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on the sub-seasonal temporal clustering of
extreme precipitation
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SUMMARY

Temporally clustered precipitation extremes can have catastrophic impacts.
Therefore, understanding their drivers is paramount for risk assessment in cur-
rent and future climates. Here, wemodel for each season 3-week extreme precip-
itation event counts with Poisson Generalized Linear Models and nine major
modes of climate variability as covariates. Model goodness-of-fit is highest in
the tropics, particularly over the equatorial Pacific, the Maritime Continent, and
East Africa, where ENSO, the Indian Ocean Dipole (IOD) and theMJO are the ma-
jor drivers of sub-seasonal temporal clustering of extreme precipitation. The IOD
and MJO also matter over Southwest Asia during boreal fall and winter. In the
Northern Hemisphere, the North Atlantic Oscillation impacts clustering west of
the Iberian Peninsula and over Scandinavia and Greenland, and the Pacific North
American pattern matters over the central/northern Pacific Ocean. Finally, our
models show very little skill in the Southern Hemisphere, where temporal clus-
tering is also less frequent.

INTRODUCTION

The impacts of extreme events on human and natural systems can be compounded if the extreme events

occur in close temporal succession, in which case one speaks of ’’temporally compounding’’ or ’’temporally

clustered’’ events (Zscheischler et al., 2020). Precipitation is a case in point: extreme precipitation recurring

over weekly to monthly timescales over the same area can significantly increase flood risk (Barton et al.,

2016; Tuel and Martius, 2021b). In addition, Tuel and Martius (2021a) recently showed that the temporal

clustering of extreme precipitation (TCEP) over sub-seasonal (weekly to monthly) timescales was statisti-

cally significant in many regions of the world, particularly the tropics and along the eastern margins of

the ocean basins. Taking into account the tendency of extreme precipitation to cluster in time is therefore

paramount in climate risk assessment and of interest for sub-seasonal predictions. Forecasting of TCEP re-

mains challenging, notably because we still know little about their physical drivers (Zscheischler et al.,

2020). We do know that the likelihood of extreme precipitation frequency is strongly influenced by atmo-

spheric circulation and in particular by large-scale modes of atmospheric variability at sub-seasonal to sea-

sonal timescales (Kenyon and Hegerl, 2010). Among these, the El Niño-Southern Oscillation (ENSO) affects

extreme precipitation probability in many parts of the world (e.g., Alexander et al., 2009; Kenyon and He-

gerl, 2010). In its positive phase (El Niño), ENSO is associated with more frequent extreme precipitation

over southeastern Brazil (Kenyon and Hegerl, 2010) and the western and southern United States (e.g., Schu-

bert et al., 2008; Shang et al., 2011), and less frequent over Southern Africa (Hoell and Cheng, 2018), South-

eastern Asia, and Australia (e.g., Min et al., 2013; Jakob and Walland, 2016). Similarly, the Indian Ocean

Dipole (IOD), an oscillation of SST anomalies between the western and eastern Indian Ocean, increases

extreme precipitation likelihood in Southern Africa (Hoell and Cheng, 2018), East Africa (Wainwright

et al., 2021), Southwest Asia (Tuel et al., 2021), and India (Krishnan et al., 2011), and decreases it over eastern

Australia (e.g., Min et al., 2013). The occurrence of precipitation extremes in the tropics and subtropics also

varies substantially depending on the phase of the Madden-Julian Oscillation (MJO), the dominant mode

of sub-seasonal atmospheric variability in the tropics (Shimizu et al., 2017; Schreck, 2021). In Europe, the

North Atlantic Oscillation (NAO), the main mode of variability in the location of the North Atlantic storm

track, is a major influence on the probability of extreme precipitation during the winter half year (e.g., Hay-

lock and Goodess, 2004; Scaife et al., 2008). In its positive phase, the storm track is displaced polewards,

and consequently precipitation extremes are more frequent in Northern Europe, especially Scandinavia,
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and less frequent in Southern Europe and Northwestern Africa. By contrast, a negative NAO significantly

enhances the likelihood of extreme precipitation in Southern Europe, particularly the Iberian Peninsula

(Merino et al., 2016). Its hemispheric counterpart, the Arctic Oscillation, or Northern Annular Mode, also

impacts extreme precipitation across the Northern Hemisphere (Kenyon and Hegerl, 2010), notably in

Asia (Mao et al., 2011; Liu et al., 2019). In North America and Eastern Asia, extreme precipitation probability

is also sensitive to Northern Pacific interannual and interdecadal modes of variability like the Pacific

Decadal Oscillation (PDO), Western Pacific (WP), or Pacific North American (PNA) pattern (Zhang et al.,

2010; Kenyon and Hegerl, 2010; Zarekarizi et al., 2018; Wei et al., 2021). Finally in the Southern Hemisphere,

the Southern Annular Mode (SAM) and the Baroclinic Annular Mode (BAM) modulate the incidence of

extreme precipitation over southeastern Brazil (Vasconcellos and Cavalcanti, 2010) and Eastern Australia

(Min et al., 2013) during the austral summer, as well as in Antarctica (Marshall et al., 2017). These results

focus on the occurrence of single extreme events. However, the likelihood of clustered extremes varies

with large-scale modes of variability has been a subject of much less attention. It is not straightforward

to extend results from individual to clustered extremes, since the temporal persistence of the driver is

an important factor in explaining temporal clustering. Villarini et al. (2011) applied Poisson regression to

analyze the clustering of extreme precipitation at seasonal scales in the Midwestern US in connection to

indices of Atlantic and Pacific variability. Mallakpour et al. (2017) used Cox regression to highlight the in-

fluence of the AO and PNA on TCEP in the central United States. Yang and Villarini (2019) took the same

approach over Europe, focusing on the AO and NAO. Recently, Barton et al. (2021) fitted Poisson gener-

alized additive models to 3-week extreme precipitation counts over Europe, using principal components of

regional 500 hPa geopotential anomalies as covariates. They highlighted the effect on TCEP frequency of

major weather regimes, in particular blocking over Greenland. The links between midlatitude cyclone clus-

tering and large-scale climate modes like the NAO and PNA were also investigated in several studies and

summarized by Dacre and Pinto (2020). Previous studies were limited to 3–4 modes of variability and took a

regional perspective; however, we adopt a global perspective to quantify the role of nine major large-scale

modes of climate variability on TCEP likelihood at sub-seasonal timescales. We implement Poisson regres-

sions on three-week extreme event counts with the modes of variability as covariates, with each season

analyzed separately (DJF, MAM, JJA, and SON). We also contrast our results with those of Tuel andMartius

Figure 1. GLM deviance ratio (DR) for each season: DJF (topleft), MAM (topright), JJA (bottomleft), and SON (bottomright)

Grid points where temporal clustering of extreme precipitation at the 10–30 days timescale is statistically significant (results of Tuel and Martius (2021a)) are

indicated by black dots.
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(2021a) and find that the spatiotemporal patterns of TCEP statistical significance can be mostly explained

by our selected large-scale modes of variability.

RESULTS

Figure 1 shows for each season the resulting deviance ratio (DR), a measure of model goodness-of-fit (see

STARMethods). Model goodness-of-fit in all seasons is highest in the tropics (20◦ S-20◦ N), where 7–16% of

grid points exhibit DR values larger than 0.2, primarily in the equatorial Pacific east of the date line. Other

tropical regions with high model goodness-of-fit include the Maritime Continent in JJA and SON, East Af-

rica in SON and DJF and the subtropical central Pacific Ocean in DJF and MAM. Outside of the tropics, DR

values are overall much lower, with only 0.5–4% of grid points where DR R 0.2. Model goodness-of-fit is

essentially zero southwards of 20◦ S, except over Eastern Australia in SON. In the Northern Hemisphere

extratropics, DR rarely exceeds 0.4. DR values between 0.2 and 0.4 can be found around Southwest Asia

in SON, in the Sahara in DJF, in Alaska and Northeastern Russia in DJF and SON, west of Morocco and

the Iberian Peninsula in DJF, and over Greenland in most seasons. We also indicated on Figure 1 the

grid points for which temporal clustering of extreme precipitation was statistically significant at time win-

dows of 10–30 days (results from Tuel and Martius (2021a)). A 0.2 threshold for DR matches quite well with

areas of clustering statistical significance; these areas are also those of high dispersion statistics (Figure S1).

We note also that almost all grid points pass the Poisson goodness-of-fit test at the 5% confidence level

(Figure 2), including in regions of high model goodness-of-fit. Only a handful of grid points along the

eastern equatorial Pacific do not pass the test. The reason may be that our 2-day declustering window is

too short near the equator and thus we do not remove all the temporal dependence in extreme precipita-

tion counts. Still, these points are a minority, and even when excluding them from the analysis, our conclu-

sions would remain unchanged. At most grid points the optimal model includes two or fewer significant

covariates, the exception being East Africa in DJF where we find 3–4 significant covariates (Figure 2); other-

wise, most regions where DR R 0.2 are characterized by a single significant covariate. To understand the

role played by the various covariates, we color on Figure 3 each grid point depending on which of the co-

variates has the largest absolute coefficient. A clear spatial structure emerges in all seasons. The Niño3.4

Figure 2. Number of significant covariates in the optimal GLM model for each season: DJF (topleft), MAM (topright), JJA (bottomleft), and SON

(bottomright)

Grid points where the Poisson goodness-of-fit test is rejected at the 5% level of confidence are shown in green.

ll
OPEN ACCESS

iScience 25, 103855, March 18, 2022 3

iScience
Article



index is the dominant (and often only significant, see Figure 2) covariate for most of the tropical Pacific grid

points with DRR 0.2. The Niño3.4 index is also relevant over large sections of the Maritime Continent and

Southeast Asia. In the subtropics, Niño3.4 is also the dominant covariate in Southwest Asia in SON, West-

ern Australia in DJF, Southern Brazil in MAM, and significant portions of the Gulf of Mexico and Caribbean

in all seasons except JJA (Figure 2); besides, of these regions exhibit small (0–0.2) DR values. Another

important covariate in the tropics is the IOD: it affects clustering in East Africa and the Sahel in DJF,

over the tropical IndianOcean in JJA and over Southwest Asia, East Africa, Indonesia, and Eastern Australia

in SON (Figure 2). Finally, the two MJO components also have a major influence on TCEP distribution

across much of the tropics, especially over the Arabian Peninsula and the Maritime Continent in DJF

and MAM for MJO1 (seeSTAR methods section for details), and from East Africa to the date line and

over the tropical Americas in JJA for MJO2. In the Northern Hemisphere extratropics, the PNA appears

as the dominant influence on TCEP frequency during DJF and MAM in the North Pacific, particularly

over Northeastern Asia, Alaska, and the central Pacific Ocean (Figure 3). The PNA also matters locally in

North America and the Caribbean in DJF. The influence of the WP additionally stands out around Alaska

and Northeastern Russia in all seasons except JJA. In the North Atlantic, NAO is the prevailing covariate

over Greenland and Southwestern Europe, two regions of high model goodness-of-fit (Figure 2), chiefly

during DJF. The AO index dominates during DJF and MAM in high-latitude regions of North America

and Eurasia, as well as around the Black Sea. We also find the AO influence to be the largest over a large

region of the eastern subtropical Atlantic during JJA (Figure 3). Finally, we detect very few coherent signals

in the Southern Hemisphere, even for the two Southern Hemisphere modes, SAM and BAM.

DISCUSSION

Physical perspectives on TCEP drivers

How the selected modes of variability correlate to TCEP frequency is generally consistent with their known

effect on the likelihood of extreme precipitation. In the Northern Hemisphere, the influence of the NAO is

mainly felt during winter over the North Atlantic sector, in particular over the Atlantic Ocean directly west of

the Iberian Peninsula and above Greenland and Scandinavia (Figures 2 and 4). Persistent positive NAO

states divert extratropical cyclones toward Scandinavia and away from western Greenland and South-

western Europe and toward Northern Europe, whereas persistent negative NAO states lead to enhanced

Figure 3. Covariate with the largest coefficient, in absolute terms, among all optimal model covariates, for each season

DJF (topleft), MAM (topright), JJA (bottomleft), and SON (bottomright). Grid points where DR % 0.15 are masked.
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Rossby wave breaking and cyclone development around the Iberian Peninsula (Dacre and Pinto, 2020). In

the North Pacific, the effects of PNA variability aremainly negative (Figure 4). The positive PNA phase, char-

acterized by a pronounced trough over the central North Pacific, is associated with an equatorward dis-

placed stormtrack and enhanced cyclone clustering in the Gulf of Alaska (Bunker, 2018). The negative

PNA phase, by contrast, exhibits a strong ridge over the central North Pacific resembling a Rex-type block

and a poleward shifted stormtrack, leading to more frequent TCEP at high latitudes. The significant in-

crease in TCEP probability over the central subtropical Pacific during negative PNA events may result

from enhanced Rossby wave breaking downstream of the anomalous North Pacific ridge (Martius et al.,

2007), as well as from positive subtropical SST anomalies associated with a negative PNA (Sheng, 1999).

The weak model goodness-of-fit in the Southern Hemisphere extratropics and the lack of a significant in-

fluence from either the SAM or the BAM are in agreement with the quasi-absence of significant clustering in

precipitation extremes at sub-seasonal timescales highlighted by Tuel and Martius (2021a) (Figure 1). It

does not mean that the SAM and BAM indices have no impact on extreme precipitation frequency, but

that they are not relevant for TCEP likelihood on sub-seasonal timescales. Moving on to the tropics, we

find that ENSO exerts a strong influence on tropical TCEP frequency, increasing it in the equatorial Pacific

and decreasing it over the Maritime Continent during an El Niño phase, mainly during SON and DJF (Curtis

et al., 2007) (Figure 4). In DJF, a positive ENSO similarly tends to suppress clustered precipitation extremes

over southwestern Australia and enhance them southern North America (Figure 4, topleft), in keeping with

previous findings focusing on extreme precipitation frequency only (e.g., Kenyon and Hegerl, 2010; Shang

Figure 4. Regression coefficients in the Poisson GLM model during DJF for the (top) NAO and (bottom) PNA

indices

Only grid points where the coefficients are statistically significant at the 5% confidence level (modified to take the false

discovery rate into account) are shown.
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et al., 2011; Sun et al., 2015). ENSO’s weak positive influence in southern Brazil during MAM and South-

eastern China in DJF were also noted by Sun et al. (2015). The IOD primarily affects TCEP frequency in

the Indo-Pacific region in SON and DJF (Figures 3 and 5). In SON, a positive IOD increases TCEP frequency

over Southwest Asia and decreases it in Eastern Australia, consistent with IOD impact on single extremes

described by Tuel et al. (2021) and Min et al. (2013). It also strongly enhanced extreme precipitation

likelihood from September to February over East Africa, at a time when prevailing winds over the Indian

Ocean are usually easterly and advect moisture away from the African continent (Wainwright et al.,

2021). A positive IOD, characterized by warmer than average SSTs in the Western Indian Ocean, thus leads

to anomalous westerlies that concentrate moisture over East Africa and to extreme precipitation (Wain-

wright et al., 2021). Finally, we turn to the effects of MJO variability. Taken together, the two MJO proxies

(MJO1 andMJO2) significantly modulate TCEP frequency across the tropics for much of the year, but espe-

cially over the Maritime Continent (Figure 7). Their influence is coherent with their large-scale climate foot-

print discussed in Wheeler and Hendon (2004). The positive MJO1 phase (MJO phases 4–5) is linked to

enhanced convection, low-level moisture convergence and TCEP frequency over the Maritime Continent,

and the opposite over the equatorial Pacific and Indian Oceans (MJO phases 8-1). The MJO2 index, by

contrast, correlates positively to convection, low-level moisture convergence and TCEP frequency in the

tropical Western Pacific, and negatively over the Maritime Continent. A positive MJO2 index corresponds

to MJO phases 6–7, and a negative index to MJO phases 2–3 (Wheeler and Hendon, 2004). Overall, MJO

influence is very limited in the extratropics. The main exception is the weak, though significant, impact of

MJO1 over Southwest Asia and North Africa in SON and DJF (Figures 2 and 7). Therefore, negative MJO1

values (MJO phases 8-1) are associated with more frequent TCEP and increased extreme precipitation fre-

quency also Schreck (2021), possibly related to enhanced upper-level divergence over Northern Africa in

the corresponding MJO phases. Interestingly, most MJO-dominated regions do not exhibit clustering

significance at the chosen sub-seasonal timescale. It could be explained by weak MJO persistence over

sub-seasonal timescales in space (at the grid point level), even though the MJO phase may persist in

time (Lafleur et al., 2015).

Figure 5. Regression coefficients in the Poisson GLM model for the Niño 3.4 index in all seasons

Only grid points where the coefficients are statistically significant at the 5% confidence level (modified to take the false discovery rate into account) are

shown.
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Link to statistical significance of clustering

It is interesting to contrast the results of the present study with the seasonal TCEP statistical significance maps

shownby Tuel andMartius (2021a) (added here in Figure 1). They usedRipley’s K function to assess the statistical

significance of TCEP, i.e., the tendency of extreme precipitation events to bemore clustered in time than what a

randomPoisson process would imply. The Ripley’s K approach of Tuel andMartius (2021a) and the PoissonGLM

we adopt here are complementary. Ripley’s K is a purely statistical approach; it quantifies how frequent TCEP is

and to what extent TCEP frequency deviates from that of a time-independent process, regardless of any poten-

tial drivers. By contrast, the Poisson GLM relates TCEP frequency to selected physical drivers, regardless of how

often TCEP occurs in the precipitation time series. Tuel and Martius (2021a) found TCEP to be statistically sig-

nificant over many regions of the globe that often coincide with those of high model goodness-of-fit (Figure 1).

They identified clustering significance in particular over the equatorial Pacific, East Africa, the Maritime

Continent, Southwest Asia, Southwestern Europe, Australia, Alaska, and Northeastern Russia in seasons where

the DR values also tend to be high (Figure 2). The spatiotemporal pattern of clustering significance in the equa-

torial Pacific (Figure 1) notably coincideswell with that of theNiño 3.4-dominated regionof Figure 3. A handful of

regions exhibiting clustering significance do not stand out in the present analysis–chiefly the tropical Atlantic in

DJF andMAM, andWestern Australia in SON–where local processes may bemore important, or where wemay

have missed the relevant modes of variability. Nevertheless, it appears that our reduced selection of large-scale

modes of variability is sufficient to explainmuch of the clustering significance at the 3-week timescale. Clustering

significance seems to be primarily linked to four modes of variability: the IOD andNiño 3.4 indices in the tropics,

and the PNA andNAO in theNorthernHemisphere. The IOD andNiño 3.4 both represent long-lived SST anom-

alies; therefore, it is not surprising that they would influence weather on sub-seasonal timescales. The NAO and

PNA also exhibit persistence at sub-seasonal timescales (Barnes andHartmann, 2010; Li et al., 2019). By contrast,

few regions where TCEP frequency is dominated by the MJO exhibit clustering significance.

Limitations of the study

Because we regress (3-week extreme precipitation counts against concurrent values of large-scale modes

of variability, some of the influence of thesemodes on TCEP frequency may end up diluted in our approach,

Figure 6. Regression coefficients in the Poisson GLM model for the IOD index in all seasons

Only grid points where the coefficients are statistically significant at the 5% confidence level (modified to take the false discovery rate into account) are shown.
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in case their effect takes some time to be felt remotely. The extratropical influence of ENSO or theMJO, for

instance, results from Rossby wave trains that typically take 1–2 weeks to travel from their source (Cassou,

2008). In addition, our GLM model does not take into account potential nonlinearities in covariate effects,

which have been documented e.g., in the case of ENSO (Sun et al., 2015). Poisson GLMs are nevertheless

useful to understand, at first order, the global patterns of clustering significance and its major climate

drivers. Still, detailed regional analyses could rely on more complex approaches like Generalized Additive

Models (Barton et al., 2021).

CONCLUSIONS

Based on a simple regression approach of 3-week extreme precipitation counts, we investigate the sea-

sonal influence of eight major modes of climate variability on the frequency of temporally clustered precip-

itation extremes (TCEP) across the globe. Removing the seasonal cycle in extreme precipitation magnitude

allows us to concentrate on sub-seasonal TCEP drivers. Model goodness-of-fit is highest in the tropics,

particularly over the equatorial Pacific, the Maritime Continent, and East Africa, but also in a handful of

extratropical regions like Southwest Asia, Alaska, Northeastern Russia, and Southwest Europe. These re-

gions largely correspond to those where temporal clustering in extreme precipitation time series is statis-

tically significant. In the tropics, ENSO and the IOD have the most influence on TCEP frequency, and their

persistence in time likely explains most of the clustering significance in the tropics. In the tropics still, the

MJO also modulates TCEP frequency, especially over the Maritime Continent. There is little significant

TCEP in the Southern Hemisphere extratropics. In the Northern Hemisphere, the NAO, AO, WP, and

PNA all significantly affect TCEP frequency, particularly over the North Atlantic and Pacific basins. Although

several of the selected modes of variability remain challenging to forecast even at sub-seasonal timescales

(e.g., Feng et al., 2021), others such as ENSO or the IOD, are routinely well predicted by weather models

(e.g., Jin et al., 2008). Our results thus open the door for improved forecasts of sub-seasonal TCEP

frequency and associated impacts.

Figure 7. Regression coefficients in the Poisson GLM model for the MJO1 and MJO2 indices in all seasons

Only grid points where the coefficients are statistically significant at the 5% confidence level (modified to take the false discovery rate into account) are

shown.
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METHOD DETAILS

Precipitation

We use daily precipitation data at one ◦ resolution from the ERA5 reanalysis (Hersbach et al., 2020) over the

1979–2019 period. While precipitation in ERA5 is a prognostic variable and precipitation observations are

not directly assimilated into the model, Rivoire et al. (2021) showed that ERA5 was able to correctly capture

the timing of extreme precipitation events in the extratropics, though less so in the tropics. Tuel and Mar-

tius (2021a) additionally showed that ERA5 compared well to several satellite-and observation-based prod-

ucts in terms of TCEP statistics.

Modes of climate variability

We consider here nine canonical modes of climate variability: the El Niño-Southern Oscillation (ENSO),

the Indian Ocean Dipole (IOD), the Madden-Julian Oscillation (MJO), the North Atlantic Oscillation

(NAO) and Arctic Oscillation (AO), the Pacific North American pattern (PNA), the Western Pacific pattern

(WP), the Southern Annular Mode (SAM) and the Baroclinic Annular Mode (BAM). Daily time series of

the NAO, AO, SAM and PNA indices are obtained from NOAA’s Climate Prediction Center at https://

www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/history/history.shtml. Details of the cal-

culations are provided at https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/

history/method.shtml. We define the WP index following Wallace and Gutzler (1981) as the normalised dif-

ference in 500 hPa geopotential height between 60◦ N/155◦ E and 30◦ N/155◦ E. Normalisation is per-

formed with the mean and SD of a 30-day moving window centered on each day of the year. The geopo-

tential data is taken from ERA5. We calculate daily Niño 3.4 and IOD indices using SST data from ERA5. The

Niño 3.4 index is defined as the mean SST anomaly in the 5◦ S-5◦ N/170◦ W120◦ W region, and the IOD

index as the anomaly in SST gradient between the western equatorial (10◦ S-10◦ N/50◦ E-70◦ E) and

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ERA5 reanalysis data ECMWF https://dx.doi.org/10.24381/cds. adbb2d47

Daily NAO, AO, SAM and PNA indices National Centers for

Environmental Prediction

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_

ao_index/history/history.shtml

Software and algorithms

Code to reproduce the results of this study Authors https://github.com/Quriosity129/TCEP_modes_variability
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southeastern equatorial (10◦ S-0◦/90◦ E-110◦ E) Indian Ocean. Daily Niño 3.4 and IOD indices are not espe-

cially relevant, but we subsequently average them over sub-seasonal timescales (see section Precipitation

extremes and sub-seasonal averaging). For the MJO, we use the two real-time multivariate indices of

Wheeler and Hendon (2004), denoted MJO1 and MJO2, available from the Australian Bureau of Meteo-

rology at http://www.bom.gov.au/climate/mjo/. Finally, we compute a daily BAM index following Thomp-

son and Woodworth (2014) as the time series of the leading principal component of eddy kinetic energy

between 70 ◦ and 20◦ S and 1000–200 hPa (after weighting the data according to latitude and pressure).

Eddy kinetic energy is calculated from ERA5 6-hourly wind on all available pressure levels; the long-term

monthly-means are subtracted from the wind components at all grid points and pressure levels.

Precipitation extremes and sub-seasonal averaging

Following Tuel and Martius (2021a), we define precipitation extremes at each grid point as days when daily

precipitation exceeds its 99th all-days percentile of the corresponding month over the full 1979–2019

period. This approach allows to remove the seasonality in precipitation magnitude to concentrate on

sub-seasonal timescales, and to have similar extreme precipitation frequencies in all seasons. Note how-

ever that the absolute extreme precipitation values vary considerably across location and season (see

Tuel and Martius (2021a) for more details). The choice of the 99th percentile as threshold is a compromise

to select reasonably extreme events (3–4 per year) while retaining a high enough frequency of TCEP for the

statistical analysis. Because individual weather systems responsible for extreme precipitation can linger

several days over a given location, we implement at each grid point a runs declustering method (Coles,

2001), in which extreme precipitation events separated by less than 2 days are grouped together and as-

signed to the same event. The resulting extreme event frequency is shown on Figure S2. Extreme event

counts are then summed over successive, non-overlapping 3-week windows. This choice of summing win-

dow is appropriate to quantify TCEP at sub-seasonal timescales (Barton et al., 2016; Tuel and Martius,

2021a). Our results remain the same for two or 4-week windows (compare Figures 3 and S3). We also

average daily climate mode indices over the same 3-week windows, and assign each window to the season

with which it overlaps most: winter (DJF), spring (MAM), summer (JJA) and fall (SON). We use non-overlap-

ping windows to ensure that we fit the model on independent time periods.

Poisson regression

Wemodel 3-week extreme event counts nt, at each grid point and for each season separately, with Poisson

Generalized Linear Models (GLMs). nt is assumed to follow a Poisson distribution with rate of occurrence lt

function of covariates Xi
t as follows:

8<
:

nt � PoissonðltÞ
logðltÞ � b0 +

X
i

biX
i
t

(Equation 1)

The covariates Xi
t are the rescaled 3-week averaged time series of climate modes introduced in section

Modes of climate variability. The rescaling consists in transforming each covariate series into a series

with mean 0 and SD 1. We carry out a covariate selection with a forward stepwise approach. Starting

from a model with no covariates, we add covariates, one at a time, to a list of ’’best’’ covariates leading

to an ’’optimal’’ model. Model performance is determined by the Akaike Information Criterion (AIC), equal

to the difference between the number of model covariates and the model log likelihood. A smaller AIC in-

dicates a better model. At each step, each covariate, among all those not yet included in the model, is

added to the model. The covariate leading to the largest drop in AIC is added to the list of ’’best’’ cova-

riates, and the sequence continues as long as AIC can decrease by adding further covariates. We also

checked that a random shuffling of the covariates at the beginning of the stepwise covariate selection

did not impact the results. We assess the goodness-of-fit of the optimal model with its deviance ratio

(DR) (McCullagh and Nelder, 1989). Model deviance D is equal to 2ð[s � [ðbÞÞ, where [s is the log likelihood

of the ’’perfect’’ (or saturated) model (one free parameter per observation) and [ðbÞ the log likelihood of the

fitted model. Letting D0 be the deviance of the ’’null model’’ (in which lt = l0), DR is then defined as:

DR = 1� D

D0
(Equation 2)

DR is therefore ameasure of model goodness-of-fit, since it quantifies the relative improvement (in terms of

deviance) of the model with respect to the null model. DR close to 0 means that the model performs hardly

better than the null one, while DR close to one implies an almost perfect model. For example, DR = 0.2
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means that the model offers a 20% improvement on the null model. The validity of the Poisson distribution

assumption is assessed with a chi-square test on the fitted model deviance D. Under the null hypothesis

that the assumed Poisson model is correct, D follows a c2 distribution with n degrees of freedom, where

n equals the number of observations minus the number of model parameters. The Poisson model (1)

implies that for a unit increase in covariate Xt
j , lt (the average expected number of extremes, E½nt

��Xi
t �) is

multiplied by expðbjÞ. We determine the significance of the bi regression coefficients (Equation 1) by

filtering the corresponding p values with a 5% significance threshold that takes the false discovery rate

into account (Wilks, 2016). We retain significant coefficients only before determining, at each grid point,

the number of selected model covariates and the covariate with the largest coefficient (in absolute terms).
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