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1 | INTRODUCTION

To forecast an univariate time series the first model of
choice is often a linear model. An archetype of this model
class in the context of time series analysis is the auto-
regressive model of order 1 (AR(1)), which is defined as

follows:

Xe=a+px1+€,
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prior assumptions on the mean reverting process in the model and thereby reg-
ularize predictions in the far future. We use MCMC-based inference by deriv-
ing relevant full conditional distributions and employ a Metropolis-Hastings
within Gibbs sampler approach to sample from the posterior (predictive)
distribution. In combining data-driven short-term predictions with long-term
distribution assumptions our model is competitive to the existing methods in
the short horizon while yielding reasonable predictions in the long run. We
apply our model to interest rate data and contrast the forecasting performance
to that of a 2-Additive-Factor Gaussian model as well as to the predictions of a

dynamic Nelson-Siegel model.
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Gaussian white noise process, i.e., an independent and

identically (i.i.d.) normal distributed e; N (0,62) for all
time points t. In this classical model, the one-step-ahead
expectation E(x¢|x;—1) =a+pxi1 and  variance
Var(x|x;_;) =0> are closely linked to the marginal

characteristics E(x;) =1%; and Var(x;) :% approached
in the long run. In this sense, fitting the short-term
(1)  behavior of a time series with a linear model has wide

implications for its long-term behavior, and, conversely,

where x; represents the variable that is defined on t€ Z
and was observed at time points t=1,...,T. @ and f are
real valued constants, while |$|<1 is assumed to ensure
stationarity. The innovation process €, can be, e.g., a

controlling the long-term behavior of the model con-
straints its short-time fit. In practice, this close linkage
may present an important limitation when short-term
performance conflicts with long-term plausibility.
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This gets evident in the macroeconomic literature
and, more specifically, in contrasting modeling approaches
for interest rates, which motivate this work: Among
others, Diebold and Li (2006) focus on predictions in the
short horizon. The authors apply an AR(1) process to
extracted factors of the yield curve. While they do make
the long-term assumption that interest rates are princi-
pally mean reverting, the process exhibits an almost
integrated behavior. Estimating the model parameters of a
near integrated but stationary AR(1) model might give
large estimation errors and lead to unrealistic long run
mean estimates far beyond the range of the data.
Duffee (2011) even discard the mean reversion/stationarity
assumption. In their proposed random walk model, the
prediction variance linearly increases in time leading to
extreme values in the long run. The strong focus on the
short horizon might lead to questionable and potentially
implausible long-term behavior. Also the model of
Caldeira and Torrent (2017), who apply a nonparametric
functional data approach, has the focus on the short
horizon. In contrast, Korn and Wagner (2019) apply a
linear model to model long horizon features. Their
proposal is a Gauss2++ model with a forward looking
estimation approach, i.e., they calibrate the parameters of
their model without using historical data but amongst
current prices of interest rate derivatives and long run
survey forecasts. The Gauss2++ model is a standard model
in the insurance industry, where plausible forecasts in the
longer run are required. As demonstrated later in this
paper, their model achieves a realistic long run distribution,
however, at the expense of inferior short term predictions.

The aim of this paper is to bridge the gap between
short and long horizons, generalizing above mentioned
approaches to a model with the flexibility to
(a) sufficiently adapt to sample data to yield good short-
term predictions and (b) apply suitable regularization to
achieve plausible long- and middle-term forecasts at the
same time. This is particularly, yet not exclusively,
relevant in applications where a stable stationary distri-
bution is assumed in the long run—despite observing a
“temporary non-stationary behavior” in the available
data where, e.g., unconstrained linear model fits or a
Dickey-Fuller test (Dickey & Fuller, 1979) would indicate
an integrated process.

As in general linearity is often a restrictive assump-
tion in practice and many time series exhibit features that
cannot be captured by a linear model (Hamilton, 1989), a
lot of research has been conducted to introduce different
types of nonlinear models in the last decades. In particu-
lar, nonlinear models offer more flexibility to account for
both, short and long horizon.

A bi-linear model is an example of a nonlinear model,
which assumes a nonlinear relationship between the

covariates and response variable (Granger &
Andersen, 1978; Rao & Gabr, 2012), although not often
used in macroeconomic applications (Morley, 2014). A
more immediate approach is to allow one (or more)
parameters of a linear model to change over time.
This comprises the regime switching and time-varying
parameter models.

Regime switching models can allow for a different
mean reversion level in the short and the long horizon.
This feature can be used to regularize the long run mean
of the model. The first approaches to regime switching
models were conducted by Quandt (1958), who consid-
ered a switching regression model extending a linear
regression model by allowing the parameters to switch
between different states according to a random variable.
Bacon and Watts (1971) introduced a smooth transition
model, which implements a smooth transition from
one regime to another without a sudden jump. Goldfeld
and Quandt (1973) introduced the Markov switching
regression model and use a discrete latent Markov
process to determine the current regime. These models
were adapted to time series models by Lim and
Tong (1980) and Chan and Tong (1986) introducing the
threshold autoregressive model (TAR) and the smooth
transition autoregressive model (STAR), respectively.
Hamilton (1989) introduced the Markov switching
autoregressive model for applications in economics,
which have been investigated thoroughly together
with different variants in the literature (Haggan &
Ozaki, 1981; Jansen & Terisvirta, 1996; Terdsvirta, 1994).
Lanne and Saikkonen (2002) used a TAR-model, which
only allows regime changes for the constant parameter a,
and applied it to strongly autocorrelated time series
data—which is very related to temporary non-stationary
behavior of the time series and, therefore, to the aim of
the paper. When there is, however, no concrete indica-
tion for the process dynamics to result from switches
between discrete underlying states, we consider it more
natural and promising to assume a continuous latent
process.

In contrast to regime switching models, time-varying
parameter models allow one (or more) of the parameters
in a linear model to be driven by its own continuous
process (Morley, 2014). For example, if the parameter
vector (a, B, o%) of the linear AR(1) model becomes a
stochastic process, this results in a time-varying auto-
regressive model of order 1 (TV-AR(1))

Xe=a+pxi1+e (2)
with € ~N(0,67). Certain distribution assumptions for

the underlying stochastic process of the parameter vector
(as, pr, o) are made in practice to complete the TV-AR
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(1) model specification (Terdsvirta et al. 2010). Similar to
the TAR model in Lanne and Saikkonen (2002) the time
variation of the TV-AR(1) model can be restricted to the
constant parameter o, resulting in a time-varying
constant autoregressive model of order 1 (TVC-AR(1)):

Xt =+ fxe 1+ €. (3)

If |f|<1 and the latent process of a; is stationary, the
process x is also stationary. But due to random shifts in
the mean reversion level—because of the time-varying
constant parameter—realizations of the model can
resemble those of a (close to) random walk process, when
restricting to a limited time window.

Another time-varying parameter model is the shifting
endpoint model introduced by Kozicki and Tinsley (2001).
Similar to the TVC-AR(1) model their approach has a
time-varying mean reversion level, referred to as shifting
endpoints. In particular, Van Dijk et al. (2014) applied
this model to interest rates presenting a slow moving
trend using exponential smoothing or long survey fore-
casts. There is also a strand of literature, which connects
the level of interest rates in the long run to the expected
inflation dynamics, also referred to as trend inflation
(Bekaert et al. 2010; Cieslak & Povala, 2015; Kozicki &
Tinsley, 2001; Rudebusch & Wu, 2008). Associating the
variable of interest with appropriate covariates might
practically help in several scenarios, but does not directly
address the core of the present problem.

In this paper, we propose a model approach competi-
tive in terms of short horizon forecasts, yet controlled to
obtain realistic predictive distributions for the long
horizon. We propose a Bayesian TVC-AR(1) model,
which is stationary but can resemble short-term proper-
ties of an integrated or nearly integrated linear process
due to a stochastic mean reversion level. The model
allows us to regularize the long run distribution of the
time series without affecting short term distributions
adversely. Different to Van Dijk et al. (2014) we do not
use a deterministic shifting mean reversion level, but
incorporate long run assumptions via prior information
in a Bayesian approach, such that the latent coefficient
process, and with it the mean reversion dynamics, are
still estimated from the data.

In particular, the novelty of our approach lies in the
model allowing us to (1) regularize long run predictions
by using prior assumptions, (2) separate the modeling
process into a data driven short horizon model-part and a
long horizon model-part that is determined by prior
(or expert) assumptions and (3) yield improved forecast-
ing performance in the short horizon compared to the
commonly used linear dynamic Nelson-Siegel model and
Gauss2++ model, while retaining realistic long run

distributions. Moreover, we place particular emphasis on
the interpretability of the model structure and prior
parameters, preserving a close link to the common linear
models. This allows to include expert knowledge or
assumptions in accordance with economic theory about
the long run behavior of a time series into the model in a
sound mathematical way. We here specifically focus on
the application to interest rates. As our model allows to
regularize long run predictions, it is also of particular
interest for insurance companies, where realistic long
run interest rate forecasts are needed to evaluate the risk
and performance of specific insurance products.

The remainder of this paper is arranged as follows.
Section 2 specifies the Bayesian TVC-AR(1), including
the derivation of required full conditional posterior distri-
butions and the application of a Metropolis-Hastings
within Gibbs sampling routine for statistical inference. In
Section 3 we discuss an application of our model to inter-
est rate data and compare the forecasting performance as
well as the long run distribution of our nonlinear model
with the dynamic Nelson-Siegel model (short-term focus)
and the Gauss2++ model (long-term focus). We con-
clude with Section 4 and give a brief outlook on potential
further research topics.

2 | ABAYESIAN TVC-AR
(1) MODEL FOR LONG RUN
REGULARIZATION

In this Section we introduce the Bayesian TVC-AR(1)
(BTVC-AR(1)) model. The model incorporates assump-
tions about the long-term behavior of the time series and
thereby regularizes the process in the long horizon. At
the same time, the model is mainly driven by the given
data in the short run and thus fosters a good short-term
prediction.

21 | The BTVC-AR(1) model

The BTVC-AR(1) model is defined as follows:

X;=a;+px;1+e€, for teZ, (4)
where f§ represents the mean reversion speed and |f|<1
to secure stationarity. €, is assumed to be a Gaussian
white noise process, i.e., € iLd: s (0,6%). We further spec-
ify a, as a stationary Gaussian process, which is defined
to have the unconditional expectation #:=9-1 and
covariance X on the observed time points t =1,...,T, i.e.,

a:=(a1,a2,...,ar) ~Nr1(0,%). (5)
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As this time frame is most relevant, we focus on « for
further investigations. The Bayesian approach considers
the parameters of model (4) as random variables. For the
conditional prior distribution of § conditional on ¢* a
truncated normal distribution with lower bound —1 and
upper bound 1 is assumed as a prior, i.e.,

Blo? NN(,uﬁ,az-Ulzj, -1,1),
with conditional prior expectation us and additional
multiplicative variance parameter o4 The prior distribu-
tion for ¢* is an inverse gamma distribution with shape
and scale parameter, a and b, respectively,

6*> ~ZG(a,b).

These two prior distributions are conjugate priors for
model (4) if the respective other parameter is known and
therefore allow for an analytical derivation of the
corresponding full conditional distributions.

Using these priors the defined model can be seen as a
Bayesian version of the TVC-AR(1) model. The mean 6
and covariance ¥ might be assumed fixed or defined as
random variables with further attached prior distribu-
tions. In the latter case (5) describes the distribution of «
conditional on @ and X. Placing priors on these parame-
ters allows to incorporate assumptions about the long
run distribution into the model as further elaborated in
Section 2.2.

While this basic model setup is flexible in many ways
and particular in terms of its covariance structure
assumptions for «, further practical insights can be
obtained from a more in-depth model characterization.
In the following, we will shed light on useful properties
of this framework when assuming an AR-covariance
structure. This covariance structure has shown to provide
good results in applications.

2.2 | Arbitrating between short and long
run distribution

The goal of our work is to propose a new modeling
framework, which can regularize the long run distribu-
tion of (nearly) integrated time series by keeping a good
forecasting performance in the short horizon. Linear
models often concentrate on the conditional distribution
in the short horizon, but due to the near integration
property of the time series this can lead to inappropriate
long run distributions. For example, if the AR(1) model is
estimated for a time series, which shows a (close to)
random walk behavior, the parameter f of the model will
take a value close to 1. This can lead to a large long run
variance given by

62

1-p%

potentially yielding unrealistic values in the long run that
have never been observed in the past. On the other hand,
calibrating g to a given long run variance is not straight-
forward without deteriorating the short run prediction
performance. Figure 1 depicts this undesired behavior by
showing the long run mean of a linear AR(1) model
which is driven by the conditional short run distribution
at the expense of an unrealistic long-term distribution.

We address this issue by incorporating a time-varying
mean reversion level, which locally preserves the good
short term prediction and at the same time regularizes
the long run distribution. The current mean reversion
level valid in the short run can be different to the long
run behavior accounting for the current market situation
and therefore improving the short run prediction. We
enable the model to stay in a reasonable range in the long
run by assuming a stationary process for the time-varying
mean reversion level and a stronger mean reversion to
this time-varying level than a linear AR(1) model would
induce to its constant mean reversion level. Such a
behavior can be achieved by introducing a time-varying a
parameter into a linear AR(1) model with additional
prior assumptions. In particular, this does not change the
(weak) stationarity property of the model if the assumed
process for « is (weakly) stationary itself. This can be ver-
ified by calculating the unconditional mean, the uncondi-
tional variance and the unconditional covariance:

8
E(xt) _—ﬂ
o2 Var(at) —|—2ﬂCOV(at,x,,1)
1-4) 1-5%)

h-1
Cov(X—n,X;) ZﬂlCOV Qi X h)+ﬂ Var(x;_p)
i=0

Var(x;) =

As the a-process is stationary and

COV(a[,X[,h)

= Zﬁicov(ats a[*h*i)’
i=0

the BTVC-AR(1) is (weakly) stationary.

The time-varying a increases the flexibility of our
model to account for short and long run distributional
properties. As current observations have almost no influ-
ence in the very long run, a reasonable way to include
information about the long run mean and long run
variance in a Bayesian setting is via prior assumptions for



BERNINGER ET AL. WI L EY 185
F I G U R E 1 A comparison Of a 2 Long run forecasts 20 Latent mean-reversion-process
. . P Yoy  Simulated Data Sy —— Simulated Data
linear AR(1) model with no restrictions wl \n AR() umestristed 200\ |~ I samplo e mean-ovorsin srocess
3 e AR(1) with fixed constant \ V'Y xpected out-of-sample mean-reversion-process
for the constant parameter, a linear . \ AR wib e consn ) Al
AR(1) model with a fixed constant ‘”\ l
parameter (¢ =0) and a BTVC-AR 0 Vs Amn Ry = 0
. . . ™ L]
(1) model applied on a simulated time -10 \,.,_ 5 10
series . 20
-30 NS = -30
-40 -40
50 -50
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
time time
(a) (b)
a. We will further elaborate this in Sections 2.2.1 and TABLE 1 Estimated parameters for the restricted and

2.2.2. The time-varying a also increases the flexibility
of the model such that the conditional distribution in
the short run is consistent with the empirical data,
i.e., EQ¢ o plx, X 1, ...) and Var (g, p |x;, %1, ... ) still reflect
the empirical distribution for a short horizon h.

Our BTVC-AR(1) model can therefore produce both a
conditional short term distribution, which roughly
corresponds to an unrestricted linear model, and a long
run distribution with a reasonable range of values.

221 | Thelong run mean and time-varying
mean reversion

The mean reversion level in a linear AR(1) model as
specified in (1) amounts to

1-5

As the mean reversion level stays constant over time it is
also the long run mean of the model. In contrast, the
mean reversion level in the BTVC-AR(1) model changes
over time and is given by

Qat

1-p

for time point t. This local mean reversion level is in
general different to the long-term mean and can even
pull the process away from it in expectation, i.e.,

| E(Xt4n P Xi—15ee0) = prrl 2 % — pigls

where u;r is the unconditional mean of the time series
and x, denotes a fixed realisation of the process. This
helps fitting the model to a time series exhibiting a (close
to) random walk behavior. The long run mean of the

unrestricted AR(1) model

constant p 6’
restricted AR(1) 0 0.9935 0.7787
unrestricted AR(1) —0.1645 0.9978 0.7554

BTVC-AR(1) depends on the unconditional mean of «
and amounts to

9
1-p

in our model. We assume the data to be centered around
a prior specified long run mean. By setting 6=0,
i.e., 9=0, this long run mean is reached in expectation
after reshifting the simulated data.

The implications of the time-varying mean reversion
level of the BTVC-AR(1) model are visualized in
Figure 1. Two AR(1) models (with unrestricted and
restricted constant parameter) and the BTVC-AR
(1) model have been exemplary fitted to a simulated
stationary time series, which shows a (nearly) integrated
behavior and is visualised in Figure 1.

In the left graphic the “historical” time series can be
seen as well as the expected future development
according to the three models. The AR(1) model with no
restrictions has a long-term mean far away from the
historical domain, as its focus lies on the conditional
short term distribution. The restricted AR(1) model sets
the a parameter to O to regularize the long run mean, but
at the same time the expected values in the short horizon
are pushed in the direction of the long run level leading
to an inferior forecasting performance. The parameters of
the estimated unrestricted and restricted AR(1) model are
given in Table 1.

If we assume that the (close to) random walk
behavior stems from changes in the mean reversion level
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determined by unobserved variables, the BTVC-AR
(1) model has a more desired behavior. The time-varying
constant parameter in the model leads to a time-varying
mean reversion level and can therefore account for the
changes induced by the unobserved variables. The long
run mean can still be regularized to 0 while influencing
the short term distribution less abruptly. This allows the
time series to follow the current trend in expectation and
veer away from the long run mean for a couple of time
steps. The reason for this behavior is that the latent
a-process induces a local mean reversion level that lies
below the last observation, which can be seen in the right
plot of Figure 1 showing the average latent mean rever-
sion level extracted during the simulation process. In the
long run the mean reversion level returns in expectation
to the prespecified value of 0.

2.2.2 | Long run variance

The long run variance of a linear AR(1) model is given by

1-p*

The closer the model behaves like a random walk,
i.e., the closer  approaches 1, the larger the long run
variance gets under the assumption of a fixed conditional
variance ¢°. In terms of the long run variance, the BTVC-
AR(1) model is more flexible by incorporating two
sources of variation, the residual term of the
AR(1) model and variance of the latent a-process.
The model's long run variance is given by

0'2 Var(at) + Zﬁ COV(a[,x[71>
-p 1-p

Var(x,) = n . (6)

The first term has the same form as the long run
variance of a linear AR(1) model and can be interpreted
as the “unconditional” variance around the time-varying
mean reversion level, i.e., the variance conditional on the
a-process. The second term incorporates the part of the
variance stemming from the a-process and depends on
both its unconditional variance and unconditional
covariances. This allows the BTVC-AR(1) model to be
more flexible and to control the long run variance of x,
while reducing the opposing effect on the conditional
distribution in the short horizon. The model thus still
produces short term distributions consistent with the
given data. If « is a constant process, the second term is
0 and the BTVC-AR(1) model reduces to a linear
AR(1) model.

Prior assumptions
With the goal in mind to control the long-term variance
based on prior information, a more refined specification
of the BTVC-AR(1) model is helpful in order to translate
this information into the model. We will use a centered
a-process with an AR-covariance structure for demon-
strative purposes. In this case, a can be represented by a
linear AR(1) model

ar = pa;_1+1;, for tez,
where p represents the correlation between two succes-
sive time steps and 7, is an ii.d. Gaussian white noise
process, i.e., 7, N (0,7%). The long run variance of the
BTVC-AR(1) model is then given by

o 7 (1+pp)
=5 A-pp)A-pH(1-p?)

Var(x;) =

(7)

As indicated by the equation, z* and ¢” play an inter-
related role in the model for the long run variance.
Increasing one can be compensated by reducing the other
one. To avoid identifiability issues, it is thus necessary to
account for this interrelation through a meaningful prior
parameter assumption. If the process x, is supposed to
reach a certain objective variance in the long run, the
degrees-of-freedom in (7) reduce from four to three. For
example, for given p, # and ¢ and a prior value assump-
tion for Var(x;), the variance of x, has a one-to-one
relationship with 7> and it is straightforward to solve (7)
for 7°. Denote the solution by #2. To ensure positivity
the truncation limits for the prior distribution of § can

Var(x;)—o?
Var(x;)

structure, a possible prior distribution of z* can thus be
defined by the conditional distribution

be set to —1 and . For this specific covariance

Zlp.p,0* ~ 5z, (8)

where § denotes a degenerated distribution with point
mass 1 at 72. This definition forces the process to reach its
prespecified long run variance Var(x;) while controlling
the speed of mean reversion of the a-process through p.
A conjugate prior for p is a normal distribution truncated
below by —1 and from above by 1, i.e.,

p~N(uy,00, —1,1), 9)
with mean y,, and variance o”.

The previous prior specifications allow to introduce
prior information into the model in a straightforward
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manner while maintaining the properties of the
BTVC-AR(1) model.

2.2.3 | The short run distribution

For the short run distribution of the BTVC-AR(1) model
the goal is to balance between a consistent estimation
with the observed data and the opposing effect of the
prespecified long run distribution. For a linear AR(1)
model with a restricted long run mean of 0 the
conditional expectation and the conditional variance
amount to

E(xH_l |xt, ) :ﬁxt,

var(xe1|x,...) = 62.

The model can get arbitrarily close to a centered
random walk if § approaches 1, while the long run
variance increases at the same time as shown in
Section 2.2.2. For the BTVC-AR(1) model we get

E(xtﬂ ‘xt, ) = E(at+1 |xt, ) +ﬂxt,
Var(x;1|xs,...) = Var(ag1|xs, ... ) + 6%

A random walk behavior, i.e., E(x; | 1|x;) =~ Xx;, can be
reached without § necessarily being close to 1 due to the
conditional expectation of the a-process that supports
the random walk behavior in the short horizon. This
increases the flexibility of the BTVC-AR(1) model
compared to a linear AR(1) model in combining short
and long run distributional characteristics.

We can further decompose the conditional expecta-
tion to see the similarities of the BTVC-AR(1) model to a
linear AR(T) process if we consider a time series
observed on time points t=0,...,T. Let &= (a,...,ar+1)
denote the time-varying constant extended to T+ 1 in a
consistent manner with the BTVC-AR(1) model
definition, i.e., the same covariance parameterization is
assumed. For a given data set x=(xo,..,xr), the
conditional distribution of &|x is multivariate normal
(c.f. Appendix 2.1), i.e.,

dx~N(ji, ).
As ﬁ = al—ziﬁ with Z = (xl —ﬁxo,...,xT —ﬁfol,O) T , the

conditional expectation of ar, ; is given by the last entry
of f,

1 -
E(ars1x) = psTﬂ,.A,

where s, = (S741,1,.,S7+1,7+1) and s;; represent the
entries of . The one step ahead conditional expectation
of the model therefore amounts to

S
E(.X'T+1 |xT, ) = (% -l—[)))XT

T-1

ST+1,7—i — PST11,7-(1-1)
+ g 5 X7
: c
i=1
St4118
——=—Xo-
c

This shows that the conditional expectation depends on
all previous time points like in a linear AR(t) model,
allowing the BTVC-AR(1) model to better account for
current trends in the process. Due to the given covariance
structure for & the number of parameters are, however,
much less than in an actual AR(t) process.

2.3 | Bayesian inference

The main parameters of interest in the BTVC-AR
(1) model are a, § and ¢ with & extending & by future
time points up to the modeling horizon h, i.e.,

a= ((11, .ar, ...,(XT+h).
This extension is necessary to sample from the predictive
posterior distribution of the parameters and to generate

forecasts. The prior distribution of a incorporates the
same assumptions as the prior distribution of a, i.e.,

a~Nrin(6,3)

where
X Ity Irin
- - HTT+1 0(21
=9 -1andX=
HTTH: Gi
with HTJrj = {COV(GT+j,(11), ceey COV((ZT+j,(ZT+j,1)} T ,

i.e., the vector of covariances of ar; and all previous
time points 1,...,(T+j—1). For these time points the
same (autoregressive) covariance parameterization as
for a is assumed for consistency reasons. o2 represents
the unconditional variance of the latent a-process. In
the case of an AR-covariance structure as assumed before
02 = 112,)2 and Cov(as,as. i) = p* for any s,k € Z.

The goal of Bayesian inference is to find the joint
posterior distribution, p(a,f,6%x), conditional on the
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observed data x = (xo,...,x7). If the full conditional distri-
bution of all parameters is known, the Gibbs sampler
(Gelman et al., 2013) can be used to draw samples from
this joint posterior distribution and inference can be
based on Monte Carlo approximation (Chib, 2001). By
regularizing the long run variance under the assumption
of an AR-covariance structure and choosing a
degenerated prior distribution for 72 as in (8), the full
conditional distributions of p, and ¢* depend on the
prior of 72 and can not be derived analytically. We
therefore apply a Metropolis-Hastings within Gibbs
sampling routine (Millar & Meyer, 2000). We will state
the algorithmic details in the following section and here
only derive the necessary distributions.

As the model defined in Section 2.2.2 can be consid-
ered under a different parameterization where 7z* is given
by the function

2 =f(p,p,6%, Var(x,))

and thus fixed for given p, 8, 6> and a specified long run
variance Var(x;), we will focus on deriving two condi-
tional distributions in order to be able to employ a two-
step Gibbs sampling procedure. The goal is to iteratively
sample a and the vector (p, /3, 02) based on the respective
other full conditional distribution. As it is not straightfor-
ward to derive the conditional distribution for the latter
vector, we will here derive conditional distributions for
all parameters involved as if the parameter 7> was fixed
and later employ these distributions to derive a suitable
proposal distribution in a Metropolis-Hastings procedure.
In the following subsections we just state the (full) condi-
tional distributions. A more detailed derivation can be
found in Appendices 2.1-2.4.

2.3.1 | Full conditional distributions of @

In the following we derive the full conditional distribu-
tion of e. It holds

p(@l,o*,x) p(x|a,p,0*) - p(a) = L(&.5,0°) - p(a). (10)

Due to the conditional independence induced by the
Markov assumption in the AR(1) model the likelihood of
the parameters is given by

L(ap,0%) =p(x|ap,0?)
T

1
11
= p(xr—jlar—j+pxr—j-1,6%), (11)

Jj=0

where ¢(-|u,6*) denotes the density function of a normal
distribution with expectation u and variance °. Note,

that we have assumed a degenerated distribution with
point mass 1 for the first entry in x. An alternative option
is to estimate the unconditional distribution. For increas-
ing length of the time series the difference between these
two approaches will however vanish.

With (10) and (11) and the prior distributions
specified in Section 2.1 the full conditional distributions
of a, can be derived analytically. Under the assumption
that # =0 as specified in Section 2.2.1 to regularize the
long run mean, the full conditional distribution of & is
given by

&V)’, 0'2,x NNTwpost,ipost)-

with

A in this case denotes

A= (x2 — px1, 0. X7 — PX7-1,0,...,0).

As A incorporates data information up to time point
(vector entry) T, is 0 for time points >T and
Cov(arj,ar) — 0 with increasing j, the mean of the full
conditional distribution tends to 0, corresponding to the
unconditional mean of the prior distribution. The
covariance structure of the full conditional distribution
behaves analogously. Therefore, the distribution of
ar4j|x,p,0? in the long run tends to the prior distribution.
This means that the prior distribution of & effectively reg-
ularizes the distribution of x in the long horizon towards
the prespecified long run mean and long run variance.

Note that the derivations are independent of the
specific choice of X. If prior distribution assumptions
for the parameters in > are used, we need to further
condition on the hyper-parameters for the full condi-
tional distribution of a. In the following, we assume an
AR-covariance structure for a and therefore need to
condition on the parameters p and 7.

We note that, in general, regarding the a process as a
vector of parameters can lead to a computational burden
when calculating the inverse of ¥ for ipost. In this case it
might be preferable to represent the model in state space
and to use a forward filtering backward sampling
algorithm as proposed by Carter and Kohn (1994) and
Frithwirth-Schnatter (1994). In our specific case, how-
ever, we initialize a specific parametric covariance struc-
ture and did not experience any computational problems.
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2.3.2 | Full conditional distributions of

p, B, o

If we assume an AR-covariance structure with prior
distributions for its parameters as specified in
Section 2.2.2, the conditional distribution of p is given by

2 2
p|a,1 NN(Mp,pOSl’Gp,pOSt’ -1, 1)
where

-1
p,post T p

T-1
D R AT
HKppost = D) +_2 O-p,post'
T 6p

T-1 ,
Z-: ar_j _
0.2 — ( J 02 J Sy 2>

The conditional distribution of f is given by

2 2
[3|x,a,a NN(/"ﬂ,post’Gﬁ,post’ -1

Var(x;) — 02>

Var(x;)

where

T-1_, -1
2 — (Z_;o *1-j1

-2
O post o2 + (O-O-ﬁ) >

T-15
_ ijo dT—ij—j—l Hg )
Hppost = o2 + 520./2)‘ Op,post

dNT,j is defined by duT,j =XT_j— T
The conditional distribution of ¢ is given by an
inverse gamma distribution with parameters

. T+1
a =——

d
5 +a an
Do (Buy)
~ i T—j —
b :LJ_F[)_*_&’
2 20’/}

where ¢, is the error term of the BTVC-AR(1) model
(c.f. (4)). This means

o?|a, f,x ~IG(4,b).

Note that this only holds if the prior of 8 | 6> is a normal
distribution instead of a truncated normal distribution as
assumed in Section 2.1. When using a truncated distribu-
tion assumption, the derivation of the full conditional of
o” is more intricate as the prior distribution of # also
conditions on ¢°. Since our approach will make use of
the full conditionals as proposal distributions in

the Metropolis-Hastings part of our sampling routine,
this simplification allows a more straightforward imple-
mentation while we observe that values outside the given
truncation are highly unlikely and practically occur with
zero probability in our application.

2.4 | Markov Chain Monte Carlo
inference

In the following we assume again an AR-covariance
structure for ¥ determined by the parameters p and z*
with prior distributions as specified in Section 2.2.2. To
conduct inference, we use the Metropolis-Hastings within
Gibbs sampler. More specifically, we generate samples
from the posterior distribution by iteratively sampling
from the full conditional distribution of a given a sample
of (p, 8, 6) and vice versa. Based on the derivation of the
full conditional distribution for « in the previous
section we are able to directly sample from a multivariate
normal distribution to generate values for @. To obtain a
sample from p(p,p,0%|a,x) conditional on a, we apply
the Metropolis-Hastings algorithm as neither the joint
distribution of p, p, 6* nor each single full conditional
distribution is available. A suitable and already available
proposal distribution q for these parameters is given by

q(p.p.0%|la.x) =q(pla.x)q (Bl 0> x)q(o’. f.x).  (12)

In other words, we use the product of all full condi-
tional distributions under the assumption of a fixed z*.

In the BTVC-AR(1) model we use this approach in a
first step to draw from the joint posterior distribution
p(a,p,c%x). A detailed description of the sampling
routine can be found in Appendix Al. In a second and
final step, we use these samples to generate paths of the
x-process as follows:

(m) (m)

xT+j = (X(Tri)] +/3(m)xT+j71 + €7y, Jj>0,

where m denotes the simulated path. In Appendix B1, we
give some insights about the performance and further
details about the MCMC algorithm applied to our
dataset.

3 | APPLICATION TO INTEREST
RATE DATA

We now apply the BTVC-AR(1) model to the first princi-
pal component (PC) of a principal component analysis
(PCA) on interest rate data to predict the term structure
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of interest rates and compare it to the 2-Additive-Factor
Gaussian (Gauss2++) model (Brigo & Mercurio, 2007)
and the dynamic Nelson-Siegel model (Diebold &
Li, 2006) with respect to the forecasting performance and
the long run distribution.

3.1 | Motivation and background

The Gauss2++ model is a popular short-rate model in
the insurance industry, used, e.g., to classify certified
pension contracts into risk classes. Because its mean
reversion level is calibrated to external interest rate
forecasts, it generates realistic interest rates in the long
horizon, which is a necessary model feature for insurance
companies, as they are obliged to calculate risk measures
and performance scenarios for specific insurance
contracts for up to 40 years (European Union, 2017).

Interest Rate Curves
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FIGURE 2 Time series of the term structure of German

government bond yields
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Nevertheless, Diebold and Li (2006) point out that short-
rate models perform poorly in forecasting. Their dynamic
Nelson-Siegel model shows a better forecasting perfor-
mance than the Gauss2++ model in the short horizon,
but can produce unrealistic interest rates in the very long
horizon. Our model, which we call the BTVC-AR(1)-
Factor model in the following as it applies the BTVC-AR
(1) model to the first PC of a PCA, combines both: a good
forecasting performance in the short horizon and realistic
interest rates in the long horizon. It further accounts for
the strong autocorrelation and the (close to) random
walk behavior of interest rates.

3.2 | Data
We use data of the German term structure of interest
rates estimated by the Deutsche Bundesbank from prices
of German government bonds. The exact estimation
procedure can be found in Schich (1997). The time span
ranges from September 1997 to August 2016. Figure 2
shows the monthly evolution of the interest rate curves.

In the last ten to fifteen years a decrease of the inter-
est rates can be observed. Each maturity represents a
dimension in the data set. We use PCA to reduce the
dimension of the data set for the following reason.
According to Litterman and Scheinkman (1991) a three
factor model can explain for each interest rate with a
specific maturity a minimum of 96% of the variability in
the data. We here extract these (principle) factors but
only use the first two to facilitate a fair comparison with
the Gauss2++ model, which is a two factor model.
Furthermore, the first two PCs already account for more
than 99% of the variability in the given data. Figure 3
shows the loadings and the time series of the two
extracted PCs.

The loadings of the first PC are similar for all 20 matu-
rities, while the loadings of the second PC are positive for

Loadings of Principal Component 2
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short and negative for long maturities. The first and the
second PC are therefore often interpreted as level and
slope of the term structure, respectively.

The decrease of the interest rates in the last years is
also visible in the level factor, showing a downward
trend. There is an ongoing discussion in the literature
about mean reversion of interest rates. Economic theory
predominantly assumes that interest rates are (in the
long run) mean reverting. But statistical evidence is not
so clear (van den End, 2011). The mainstream literature
says that unit roots can not be rejected, which would
imply that interest rates are not mean reverting
(Campbell & Shiller, 1991; Rose, 1988; Siklos &
Wohar, 1997; Stock & Watson, 1988). More recent litera-
ture investigates the unit root hypothesis by fractional
integrated techniques that apply differencing to time
series by an order smaller than or greater than one
(Baum et al. 2000; Gil-Alana, 2004). These studies find
that shocks to interest rates have a long memory, which
explains their (close to) random walk behavior.

3.3 | Estimation of model parameters

In this subsection the estimation of the BTVC-AR(1)-
Factor model and the two benchmark models is
described.

3.3.1 | Modeling interest rates with the
BTVC-AR(1)-Factor Model

The factors of our BTVC-AR(1)-Factor model are the first
two PCs extracted by a PCA and interpreted as level and
slope of the interest rate curve. The level factor shows a
(close to) random walk behavior, which can not be
adequately captured by a stationary linear model.
Following the economic theory view that interest rates
(and therefore also the level) are mean reverting (in the
long run) and assuming that the random walk behavior
results from changes in the mean reversion level, we use
therefore the BTVC-AR(1) model for this PC. It allows us
to account for the (close to) random walk behavior as
well as to regularize the level of the interest rate curve in
the long horizon via prior assumptions. The slope
factor is more stable over time. As an augmented
Dickey Fuller test suggests that the existence of a unit
root can be rejected, a linear AR(1) model is used for
this factor. By modeling the level and the slope factor
interest rate forecasts 7;(z) with maturity r can be
calculated via

Pe(7) = u(7) + & (0l + & (7)S (13)

where Zt and §; denote the forecasts of the level and the
slope factor, respectively. &,(7) and &,(z) denote the load-
ing of the first and second PC for maturity z. Before
applying the PCA the data has been centered and
therefore u(z) is the mean interest rate of the data set for
maturity . We now specify the prior assumptions of the
BTVC-AR(1) model for the level factor and the estima-
tion procedure of the AR(1) model for the slope factor.

The level factor

Latent AR1 parametera: For this application, we
assume an AR-covariance structure for the a-process of
the BTVC-AR(1) model with the parameters p and z*
representing the correlation of two successive time points
and the conditional variance, respectively. The uncondi-
tional mean of the a-process is set to 0, which implies the
assumption that the long run mean of the level factor is
0. Because we also assume that the slope factor is a
centered process this means that the long run interest
rate curve converges in expectation to the average
interest rate curve of the dataset.

Autocorrelation parameterp: As specified in
Section 2.2.2, we assume for p a truncated normal distri-
bution with the parameters u,=0.98 and o =0.001?
with lower truncation —1 and upper truncation 1 as a
hyper prior, i.e.,

p~N(0.98,0.001, —1,1).

The truncation ensures the stationarity of the process.
The parameters of this hyper-prior rely on expert judg-
ment and incorporate the assumption of a weak mean
reverting a-process into the model and therefore allow
the mean reversion level of the level factor to deviate
from the long run mean for longer periods. This yields
the (close to) random walk behavior present in (our)
interest rate data.

Variance of the latent process: According to
Section 2.2.2, the parameter z° is set in each iteration of
the sampling procedure such that the long run variance
of the level factor amounts to a prespecified value. We
here use the value 120, which is inferred from a quantile
of the unconditional distribution. By giving consideration
of the rather unusual market situation of extremely low
interest rates we make the assumption that the last
observation is equal to the 7.5%-quantile. Due to the
model assumptions, the unconditional distribution is nor-
mal with mean 0 and the corresponding unconditional
variance can be calculated easily.

Slope parameter of the AR(1) model: For j, we
assume that p;=0.95 and o;=0.015". This expert
judgment represents a weak mean reversion to the time-
varying mean reversion level. The lower and upper
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truncation of the truncated normal distribution amount

Var(x;)—o?
Var(x;)

model as well as the positivity of 2 ie.,

to —1 and to ensure the stationarity of the

Var(x;) — o2
Blo? ~N<0.95,020.0152, -1, M)

Var(x;)

Residual variance: For the prior distribution of o> the
shape and scale parameter a and b are set to 0.5 and
2 respectively, representing an uninformative prior.

By specifying the parameters of the prior (and hyper-
prior) distributions the full conditional distribution of «
as well as the conditional distributions of the other
parameters can be analytically derived as described in
Section 2.3. Combining the Gibbs Sampler and the
Metropolis-Hastings algorithm as explained in Section 2.4,
paths of the level factor can be generated. Forecasts of
the level factor are then represented by the average of the
simulated paths.

The slope factor
The linear AR(1) model for the slope factor is given by

St=C+ySe—1+n,

where y is a real valued constant between —1 and 1 and
n: is a Gaussian white noise process, i.e., 7, ~N (Ojaz).
The constant parameter c is set to 0. The other parame-
ters are estimated by a standard ordinary least squares
approach.

3.3.2 | Modeling interest rates with the
Gauss2-+-+ model

The Gauss2++ model—in a different representation also
known as the 2-Factor-Hull-White model—is a popular
interest rate model in the insurance industry used for
pricing interest rate derivatives as well as for risk man-
agement and forecasting purposes. The model assumes
that the short-rate r(t), which is the interest rate with an
infinitesimal small maturity, is given by the sum of two
latent processes (x(t));>0 and (¥(t))s0, and a deterministic
function ¢:

r(t) =x(t) +y(6) + (1)

The latent processes are modeled by dependent Ornstein-
Uhlenbeck processes, which are the continuous version
of a linear AR(1) process. Interest rates with longer
maturities are then derived from the short-rate via
pricing the corresponding zero-coupon bonds, which is

analytically possible due to the model's distributional
assumptions.

The estimation process is materially different from
the one of the other two models as it does not use historic
data but calibrates the model to current future market
assumptions (implicitly) provided by the current interest
rate curve, interest rate derivatives as well as interest rate
forecasts. By applying the downhill simplex algorithm
the parameters of the model are chosen in such a way
that forward rates—implicitly given by the current
interest rate curve—and swaption prices are met in
expectation. The relevant data has been extracted from
Bloomberg. Additionally the mean reversion level of the
two latent factors are analytically set such that two inter-
est rate forecasts with a maturity of 3 months and
10 years, which are published by the Organisation for
Economic Co-operation and Development (OECD), are
met in expectation. This approach is in line with the
standard calibration procedure in the insurance industry
(Korn & Wagner, 2019).

3.3.3 | Modeling interest rates with the
dynamic Nelson-Siegel model

The dynamic Nelson-Siegel model of Diebold and Li
applies specific time series models to extracted latent
factors. Diebold and Li tested several time series models
on the level, slope and curvature factors of the Nelson-
Siegel interest rate curve and compared the forecasting
performance Diebold and Li (2006). In this paper, we
follow one of their approaches, in which they apply a
PCA on interest rate data and use an univariate linear
AR(1) process for each of the first three PCs. Because of
comparison reasons to the other two two-factor models
in this paper, we just use the first two PCs. The parame-
ters of the AR(1) model are estimated by the ordinary
least squares method.

3.4 | Backtest

We now compare the forecasting performance of the
BTVC-AR(1)-Factor model, the Gauss2++ model and
the dynamic Nelson-Siegel model and analyze their long
run distributions of the 10-year interest rate (Figure 4).

34.1 | Comparison of the forecasting
performance

For the out-of-sample backtest, we apply an expanding
window approach. The data of the first 10 years of the
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Distribution of the 10-year interest rate in 40 years
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FIGURE 4 Comparison of the distributions of the 10-year

interest rate in 40 years modeled by the dynamic Nelson-Siegel
model, the Gauss2-++ model and the BTVC-AR(1)-Factor model

observations are used to estimate the parameters of
the BTVC-AR(1)-Factor model and the dynamic
Nelson-Siegel model as described in the Section 3.3. The
Gauss2++ model is calibrated to the current market
data. We then forecast the interest rates for the maturities
of 1, 3, 5, and 10 years (representing the yield curve) for
the horizons of 1, 3, 6, and 12 months. We expand the
training sample by one month and repeat the procedure
again. This is done until 12 months before the last obser-
vation in the data set. To evaluate the forecasting perfor-
mance the error between the predicted interest rate 7.(¢)
and the actual interest rate r(t) with the maturity 7 is
calculated, i.e.,

error.(t) =r.(t) — 7. (t).

Tables D1-D4 in the Appendix C1 show the mean and
the standard deviation of this error for each model. In
addition, the root mean squared error

N

RMSE () = %Z(”(k) —F:(k))? (14)
k=1

for the given deviation is calculated, where N is the
number of forecasts conducted in the backtest.

The RMSE for the 1-month ahead forecasts is similar
for all three models. For longer forecasting horizons the
Gauss2++ model shows the highest RMSE. For example,
the 6-month ahead forecast of the 10-year interest rate of
the Gauss2++ model has a RMSE approximately twice
as high as the RMSE of the other two models and more

than three times as high for the 12-month ahead forecast.
This supports the statement of Diebold and Li (2006) that
short-rate models perform poorly in forecasting.
However, it should be mentioned that the performance of
the Gauss2++ model highly depends on the interest rate
forecasts used in the calibration process. Regarding the
predominant negative mean error suggests that
the OECD forecasts have been too optimistic in the past.

The results of the BTVC-AR(1)-Factor model and the
dynamic Nelson-Siegel model are more consistent. For
the forecasting horizon of 1-month the BTVC-AR(1)-
Factor model shows a slightly lower RMSE except for the
10-year interest rate. For the 3, 6, and 12 months forecast-
ing horizons the BTVC-AR(1) model shows a lower
RMSE for the short maturities, but a higher RMSE for
the longer maturities compared to the dynamic Nelson-
Siegel model. Note that the dynamic Nelson-Siegel model
anticipated the downward trend present in the last years,
which might have been beneficial in terms of the
forecasting performance in the past, but also produces
unrealistic interest rates in the long horizon. In contrast
the BTVC-AR(1)-Factor model forces the model to mean
revert to a prespecified level to regularize the interest
rates in the long horizon. It can therefore follow the
current trend only for a couple of time steps, which
might explain the slightly worse performance for the
6 and 12 months forecasting horizon. The fact that the
RMSE error is still similar to the dynamic Nelson-Siegel
model suggests that this does not affect the forecasting
performance in the short horizon much.

342 |
long run

Comparison of the distribution in the

We further investigate the interest rate distribution in the
long horizon. This is especially important for insurance
companies as risk measures and performance scenarios
for their products have to be calculated for up to 40 years
(European Union, 2017). We therefore fit all three
models on all data points up to the last observation date
of the data set. We then simulate paths of the 10-year
interest rate and visualize the distribution in 40 years.
The median of the dynamic Nelson-Siegel model
amounts to approximately —10%. A value that is not
realistic for the 10-year interest rate. In comparison, the
distribution of the BTVC-AR(1)-Factor model and the
Gauss2++ model seem to be more realistic as the range
of their distributions is (mainly) positive between 0% and
10%. It can be observed that the standard deviation of the
Gauss2++ model is much smaller than of the BTVC-AR
(1)-Factor model and as the median is quite high negative
values are not reached by this model. This is due to the
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fact that the Gauss2++ model assumes a stronger mean
reversion than historic data would suggest. The (close to)
random walk behavior is better captured by the BTVC-
AR(1)-Factor model leading to a prediction range which
fits historical observations quite well. This is due to the
regularization of the mean and the standard deviation of
the BTVC-AR(1)-Factor model induced by appropriate
prior assumptions, which represents the main difference
to other interest rate models.

4 | CONCLUSION

In this paper, we introduced a new Bayesian framework
for the TVC-AR(1) model particularly suitable for nearly
integrated time series which can not be estimated by a
linear model consistent with economic theory or histori-
cal observations. In these cases a (close to) random walk
behavior can be an indication for a missing variable, for
which we account for by the usage of a nonlinear model.
The time-varying constant of the BTVC-AR(1) allows a
stochastic mean reversion level leading to realizations,
which exhibit a random walk behavior although being
stationary and do not have an exploding long run vari-
ance. Additionally, with the Bayesian approach it is pos-
sible to incorporate prior assumption about the long run
distribution into the model without affecting the short-
term predictions adversely. This gives the possibility to
include expert knowledge or well known economic facts
about the long-term behavior of the time series into the
model that is otherwise fully data-driven in the short
term forecast.

We apply the proposed approach to interest rate data.
We find that the BTVC-AR(1)-Factor model, which
applies a BTVC-AR(1) model to the first PC of a PCA,
shows a similar forecasting performance as the dynamic
Nelson-Siegel model in the short horizon but in
contrast produces realistic interest rates in the very long
horizon and also yields better forecasts compared to the
Gauss2++ model.

The presented framework allows for many different
specifications and is, in particular, flexible in terms of the
assumed covariance structure of the latent a process in
the model. In this paper we propose an AR-covariance
structure and explain how model parameters can be
inferred in this special case. Investigating other covari-
ance structures may further improve the forecasting
performance in the short horizon while still regularizing
the distribution in the long run.
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APPENDIX A: FULL CONDITIONAL
DISTRIBUTIONS

A.l | The full conditional distribution of
The prior distribution of & is a centered Gaussian process
with a specific covariance structure X, i.e.,
& = ((11, AT, ...,(XT+h) ~ NT(O, i)
The following derivations will be independent of the
specific choice of X. By defining

Aj=Xj11— Pxj

aswell as A = (Ay,...,Ar_1) " and the fact that

P (il +pxi1,6%) = p(a|di1,0%)
allows a straightforward derivation of the full conditional
of a:

p(alp,o®x) op(x|a.p,0%)p(alp,o?)
o p(xe,f,0%)p(@)

mexp(—%(a—A) T (a—A))-
exp(—%&Ti_I(})

1, _r<1
—E(aTZ a2

ox exp pos

~ 1
2 2 ostAo ;)

post
e —

=Hpost

I, 0 ~ -
\mthEpost—E + (0 0) and Ag=(A",0)

This is the kernel of a multivariate Gaussian distribu-
tion with covariance Yyosr and mean vector fiy,g, i.€

&|ﬂ,02,x NN(iipost’EPOSt)'

A.2 | The full conditional distribution of p
If an AR-covariance structure is assumed for a the latent
a-process can be written in the following form

o =pag_1+1;,
where p determines the correlation between two succes-

sive time steps and 7, is a Gaussian white noise process,
ie., n, ~N(0,7%).

The full conditional distribution of p can be therefore
derived as follows:

T-1
pp|e*,a) o< L(p, 7 Hd’ (ar—jlpar_j-1,7)-p(p).

Jj=0
(A1)

The likelihood £(-) in the above equation can be
reformulated as

£o<exp< { lZaT T 1]
S}

The calculation is similar to the one in Appendix 2.5.
Defining the two terms in square brackets as n and y,
respectively, we get

e

1
L o< exp (—M{—Zpﬂ—l-pzjf}) .

Plugging this into (15) and using a normal prior with
parameters u p,of, for p, we have

1{p7x ,pn
2
p(plr*,a) o<exp< 2{72—212}>
1{p? 2
exp<__{ﬂ_ P })
2 Op O p

2 2
and thus p|z%,@ ~ N (1), posts O3 post

-1
2 _ (X -2
Op.post = (T—2+Ul) )

) with

and

(1 ) 2
Hp,post = <_2+_2 Op.post*
2 ol

If a truncated normal prior is used, the truncation is
transferred to the full conditional distribution.
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A.3 | The full conditional distribution of g
Analogously to (10) and (11), we have

p(Bla,c*,x) < L(B,a,0%) - p(f)

T-1
= [1#Cerjlar+Bxrj1,6%) -p(B).
j=0
By defining Jl_j :=X;_j—oy_jand as
P jlacj+Pxij1,0%) = p(Bxija|dij07)

the likelihood L£(-) in the above equation can be
reformulated as

1 T-1 .
Lo exXp| — 2702 —Zﬂ deijfjfl
Jj=0

You can find a more detailed calculation in
Appendix 2.5. Defining the two terms in square brackets
as 1 and y, respectively, we get

L ocexp (222 {2:5’7+,52)(}) .

Plugging this into (16) and using a normal prior with
parameters yﬂ,(;/z, for g, we have

p(pla, o) «exp(‘;{m—zﬁ”p

and thus flx,@,6> ~ N (i post> 07 post) With

2 (X 2\t
Fhane= (3 °)

and

n o Hp\ 2
Hp post = <§ + 6_2> O3 post*

If a truncated normal prior is used, the truncation is
transferred to the full conditional distribution.

A.4 | The full conditional distribution of ¢°
In this section, we derive the full conditional distribution
of 6°. As before,

T-1

p(o?la.p.x) o< | [@Cer—jlar—+ prxr_j-1,07)

j=0
p(0?)-p(Blo?),

which is equal to

€2T,~> -p(c?) - p(plo?)

= () exp(~5zx ) () plPle%).

By using an inverse gamma distribution with shape and
scale parameters a, b, or short ZG(a,b), for the prior of o?
we get

(6)exp <‘% ) (%) “Vexp(~b/c?)

(0*) exp <_12(ﬂ_ﬂ[1)2)

2
20° 0%
1

1— -1-
°(r) (="
0'6/; O’Gﬁ

() Pexp <_2102K> (o) (@)

2
b+(ﬂ /:ﬁ)
26ﬁ 1
exp ~

O'Gﬂ GO'ﬁ
2

§+b+LZ;ﬂ)

(62)*(T+a+1)exp — I

In the last step, we omitted the last term, which
results from the truncation, as in our application the
truncation is not very restrictive such that this term is
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close to 1. Thus the full conditional distribution is
approximately also an inverse gamma distribution with

~ R
parameters a=14+-aand b=5+b+ Maﬁ, ie.,

o?|a, p,x ~TG(a,b).

A.5 | Rewriting the likelihood of the parameters
By defining d;_j:=x;_j—a;_j, the likelihood of the
parameters can be reformulated as follows:

T-1
ﬁ(ﬂ,a,a) H¢(XT ]‘aT j+ﬂxT —j—1,0 2)

1 exp XT —j—ar j ﬂxT —j— 1)2
\/277.'62

1 exp dT —j ﬁxT —j— 1)
—o V2r6? 202
1 1 ex T ]*ZﬂxT—j 1dT—j +ﬂ XT —j-1
\/277,'62 P 202

ocjzoexp<202{ 2fxp_j- 1dr j+ﬁ X% i 1})

_exp< { ZﬂZdT _XT_j_1+p ZXT - 1})

APPENDIX B: METROPOLIS-HASTINGS
WITHIN GIBBS SAMPLER ROUTINE

Starting with an initial sample (a©, 5%, (6*)®, p©,
(#)?), where

() =15, (%) ,p0, Var(x))

as specified in (8), we first draw a sample of a values
from its full conditional distribution. We proceed with
the Metropolis-Hastings algorithm step by drawing from
the conditional distributions of p, ¢ and p as derived in
Section 2.3. Furthermore, 7> is set according to (6) such
that a prior specified long run variance is met. We calcu-
late the density value of the proposal distribution
q specified in (12), i.e.,

q(ptD), gy (62)("+1> | (72)(")’ﬁ("), ((;2)<"),a,x) =
a(p" ()", a,x)q((62) "]
ﬂWmMMﬁ”W(fm X).

We further calculate the density value of the proposal
distribution for the parameters of the previous step
conditional on the new drawn parameter, i.e.,

Cl(p(n), ﬁ(n)’(UZ)(")‘(,[z)("Jrl) /):(n+1)’(0.2)("+1)’a’x):
a(p™ ()" a,x) - q((62) "™ |5V, @, x)-
a(B™|(e*) ", ax)

The true conditional posterior density is given by

p(p.p,0°|a.x) o p(x|f, 0% @)
p(elp.f(p.p,6%))p(p)p(Blo*)p(c?).

The acceptance probability is calculated by

p(p(n+1),ﬁ(n+1)’ (0.2)("+1) ‘a(n+1)’x)
p(p(n) ,ﬂ("), (62)(") \a("“),x) ’

a5, () " "D, p (7)) @D )
apm 0,7, (02) "V, p, (02) ", a2 x) )

paccepL =min (1’

A new drawn sample is accepted if a uniform
distributed random variable is smaller than the
acceptance probability. Otherwise the sample from
the previous step is taken. After a burn-in period the
parameter set (&(m,ﬁ("‘),(az)(m)) is approximately
distributed according to the joint posterior distribution

p(a.p.0%[x).

APPENDIX C: DIAGNOSTICS OF THE MCMC
ALGORITHM

In this section, we present diagnostics of the Metropolis-
Hastings within Gibbs sampler (MHwWGS) routine used
for the dataset in our application.

To investigate the distribution of the 10-year interest
rate at a forecasting horizon of 40 years, we use the prior
distributions as specified in Section 3.3.1 and draw 10.000
samples by applying the MHwGS routine as described in
Appendix Al. The chosen proposal distribution results
in an acceptance rate of 30.92%. After a burn-in phase of
100 samples, we apply thinning to reduce autocorrelation
and take every 10th parameter set to simulated paths of
the first principal component. The autocorrelation
functions for selected parameters are visualized in
Figure C1.
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APPENDIX D: BACKTEST RESULTS

TABLE D1

forecasting
Maturity Mean

The BTVC-AR(1)-Factor model

1 year —0.0268
3 years —0.0469
5 years —0.0681
10 years —0.0640

The Gauss2+-+ model

1 year —0.0808
3 years —0.1037
5 years —0.1203
10 years —0.1429

The dynamic Nelson-Siegel model

1 year —0.0290
3 years —0.0462
5 years —0.0653
10 years —0.0589

Std. Dev.

0.2566
0.2289
0.2402
0.2346

0.2361
0.2252
0.2139
0.2130

0.2615
0.2311
0.2410
0.2340

Sample Autocorrelation

0.8

0.6

0.4

0.2

Parameter p

Parameter 7*

0.8

06

0.4

0.2

Sample Autocorrelation

14 _TmTr
M@-@MMM 1% AR
P “
quﬂmny M‘WEE‘

Results of the out-of-sample 1-month ahead

RMSE

0.0659
0.0541
0.0617
0.0586

0.0618
0.0610
0.0598
0.0654

0.0685
0.0550
0.0617
0.0577

-0.2

40 50 60 70 80 9 100 0 10
Lag
(©
TABLE D2
forecasting
Maturity Mean

The BTVC-AR(1)-Factor model

1 year —0.1264
3 years —0.1505
5 years —0.1725
10 years —0.1625

The Gauss2++ model

1 year —0.2057
3 years —0.2707
5 years —0.3098
10 years —0.3435

The dynamic Nelson-Siegel model

1 year —0.1327
3 years —0.1482
5 years —0.1643
10 years —0.1478

20 30 40 50 60 70 80 90 100
Lag

(d)

Results of the out-of-sample 3-month ahead

Std. Dev. RMSE
0.5064 0.2697
0.4640 0.2358
0.4354 0.2174
0.3875 0.1751
0.5329 0.3236
0.4702 0.2923
0.4208 0.2714
0.3875 0.2667
0.5152 0.2803
0.4665 0.2374
0.4343 0.2137
0.3827 0.1668
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forecasting

Maturity Mean

The BTVC-AR(1)-Factor model

1 year —0.2809
3 years —0.3093
5 years —0.3311
10 years —0.3110

The Gauss2+-+ model

1 year —0.4094
3 years —0.5402
5 years —0.6098
10 years —0.6545

The dynamic Nelson-Siegel model

1 year —0.2900
3 years —0.3022
5 years —0.3130

10 years —0.2812

Std. Dev.

0.7683
0.6941
0.6330
0.5462

0.8105
0.6768
0.6090
0.5824

0.7857
0.7045
0.6380
0.5446

Results of the out-of-sample 6-month ahead

RMSE

0.6631
0.5725
0.5062
0.3920

0.8184
0.7457
0.7393
0.7693

0.6951
0.5825
0.5008
0.3727

TABLE D4
forecasting

Maturity Mean

The BTVC-AR(1)-Factor model

1 year —0.5956
3 years —0.6264
5 years —0.6526
10 years —0.6275

The Gauss2++ model

1 year —0.9047
3 years —1.1531
5 years —1.2745
10 years —1.3345

The dynamic Nelson-Siegel model

1 year —0.6004
3 years —0.6024
5 years —0.6098
10 years —0.5657

Std. Dev.

0.9591
0.7861
0.6834
0.5986

1.0709
0.7939
0.7255
0.8060

0.9961
0.8218
0.7096
0.6024

Results of the out-of-sample 12-month ahead

RMSE

1.2652
1.0041
0.8881
0.7484

1.9546
1.9541
2.1458
2.4246

1.3424
1.0316
0.8702
0.6793
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