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Abstract  
 

Network meta-analysis (NMA) has been used to answer a range of clinical questions about the 

preferable intervention for a given condition. Although the effectiveness and safety of 

pharmacological agents depend on the dose administered, NMA applications typically ignore 

the role that drugs dosage plays in the results. This leads to more heterogeneity in the network.  

In this paper, we present a suite of NMA models that incorporate the dose-effect relationship 

(DE-NMA) using restricted cubic splines (RCS). We extend existing models into a dose-effect 

network meta-regression to account for study-level covariates and for groups of agents in a 

class-effect DE-NMA model. We apply our models to a network of aggregate data about the 

efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are 

more efficacious than placebo after a certain dose. Also, we identify the dose level at which 

each antidepressant’s effect exceeds that of placebo and estimate the dose beyond which the 

effect of antidepressants no longer increases. Our DE-NMA model with RCS provides a 

flexible approach to modelling the dose-effect relationship in multiple interventions. Decision-

makers can use our model to inform treatment choice.  

 

Keywords: evidence synthesis, multiple treatments, splines, dose-response, meta-

regression 
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1 Introduction 
Network meta-analysis (NMA) is a technique commonly used to simultaneously compare 

multiple agents [1–3].  Although comparison between pharmacological agents is important, in 

practice clinicians always prescribe drugs at a particular dose, informed by the market 

authorisation, licensing of the product, dose-effect studies, and their experience. It is therefore 

important to know not only which pharmacological agents are preferable but how their 

advantage depends on the dose.  

Health technology assessment agencies make recommendations that should, and 

sometimes do, specify the recommended dose range for several competing pharmacological 

agents. However, without a unified methodological approach to infer the relative effects of 

agent-dose combinations, contradictory information might be made available. For example, the 

guidelines produced by the National Institute of Health and Care Excellence state that no dose 

dependency has been established within the therapeutic range of selective serotonin-reuptake 

inhibitors (SSRI) when treating people diagnosed with major depression, whereas the 

American Psychiatric Association guideline recommends titration up to the maximum tolerated 

dose. 

In NMA, the first and often most challenging step is the definition of the nodes in the 

network with respect to the combination of agents and dose. When pharmacological agents are 

compared, an important decision faced early on is whether the dose of each agent is of interest, 

and consequently, whether the definition of each node involves the dose of the agent or not.  

There are three main options when it comes to dealing with the dose of pharmacological 

interventions in NMA.  Frequently, information about the dose is ignored and focus is placed 

only on the relative effects between agents (e.g. Cipriani et al. [4]). This approach may result 

in a network with increased heterogeneity and inconsistency. At the other end of the spectrum, 

one can consider each agent-dose combination as a different treatment that defines a different 

node in the network [5]. This detailed and larger network will inevitably be at best sparse or 

even disconnected. A compromise is to model the dose-effect relationship for each agent by 

extending the dose-effect meta-analysis models [6–8]. 

The dose-effect relationship expresses the change in effect over different doses. In 

pairwise meta-analysis, the dose-effect curves are synthesized across studies. Such analyses 

can be conducted using the two-stage or one-stage methods in a frequentist [9, 10] or Bayesian 

http://dx.doi.org/10.1177/09622802211070256
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setting [11]. In NMA, the linear dose-effect model has been implemented [6] which, however, 

poorly reflects the natural dose-effect dynamics [12]. Del Giovane et al. [7] addressed that by 

either considering an exchangeable effect for the different doses of a certain agent or assuming 

the dose-effect relationship as a monotonic, linear, or random walk. More recently, Mawdesly 

et al. [8]  have extended NMA to incorporate the Emax dose-effect model which is commonly 

used in pharmacometrics when determining the optimal dose. In clinical practice and for 

decision making, more flexibility in the assumed dose-effect shapes is desirable to better reflect 

a range of possible biological mechanisms of the various pharmacological agents.  

With this paper, we aim to contribute to the growing literature about dose-effect models 

by describing a generic and flexible dose-effect NMA (DE-NMA) model with restricted cubic 

splines (RCS). Recent simulations showed that the RCS successfully capture a large range of 

functional shapes [11]. As residual heterogeneity and inconsistency (beyond what can be 

explained by different dosages) can occur, we extend the model into a dose-effect network 

meta-regression by incorporating study-level covariates. Of note, methods to assess the 

consistency assumption in dose-effect NMA models have been introduced recently in [cite]. 

The article is structured as follows. First, we present our motivating example. In Section 

3, we present the DE-NMA model and two extensions: the DE-NMR and a DE-NMA that 

includes class effects. Next, we apply the models to the antidepressants network, and we then 

present the results. In Section 4, we discuss the strengths and limitations of the models, and we 

discuss other methods to estimate the dose-response shape, such as fractional polynomials.  

The analysis code is implemented using Just Another Gibbs Sampler (JAGS) [13] and R 

[14], and it is made available at Zenodo [15]. 

2 Example: Comparing the efficacy of 21 antidepressants  
We illustrate our different models using a network of double-blind fixed-dose randomised 

controlled trials (RCT) that compare antidepressants for depression (see Figure 1a and 

Appendix Figure 1).  The primary outcome is efficacy measured as the total number of patients 

who had more than 50% reduction in symptoms (response rate) [16]. The participants of the 

included studies were adults diagnosed with unipolar major depressive disorder. The dataset is 

a superset of one used to compare 21 antidepressants and placebo according to their efficacy, 

acceptability, and safety [4]. In that NMA, Cipriani et al. synthesized only arms with agents 

administered at approved doses (as fixed or flexible schedule), while we included all trial arms 

regardless of the dosage. More details about inclusion criteria, the search strategy, data 

extraction, and risk of bias in these studies can be found in Cipriani et al. [4]. 
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Our dataset includes 170 RCTs comparing 21 antidepressants with placebo or another 

active treatment. Trazodone is excluded from the primary analysis (because only one dose level 

is examined in the included studies), yet included in the class-effect model (it belongs with 

nefazodone in the same class, serotonin antagonist and reuptake inhibitor [SARIs]). The trials 

report 457 different fixed dose-per-drug treatments and include 54,048 participants. In 

Appendix Table 1, we summarise the number of events, the sample size, the number of studies, 

the number of different doses, and the class for each drug. We present the distribution of 

observed doses per drug in Figure 1b.  

A subset of our data (only SSRIs except fluvoxamine) have been previously analysed 

using pairwise dose-effect meta-analysis, thus ignoring the differences between the individual 

drugs (using  frequentist [17] or Bayesian dose-effect meta-analysis [11]).  

3 Methods 
We first present the DE-NMA model, and then we extend it by incorporating covariates or by 

assuming class effects between the exposures. As most studies in any NMA are RCTs, we 

assume the case where each arm of a trial has been randomized to an agent at a different dose. 

We also present the model assuming a dichotomous outcome using RCS for the association 

between dose and effects. However, the model can be easily adapted for any assumed shape 

(e.g., linear, quadratic, etc.) and any type of outcome.  

3.1 Notation 

Table 1 summarizes the notation we used. Suppose we compared 𝐾𝐾 agents (𝑘𝑘 = 1, . . ,𝐾𝐾) in 𝑛𝑛𝑛𝑛 

studies (𝑖𝑖 = 1, . . ,𝑛𝑛𝑛𝑛) that report the dose level 𝑗𝑗. For each dose, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, we observe the number 

of events 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 and the sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 (dichotomous outcome). Additionally, we have 

information on a vector of 𝑚𝑚 study-level covariates 𝑍𝑍𝑖𝑖 = �𝑧𝑧1,𝑖𝑖, … , 𝑧𝑧𝑚𝑚,𝑖𝑖�. In the class effect 

model, the 𝑐𝑐 index refers to the class of the agent. Note that we differentiated between agent 

and treatment when the latter refers to the given dose of a certain agent. 

3.2 Dose-effect network meta-analysis model with placebo arm 

We defined the DE-NMA model as an extension of the standard NMA. We describe it as a 

hierarchical model with three layers; we first estimated the dose-effect association within each 

study, and then we synthesised the shapes across studies and across agents. For simplicity, we 

present the model assuming that the network includes placebo.  
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3.2.1 Dose-effect model within each study 

For ease of understanding and notation, we begin our description of a dose-effect model for a 

network of trials that have “placebo” as a common comparator. We relax this initial 

assumption at the end of Section 3.2.1, when we describe a dose-effect model for a network 

of studies with different controls. 

Let us assume that within each study 𝑖𝑖, the number of events follows a binomial 
distribution 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖~Binomial�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖� 

with 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 being the probability of an event to occur.  We choose a transformation of these 

probabilities based on the measure of the relative effect that we are interested in. We set the 

transformation to the logit transformation for odds ratio (OR) 

logit�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖 ,            placebo

𝑢𝑢𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖, active agent  

𝑢𝑢𝑖𝑖 is the log-odds of the event on the placebo arm in study 𝑖𝑖. The term 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 denotes the 

underlying parameter for the effect of agent 𝑘𝑘 in study 𝑖𝑖 at dose 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 (dose level 𝑗𝑗). It is the 

effect of agent 𝑘𝑘 in study 𝑖𝑖 at dose 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  relative to placebo (or the minimum dose in the study 

𝑖𝑖; see end of the section). If the log function instead of the logit is used to transform the 

probabilities, the model will estimate risk ratios instead of OR.  

The parameter 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖, can be modelled then assuming a common- or exchangeable-effect 

model, see Table 2. For the common-effect model, the underlying true effect is assumed to be 

equal in all studies, so we set  

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖. 

For exchangeable-effect model, 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 are assumed to come from a common normal 

distribution with mean 𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖 and variance 𝜏𝜏2,  

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁�𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖, 𝜏𝜏2� 

The heterogeneity 𝜏𝜏2 reflects between-studies variability, and it is assumed to be 

independent of the dose and agent. For multi-arm trials with more than one active agent 

examined, there are more than one 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 per study, and as they are calculated using the same 

reference arm, they shall be jointly modelled using a multivariate normal distribution as in 

standard network meta-analysis [2]. 
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Το incorporate the dose-effect relationship in the model, we linked the parameters 𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖, 

to the transformed doses under an assigned function 𝐹𝐹, which we will call the dose-effect 

function: 

𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖;  𝛽𝛽1,𝑖𝑖𝑖𝑖,𝛽𝛽2,𝑖𝑖𝑖𝑖, … ,𝛽𝛽𝑃𝑃,𝑖𝑖𝑖𝑖�   

The function 𝐹𝐹 can take various forms and the shape is defined by a set of 𝑃𝑃 parameters 

𝛽𝛽1,𝑖𝑖𝑖𝑖, … ,𝛽𝛽𝑃𝑃,𝑖𝑖𝑖𝑖. In addition to that, 𝐹𝐹 can be set differently for each agent 𝑘𝑘; 𝐹𝐹𝑖𝑖. Here we will 

set 𝐹𝐹 to be a RCS—the same for all agents.  

The general form of the RCS with 𝜅𝜅 knots 𝑡𝑡1, … , 𝑡𝑡𝜅𝜅 is defined as follows  

𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖;  𝛽𝛽1,𝑖𝑖𝑖𝑖,𝛽𝛽2,𝑖𝑖𝑖𝑖, … ,𝛽𝛽𝑃𝑃,𝑖𝑖𝑖𝑖� = 

𝛽𝛽1,𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2,𝑖𝑖𝑖𝑖𝑓𝑓2�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖� + ⋯+ 𝛽𝛽(𝜅𝜅−1),𝑖𝑖𝑖𝑖𝑓𝑓(𝜅𝜅−1)�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖�  

where for 𝑚𝑚 = 1, … , (𝜅𝜅 − 2)  

𝑓𝑓(𝑚𝑚+1)�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖� = (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑚𝑚)+3 −
𝑡𝑡𝜅𝜅 − 𝑡𝑡𝑚𝑚
𝑡𝑡𝜅𝜅 − 𝑡𝑡𝑖𝑖−1

 (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝜅𝜅−1)+3 +  
𝑡𝑡𝜅𝜅−1 − 𝑡𝑡𝑚𝑚
𝑡𝑡𝜅𝜅 − 𝑡𝑡𝜅𝜅−1

 (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝜅𝜅)+3 . 

with (𝑥𝑥)+  =  𝑥𝑥 if 𝑥𝑥 >  0 and 0 otherwise.  For more details, see Section 2.4.5 in Harrell  

[18]. 

Setting three knots (𝜅𝜅 = 3) will reduce 𝐹𝐹 in Equation 2 into a function with two 

coefficients. Then the dose-effect relationship becomes expressed by the linear and the spline 

terms; 𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖= 𝛽𝛽1,𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2,𝑖𝑖𝑖𝑖𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖�. We use three knots for the remainder of the paper. A 

discussion about selecting the number of knots and their location can be found elsewhere [11, 

18].  

When the study 𝑖𝑖 does not have a placebo arm, we can choose an agent 𝑅𝑅 at the minimum 

dose level 𝑟𝑟 as the study-specific reference treatment. Then, the relative treatment effect 

𝛥𝛥𝑖𝑖(𝑖𝑖𝑗𝑗)(𝑖𝑖𝑘𝑘) refers to the effect of agent 𝑘𝑘 at dose level 𝑗𝑗 versus agent 𝑅𝑅 at dose level 𝑟𝑟 ; it is 

modelled as  

𝛥𝛥𝑖𝑖(𝑖𝑖𝑗𝑗)(𝑖𝑖𝑘𝑘)  = 𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖;  𝛽𝛽1,𝑖𝑖𝑖𝑖,𝛽𝛽2,𝑖𝑖𝑖𝑖, … ,𝛽𝛽𝑃𝑃,𝑖𝑖𝑖𝑖� − 𝐹𝐹�𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘;  𝛽𝛽1,𝑖𝑖𝑘𝑘,𝛽𝛽2,𝑖𝑖𝑘𝑘 , … ,𝛽𝛽𝑃𝑃,𝑖𝑖𝑘𝑘�    

3.2.2 Dose-effect model across studies and agents 

To synthesise the dose-effect parameters 𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 across studies, we employed the following 

assumptions (see Table 2). We can assume each agent-specific 𝑝𝑝th shape parameter 𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖  to be 

(1) 

(2) 
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either exchangeable 𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖~𝑁𝑁�𝐵𝐵𝑝𝑝,𝑖𝑖,𝜎𝜎𝛽𝛽,𝑝𝑝
2 � (Assumption 2.1) or equal 𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑝𝑝,𝑖𝑖 (Assumption 

2.2) across studies. We can simplify Assumption 2.1 by setting a common shape heterogeneity 

𝜎𝜎𝛽𝛽,𝑝𝑝 = 𝜎𝜎𝛽𝛽. 

Across agents, we can relate the shape parameters based on three possible assumptions 

(see Table 2). For agent 𝑘𝑘, we have a set of 𝑃𝑃 shape parameters 𝐵𝐵𝑝𝑝,𝑖𝑖 ; it can be either 

independent 𝐵𝐵𝑝𝑝,𝑖𝑖 (Assumption 3.1), it can have a common normal distribution 

𝐵𝐵𝑝𝑝,𝑖𝑖~𝑁𝑁�𝑏𝑏𝑝𝑝,𝜎𝜎𝐵𝐵,𝑝𝑝
2 � (Assumption 3.2), or it can be fixed to a single value as 𝐵𝐵𝑝𝑝,𝑖𝑖 = 𝑏𝑏𝑝𝑝 

(Assumption 3.3). The latter assumption requires a harmonisation of doses, so all agents’ doses 

are measured on the same scale.  

Let us define 𝛥𝛥.(𝑎𝑎𝑎𝑎)(𝐴𝐴𝐴𝐴) as the expectation for the log-odds ratio between treatment 𝐴𝐴 at 

dose 𝑥𝑥𝑎𝑎versus treatment 𝐶𝐶 at dose 𝑥𝑥𝑎𝑎.  Now, to estimate the dose-effect curve between the two 

non-referent agents A and C, we can use consistency equations  

𝛥𝛥.(𝑎𝑎𝑎𝑎)(𝐴𝐴𝐴𝐴) =  𝛥𝛥.𝑎𝑎𝐴𝐴 − 𝛥𝛥.𝑎𝑎𝐴𝐴 

=  𝐵𝐵1,𝐴𝐴𝑥𝑥𝑎𝑎 + 𝐵𝐵2,𝐴𝐴𝑓𝑓(𝑥𝑥𝑎𝑎) − [𝐵𝐵1,𝐴𝐴𝑥𝑥𝑎𝑎 + 𝐵𝐵2,𝐴𝐴𝑓𝑓(𝑥𝑥𝑎𝑎)]           (3) 

where 𝛥𝛥.𝑎𝑎𝐴𝐴 refers to the study-specific treatment effect of agent A at dose 𝑥𝑥𝑎𝑎  versus placebo.  

3.3 Dose-effect network meta-regression model 

We can extend the DE-NMA to DE-NMR in the same way when NMA is extended to NMR 

by adding regression terms. The DE-NMA model (in Section 3.2) can be updated to  

logit�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = �
𝑢𝑢𝑖𝑖              placebo

𝑢𝑢𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛄𝛄𝑖𝑖𝑖𝑖𝒁𝒁𝑖𝑖+𝜻𝜻𝑖𝑖𝑖𝑖 𝑾𝑾𝒊𝒊𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  active agent 

The set of study covariates 𝒁𝒁𝑖𝑖 and of participant covariates 𝑾𝑾𝒊𝒊 (but available on study-level, 

e.g., mean age) impact the relative treatment effect 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 differently. The participant covariates 

may interact with dose 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 while study covariates do not. The term 𝛄𝛄𝑖𝑖𝑖𝑖 = �γ1,𝑖𝑖𝑖𝑖, … , γ𝑚𝑚,𝑖𝑖𝑖𝑖� is 

a vector expressing the impact of effect modifying covariates 𝒁𝒁𝑖𝑖 on 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖. The vector 𝜻𝜻𝑖𝑖𝑖𝑖 =

(𝜁𝜁1,𝑖𝑖𝑖𝑖, … , 𝜁𝜁ℎ,𝑖𝑖𝑖𝑖) expressing the impact of the dose-covariates (𝑾𝑾𝒊𝒊)  interaction effect on the 

relative treatment effect 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖. Each single parameter expresses the study-specific covariate 

effect (γ∗,𝑖𝑖𝑖𝑖) and the covariate-dose effect (𝜁𝜁∗,𝑖𝑖𝑖𝑖) for agent 𝑘𝑘 relative to placebo. 

Across studies, we can assume either exchangeable-effect; γ𝑚𝑚,𝑖𝑖𝑖𝑖~𝑁𝑁(𝛤𝛤𝑚𝑚,𝑖𝑖, 𝜏𝜏𝛾𝛾2), 

𝜁𝜁ℎ,𝑖𝑖𝑖𝑖~𝑁𝑁(𝑉𝑉ℎ,𝑖𝑖, 𝜏𝜏𝜁𝜁2) or a common-effect model; γ𝑚𝑚,𝑖𝑖𝑖𝑖 = 𝛤𝛤𝑚𝑚,𝑖𝑖, 𝜁𝜁ℎ,𝑖𝑖𝑖𝑖 = 𝑉𝑉ℎ,𝑖𝑖. Across agents, we can 

model 𝛤𝛤𝑚𝑚,𝑖𝑖 and 𝑉𝑉ℎ,𝑖𝑖 under one of the following three alternatives; estimate each one 

independently; 𝛤𝛤𝑚𝑚,𝑖𝑖 = 𝑔𝑔𝑚𝑚,𝑖𝑖, 𝑉𝑉ℎ,𝑖𝑖 = 𝑣𝑣ℎ,𝑖𝑖, assume exchangeable covariate effect and covariate-
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dose interaction effect, respectively, 𝛤𝛤𝑚𝑚,𝑖𝑖~𝑁𝑁(𝑔𝑔𝑚𝑚, 𝜏𝜏𝛤𝛤2), 𝑉𝑉ℎ,𝑖𝑖~𝑁𝑁(𝑣𝑣ℎ, 𝜏𝜏𝑉𝑉2 ), or presume a common 

effect 𝛤𝛤𝑚𝑚,𝑖𝑖 = 𝑔𝑔𝑚𝑚, 𝑉𝑉ℎ,𝑖𝑖 = 𝑣𝑣ℎ.  

We assume consistency for the effects of covariates per treatment comparison, that is for 

the impact of variable 𝑚𝑚 and ℎ on the parameter effect between two active agents 𝑘𝑘1,  𝑘𝑘2; it is  

𝛤𝛤𝑚𝑚, 𝑖𝑖1 𝑣𝑣𝑣𝑣 𝑖𝑖2 = 𝛤𝛤𝑚𝑚, 𝑖𝑖1 − 𝛤𝛤𝑚𝑚, 𝑖𝑖2 ,𝑉𝑉ℎ, 𝑖𝑖1 𝑣𝑣𝑣𝑣 𝑖𝑖2 = 𝛤𝛤ℎ, 𝑖𝑖1 − 𝛤𝛤ℎ, 𝑖𝑖2 , respectively. This means that when 

we assume 𝛤𝛤𝑚𝑚,𝑖𝑖 = 𝑔𝑔𝑚𝑚, 𝛤𝛤𝑚𝑚, 𝑖𝑖1 𝑣𝑣𝑣𝑣 𝑖𝑖2 = 0 or set 𝑉𝑉ℎ,𝑖𝑖 = 𝑣𝑣ℎ, 𝑉𝑉ℎ, 𝑖𝑖1 𝑣𝑣𝑣𝑣 𝑖𝑖2 = 0.  

3.4 Dose-effect network meta-analysis model accounting for clusters  

Often it might be desirable to group agents in classes and then estimate the class effect 

alongside agent effects. The assumptions for the shape parameters behind such a model are 

added as Assumption 3.4 and Assumption 3.5 in Table 2. Such parameters for agents 

𝑘𝑘𝑎𝑎 belonging to class 𝑐𝑐  can be assumed either exchangeable 𝐵𝐵𝑝𝑝,𝑖𝑖𝑐𝑐~𝑁𝑁�𝑏𝑏𝑝𝑝,𝑎𝑎,𝜎𝜎𝐵𝐵,𝑝𝑝
2 � or common 

𝐵𝐵𝑝𝑝,𝑖𝑖𝑐𝑐 = 𝑏𝑏𝑝𝑝,𝑎𝑎. Then the parameters 𝑏𝑏𝑝𝑝,𝑎𝑎 are estimated independently for each class 𝑐𝑐. 

When classes are considered, the doses of the agents within a given class need to be 

measured on the same (or equivalent scales) to calculate meaningful class-effects. For example, 

to estimate a dose-effect of all SSRIs, we will need first to transform the dose of each different 

SSRI into the same fluoxetine-equivalent scale.   

3.5 Estimating an absolute mean effect for each agent at each dose level and 

calculating a treatment hierarchy.  

With many treatments and doses, results are more easily presented and understood using 

absolute estimands, such as the response probability 𝑃𝑃𝑖𝑖𝑖𝑖 for a specific dose 𝑗𝑗 of a certain agent 

𝑘𝑘. In a Bayesian setting, this can be done by combining the estimated dose-effect parameters 

with the response probability for placebo 𝑃𝑃0. The latter can be computed outside the DE-NMA 

model by placing a binomial distribution for the corresponding events 𝑟𝑟𝑖𝑖0 with sample size  𝑛𝑛𝑖𝑖0 

and probability of the event to occur in placebo arm 𝑝𝑝𝑖𝑖0 

𝑟𝑟𝑖𝑖0~𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝑚𝑚(𝑝𝑝𝑖𝑖0,𝑛𝑛𝑖𝑖0), 

 𝑙𝑙𝐵𝐵𝑔𝑔𝑖𝑖𝑡𝑡(𝑝𝑝𝑖𝑖0)~𝑁𝑁(𝑙𝑙𝐵𝐵𝑔𝑔𝑖𝑖𝑡𝑡(𝑃𝑃0),𝜎𝜎02). 

 Next the predicted probability of the event to occur at dose 𝑗𝑗 and agent 𝑘𝑘 is 

       𝑃𝑃𝑖𝑖𝑖𝑖∗ = expit �𝑙𝑙𝐵𝐵𝑔𝑔𝑖𝑖𝑡𝑡�𝑃𝑃�0� +  𝐹𝐹 ��𝑥𝑥𝑖𝑖𝑖𝑖;  𝐵𝐵�1,𝑖𝑖 �, �𝑥𝑥𝑖𝑖𝑖𝑖;  𝐵𝐵�2,𝑖𝑖 �, … , �𝑥𝑥𝑖𝑖𝑖𝑖;  𝐵𝐵�𝑝𝑝,𝑖𝑖 �� + 𝑔𝑔� × 𝑐𝑐𝐵𝐵𝑣𝑣𝑝𝑝𝑗𝑗𝑝𝑝𝑝𝑝�, 

where the tilde (~) refers to the posterior of parameters. 
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These probabilities may be used then to rank the agents according to their efficacy at 

each dose level. However, to make comparison easy, one might need to transform the doses 

into a single scale using equivalence formulae, if available.  
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4 Application in dose-effect of antidepressants 
 
4.1 Implementation of the models and diagnostics 

We conducted a DE-NMA under five different model specifications. M1 is the primary dose-

effect NMA model, and then we added three dose-effect NMR models (M2 to M4) for 

covariates, risk of bias (low versus high), study publication year (centred at 2010), and the 

variance of logOR (to evaluate small study effects). In M5, we accounted for class effects 

instead of the agent effects as listed in Appendix Table 1. All models employ assumptions 1.1 

and 2.2. (Table 2).  M1-M4 additionally employ assumption 3.1. We set a common covariate 

effect across studies and agents in M2-M4 (𝛤𝛤𝑚𝑚,𝑖𝑖 = 𝑔𝑔𝑚𝑚). In M5 class effects are modelled using 

assumption 3.5 where all doses are transformed to fluoxetine-equivalent dose using previously 

established transformation. 

We modelled the dose-effect relationship with RCS with three knots. Because agents 

have different dose ranges, knots are placed for each agent at 25%, 50%, and 75% percentiles 

of the corresponding observed dose range. We investigated the sensitivity of the estimated 

curve to knots position, only for M1 by placing knots at 10%, 20%, and 30% percentiles.  

All parameters were estimated using JAGS program which is implemented via R. We 

assessed the overall performance of the model using the Deviance Information Criterion (DIC) 

statistic and leverage plots. The values of DIC can be used to compare between different 

models but they need to have the same likelihood and data. The model provides the best balance 

between model fit and complexity when it has the lowest DIC.  

We estimated the parameters with Markov Chain Monte Carlo (MCMC) using three 

chains with 1 × 104 iterations, 4 × 103 burn-in, and a thinning of one. We set a minimally 

informative prior for the placebo effect 𝑢𝑢𝑖𝑖~𝑁𝑁(0, 103) and the shape parameters 

𝐵𝐵𝑝𝑝,𝑖𝑖~𝑁𝑁(0,103), 𝑏𝑏𝑝𝑝~𝑁𝑁(0,103). The two heterogeneity parameters are given a uniform prior 

𝜏𝜏,𝜎𝜎𝑝𝑝,𝐵𝐵~ Unif(0,5). For the covariate effect in DE-NMR (M2-M4), we set 𝑔𝑔𝑚𝑚~𝑁𝑁(0,103). For 

the placebo response model, we placed logit(𝑃𝑃0)~𝑁𝑁(0, 103) and 𝜎𝜎0~Unif(0,5). 

We used the rcs function from the rms package to compute the RCS transformations 

[19]. The codes are available at Zenodo library [15]. We used different numerical and graphical 

methods (using the coda package [20]) to investigate the convergence of the MCMC. The 

results are provided as a posterior median with the 95% credible interval (CrI). 
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4.2 Results  

In Figure 2, we depict the absolute dose-effect relationship for each antidepressant along with 

the overall placebo effect for M1. The response to placebo is estimated at mean 36.2% (95% 

CrI 34.4% − 38.0%) (blue line). All antidepressants are more effective than placebo after 

some dose level which differed by agent. However, for some agents, there is a lot of uncertainty 

particularly at high dose levels (except clomipramine at a low dose level where we have no 

data). The efficacy initially increased up to a specific dose only to flatten out after a given dose 

for most agents. For example, the efficacy of duloxetine increased until 75 mg, then it leveled 

out after that. We identified moderate to small differences in the estimated curves from M1 

when we changed knot positions (see Appendix Figure 6). However, the overall conclusions 

do not change with the change in knot locations. 

In Table 3 we summarise the findings and the performance for all models. The 

heterogeneity variance decreases in meta-regression models. The adjustment for variance of 

logOR (M4) is associated with the largest relative drop in heterogeneity variance (26%) 

compared to the unadjusted model M1. The estimated coefficient in M4 suggest that increase 

in the variance of logOR by 0.1 is associated with increase in the odds of response by 23%.  In 

M2, the odds of response in studies with high risk of bias (RoB) is 23% higher than the odds 

of the low RoB ones.  In M3 we found that every year of publication results in about 1% 

decrease in the odds of response. 

In Figure 2 we also present the absolute dose-effect for all drugs scaled to the information 

from the study with the lowest variance of logOR (green line) alongside the unadjusted model. 

The response which is estimated with M2 and M3 are presented in Appendix Figure 2-3. 

In Appendix Figure 5, we present the contribution of each observation to 𝑝𝑝𝑖𝑖 in y-axis 

and to 𝐷𝐷�𝑗𝑗𝑝𝑝𝑣𝑣 in x-axis along with the overall model fit measures DIC, 𝑝𝑝𝑖𝑖 and 𝐷𝐷�𝑗𝑗𝑝𝑝𝑣𝑣.  The DIC 

ranges between 790 for the M1 model without covariates to 783 for M4 with the variance of 

logOR as a covariate. M4 is the most parsimonious model, and it has the smallest heterogeneity 

(Table 3). 

In Figure 3, we show the absolute probabilities under the class effect model M5.  As 

expected, for classes with many drugs such as SSRIs and serotonin-norepinephrine reuptake 

inhibitors (SNRIs) we gained precision compared to the agent-level models M1.  
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5 Discussion 
We present a dose-effect NMA model to synthesize evidence from trials that compare 

multiple agents at different dosages. To model the dose-effect relationship, we choose RCS to 

take advantage of their flexibility. We added two extensions to the model: a dose-effect 

network meta-regression to account for study-level covariates and groups of agents in a class-

effect model. We implemented various DE-NMA models in a network of antidepressants and 

placebo, and the resulting dose-effect shapes are in line with clinical expectations and previous 

findings [4, 11, 17]. Introducing covariates improved model fit and reduced heterogeneity, 

especially when we added the logOR variance as a covariate. Modelling class effects resulted 

in more precise estimates of the dose-effect association. We, additionally, identified the 

specific dose range in which antidepressant effect exceeds the placebo effect and beyond which 

dose the effect no longer increases.  

Some limitations of the DE-NMA models need to be acknowledged. First, the findings 

from such analyses can be sensitive to the assumptions about the dose-effect shapes (whether 

it is an assumed polynomial or splines). Besides a sensitivity analysis, researchers can a priori 

narrow down the set of possible shapes to the ones that best reflect the known biological 

behaviour of agents. If needed, the goodness of fit statistics can guide the final choice when 

enough data is available. When several models provide equally good fit, Bayesian model 

averaging can be used. The location of knots in RCS requires particular attention. The 

estimation of the model could be sensitive to the location of knots; and a sensitivity analysis is 

recommended to explore any impact on the results [11].  Although some researchers argue that 

the location of knots is not problematic in general [18, 21], we have previously found that 

positioning the knots at places where shift changes in the effect are expected might be a good 

strategy [11].  

 Second, there are often very few observations for the same agent to estimate the dose-

effect relationship with precision high enough to inform clinical practice. In such cases, the 

analysis might require considering other sources of information, such as informative priors for 

the shape, and coefficients of the association based on an external source, such as observational 

studies, or clinical expertise. Alternatively, we can impose stronger assumptions by borrowing 

information internally, such as assuming class-effects or even exchangeable dose-effect 

coefficients across all agents. This assumption will improve the parameters’ identifiability, and 

it also enables us to analyse a disconnected network. This approach, however, requires the 
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doses to be harmonized across the agents and assumes exchangeable dose-effect shapes across 

agents, which might be difficult to justify in practice.  

At present, we only synthesized fixed-dose studies. Studies with a flexible dose schedule, 

where the dose is increased up to a maximum targeted level, depending on the patients’ 

response and acceptability, require special attention. The analysis of post-randomisation dose 

adjustments requires causal modelling and individual participant data. Synthesizing fixed and 

flexible-dose studies is challenging and results will require careful interpretation.  

Technically, dose-response meta-analysis with RCS with three knots require two studies 

with at least one of them having three different dose levels. However, issues of precision, model 

fit, and heterogeneity question the utility of results from such analyses. Depending on the 

sparseness of the outcome and the complexity of the underlying dose-response shape, a 

substantial amount of data might be required to obtain useful results from dose-response meta-

analyses.  

In the present study, we only synthesized fixed-dose randomized studies where all 

patients in a study arm were prescribed and took the same dose of the same antidepressant. 

That means that dose is not a “patient-level” characteristic aggregated over the study arm, but 

an arm-level characteristic. Consequently, aggregation bias is unlikely in the dose-response 

association with fixed-dose randomised trials. Including studies with a flexible dose schedule, 

where the dose is increased up to a maximum targeted level according to the patients’ response 

and acceptability, warrants special attention. The analysis of post-randomisation adjustments 

of the dose requires causal modelling and individual participant data. Synthesizing fixed and 

flexible-dose studies is challenging and results need cautious interpretation. 

There is a variety of functional forms to model the dose-effect relationship in NMA, such 

as the Emax model [8]. The Emax model is widely used in drug development context where 

the focus is on studying drug safety and finding optimal doses (e.g., finding the dose at which 

half of the maximum effect is achieved). In clinical practice, however, the interest is on 

estimating the dose-effect relationship for the whole dose range. In this context, the parameters 

of Emax model are of less interest and the dynamics of the function makes it less likely to 

portray the underlying true dose-effect association. In contrast, the RCS offer sufficient 

flexibility to capture the biological behaviour of agents with only few parameters (only two 

parameters when we set three knots). This is particularly important in larger dose levels where 

the efficacy of many pharmacological agents is expected to level out.  

Fractional polynomial is another alternative to model the dose-effect relationship. They 

have been shown to perform well when modelling longitudinal data in NMA [22] but have not 
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been implemented in DE-NMA context yet. However, they can be less appealing when 

modelling dose-effect associations. Fractional polynomials are non-local functions which 

means they can be less efficient in detecting the multiple changes in drug dynamics [23]. 

Although fractional polynomials might be useful in the dose-findings studies where focus is on 

the safest dose [24], the RCS might be preferable in (network) meta-analysis contexts where 

we can benefit from the locality of the RCS to place knots at the expected changing points 

based on clinical or biological knowledge.   

Little work has been done systematically comparing the performance of various functions 

in the dose-response context. Zhang et al. [25] conducted a dose-effect meta-analysis to model 

the sleep duration and the risk of all-cause mortality, assuming different dose-effect shapes. 

They found that RCS performed well, while fractional polynomials yielded unreasonable 

results at five and six hours of sleep. Additionally, fractional polynomials need intensive 

computations to find the optimal powers, which is cumbersome to implement in a Bayesian 

setting. Further work is needed in this direction to study and compare different dose-effect 

shapes and pinpoint the advantages and limitations of the fractional polynomials in this context.  

Our study’s model is an extension of our previous work in pairwise meta-analysis [11]. 

Dose-effect pairwise meta-analysis models require transforming the doses into a common scale 

across agents, which is not always straightforward or even possible. DE-NMA allows us to 

compare multiple agents simultaneously, using their original doses. It can also answer key 

questions about what treatments are preferable and what dose can maximise the relative effects. 

These results from the DE-NMA model are important for drug guideline developers, health 

technology assessment agencies, and of course patients and their treating clinicians.  
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Table 1 Notations for dose-effect network meta-analysis (DE-NMA). 

𝑖𝑖 =  1, … ,𝑛𝑛𝑛𝑛 Study id 

𝑗𝑗 Index for the dose levels in study 𝑖𝑖 

𝑘𝑘 = 1, … ,𝐾𝐾 Agent  

𝑐𝑐 = 1, … ,𝐶𝐶 Exposure clusters 

𝑝𝑝 = 1, …𝑃𝑃 

Number of dose transformations associated with the dose-

response shape. For a linear shape 𝑝𝑝 = 1 and for quadratic and 

restricted cubic splines 𝑝𝑝 = 2 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  The j-th dose in study 𝑖𝑖 for agent 𝑘𝑘 

𝑥𝑥𝑝𝑝𝑖𝑖 Minimal dose 𝑑𝑑 for agent 𝑘𝑘 

𝒁𝒁𝑖𝑖 = (𝑧𝑧1,𝑖𝑖, … , 𝑧𝑧𝑚𝑚,𝑖𝑖) Vector of 𝑚𝑚 covariates in study 𝑖𝑖  

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖  Number of events in dose 𝑗𝑗 within study 𝑖𝑖 for agent 𝑘𝑘  

𝑛𝑛𝑖𝑖𝑖𝑖  Sample size in dose 𝑗𝑗 within study 𝑖𝑖 for agent 𝑘𝑘 
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Table 2 List of potential assumptions for the parameters in DE-NMA model. 

 

 

 

Assumptions about the effect parameter 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 

Assumption 1.1 - exchangeable 
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁�𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖, 𝜏𝜏2� 

Assumption 1.2 - common 
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖 

Assumptions about the pth within-study shape parameter  𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 

Assumption 2.1- exchangeable 
𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖~𝑁𝑁�𝐵𝐵𝑝𝑝,𝑖𝑖,𝜎𝜎𝛽𝛽,𝑝𝑝

2 � 

Assumption 2.2 – common 
𝛽𝛽𝑝𝑝,𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑝𝑝,𝑖𝑖 

Assumptions about the pth between-agents shape parameter: 𝐵𝐵𝑝𝑝,𝑖𝑖 

Assumption 3.1 – independent 
𝐵𝐵𝑝𝑝,𝑖𝑖 = 𝑏𝑏𝑝𝑝,𝑖𝑖 

Assumption 3.2 - exchangeable 
𝐵𝐵𝑝𝑝,𝑖𝑖~𝑁𝑁�𝑏𝑏𝑝𝑝,𝜎𝜎𝐵𝐵,𝑝𝑝

2 � 

Assumption 3.3 - common 
𝐵𝐵𝑝𝑝,𝑖𝑖 = 𝑏𝑏𝑝𝑝 

Assumption 3.4 – exchangeable class-effect across agents  
𝑘𝑘𝑎𝑎belonging to class 𝑐𝑐  𝐵𝐵𝑝𝑝,~𝑁𝑁�𝑏𝑏𝑝𝑝,𝑎𝑎,𝜎𝜎𝐵𝐵,𝑝𝑝

2 � 

Assumption 3.5 – common class-effect across agents  
𝑘𝑘𝑎𝑎belonging to class 𝑐𝑐 

𝐵𝐵𝑝𝑝,𝑖𝑖𝑐𝑐 = 𝑏𝑏𝑝𝑝,𝑎𝑎 
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 Table 3 We provide the common heterogeneity 𝜏𝜏 and its 95% credible interval (CrI), the percent of drop in variance (% 
drop in 𝜏𝜏2 = 100% × (𝜏𝜏𝑀𝑀∗2 −  𝜏𝜏𝑀𝑀12 )/𝜏𝜏𝑀𝑀12 ) , the estimated regression coefficient 𝑔𝑔 and its 95% CrI, and the deviance 
information criterion (DIC) as a statistic to compare between the five models. 

* this value refers to 𝑒𝑒𝑥𝑥𝑝𝑝(0.1 × 𝑔𝑔) as the change in variance by 0.1 more reasonable than a 
change by 1. 
   

 M1 M2 M3 M4 M5 

𝜏𝜏 0.267 
(0.214,0.321) 

0.251 
(0.198,0.306) 

0.243 
(0.192,0.298) 

0.230 
(0.176, 
0.287) 

0.322 
(0.273, 0.373) 

% 
decrease  

in 𝜏𝜏2 
- 12% 17% 26% - 

exp (𝑔𝑔) - 1.23 
(1.07, 1.42) 

0.99 
(0.98, 1.01) 

1.23* 
(1.07,1.44) - 

DIC 790 787 786 783 804 
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Caption of Figures 
 
Figure 1 (a) Network meta-analysis of 21 antidepressants and placebo. Width of the lines is proportional to the number of 
trials comparing each pair of agents. (b) The dose distribution for the 21 antidepressants. This plot was produced using the 
plot() function from the R package MBNMAdose 

Figure 2 Dose-effect network meta-analysis of each one of the 20 antidepressants. The blue line depicts the effect for all 
placebo-arms in the network (36.2%) with its 95% credible region. The red line represents the absolute response to each 
antidepressant (in M1) and the shaded area is its 95% credible region. The green line shows the adjusted absolute response 
at the minimum variance logOR (study with sample size 332) (in M4). 

Figure 3 Dose-effect network meta-analysis of each one of the 9 classes (see Appendix Table 1). The blue line depicts the 
effect for all placebo-arms in the network (36.2%) with its 95% credible region. The red line represents the absolute 
response to each class (in M5) and the shaded area is its 95% credible region. 

Caption of Appendix Figures  
 
Appendix Figure 1 The network of the placebo and the 93 antidepressant treatments (agent at a specific dose) where each 
colour refers to a single agent. This plot was produced using the plot() function from the R package MBNMAdose. 

Appendix Figure 2 Dose-effect network meta-regression of each one of the 20 antidepressants. The blue line depicts the 
effect for all placebo-arms in the network (36.2%) with its 95% credible region. The red line represents the adjusted 
absolute response at low RoB studies (in M2) and the shaded area is its 95% credible region. 

Appendix Figure 3 Dose-effect network meta-regression of each one of the 20 antidepressants. The blue line depicts the 
effect for all placebo-arms in the network (36.2%) with its 95% credible region. The red line represents the adjusted 
absolute response for the study year (in M3) and the shaded area is its 95% credible region. 

Appendix Figure 4 For restricted cubic spline, we display the posterior mean with its 95% credible interval for the dose-
effect coefficients 𝛽𝛽1and 𝛽𝛽2 of the 20 antidepressants. 

Appendix Figure 5 In dose-effect network meta-analysis and for each arm, we present the leverage in y-axis and the 
deviance residual in x-axis. The curves are of the form 𝑥𝑥2 + 𝑦𝑦 = 𝑐𝑐 where 𝑐𝑐 = 1 (solid), 𝑐𝑐 = 2 (dashed) and 𝑐𝑐 = 3 (dotted) 
and 𝑐𝑐 = 4 (dot-dahsed). 

Appendix Figure 6 Dose-effect network meta-analysis of each one of the 20 antidepressants. The blue line depicts the 
response for all placebo-arms in the network (36.2%) with its 95% credible region. The red line represents the absolute 
response of antidepressants, and the shaded area is its 95% credible region. The knots are set at 10%, 20% and 30% 
percentiles as a sensitivity analysis. 

 
Caption of Appendix Tables 
 
Appendix Table 1 The characteristics of each drug. Note: SSRI: serotonin-specific reuptake inhibitor, SNRI: serotonin-
norepinephrine reuptake inhibitor, SARI: serotonin antagonist and reuptake inhibitor, TCA: Tetracyclic antidepressant  

Appendix Table 2 For DE-NMA model (M1) we display the Gelman’s r statistics and the effective sample size to assess the 
convergence of the two shape coefficients. 

Appendix Table 3 For restricted cubic spline, we display the estimated dose-effect coefficients 𝛽𝛽1 for the 20 antidepressants. 

Appendix Table 4 For restricted cubic spline, we display the estimated dose-effect coefficients 𝛽𝛽2 for the 20 antidepressants. 
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