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Simple Summary: In this manuscript, we present a statistical model for reliable and early prediction
of treatment failure in patients with diffuse large B-cell lymphoma. The model combines measurable
parameters—namely, the metabolic tumor volume and the metabolic heterogeneity, from baseline
PET/CT with the presence or absence of mutations in SOCS1 and CREBBP/EP300 and represents a
promising tool for the design of clinical trials focused on tailoring treatment to the individual risk.
According to our bioinformatics analysis, mutation profiling may not be needed in patients with
high-risk PET/CT metrics. Hence, the proposed approach may help optimize economic resources
avoiding costly, and likely unnecessary, DNA analysis in many patients.

Abstract: Accurate estimation of the progression risk after first-line therapy represents an unmet
clinical need in diffuse large B-cell lymphoma (DLBCL). Baseline (18)F-fluorodeoxyglucose positron
emission tomography/computed tomography (PET/CT) parameters, together with genetic analysis
of lymphoma cells, could refine the prediction of treatment failure. We evaluated the combined impact
of mutation profiling and baseline PET/CT functional parameters on the outcome of DLBCL patients
treated with the R-CHOP14 regimen in the SAKK38/07 clinical trial (NCT00544219). The concomitant
presence of mutated SOCS1 with wild-type CREBBP and EP300 defined a group of patients with
a favorable prognosis and 2-year progression-free survival (PFS) of 100%. Using an unsupervised
recursive partitioning approach, we generated a classification-tree algorithm that predicts treatment
outcomes. Patients with elevated metabolic tumor volume (MTV) and high metabolic heterogeneity
(MH) (15%) had the highest risk of relapse. Patients with low MTV and favorable mutational profile
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(9%) had the lowest risk, while the remaining patients constituted the intermediate-risk group (76%).
The resulting model stratified patients among three groups with 2-year PFS of 100%, 82%, and 42%,
respectively (p < 0.001).

Keywords: PET/CT; mutational profile; DLBCL; lymphoma; prognostic index

1. Introduction

Diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), is the most
frequent aggressive lymphoid malignancy in adult patients, accounting for nearly 30% of
non-Hodgkin lymphomas (NHL) [1]. The addition of the anti-CD20 monoclonal antibody
rituximab (R) to standard first-line chemotherapy with cyclophosphamide, doxorubicin,
vincristine, and prednisone (CHOP) has improved patient survival [2]. However, about
35–40% of patients either fail to respond to this treatment or, after a temporary remission,
eventually relapse [3]. Therapeutic opportunities for patients with refractory or recurrent
disease are limited and their outcome depends on many factors including the response to
first-line treatment, the length of the remission, and the possibility to receive high-dose
chemotherapy supported by autologous stem cell transplant (ASCT). Overall, less than
one-third of patients are alive 4 years after relapse [4,5]. Nowadays, additional promising
treatments, including chimeric antigen receptor (CAR) T-cell therapy, polatuzumab vedotin,
and T-cell-engaging bispecific antibodies, have been developed for chemotherapy-resistant
lymphomas, allowing cures even in highly pretreated patients [6–11]. Thus, early recogni-
tion of the high-risk patients destined to relapse after first-line treatment could optimize
the therapeutic strategies.

In the past few decades, great efforts have been made to identify reliable prognostic
markers. Using a score based on the age of the subjects, the stage of the disease, the number
of extra-nodal sites, the performance status, and the LDH level, the International Prognostic
Index (IPI) and its updated versions—revised IPI (R-IPI) and NCCN enhanced-IPI—allow
the separation of patient subsets with different prognosis [12–14]. Their easy availability
makes these indices widely used [15]. However, the incorporation of further information
such as molecular and imaging features might result in higher predictive power [16,17].
The metabolic response in 18F-fluorodeoxyglucose (18FDG) positron emission tomogra-
phy/computed tomography (PET/CT) scan at the end of treatment is currently the best
predictor of patient survival [18]. Increasing evidence suggests that baseline PET/CT pa-
rameters, including metabolic tumor volume (MTV), total lesion glycolysis (TLG) [19–23],
and metabolic heterogeneity (MH) and radiomic features indicating lymphoma dissemina-
tion, represent independent and powerful prognostic factors in DLBCL [24–26].

Modern molecular analyses have identified multiple genetic factors that could help
predict the outcome of DLBCL patients [27–31], and it has been suggested that the combined
evaluation of quantitative PET parameters with biological and genetic features may allow
a more refined risk stratification [32,33].

We already developed prognostic models based on functional parameters from PET/CT
scans [24,25] of DLBCL patients homogeneously treated with the R-CHOP14 regimen in
the SAKK38/07 clinical trial [34]. In the same cohort, phenotypic and genotypic studies
identified several potential biomarkers [35,36], with CREBBP and EP300 mutations be-
ing strongly associated with worse outcomes at multivariable analysis [36]. The present
manuscript reports additional post hoc studies investigating whether the integration of
mutation profiling and PET metrics may further improve the identification of patients at
high risk of relapse, who could potentially benefit from an early intensification of treatment
(e.g., more aggressive induction regimens or autologous stem cell consolidation).
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2. Patients and Methods

This study was approved by the Institutional Review Board/Ethics Committee of the
participating centers and was conducted in accordance with the ethical standards of the
1964 Declaration of Helsinki and its later amendments.

2.1. Study Population

In a prospective study known as the SAKK 38/07 trial of the Swiss Group for Clinical
Cancer Research, 156 patients with a diagnosis of DLBCL were treated with 6 cycles of
R-CHOP (rituximab 375 mg/m2, cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2,
vincristine 1.4 mg/m2 on day 1, and prednisone 100 mg/m2 for 5 days) repeated at 14-day
intervals, followed by 2 cycles of rituximab (375 mg/m2). Consolidation radiotherapy was
allowed, if clinically indicated, and was administered in 21 patients (15%), in accordance
with local guidelines [34]. The diagnosis of DLBCL was confirmed by central pathology
review in all cases, and the presence of “double-hit” cases with BCL2 and C-MYC rearrange-
ments was excluded by in situ hybridization analysis [35]. We estimated the patients’ risk
according to the IPI [12] and its main variants—R-IPI [13] and NCCN enhanced-IPI [14].
The cell-of-origin (COO) was centrally determined by immunohistochemistry using the
Hans algorithm [37].

2.2. Mutational Profile Evaluation

Tumor specimens for molecular analysis were available for 72 patients. As detailed
elsewhere [36], somatic mutations were detected by targeted high-throughput sequencing
(HTS) using a target enrichment panel covering either mutational hotspots or all exons of
68 genes most frequently mutated in B-cell lymphomas. Sequencing was performed by the
Ion Torrent S5 XL machine (Thermo Fisher Scientific, Carlsbad, CA, USA).

2.3. PET/CT Images Analysis

All patients performed PET/CT scans at diagnosis, after 2 cycles of R-CHOP14, and
at the end of immunochemotherapy. All PET/CT scans were centrally reviewed using a
standard protocol with dedicated imaging software (MM Oncology, Syngo.via, Siemens).
For MTV estimation, the tumor lesions were segmented with a fixed threshold at a standard-
ized uptake value (SUV) of 2.5. Maximum SUV (SUVmax) and TLG were then calculated
automatically. MH of the target lesion (i.e., the lesion with the highest 18FDG uptake)
was measured in each patient by the method of the area under the curve of cumulative
SUV-volume histogram (AUC-SH) [38]. In a prior study of the same patient population,
we established the optimal cut-off values of functional PET/CT parameters using receiver-
operating characteristic (ROC) analysis [24]. In particular, the MTV cut-off point was 931 mL
for progression-free survival (PFS) and 1149 mL for overall survival (OS), respectively,
while the MH cut-off point was 0.43 AUC-CSH for both PFS and OS.

2.4. Statistical Analysis

Continuous variables are shown as medians and interquartile ranges (IQR) and cate-
gorical variables as percentages. Continuous or ordinal variables were compared using
Student’s t-test. The chi-square test or Fisher exact test were used for categorical variables,
as appropriate. PFS was calculated from treatment start to progression or death from any
cause, OS from treatment start to death from any cause. Survival curves were generated
using the Kaplan–Meier method and compared using the log-rank test (or the log-rank test
for trend, as appropriate). Multivariable analysis and estimation of hazard ratio (HR) were
conducted using Cox proportional hazard models.

We built the classification tree using the unsupervised recursive-partitioning method to
develop unbiased models implemented into the “ctree” function of the R package ‘party’ [39].
The tested dichotomized variables were the individual components of the IPIs—namely,
age (>60 years), LDH (>normal), Ann Arbor stage (>2), extranodal involvement (>1 site),
Eastern Cooperative Oncology Group (ECOG) performance status (≥2), MTV (>cut-off
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value), MH (>cut-off value), and the presence or absence of a favorable mutation profile
(SOCS1 mutated and CREBBP/EP300 wild type). In each node, the variable that best
discriminated the population in analysis (according to PFS or OS, as appropriate) was used
to separate the subjects into two branches.

The predictive accuracy of different prognostic models was compared using the Harrell
C concordance probability estimate (CPE) [40]. C statistics range from 0.5 to 1, and higher
values of C indicate more accurate discrimination. The relative quality of the models was
also assessed by the Akaike information criterion (AIC), which estimates the likelihood
of a prognostic model to predict future outcomes [41]. The optimal model is the one with
minimum AIC (i.e., best fit) in comparison with all the others.

All statistical tests were two sided. Statistical significance was defined by a
p-value < 0.05. Negative predictive value (NPV) and positive predictive value (PPV)
were calculated according to standard definitions. The analysis was performed with the
Statistical Package for the Social Sciences software, (SPSS version 22.0, Chicago, IL, USA)
or the R statistical software environment (version 3.1.1) as appropriate.

3. Results

Clinical characteristics and outcomes of the patients enrolled in the SAKK 38/07 study
have been published in a previous report [34]. In total, 141 patients with baseline 18FDG-
PET/CT scans suitable for imaging post-processing and a complete clinical follow-up
were included in the current analysis. The main characteristics of the study population
at baseline are summarized in Table 1. After a median follow-up time of 64 months (IQR
60–67 months), 30 patients experienced disease progression, while 23 patients died.

Table 1. Main features at baseline in the whole cohort of 141 patients.

Characteristics Number %

Sex, male 73 51.8
Age ≥ 60 years 68 48.2
LDH elevated 68 48.2
Extranodal sites > 1 34 24.1
ECOG PS ≥ 2 10 7.1
Stage III-IV 80 56.7
High-intermediate or high-risk IPI 44 31.2
High-risk R-IPI 44 31.2
High-intermediate or high-risk NCCN-IPI 52 36.9
Germinal center B-like subtype (COO tested in 113) 84 74.3
cMYC and BCL-2 double expression (tested in 87) 12 13.8
MTV ≥931 mL (cut-off point for PFS) 46

34
32.6
24.1≥1149 mL (cut-off point for OS)

MH ≥ 0.43 AUC-CSH 55 39.0

Abbreviations: LDH, lactate dehydrogenase; ECOG PS, performance status according to Eastern Cooperative
Oncology Group criteria; IPI, International Prognostic Index; R-IPI, revised IPI; NCCN-IPI, National Compre-
hensive Cancer Network enhanced IPI; COO, cell of origin; MTV, metabolic tumor volume; OS, overall survival;
PFS, progression-free survival; MH, metabolic heterogeneity; AUC-CSH: area under the curve of cumulative
SUV histogram.

3.1. Mutational Profile Impact on Outcome

In 72 (51%) patients, we found mutations affecting 46 (68%) of the investigated
genes [36]. The most frequently mutated gene was KMT2D, (lysine methyl-transferase 2D)
in approximately 35% of cases, followed by SOCS1 (suppressor of cytokine signaling 1)
in 25%, ATM (ataxia telangiectasia mutated serine/threonine kinase) in 19%, GNA13 (G
protein subunit alpha 13) in 18%, and B2M (beta-2 microglobulin) in 15% (Table 2). Given
the close functional interaction between the two acetyltransferase genes, CREBBP (CREB
binding protein) and EP300 (E1A binding protein p300) [42], and their combined prognostic
value [36], these were evaluated together. CREBBP/EP300 mutations were found in 19% of
the cases.
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Table 2. Impact on progression-free survival of the mutations found in 46 of the assessed genes, in
which mutations were found.

Mutated Gene Frequency
N = 72 (100%)

No Progression
or Death

N = 56 (77.8%)

Progression or
Death

N = 16 (22.2%)
p-Value

ATM 14 (19.4%) 11 (19.6%) 3 (18.8%) 0.937
B2M 11 (15.3%) 9 (16.1%) 2 (12.5%) 0.726
BCL2 4 (3.6%) 3 (5.4%) 1 (6.2%) 0.891
BCL6 2 (2.8%) 2 (3.6%) 0 (0%) 0.443
BCL10 3 (4.2%) 3 (5.4%) 0 (0%) 0.344
BTG1 8 (11.1%) 8 (14.3%) 0 (0%) 0.109
CARD11 9 (12.5%) 5 (8.9%) 4 (25.0%) 0.086
CD79B 4 (3.6%) 2 (3.6%) 2 (12.5%) 0.169
CREBBP_EP300 14 (19.4%) 7 (12.5%) 7 (43.8%) 0.005
EBF1 3 (4.2%) 3 (5.4%) 0 (0%) 0.344
EZH2 10 (13.9%) 8 (14.3%) 2 (12.5%) 0.855
FOXO1 3 (4.2%) 3 (5.4%) 0 (0%) 0.344
GNA13 13 (18.1%) 10 (17.9%) 3 (18.8%) 0.935
HIST1H1C 7 (9.7%) 6 (10.7%) 1 (6.2%) 0.595
IDH1 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
IKZF1 2 (2.8%) 2 (3.6%) 0 (0%) 0.443
IRF4 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
JAK2 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
KLHL6 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
KMT2D 25 (34.7%) 20 (35.7%) 5 (31.2%) 0.741
KMT2C 2 (2.8%) 2 (3.6%) 0 (0%) 0.443
KRAS 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
MCL1 3 (4.2%) 3 (5.4%) 0 (0%) 0.344
MEF2B 6 (8.3%) 5 (8.9%) 1 (6.2%) 0.732
MYC 5 (6.9%) 4 (7.1%) 1 (6.2%) 0.901
MYD88 5 (6.9%) 3 (5.4%) 2 (12.5%) 0.322
NOTCH1 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
NOTCH2 3 (4.2%) 2 (3.6%) 1 (6.2%) 0.636
PAX5 2 (2.8%) 2 (3.6%) 0 (0%) 0.443
PIK3CD 2 (2.8%) 2 (3.6%) 0 (0%) 0.443
PIK3R1 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
PIM1 7 (9.7%) 6 (10.7%) 1 (6.2%) 0.595
PRDM1 2 (2.8%) 1 (1.8%) 1 (6.2%) 0.338
PTEN 5 (6.9%) 4 (7.1%) 1 (6.2%) 0.901
PTPN1 2 (2.8%) 2 (3.6%) 0 (0%) 0.443
RELN 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
RHOA 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
SGK1 4 (3.6%) 3 (5.4%) 1 (6.2%) 0.891
SOCS1 19 (26.4%) 18 (32.1%) 1 (6.2%) 0.038
STAT6 6 (8.3%) 5 (8.9%) 1 (6.2%) 0.732
TET2 3 (4.2%) 1 (1.8%) 2 (12.5%) 0.122
TNFAIP3 11 (15.3%) 10 (17.9%) 1 (6.2%) 0.255
TP53 8 (11.1%) 6 (10.7%) 2 (12.5%) 0.841
U2AF1 1 (1.4%) 1 (1.8%) 0 (0%) 0.590
XPO1 2 (2.8%) 2 (3.6%) 0 (0%) 0.443

In keeping with our prior study, which included the patients of the present cohort
and others with no available PET/CT scans [36], the subjects harboring CREBBP/EP300
mutations had inferior PFS in comparison with those carrying wild-type genes (49% vs.
82% at 2 years, p = 0.002). Alterations affecting CREBBP or EP300 were also predictive of
shorter OS (79% vs. 93% at 2 years, p = 0.001).

The favorable prognostic impact on PFS of SOCS1 mutations described in the prior
report [36] was maintained, although with borderline significance, also in the cohort
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analyzed by the present study (2-year PFS 93% vs. 70%, p = 0.054), while there was no
evident impact on OS (100.0% vs. 86.8% at 2 years, p = 0.167).

Based on these results, we categorized two subsets of patients, one with a favorable
mutational profile (n = 16), defined by the presence of SOCS1 mutations in the absence
of CREBBP and EP300 mutations, and the other, with a non-favorable mutational profile
(n = 56), characterized by wild-type SOCS1 and/or mutated CREBBP/EP300. Interestingly,
none of the patients with a favorable mutational profile relapsed during the entire follow-up
period, and their PFS rates were better than in the rest of the patients (100% vs. 69% at
2 years, p = 0.025). A similar trend (100% vs. 87.5%) was observed also for OS, albeit this
was not statistically significant (Figure 1).
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Figure 1. Survival analysis according to mutation profiling. Kaplan–Meier curves estimate
progression-free survival (left) and overall survival (right) by mutational profile. In blue: patients
with favorable profile; in red: patients with non-favorable profile.

3.2. Classification Trees for Outcome Prediction

We then assessed whether the integration of the mutational profile and functional
PET/CT parameters could better predict the PFS in first-line treated DLBCL in comparison
with clinical prognostic scores. Using an unsupervised recursive partitioning algorithm
including the dichotomized clinical prognostic factors that contribute to the IPI, along
with imaging parameters (MTV and MH) and genetic features (wild-type SOCS1 and/or
mutated CREBBP/EP300), which had a significant impact on the outcome in univariable
analysis, we generated a prognostic model that categorized patients among three groups
with different outcomes—namely, high-risk group (high MTV and high MH, N = 21),
low-risk group (low MTV and favorable mutation profile, N = 12), and intermediate-risk
group (all the rest, N = 108) (Figure 2).

The three groups had different 2-year PFS (42% for the high-risk group, 82.0%, for the
intermediate-risk group, and 100% for the low-risk group). Most patients in the high-risk
group experienced early relapse (median PFS 11.4 months vs. not reached in the other two
groups, p < 0.001). The algorithm, based on the integration of PET and tumor genotyping
results, predicted disease progression or relapse with a PPV of 57% (high-risk group) and
an NPV of 100% (low-risk group) (Figure 3).
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Figure 2. Classification tree analysis for PFS prediction. Node 1: A total of 141 patients were included
for the current analysis. Patients with high MTV were sorted in node 2 (N = 46). Node 2 was then
sorted based on MH. Patients with MTV and MH high were clustered into node 4 (N = 21), while
patients with MTV high and MH low were clustered in node 5 (N = 25). Patients with low MTV
(node 3; N = 95) were then evaluated for the presence of a known favorable mutational profile.
Patients with favorable mutational profiles and low MTV were classified in node 6 (N = 12). Patients
with low MTV and without a known favorable mutational profile constituted node 7 (N = 83). Node
4 was defined as high-risk group, while node 6 was defined as low-risk group. Nodes 5 and 7 were
then merged in a single group, referred to as intermediate-risk group.
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Figure 3. Kaplan–Meier progression-free survival estimates according to the integrative PET model
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curve, of intermediate-risk patients, and the red one, of high-risk patients. Notably, 89% of the
high-risk patients had a non-favorable mutational profile.
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Patients’ characteristics according to the three risk groups are shown in Table 3. Aside
from the expected significantly biased distribution of the mutational profile, the groups
did not differ in terms of age, presence of extranodal involvement, performance status,
and COO subtype, while the high-risk group predominantly comprised patients with high
LDH, advanced stage, and unfavorable IPI.

Table 3. Patient features according to the prognostic group defined by the classification tree for PFS.

Characteristics

Low Risk
(N = 12)

Intermediate Risk
(N = 108)

High Risk
(N = 21) p-Value

n (%) n (%) n (%)

Age 0.061
≥60 years 2 (16.7) 54 (50.0) 12 (57.1)
LDH <0.001
Elevated 8 (66.7) 42 (38.9) 18 (85.7)
Extranodal sites 0.159
>1 1 (8.3) 25 (23.1) 8 (38.7)
ECOG PS

0.2690–1 12 (100.0) 101 (93.5) 18 (85.7)
Ann Arbor stage 0.019
I-II 8 (66.7) 49 (45.4) 4 (19.0)
III-IV 4 (33.3) 59 (54.6) 17 (81.0)
IPI risk group 54 (50.0) 0.012
Low risk 8 (66.7) 23 (21.3) 3 (14.3)
Low-intermediate risk 3 (25.0) 20 (18.5) 6 (28.6)
High-intermediate risk 0 (0.0) 11 (10.2) 7 (33.3)
High risk 1 (8.3) 5 (23.8)
COO (n = 113) 0.669
GCB 4 (33.3) 22 (25.9) 3 (18.8)
non-GCB 8 (66.7) 63 (74.1) 13 (81.2)
Mutational profile (n = 72) <0.001
Favorable (SOCS1mut and
CREBBP/EP300wt) 12 (100.0) 3 (5.9) 1 (11.1)

Unfavorable (SOCS1wt and/or
CREBBP/EP300mut) 0 48 (94.1) 8 (88.9)

Abbreviations: N, number; LDH, lactate dehydrogenase; ECOG PS, performance status according to Eastern
Cooperative Oncology Group criteria; IPI, International Prognostic Index; COO, cell of origin; GCB, germinal
center B.

Analogous to PFS, the application to OS of the unsupervised recursive partitioning
approach identified the same risk groups: high risk for patients with high MTV and high
MH (N = 13), low risk for patients with low MTV and favorable mutational profile (N = 13),
and intermediate risk for the 115 remaining patients (Figure 4).

The 2-year OS was 46% among high-risk patients, 93% in the intermediate-risk group,
and 100% in the low-risk group (p < 0.001) (Figure 5). Hence, the model derived from the
classification tree analysis predicted patient death with PPV of 61.5% (high-risk group) and
NV of 100% (low-risk group).
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Figure 4. Classification tree analysis for overall survival prediction. Node 1: A total of 141 patients
were included for the current analysis. Patients with high MTV were sorted in node 2 (N = 34). Node
2 was then sorted based on MH. Patients with MTV and MH high were clustered into node 4 (N = 13),
while patients with MTV high and MH low were clustered in node 5 (N = 21). Patients with low
MTV (node 3; N = 107) were then evaluated for the presence of a known favorable mutational profile.
Patients with favorable mutational profiles and low MTV were classified in node 6 (N = 13). Patients
with low MTV and without a known favorable mutational profile constituted node 7 (N = 94). Node
4 was defined as high-risk group, while node 6 was defined as low-risk group. Nodes 5 and 7 were
then merged in a single group, referred to as intermediate-risk group.
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Figure 5. Kaplan–Meier overall survival estimates according to the integrative PET model derived
from the classification tree. The blue curve shows the survival of low-risk patients, the yellow curve,
of intermediate-risk patients, and the red one, of high-risk patients. Notably, all the high-risk patients
had a non-favorable mutational profile.
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3.3. Comparison between Prognostic Models

A concordance probability analysis showed that this model (Harrell C 0.67 for PFS
and 0.69 for OS) improved the prognostic capacity of either the MTV (Harrell C 0.64 for
PFS and 0.68 for OS) or the mutational profile alone (Harrell C 0.62 for both PFS and OS).
In multivariable analysis (Table 4), the above-described model that combines functional
imaging and molecular features remained the only independent predictor of PFS and OS
after controlling for the most widely used clinical indices—namely, IPI, R-IPI, and NCCN-
IPI, which, in a prior study on the same cohort, were significant predictors of OS and had
a borderline impact on PFS [24]. The classification tree-derived model was also the only
factor significantly affecting PFS and OS in Cox models, including the individual factors
contributing to the construction of IPI, revised-IPI, and NCCN-IPI (data not shown).

Table 4. Cox regression models for either PFS or OS prediction including the International Prognostic
Indices and the integrative PET model derived from the classification tree.

Prognostic Indices
PFS OS

HR 95% CI p-Value HR 95% CI p-Value

PET/mutational
Model 4.42 2.07 to 9.45 <0.001 5.96 2.41 to 14.73 <0.001

IPI 0.93 0.47 to 1.85 0.839 0.75 0.34 to 1.64 0.470
R-IPI 1.33 0.43 to 4.13 0.623 1.54 0.35 to 6.73 0.563

NCCN_IPI 1.04 0.54 to 1.99 0.906 1.56 0.70 to 3.48 0.278

Abbreviations: PFS, progression-free survival; OS, overall survival; HR, hazard ratio; 95% CI, 95% confidence
interval; IPI, International Prognostic Index; R-IPI, revised IPI; NCCN-IPI, National Comprehensive Cancer
Network enhanced IPI.

Table 5 shows the performance of different prognostic models assessed by using
either the Akaike information criterion (the lowest value indicates the model that loses less
information, i.e., the one with the highest quality) or a concordance probability index, the
Harrell C-statistic (the higher C values, the better prediction ability). The discriminatory
power and predictive accuracy of our model, which combines functional imaging and
molecular features, were superior, for both PFS and OS, to the ones of the International
Prognostic Indices (IPI, R-IPI, and NCCN-IPI).

Table 5. Comparison of international indices with integrative PET model derived from the classification tree.

Prognostic Indices
PFS OS

AIC CPE AIC CPE

PET/mutational Model 257 0.67 199 0.69
IPI 273 0.59 215 0.61

R-IPI 272 0.59 214 0.62
NCCN-IPI 272 0.58 211 0.64

Abbreviations: PFS, progression-free survival; OS, overall survival; AIC, Akaike information criterion; CPE,
concordance probability estimate; IPI, International Prognostic Index; R-IPI, revised IPI; NCCN-IPI, National
Comprehensive Cancer Network enhanced IPI.

4. Discussion

A reliable and solid early estimate of the risk of relapse after initial treatment may
tremendously improve the management of DLBCL patients. During the past several years,
a variety of clinical, molecular, and imaging features have been shown to predict clinical
outcomes after first-line therapy. The best individual prognostic factor is the metabolic
response on PET/CT at the end of treatment [18].

The combination of PET/CT-derived quantitative parameters with the genetic profile,
in the so-called integrative PET, has been hypothesized to provide a powerful prognostic
tool to complement clinical data for treatment decisions [43,44]. Only a few studies have
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explored this option so far [33,45], their main limitation being the lack of methodology
standardization.

Our group identified CREBBP/EP300 mutations as predictors of poor outcomes in
patients with newly diagnosed DLBCL treated with R-CHOP, while SOCS1 mutations were
associated with better prognoses [36]. In the current post hoc analysis, we demonstrated
that the combination of these mutational features enables the distinction between patients
with favorable and non-favorable mutational profiles, with significant impacts on the risk of
relapse. We integrated these molecular data with functional PET/CT metrics to generate a
PFS prognostic model, which was able to risk-stratify patients and to accurately identify the
subsets of patients who will most likely either be cured or progress. Interestingly, the model
is entirely based on information available prior to treatment, allowing upfront prediction of
patient outcome and keeping its validity for the prediction of OS. Patients in the high-risk
subgroup had more frequently elevated LDH and high IPI scores than the other groups.
This is not surprising as LDH is a surrogate marker of disease burden: we might speculate
that increased LDH levels reflect the elevated MTV, which this analysis confirmed to
be an optimal individual parameter to identify patients at high risk of progression or
death [17,22,24,25].

Our prior studies already indicated that the concomitant presence of high MTV and
MH could reflect a disease with more aggressive behavior, leading to failure of first-line
R-CHOP therapy and thus requiring additional treatment [24]. This is confirmed by the
present analysis, which indicates that the combined powerful prognostic capacity of MTV
and MH is independent of the presence of specific gene mutations. In our model, however,
the addition of the mutational profiling data allowed a better risk stratification of patients
with low MTV, with an NPP of 100%.

Recent advances in molecular biology have led to the identification of mutational
signatures, proposed as useful tools to study DLBCL, even if their prognostic role has so far
not been established [27,28,36,46,47]. Nevertheless, the elevated costs of such evaluations
could potentially limit the number of patients that can benefit from them. A key point of
our model is in fact that only patients without high-risk PET/CT parameters should be
candidates to perform prognostic mutational tests, resulting, indeed, in an optimization of
the economic resources.

The main limitation of the current retrospective study consists of the small number of
patients. Only 72 of the 141 included patients had an evaluable mutational status. Indeed,
the study sample size prevented proper cross-validation, and therefore, the hypothesis
generated by our results needs to be confirmed by further studies in external patient
cohorts. Nonetheless, the unsupervised recursive-partitioning method adopted to build
the classification tree may have partially mitigated the limitations related to the number
of patients with missing mutation analysis. In fact, the process considered all patients,
without completely losing the information provided by the patients who otherwise would
have been excluded.

The limited sample size may also explain why the somatic mutations in several genes,
which, in other studies, have been described to be predictive of early progression (e.g.,
CARD11, BCL2, BCL6, BCL10, and TP53 [48,49]), were not significant in our cohort and,
therefore, not included in our model. Moreover, the lack of consensus on a standardized
methodology, in particular the missing agreement on the optimal estimation of volume-
based 18FDG-PET/CT parameters, affects the interpretation and reproducibility of data.
Nevertheless, the population of the clinical trial SAKK38/07 received a homogeneous
treatment with R-CHOP14, and the functional PET/CT parameters in this study were
centrally generated using a standard procedure.

Another potential weakness of the current study may be the relatively small number
of genes included in the mutational analysis panel. However, the gene panel used in this
study covered all the mutations nowadays considered to be relevant for the molecular
categorization of DLBCL [50], with the sole exception of five genes (ID3, BCOR, CCND3,
NFKBIE, and ETV6). In general, the latter genes are not crucial for the definition of
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the currently recognized molecular subsets: ID3 and BCOR identify the very small “N1
subgroup” of DLBCL (1–2% of all cases).

Even though further analyses, aiming at evaluating a wider gene panel in other cohorts
of homogeneously treated DLBCL patients, will be needed to validate or possibly refine our
prognostic algorithm, our results support the hypothesis that our prognostic capacity can
be improved by the integration of functional imaging with mutational profiling by high-
throughput sequencing. Notably, the association of SOCS1 mutations (the “ST2 subgroup”)
with a favorable outcome was reported in all large-scale genetic studies of DLBCL (five-
year OS 84% in the NCI study, 75% in the Harvard study, and 80% in the HMRN study,
respectively), which corroborates the findings of our study [50].

In conclusion, the current analysis proposed a prognostic model that, using informa-
tion available at baseline, predicts response to R-CHOP14 treatment in DLBCL patients. In
our prior study showing the prognostic impact of MTV and MH in the SAKK38/07 patient
cohort, we were able to validate the results in an independent cohort of patients treated
with the more conventional R-CHOP21 regimen [24]. Such validation was not possible for
the present model, but there is no biological reason to expect that the prognostic impact of
the mutational profile is restricted only to the R-CHOP14-treated patients.

5. Conclusions

Our results provide proof of principle that integration of functional PET parameters
with mutational profiling can improve risk stratification of DLBCL patients, offering a
promising tool for the design of clinical trials focused on treatment optimization for newly
diagnosed patients. An international process is ongoing to standardize the estimation
of volumetric PET/CT parameters [43,51–53] and will hopefully allow a wider use and
validation of powerful prognostic models based on integrative PET.
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