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ABSTRACT

We present high precision photometry of Kepler-41, a giant planet in a 1.86 day orbit around a G6V star that was
recently confirmed through radial velocity measurements. We have developed a new method to confirm giant planets
solely from the photometric light curve, and we apply this method herein to Kepler-41 to establish the validity of this
technique. We generate a full phase photometric model by including the primary and secondary transits, ellipsoidal
variations, Doppler beaming, and reflected/emitted light from the planet. Third light contamination scenarios that
can mimic a planetary transit signal are simulated by injecting a full range of dilution values into the model, and we
re-fit each diluted light curve model to the light curve. The resulting constraints on the maximum occultation depth
and stellar density combined with stellar evolution models rules out stellar blends and provides a measurement of
the planet’s mass, size, and temperature. We expect about two dozen Kepler giant planets can be confirmed via
this method.

Key words: planetary systems – techniques: photometric

Online-only material: color figures

1. INTRODUCTION

NASA’s Kepler satellite has been photometrically monitoring
more than 150,000 main-sequence stars since its launch in
2009. The primary goal of the mission is to determine the
frequency of Earth-size planets in the habitable zones of Sun-
like stars, and in this quest 2326 planetary candidates have been
identified with the first 16 months of flight data (Batalha et al.
2013). Of these, 203 are giant planets with radii (Rp) between
6 and 15 times the radius of Earth (R⊕). With Kepler’s high
photometric precision, both the primary transits and secondary
transits (occultations) can be measured for many of these giant
planets.

Occultation measurements allow us to better characterize
planets by providing constraints on the size and orbital param-
eters of a companion that can produce the shape of the light
curve. In addition, depending on the wavelength at which they
are gathered, they can provide information to estimate the effec-
tive temperature and reflectivity of the planet. The use of phase
curves (the variations in the light curves of a star+planet system
as the planet orbits the star) as a means to detect exoplanets was
presented by Jenkins & Doyle (2003). Their analysis predicted
hundreds of close-in giant planets with periods up to seven days
could be detected by Kepler via their reflected light signatures.
More recent studies have shown that both transiting and non-
transiting planets can be detected by measuring the variations in
light induced by the companion (Mazeh & Faigler 2010; Faigler

10 To whom correspondence should be addressed.

& Mazeh 2011; Shporer et al. 2011; Mislis & Hodgkin 2012;
Mazeh et al. 2012). Herein, we present a new method to con-
firm giant planets based solely on the analysis of light curves by
modeling both transits and occultations and eliminating other
potential non-planetary sources that could produce the shape of
the light curve.

Nearby stars that are captured within the target star aperture
can dilute the transit signal, resulting in an underestimate of the
transit depth and therefore the size of the target star’s companion.
These third-light or “blend” scenarios can include a background
or foreground eclipsing binary star system or a physically bound
stellar companion in a hierarchical triple star system (Seager
& Mallén-Ornelas 2003), each of which has the potential to
produce a transit-like signature.

Confirmation of Kepler candidate planets typically requires
additional ground-based follow-up observations due to the
prevalence of astrophysical false positives. These techniques,
which include spectroscopy, speckle and adaptive optics imag-
ing, precise Doppler measurements, and combinations thereof,
are used to help eliminate blend scenarios in order to confirm
that a Kepler planetary candidate is indeed a planet. The num-
ber of planets that can be confirmed in this manner, however,
is limited by the availability of telescope time. In this article,
we present a new method of confirming giant planets without
the need for follow-up observations. We generate a full phase
photometric model light curve that includes the primary tran-
sits, occultations, ellipsoidal variations, Doppler beaming, and
reflected/emitted light from the planet. We then inject a full
range of dilution values into the model to simulate third-light
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contamination, then re-fit the diluted light curve models to the
photometry. Comparison of the fitted parameters with stellar
evolution models can eliminate systems that are inconsistent
with a stellar blend.

To demonstrate this confirmation method, we analyzed the
photometry of a star in the Kepler Field of View which shows
a signature of a transiting Jupiter-sized planet in a 1.86 day
orbit. Kepler-41b was recently confirmed through radial velocity
measurements (Santerne et al. 2011), thereby providing a
good test case for our method. In Section 2 we present the
photometry of Kepler-41 and discuss our method to correct for
systematics and stellar variability. Our full phase photometric
model and best fit parameters are presented in Section 3, and the
confirmation technique and results are discussed in Section 4.
Albedo estimates for Kepler-41b and other hot Jupiters are
discussed in Section 5, and Section 6 provides a summary.

2. Kepler PHOTOMETRY

Kepler-41 (R.A. = 19h38m03.s18 and Decl. = 45◦58′53.′′9),
also identified by Kepler identification number (KID) 9410930
in the Kepler Input Catalog (KIC; Brown et al. 2011) and
by Kepler Object of Interest number KOI-196, is a G6V star
with an apparent magnitude in the Kepler bandpass of Kp =
14.465. Kepler-41b was identified as a Jupiter-sized candidate
companion to this star in Kepler’s second data release (Borucki
et al. 2011). The SOPHIE spectrograph obtained radial velocity
measurements of this object (Santerne et al. 2011), which led to
an estimated mass of 0.55 ± 0.09 MJ.

The Kepler observations of Kepler-41 described in this article
were acquired between 2009 May 13 and 2011 March 5 and
include quarters Q1 through Q8. Data were sampled nearly
continuously during each quarter at 29.42 minute long cadence
(LC) intervals (where each LC includes 270 summed 6.5 s
exposures). Although short cadence data (which are sampled
more frequently at 58.85 s intervals) are more sensitive to the
ingress/egress of a transit and can provide better constraints on
the mean stellar density, they are not necessary to measure the
phase curve and also are not always available. The raw pixels
collected for these stars were calibrated (Quintana et al. 2010)
and aperture photometry, background removal, and cosmic ray
corrections were performed with the Photometric Analysis (PA)
software maintained by the Kepler Science Operations Center
to produce the light curves (Twicken et al. 2010). Note the light
curve data for this target are publicly available at the Mikulski
Archive for Space Telescopes (MAST11).

The effects of instrumental signals in the flux time series were
mitigated by fitting and subtracting cotrending basis vectors12

(their use is documented in Barclay et al. 2012b) from the
light curve using the PyKE software.13 We used the first four
cotrending basis vectors and fit them to the data using a linear
least-squares approach. The light curve was stitched together by
normalizing the flux by the median value per quarter. Outliers
and additional remaining signatures due to instrumental artifacts
(such as those due to “sudden pixel sensitivity dropouts,” as
described in Smith et al. 2012) were then identified and removed.
In total, 215 measurements were discarded yielding a total of
29,680 LC measurements.

11 http://archive.stsci.edu/kepler
12 The cotrending basis vectors are available from
http://archive.stsci.edu/kepler/cbv.html.
13 PyKE is a suite of Kepler community software available from
http://keplergo.arc.nasa.gov/PyKE.shtml.

Table 1
Star and Planet Parameters for Kepler-41

Parameters Med Std +1σ −1σ

M∗ (M�) 1.044 0.062 0.059 −0.068
R∗ (R�) 1.065 0.040 0.042 −0.042
Z 0.036 0.011 0.010 −0.012
Teff∗ (K) 5617 143 126 −177
log L∗ (L�) 0.007 0.064 0.062 −0.069
log g (cgs) 4.398 0.028 0.027 −0.032
ρ̄∗ (g cm−3) 1.213 0.099 0.081 −0.113

Period (days) 1.8555577 0.0000003 0.0000003 −0.0000004
T0 (BJD − 2454900) 70.180267 0.000067 0.000065 −0.000070
b 0.475 0.048 0.045 −0.044
Rp/R∗ 0.09601 0.00070 0.00070 −0.00070
a/R∗ 6.04 0.16 0.14 −0.18
Rp (RJ) 0.9956 0.0375 0.0393 −0.0401
a (AU) 0.02999 0.00060 0.00052 −0.00071
Mp (MJ) 0.5978 0.7803 0.3839 −0.5978
ρ̄p (g cm−3) 0.74 0.98 0.48 −0.74
i (deg) 85.50 0.47 0.40 −0.50
Duration (h) 2.335 0.015 0.015 −0.016
Depth (ppm) 10653 13 13 −13
Occultation depth (ppm) 60 11 69 −9
Ellipsoidal (ppm) 4.5 3.3 2.8 −3.8
Reflected/Emitted (ppm) 37.4 6.3 6.1 −6.6
K (m s−1) 94 123 61 −94

We next applied a Fourier decomposition algorithm to
separate out star-spot-induced variability from the light curve.
Assuming a coherent signal due to the planet and a constant
orbital period, sinusoidal components to the light curve were
iteratively fit and removed to filter out all frequencies that
were not affiliated with the planet orbital period and its as-
sociated harmonics. Specifically, if the amplitude of the peaks
in the Fourier Transform were >3.6 times the standard deviation
(corresponding to 3σ ), we removed those frequencies from the
light curve. The PA-corrected, cotrended, and Fourier-filtered
light curves for Kepler-41 are shown in Figure 1. The next
section describes our light curve modeling to compute the
best-fit planet parameters.

3. MODEL FITTING

Our full phase photometric model uses a circular orbit
(eccentricity = 0) and we adopt the formalism of Mandel &
Agol (2002) to compute the light curve model. Figure 2 shows
the phase-folded and binned photometry for the primary transit
(lower curve) centered at orbital phase φ = 0 with the best-fit
model shown in red. Here, φ ≡ 2π (t − Tφ)/P , where Tφ is the
epoch (the time of first mid-transit) and P is the orbital period
of the planet. The occultation (top curve) near φ = 0.5 has
been magnified (see top and right axes) and the best-fit model is
shown in green. Our model of the transit for Kepler-41 includes
nonlinear limb darkening with four coefficients that we compute
by performing a trilinear interpolation over Teff∗ , log g, and Z
≡ [Fe/H] using tables provided by Claret & Bloemen (2011).
The stellar properties (Teff∗ , log g, and Z) were adopted from
Santerne et al. (2011; shown in Table 1), and the limb darkening
coefficients we use are [c1, c2, c3, c4] = [0.6325, −0.3162,
0.8937, −0.4240]. The occultation is modeled in the same
manner but we assume the companion is a uniform disk (we
neglect limb darkening) due to the relatively short ingress and
egress times. Our model of the phase-dependent light curve takes
into account the photometric variability that is induced by the

2

http://archive.stsci.edu/kepler
http://archive.stsci.edu/kepler/cbv.html
http://keplergo.arc.nasa.gov/PyKE.shtml


The Astrophysical Journal, 767:137 (9pp), 2013 April 20 Quintana et al.

100 200 300 400 500 600 700

0.98

1

1.02

 R
el

at
iv

e 
F

lu
x 

100 200 300 400 500 600 700

0.99

0.995

1

 R
el

at
iv

e 
F

lu
x 

100 200 300 400 500 600 700

0.99

0.995

1

 Time (BJD − 2454900) 

 R
el

at
iv

e 
F

lu
x 

Figure 1. Kepler Q1 – Q8 PA photometry for Kepler-41 is shown in the top panel. The cotrended light curve (middle panel) shows mostly spot activity. The light
curve was Fourier-filtered to remove stellar variability (lower panel).
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Figure 2. The detrended data for Kepler-41 phased to the orbital period and binned to 0.005 in phase. The red-lined data are centered on the transit and show the full
phase and the green-lined data are centered on the occultation and magnified (see top and right axes). The green curve fits for ellipsoidal variations, Doppler boosting,
and reflected/emitted light.

(A color version of this figure is available in the online journal.)

companion, which includes ellipsoidal variations (Fell), Doppler
beaming (Fdop), and light contributed by the planet (Fref , which
includes both reflected star light and thermal emission). The
relative flux contributions from each of these time-dependent
effects are distinct and can be decomposed as

F (t) = F∗ + Fell(t) + Fdop(t) + Fref(t)

Ftot
(1)

where F∗ is the illumination measured at phase φ = 0.5 when
the star is blocking the light from the companion, and Ftot =
F∗ + Fref (φ = 0).

Ellipsoidal variations in the light curve are caused by changes
in the observable surface area of the star due to tidal distortions
induced by the companion (Pfahl et al. 2008). They have
previously been detected in eclipsing binary stars (Wilson &
Sofia 1976) and more recently in exoplanet systems (Mazeh
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Figure 3. The best-fit model for Kepler-41b phased to the orbital period and magnified to show the occultation. Our full phase photometric model includes flux
variations induced by the companion that can be decomposed. These include Doppler beaming (blue dotted curve), ellipsoidal variations (green dashed curve) and
reflected/emitted light (orange dot-dashed curve). The sum of these three effects is shown in red. Note that we did not detect Doppler beaming in the light curve of
Kepler-41, but we include a description of this effect in this article because it may be applicable to other planet candidates.

(A color version of this figure is available in the online journal.)

& Faigler 2010; Faigler & Mazeh 2011; Shporer et al. 2011;
Welsh et al. 2010; Mazeh et al. 2012; Mislis & Hodgkin 2012;
Mislis et al. 2012). The amplitude of the ellipsoidal variations is
roughly equal to the ratio of the tidal acceleration to the stellar
surface gravity (Pfahl et al. 2008) assuming tidal equilibrium,
and can be approximated by

Aell = αell
Mp

M∗

(
R∗
a

)3

sin2i (2)

where Mp and M∗ are the masses of the planet and star,
respectively, R∗ is the stellar radius, a is the semimajor axis,
i is the inclination of the orbit relative to the line-of-sight. The
parameter αell is defined as

αell = 0.15(15 + u)(1 + g)

(3 − u)
(3)

where u and g are the limb darkening and gravity darkening
coefficients, respectively (Morris 1985). We compute u =
0.6288 and g = 0.4021 by linearly interpolating over Teff∗ , log g,
and Z using tables provided by Claret & Bloemen (2011). For a
circular orbit, the contribution of flux from ellipsoidal variations,
which oscillate on timescales of half the orbital period (see
Figure 3), is

Fell

Ftot
= Aell cos(2πφ × 2). (4)

Doppler beaming is an apparent increase/decrease in stellar
flux due to Doppler shifts in the stellar spectrum that are caused
by the reflex star motion around the center of mass due to the
companion. These signals have only recently been measured in
transit light curves (Mazeh & Faigler 2010; Shporer et al. 2011)
and oscillate with the orbital period. Note that we did not detect
variations from Doppler beaming in the Kepler-41 light curve,
but we include a description here because it may be applicable

to other planet candidates. The amplitude of this signal is

Adop = −αdop4K

c
(5)

where c is the speed of light and αdop is a Doppler boosting factor
that depends on the wavelength of observation and on the stellar
spectrum. We compute αdop = 1.09 using the methodology
as described by Loeb & Gaudi (2003). For Keplerian circular
orbits, the (non-relativistic) radial velocity semi-amplitude is
defined as

K =
(

2πG

P

)1/3
Mpsini

M
2/3
∗

(6)

where G is the gravitational constant. The contribution of flux
from Doppler beaming is

Fdop

Ftot
= Adop sin(2πφ). (7)

The flux variations due to reflected/emitted light from the
companion can be approximated by

Fref

Ftot
= AG

(
Rp

a

)2

Ψ(φ) (8)

where AG is the wavelength-dependent geometric albedo, and
Ψ is the phase function for a diffusely scattering Lambertian
Sphere

Ψ(φ) = sinφ + (π − φ)cosφ

π
. (9)

Values of the model parameters are derived using a
Levenberg–Marquardt least-squares χ2 approach (Press et al.
1992). We fit for the orbital period (P), epoch (Tφ), impact
parameter (b), scaled planet radius (Rp/R∗), geometric albedo

4
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Figure 4. Results from our dilution model fits. The goodness-of-fit estimator χ2 is shown in the top left panel as a function of dilution values that were injected into
the light curve. We solve for the maximum allowed dilution (i.e., the maximum amount of third light from a potential blend) by measuring where Δχ2 changes by 1,
4, or 9 (corresponding to 1σ , 2σ , or 3σ ), as shown in the top right panel by the red, blue and green horizontal lines, respectively. The lower six panels show six of the
fit parameters as a function of dilution, and the red, blue, and green vertical lines determine their range of valid values as constrained by the dilution fits. Comparison
of each valid dilution model to stellar evolution models rules out massive, stellar objects, confirming the planetary nature of Kepler-41b.

(A color version of this figure is available in the online journal.)

(AG), secondary eclipse depth (ED), radial velocity semi-
amplitude (K), ellipsoidal variations (Aell), and mean stellar den-
sity (ρ̄∗). We then use a Markov Chain Monte Carlo (MCMC)
method (e.g., Ford 2005) to estimate values and uncertainties
using this initial model solution to seed the runs. Four chains
of 106 samples each are run and the first 25% are discarded to
account for burn in, allowing the Markov chains to stabilize.
The median values of the best-fit parameters for Kepler-41b are
given in Table 1, along with the 1σ (68.3%) confidence intervals.
We find Mp = 0.598+0.384

−0.598 MJ, Rp = 0.996+0.039
−0.040 RJ, yielding

a mean planet density of ρ̄p = 0.74+0.48
−0.74 gm cm−3. The best-fit

amplitudes of the occultation depth, ellipsoidal variations, and
variations in reflected/emitted light were found to be 60 ± 9,
4.5+2.8

−3.8, and 37.4+6.1
−6.6 ppm, respectively.

4. CONFIRMATION METHOD

Our confirmation method involves two main steps: (1) we first
simulate third light contamination scenarios by injecting a wide

range of dilution factors into the full phase photometric model
and re-fit each diluted light curve model to the photometry.
The results from these model fits set limits on the stellar
parameters of possible blends; (2) we next compare these
stellar parameters with stellar evolution models to eliminate
star/companion systems that are unphysical or inconsistent with
a stellar blend. The goal is to determine the probability that the
planet-like signature could be caused by a contaminating star in
the aperture.

To model a full range of stellar blends, we iteratively dilute
the best-fit model light curve with a dilution factor D which
ranges from 1%–100% of the transit depth (using 1% intervals).
For each value of D, we fit the diluted model to the light curve
data and recompute χ2 (the goodness-of-fit estimator), ρ̄∗, P,
b, Rp/R∗, ED, Aell, and AG. Figure 4 shows results from these
dilution fits for Kepler-41. The χ2 value and the change in
χ2 (Δχ2) as a function of injected dilution are shown in the
top two panels. The lower six panels show the best fit results
from six of the above parameters as a function of dilution. To

5
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determine the maximum third light from a potential blend, we
solve for the dilution value at which Δχ2 increases by 1, 4,
or 9, equivalent to 1σ , 2σ , or 3σ (68.3%, 95.4%, or 99.7%)
confidence intervals, respectively. These are shown by the red,
blue, and green horizontal lines in the top right panel of Figure 4.
This resulted in maximum dilution values of 0.5 (1σ ), 0.6 (2σ ),
and 0.67 (3σ ) (shown by the vertical red, blue, and green lines
in the lower six panels of Figure 4). These constraints on the
dilution values in turn place limits on the valid parameter values
of the companion which we can then compare to stellar evolution
models to begin ruling out stellar blends.

We use Yonsei-Yale (YY) stellar evolution models (Yi et al.
2003; Demarque et al. 2004) which provide a stellar age, Teff∗ ,
R∗, ρ̄∗, and log g for a given M∗ and Z. We start with a grid of
stellar masses (M∗ = 0.4–5 M� with 0.1 M� increments) and
metallicities (Z = 0.00001, 0.0001, 0.0004, 0.001, 0.004, 0.007,
0.01, 0.02, 0.04, 0.06, 0.08) that covers the full range of input
values to the YY models. For each (M∗, Z) pair, we extract all
YY models that have ρ̄∗ values within the constraints set by
the dilution fits. For Kepler-41, the valid values of ρ̄∗ range
from 1.17 gm cm−3 to a maximum value of 1.7795, 1.7800, or
1.7863 gm cm−3 for the 1σ , 2σ , and 3σ constraints, respectively.
Note that the confidence intervals that provide constraints on
the fit parameters are measured with respect to Δχ2 rather than
the distribution of each fit parameter. We require that the age
from each model is less than the age of the universe (taken to
be 14 Gyr), and consider only those with α-enhanced mixture
equal to solar mixture. The total number of models extracted
for Kepler-41 was 1931, 1947, and 1950 for the 1σ , 2σ , and 3σ
cases, respectively.

For each model, we derive the planet mass Mp, radius Rp,
equilibrium temperature Teqp , effective temperature Teffp , and
mean density ρ̄p as follows. We first take the ρ̄∗ value for
the given model and interpolate over the valid range of ρ̄∗ (as
shown in Figure 4) to find the corresponding dilution factor.
This dilution value is then used to determine the values of
the additional fit parameters (Rp/R∗, Aell, P, b, and ED) for
that model. From these estimates, we can derive the remaining
parameters that we use to characterize the star–companion
system.

The planet radius is found by Rp = (Rp/R∗)R∗. The planet
mass is roughly proportional to the amplitude of the ellipsoidal
variations (Pfahl et al. 2008) and can be estimated using
Equation (2). We solve for a/R∗ by combining the mean stellar
density ρ̄∗ = M∗/((4/3)πR3

∗) with Kepler’s third law (for Mp 	
M∗) M∗ = 4π2a3/(P 2G), yielding

a

R∗
=

(
ρ̄∗GP2

3π

)1/3

. (10)

The inclination is computed from the impact parameter, which
(for a circular orbit) is b = a/R∗cosi. The planet mass is then

Mp = (a/R∗)3 AellM∗
αell sin2i

(11)

which, along with Rp, provides a measurement of the planet
density ρ̄p. We note that the amplitude of the Doppler beaming,
if detected (which is not the case for Kepler-41), can also be
used to estimate the planet’s mass (Shporer et al. 2011; Barclay
et al. 2012a).

The planet equilibrium temperature can be estimated by

Teqp = Teff∗

√
R∗
2a

(f (1 − AB))1/4 (12)

where AB is the wavelength-integrated Bond Albedo (we use
AB = 0.02, which is the approximate value for hot Jupiters in the
Kepler bandpass), and f is a circularization factor which equals
1 for isotropic emission (Rowe et al. 2008).

The secondary eclipse depth is approximately equal to the
ratio of the planet and star luminosities, ED ≈ Lp/L∗, and can be
used to estimate the planet effective temperature Teffp . Assuming
blackbody radiation, the bolometric luminosity (the total amount
of energy emitted across all wavelengths) of an object can
be computed from the Stefan–Boltzmann equation L∝ R2T 4

eff ,
where R and Teff are the radius and effective temperature of
the body, respectively. The planet effective temperature can be
solved from

ED ≈
(

Rp

R∗

)2(Teffp

Teff∗

)4

. (13)

Alternatively, we can compute Lp/L∗ by integrating the
planet and star Planck functions over the Kepler bandpass (λ ∼
400–900 nm). The wavelength-dependent luminosity can be
solved from

Lλdλ = 4π2R2Bλdλ (14)

where Bλ is the Planck function:

Bλ = 2hc2/λ5

ehc/λkTeff − 1
. (15)

Here, h is Planck’s constant, k is Boltzmann’s constant and c is
the speed of light. This latter method provides a more accurate
estimate of Teffp , and results using both methods to compute Teffp

will be discussed in the next section.

4.1. Results

Our dilution models at the 1σ , 2σ , and 3σ confidence
levels combined with stellar evolution models yield a total of
5828 star/companion model configurations, each providing an
estimate of stellar age, Teff∗ , R∗, ρ̄∗, log g, Mp, Rp, Teffp , Teqp ,
and ρ̄p. The next step is to examine these models and eliminate
those that furnish unphysical stellar properties.

Figure 5 shows ρ̄∗ as a function of Teff∗ for all available
YY evolution models (shown by the red curves in each panel).
Also shown are the values of mean planet density as a function
of planet effective temperature (ρ̄p versus Teffp ) for each 3σ
dilution model (shown by the multi-colored tracks in each panel
of Figure 5, each color representing a value of metallicity). In
order to comprise a viable stellar blend, a dilution model needs
to reside in a region that overlaps with a stellar evolution track.
In the left panel of Figure 5, Teffp was calculated by integrating
the Planck function over the Kepler bandpass (as described in
the previous section). None of the resulting dilution models lie
in the vicinity of any stellar evolution track, thus eliminating all
potential stellar blends in the Kepler-41 photometry. Using this
method to calculate Teffp , we can conclude that the companion
to Kepler-41b is a planet.

The right panel of Figure 5 shows the dilution models
computed using values of Teffp that were estimated from the
bolometric luminosities of the star and companion (which are
not as precise as those computed by integrating the star and
companion Planck functions, but are simpler to derive). In
this case, a subset of the models overlap with stellar evolution
tracks. Although we have shown that we can use the alternative
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Figure 5. The mean stellar density ρ̄∗ is shown here as a function of Teff∗ for all available Yonsei-Yale stellar evolution tracks (shown by the red curves in each panel).
The companion ρ̄p and Teffp from the dilution model fits are overplotted for a range of metallicities Z (colored points in each panel). The dilution models in the left
panel were computed using estimates of Teffp that were computed by integrating the planet and star Planck functions over the Kepler bandpass and comparing the ratio
of the resulting luminosities to the secondary eclipse depth ED. All dilution models in this case are inconsistent with any stellar blend (there is no overlap with the
stellar evolution tracks), and we can conclude that the companion to Kepler-41 is a planet. In the right panel, the dilution models were computed using Teffp values
that were calculated from the ratio of the planet and star bolometric luminosities (over all wavelengths). This was done to determine if this simpler method (albeit not
as precise) to compute Teffp is sufficient to rule out potential blends. In this case, a subset of dilution models overlap with stellar evolution tracks and therefore need to
be examined further (see Figures 6 and 7) in order to rule out stellar blends.

(A color version of this figure is available in the online journal.)

method of computing Teffp to confirm the planetary nature of
Kepler-41b, we show here how we can further examine these
overlapping models to exclude them as potential third light
contaminants (which may be necessary for confirming other
planet candidates).

Figure 6 shows Teqp as a function of Teffp for the subset
of dilution models that are consistent with stellar evolution
tracks (those shown in the right panel of Figure 5). For the
companion to be of planetary nature, we expect a near balance
in these temperatures, Teffp ≈ Teqp , meaning that any incident
energy upon the planet is re-radiated. If Teffp  Teqp , however,
the companion must be burning hydrogen, i.e., of stellar nature
(although it is feasible that the object could be a young planet).
For the case of Kepler-41b, Teffp for these remaining dilution
models are not substantially greater than their corresponding
values of Teqp . We therefore cannot definitively rule out stellar
blends using this comparison, but it may be useful for other
planet candidate systems.

We next compared the companion mass to the stellar mass
(Figure 7) for the same dilution models as shown in Figure 6.
The values of M∗ are all between 0.8 and 1.1 M� whereas
the dilution models all have masses below 0.004 M�, well
below the ∼0.08 M� mass limit required for hydrogen burning
(Kumar 1963), i.e., the companion cannot be a star. With this
comparison, we can eliminate the remaining dilution models
since we have shown that we cannot produce a proper stellar
blend of any kind.

Our future plans include using this new method of combining
phase curve modeling with stellar evolution models to both con-
firm and characterize additional Kepler planets. The potential
to detect occultations in planet candidate light curves can be
determined by combining signal-to-noise measurements with
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Figure 6. For the remaining valid dilution models (those that have parameters
that overlap with stellar evolution tracks as shown in Figure 5), the equilibrium
temperatures can be compared to the effective temperatures. To be of stellar
nature, the values of Teffp for each model would need to be much greater than
the corresponding values of Teqp (indicating that the companion is burning
hydrogen). In this case, the temperatures are comparable and cannot be used to
definitively rule out stellar blends, but this comparison may be useful to confirm
other planet candidates.

(A color version of this figure is available in the online journal.)

an assumption of an albedo of approximately 30% (J. F. Rowe
et al. 2013, in preparation). Based on the planet and star charac-
teristics tables from Batalha et al. (2013), we expect about two
dozen planet candidates in the Kepler Field of View will have
the potential to be confirmed with this method.
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Figure 7. For the remaining valid dilution models (as shown in Figure 6),
the relation between each companion mass Mp and the corresponding stellar
mass M∗ is shown here. All dilution models have a companion mass less than
that needed for hydrogen burning (∼0.08 M�), indicating that the companion
cannot be a star. With this comparison, we can eliminate these remaining dilution
models and conclude that the companion to Kepler-41b is a planet.

(A color version of this figure is available in the online journal.)

5. THE ALBEDO OF KEPLER-41b

5.1. Hot Jupiters Albedos

To date, Kepler’s unprecedented photometric precision has
enabled the detection of planetary occultations in visible wave-
lengths for eight hot Jupiters: HAT-P-7b (Christiansen et al.
2010; Welsh et al. 2010), Kepler-5b (Kipping & Bakos 2011;
Désert et al. 2011b), Kepler-6b (Kipping & Bakos 2011; Désert
et al. 2011b), Kepler-7b (Kipping & Bakos 2011; Demory
et al. 2011), TrES-2b (Kipping & Spiegel 2011), Kepler-12b
(Fortney et al. 2011), Kepler-17b (Désert et al. 2011a; Bonomo
et al. 2012), and KOI-196b (Santerne et al. 2011).

The Spitzer Space Telescope gathered thermal planetary
emission measurements in infrared wavelengths for several
dozens of hot Jupiters. The aforementioned Kepler detections
allow us to probe giant planet irradiated atmosphere properties
at optical depths that were not explored previously, thereby
constraining further the energy budget of hot Jupiter planets
(e.g., Madhusudhan & Seager 2009).

In our solar system, gas giant geometric albedos range from
0.32 for Uranus to 0.50 for Jupiter in a bandpass similar to
Kepler’s (Karkoschka 1994). This is mainly due to their low
equilibrium temperatures, as compared to hot Jupiters, which
allow the formation of cloud decks made of ammonia and
water ice in their atmosphere that are highly reflective in visible
wavelengths (Demory et al. 2011).

Hot Jupiters emit very little in visible wavelengths. The
albedos of hot Jupiters were expected to be low due to efficient
reprocessing of stellar incident radiation into thermal emission
(Marley et al. 1999; Seager & Sasselov 2000; Sudarsky et al.
2003). In addition, the presence of alkali metals in hot Jupiter
atmospheres (Na and K) as well as TiO and VO (at the hotter
range) is expected to cause significant absorption at visible
wavelengths, rendering most hot Jupiters dark.

The first constraint on a hot Jupiter visible flux was ob-
tained with the MOST satellite (Walker et al. 2003) observing
HD209458b (Rowe et al. 2008). The corresponding geometric
albedo 3σ upper-limit of Ag < 0.08 confirmed these earlier

theoretical predictions. The majority of hot Jupiter occultations
measured by Kepler photometry corroborate today the hypothe-
sis that hot Jupiters emit very little in visible wavelengths, their
measured geometric albedo being attributed to thermal emission
leaking into shorter wavelengths rather than contribution from
Rayleigh scattering, clouds or hazes.

Remarkably, a few irradiated giant planets exhibit visible
flux in the Kepler bandpass that exceeds the expected contribu-
tion from thermal emission alone. A recent detailed analysis of
Kepler-7b occultation measurements showed a significant de-
parture of the measured brightness temperature as compared
to the equilibrium temperature, suggesting that the planetary
flux is dominated by Rayleigh scattering and/or hazes (Demory
et al. 2011). In addition, combining visible and Spitzer infrared
occultation measurements showed that Kepler-12b also exhibits
an excess of flux in the visible, possibly indicating a reflective
component in this low-density hot Jupiter atmosphere (Fortney
et al. 2011). Ideas that have been invoked to explain the wide
variation in observed hot Jupiter albedos include variations in
planetary densities (Sudarsky et al. 2003) and condensates phase
transitions at narrow temperature ranges (Demory et al. 2011;
Kane & Gelino 2013).

5.2. Kepler-41b as Another Outlier?

Our global analysis yields an occultation depth of 60±9 ppm,
which translates to a geometric albedo of Ag = 0.23 ± 0.05.
Using a blackbody spectrum for the host star, the correspond-
ing brightness temperature is 2420 K, which is ∼400 K larger
than the maximum planetary equilibrium temperature, assuming
zero-Bond albedo and no stellar incident energy recirculation
from the day hemisphere to the night hemisphere. Kepler-41b
shows similar brightness temperature excess as Kepler-7b,
possibly suggesting contribution from Rayleigh scattering
and/or hazes.

The planetary phase modulation, caused by the combination
between reflected light and thermal emission, has an amplitude
that is ∼1σ smaller than the occultation depth and slightly
offset from the mid-occultation timing. At the high atmospheric
pressures probed by Kepler (P ∼ 1 bar), we would expect the
even temperature across hemispheres to yield a phase curve
exhibiting only nominal modulation. This result suggests that
either atmosphere dynamics at depth are significantly more
complex than this description or that the phase curve modulation
is dominated by reflected light instead of thermal emission.
Detailed modeling and Spitzer infrared observations would be
especially useful toward a precise constraint on the planetary
energy budget and could unambiguously disentangle the thermal
emission and reflected light components.

6. SUMMARY

We have presented a new method to confirm giant planets
purely by analysis of the photometric light curve combined
with stellar evolution models. We have developed a full phase
photometric model that includes both primary and secondary
transits along with flux contributions from ellipsoidal variations,
Doppler beaming, and reflected/emitted light. We inject a full
range of dilution values into the model light curve to simulate
third light contamination from stellar blends, and iteratively
fit each diluted model light curve to the photometry. We then
compare these fit results to stellar evolution models to determine
if any set of diluted model parameters are valid (meaning the star
and companion have masses, sizes and orbits that are consistent
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with a stellar evolution model) and match the shape of the
photometric light curve.

We applied this method to Kepler-41, a G6V star with a
recently confirmed giant planet (Santerne et al. 2011), using
Kepler photometry taken during quarters Q1 – Q8. The phased
light curve shows a clear secondary occultation with a depth
of 60 ± 9 ppm. The phase of this occultation is near φ =
0.5, indicating the orbit of Kepler-41b is likely nearly circular.
We detected flux variations due to reflected/emitted light from
the planet (with an amplitude of 37.4+6.1

−6.6 ppm) and ellipsoidal
variations (4.5+2.8

−3.8 ppm), the latter of which enables us to
estimate the mass and density of the planet. We did not detect
variations due to Doppler beaming, but these measurements—if
detected in the light curves of other planetary candidates—can
also be used to measure the planet mass.

To determine whether any dilution models have properties
consistent with a star, we first compared the densities and
effective temperatures derived from the diluted models (ρ̄p
versus Teffp ) to all YY evolution tracks (which provide ρ̄∗
as a function of Teff∗ for all valid stellar evolution models).
To estimate Teffp for the dilution models, we computed the
ratio of the planet luminosity to that of the star (Lp/L∗),
which is approximately equal to the measured secondary eclipse
depth, and solved for Teffp . We first computed Lp/L∗ using the
bolometric luminosities (the total amount of energy emitted
across all wavelengths) for the planet and star. For comparison,
we also computed these luminosities by integrating the Planck
functions over the Kepler bandpass. This latter method to
compute Teffp resulted in unphysical star/companion parameters
for all dilution models, thereby eliminating the possibility that
the companion to Kepler-41b could be a stellar blend. Using
values of Teffp that were computed from bolometric luminosities
yielded a small subset of dilution models that were consistent
with stellar evolution tracks. For these models, we further
examined the temperatures and masses of each system to filter
out additional inconsistencies. We found that all companion
masses from these remaining diluted models were well below
the ∼0.08 M� limit for hydrogen-burning, indicating that the
companion cannot be a star. Although both methods to compute
Teffp provided enough information to rule out stellar blends in
the Kepler-41 photometry, we recommend computing Teffp with
the more accurate method of integrating the star and planet
luminosities over the Kepler bandpass.

Our best-fit model of Kepler-41b yields Mp = 0.598+0.384
−0.598

MJ and Rp = 0.996+0.039
−0.040 RJ. From our analysis of the phase

curve combined with stellar evolution models we can therefore
independently confirm that Kepler-41b is indeed a planet.
This confirmation method can be applied to additional Kepler
planet candidates that show a clear occultation in their light
curve.

This paper includes data collected by the Kepler mission.
Funding for the Kepler mission is provided by the NASA
Science Mission directorate. Some/all of the data presented in

this paper were obtained from the Mikulski Archive for Space
Telescopes (MAST). STScI is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA
contract NAS5-26555. Support for MAST for non-HST data
is provided by the NASA Office of Space Science via grant
NNX09AF08G and by other grants and contracts.
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