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We study the collective dynamics in a population of excitable units (neurons) adaptively
interacting with a pool of resources. The resource pool is influenced by the average activity
of the population, whereas the feedback from the resources to the population is comprised
of components acting homogeneously or inhomogeneously on individual units of the
population. Moreover, the resource pool dynamics is assumed to be slow and has an
oscillatory degree of freedom. We show that the feedback loop between the population
and the resources can give rise to collective activity bursting in the population. To explain
the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen
reduction for the collective dynamics of the population and singular perturbation theory
to obtain a reduced system describing the interaction between the population mean field
and the resources.

Keywords: local and collective excitability, heterogeneous neural populations, metabolic resources, collective
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1 INTRODUCTION

Complex dynamical networks are indispensable for modeling many processes in nature, technology,
and social sciences (Strogatz, 2001; Boccaletti et al., 2006; Arenas et al., 2008; Yanchuk et al., 2021). In
realistic situations, collective dynamics in such networks is affected by the constraints on available
resources from the environment (Roberts et al., 2014; Kroma-Wiley et al., 2021), resulting in complex
dynamical phenomena, especially if the systems are self-organized to operate close to criticality
(Levina et al., 2007). Often, additional resource dynamics gives rise to adaptive mechanisms such as
frequency adaptation (Fuhrmann et al., 2002; Taylor et al., 2010; Ha and Cheong, 2017; Kroma-
Wiley et al., 2021), delay adaptation (Fields, 2015; Park and Lefebvre, 2020), or various forms of
homeostatic plasticity in neuronal systems (Zierenberg et al., 2018).

Compared with other somatic cells, neurons have a very high energy consumption (Attwell and
Laughlin, 2001) and are highly sensitive to energy limitations affecting their cellular metabolic
processes. Hence, the availability of metabolic resources, their dynamics and their interplay with the
neuronal activity are important factors for the overall performance of neural networks and their
homeostasis (Vergara et al., 2019). Dynamical networks with resource constraints have been in the
focus of recent studies (Taylor et al., 2010; Roberts et al., 2014; Virkar et al., 2016; Nicosia et al., 2017;
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Song et al., 2020; Kroma-Wiley et al., 2021). In particular, in
(Song et al., 2020) it has been investigated how phase
synchronization between the mutually uncoupled system
elements depends on the interaction with the environment. A
mini-review (Roberts et al., 2014) has highlighted the importance
of reciprocal coupling between neuronal activity and metabolic
resources in self-organizing and maintaining neuronal operation
near criticality, and has also presented a general slow-fast
formulation for the case where resources change slowly
relative to neural activity. In (Virkar et al., 2016), a discrete
two-layer model has been proposed to describe a mechanism by
which metabolic resources are distributed to neurons via glial
cells. An example of frequency adaptation in Kuramoto model
was provided in (Taylor et al., 2010), reproducing certain
phenomena that are not qualitatively accounted for the
classical Kuramoto model, such as long waiting times before
reaching synchronization. In (Nicosia et al., 2017), neuronal
dynamics and nutrient transport were assumed to be
bidirectionally coupled, such that the allocation of the
transport process at one layer depends on the degree of
synchronization in the other and vice versa. In (Kroma-Wiley
et al., 2021), a system of coupled Kuramoto oscillators that
consume or produce resources depending on their oscillation
frequency was considered.

Inspired by the mechanisms for the interaction of a neuronal
network with a population of glial cells, the studies (Fields, 2015;
Lücken et al., 2017; Park and Lefebvre, 2020) introduced models
of networks with adaptive time-delays.

Of particular interest are adaptive networks in which
connectivity changes are related to intrinsic nodal dynamics
(Gross and Blasius, 2008; Berner, 2021). For example, these
types of networks can model synaptic neuronal plasticity
(Meisel and Gross, 2009; Markram et al., 2011), chemical (Jain
and Krishna, 2001; Kuehn, 2019), epidemic (Gross et al., 2006),
biological, and social systems (Horstmeyer and Kuehn, 2020). A
paradigmatic example of adaptively coupled phase oscillators
gained considerable interest recently (Gutiérrez et al., 2011;
Kasatkin et al., 2017; Berner et al., 2019a; Berner et al., 2019b;
Berner et al., 2020; Feketa et al., 2020; Berner et al., 2021). This
type of phase oscillator models seems to be useful for predicting
and describing phenomena in more realistic and detailed models
(Popovych et al., 2015; Lücken et al., 2016; Röhr et al., 2019) as
well as for the understanding of collective phenomena such as
multicluster states (Berner et al., 2019a; Berner et al., 2019b) or
recurrent synchronization (Thiele et al., 2022).

In the present paper, we consider coupled excitable units
(Lindner et al., 2004; Izhikevich, 2007), characterized by a
linearly stable rest state susceptible to finite-amplitude
perturbations. Excitable systems act as nonlinear threshold-like
elements, such that applying a sufficiently small perturbation
gives rise to a small-amplitude linear response, while a
perturbation exceeding a certain threshold may trigger a large-
amplitude nonlinear response. A classical example for the
excitability feature are neurons (Ermentrout and Kopell, 1986;
Izhikevich, 2007) which respond to a supra-threshold stimulation
by emitting a spike. Apart from neuronal systems, excitability is
important for other living cells (Scialla et al., 2021), lasers

(Yanchuk et al., 2019; Terrien et al., 2021), chemical reactions
(Chigwada et al., 2006), machine learning (Ceni et al., 2019), and
many other fields. A variety of phenomena, including resonances,
oscillations, patterns and waves, are caused by the interplay of
excitability and noise (Pikovsky and Kurths, 1997; Neiman et al.,
1999; Pototsky and Janson, 2008; Franović et al., 2015; Bačić et al.,
2018a; Bačić et al., 2018b; Franović et al., 2018; Zheng and
Pikovsky, 2018; Bačić and Franović, 2020; Franović et al.,
2020) or time-delay (Brandstetter et al., 2010; Klinshov et al.,
2016).

As a prototype of excitable local dynamics, we consider active
rotators, paradigmatic for type I excitability (Shinomoto and
Kuramoto, 1986; Park and Kim, 1996; Lindner et al., 2004;
Osipov et al., 2007; Dolmatova et al., 2017; Franović et al.,
2020; Klinshov et al., 2021). Active rotators have been used to
study interacting excitable systems with noise (Lindner et al.,
2004), synchronization in the presence of noise (Shinomoto and
Kuramoto, 1986; Park and Kim, 1996; Dolmatova et al., 2017;
Klinshov et al., 2021), the interplay of noise and an adaptive
feedback (Franović et al., 2020), effects of an adaptive network
structure (Thamizharasan et al., 2021), co-effects of noise,
coupling, and adaptive feedback (Bačić et al., 2018b; Song
et al., 2020) or delayed feedback (Yanchuk et al., 2019) and
the impact of higher-order Fourier modes (Ronge and Zaks,
2021), to name but a few.

An important ingredient of our model is the multiscale
structure of the dynamics, whereby the processes at the pool
of resources are assumed to occur much slower than the dynamics
of excitable units at the nodes. Utilizing this feature, we apply the
methods of singular perturbation theory (Desroches et al., 2012;
Kuehn, 2015) to first study the fast dynamics (layer dynamics) for
fixed resource levels with the Ott-Antonsen approach, and then
reduce the problem to the slow dynamics of resources.

Our main result consists in demonstrating how the adaptive
interaction between a population of excitable units with a pool of
resources gives rise to collective activity bursting. Such emergent
dynamics is characterized by alternating episodes of stationary
and oscillating behavior of the macroscopic order parameter. We
describe the mechanisms behind the activity bursting and
indicate parameter regions where this phenomenon can be
reliably observed. So far, collective bursting phenomena have
been considered to emerge due to time-varying neuronal inputs
(Stoop et al., 2002), the interplay of external input and
homeostatic plasticity (Zierenberg et al., 2018), or synaptic
short-term plasticity (Gast et al., 2020). In these studies,
possible implications for healthy and diseased brain states
have been drawn. Moreover, the important role of bursting
phenomena for the understanding of brain-organ interactions
have been highlighted in the perspectives article (Ivanov, 2021).
Our study complements recent research on emergent bursting
dynamics in brain and organ systems by providing a simple and
analytically tractable model generating collective activity
bursting.

Our paper is organized as follows. In Section 2 we lay out the
model of a heterogeneous population of excitable units adaptively
coupled to a pool of resources, while in Section 3 we introduce
the main phenomenon of collective activity bursting. Section 4
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and Section 5 concern the analysis of the system’s multiscale
dynamics within the framework of singular perturbation theory,
first elaborating on the layer problem and then using the reduced
problem to explain the mechanism of collective bursting and the
origin of multistability in the full system. Section 6 proposes two
different approaches to induce switches between the coexisting
collective regimes, whereas Section 7 provides our concluding
remarks and outlook.

2 MODEL

We consider a system of N coupled active rotators (Strogatz,
1994) with a Kuramoto-type coupling given by,

_ϕk � Ik r( ) − sin ϕk +
σ

N
∑N
j�1

sin ϕj − ϕk( ), (1)

where ϕk ∈ [0, 2π), k = 1, . . . ,N are the local phase variables, and σ
is the coupling strength. While providing a simplified description
of local dynamics, active rotators manifest the excitability feature
crucial to neuronal activity (Strogatz, 1994; Izhikevich, 2007), and
are similar to the model of theta neurons (Luke et al., 2013; Laing,
2014) paradigmatic for type I neural excitability. Note that more
detailed models of neuronal dynamics, such as those of Morris-
Lecar (Morris and Lecar, 1981) and Wang-Buzsáki (Wang and
Buzsáki, 1996), also belong to this excitability class. External
inputs Ik(r(t)) = r1 (t) + r2 (t) ]k received by each unit comprise of
a homogeneous component r1 (t), acting identically at all the units,
and a heterogeneous component, where the variability is due to
parameters ]k drawn from a normalized Gaussian distribution
]k ∈ N (0, 1). Recall that in models of coupled active rotators,
terms Ik are classically interpreted as local bifurcation parameters
describing individual oscillation frequencies. Nevertheless, here Ik
(t) at each moment follow a Gaussian distribution
g(I) � N (r1, r22), such that the local velocities of the units are
modulated by coupling to r1 and r2. The latter modulation can be
seen as describing an interaction with the resources from the
environment (Song et al., 2020; Kroma-Wiley et al., 2021)
summarized within the two-component resource variable r =
(r1, r2). In the context of neuroscience such modulation of local
velocities is reminiscent of frequency adaptation of neuronal
spiking (Fuhrmann et al., 2002; Ha and Cheong, 2017) due to
a limited amount of metabolic resources affecting e.g.
neurotransmitters.

Adaptation of spiking activity is a slow process compared to
spike emission (Ha and Cheong, 2017), which should be
reflected in the dynamics of metabolic resources r (t). In
fact, a model involving such a separation of time scales has
recently been proposed to describe the interplay of energy
consumption and activity in neuronal populations (Roberts
et al., 2014). Here we introduce a simple model of dynamical
resources based on the Hopf normal form. We consider r as a
complex variable, i. e, r = r1 + ir2, which satisfies the dynamical
equation

_r � ϵf r − s, λ( ), (2)

_λ � −ϵ′ λ − λ0 − γA t( )( ), (3)
with activity

A t( ) ≔ 1
N

∑N
j�1

_ϕj, (4)

The metabolism describing function given by f (r, λ) = r (λ + iω −
|r|2), the frequency ω and the resource base level given by s = s1 +
is2. Small parameters ϵ≪ 1 and ϵ′≪ 1 are introduced to account
for the scale separation between the fast spiking dynamics of
units and the slowly adapting dynamics of the resources. Note
that we consider the case ϵ′ = ϵ throughout the paper.

System Eq. 2, 3 that describes the interaction between the two
resources undergoes a supercritical Hopf bifurcation at λ = 0. This
allows for the interpretation of the resource dynamics as being
inactive if λ < 0, when it possesses a stable focus at s, or as active
if λ > 0, when it displays a stable limit cycle. In other words, in the
inactive states, the resource dynamics lies stationary at the resource
base level s = s1 + is2, while for active states, the resource dynamics is
attracted to a periodic orbit that encircles the resource base level. We
further assume that the dynamics ofmetabolic resources adapts to the
activityA (t) of the population, see Eq. 4. In particular, the adaptation
dynamics Eq. 3 can be regarded as a feedback mechanism whereby
due to a feedback loop, an activated neuronal populationmay activate
the pool of resources which in turn may further activate or even
deactivate the neuronal population. The adaptation strength is
described by parameter γ which controls the impact of the
population’s dynamics on the dynamics of resources. Throughout
the paper, we keep γ = 0.5. In case of no spiking activity, i.e., ifA (t) =
0 or γ = 0, the resource dynamics is inactive and the corresponding
resource activity variable λ settles to the rest level λ0. In the remainder,
the level λ0 =−0.05 is assumed to correspond to a stable steady state at
s. Due to the dynamical interplay between the metabolic resources
and the neuronal population, the activity variable λ (t) may change in
time. Accordingly, the state of the resources may change between
active (periodic attractor) and inactive (stationary state). To describe
the coherence of the population dynamics, we use the complex order
parameter Z defined by

Z ϕ t( )( ) � 1
N

∑N
j�1

eiϕj t( ) � R ϕ t( )( )eiΘ ϕ t( )( ), (5)

where R is the Kuramoto order parameter, and Θ is the mean
phase (Bick et al., 2020).

Summarizing, we have proposed a multiscale model of a
heterogeneous population of active rotators, featuring local
excitability and spike frequency adaptation as two important
ingredients of typical neuronal activity, coupled to a pool of
resources that slowly adjusts its dynamics to the activity of the
population. Figure 1 provides an illustration of our model.

3 COLLECTIVE ACTIVITY BURSTING

In this section, we briefly introduce the phenomenon of collective
activity bursting induced by an adaptive coupling to resources. A
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more detailed analysis of the phenomenon will be performed in
the subsequent sections.

In Figure 2, we show a simulation result of a system consisting
of N = 5,000 active rotators adaptively coupled to a pool of
resources as described by Eqs 1–3. The emergent collective
dynamics within the population is represented by the
macroscopic variables A (t) and R (t). The dynamics within
the resource pool is characterized by the activity variable λ (t).
We observe that the population of active rotators displays a
recurrent temporal formation of bursts in the macroscopic
activity A (t) followed by periods of inactivity. Such episodes
of macroscopic activity and inactivity correspond to episodes of a
rapidly and slowly varying order parameter R (t), respectively.
Switching between the different regimes is equally well visible in
the evolution of the resource variable λ (t) showing the pattern of
recurrent activation (λ > 0) and deactivation (λ < 0).

We note that this recurrent switching between macroscopic
activity and inactivity is due to the adaptive feedback provided by
the dynamical resources and can not be observed in a system of
active rotators alone. In fact, active rotators are a paradigmatic
model for excitable systems, supporting regimes of either activity

_ϕi > 0 or inactivity _ϕi � 0 depending on parameters such as the
input currents Ii, see e.g. (Franović et al., 2020) for more details.
The slow adaptation of the input currents caused by the resource
dynamics, however, provides a mechanism to switch between the
two regimes. In the following sections, we systematically describe
the emergence of collective activity bursting by making use of the
separation of timescales between the dynamics of the population
and the resources. The slow-fast analysis within singular
perturbation theory, see e.g. (De Maesschalck and
Wechselberger, 2015; Kuehn, 2015), allows for a splitting of
multiscale dynamics into a so-called layer dynamics of the fast
variables and an averaged dynamics for the slow variables.

The layer dynamics of system Eqs 1–3 consists of a population
of actively coupled rotators with input currents drawn for a
Gaussian distribution N (r1, r22). The subsequent analysis of
the layer equation in Section 4 provides us with a clear
mapping for the regimes of population activity and inactivity.
Building on this, we analyse the full system Eqs 1–3 and show that
the collective activity bursting emerge close to criticality, i.e., the
boundary between activity and inactivity of the layer dynamics.
We also describe regimes of multistability between activity

FIGURE 1 | Schematic for the two-layer model consisting of a heterogeneous population of excitable units (green) and interacting pool of resources described by
an adaptive Stuart-Landau oscillator (purple). The heterogeneity ]i of the excitable units are randomly drawn from a distribution n (]).

FIGURE 2 | Collective activity bursting in system Eqs 1–3. Three panels show the time traces of the population activity A (t) (green), the order parameter R (t) (red)
and the resource activity variable λ (t) (blue) from left to right, respectively. The trajectory is obtained from a random initial condition for a system of N = 5,000 active
rotators and parameters: σ = 5, ϵ = 0.05, s1 = 0.97, s2 = 1.2, ω = 0.2, λ0 = −0.05, γ = 0.5.
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bursting and inactivity, and provide insights into perturbations
that give rise to transitions between different states.

4 LAYER DYNAMICS: HETEROGENEOUS
POPULATION OF ACTIVE ROTATORS

The fast subsystem, describing the evolution of the original slow-
fast problem Eqs 1–3 on the fast timescale, comprises of a
heterogeneous assembly of N globally coupled active rotators

_ϕk � r1 + r2]k − sinϕk +
σ

N
∑N
j�1

sin ϕj − ϕk( ). (6)

In the absence of adaptation of the resource variables r1 and r2,
the local dynamics _ϕk � Ik − sin ϕk depends on external input Ik =
r1 + r2]k which may be seen as an effective bifurcation parameter
mediating the transition between an excitable (Ik ≲ 1) and
oscillatory regime (Ik > 1) via a SNIPER (saddle-node infinite
period) bifurcation at |Ik| = 1. In the singular limit ϵ → 0, system
(Eq. 6) defines the layer problem, where r1 and r2 are treated as
additional system parameters.

According to classical singular perturbation theory (De
Maesschalck and Wechselberger, 2015; Kuehn, 2015), the layer
problem describes solutions of the multiscale system Eqs 1–3 on a
timescale much shorter than 1/ϵ, where the variables r1 and r2 do
not change significantly. In particular, it can describe fast (rapidly
changing) segments of the solutions.

4.1 Ott-Antonsen Approach for the Layer
Dynamics
We analyze the layer problem by determining the stability of
stationary solutions of the layer dynamics and their bifurcations
within the framework of Ott-Antonsen theory (Ott and
Antonsen, 2008; Ott and Antonsen, 2009). We start by
rewriting the layer dynamics in terms of complex order
parameter (Eq. 5), which leads to

_ϕk � Ik − sinϕk + σIm Z t( )e−iϕk( ). (7)
In the thermodynamic limitN→∞, the state of the population

can be described by the probability density h (ϕ, I, t), which
satisfies the normalization condition ∫2π

0
h(ϕ, I, t)dϕ � g(I), see

e.g. (Omel’chenko and Wolfrum, 2012; Omel’chenko and
Wolfrum, 2013). The continuity equation for h (ϕ, I, t) then reads

zh

zt
+ z

zϕ
hv( ) � 0, (8)

where the velocity is given by v = I − sin ϕ + σIm (Z(t)e−iϕ).
According to Ott-Antonsen ansatz (Ott and Antonsen, 2008; Ott
and Antonsen, 2009), the long-term dynamics of Eq. 8 settles
onto an invariant manifold of the form

h ϕ, I, t( ) � g I( )
2π

1 +∑∞
n�1

�zn I, t( )einϕ + zn I, t( )e−inϕ[ ]⎧⎨⎩ ⎫⎬⎭, (9)

where z (I, t) is the local order parameter, connected with the
global complex order parameter (Eq. 5) via

Z t( ) � ∫∞
−∞

g I( )z I, t( )dI. (10)

Inserting Eq. 9 into Eq. 8, one obtains the Ott-Antonsen
equation for the layer dynamics

_z � 1
2

1 − z2( ) + iIz + σ

2
Z − σ

2
�Zz2, (11)

where bar denotes the complex conjugate.

4.2 Stationary Solutions of the Layer
Dynamics
To find stationary solutions of Eqs 10, 11, we first write the local
order parameter in polar form z (I, t) = ρ(I, t)eiϑ(I,t). Separating for
the real and imaginary parts, Eq. 11 becomes

_ρ � 1
2

1 − ρ2( )B cosΦ,

ρ _Φ � Iρ − 1
2

1 + ρ2( )B sinΦ,
(12)

where the new variables B, β and Φ are given by

B t( )eiβ t( ) � 1 + σR t( )eiΘ t( ),
Φ � ϑ − β.

(13)

From Eq. 13, it follows that B and β are related with the
macroscopic order parameter Eq. 5 via

B � �����������������
1 + σ2R2 + 2σR cosΘ

√
,

tan β � σR sinΘ
1 + σR cosΘ.

(14)

Note that the local dynamics can be rewritten in terms of B as
_ϕk � Ik − B sin(ϕk − β), suggesting that B may be understood as
an effective excitability parameter that describes how local
excitability is changed by the impact of interactions. As a
consequence, the structure of stationary solutions of the Ott-
Antonsen system Eq. 12 depends on the relation between |Ik| and
B, such that a population splits into two groups comprised of
excitable (|I| < B) or oscillating units (|I| > B). In particular, the
stationary solutions (ρp, Φp) are given by

ρp,Φp( ) � 1, arcsin
I

B
( ),

ρp,Φp( ) � 1, π − arcsin
I

B
( ), (15)

for the excitable (inactive) group, and

ρp,Φp( ) � |I| − ������
I2 − B2

√
B

,
π

2
sign I( )( ) (16)

for the oscillating (active) group. An explicit expression for B can
be obtained by invoking the self-consistency relation between the
global and local order parameter (Eq. 10). Inserting the results for
the stationary local and global order parameter [using Eq. 10,
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Eq. 15, Eq. 16, and the first equation from Eq. 13] and
separating for the real and imaginary parts, one ultimately
arrives at a self-consistency equation for B (Lafuerza et al.,
2010; Klinshov and Franović, 2019)

p B( ) � B2 − 2σp2 B( ) + σ2

B2
p2
1 B( ) + p2

2 B( )( ) − 1 � 0, (17)

where p1(B) and p2(B) are given by

p1 B( ) � r1 − ∫
|I|>B

Ig I − r1( )
��������
1 − B

I
( )2

√
dI,

p2 B( ) � ∫
|I|<B

g I − r1( )
������
B2 − I2

√
dI.

(18)

Having determined B, the stationary local and global order
parameters can be obtained using the relations

FIGURE 3 | Changes in form and the number of roots of the function p (B) given by Eq. 17 under variation of r1 and r2 for fixed σ = 5. The function p (B) has three
roots for (r1, r2) = (0.9, 2) (blue line; roots indicated by letters) and a single root for (r1, r2) = (1.1, 2) (red) and (r1, r2) = (0.9, 2.25) (green).

FIGURE 4 | Local structure and spectra of stationary solutions B1 (a), B2 (b) and B3 (c) of Ott-Antonsen equation Eq. 11 for σ = 5 and (r1, r2) = (0.9, 2). (A) shows the
dependencies of the local order parameter on the input z (I) (black solid lines) and the corresponding Kuramoto order parameter R (blue dash-dotted lines) for the three
stationary solutions. Red dashed lines indicate the interval (r1 − 3r2, r1 + 3r2) relevant for the distribution of external inputs. (B) shows the continuous (black dots) and the
discrete spectra (red crosses) for the stationary solutions: B1 and B2 are stable and unstable nodes, respectively, while B3 is an unstable focus.

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 8418296

Franović et al. Resource Adaptation Induced Collective Bursting

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


R �
������
p2
1 + p2

2

√
/B and Θ = arctan (p1/(p2 − σR2)), which follow

from Eqs 10–14.
For a fixed coupling strength σ, the function p(B) may have

from one to three roots, depending on the mean value r1 and the
standard deviation r2 of the distribution of intrinsic parameters Ik.
The examples in Figure 3 illustrate how the number of solutions
of Eq. 17 changes between one and three for fixed σ = 5, r1 = 0.97
under increasing r2. We refer to the stationary solutions by the
corresponding B values, which we arrange in decreasing order B1
> B2 > B3. Recalling the arguments above, one sees that the larger
B value implies a prevalence of excitable over oscillating units
within the local structure of the stationary state. This is evinced by
the left column of Figure 4 which shows the dependence of the
local order parameter z(I). Typically, the state B1 comprises of a
clear majority of excitable units, corresponding to a coherent
domain z = 1, and may thus be referred to as a homogeneous
stationary state. The two remaining stationary states B2 and B3 are
heterogeneous in the sense that they involve a mixture of excitable
and asynchronously oscillating units.

4.3 Stability and Bifurcation Analysis of
Stationary Solutions
Given that Ott-Antonsen equation Eq. 11 contains both the
global order parameter and its complex conjugate, stability
and bifurcation analysis of the stationary solutions
(Omel’chenko and Wolfrum, 2013; Klinshov and Franović,
2019) can be carried out by writing the local and global order
parameters as z (I, t) = x (I, t) + iy (I, t), Z(t) = X(t) + iY(t) and
separating for the real and imaginary parts. This results in the
system

_x � F x, y,X, Y( ) � 1
2

1 − x2 + y2( ) − Iy + σ

2
X − σ

2
X x2 − y2( ) − σxyY,

_y � G x, y,X, Y( ) � −xy + Ix + σ

2
Y − σxyX + σ

2
Y x2 − y2( ),

(19)
which can be linearized for variations ξ = (δx, δy)T, Ξ = (δX, δY)T

around the stationary solution (x0, y0, X0, Y0), ultimately
arriving at

dξ
dt

� P̂ I( )ξ I, t( ) + Q̂ I( )Ξ t( ), (20)

where P̂ and Q̂ are the corresponding Jacobian matrices

P̂ �
zF

zx

zF

zy

zG

zx

zG

zy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Q̂ �
zF

zX

zF

zY

zG

zX

zG

zY

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Eq. 20 is augmented by the variational equation for Eq. 10:

Ξ t( ) � ∫∞
−∞

g I( )ξ I, t( ) dI. (21)

Assuming that the variations ξ (I, t) and Ξ (t) satisfy ξ (I, t) = ξ0
(I)eμt, Ξ (t) = Ξ0e

μt, systems Eq. 20 and Eq. 21 transform into

P̂ I( ) − μÎ( )ξ0 I( ) + Q I( )Ξ0 � 0, Ξ0 � ∫∞
−∞

g I( )ξ0 dI, (22)

where Î denotes the identity operator. From the general spectrum
theory of linear operators (Omel’chenko and Wolfrum, 2013;
Mirollo and Strogatz, 2007), it follows that the Lyapunov
spectrum of Eq. 22 consists of a continuous and a discrete
part. Here, the continuous spectrum turns out to be always
stable or marginally stable, such that the stability of stationary
solutions depends on the discrete spectrum. The latter can be
determined by rewriting Eq. 22 in the form Ĉ(μ)Ξ0 � 0, where

Ĉ μ( ) � Î + ∫∞
−∞

g I( ) P̂ I( ) − μÎ( )−1Q I( ) dI. (23)

The discrete spectrum is then obtained by solving the
characteristic equation detĈ(μ) � 0 (Klinshov and Franović,
2019). An example of the discrete and continuous spectra
calculated for the stationary states B1, B2 and B3 at (r1, r2) =
(0.9, 2) is provided in the right column of Figure 4.

4.4 Comparison Between Analysis and
Numerics
The previous analysis allows for an analytic description of the
existence and stability of stationary solutions in the limit of large

FIGURE 5 | Bifurcation diagram for the system of active rotators Eq. 1 in
dependence on resource levels r1 and r2. For the simulation, we have chosen
one set of random initial conditions for the phases and one set of parameters
]k randomly drawn from a normalized Gaussian distribution N (0, 1).
Simulations comprise of 200 time units with activity averaged over the last
100 time units. Fold bifurcations involving stationary solutionsB1 andB2 (lower
branch) and B2 and B3 (upper branch) obtained from Eq. 17 are shown by
black dashed lines that give rise to a cusp point marked with C. Existence of
particular solutions and their stability, derived from the discrete spectrum of
Eq. 23, are indicated by their corresponding letters and a circle, respectively,
whereby the circle indicates a stable solution. Along the black dotted line,
stationary solution B3 changes its stability in a Hopf-like bifurcation. Other
parameters: N = 5,000, σ = 5.
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populations (N → ∞). In particular, the bifurcation diagram for
the Ott-Antonsen equation of the layer dynamics Eq. 11 in the
(r1, r2) plane is organized around a co-dimension two cusp point,
indicated by C in Figure 5 where the two branches of folds meet
(black dashed lines). Both branches of folds are calculated by
numerical continuation of the solutions of Eq. 17 using the
software package BifurcationKit.jl (Veltz, 2020). The lower
branch of folds which folds over for larger r2 corresponds to
annihilation and reemergence of a pair of equilibria, B1 and B2,
whereby the former (latter) is always stable (unstable). For
smaller r2, crossing this branch either by enhancing r1 or r2
gives rise to long-period collective oscillations as a stable
equilibrium B1 vanishes by colliding with an unstable
equilibrium B2. The divergence of the oscillation period when
approaching the curve indicates that it corresponds to a SNIPER
bifurcation of the full system. For larger r2, as the branch folds
over, one observes the reappearance of a stable stationary state B1,
emerging in an inverse fold bifurcation together with an unstable
equilibrium B2. The upper branch of folds involves stationary
states B2 and B3, such that they collide and disappear above the
curve, where B1 remains the only stable stationary state, cf.
Figure 5.

Note that apart from the fold bifurcation, the stability of B3 is
also affected by a Hopf-like bifurcation (black dotted line). Above
the given curve, stability of B3 is determined by a pair of complex
conjugate eigenvalues which have the smallest negative real parts.
However, crossing the curve, these eigenvalues merge with the
imaginary axis and remain neutrally stable immediately below the
curve, implying that the central manifold theorem associated to
Hopf bifurcation cannot immediately be applied. Still, in close
vicinity below the curve, starting from an initial condition
corresponding to B3 results in oscillations similar to a genuine
scenario of Hopf bifurcation.

Using numerical continuation, we have verified that the
described structure of bifurcation diagram for the layer
dynamics remains qualitatively the same under variation of
coupling strength σ. One only notes that for increasing σ, the
branches of folds shift toward larger r2, which corresponds to a
higher diversity of external inputs.

Figure 5 further shows a comparison of the existence and
stability conditions for the collective stationary states derived
from Ott-Antonsen approach for the limit N → ∞ with
simulations for a finite population of N = 5,000 active rotators
with fixed resources r1 and r2. One observes that simulation
results agree well with the fold bifurcation lines separating
parameter regimes of low and high collective activity. The
differences can be attributed to the finite size of assemblies
considered in the simulations.

With Figure 6 we complement the analysis of the layer
equation. In particular, we show how the dynamical regimes
change in a wide range of parameters r1 and r2, and indicate the
boundary (black dashed line) that separate parameter regions
supporting stable stationary states from those admitting
oscillatory states. We illustrate three different trajectories
corresponding to qualitatively different collective regimes
found by numerical analysis. For parameter pairs a and b, we
observe the emergence of stationary states in accordance with the

bifurcation analysis shown in Figure 5. In both cases, activity A
(t) and the coherence measure R (t) settle to a constant value. We
observe that with increasing r2 (b to a) the activity level rises while
the coherence level declines. For the parameter set c, there is no
stable stationary state and we observe stable oscillations. The
activity shows a regular, tonic-like spiking shape corresponding
to an increase in the average activity. Meanwhile, variation of the
order parameter causes its average value to decrease. In order to
quantify the temporal variations of the order parameter, we also
plot the difference max R (t)−min R (t) for the considered average
time interval. We observe that even though the activity level
might be high, e.g. for r1 > 1 close to r2 = 0, the coherence within
the population is not necessarily strongly varying. However, there
are also regimes, e.g. for r1 > 1 and r2 > 2, where the order
parameter varies strongly and covers almost the entire interval
from 0 to 1. In this section, we have illustrated the stability regions
of macroscopic stationary states in a heterogeneous population of
active rotators. Numerically, we have also determined the values
of resource parameters r1 and r2 where no stable stationary
solutions exist. Using these insights, we are now able to
qualitatively describe the phenomena in systems with a slow
adaptation of the resources and the resource-dependent
dynamics. The next section is devoted to explaining the
emerging states of collective activity bursting.

5 (SLOW) RESOURCE DYNAMICS AND THE
EMERGENCE OF MULTISTABILITY

The analysis of the layer dynamics in Section 4 provides insight
on how the system evolves for constant resources r1 and r2. Due to
the different timescales of the population (fast dynamics) and the
pool of resources (slow dynamics), we can average (Sanders et al.,
2007; Franović et al., 2020) the system Eqs 2, 3 as

_r � f r − s, λ( ), (24)
_λ � −λ + λ0 + ρ〈A〉, (25)

where 〈A〉 � 1
T∫T

0
A(s)ds. Here we also assume ϵ′ = ϵ and rescale

time tnew = ϵtold. Note that the average activity shown in Figure 6
depends on the resource variables r, since the definition Eq. 4
impliesA = r1 − Im (Z). Hence, the system Eqs 24, 25 describes an
effective three-dimensional coupled dynamics for the slow
subsystem. A further analytical analysis of this system is
beyond the scope of our study. However, we directly use the
insight that the slow dynamics follows the average activity of the
fast system to understand the emergence of collective activity
bursting.

Figure 7 shows the trajectories of the resource variables r1(t)
and r2 (t) for the collective bursting presented in Figure 6 along
with the averaged values of population activity and the order
parameter. We clearly see that the asymptotic orbit passes
through both the regimes of an active and inactive population
which explains the episodes of high and low activity in Figure 2A.
Also the segments of increasing and decreasing average activity
visible in Figure 2A can be explained by Figure 7. Here, the
average activity shows the same pattern along the trajectory (r1
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FIGURE 6 | Bifurcation diagram for the system of active rotators Eq. 1 in terms of resource levels (r1, r2). All simulations are carried out the same way as in Figure 5.
Three diagrams at the (A) show the time-averaged values of activity A (t) (white-green), order parameter R(t) (yellow-red) and variations of the order parameter max R(t) −
min R(t) (white-black). The black dashed line separates regions where the mean phase Θ of the complex order parameter Z features stationary or oscillating dynamics,
respectively. The (B) show time traces of activity and order parameter for three parameter pairs (r1, r2): a—(0.9,2), b—(0.9,1), c—(1.1,2).

FIGURE 7 | Bifurcation diagrams as in Figure 6 complemented with the trajectories of the resource variables r1 (t) and r2 (t) for the collective activity bursting shown
in Figure 6.
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(t), r2 (t)). The same also holds for the average values of the order
parameter and even its variations if we compare Figure 2B with
Figure 7. Therefore, the splitting of the fast from the slow
subsystem provides a very good qualitative explanation for the
observed phenomenon. To understand the emergence of the full
periodic orbit shown in Figure 7, we first note that without any
population activity, i.e., 〈A〉 = 0 and λ0 = − 0.05, the resource
dynamics possess a stable focus close to the critical line (black

dashed line in Figure 7) describing the transition from stationary
to oscillatory dynamics of the mean phase Θ. During the
stationary phase, r1 and r2 tend to s1 = 0.97 and s2 = 1.2,
respectively. As in Figure 7, the trajectory (r1 (t), r2 (t)) may
start in the active region, i.e., oscillatory mean phase dynamics.
Due to the positive average value of activity, the variable λ (t)
characterizing the resource activity increases according to (Eq.
25) and becomes positive, see Figure 2C. Hence, the resources

FIGURE 8 | Bifurcation diagramwith respect to the resource base level s1 for a system of active rotators with adaptive resource interaction Eqs 1–3. The (A) shows
the results from two adiabatic continuations with step size Δs1 = 0.002 from s1 = 0.8 to s1 = 1.4 (sweep up) and vice versa (sweep down). Sweeps up and down start from
a stable stationary and a stable oscillatory state, respectively. For both sweeps are shown the average activity 〈A(t)〉 (green), average order parameter 〈R(t)〉 (red) and
maximal resource activity λ (blue). The results were obtained by simulating (1)–(3) for 7,000 time units and taking the average over the last 5,000 time units. The
branches corresponding to the two sweeps are marked by arrows. The black dashed lines indicate the value (s1 ≈ 0.963) of the critical line shown in Figure 6. Three
trajectories represented by the activity (green, first column), order parameter (red, middle column) and the resource activity (blue, last column) are shown in the (B) for (a,b)
s1 = 0.97 and (c) s1 = 1.35. The panels in (a) and (b) represent the states found along the sweeps down and up, respectively. The simulations were performed using the
same values of ]k as in Figure 5. Parameters: N = 5,000, σ = 5, ϵ = 0.05, s2 = 1.2, ω = 0.2, γ = 0.5.
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become activated and (r1(t), r2(t)) follows the limit cycle solution
of the resource dynamics revolving around (s1, s2). Note that the
resources obey the Hopf normal formwith a Hopf bifurcation at λ
= 0, see Eq. 2. After passing the critical line, the average activity
immediately drops to 〈A〉 ≈ 0 which causes λ to tend to λ0, see
Figure 2C. After λ falls below zero, the dynamics of the resources
(r1(t), r2(t)) is described by a spiral towards (s1, s2). This spiral,
however, enters the active region by passing the critical line which
ultimately leads to the recurrent phenomenon observed in
Figure 2. As we have seen, the emergence of collective activity
bursting relies on the subtle interplay between activation and
deactivation of resources and the population. Furthermore, the
need for the spiraling dynamics towards a stable focus explains well
the necessity for the resource basis levels (s1, s2) to be close to the
critical line separating the population active and inactive regimes.

With regards to the above description of the collective activity
bursting, one might ask for the coexistence of a stable steady state
in the system Eqs 1–3 as long as (s1, s2) lie in the inactive regime.
This state might have a small basin of attraction such that the
spiral towards the steady state cannot reach the active regime.

In order to get insights into the different stable states that exist
in Eqs 1–3, we use the numerical method of adiabatic
continuation. To do so, we fix the base level s2 = 1.2 and
gradually vary s1 from 0.8 to 1.4 (sweep up) and from 1.4 to

0.8 (sweep down). For each value of s1, we run the simulation
starting from the final state of the previous simulation. In
Figure 8, we show the results of both sweeps. We observe the
existence of stable steady and stable oscillating states for various
values of s1. As expected, close to the boundary between active and
inactive states of layer dynamics, we also find an interval of
coexistence between collective activity bursting and stable steady
states, see panels for (a) and (b) in Figure 8, respectively. For larger
s2, only the oscillatory state can be observed, which does not enter
the inactive regime above a certain s1, see panel (c) in Figure 8.
Note that the character of the solution can be deduced from the
maximal value of λ(t) on the averaging time interval. In particular,
there is a stationary state only if max λ(t) < 0. In all other cases,
there are time intervals where the trajectory of r diverges from the
base level s and follows the periodic solution of Eq. 24.

From the arguments laid out in this section, we have seen that
the mutual activation and deactivation between the neural
population and the pool of resources close to criticality of
layer dynamics induces a rich dynamical behavior. It is
believed, particularly, that the human brain operates close to
criticality (Chialvo, 2010; Haimovici et al., 2013; Yu et al., 2013;
Cocchi et al., 2017; Wilting and Priesemann, 2019). Therefore, it
is of major importance to understand the dynamics of neural
populations in this regimes including the interaction with its

FIGURE 9 | Two perturbation scenarios to induce a switch between an inactive steady state and collective activity bursting. Time traces of macroscopic activity A (t)
and order parameter R (t) are shown green and red, respectively. In the panels (A) and (B) (C,D), we start from an initial steady state (bursting state). The first perturbation
scenario is illustrated for the cases where the resource activity variable λ is set to λ = 20 [panel (A)] and λ = −5 [panel (C)] at t = 2000. The second perturbation scenario is
demonstrated for the cases where the resource activity is kept fixed at λ = 1 [panel (B)] and λ = −0.5 [panel (D)] for a duration of 500 t. u. beginning at t = 2000 t. u.
Simulations were run for s1 = 0.97 and the remaining parameters fixed as in Figure 8.
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environment. In the next section, we propose a simple
mechanism which can induce a switch between coexisting
macroscopic regimes.

6 POPULATION SWITCHING DYNAMICS
INDUCED BY RESOURCE ACTIVATION
AND INACTIVATION
In the vicinity of the transition between the population inactivity and
activity, we have observed collective activity bursting induced by an
adaptive dynamical pool of resources. Moreover, this phenomenon
emerges in a stable coexistence with a steady state. In this section, we
consider two simple perturbation approaches that can induce a
switch between these two functionally different states.

Figure 9 shows the results for two different perturbation
approaches to system Eqs. 1–3. The first approach aims to
induce a switch in population dynamics by an instantaneous
resetting of the resource activity λ. In the second approach, we
induce such a transition by maintaining the resource activity at a
certain level for a certain period of time. The first approach works
well for large resetting values of λ, see Figures 9A,C. Small values,
however, would not be sufficient to induce the macroscopic
regime switch. Furthermore, in case of an initial bursting state,
eliciting the switch to a steady state depends on the moment at
which the perturbation is applied. However, in our numerical
simulations (not shown), we have always been able to induce a
switching for sufficiently large resetting values of λ.

Due to the functionally very different nature of the two stable
states, there might be reasons to favor one over the other in light of
potential applications in medicine. Therefore, it is of great interest to
understand simple mechanisms that would induce a switch to the
desired state. While the first perturbation approach provides such a
mechanism, it still requires strong perturbations which might be
undesirable for certainmedical reasons, e.g. side effects. Therefore, we
have proposed another perturbation approach that leads to a switch
while keeping the reset level lower. For this approach, we have also
been able to induce switches between a steady state and a bursting
state in one or the other direction, see Figures 9B,D, with the
advantage of having the resetting level of the resource activity
much lower than for the first method.

In this section, we have proposed two simple perturbation
approaches to induce a switch between the two functionally
different macroscopic states of the full system which emerge near
the transition in layer dynamics between the population activity and
inactivity and due to an adaptive dynamical pool of resources. We
note that the approaches we proposed are not the only way to induce
macroscopic regime shifts. One might also think of perturbing the
resource variables (r1, r2) or even the whole population. Thus,
perturbation of the resource activity variable is perhaps the
simplest but not the only approach possible.

7 CONCLUSION

We have investigated collective dynamics in a system of
interacting excitable units coupled to a pool of resources with

nontrivial dynamics. The feedback of the resources to the
population of coupled excitable units has been realized by an
adaptation of the individual units’ inputs, whereas in turn, the
excitable population is capable of activating or deactivating the
pool of resources depending on the population’s own activity. As
a prototype of excitable local dynamics, we have considered active
rotators. Following the ideas outlined by Roberts et al. (Roberts
et al., 2014), we have assumed the processes at the pool of
resources to occur much slower than the local dynamics of
excitable units. As a consequence, we have ended up with a
system featuring multiscale dynamics, allowing us to use the
methods from singular perturbation theory (Desroches et al.,
2012; Kuehn, 2015).

As our most important finding, we have reported on the
phenomenon of collective activity bursting. The phenomenon
is characterized by a recurrent switching between episodes of
quiescence and episodes of activity bursts in the population of
active rotators. To gain a better understanding of the emergence
of collective activity bursting, we have made use of the explicit
slow-fast timescale separation. In particular, we have divided the
system dynamics into the fast layer dynamics of the population
and the slow average dynamics of the resources.

Using the Ott-Antonsen approach, we have analyzed the
stability and bifurcations of the stationary solutions of layer
dynamics in the thermodynamic limit. For the population of
active rotators with a heterogeneity given by a Gaussian
distribution, we have derived a bifurcation diagram for the
steady state solutions. The bifurcations of layer dynamics
depending on the mean and the width of the Gaussian
distribution have been corroborated by numerical simulations
of a large ensemble of rotators. Doing so, we have determined the
parameter regions admitting high or low (or even no) population
activity and have obtained the critical lines separating these
regions.

Taking the analysis of the layer problem into account, we have
further analyzed how the slow averaged dynamics of the resources
gives rise to a slow variation of the mean and width of the
Gaussian distribution. We have observed the onset of collective
activity bursting close to criticality where the population of active
rotators undergoes a transition from an inactive to an active state.
The emergence of collective bursting is due to a subtle interplay of
co-activation and co-deactivation of the dynamical population of
rotators and the pool of resources.

We have further found a region of bistability between
collective activity bursting and an inactive steady state close
to criticality of the layer dynamics. A similar observation has
been also discussed in the context of collective bursting
induced by synaptic short-term plasticity (Gast et al., 2020).
Moreover, we have proposed two different perturbation
methods that can trigger switches between coexisting
macroscopic regimes. In particular, we have demonstrated
that the regime shifts can be induced either by using
instantaneous large perturbations or persistent
perturbations of the resource activity.

In terms of theory, an important extension of our work could
concern a further analytical study of the reduced slow-fast system
governing the collective dynamics of the ensemble of excitable
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units and its interaction with the resources. For convenience, we
summarize the reduced system here

_z I, t( ) � 1
2

1 − z2 I, t( )( ) + iIz I, t( ) + σ

2
Z t( ) − σ

2
�Z t( )z2 I, t( ),

_r t( ) � ϵf r t( ) − s, λ t( )( ),
_λ t( ) � −ϵ λ t( ) − λ0 − ρ r1 − Im Z t( )( )( )[ ],

with

Z t( ) � ∫g I( )z I, t( ) dI.

In a broader context, we have proposed a simple paradigmatic
model to study the emergence of complex collective phenomena
induced by a dynamically co-evolving pool of resources. The
research on the impact of resource constraints on the dynamical
regimes of populations of neurons or neuron-like units from the
dynamical network perspective (Nicosia et al., 2017; Kroma-
Wiley et al., 2021) has begun only recently. In our study, we
have shown that even a simple model that includes nontrivial
dynamical resources gives rise to the emergence of collective
activity bursting close to criticality in a population of neuron-like
excitable units. Our study underlines the potentially important
role of resource constraints in the operating of the human brain
that is often hypothesized to operate close to criticality. We have
further shown that the collective activity bursting may stably
coexist with a steady state. Either one of these regimes could be
desirable or undesirable, which makes understanding of the
control mechanisms to switch between the regimes highly
important (Tang and Bassett, 2018). In this context, we have
discussed two simple approaches that can successfully induce
such regime shifts. Both approaches impose perturbations to the
single activity variable of the resource pool and can thus be

generalized to systems with even more complex dynamical
resource pools.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for submission.

FUNDING

The work of RB and SY was supported by the German Research
Foundation DFG, Project Nos 411803875 and 440145547.

ACKNOWLEDGMENTS

IF acknowledges funding from the Institute of Physics Belgrade
through the grant by the Ministry of Education, Science and
Technological Development of the Republic of Serbia. We
acknowledge support by the German Research Foundation
(DFG) and the Open Access Publication Fund of Humboldt-
Universität zu Berlin.

REFERENCES

Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. (2008).
Synchronization in Complex Networks. Phys. Rep. 469, 93–153. doi:10.1016/
j.physrep.2008.09.002

Attwell, D., and Laughlin, S. B. (2001). An Energy Budget for Signaling in the Grey
Matter of the Brain. J. Cereb. Blood Flow Metab. 21, 1133–1145. doi:10.1097/
00004647-200110000-00001

Bačić, I., and Franović, I. (2020). Two Paradigmatic Scenarios for Inverse
Stochastic Resonance. Chaos 30, 033123. doi:10.1063/1.5139628

Bačić, I., Klinshov, V. V., Nekorkin, V. I., Perc, M., and Franović, I. (2018a). Inverse
Stochastic Resonance in a System of Excitable Active Rotators with Adaptive
Coupling. EPL 124, 40004. doi:10.1209/0295-5075/124/40004

Bačić, I., Yanchuk, S., Wolfrum, M., and Franović, I. (2018b). Noise-induced
Switching in Two Adaptively Coupled Excitable Systems. Eur. Phys. J. Spec. Top.
227, 1077–1090. doi:10.1140/epjst/e2018-800084-6

Berner, R., Sawicki, J., and Schöll, E. (2020). Birth and Stabilization of Phase
Clusters by Multiplexing of Adaptive Networks. Phys. Rev. Lett. 124, 088301.
doi:10.1103/PhysRevLett.124.088301

Berner, R., Vock, S., Schöll, E., and Yanchuk, S. (2021). Desynchronization
Transitions in Adaptive Networks. Phys. Rev. Lett. 126, 028301. doi:10.1103/
PhysRevLett.126.028301

Berner, R., Schöll, E., and Yanchuk, S. (2019a). Multiclusters in Networks of
Adaptively Coupled Phase Oscillators. SIAM J. Appl. Dyn. Syst. 18, 2227–2266.
doi:10.1137/18m1210150

Berner, R., Fialkowski, J., Kasatkin, D., Nekorkin, V., Yanchuk, S., and Schöll, E.
(2019b). Hierarchical Frequency Clusters in Adaptive Networks of Phase
Oscillators. Chaos 29, 103134. doi:10.1063/1.5097835

Berner, R. (2021). Patterns of Synchrony in Complex Networks of Adaptively
Coupled Oscillators (Cham: Springer). Springer Theses.

Bick, C., Goodfellow, M., Laing, C. R., and Martens, E. A. (2020). Understanding
the Dynamics of Biological and Neural Oscillator Networks through Exact
Mean-Field Reductions: a Review. J. Math. Neurosci. 10, 9. doi:10.1186/s13408-
020-00086-9

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. (2006). Complex
Networks: Structure and Dynamics. Phys. Rep. 424, 175–308. doi:10.1016/j.
physrep.2005.10.009

Brandstetter, S., Dahlem, M. A., and Schöll, E. (2010). Interplay of Time-Delayed
Feedback Control and Temporally Correlated Noise in Excitable Systems. Phil.
Trans. R. Soc. A. 368, 391–421. doi:10.1098/rsta.2009.0233

Ceni, A., Ashwin, P., and Livi, L. (2019). Interpreting Recurrent Neural Networks
Behaviour via Excitable Network Attractors. Cogn. Comput. 12, 330–356.
doi:10.1007/s12559-019-09634-2

Chialvo, D. R. (2010). Emergent Complex Neural Dynamics. Nat. Phys 6, 744–750.
doi:10.1038/nphys1803

Chigwada, T. R., Parmananda, P., and Showalter, K. (2006). Resonance Pacemakers
in Excitable media. Phys. Rev. Lett. 96, 244101. doi:10.1103/physrevlett.96.
244101

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the
Brain: A Synthesis of Neurobiology, Models and Cognition. Prog. Neurobiol.
158, 132–152. doi:10.1016/j.pneurobio.2017.07.002

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84182913

Franović et al. Resource Adaptation Induced Collective Bursting

https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1063/1.5139628
https://doi.org/10.1209/0295-5075/124/40004
https://doi.org/10.1140/epjst/e2018-800084-6
https://doi.org/10.1103/PhysRevLett.124.088301
https://doi.org/10.1103/PhysRevLett.126.028301
https://doi.org/10.1103/PhysRevLett.126.028301
https://doi.org/10.1137/18m1210150
https://doi.org/10.1063/1.5097835
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1098/rsta.2009.0233
https://doi.org/10.1007/s12559-019-09634-2
https://doi.org/10.1038/nphys1803
https://doi.org/10.1103/physrevlett.96.244101
https://doi.org/10.1103/physrevlett.96.244101
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


De Maesschalck, P., and Wechselberger, M. (2015). Neural Excitability and
Singular Bifurcations. J. Math. Neurosci. 5, 16. doi:10.1186/s13408-015-
0029-2

Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H. M., and
Wechselberger, M. (2012). Mixed-mode Oscillations withMultiple Time Scales.
SIAM Rev. 54, 211–288. doi:10.1137/100791233

Dolmatova, A. V., Goldobin, D. S., and Pikovsky, A. (2017). Synchronization of
Coupled Active Rotators by Common Noise. Phys. Rev. E 96, 062204. doi:10.
1103/PhysRevE.96.062204

Ermentrout, G. B., and Kopell, N. (1986). Parabolic Bursting in an Excitable System
Coupled with a Slow Oscillation. SIAM J. Appl. Math. 46, 233–253. doi:10.1137/
0146017

Feketa, P., Schaum, A., and Meurer, T. (2020). Synchronization and Multi-Cluster
Capabilities of Oscillatory Networks with Adaptive Coupling. IEEE Trans.
Autom. Control. 66, 3084.

Fields, R. D. (2015). A New Mechanism of Nervous System Plasticity: Activity-
dependent Myelination. Nat. Rev. Neurosci. 16, 756–767. doi:10.1038/nrn4023

Franović, I., Omel’chenko, O. E., and Wolfrum, M. (2018). Phase-sensitive
Excitability of a Limit Cycle. Chaos 28, 071105. doi:10.1063/1.5045179

Franović, I., Yanchuk, S., Eydam, S., Bačić, I., and Wolfrum, M. (2020). Dynamics
of a Stochastic Excitable System with Slowly Adapting Feedback. Chaos 30,
083109. doi:10.1063/1.5145176

Franović, I., Perc, M., Todorović, K., Kostić, S., and Burić, N. (2015). Activation
Process in Excitable Systems with Multiple Noise Sources: Large Number of
Units. Phys. Rev. E 92, 062912. doi:10.1103/physreve.92.062912

Fuhrmann, G., Markram, H., and Tsodyks, M. (2002). Spike Frequency Adaptation
and Neocortical Rhythms. J. Neurophysiol. 88, 761–770. doi:10.1152/jn.2002.88.
2.761

Gast, R., Schmidt, H., and Knösche, T. R. (2020). A Mean-Field Description of
Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation.
Neural Comput. 32, 1615–1634. doi:10.1162/neco_a_01300

Gross, T., and Blasius, B. (2008). Adaptive Coevolutionary Networks: a Review.
J. R. Soc. Interf. 5, 259–271. doi:10.1098/rsif.2007.1229

Gross, T., D’Lima, C. J. D., and Blasius, B. (2006). Epidemic Dynamics on an Adaptive
Network. Phys. Rev. Lett. 96, 208701. doi:10.1103/physrevlett.96.208701

Gutiérrez, R., Amann, A., Assenza, S., Gómez-Gardeñes, J., Latora, V., and
Boccaletti, S. (2011). Emerging Meso- and Macroscales from
Synchronization of Adaptive Networks. Phys. Rev. Lett. 107, 234103. doi:10.
1103/physrevlett.107.234103

Ha, G. E., and Cheong, E. (2017). Spike Frequency Adaptation in Neurons of the
central Nervous System. Exp. Neurobiol. 26, 179–185. doi:10.5607/en.2017.26.
4.179

Haimovici, A., Tagliazucchi, E., Balenzuela, P., and Chialvo, D. R. (2013). Brain
Organization into Resting State Networks Emerges at Criticality on a Model of
the Human Connectome. Phys. Rev. Lett. 110, 178101. doi:10.1103/physrevlett.
110.178101

Horstmeyer, L., and Kuehn, C. (2020). Adaptive Voter Model on Simplicial
Complexes. Phys. Rev. E 101, 022305. doi:10.1103/PhysRevE.101.022305

Ivanov, P. C. (2021). The New Field of Network Physiology: Building The Human
Physiolome. Front. Net. Physiol. 1, 1. doi:10.3389/fnetp.2021.711778

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. Cambridge, MA:
MIT Press.

Jain, S., and Krishna, S. (2001). A Model for the Emergence of Cooperation,
Interdependence, and Structure in Evolving Networks. Proc. Natl. Acad. Sci. 98,
543–547. doi:10.1073/pnas.98.2.543

Kasatkin, D. V., Yanchuk, S., Schöll, E., and Nekorkin, V. I. (2017). Self-organized
Emergence of Multilayer Structure and Chimera States in Dynamical Networks
with Adaptive Couplings. Phys. Rev. E 96, 062211. doi:10.1103/PhysRevE.96.
062211

Klinshov, V., and Franović, I. (2019). Two Scenarios for the Onset and Suppression
of Collective Oscillations in Heterogeneous Populations of Active Rotators.
Phys. Rev. E 100, 062211. doi:10.1103/PhysRevE.100.062211

Klinshov, V. V., Shchapin, D. S., Lücken, L., Yanchuk, S., and Nekorkin, V. I.
(2016). Experimental Study of Jittering Chimeras in a Ring of Excitable Units.
AIP Conf. Proc. 1738, 210007. doi:10.1063/1.4951990

Klinshov, V. V., Zlobin, D. A., Maryshev, B. S., and Goldobin, D. S. (2021). Effect of
Noise on the Collective Dynamics of a Heterogeneous Population of Active
Rotators. Chaos 31, 043101. doi:10.1063/5.0030266

Kroma-Wiley, K. A., Mucha, P. J., and Bassett, D. S. (2021). Synchronization of
Coupled Kuramoto Oscillators under Resource Constraints. Phys. Rev. E 104,
014211. doi:10.1103/PhysRevE.104.014211

Kuehn, C. (2015). Multiple Time Scale Dynamics. Cham: Springer.
Kuehn, C. (2019). Multiscale Dynamics of an Adaptive Catalytic Network. Math.

Model. Nat. Phenom. 14, 402. doi:10.1051/mmnp/2019015
Lafuerza, L. F., Colet, P., and Toral, R. (2010). Nonuniversal Results Induced by

Diversity Distribution in Coupled Excitable Systems. Phys. Rev. Lett. 105,
084101. doi:10.1103/PhysRevLett.105.084101

Laing, C. R. (2014). Derivation Of a Neural Field Model from a Network of Theta
Neurons. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 90, 010901. doi:10.1103/
PhysRevE.90.010901

Levina, A., Herrmann, J. M., and Geisel, T. (2007). Dynamical Synapses Causing
Self-Organized Criticality in Neural Networks. Nat. Phys 3, 857–860. doi:10.
1038/nphys758

Lindner, B., García-Ojalvo, J., Neiman, A. B., and Schimansky-Geier, L. (2004).
Effects of Noise in Excitable Systems. Phys. Rep. 392, 321–424. doi:10.1016/j.
physrep.2003.10.015

Lücken, L., Popovych, O. V., Tass, P. A., and Yanchuk, S. (2016). Noise-enhanced
Coupling between Two Oscillators with Long-Term Plasticity. Phys. Rev. E 93,
032210. doi:10.1103/PhysRevE.93.032210

Lücken, L., Rosin, D. P., Worlitzer, V. M., and Yanchuk, S. (2017). Pattern
Reverberation in Networks of Excitable Systems with Connection Delays.
Chaos 27, 013114. doi:10.1063/1.4971971

Luke, T. B., Barreto, E., and So, P. (2013). Complete Classification of the
Macroscopic Behavior of a Heterogeneous Network of Theta Neurons.
Neural Comput. 25, 3207–3234. doi:10.1162/neco_a_00525

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A History of Spike-timing-
dependent Plasticity. Front. Synaptic Neurosci. 3, 4. doi:10.3389/fnsyn.2011.
00004

Meisel, C., and Gross, T. (2009). Adaptive Self-Organization in a Realistic Neural
Network Model. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 80, 061917. doi:10.
1103/PhysRevE.80.061917

Mirollo, R., and Strogatz, S. H. (2007). The Spectrum of the Partially Locked State
for the Kuramoto Model. J. Nonlinear Sci. 17, 309–347. doi:10.1007/s00332-
006-0806-x

Morris, C., and Lecar, H. (1981). Voltage Oscillations in the Barnacle Giant Muscle
Fiber. Biophysical J. 35, 193–213. doi:10.1016/s0006-3495(81)84782-0

Neiman, A., Schimansky-Geier, L., Cornell-Bell, A., and Moss, F. (1999). Noise-
enhanced Phase Synchronization in Excitable media. Phys. Rev. Lett. 83,
4896–4899. doi:10.1103/physrevlett.83.4896

Nicosia, V., Skardal, P. S., Arenas, A., and Latora, V. (2017). Collective Phenomena
Emerging from the Interactions between Dynamical Processes in Multiplex
Networks. Phys. Rev. Lett. 118, 138302. doi:10.1103/physrevlett.118.138302

Omel’chenko, O. E., and Wolfrum, M. (2013). Bifurcations in the Sakaguchi-
Kuramoto Model. Physica D 263, 74. doi:10.1016/j.physd.2013.08.004

Omel’chenko, O. E., and Wolfrum, M. (2012). Nonuniversal Transitions to
Synchrony in the Sakaguchi-Kuramoto Model. Phys. Rev. Lett. 109, 164101.

Osipov, G. V., Kurths, J., and Zhou, C. (2007). Synchronization in Oscillatory
Networks. Berlin, Heidelberg: Springer.

Ott, E., and Antonsen, T. M. (2009). Long Time Evolution of Phase Oscillator
Systems. Chaos 19, 023117. doi:10.1063/1.3136851

Ott, E., and Antonsen, T. M. (2008). Low Dimensional Behavior of Large Systems
of Globally Coupled Oscillators. Chaos 18, 037113. doi:10.1063/1.2930766

Park, S. H., and Kim, S. (1996). Noise-induced Phase Transitions in Globally
Coupled Active Rotators. Phys. Rev. E 53, 3425–3430. doi:10.1103/physreve.53.
3425

Park, S. H., and Lefebvre, J. (2020). Synchronization and Resilience in the
Kuramoto white Matter Network Model with Adaptive State-dependent
Delays. J. Math. Neurosci. 10, 16. doi:10.1186/s13408-020-00091-y

Pikovsky, A. S., and Kurths, J. (1997). Coherence Resonance in a Noise-Driven
Excitable System. Phys. Rev. Lett. 78, 775–778. doi:10.1103/physrevlett.78.775

Popovych, O. V., Xenakis, M. N., and Tass, P. A. (2015). The Spacing Principle for
Unlearning Abnormal Neuronal Synchrony. PLoS ONE 10, e0117205. doi:10.
1371/journal.pone.0117205

Pototsky, A., and Janson, N. (2008). Excitable Systems with Noise and Delay, with
Applications to Control: Renewal Theory Approach. Phys. Rev. E Stat. Nonlin
Soft Matter Phys. 77, 031113. doi:10.1103/PhysRevE.77.031113

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84182914

Franović et al. Resource Adaptation Induced Collective Bursting

https://doi.org/10.1186/s13408-015-0029-2
https://doi.org/10.1186/s13408-015-0029-2
https://doi.org/10.1137/100791233
https://doi.org/10.1103/PhysRevE.96.062204
https://doi.org/10.1103/PhysRevE.96.062204
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1038/nrn4023
https://doi.org/10.1063/1.5045179
https://doi.org/10.1063/1.5145176
https://doi.org/10.1103/physreve.92.062912
https://doi.org/10.1152/jn.2002.88.2.761
https://doi.org/10.1152/jn.2002.88.2.761
https://doi.org/10.1162/neco_a_01300
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1103/physrevlett.96.208701
https://doi.org/10.1103/physrevlett.107.234103
https://doi.org/10.1103/physrevlett.107.234103
https://doi.org/10.5607/en.2017.26.4.179
https://doi.org/10.5607/en.2017.26.4.179
https://doi.org/10.1103/physrevlett.110.178101
https://doi.org/10.1103/physrevlett.110.178101
https://doi.org/10.1103/PhysRevE.101.022305
https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/10.1073/pnas.98.2.543
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1103/PhysRevE.100.062211
https://doi.org/10.1063/1.4951990
https://doi.org/10.1063/5.0030266
https://doi.org/10.1103/PhysRevE.104.014211
https://doi.org/10.1051/mmnp/2019015
https://doi.org/10.1103/PhysRevLett.105.084101
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1038/nphys758
https://doi.org/10.1038/nphys758
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1103/PhysRevE.93.032210
https://doi.org/10.1063/1.4971971
https://doi.org/10.1162/neco_a_00525
https://doi.org/10.3389/fnsyn.2011.00004
https://doi.org/10.3389/fnsyn.2011.00004
https://doi.org/10.1103/PhysRevE.80.061917
https://doi.org/10.1103/PhysRevE.80.061917
https://doi.org/10.1007/s00332-006-0806-x
https://doi.org/10.1007/s00332-006-0806-x
https://doi.org/10.1016/s0006-3495(81)84782-0
https://doi.org/10.1103/physrevlett.83.4896
https://doi.org/10.1103/physrevlett.118.138302
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1063/1.3136851
https://doi.org/10.1063/1.2930766
https://doi.org/10.1103/physreve.53.3425
https://doi.org/10.1103/physreve.53.3425
https://doi.org/10.1186/s13408-020-00091-y
https://doi.org/10.1103/physrevlett.78.775
https://doi.org/10.1371/journal.pone.0117205
https://doi.org/10.1371/journal.pone.0117205
https://doi.org/10.1103/PhysRevE.77.031113
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


Roberts, J. A., Iyer, K. K., Vanhatalo, S., and Breakspear, M. (2014). Critical Role for
Resource Constraints in Neural Models. Front. Syst. Neurosci. 8, 154. doi:10.
3389/fnsys.2014.00154

Röhr, V., Berner, R., Lameu, E. L., Popovych, O. V., and Yanchuk, S. (2019).
Frequency Cluster Formation and Slow Oscillations in Neural Populations with
Plasticity. PLoS ONE 14, e0225094. doi:10.1371/journal.pone.0225094

Ronge, R., and Zaks, M. A. (2021). Emergence and Stability of Periodic Two-
Cluster States for Ensembles of Excitable Units. Phys. Rev. E 103, 012206.
doi:10.1103/PhysRevE.103.012206

Sanders, J. A., Verhulst, F., and Murdock, J. (2007). Averaging Methods in
Nonlinear Dynamical Systems. New York, NY: Springer.

Scialla, S., Loppini, A., Patriarca, M., and Heinsalu, E. (2021). Hubs, Diversity, and
Synchronization in FitzHugh-Nagumo Oscillator Networks: Resonance Effects
and Biophysical Implications. Phys. Rev. E 103, 052211. doi:10.1103/PhysRevE.
103.052211

Shinomoto, S., and Kuramoto, Y. (1986). Phase Transitions in Active Rotator
Systems. Prog. Theor. Phys. 75, 1105–1110. doi:10.1143/ptp.75.1105

Song, T., Kim, H., Son, S. W., and Jo, J. (2020). Synchronization of Active Rotators
Interacting with Environment. Phys. Rev. E 101, 022613. doi:10.1103/PhysRevE.
101.022613

Stoop, R., Blank, D., Kern, A., v.d. Vyver, J.-J., Christen, M., Lecchini, S., et al.
(2002). Collective Bursting in Layer IV. Cogn. Brain Res. 13, 293–304. doi:10.
1016/s0926-6410(01)00123-9

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. 1st ed. Cambridge, MA:
Perseus Books.

Strogatz, S. H. (2001). Exploring Complex Networks. Nature 410, 268–276. doi:10.
1038/35065725

Tang, E., and Bassett, D. S. (2018). Colloquium: Control Of Dynamics in Brain
Networks. Rev. Mod. Phys. 90, 031003. doi:10.1103/revmodphys.90.031003

Taylor, D., Ott, E., and Restrepo, J. G. (2010). Spontaneous Synchronization of
Coupled Oscillator Systems with Frequency Adaptation. Phys. Rev. E Stat.
Nonlin Soft Matter Phys. 81, 046214. doi:10.1103/PhysRevE.81.046214

Terrien, S., Pammi, V. A., Krauskopf, B., Broderick, N. G. R., and Barbay, S. (2021).
Pulse-timing Symmetry Breaking in an Excitable Optical System with Delay.
Phys. Rev. E 103, 012210. doi:10.1103/PhysRevE.103.012210

Thamizharasan, S., Chandrasekar, V. K., Senthilvelan, M., Berner, R., Schöll, E.,
and Senthilkumar, D. V. (2021). Exotic States Induced by Co-evolving
Connection Weights and Phases, arXiv:2111.09861

Thiele, M., Berner, R., Tass, P. A., Schöll, E., and Yanchuk, S. (2022). Asymmetric
Adaptivity Induces Recurrent Synchronization in Complex Networks,
arXiv2112.08697. submitted

Veltz, R. (2020). BifurcationKit.jl. URL https://hal.archives-ouvertes.fr/hal-02902346.
Vergara, R. C., Jaramillo-Riveri, S., Luarte, A., Moënne-Loccoz, C., Fuentes, R.,

Couve, A., et al. (2019). The Energy Homeostasis Principle: Neuronal Energy

Regulation Drives Local Network Dynamics Generating Behavior. Front.
Comput. Neurosci. 13, 49. doi:10.3389/fncom.2019.00049

Virkar, Y. S., Shew, W. L., Restrepo, J. G., and Ott, E. (2016). Feedback Control
Stabilization of Critical Dynamics via Resource Transport on Multilayer
Networks: How Glia Enable Learning Dynamics in the Brain. Phys. Rev. E
94, 042310. doi:10.1103/PhysRevE.94.042310

Wang, X.-J., and Buzsáki, G. (1996). GammaOscillation by Synaptic Inhibition in a
Hippocampal Interneuronal Network Model. J. Neurosci. 16, 6402–6413.
doi:10.1523/jneurosci.16-20-06402.1996

Wilting, J., and Priesemann, V. (2019). 25 Years of Criticality in Neuroscience -
Established Results, Open Controversies, Novel Concepts. Curr. Opin.
Neurobiol. 58, 105–111. doi:10.1016/j.conb.2019.08.002

Yanchuk, S., Ruschel, S., Sieber, J., and Wolfrum, M. (2019). Temporal Dissipative
Solitons in Time-Delay Feedback Systems. Phys. Rev. Lett. 123, 053901. doi:10.
1103/PhysRevLett.123.053901

Yanchuk, S., Roque, A. C., Macau, E. E. N., and Kurths, J. (2021). Dynamical
Phenomena in Complex Networks: Fundamentals and Applications. Eur. Phys.
J. Spec. Top. 230, 2711–2716. doi:10.1140/epjs/s11734-021-00282-y

Yu, S., Yang, H., Shriki, O., and Plenz, D. (2013). Universal Organization of Resting
Brain Activity at the Thermodynamic Critical point. Front. Syst. Neurosci. 7, 42.
doi:10.3389/fnsys.2013.00042

Zheng, C., and Pikovsky, A. (2018). Delay-induced Stochastic Bursting in Excitable
Noisy Systems. Phys. Rev. E 98, 042148. doi:10.1103/physreve.98.042148

Zierenberg, J., Wilting, J., and Priesemann, V. (2018). Homeostatic Plasticity and
External Input Shape Neural Network Dynamics. Phys. Rev. X 8, 031018. doi:10.
1103/physrevx.8.031018

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Franović, Eydam, Yanchuk and Berner. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84182915

Franović et al. Resource Adaptation Induced Collective Bursting

https://doi.org/10.3389/fnsys.2014.00154
https://doi.org/10.3389/fnsys.2014.00154
https://doi.org/10.1371/journal.pone.0225094
https://doi.org/10.1103/PhysRevE.103.012206
https://doi.org/10.1103/PhysRevE.103.052211
https://doi.org/10.1103/PhysRevE.103.052211
https://doi.org/10.1143/ptp.75.1105
https://doi.org/10.1103/PhysRevE.101.022613
https://doi.org/10.1103/PhysRevE.101.022613
https://doi.org/10.1016/s0926-6410(01)00123-9
https://doi.org/10.1016/s0926-6410(01)00123-9
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/revmodphys.90.031003
https://doi.org/10.1103/PhysRevE.81.046214
https://doi.org/10.1103/PhysRevE.103.012210
https://hal.archives-ouvertes.fr/hal-02902346
https://doi.org/10.3389/fncom.2019.00049
https://doi.org/10.1103/PhysRevE.94.042310
https://doi.org/10.1523/jneurosci.16-20-06402.1996
https://doi.org/10.1016/j.conb.2019.08.002
https://doi.org/10.1103/PhysRevLett.123.053901
https://doi.org/10.1103/PhysRevLett.123.053901
https://doi.org/10.1140/epjs/s11734-021-00282-y
https://doi.org/10.3389/fnsys.2013.00042
https://doi.org/10.1103/physreve.98.042148
https://doi.org/10.1103/physrevx.8.031018
https://doi.org/10.1103/physrevx.8.031018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

	Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources
	1 Introduction
	2 Model
	3 Collective Activity Bursting
	4 Layer Dynamics: Heterogeneous Population of Active Rotators
	4.1 Ott-Antonsen Approach for the Layer Dynamics
	4.2 Stationary Solutions of the Layer Dynamics
	4.3 Stability and Bifurcation Analysis of Stationary Solutions
	4.4 Comparison Between Analysis and Numerics

	5 (Slow) Resource Dynamics and the Emergence of Multistability
	6 Population Switching Dynamics Induced by Resource Activation and Inactivation
	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


