humans remains incompletely understood, links have been more firmly established in other types of 122 

lymphoma. Specifically, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, an indolent B-cell NHL arising in 123 

lymphoid infiltrates from H. pylori gastroduodenitis(17), and enteropathy-associated T cell lymphoma (EATL), a peripheral T 124 

cell lymphoma (PTCL) derived from intestinal intraepithelial lymphocytes of patients with longstanding celiac disease(18). In 125 

EATL, ongoing T cell activation and the inflammatory milieu in the intestinal epithelium causes the accumulation of genetic 126 

alterations in pathways related to lymphoma development. These include genes involved in cytokine signaling (JAK1, JAK3, 127 

STAT3, STAT5B, SOCS1), MAPK signaling (BRAF, KRAS), and chromatin modification (CREBBP), all of which are genetic 128 

vulnerabilities also found in CTCL. As in the case of ISD and CTCL, EATL shares a genetic background with its underlying 129 

inflammatory disease, celiac disease (e.g. variants in TNFAIP3)(18). Taken together, it is likely that ISD is linked to CTCL 130 

pathogenesis by shared underlying genetics and chronic T cell-driven skin inflammation(17). 131 

 132 

Pathogenetic parallels between CTCL and ISD 133 

T cells as major culprits in CTCL and ISD 134 

T cells are, by definition, the cause of cutaneous pathology in CTCL but they also play a central role in ISD(1-3). Indeed, the 135 

capacity of malignant CTCL clones to recapitulate the full clinical picture and symptoms of eczema or psoriasis underscores 136 

the remarkable pathogenic potential of dysregulated T cells in skin inflammation. Further evidence for a critical involvement 137 

of T cells in ISD includes the efficacy of cyclosporine in its treatment(19-21) and the HLA-association of disease(22, 23). 138 

Further, T cells make up a substantial part of the inflammatory infiltrate, their presence correlates with disease severity(24) 139 

and targeting T cell-derived proinflammatory cytokines efficiently restores skin homeostasis in AD and psoriasis(1, 2). 140 

Critically, a large body of animal research have demonstrated the sufficiency of T cells to drive AD- and psoriasis-like 141 
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phenotypes in mice and established cytokines as central to T cell effector function in inflammatory disease(25, 26). Thus, T 142 

cells may be proposed as the critical node of ISD, regardless of underlying genetics and other pathogenetic factors such as 143 

damage to the epithelium or skin dysbiosis(1-3). 144 

 145 

Skin resident T cells in CTCL and ISD 146 

Adult human skin harbors billions of nonrecirculating resident memory T (TRM) cells(27, 28). Most TRM in human skin are 147 

dermal CD4+ T helper cells, while the epidermis contains both CD4+ and CD8+ TRM. TRM are generated as a consequence of 148 

local skin infection, may persist in the absence of antigen, and provide rapid immune protection against local reinfection(29). 149 

Both CD4+ and CD8+ TRM are intricately linked to pathogenesis of both CTCL and ISD. 150 

Translational studies in CTCL patients have led to a model in which malignant T cells in MF express a TRM phenotype 151 

and a skin-homing central memory (TCM) phenotype in Sézary syndrome, respectively(28, 30). This model provides an elegant 152 

explanation for key clinical observations. The skin-sessile TRM phenotype of malignant MF cells explains why most patients 153 

have skin-limited disease with well-demarcated, stable inflammatory skin lesions that resolve under topical therapy but recur 154 

at the same location if treatment is stopped(28). Conversely, the TCM phenotype of malignant T cells in SS allows them to 155 

recirculate between the blood and skin, enter lymph nodes, and cause diffuse erythema of the skin, thus explaining the clinical 156 

hallmarks of SS (i.e. diffuse erythema, blood and lymph node involvement). The TRM-TCM model further explains why MF is 157 

primarily treated with skin-directed therapies whereas SS requires systemic treatment(31). However, this model does not 158 

account for the extensive diversity and plasticity of malignant T cells in CTCL with respect to their surface marker expression, 159 

maturation status, and function(32-34). Further, single cell analysis in MF patients suggest that malignant clones from skin 160 

may switch from a TRM phenotype to a TCM phenotype when they leave the skin and enter lymph nodes or blood(35). This 161 

indicates that malignant T cells are highly plastic and strongly respond to their microenvironment, a still understudied 162 

phenomenon in human skin immunology. Translational studies in CTCL patients hold the potential to address this 163 

phenomenon and to generate insights also applicable to ISD(35-37). 164 

 TRM are also intricately linked to pathology in ISD, a prototypical example being psoriasis. Pathogenic TRM cells exist 165 

in lesional, non-lesional and post-lesional skin of psoriasis patients, and their aberrant activation causes disease(38, 39). Other 166 

ISD in which TRM play a key role include fixed drug eruption(40), allergic contact dermatitis(41), and AD(42, 43). As in the case 167 

of MF, disease-causing TRM would help explain why many skin lesions of ISD resolve with therapy but reoccur in the same 168 

location once therapy is discontinued(29) or why patch-test reactions to contact allergens may flare-up in response to 169 

systemic allergen exposure(44). 170 

Therapeutic strategies aiming at curing rather than suppressing CTCL and ISD, respectively, will thus have to address 171 

the longevity of pathogenic TRM in the skin. Unless this population can be eradicated or fundamentally reprogrammed, disease 172 

will likely relapse(45). A better understanding of the cell of origin of malignant T cells in CTCL and their response to 173 

environmental cues will provide important insights into basic human T cell biology and spark new therapeutic developments 174 

in ISD. 175 

 176 

Jo
urn

al 
Pre-

pro
of



7 
 

 

Pathogenic and bystander T cells in CTCL and ISD 177 

A key unanswered question in ISD is the cause and nature of TCR activation.  Both AD and psoriasis have been proposed to 178 

be autoimmune diseases, but the identification of T cell autoantigens has proven challenging(46-48). It remains unclear 179 

whether autoreactive T cells found in psoriasis and AD are the primary cause of disease or a secondary autoimmune 180 

phenomenon as observed in other chronic inflammatory conditions(46, 49). T cells may also be responding to exogenous 181 

antigens, particularly in AD, where T cell reactivity to bacterial antigens and allergens have been reported(46, 48). 182 

Alternatively, disease-driving T cells in ISD might be activated without cognate antigens, an “innate” immune process known 183 

as bystander T cell activation. Bystander T cell activation relies on cytokines and other nonspecific, T cell-extrinsic factors and 184 

plays an important part in physiological immune responses, but also contributes to immunopathology(50, 51). Supportive of 185 

a bystander-driven process are TCR repertoire studies of ISD patients that have repeatedly found more polyclonal T cells in 186 

lesional AD and psoriatic skin compared to clinically resolved skin(42, 52, 53). Conversely, other studies have observed a more 187 

restricted, oligoclonal TCR repertoire, particularly in psoriasis, suggestive of antigen-driven T cell activation(52, 54). However, 188 

the lack of a consistent and dominant signature TCR repertoire across multiple patients and studies in ISD points to a relevant 189 

role of bystander T cells in mediating skin inflammation in ISD. 190 

To study bystander T cell activation in skin inflammation, the interplay between malignant T cell clones and benign 191 

T cells in CTCL may provide additional insight. Of note, it has been established that clinically visible inflammation in CTCL is 192 

dependent on activation of benign T cells, and that clinical improvement post therapy is linked to changes in the benign T cell 193 

compartment, but not to malignant T cell reduction(55). This is additionally supported by recent scRNA-seq data 194 

demonstrating the presence of phenotypically distinct CTCL clones in normal-appearing skin of patients with advanced-stage 195 

MF(37). Thus, clinical manifestations of CTCL appear to be mostly mediated by bystander-activated T cells, as may be the case 196 

in ISD(42, 52, 53). In CTCL, benign T cells are activated either by malignant T cell-derived cytokines or via immunological 197 

synapses involving dendritic cells (DCs) and OX40-OX40L interactions(55, 56). DCs and OX40 signaling also contributes to T 198 

cell activation in AD and psoriasis where therapeutics targeting of DC-T cell interactions are under clinical investigation(1, 57). 199 

Whether in turn such immunological synapses provide survival signals to malignant T cells in CTCL or autoreactive T cell in 200 

ISD, respectively, remains to be investigated. 201 

In light of these recent insights, it may be time to revisit a major outstanding question remains regarding plasticity 202 

of CTCL, particularly during disease progression. Historically, the differential detection of type 2 cytokines at different stages 203 

led to the notion that a shift towards “type 2” was associated with malignancy(58). However, this theory is confounded by 204 

the evidence that early CTCL is controlled, at least in part, by cytotoxic T cells as part of an immune surveillance, which is 205 

diminished in later stages of disease(59). As such, the cytokine milieu changes with advancing CTCL can alternatively be seen 206 

from the perspective of  the bystander T cells, from an initial cytotoxic response that, as it becomes exhausted, “unmasks” 207 

the intrinsic type 2 cytokine-driving nature of these cells. These competing hypotheses will be assessed/resolved through 208 

detailed and longitudinal assessments of bystander and malignant T cells within the same patient at different stages of 209 

disease. 210 
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If indeed a minor population of pathogenic T cells amplifies its effects via bystander T cell activation in both ISD and 211 

CTCL, these cells and their products would be prime targets for therapeutic intervention. Such a view is reminiscent of the 212 

concept of “pathogenic” versus “conventional” Th cell subsets, which posits that human inflammatory disease is caused by 213 

distinct subpopulations of allergen- or autoantigen-specific pathogenic Th cells(60, 61). Both pathogenic TH17 (pTH17) and 214 

pathogenic TH2 cells (variably abbreviated pTH2, TH2A, THpath2) have been described and are distinguished from their 215 

conventional counterparts by unique differentiation requirements, surface phenotypes, and functional attributes(62-65). 216 

Applying this concept to CTCL, malignant CD4+ T cells in MF might emulate pTH2 cells and act as orchestrators of skin 217 

inflammation. In fact, there is an intriguing phenotypic overlap between malignant T cells, skin-resident TRM from healthy 218 

skin, and pTH2 cells(28, 30, 60, 66) (Table 1). These populations share expression of distinct cytokines (IL13, IL22), chemokine 219 

receptors (CCR4), co-inhibitory receptors (TIGIT, LGALS3) and transcription factors (TOX)(35, 37, 60, 66, 67). Noteworthy, skin 220 

TRM with a TH2 phenotype remain elevated in formerly lesional skin of treated AD patients, consisent with a “pathogenic T 221 

cell” designation(36). While the importance of this similarity remains to be elucidated, it suggests that CTCL cells, CD4+ TRM 222 

and pTH2 cells share a tissue-differentiation program. This program is likely the result of the skin microenvironment(60, 64) 223 

and its disruption might prove a valuable therapeutic approach in both ISD and CTCL. 224 

 225 

T cell-derived cytokines as key mediators in CTCL and ISD 226 

Cytokines play a central pathogenic role in ISD, as evidenced by the impressive effect of cytokine blockade in psoriasis and 227 

AD(1, 2). Most of these pathogenic cytokines are either produced directly by T cells (i.e. IL-13 and IL-31 in AD; IL-17A and IL-228 

17F in psoriasis) or act “upstream” and regulate pathogenic function via binding to receptors on T cells (i.e. IL-23 in psoriasis). 229 

The cytokine(s) acting “upstream” of TH2 cells in AD, presuming they exist, have yet to be identified. Proposed cytokines 230 

include IL-33, IL-25, TSLP, IL-1a and IL-18 (Figure 2) (68-72). T cells of varying subsets express receptors for these cytokines, 231 

all of which can be produced in the skin(69), and trials blocking each of these cytokines in AD are ongoing. Collectively, these 232 

observations firmly place T-cell-activating and T-cell-derived cytokines as central drivers of ISD. 233 

  Several questions regarding the involvement of cytokines in ISD remain. First, due to the transient nature of cytokine 234 

expression in T cells and detection limitations, it is difficult to investigate the expression patterns and hence the involvement 235 

of certain T cell-derived cytokines such as IL-2 or IL-4(73). Thus, their role must be inferred, primarily from clinical response 236 

to cytokine blockade. For example, the apparently comparable Phase 3 response of AD to dupilumab(74) and lebrikizumab 237 

(NCT04146363; NCT04178967) suggests that IL-13 is predominant over IL-4 in driving AD, but in the absence of head-to-head 238 

trials this remains speculative. Moreover, the absence of IL-4 from AD skin, as observed in tissue transcriptomics studies(75), 239 

does not rule out a role for this cytokine within secondary lymphoid organs, which may be promoting the expansion of 240 

disease-driving T cells in ISD or of malignant clones in CTCL over the long-term. Second, questions remain as to whether 241 

different cytokines act in additive, complementary or synergistic fashion. For example, do IL-13 and IL-31 act together to drive 242 

AD and IL-17A with IL-17F to drive psoriasis? Or there are different endotypes of ISD, in which one cytokine predominates 243 

over the other depending on the individual? Finally, additional T cell-derived cytokines of largely unknown function have been 244 

identified in ISD, including GM-CSF, IL-24, IL-26 and IL-32(36, 75-78), but their contribution to disease remains largely 245 
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unexplored. While understanding the role of cytokines in ISD requires more investigation, current data collectively shows 246 

that pathogenic T cells are the central drivers of ISD, and T cell-derived cytokines are likely both necessary and sufficient for 247 

disease. 248 

In CTCL, evidence suggests that malignant T cells use cytokines to foster an inflammatory and tumorigenic milieu 249 

that mediate the clinical manifestation of CTCL(3, 79). Both early but especially advanced stages of CTCL are characterized by 250 

a TH2 bias, which is thought to be intrinsic to malignant T cells and then imposed on non-clonal benign T cells via TH2 251 

cytokines(56). The concept of a TH2 bias in CTCL helps explain several pathological and clinical hallmarks of CTCL, including 252 

impairment of skin barrier function, dysbiosis, propensity for infections, eczematous skin lesions, itch and eosinophilia(3, 79). 253 

The central role of cytokines in mediating ISD further supports this notion and opens up new therapeutic avenues for CTCL 254 

treatment. In particular, targeting of TH2 cytokines such as IL-4, IL-13, and IL-31 appears promising. However, clinical 255 

outcomes in CTCL patients treated with dupilumab are controversial. A number of case reports show progression of disease 256 

under dupilumab(80-83), while others show control of itch and reversal of TH2 bias(84-86). Further research is necessary to 257 

better understand which cytokines should be targeted in CTCL and under which conditions. In addition to TH2 cytokines, 258 

cytokines such as IL-15(87, 88), IL-21(35), IL-22(89), IL-26(88), and IL-32(35, 88) might also serve as targets in CTCL. 259 

Howsoever, cytokine blockade appears as an understudied opportunity in CTCL therapy, given the pivotal role of cytokines in 260 

mediating signs and symptoms of skin disease, in shaping the tumor microenvironment, and in controlling T cell biology. 261 

 262 

The skin microbiome in ISD and CTCL 263 

The skin microbiome in ISD and CTCL shows considerable abnormalities and contributes to skin inflammation and clinical 264 

burden in both. For instance, colonization with Staphylococcus aureus in lesional skin is associated with disease severity and 265 

flares in both ISD and CTCL(1, 90, 91). Conversely, antiseptic or antibiotic treatments can improve clinical signs and symptoms 266 

of AD and CTCL, respectively(92-95), strongly suggesting that the microbiome participates in driving or amplifying skin 267 

inflammation. Shared host-microbiome interactions might thus be at play in ISD and CTCL. However, whether these 268 

microbiotal abnormalities are secondary to epidermal barrier defects or secondary to skin inflammation remains unknown. 269 

In AD, skin dysbiosis has been attributed to epithelial barrier defects caused by genetic deficiencies in structural proteins such 270 

as filaggrin(96). However, genetic defects in skin barrier genes are unlikely the reason for dysbiosis in CTCL, as germline 271 

mutations in skin barrier proteins are not enriched in CTCL patients(3) (Figure 1). Furthermore, the prevalence of atopy - a 272 

proxy for genetic predisposition for epithelial barrier defects - in CTCL is comparable to that of the general population(97). 273 

Thus, microbiotal dysbiosis in CTCL might be the direct consequence of malignant T cell-driven skin inflammation and a 274 

dysregulated cutaneous T cell compartment appears to be sufficient to cause barrier dysfunction and consequent dysbiosis 275 

in both CTCL and ISD. Indeed, lesional psoriasis skin shows similar downregulation as AD of key barrier proteins such as FLG, 276 

and LOR, despite a lack of genetic association with these genes(98, 99) and topical steroids alone are capable of reducing S. 277 

aureus colonization in lesional AD skin(100). In addition to inflammation, cutaneous immune deficiency caused by 278 

dysregulated T cells might also contribute to dysbiosis, as patients with primary immunodeficiency commonly suffer from 279 
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skin disease, including AD, and this has been linked to microbial skin dysbiosis(101, 102). Overall, these observations in ISD 280 

and CTCL underscore the central role of skin T cells in regulating epithelial barrier integrity and the skin microbiome. 281 

 282 

T cell-driven pruritus in ISD and CTCL 283 

The mechanisms of T cell-driven itch are incompletely understood, particularly in humans, but itch is largely considered to be 284 

histamine-independent in ISD. Whether T cells produce classic ligands for direct activation of neurons (i.e. via ion channels or 285 

GPCRs) has not been well explored, but the role of T cell-derived cytokines in driving itch has been firmly established(103). In 286 

particular, IL-13 and IL-17 are clearly itch-drivers in AD and psoriasis, respectively, evidenced by the early reduction of itch 287 

with anti-IL-4/13R and anti-IL-13 in AD and IL-17 blockade in psoriasis(104, 105). Of these, IL-13 would appear to be the most 288 

potent mediator of itch, based on the higher intensity of itch in AD compared to psoriasis. Notably, dupilumab can also be 289 

very effective at alleviating itch in CTCL(84). Collectively, these data strongly implicate T cell-derived IL-13 as a key mediator 290 

of itch in CTCL and ISD. 291 

The mechanism of cytokine-driven itch remains underexplored. One possibility is that inflammatory cytokines reduce 292 

the threshold of activation of itch neurons. This has been demonstrated in mice for type 2 cytokine signaling, in which IL-4 293 

potentiated a clinical response to a normally subclinical dose of histamine(106). But additional mechanistic explanations exist, 294 

and the propensity of transgenic mice over-expressing cytokines to drive pruritus extends beyond IL-4 and IL-13(107, 108) to 295 

include IL-22(109), IL-31(110), TSLP(111) and IL-18(112). How these cytokines elicit itch is not entirely clear. For IL-13, IL-31, 296 

IL-17 and TSLP, the receptors are expressed by itch neurons, and a direct effect can be envisaged. Conversely, IL-18 and IL-23 297 

likely cause itch indirectly via activation of T cells. How IL-22 overexpression leads to itch in mice remains even less clear, 298 

since the IL-22 receptors are primarily expressed by keratinocytes. This observation, along with the partial response to anti-299 

IL-22 in AD patients(113), suggests a capacity of epidermal keratinocytes to directly drive itch. This is consistent with other 300 

mouse models in which epidermally-confined genetic dysregulation that also evoke AD-like phenotypes(114-116), and is 301 

indirectly supported by the GWAS associations of AD with epidermally-expressed genes(22). Collectively, these data raise the 302 

prospect that T cell-derived cytokine-driven itch in ISD is not necessarily acting directly via itch neurons but may additionally 303 

(or predominantly) act via keratinocytes and potentially other cells, including antigen presenting cells. These observations 304 

also raise the prospect that other T cell- and CTCL-derived members of the IL-20 family may play a role in itch via the 305 

keratinocyte, particularly IL-24 and IL-26. 306 

 307 

Tissue and serum biomarkers of ISD and CTCL 308 

Biomarkers serve important functions in clinical and research settings, informing prognosis and management at the patient 309 

level as well as disease understanding in research and in clinical trials. Today, biomarkers are not mainstay tools in the 310 

management of ISD or CTCL, but hold huge potential for better management of both. As biomarkers in ISD have been 311 

comprehensively reviewed elsewhere(117, 118), we focus here on selected biomarkers and potential learnings from CTCL. 312 
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Tissue biomarkers. In ISD, tissue biopsies are not routinely stained for markers, although biopsies are regularly taken 313 

to confirm diagnosis. In contrast, CTCL biopsies are stained for various molecules of interest, including CD3, CD4, CD30, Ki67 314 

and TIA1. These biomarkers are not yet relevant for management of ISD but may inform research endeavors. For example, 315 

CD30 is a maker of T cell activation, and shown to be elevated on pTH2 cells in AD(60), meaning that it could be integrated 316 

into CITE-sequencing(119) or spatial sequencing(120) experiments to identify activated T cells vs bystander T cells in ISD. 317 

Similarly, TIA1 is a likely marker of activated CD8 T cells, is upregulated in psoriasis(121) and lichen planus(122), and may help 318 

delineate CD8 involvement in ISD and CD8+ MF. 319 

Systemic biomarkers. The most validated blood biomarkers in ISD are molecules which are produced in large 320 

quantities in response to inflammatory cytokines, such that they are sufficiently abundant to diffuse from the skin to the 321 

blood. In the context of clinical trials ISD, two of the most validated biomarkers are CCL17 (TARC) in AD and beta-defensin 2 322 

(BD-2; DEFB4B) in psoriasis, which serve as simultaneous biomarkers of cytokine signaling (type 2 and type 17, respectively) 323 

and disease burden(123, 124). CCL17 is also elevated in CTCL(125), consistent with the TH2 bias in CTCL, and might serve to 324 

monitor therapy success and repolarization of the tumor microenvironment towards an anti-tumor type 1 milieu.  325 

In CTCL, systemic biomarker endeavors focus on identifying the malignant clones using flow cytometry, an approach 326 

greatly aided by the advancements in multiparametric flow cytometry(126). Future assessments in ISD may similarly focus on 327 

the pathogenic T cells, particularly if the therapeutic intervention is aimed at reducing or eliminating them..  Multiparametric 328 

flow cytometry in PBMCs from ISD patients identified specific T cell subsets changes unique to AD relative to healthy 329 

volunteers and psoriasis patients, which highlight potential assays for monitoring disease response(127). 330 

Endotyping. On the premise that the better defined the patient, the more effectively one can treat their disease, 331 

there are ongoing endeavors to identify the different endotypes of disease and their distinct response to treatment. While 332 

plaque psoriasis is relatively homogeneous disease with high response rates to blockade of a single cytokine (e.g. IL-17 or IL-333 

23), the subgrouping of AD patients into clinically meaningful endotypes has remained elusive. Historically, AD has been 334 

grouped into “extrinsic” (presence of allergy) and “intrinsic” (no atopy), with serum IgE serving as the molecular arbiter of 335 

the two(128). Later, molecular markers such as the presence of a FLG mutation have been introduced. , however no clear 336 

relationship to therapy response has been found so far. More recently, there have been efforts to endotype AD 337 

biochemically(129, 130), with one group reporting 4 AD subgroups based on serum proteins(131). Yet, how all these 338 

endotypes relate to treatment response remains largely unknown(132, 133). The question remains whether non-responders 339 

to a targeted therapy (e.g. cytokine blockade) comprise a definable subgroup or whether they merely sit at the more severe 340 

end of a spectrum of disease, possibly driven by quantitative variations in cytokine levels but otherwise clinically 341 

indistinguishable. Further research in ISD endotyping is needed and will likely lead to a deeper cellular and molecular 342 

understanding of the pathogenic T cells, both in the circulation and within the skin. From this, lessons may be transferrable 343 

to clinical subtyping and biomarker development in CTCL. 344 

 345 
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Therapeutic consequences 346 

Following the success of cytokine blockade in ISD, dozens of drugs are being evaluated as potential therapeutics in ISD, the 347 

most progressed of which are anti-cytokine antibodies and JAK inhibitors(1, 2). Psoriasis has seen the advancement of 348 

particularly efficacious therapies in the form of anti-IL-17 and anti-IL-23 antibodies and our therapeutic armamentarium is 349 

even further expanded with the advent of oral allosteric TYK2 inhibitors (e.g. deucravacitinib)(2). In contrast, in AD, there has 350 

yet to be an antibody that demonstrates superiority over dupilumab, and the (conventional, non-allosteric) JAK inhibitors, 351 

while effective, accompany safety concerns. Additional, early-stage therapeutics in AD seek to interfere with T cell re-352 

circulation (e.g sphingosine-1-phosphate receptor 1 modulators; NCT04162769; NCT04684485), skin homing (CCR4 inhibitor; 353 

NCT04271514), or T cell activation, either directly (anti-OX40L-antibody; NCT05131477) or via Treg expansion (IL-2 conjugate; 354 

NCT04081350). Nevertheless, none of these ISD therapies are expected to eliminate the pathogenic T cells. The following ISD 355 

therapies might conceptually be applied to CTCL: 356 

JAK inhibitors: Based on the genetic alterations in CTCL, JAK inhibition appears promising. In malignant T cells, the 357 

JAK-STAT pathway is constitutively active regardless of whether its constituents are affected by mutations(134). Inhibition of 358 

the JAK-STAT pathway leads to apoptosis of CTCL cells in vitro(135, 136) and to sensitization to other drugs such as histone 359 

deacetylase inhibitors.(137) Yet, it is difficult to predict the clinical efficacy and long-term effects of JAK inhibitors in CTCL, as 360 

they are likely to impact the anti-tumor immune response and may trigger escape mutations. Topical JAK inhibitors(138) may 361 

potentially impact skin TRM survival and thus malignant T cell survival in MF, based on the potentially critical role for common 362 

gamma chain signaling in maintenance of memory T cells(139). 363 

Aryl hydrocarbon receptor (AHR) modulators(140, 141): Topical AHR modulators may potentially impact TRM 364 

survival in the skin, based on their effects on human and murine T cells in vitro(142). 365 

Anti-OX40L-antibody: In CTCL, T cell activation via immunological synapses involving DCs and OX40-OX40L have 366 

been proposed to provide tumorigenic signals(55, 56).  Thus, the anti-OX40L monoclonal Antibody (KY1005) being developed 367 

in AD might prove beneficial in CTCL as well.  368 

CCR4 inhibitor: RPT193 is an oral small molecule CCR4 antagonist under clinical trials in AD. It is thought to block 369 

recruitment of TH2 cells into and retention of TRM in skin. Given the important expression of CCR4 on malignant T cells(28) 370 

and the solid clinical efficacy of the anti-CCR4 antibody mogamulizumab in CTCL, application of CCR4 inhibitors in CTCL 371 

appears promising.  372 

In contrast to therapies in ISD, therapies for CTCL ultimately aim at eliminating the cancerous T cells, particularly in later 373 

stages of disease. A wide variety of topical, physical, and systemic therapies are used in CTCL, the vast majority of which lack 374 

curative potential(3). Some insights from CTCL therapy studies are, however, of interest for therapeutic development in ISD 375 

as well. 376 

PUVA: In psoralen plus ultraviolet A (UVA) light (PUVA) therapy, patients ingest or topically apply 8-methoxypsoralen 377 

and then are exposed to UVA light. PUVA is an effective treatment for MF and for ISDs including psoriasis and AD, albeit with 378 

the risk of inducing non-melanoma skin cancer(143). Interestingly, PUVA is capable of eradicated malignant T cells in low-379 
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burden MF patients(55), suggesting that chemo-phototherapy regimens might be adapted for curative approaches in ISD, 380 

aiming to deplete the pathogenic T cells in lesional skin. 381 

Anti-CD52 (alemtuzumab): T cell-depleting antibody that is effective but accompany significant risk of infection, 382 

autoimmune reactions and other side effects. 383 

Anti-CD30 (Brentuximab vedotin): An antibody-drug conjugate, in which anti-CD30 has been linked to Monomethyl 384 

auristatin E (MMAE), a potent anti-mitotic compound, for the depletion of CD30+ T cell lymphoma cells, including CTCL(144). 385 

MMAE has been conjugated to other antibodies for the treatment of pancreatic, breast, ovarian and urothelial cancers, as 386 

well as B cell malignancies, and is often associated with toxicities (most notably peripheral neuropathy) irrespective of the 387 

antibody it is conjugated to(145). 388 

Anti-CCR4 (mogamulizumab): An afucosylated monoclonal antibody for enhanced antibody-dependent cellular 389 

cytotoxicity of CTCL cells in both MF and SS(146). The afucosylation may overcome the challenge of tissue-level depletion of 390 

T cells reported in alemtuzumab-treated patients(28). Clinical response is likely augmented by the concomitant depletion of 391 

CCR4+ regulatory T cells (i.e. an immuno-oncology-mediated effect), which accompanies toxicity (most frequently skin 392 

rashes)(147). 393 

Currently, there is a dichotomy between therapies for ISD that aim to suppress T cell-driven inflammation versus 394 

therapies for CTCL that seek to eliminate the cause of disease. However, both disease spheres might profit from one another, 395 

with cross-fertilization of pathogenetic concepts and therapeutic approaches becoming more and more relevant as our 396 

understanding of the diseases grows. Although the toxicity profile of current, broad-acting anti-T cell antibodies makes them 397 

poorly suited for ISD, they nevertheless demonstrate the feasibility of T cell elimination as a therapeutic option, which can 398 

be expected to evolve with time. Additional potential strategies for directly targeting T cells include radioligand therapy(148), 399 

antibody-siRNA conjugates(149), CD3 bi-specific antibodies(150), CAR T cells(151), drugs targeting T cell metabolism(152) and 400 

transcription factor inhibition, including novel STAT3-degraders(153). As our capacity to target malignant and pathogenic T 401 

cells become safer and more refined, they will raise the inexorable question: Instead of merely treating CTCL and ISD, can we 402 

cure it? 403 

404 
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Table 1: Genes commonly expressed by pathogenic TH2, TRM, and malignant CTCL cells 789 

 790 
  791 

Category Gene Name Role in type 2 inflammation Putative role in CTCL 

Cytokine 

receptor 

IL9R Interleukin 9 

receptor 

(CD129) 

- IL-9R signaling promotes survival, 

proliferation and cytokine production in 

TH2 cells(63, 154, 155) 

 

- May promote tumor cell growth(156, 

157) 

- May inhibit anti-tumor 

immunity(156, 157) 

Surface 

receptors 

TIGIT T cell 

immunoreceptor 

with Ig and ITIM 

domains 

- Inhibitory receptor on T cells(158, 159) 

- Ligation enhances Th2 function(160) 

 

- May promote Th2 bias in malignant T 

cells while suppressing anti-tumor 

immunity(161) 

LGALS3 Galectin 3 - Induces keratinocyte 

hyperproliferation(162) 

- May promote long-term survival of 

TRM(163) 

- May participates in epithelial barrier 

disruption(162) 

- May promote chemoresistance to 

genotoxic agents(164) 

Chemokine 

receptor 

CCR4 CC chemokine 

receptor 4 

 

- Ligand for CCL17 and critical for skin-

homing and skin-residency of T 

cells(165) 

- Highly expressed on Th2 and Treg 

cells(166) 

- CCL17-CCR4 interactions may 

promote epidermotropism of 

malignant T cells(166) 

- CCR4+ Treg cells may suppress cancer 

immunity  

CCR8 CC chemokine 

receptor 8 

 

 

- CCR8+ TH2 cells express high levels of 

cytokines and are pathogenic in models 

of type 2 skin inflammation(167) 

- CCL18 (ligand of CCR8) is highly 

upregulated in AD(75, 168) 

- CCL18 expression correlates with 

disease severity in CTCL(169) 

- CCR8-CCL18 interactions recruit Th2 

cells into CTCL lesions(55) 

Cytokines IL9 Interleukin 9 - Autocrine/paracrine growth and 

activation factor for Th2 cells(63, 154) 

- Induces secretion of proinflammatory 

mediators by mast cells(154) 

- Promotes tumor cell growth(156, 

157) 

- Inhibits anti-tumor immunity(156, 

157) 

IL13 Interleukin 13 - promotes skin barrier disruption, 

immune cell recruitment, itch, and 

tissue remodeling(170) 

 

- promotes skin barrier disruption, 

immune cell recruitment, itch, and 

tissue remodeling 

- may function as autocrine/paracrine 

growth factor in malignant T 

cells(171) 

IL22 Interleukin 22 - inhibits epidermal differentiation(172) 

- promotes recruitment of immune 

cells(172) 

- promotes tissue remodeling(173) 

- Promotes epidermal hyperplasia and 

migration of CCR6+ cells such as 

Langerhans cells into lesional 

skin(89) 

- May promote tissue remodeling(173) 

Transcriptional 

regulator 

TOX Thymocyte 

selection 

associated high 

mobility group 

box 

- Induces transcriptional program 

associated with T cell exhaustion(174) 

- Prevents TCR overstimulation of T cells 

and activation-induced cell(175) 

- Highly expressed in skin TRM  

- may promote TCR-signal independent 

survival and prevent apoptosis in 

malignant T cells(176) 

- may promote malignant T cell 

metabolism via mTORC1 

activation(177) 
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FIGURE LEGEND 793 
 794 

Figure 1: Clinical presentation of selected cases of cutaneous T cell lymphoma, atopic dermatitis, and 795 

psoriasis. 796 

Overlapping clinical features between CTCL, psoriasis, and atopic dermatitis 797 

(A, B) Plaque psoriasis. (C, D) Plaque-type mycosis fungoides. (E) Atopic dermatitis. (F) Allergic contact eczema 798 

(G, H) Patch- and plaque-type mycosis fungoides. (I) Eczematous plaque of mycosis fungoides 799 

 800 
 801 

Figure 2: Genetic alterations in CTCL and susceptibility loci associated with atopic dermatitis or psoriasis. 802 

Venn diagram intersecting genes found to be mutated in CTCL(3) (blue) with genes associated with psoriasis,9-11 803 

(green) and atopic dermatitis(1) (red) by GWAS.  804 

 805 

Figure 3: Signaling pathways that regulate inflammatory cytokine production by pathogenic and malignant T 806 

cells in ISD and CTCL. 807 

 Cytokine expression is controlled by signaling through NF-kB inducers (magenta), the JAK-STAT pathways (red), 808 

and via TCR signaling (light blue). In CTCL, mutations within these pathways bypass the requirement for external 809 

signals. 810 

 811 
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