
Scalable Algorithms for the Analysis of
Massive Networks

DISSERTATION

zur Erlangung des akademischen Grades
Doctor rerum naturalium

(Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
Eugenio Angriman

Präsidentin/Präsident der Humboldt-Universität zu Berlin
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekanin/Dekan der Mathematisch-Naturwissenschaftlichen Fakultät
Prof. Dr. Elmar Kulke

Gutachter/innen
1. Prof. Dr Henning Meyerhenke
2. Prof. Dr. Giuseppe Francesco Italiano
3. Prof. Dr. Ulrik Brandes

Tag der mündlichen Prüfung: 14 Dezember 2021

Declaration of Independent Work

I declare that I have completed the thesis independently using only the aids and tools specified. I have not
applied for a doctor’s degree in the doctoral subject elsewhere and do not hold a corresponding doctor’s de-
gree. I have taken due note of the Faculty of Mathematics and Natural Sciences PhD Regulations, published
in the Official Gazette of Humboldt-Universität zu Berlin no. 42/2018 on 11/07/2018.

Berlin, 2021
. .
Eugenio Angriman

Acknowledgments

I want to dedicate a few words to everyone who helped me write this thesis.
First and foremost, my supervisor Henning Meyerhenke: he offered me the opportunity to work in his

research group and, even in rough times, was never too busy to provide support and guidance during my
PhD. I also appreciate his trust, his efforts in keeping the group united and collaborative, and for the time he
spent to give me valuable advice. I would also like to thank Giuseppe Francesco (Pino) Italiano and Ulrik
Brandes for accepting to act as reviewers of my thesis and taking the time to read it as well as Jan Mendling,
Robert Bredereck, and Patrick Schäfer for agreeing to be part of the PhD committee.

A great thank you goes to past and present colleagues I was fortunate to work with. In particular, Elisa-
betta Bergamini: even though we just exchanged a few emails about NetworKit while I was working on my
Master’s thesis, her enthusiasm in her work encouraged me to join Henning’s group. Also, thank you for the
great tips about life in Germany! I am very grateful to Charilaos (Harry) Tzovas for his hospitality during
my first days in Karlsruhe, for helping when we moved to Berlin, and for his contagious good mood. Thank
you also to Moritz von Looz for helping me since the beginning of my PhD, for the intriguing discussions
and the board game evenings. Thanks to Roland Glantz for your help during my months in Karlsruhe and
for lending me a nice white shirt which made me look (slightly) more professional during the group photo
day – which I forgot about. I also thank Maria Predari, the most competitive foosball player I have ever met
– too bad that we did not buy a foosball table after we moved to Berlin, but it probably would have made us
miss a few deadlines. A special thank you goes to Alexander van der Grinten for the time he spent listening
to my questions and for his guidance that made me a better researcher and programmer. My gratitude also
goes to Fabian Brandt-Tumescheit for always being available to solve any kind of technical issues (for some
of which I am directly responsible), for the great support he gave us to carry on and promote our research
work, and for helping me translate the abstract of this thesis together with Alexander.

I wish to thank all my coauthors and collaborators enjoyedworkingwith: MartinNöllenburg, Aleksandar
Bojchevski, Daniel Zügner, Stephan Günnemann, Christian Schulz, Bora Uçar, Ruben Becker, Gianlorenzo
D’Angelo, HugoGilbert, KlausAhrens, andMichał Boroń. Thank you to allmy colleagues from theDFGSPP
project “Algorithms for BIG DATA”, in particular, Michael Hamann, Manuel Penschuck, Timo Bingmann,
Demian Hespe, Lorenz Hübschle-Schneider. Thank you for the interesting discussions and the fun we had
at conferences around Germany and in India.

I am also thankful to my friends Davide, Giuseppe, Gianluca, Emanuele, Massimo, Giacomo, Elia, Ste-
fano, Federico, and Nicola for being there. I am glad that, despite many of us are living abroad, we still
manage to see each other and have fun together. For their great support, I thank my parents Cecilia and
Imerio, my parents-in-law Katya and Alberto, my siblings Sofia andDaniele, andmy siblings-in-lawDavide
and Arianna.

Last but not least, I cannot describe in words my gratitude to my girlfriend Francesca. Since the begin-
ning of this journey, you always supported me with your love, patience, and joy. Despite the distance that
separated us during these years, you have always been there for me. Thank you.

v

Zusammenfassung

Die Netzwerkanalyse ist eine Sammlung von Techniken, die darauf abzielen, nicht-triviale Erkenntnisse
aus vernetzten Daten durch die Untersuchung von Beziehungsmustern zwischen den Entitäten eines Netz-
werks zu gewinnen. Zu den Erkenntnissen, die aus einem Netzwerk gewonnen werden können, gehört die
Bestimmung derWichtigkeit von Entitäten anHand von definiertenKriterien – in sozialenNetzwerken gibt
es beispielsweise in der Regel einige Teilnehmer, die einflussreicher sind als andere oder deren Entfernung
aus dem Netzwerk eine erhebliche Veränderung des Kommunikationsflusses bedeuten würde. Eine ande-
re Möglichkeit besteht darin, für jeden Teilnehmer eines Netzwerks den am besten geeigneten Partner zu
finden, wenn man die paarweisen Präferenzen (oder die Kompatibilität) der Teilnehmer kennt, die mitein-
ander verbunden werden sollen – auch bekannt als das Maximum Weighted Matching-Problem (MWM).
Beispiele hierfür sind Plattformen fürMatchmaking oder die Paarung von Spielern in einem Schachturnier.

Die Wichtigkeit ist hierbei stark an die jeweilige Anwendung gebunden. Daher wurden in den letzten
Jahren mehrere Zentralitätsmaße eingeführt. Diese Maße stammen hierbei aus Jahrzehnten, in denen die
Rechenleistung sehr begrenzt war und die Netzwerke im Vergleich zu heute viel kleiner waren – Skalier-
barkeit auf große Datenmengen wurde daher nicht berücksichtigt. Heutzutage sind jedoch Netzwerke mit
Millionen von Kanten allgegenwärtig und eine vollständige exakte Berechnung vieler traditioneller Zentra-
litätsmaße – die immer nochweit verbreitet sind – ist zu zeitaufwendig. Dieses Problemwird noch verstärkt,
wenn das Ziel darin besteht, die Gruppe der k-Knoten mit der höchsten gemeinsamen Zentralität zu fin-
den; dieses Problem hat nützliche Anwendungen bei der Optimierung von Standorten von Lagern und der
Einflussmaximierung. Skalierbare Algorithmen zur Identifizierung hochzentraler (Gruppen von) Knoten
in großenGraphen sind von zentraler Bedeutung für eine umfassendeNetzwerkanalyse. Die heutigenNetz-
werke sind nicht nur groß, sondern verändern sich zusätzlich im zeitlichen Verlauf. Daraus ergibt sich die
Herausforderung, die Erkenntnisse, die aus dem Netzwerk gewonnen wurden, nach einer Änderung effi-
zient zu aktualisieren. Effiziente dynamische Algorithmen sind daher ein weiterer wesentlicher Bestandteil
moderner Analyse-Pipelines.

Hauptziel dieserArbeit ist es, skalierbare algorithmische Lösungen für die zwei bereits genanntenHeraus-
forderungen zu liefern: die Identifizierung wichtiger Knotenpunkte in einem Netzwerk und deren effiziente
Aktualisierung in sich verändernden Netzwerken. Die meisten unserer Algorithmen benötigen Sekunden
bis einige Minuten, um diese Aufgaben in realen Netzwerken mit bis zu Hunderten Millionen von Kanten
zu Lösen, was eine deutliche Verbesserung gegenüber dem Stand der Technik darstellt.

Die Berechnung von MWMs in großen Netzwerke ist rechenintensiv. Aus diesem Grund gibt es in der
Literatur zahlreiche schnelle inexakte Algorithmen für MWM, sowie dynamische Algorithmen zur Auf-
rechterhaltung eines (approximativen) MWMs in dynamischen Graphen. Es wurden jedoch nur wenige
Anstrengungen unternommen, um diese Algorithmen in der Praxis zu implementieren, insbesondere im
dynamischen Fall, so dass ihre tatsächliche Leistung unbekannt ist. Daher besteht ein weiteres Ziel die-
ser Arbeit darin, die Lücke zwischen Theorie und Praxis im Zusammenhang mit dynamischen MWM zu
schließen. Insbesondere entwickeln wir einen Algorithmus, der ein approximatives MWM nach mehreren
Kantenaktualisierungen von Graphen mit Milliarden von Kanten in nur einem Bruchteil einer Sekunde
aktualisiert.

vii

Abstract

Network analysis is a collection of techniques aimed to unveil non-trivial insights from networked data by
studying relationship patterns between the entities of a network. Among the insights that can be extracted
from a network, a popular one is to quantify how important an entity is with respect to the others according
to some importance criteria – e.g., social networks often have participants that are more influential than
others or whose removal from the network would imply a major disruption of the communication flow.
Another one is to find the most suitable matching partner for each participant of a network knowing the
pairwise preferences (or the compatibility) of the participants to be matched with each other – which can
be formalized as the well-known maximum weighted matching problem, or MWM. Think of matchmaking
platforms or pairing players in a chess tournament.

Because the notion of importance is tied to the application under consideration, numerous centrality
measures have been introduced. However, many of these measures were conceived in a time when com-
puting power was very limited and networks were much smaller compared to today’s, and thus scalability
to large datasets was not considered. Today, massive networks with millions of edges are ubiquitous and
a complete exact computation for traditional centrality measures – still widely used to extract meaningful
information from large datasets – often requires an excessive amount of time. This issue is amplified if our
objective is to find the group of k vertices that is the most central as a group, which is useful to applica-
tions such as optimizing warehouse locations or influence maximization. Scalable algorithms to identify
highly central (groups of) vertices on massive graphs are thus of pivotal importance for large-scale network
analysis. In addition to their size, today’s networks often evolve over time and this poses the challenge of
efficiently updating the findings we gathered on the network after a change occurs. Hence, efficient dynamic
algorithms are essential for modern network analysis pipelines.

In this work, we propose scalable algorithms for the two aforementioned challenges, namely: identifying
important vertices in a network and efficiently updating them in evolving networks. In real-world graphs
with up to hundreds ofmillions of edges, most of our algorithms require seconds to a fewminutes to perform
these tasks, improving significantly over the state of the art.

Concerning MWM, solving this problem optimally in large graphs is computationally too expensive, and
fast inexact algorithms for MWM are abundant in the literature as well as dynamic algorithms to maintain
an (approximate) MWM. In the dynamic case, however, little effort was devoted to actually implementing
these algorithms in practice, leaving their actual performance unknown. In this work, we extend a state-of-
the-art approximation algorithm forMWM to dynamic graphs; experiments show that our dynamicMWM
algorithm handles multiple edge updates in graphs with billion edges in only a fraction of a second.

ix

Contents

I Introduction 1

1 Introduction 3
1.1 Context: Network Analysis . 3
1.2 Motivation . 4
1.3 Methodology . 5
1.4 Outline and Contribution . 6

2 Preliminaries 11
2.1 Graphs . 11
2.2 Paths and Components . 12
2.3 Distances in Graphs . 13

2.3.1 Shortest-path Distance . 14
2.3.2 Resistance Distance . 15
2.3.3 Forest Distance . 16

2.4 Centrality Measures . 17
2.4.1 Distance-based Measures . 18
2.4.2 Spectral Centrality Measures . 21
2.4.3 Path-based Centrality Measures . 22

2.5 Group Centrality Measures . 23
2.6 Matchings . 26
2.7 Dynamic Graphs . 27
2.8 Performance and Quality Indicators . 27

II Algorithms for Single-Vertex Centrality Measures 29

3 Closeness Centrality Ranking in Fully-Dynamic Networks 33
3.1 Introduction . 33
3.2 Overview of Algorithms for Closeness Centrality . 34

3.2.1 Static Algorithms . 35
3.2.2 Dynamic Algorithms . 35

3.3 Static Algorithm for Top-k Closeness Centrality . 36
3.3.1 The NBCut Algorithm for Complex Networks . 36
3.3.2 The NBBound Algorithm for High-Diameter Networks 37

xi

3.4 Dynamic Top-k Closeness Centrality . 38
3.4.1 Updating the Number of Reachable Vertices . 38
3.4.2 Finding Affected Vertices . 39
3.4.3 Update After an Edge Insertion – Based on NBCut 39
3.4.4 Update After an Edge Insertion – Based on NBBound 42
3.4.5 Update After an Edge Removal . 42
3.4.6 Time Complexity and Memory Requirements . 43

3.5 Experimental Results . 44
3.5.1 Experimental Setup . 44
3.5.2 Speedups on Recomputation . 45

3.6 Conclusions . 49

4 Parallel Approximation of Betweenness Centrality 51
4.1 Introduction . 51
4.2 Preliminaries and Baseline for Parallelization . 52

4.2.1 Basic Definitions . 52
4.2.2 Betweenness Centrality and its Approximation 53
4.2.3 The KADABRA Algorithm . 53
4.2.4 The Stopping Condition in Detail . 54
4.2.5 First Attempts at KADABRA Parallelization . 54

4.3 Scalable Parallelization Techniques . 55
4.3.1 Epoch-based Framework . 55
4.3.2 Local-frame and shared-frame Algorithm . 57
4.3.3 Synchronization Costs . 57

4.4 Optimization and Tuning . 58
4.4.1 Improvements to the KADABRA Implementation 58
4.4.2 Balancing Costs of Termination Checks . 58
4.4.3 Termination Latency in Epoch-based Approach 59
4.4.4 Indexed-frame Algorithm . 59
4.4.5 Bounded Memory Complexity in Indexed-frame 60

4.5 Experiments . 61
4.5.1 Settings . 61
4.5.2 OpenMP Baseline . 61
4.5.3 Preprocessing and ADS Costs . 62
4.5.4 Parallel Speedup . 62
4.5.5 Indexed-frame Algorithm . 63
4.5.6 Impact of Parameter F . 63

4.6 Related Work . 63
4.7 Conclusions . 64

5 Approximationof theDiagonalofaLaplacian’s Pseudoinverse forComplexNetwork
Analysis 65

xii

5.1 Introduction . 65
5.1.1 Related Work . 66
5.1.2 Contribution and Outline . 67

5.2 Preliminaries . 68
5.3 Approximation Algorithm for Electrical Closeness . 70

5.3.1 Overview . 70
5.3.2 Effective Resistance Approximation by UST Sampling 72
5.3.3 Algorithm Analysis . 74

5.4 Generalizations . 74
5.5 Extension to Forest Closeness . 76

5.5.1 From Forest Farness to Electrical Farness (And Back Again) 77
5.5.2 Forest Farness Approximation Algorithm . 77

5.6 Engineering Aspects and Parallelization . 79
5.6.1 UST Generation, Pivot Selection, and the Linear System 80
5.6.2 Parallel Implementation . 80

5.7 Experiments – Electrical Closeness . 81
5.7.1 Settings . 81
5.7.2 Running Time and Quality . 83
5.7.3 Memory Consumption . 84
5.7.4 Parallel Scalability . 85
5.7.5 Scalability to Large Networks . 86
5.7.6 Additional Experimental Results . 87

5.8 Experiments – Forest Closeness . 88
5.8.1 Performance of UST . 89

5.9 Conclusions . 91

III Algorithms for Group Centrality Measures 93

6 Local Search for Group-Closeness Maximization on Big Graphs 97
6.1 Introduction . 97
6.2 Preliminaries . 98
6.3 Estimating the Quality of Vertex Exchanges . 99
6.4 The Local-Swaps Algorithm . 100

6.4.1 Choosing a Good Swap . 101
6.4.2 Computing the Difference in Farness . 102

6.5 The Grow-Shrink Algorithm . 103
6.5.1 Vertex Additions . 104
6.5.2 Vertex Removals . 105

6.6 Variants and Algorithmic Improvements . 106
6.6.1 Semi-local Swaps . 106
6.6.2 Restricted Swaps . 106

xiii

6.6.3 Local Grow-Shrink . 106
6.6.4 Extended Grow-Shrink . 107
6.6.5 Engineering the Reachability Set Size Approximation Algorithm 107
6.6.6 Memory Latency in Reachability Set Size Approximation 108
6.6.7 Accepting Swaps and Stopping Condition . 108

6.7 Experimental Results . 108
6.7.1 Results for Extended Grow-Shrink . 109
6.7.2 Scalability to Large Graphs . 110
6.7.3 Accelerating Performance on Unweighted Graphs 111
6.7.4 Results on Weighted Road Networks . 111

6.8 Additional Experiments . 112
6.8.1 Impact of the number of vertex exchanges . 112
6.8.2 Impact of reachability set size approximation . 113
6.8.3 Summary of Experimental Results . 113

6.9 Conclusions . 113

7 Group-Harmonic andGroup-ClosenessMaximization –Approximation and Engineering115
7.1 Introduction . 115
7.2 Preliminaries . 116
7.3 Group-Harmonic Maximization . 116

7.3.1 Mathematical Properties . 116
7.3.2 Approximation Algorithms . 116
7.3.3 Engineering Improvements . 117

7.4 Group-Closeness Maximization . 119
7.4.1 Preliminary Discussion . 119
7.4.2 Approximation Algorithms . 120
7.4.3 Engineering Improvements . 120

7.5 Experiments . 122
7.5.1 Settings . 123
7.5.2 Instances Statistics . 123
7.5.3 Group-Harmonic Maximization . 123
7.5.4 Group-Closeness Maximization . 124
7.5.5 Parallel Scalability . 126

7.6 Conclusions . 126

8 Algebraic Group Centrality Maximization for Large-Scale and Disconnected Graphs129
8.1 Introduction . 129
8.2 Preliminaries . 131

8.2.1 GED-Walk Centrality . 131
8.2.2 Mathematical Properties of GED-Walk . 132

8.3 Algorithms for GED-Walk . 133
8.3.1 Computing GED-Walk Centrality . 133

xiv

8.3.2 Maximizing GED-Walk Centrality . 135
8.3.3 Dealing with Large k . 138

8.4 Group Forest Closeness Centrality . 139
8.5 Experiments – GED-Walk . 140

8.5.1 Scalability w.r.t. Group Size . 141
8.5.2 Scalability to Large (Synthetic) Graphs . 142
8.5.3 Parallel Scalability . 143
8.5.4 Scalability with Large Groups . 143
8.5.5 Impact of Parameter α . 144

8.6 Applications of GED-Walk . 144
8.6.1 Vertex Classification . 145
8.6.2 Graph Classification . 146

8.7 Experiments – Group Forest Closeness . 148
8.8 Conclusions . 149

IV Maximum Weighted Matching in Fully-Dynamic Graphs 151

9 Approximate Maximum Weighted Matching in Dynamic Networks 155
9.1 Introduction . 155
9.2 Preliminaries . 156

9.2.1 Problem Definition and Notation . 156
9.2.2 Related Work . 157
9.2.3 The Static Suitor Algorithm . 159

9.3 Dynamic Suitor Algorithm for Single Edge Updates . 161
9.3.1 Edge Insertions . 163
9.3.2 Edge Removals . 170

9.4 Extension to Batch Updates . 172
9.4.1 Multiple Edge Insertions . 172
9.4.2 Multiple Edge Removals . 174

9.5 Implementation . 175
9.6 Experimental Results . 176

9.6.1 Settings . 176
9.6.2 Affected Vertices . 178
9.6.3 Comparison Against DynMWMRandom . 178
9.6.4 Speedups on the Static Algorithm . 180

9.7 Conclusions . 182

V Conclusion 185

Appendices 191

xv

A Publications 193

B Appendix of Chapter 3 195

C Appendix of Chapter 4 205

D Appendix of Chapter 5 207

E Appendix of Chapter 6 209

F Appendix of Chapter 7 211

G Appendix of Chapter 8 217

H Appendix of Chapter 9 219

Acronyms 231

Glossary 233

Bibliography 235

xvi

List of Figures

1.1 Algorithm Engineering schema [255]. 6

2.1 Examples of undirected and directed graphs. 11

2.2 Heatmaps of vertex centrality scores of the vertices in the Zachary’s karate club social net-
work [289]. Red means high centrality score, blue means low centrality score. Images were
generated with the Gephi software [31]. 19

2.3 Relative standard deviation for shortest-paths distances and for closeness centrality for the
networks in Table 2.1. 20

2.4 Comparison between top-k closeness centrality and group-closeness centrality (k = 10) on
the European road network [276] (downloaded from the public repository KONECT [173]
and drawn with the Fruchteman Reingold algorithm [111]). Red vertices represent in Fig-
ure 2.4a the top-k vertices with highest closeness and, in Figure 2.4b, the k vertices in a set
with high group-closeness centrality. For the other vertices, the bluest they are the greater
is their distance to the nearest red vertex. Images were generated with the Gephi software [31]. 24

3.1 Upper bound c̃h(u) of ch(u) computed by the NBCut algorithm. For all the vertices up
to distance i from u we know their exact distance from u. Then, we assume that ñi+1(u)

vertices are at distance i+1 and that the remaining vertices reachable from u are at distance
i+ 2. 36

3.2 Example of far-away (left) and boundary (right) vertices. 42

3.3 Geometric mean of the average speedups over all tested networks, for different values of
k and batch sizes. Figures 3.3a and 3.3b show the results for complex networks, whereas
Figures 3.3c and 3.3d show the results for road networks. Detailed numbers can be found
in Sections B.2.1 and B.2.2. 47

3.4 Geometricmean of the average time spent by the dynamic algorithm computing c̃h′(·)w.r.t.
the total time spent in updating the top-k nodes with highest closeness centrality over all
the tested networks, for different values of k and batch sizes. Figures 3.4a and 3.4b show
the results for complex networks, whereas Figures 3.4c and 3.4d show the results for road
networks. 48

4.1 Data structures used in epoch-based algorithms, including initial values 55

xvii

4.2 Transition after epochToRead is set to 5. Thread 2 already writes to the SF of epoch 6 (using
the fsam pointer). Thread 9 still writes to the SF of epoch 5 but advances to epoch 6 once it
checks epochToRead (dashed orange line). Afterwards, thread 9 publishes its SF of epoch 5
to sfFin (dashed blue line). Finally, the stopping condition is checked using both SFs of
epoch 5 (i.e., the SFs now pointed to by sfFin). 56

4.3 Indices of SFs in indexed-frame algorithm. Central numbers indicate SF indices. Numbers
in bottom right corners (and colors) denote the thread that will compute the SF. Dashed SFs
are already finished. 60

4.4 Performance of OpenMP baseline. 62
4.5 Performance of epoch-based algorithms. 62

5.1 Quality measures over the instances of Table 5.1a. All runs are sequential. 84
5.2 Difference between the peak resident set size before and after a sequential run of each algo-

rithm on the instances of Tables 5.1a and 5.1b. 85
5.3 Parallel scalability of UST (with ε = 0.3) with shared and with distributed memory. . . . 85
5.4 Breakdown of the running times of UST with ε = 0.3w.r.t. #of cores on 1×24 cores. Data

is aggregated with the geometric mean over the instances of Tables 5.1a and 5.1b. 86
5.5 Scalability of UST on random hyperbolic graphs (ε = 0.3, 1× 24 cores). 86
5.6 Scalability of UST on R-MAT graphs (ε = 0.3, 1× 24 cores). 87
5.7 L1rel, L2rel, and Erel w.r.t. the running time of our algorithm with ε = 0.9. All data points

are aggregated using the geometric mean over the instances of Table 5.1a. 88
5.8 maxv

∣∣∣Ω[v, v]− Ω̃[v, v]
∣∣∣ over the instances of Table 5.3. 90

5.9 Geometric mean of the speedup of UST with ε = 0.05 on multiple cores over a sequential
run (shared memory). Data points are aggregated over the instances of Table 5.3. 90

5.10 Geometric mean of the speedup of UST with ε = 0.1 on multiple compute nodes over a
single compute node (1×24 cores). Data points are aggregated over the instances of Table 5.5. 91

6.1 Example of shortest-path DAGBS ; orange vertices are inDv 100
6.2 Example of computation of the difference in farness after a u-v swap with the Local-Swaps

algorithm. The states of S and of the DAG before and after the u-v swap are shown in
Figures 6.2a and 6.2b, respectively. 102

6.3 Illustration of the data structures maintained by Grow-Shrink. Here we show two vertices
i, j ∈ S: within the blue lines are those vertices xwhose representative rx is either i (on the
left) or j (on the right); the vertices y within the dashed orange lines, in turn, have either i
or j as their representative r′y . 104

6.4 z, u and z′ are vertices in S. Vertices within the solid regions belong to Rz , Ru and Rz′ ,
respectively. Vertices within the dashed regions belong to R′

z and R′
u, respectively. After

removing u from S, the vertices x ∈ R′
u will have an invalid r′x and d′S(x). 105

6.5 Performance of the extended Grow-Shrink algorithm for different values of h or p; un-
weighted graphs, k = 10. 109

6.6 Running time (in seconds) of the extended Grow-Shrink algorithm on synthetic graphs;
p = 0.75, k = 10. 110

xviii

6.7 Performance of our local search algorithms for different values of k; unweighted graphs. . 111

6.8 Performance of our local search algorithms for different values of k; weighted graphs. . . . 112

6.9 Behavior of the relative closeness score (compared to the group returned by greedy, geo-
metric mean) over the execution of the algorithms (in terms of vertex exchanges); k = 10. 112

6.10 Performance of the Grow-Shrink algorithm for different numbers of samples to estimate
reachability set size; k = 10. 113

7.1 Quality relative to the optimum for group-harmonic maximization over the networks of
Table F.1, Appendix F.2. 124

7.2 Quality and time w.r.t. Best-Random-H over the networks of Table F.3. 125

7.3 Quality relative to the optimum over the networks of Table F.2. 126

7.4 Quality and time w.r.t. Best-Random-C over the networks of Table F.4. 127

7.5 Parallel scalability of our algorithms for group-closeness maximization over the networks
of Table F.4, Appendix F.2. 128

8.1 Scalabilityw.r.t. group size ofGED-Walk, GCC,GHC, andGBCmaximization (Figure 8.1a),
and highest walk length considered by our GED-Walk maximization algorithm (Figure 8.1b).141

8.2 Running time (s) on 36 cores of our lazy greedy algorithm for GED-Walk maximization on
synthetic networks with 217 to 224 vertices, k = 10. Data points are aggregated over three
different randomly generated networks using the geometric mean. 142

8.3 Parallel scalability of GED-Walk, GCC, GHC, andGBCmaximization, k = 10. Data points
are aggregated over the instances of Table 8.1 using the geometric mean. 143

8.4 Running time (s) and scores of GED-Walk with lazy greedy (GED), and stochastic greedy
(GED-S) strategies with large k (log-scale). Data points are aggregated over the instances
of Table 8.1 using the geometric mean. 144

8.5 Quality and running time performance of our GED-Walk maximization algorithm using
the spectral bound. Data points are aggregated over the instances of Table 8.1 using the
geometric mean. 144

8.6 Semi-supervised vertex classification accuracy for different strategies for choosing the train-
ing set. 145

8.7 Accuracy in semi-supervised vertex classification in disconnected graphs when using dif-
ferent strategies to create the training set. 149

8.8 Accuracy in semi-supervised vertex classification on the largest connected component of
the datasets (Cora-lcc: n = 2,485,m = 5,069; Citeseer-lcc: n = 2,110,m = 3,668) when
using different strategies to create the training set. 149

9.1 Examples of alternating paths that cover the vertices affected by the insertion of an edge
{u, v}. Solid lines and dashed lines represent edges in M ′ \ M and edges in M \ M ′,
respectively. In Figure 9.1a there is only one alternating path because u is matched in M
and v is not, whereas in Figure 9.1b there are two because both u and v are matched inM . 164

xix

9.2 Examples of intersecting alternating paths computed by Algorithm 26 to update the match-
ing after the insertion of an edge {u, v}. Figure 9.2a shows the status of the affected vertices
after the computation of P (ii)

v and before the computation of Pu. Figures 9.2b–9.2d show
the three possible cases of intersection between P (ii)

v and Pu. Dashed and solid edges have
the same meaning as in Figure 9.1, dotted edges are inM (ii) \M (f), dash-dotted edges are
inM (f) \M (ii). 169

9.3 Example of alternating path (including edge weights) with non-decreasing edge weights
where Eq. (9.2) is violated for y5. Thick solid edges are inB, solid edges are inM [i+1]\M [i],
and dashed edges are inM [i] \M [i+1].Thedash-dotted edge shows the violation: assuming
that y1 satisfies Eq. (9.2) for y5, findAffected ignores it because, when cur is y5, y1 is marked
as affected, and thus not considered as a potential partner for y5 (see Line 9 in Algorithm 24).173

9.4 Average number of vertices affected by a batch of edge updates in the real-world networks
of Table 9.1. 178

9.5 Average number of vertices affected by a batch of edge updates in the synthetic networks of
Table 9.2. 178

9.6 Average number of edges traversed by DynMWMRandom relative to the ones traversed by
dynamic Suitor for a single edge update and for different values of ε. Results are averaged
over 100 edge updates and over the networks of Table 9.1. 179

9.7 Geometricmean of the speedups of dynamic Suitor over DynMWMRandom for single edge
updates and for different values of ε. Results are averaged over 100 edge updates and over
the networks of Table 9.1. 179

9.8 Difference (in %) of the weight of the matching computed after 100 edge updates by Dyn-
MWMRandom for different values of ε. Results are relative to dynamic Suitor solutions.
Results are averaged over the networks of Table 9.1. 180

9.9 Geometricmean of the speedups of the dynamic algorithm over a static recomputation over
the real-world networks of Table 9.1. 181

9.10 Geometricmean of the speedups of the dynamic algorithm over a static recomputation over
the synthetic networks networks of Table 9.2. The considered graphs have 2s vertices, where
s is the scale shown in the legend. 182

H.1 Percentage of time spent by the static Suitor algorithm for the preprocessing step (i.e., sort-
ing the adjacency lists after a batch of edge updates) w.r.t. the overall running time of the
algorithm. 229

xx

List of Tables

2.1 Graphs used in Figure 2.3 (downloaded from the public repository KONECT [173]). . . . 20

3.1 Impact of optimizations in complex networks for k = 10, averaged over 100 batches of
1, 10, 100 random edge insertions using the geometric mean. The column “Aff.” shows
the average number of vertices affected by a single edge insertion, while “Aff. (%)” the
percentage of affected vertices over the total number of vertices of the graph. The next three
columns report the percentage of affected vertices that are far-away, boundary, or that are
updated using the distance bound. The last column shows the percentage of affected vertices
for which a BFScut has been run. 46

4.1 List of instances used for the experiments. 61

5.1 Real-world instances used in our experiments for electrical closeness. 82
5.2 Running time (s) of UST on large real-world networks (16× 24 cores). 87
5.3 Running time and KT ranking scores of UST and JLT-based algorithms. In the JLT column

we report, for each instance, the competitor with highest KT score. For equal KT scores –
up to the second decimal place – we choose the fastest competitor. 89

5.5 Large networks used for scalability experiments in distributed memory and running time
of UST for forest closeness on 16× 24 cores. 91

6.1 Networks used in the experiments. 109
6.2 Running time of the extended Grow-Shrink algorithm on large real-world networks; p =

0.75, k = 10. 110

8.1 Largest connected component of the real-world instances we used in our experiments. . . 141
8.2 Running time (s) of GED-Walk maximization on 36 cores on large real-world networks,

k = 10. 142
8.3 Graph classification datasets. 146
8.4 Graph classification accuracy (in %) on the datasets of Table 8.3. Best performance per

dataset marked in bold. 147
8.5 Graph classification accuracy (in %) on the datasets of Table 8.3. PR denotes PageRank with

all vertices as the teleport set. 148

9.1 Real-world instances used in the experiments. We refer to every instance by its “ID”. For
complex networks, edge weights are randomly generated using either a normal distribution
or an exponential distribution. 177

xxi

9.2 R-MAT and random hyperbolic networks used in the experiments. For each size, we gener-
ate five networks using a different random seed. For a fixed number of vertices, the random
hyperbolic generator [191] generates networks with different number of edges; thus, we re-
port the minimum, the average, and the maximum number of edges in themmin,mavg, and
mmax columns, respectively. Edge weights are randomly generated using either a normal
distribution or an exponential distribution. 177

B.1 Undirected complex networks . 195
B.2 Directed complex networks . 195
B.3 Undirected road networks . 195
B.4 Directed road networks . 195
B.5 Geometric mean of the speedups of the dynamic algorithm over the static one over 100

batches of edge insertions of size 1, 10, 100 in complex networks, for k ∈ {1, 10, 100}. . . 196
B.6 Geometric mean of the speedups of the dynamic algorithm over the static one over 100

batches of edge removals of size 1, 10, 100 in complex networks, for k ∈ {1, 10, 100}. . . . 197
B.7 Geometric mean of the speedups of the dynamic algorithm over the static one over 100

batches of edge insertions of size 1, 10, 100 in road networks, for k ∈ {1, 10, 100}. 198
B.8 Geometric mean of the speedups of the dynamic algorithm over the static one over 100

batches of edge removals of size 1, 10, 100 in road networks, for k ∈ {1, 10, 100}. 199
B.9 Geometric mean of the update times over 100 batches of edge insertions of size 1, 10, 100

with k = 10 in complex networks. The columns “Static” and “Dyn.” report the average time
for the static and dynamic algorithm, respectively. 200

B.10 Geometric mean of the update times over 100 batches of edge removals of size 1, 10, 100
with k = 10 in complex networks. The columns “Static” and “Dyn.” report the average time
for the static and dynamic algorithm, respectively. 201

B.11 Geometric mean of the update times over 100 batches of edge insertions of size 1, 10, 100
with k = 10 in road networks. The columns “Static” and “Dyn.” report the average time for
the static and dynamic algorithm, respectively. 202

B.12 Geometric mean of the update times over 100 batches of edge removals of size 1, 10, 100
with k = 10 in road networks. The columns “Static” and “Dyn.” report the average time for
the static and dynamic algorithm, respectively. 203

C.1 Absolute running times (s) on moderate instances. Total: ADS with preprocessing on a
single core. 205

C.2 Absolute running times (s) on expensive instances. Total: ADS with preprocessing on a
single core. 206

D.1 Precision of the diagonal entries computed by the LAMGsolver (tolerance: 10−9) compared
with the ones computed by the Matlab pinv function. 207

D.2 Running time (s) of UST on the networks of Table 5.3. 207
D.3 Running time (s) of our greedy algorithm for group forest maximization. 208

xxii

E.1 Running times (s) of group-closeness maximization algorithms on the unweighted graphs
of Table 6.1a; k = 10. For our local search algorithms, we average data over five runs using
the arithmetic mean. 209

E.2 Running times (s) of group-closeness maximization algorithms on the weighted graphs of
Table 6.1b. For our local search algorithms, we average data over five runs using the arith-
metic mean. 209

F.2 Small networks used for group-closeness experiments with ILP solver. 212

F.1 Small networks used for group-harmonic experiments with ILP solver. 212

F.3 Large networks used for group-harmonic experiments. 213

F.4 Large (strongly) connected components of the networks inTable F.3 used for group-closeness
experiments. 214

F.5 Running times (s) of Greedy-H and Greedy-LS-H on the complex networks of Table F.3a. . 215

F.6 Running times (s) of Greedy-H andGreedy-LS-H on the high-diameter networks of Table F.3b.215

F.8 Running time (s) of GS-LS-C and Greedy-LS-C on the complex networks of Table F.4a. . . 216

F.9 Running time (s) of GS-LS-C and Greedy-LS-C on the high-diameter networks of Table F.4b.216

G.1 Running time (s) ofGBC,GCC,GHC, andGED-Walkmaximization (both lazy and stochas-
tic algorithms) on 36 cores for groups with size 5 to 100. 218

H.1 Average number of affected vertices in the road networks of Table 9.1. 219

H.2 Average number of affected vertices in the R-MAT networks of Table 9.2. 219

H.3 Average number of affected vertices in the complex networks of Table 9.1. 220

H.4 Average number of affected vertices in the random hyperbolic networks of Table 9.2. . . . 220

H.5 Average number of edges traversed to handle a single edge update. Results are averaged
over the road networks of Table 9.1 and over 100 edge updates. 221

H.6 Geometric mean of the speedups of dynamic Suitor over DynMWMRandom on real-world
networks of Table 9.1. Results are averaged over 100 edge updates. 222

H.7 Average running time in seconds to handle a single edge update. Results are averaged
over the networks of Table 9.1 and over 100 edge updates. Contrarily to the tables in Ap-
pendix H.6, here we also take into account the time spent to update the graph data structures.223

H.8 Geometric mean of the speedups of the dynamic algorithm over a static recomputation on
the road networks of Table 9.1. Results are averaged over 100 batcheswith b ∈

{
1, . . . , 104

}
edge updates. 224

H.9 Geometric mean of the speedups of the dynamic algorithm over a static recomputation
on the complex networks of Table 9.1. Results are averaged over 100 batches with b ∈{
1, . . . , 104

}
edge updates. 225

H.10 Geometric mean of the speedups of the dynamic algorithm over a static recomputation
on the R-MAT networks of Table 9.2. Results are averaged over 100 batches with b ∈{
1, . . . , 104

}
edge updates. 226

xxiii

H.11 Geometric mean of the speedups of the dynamic algorithm over a static recomputation on
the random hyperbolic networks of Table 9.2. Results are averaged over 100 batches with
b ∈

{
1, . . . , 104

}
edge updates. 226

H.12 Average running times in seconds of the static and the dynamic Suitor algorithms for 100
batches of b ∈

{
1, . . . , 104

}
edge updates on the road networks of Table 9.1. The columns

“Static” and “Dynamic” report the average time (in seconds) for the static and for the dy-
namic algorithm, respectively. 227

H.13 Average running times in seconds of the static and the dynamic Suitor algorithms for 100
batches of b ∈

{
1, . . . , 104

}
edge updates on the R-MAT networks of Table 9.2. The

columns “Static” and “Dynamic” report the average time (in seconds) for the static and
for the dynamic algorithm, respectively. 227

H.14 Average running times in seconds of the static and the dynamic Suitor algorithms for 100
batches of b ∈

{
1, . . . , 104

}
edge updates on the complex networks of Table 9.1. The

columns “Static” and “Dynamic” report the average time (in seconds) for the static and
for the dynamic algorithm, respectively. 228

H.15 Average running times in seconds of the static and the dynamic Suitor algorithms for 100
batches of b ∈

{
1, . . . , 104

}
edge updates on the random hyperbolic networks of Table 9.2.

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and
for the dynamic algorithm, respectively. 229

xxiv

Part I

Introduction

1

1 Introduction

1.1 Context: Network Analysis

Most complex systems and phenomena are amenable to be modeled as graphs as they consist of entities
interacting with each other. Think of the network of computers exchanging data between them that form
the Internet, the (virtual) friendships among the users of a social network, the power grids connecting
generating facilities to electrical substations, or the biochemical interactions happening in a biological cell.
Often, the analysis of the patterns of relationships of a network (also known as network analysis) reveals
interesting insights about the underlying system [25, 177, 277, 295]. Today, network analysis is an established
scientific field aiming to unveil non-trivial properties of complex systems by analyzing the structure of their
interconnections.

Network analysis emerged from graph theory, whose roots date back in the early 18th Century when
the Seven Bridges of Königsberg problem1 was modeled as a graph and resolved (negatively) by the Swiss
mathematician Leonhard Euler. Graph theory continued to develop and started to be applied to other areas
such as chemistry or social sciences. In particular, thanks to the great interest that graph theory sparked
among social scientists, the 20th Century witnessed the development of Social Network Analysis (SNA), a
discipline that investigates social ties between individuals through the use of graphs.

The idea of looking at society in terms of interconnections among social actors was first conceived by the
French philosopher Auguste Comte [43, p. 14]. Only in the 1930s, however, the group led by the Romanian-
American psychologist Jacob LevyMoreno developed the first sociograms [220] (i.e., graphic representations
of social ties between people) as well as an approach that includes all the defining properties of social net-
work analysis. As argued by Freeman: “It was based on structural intuitions, it involved the collection
of systematic empirical data, graphic imagery was an integral part of its tools and it embodied an explicit
mathematical model.” [43, p. 39].

In this thesis, we address two popular problems that, among others, immediately found applications in
the context of social networks and were later applied to many other fields beyond SNA [233]: (i) identifying
the individuals that are the most “important” according to some criterion and (ii) matching each individual
(or asmany as possible) with the best suitable candidate – also known as themaximum (weighted)matching
problem.

Centrality measures – i.e., functions that assign to each vertex (or edge) of a network an importance
score – turned out to be a successful technique to identify important individuals in a social network. Cen-
trality stems from the concept of centralization, devised for the first time in the late 1940s thanks to experi-
ments aimed to study communication patterns and group collaboration conducted atMIT by Alex Bavelas’s

1A recreational activity for the residents of Königsberg was to determine whether one could cross all the seven bridges of the
city exactly once and, if possible, return to their starting point.

3

group [33]. Results suggested that centralization is related to a group’s efficiency in terms of problem-solving
capabilities [279, p. 45] and agreed with the perception of influence of each individual actor [43, p. 68]. These
experiments led to the definition of closeness centrality2 in 1950 [34] and, in the following decades, to the
development of many other centrality indices that have been employed in a multitude of applications far
beyond SNA. Examples include the control of epidemic spreading [93], the study of the political integration
of Indian social life [81] or even the analysis of the centralization of political parties and elite networks in
the 15th Century Florence to explain the power of the Medici family [3].

The maximum weighted matching problem (or MWM), in turn, derives from the well-studied Stable
Roommates Problem (SRP). SRP was first introduced in the seminal work by Gale and Shapley in 1962 as a
variation of the famous StableMarriage Problem [115] and appears in numerous practical applications [149].
In its most basic form, SRP takes as input a set of participants, with each one having ranked the others in
order of preference. The desired output is a stablematching (i.e., a separation of the set into disjoint pairs of
“roommates”); a matching is stable if there are no two participants that prefer to be matched together rather
than with their current matching partner. Among all the possible stable matchings in a network, however,
some applications require to find the one with maximum weight,3 hence the maximum weighted matching
problem. Examples include information retrieval [176], pattern recognition [82], multilevel graph partition-
ing [219], and many others [58, 138, 237, 283]. As of today, MWM is one of the most popular combinatorial
optimization problems [49, 154, 201].

1.2 Motivation

Centrality in Large-Scale Networks. Traditionally, centrality measures have been applied to graphs
with relatively small size. In the last decades, however, factors such as the increasing computing power of
modern machines, the rapid growth of the Internet and of online social networks, automatic data collection
and many others catalyzed the rapid growth (both in size and quantity) of graph datasets. Hence, massive
networks with millions to billions of vertices and edges are now ubiquitous. Computing (even in approxi-
mation) traditional centrality measures in such large graphs is challenging as many of them inherently have
a high computational complexity or are averse to approximation schemes or require operations that are not
amenable to parallelization [156].

A goal of this work is to develop scalable algorithms for centrality computation in large real-world net-
works. The term “scalability” refers here to the capability of an algorithm to process massive data sets in
reasonable time. Usually, this implies that the time complexity is (nearly-)linear in the input size. We do not
refer in this context to parallel scalability (i.e., the capability of an algorithm to use multiple processors to
execute faster), although in some cases we exploit shared-memory or even distributed-memory parallelism
to speed our algorithms up. Our algorithms achieve scalability through three strategies: approximation
(i.e., yielding inexact results with bounded errors), heuristics (i.e., yielding inexact solutions without error
bounds), and by devising and computing new centralitymeasures that aremore amenable to scalability than
traditional ones.

2Closeness is one of the oldest centrality measures; it is defined as the reciprocal of farness, i.e., the sum of shortest-path
distances from an actor to all the others.

3The weight of a matching M is defined as the sum of the edge weights in M .

4

Chapter 5 provides an example of approximation: we present a fast algorithm to approximate electrical
closeness as well as other electrical centrality measures. Because computing electrical closeness exactly is
prohibitive on large graphs, we introduce a new sampling-based approach that yields results with higher
quality (in terms of maximum absolute error) and is faster compared to state-of-the-art algorithms. This
enables for the first time the possibility to approximate electrical closeness on graphs with hundreds of
millions of vertices in minutes.

Concerning heuristics, Chapter 6 introduces new local search algorithms for group-closeness maximiza-
tion, i.e., the problem of finding a set of k vertices with highest group-closeness centrality.4 This problem
is NP-hard and there is no algorithm known to solve it exactly in reasonable time on graphs with more
than a few thousands of vertices. In a matter of seconds, our heuristics compute high-quality solutions on
networks with hundreds of millions of vertices – instead of several hours with existing algorithms.

Because shortest-path based measures are inherently expensive to compute, we propose, in Chapter 8, an
alternative (algebraic) group centrality measure inspired by Katz centrality (see Eq. (2.10)) that is based on
walks of any length instead of shortest paths. Our experiments suggest that not only our new measure can
be maximized (in approximation) faster than existing group centralities, but it also improves the precision
of popular graph mining tasks to a greater extent than existing measures.

Dynamic Graphs. Networks often evolve over time, creating new connections or deleting existing ones.
Changes can happen very frequently: consider the frenetic activity on social media platforms or the emails
that are sent every second.5 For these dynamic networks, analyzing each snapshot independently (e.g., by
running a static algorithm after every single update) is clearly an inefficient choice, especially for rapidly-
changing networks. This raises the need for more effective approaches tailored to dynamic graphs.

Thus, another objective of this work is to design scalable dynamic algorithms capable of efficiently recom-
puting the required information after one or multiple changes occur. In particular, we develop algorithms
to efficiently maintain in a dynamic graph: (i) the ranking of the top-k vertices with highest closeness cen-
trality (Chapter 3) and a (1/2)-approximation of the MWM (Chapter 9).

1.3 Methodology

AlgorithmEngineering. The algorithmic contributions presented in this thesis were developed follow-
ing the algorithm engineering paradigm. Algorithm engineering can be summarized as a feedback loop of
five iterative phases: (i) modeling the problem, which usually stems from practical applications, (ii) design-
ing an algorithm, (iii) analyzing it theoretically, (iv) implementing it, and (v) evaluating it via systematic
experiments (i.e., experimental algorithmics), see Figure 1.1 for an overview. The process is cyclic rather
than sequential because experimental results shall unveil insights about that problem that lead to further
(theoretical) improvements of the algorithms. According to this paradigm, the implementation and the
experimental evaluation of an algorithm are not left to practitioners but are part of the whole development
process. Hence, all the algorithms presented in this thesis are implemented in practice and evaluated on

4Group-closeness is a set function that measures the centrality of a group S ⊂ V of vertices according to the average shortest-
path distance from S to the vertices outside S. See Eq. (2.1) for the distance between a vertex and a set of vertices.

5See https://www.internetlivestats.com.

5

https://www.internetlivestats.com

Figure 1.1: Algorithm Engineering schema [255].

real-world instances; in particular, they are implemented in C++ as part of the open-source NetworKit [273]
library.

Experimental Algorithmics. As described above, experimental evaluation is a crucial step of the algo-
rithm engineering process. In particular, to effectively support our conclusions, it is essential to implement
a systematic and reproducible experimental pipeline. To this end, our experiments follow, when applicable,
the guidelines for experimental algorithmics presented in Ref. [14] – which I coauthored. In particular, we
carefully select appropriate sets of instances (both real-world and synthetic) belonging to different classes.6

We always obtain real-world instances from public repositories (e.g., KONECT [173], SNAP [181], and oth-
ers) whereas for synthetic instances we provide details about the graph generators we used. Also, we make
our code publicly available as part of the NetworKit toolkit. The reproducibility of our experiments is guar-
anteed by managing them with SimexPal [14], a software that automates the experimental pipeline and
simplifies gathering and analyzing the results according to the guidelines [14].

1.4 Outline and Contribution

This work is structured into five parts. The first one provides a broad overview of the addressed network-
analytic challenges and fundamental notation and definitions, Parts II–IV present in detail our algorithmic
contributions, and Part V is devoted to concluding remarks. More precisely, Part II focuses on comput-
ing and approximating popular single-vertex centrality measures. In Part III, we consider group-centrality,
i.e., the concept of centrality extended to groups of vertices as described by Everett and Borgatti [104]; in
particular, we introduce approximation algorithms and fast heuristics for group centrality maximization.

6Although there are several ways to categorize a network [14], in this work, we often refer to the class of complex networks. As
the name suggests, complex networks present non-trivial (complex) topological features, most notably: a small diameter (small-
world effect [227]), clustering (i.e., the tendency of vertices to form densely connected clusters), and a skewed degree distribution
(many vertices with low degree and a few vertices with high degree) [5]. Simple networks such as road networks or random graphs
(e.g., graphs generated by the Erdős Rényi model) do not present such features.

6

Finally, Part IV presents a batch-dynamic algorithm that maintains a (1/2)-approximation of an MWM in
fully-dynamic graphs.

The contributions presented in this thesis appeared in the publications reported in Appendix A; in the
following, we provide a detailed overview.

Part II: Algorithms for Single-Vertex Centrality Measures. Centrality measures are widely used
to quantify the importance of single vertices on the basis of their structural position in a network. Con-
cerning closeness, Bergamini et al. [37] introduced an efficient algorithm to identify the top-k vertices with
highest closeness centrality that, in practice, is much faster than computing the closeness of all vertices and
extracting the top-k ranking later. On dynamic graphs, however, it would anyway be too costly to run this
algorithm after each edge update (or batch of updates). Hence, in Chapter 3, we propose a batch-dynamic
algorithm for updating the top-k ranking after multiple edge updates. Our algorithm is developed upon
the existing static strategy by Bergamini et al. [37]. Experiments show that, for single edge updates and for
batches with up to 100 edge updates, our dynamic algorithm is one to four orders of magnitude faster than
the static one.

In Chapter 4, we consider the problem of implementing an effective parallelization strategy for adap-
tive sampling and we apply it to betweenness centrality approximation as a case study. Adaptive sampling
algorithms draw random samples according to an algorithm-specific distribution and aggregate them. A
stopping condition determines whether enough samples have been drawn – thus the name “adaptive”. Be-
cause the stopping condition requires to evaluate all the data generated so far, parallelization strategies for
adaptive sampling algorithms are challenging to devise. In addition, evaluating the stopping condition is
often not cheap (e.g., for our betweenness case study, it is linear in the number of vertices of the graph);
hence, there is a trade-off between (i) frequently checking the stopping condition, which implies additional
time overhead (but avoids drawing many samples in excess) and (ii) checking the stopping condition less
frequently (with a higher risk of drawing many samples in excess). We introduce a new epoch-based par-
allelization framework for adaptive sampling that avoids expensive synchronization costs. The main idea is
to split the execution of each thread into discrete epochs. During an epoch, each thread draws samples; the
stopping condition is checked only at the end of each epoch and always by the same thread, while the others
keep drawing samples for the next epoch. In this way, threads do not idle while the stopping condition
is being checked. We adapt this framework to KADABRA, the state-of-the-art algorithm for betweenness
approximation. Our interest in KADABRA stems from the fact that this algorithm implements an adaptive
sampling technique but it fails to scale to large numbers of threads due to high synchronization costs. We
propose three algorithms that achieve different trade-offs in terms of memory footprint and determinism
of the results. Furthermore, we use parameter tuning [14] to optimize the frequency of checking the stop-
ping condition. Our experimental study shows that our framework achieves much better parallel speedups
compared to a straightforward OpenMP-based parallelization strategy for KADABRA.

Finally, Chapter 5 targets the problem of approximating electrical centralitymeasures, especially electrical
closeness and forest closeness. Thesemeasures interpret the underlying graph as an electrical network (with
edge weights representing the resistance between two vertices) and the distance between two vertices u and
v is computed as the resulting resistance between them (i.e., the effective resistance or resistance distance, see
Section 2.3.2). Resistance distance and forest distance consider all the paths between u and v, not only the

7

shortest ones. Unfortunately, existing methods to compute electrical closeness and forest closeness exactly
rely on computing the pseudoinverse L† of the Laplacian matrix L (see Section 2.1), which is prohibitive in
terms of both time and memory – typically, L† is dense. We present a new efficient sampling-based strategy
that only requires a linear amount of additional memory and exploits twomain properties: (i) the resistance
distance between any two vertices only requires an arbitrary column and the diagonal of L† (not the whole
matrix) and (ii) the resistance distance of an edge e is proportional to the fraction of the spanning trees
that contain e. Our algorithm provides a probabilistic ±ε-approximation of diag

(
L†
)
by solving just one

Laplacian system and by sampling a fixed amount of uniform spanning trees. Experimental results show
that, compared to state-of-the-art strategies, our algorithm not only is much faster and more memory-
efficient, but also yields much more accurate approximation of diag

(
L†
)
in terms of absolute error, which

results in more precise complete rankings of the elements of diag
(
L†
)
.

Part III: Algorithms for Group Centrality Measures. Group centrality is useful for applications
seeking sets of vertices that are central as a group rather than the top most individually central vertices.
Examples include finding the k most influential actors in a social network to promote some product or
idea [162] or placing resources among k peers in a large P2P network so that they are easily accessible by
others [121].

Unfortunately, finding the most central group of k vertices is anNP-hard problem for most group cen-
trality measures. This leaves approximation algorithms and heuristics the only viable options for instances
with more than a few thousand vertices. Yet, existing algorithms for group centrality maximization have
limitations: (i) they fail to scale to large networks and, in the group-closeness case, (ii) they do not provide
any approximation guarantee. Moreover, existing measures are not suitable for disconnected graphs. In
this part, we propose solutions to these issues.

In Chapters 6 and 8, we target the lack of truly scalable algorithms for group centrality maximization
from two different directions. More precisely, Chapter 6 focuses exclusively on group-closeness: The fastest
existing algorithm for this problem is the greedy ascent heuristic by Bergamini et al. [38], which needs sev-
eral hours to handle graphs with hundreds of millions of edges. We introduce a family of novel local search
heuristics that require no more than a few minutes to handle even larger graphs while yielding solutions
with nearly the same quality. The fact that group-closeness is based on shortest paths poses complexity-
theoretic limitations to the development of scalable approximation algorithms to maximize this measure.
This motivates us to approach this problem from a different angle, that is, introducing an alternative mea-
sure. Chapter 8 introduces GED-Walk (for Group Exponentially Decaying Walk), a novel group centrality
measure inspired byKatz centrality. Similarly toKatz, it takes into accountwalks of any length –with shorter
walks being more relevant than longer ones. We present algorithms to compute and maximize (in approx-
imation) GED-Walk. On real-world networks and for groups with up to 100 vertices, our maximization
algorithm for GED-Walk is up to two orders of magnitude faster than state-of-the-art greedy maximization
algorithms for group-betweenness, group-closeness, and group-harmonic. Chapter 8 also targets the lack
of electrical group centrality measures for disconnected graphs by introducing group forest closeness, i.e.,
forest closeness7 extended to sets of vertices, and by adapting the greedy maximization algorithm by Li et
al. [183] to group forest closeness. Our experiments also show that, in connected graphs, the precision of

7Forest closeness (see Section 2.4) is an electrical centrality measure designed to handle disconnected graphs.

8

popular graph mining applications can be improved by GED-Walk to a greater extent compared to other
measures. Analogous results are achieved in disconnected graphs by group forest closeness.

Chapter 7 deals with approximating group-closeness maximization. Building on top of the theoretical
results achieved in Ref. [12], we present the first approximation algorithm for this problem. A clear trade-off
between solution quality and running time emerges from our experiments: our approximation algorithms
consistently find higher quality solutions compared to existing approaches at the cost of additional running
time.

Part IV: Maximum Weighted Matching in Fully-Dynamic Graphs. On dynamic graphs, updating
a previously computed matching after each update (or a batch of updates) is a more efficient approach than
re-running a static algorithm from scratch – similarly to what we observe in Chapter 3 for the top-k close-
ness centrality ranking. Despite the wide range of algorithms for dynamic maximum (weighted) matching
proposed in the literature, little effort was invested into implementing these algorithms in practice and
evaluating their performance on real-world instances. Only recently, implementations and experimental
analyses were done by Henzinger et al. [140] for dynamic maximum cardinality matching algorithms and
in Ref. [16] for dynamic MWM – which I coauthored. These algorithms efficiently update an approximate
maximum (weighted) matching after single edge updates.

In Chapter 9, we consider the problem of maintaining a (1/2)-approximate MWM after multiple edge
updates, as applications dealing with rapidly-evolving networks may not require to compute a solution for
every single snapshot of the graph – e.g., self-organizing LTE networks [143]. We take inspiration from the
state-of-the-art Suitor algorithm by Manne and Halappanavar [203]. Our dynamic strategy is conceptually
similar to the one implemented for top-k closeness in Chapter 3: we use Suitor to compute an approximate
MWM on an initial snapshot of the graph; then, after one or multiple edge updates, we identify the affected
vertices (i.e., the ones whose matching partner needs to be updated) and update their matching partner
accordingly. Although in aworst-case scenario every vertex is affected by a single update (which implies that
our dynamic algorithm has the same worst-case time complexity than the static Suitor), in our experiments,
we see that the actual number of affected vertices is very small – it grows at most linearly with the batch size.
For single edge updates, our dynamic approach is on average faster than the state of the art [16], whereas for
batches with up to 104 edge updates it is two to six orders of magnitude faster than a static recomputation
(Ref. [16] only supports single edge updates).

9

2 Preliminaries

2.1 Graphs

A graph8 is an ordered pair (V,E) where V is the set of vertices,E ⊆ V × V is the set of edges, n = |V | is
the number of vertices, andm = |E| is the number of edges. A graphG = (V,E) is a subgraph of another
graphG′ = (V ′, E′) ifG contains all the vertices and edges ofG′, i.e., V ⊆ V ′ and E ⊆ E′ ∩ (V × V).

An edge e = {u, v} ∈ E is incident to u and v and both vertices are adjacent to each other. The neigh-
borhood of a vertex u is the set of vertices adjacent to u, i.e., N(u) := {v ∈ V | {u, v} ∈ E}. The vertices
inN(u) are also called the neighbors of u. The degree of a vertex u, denoted deg(u), is the cardinality of its
neighborhood.

If edges are ordered sets of pairs then the graph is called directed and we denote by (u, v) an edge
from a vertex u to a vertex v; otherwise, the graph is called undirected – Figure 2.1a and Figure 2.1b
show an example of an undirected graph and a directed graph, respectively. In directed graphs, a ver-
tex u has out-neighbors, i.e., the set of vertices Nout(u) := {v ∈ V | (u, v) ∈ E}, and in-neighbors, i.e.,
Nin(u) := {v ∈ V | (v, u) ∈ E}; the neighbors of u is the union of u’s out-neighbors and in-neighbors:
N(u) := Nout(u) ∪ Nin(u). The cardinalities degout(u) := |Nout(u)|, degin(u) := |Nin(u)|, and
deg(u) := |N(u)| are called out-degree, in-degree, and degree of u, respectively.

Aweighted graph is an ordered triplet (V,E,w)where (V,E) is an unweighted graph andw is theweight
function, i.e., w : E → R. In weighted graphs, the degree can be extended to the sum of the weights of the
(in/out) neighbors, namely the weighted degree and the weighted in- and out-degree. In this thesis, we only
consider strictly positive edge weight functions. An unweighted graph can also be interpreted as a weighted
graph with weight function w : E → 1, i.e., every edge has weight 1.

0 1

2

3 4

(a) Example of undirected graph with n = 5 ver-
tices and m = 6 edges.

0 1

2

3 4

(b) Example of directed graph with n = 5 vertices
and m = 7 edges.

Figure 2.1: Examples of undirected and directed graphs.

8In the literature, graphs representing real-world phenomena are often called “networks” – e.g., social networks, road networks,
etc. We use these two names interchangeably. Further, in the context of graphs, the names “node” and “vertex” are often used as
synonyms. We use “vertex” for an element in V and we reserve “node” for computing units in a distributed memory system.

11

Matrix Representations of a Graph. A graph G = (V,E,w) can be represented using matrices. In
this work, matrices are denoted by bold capital letters such as M and the element at the i-th row and j-th
column of M by M[i, j]. Similarly, we type vectors as bold lowercase letters such as v and we denote the
element at index i in v by v[i]. The adjacency matrix A of G is a square n × n matrix such that A[u, v] =
w(u, v) if there is an edge from u to v, zero otherwise. Clearly, ifG is undirected, thenA is symmetric. The
Laplacian matrix L ofG is defined as:

L := D− A,

where D is the degree matrix of G, i.e., the diagonal matrix such that D[u, u] is the (possibly weighted)
degree of u. IfG is undirected, then L is symmetric and positive-semidefinite. For example, the adjacency
and the Laplacian matrices of the graph in Figure 2.1a are respectively:

A =

0 0 0 1 0

0 0 1 0 1

0 1 0 1 1

1 0 1 0 1

0 1 1 1 0

 and L =

1 0 0 −1 0

0 2 −1 0 −1
0 −1 3 −1 −1
−1 0 −1 3 −1
0 −1 −1 −1 3

.

2.2 Paths and Components

Definition 2.2.1 (Walk, Trail and Path). A walk on a graph G = (V,E,w) is an alternating sequence of
vertices (u0, u1, . . . , uℓ) and edges (e1, e2, . . . , eℓ) where ei = (ui−1, ui) ∈ E for all 0 < i ≤ ℓ. The
number ℓ of edges in the walk is called the length of the walk. A trail is a walk where all edges are distinct
and a path is a walk with distinct vertices.

Definition 2.2.2 (Random Walk). A random walk of length ℓ on a graph G = (V,E,w) is a walk
(u0, u1, . . . , uℓ) obtained in a random fashion. Starting at vertex u0, its next vertex u1 is chosen at ran-
dom from u0’s (out) neighbors, and so on.

Hereafter, we denote Ps,t a path where s = u0 and t = uℓ. Additionally, a circuit is a trail where u0 = uℓ

and a cycle is a circuit with no repeated vertices. If a graph does not have cycles it is called acyclic. Directed
acyclic graphs are abbreviated with the acronym DAG.

On weighted graphs, the weight of a walkW is defined as the sum of the weights of the edges it traverses:

w(W) :=
ℓ∑

i=1

w(ei).

Clearly, if the graph is unweighted, the length and the weight of a walk coincide.9

If there exists a path from a vertex s to a vertex t, we say that s reaches t or, alternatively, that t is reachable
from s. Reachability is important to determine connectivity and the components in a graph.

Definition 2.2.3 (Connected Graph). An undirected graph is connected if any vertex reaches any other
vertex.

9Recall that an unweighted graph is also a weighted graph where all edges have weight 1.

12

Definition 2.2.4 (Connected Component). A connected component (or CC) of a graphG is a maximal con-
nected subgraph C ofG, i.e., no additional vertex or edge can be added to C without breaking its property
of being connected.

Clearly, a connected graph has only one connected component – e.g., the graph in Figure 2.1a is con-
nected. Moreover, we call tree an undirected acyclic connected graph and forest a disjoint union of trees.

Definition 2.2.5 (Strongly Connected Graph). A directed graph is strongly connected if any vertex reaches
any other vertex.

Definition 2.2.6 (Strongly Connected Component). A strongly connected component (or SCC) of a directed
graphG is a maximal strongly connected subgraph ofG.

For example, the graph in Figure 2.1b has three SCCs: {{0}, {3}, {1, 2, 4}}. Analogously to the undi-
rected case, strongly connected graphs consist of only one strongly connected component. By ignoring edge
directions in directed graphs, we also have weakly connected graphs and weakly connected components.

Definition 2.2.7 (Weakly Connected Graph). A directed graph is weakly connected all vertices are con-
nected to each other by a path that ignores edge directions.

Definition 2.2.8 (Weakly Connected Component). A weakly connected component (or WCC) of a directed
graphG is a maximal weakly connected subgraph ofG.

For example, the graph in Figure 2.1b is weakly connected because it has only one weakly connected
component. Finally, we introduce biconnectivity, i.e., the property of graphs to remain connected after the
removal of a vertex.

Definition 2.2.9 (Biconnected Graph). A [directed] graph is biconnected if it remains [strongly] connected
after the removal of any one vertex.

Definition 2.2.10 (Biconnected Component). A biconnected component of a graph G is a maximal bicon-
nected subgraph ofG.

Clearly, the graph in Figure 2.1a is not biconnected – the removal of vertex 3 splits the graph into two
connected components – but it has two biconnected components: {{0, 3}, {1, 2, 3, 4}}.

2.3 Distances in Graphs

In mathematics, a metric on a set S is a function d : S × S → R≥0 that satisfies the following axioms for
all x, y, z ∈ S:

1. identity of indiscernibles: d(x, y) = 0⇔ x = y;

2. symmetry: d(x, y) = d(y, x);

3. triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

13

We call such a function a distance function. Also, we define the distance between a point s ∈ S and a
subset P ⊆ S as the distance from s to the nearest point in P :

d(s, P) := min
p∈P

d(s, p). (2.1)

In an undirected graph G = (V,E,w) with positive edge weights, the vertex distance is a metric d :

V × V → R≥0 defined on all the pairs of vertices inG. Notwithstanding that the symmetry property does
not necessarily hold in directed graphs, we follow the standard convention and use the term “distance” even
in the directed case. We now introduce three vertex distance measures that are necessary for the definition
of the centrality measures described in Sections 2.4 and 2.5.

2.3.1 Shortest-path Distance

The shortest-path distance, also known as the geodesic distance, is one of the most natural and common
definitions of vertex distance in graphs. The shortest path between two vertices s and t is the path Ps,t with
minimum weight – note that such a path might not be unique.

Definition 2.3.1 (Shortest-path Distance). The shortest-path distance is the function d : V × V → R≥0

such that d(s, t) is the weight of the path Ps,t with minimum weight.

Conventionally, if t is not reachable from s, the distance d(s, t) is defined as infinite.

Definition 2.3.2 (Diameter). The diameter of a graph of a graphG is the maximum shortest-path distance
between two reachable vertices u and v where u reaches v:

diam(G) := max
u,v∈V,

d(u,v)<+∞

d(u, v).

Definition 2.3.3 (Eccentricity). The eccentricity of a vertex u ∈ V is the maximum shortest-path distance
from u to a vertex v reachable from u:

ecc(u) := max
v∈V,

d(u,v)<+∞

d(u, v).

Computing the shortest path between two vertices is a classic problem in algorithmic graph theory and
can be solved by the well-known Dijkstra’s algorithm in O(m + n logn) time – if the priority queue is
implemented using a Fibonacci Heap. The same algorithm can also solve the more general Single-Source
Shortest Path problem (or SSSP), i.e., finding the shortest distances from a vertex to all the other vertices in
a graph, inΘ(m+ n logn) time. If the graph is unweighted, both the shortest path and the SSSP problems
can be solved in O(n + m) time with a Breadth-First Search (or BFS). The problem of computing the
shortest-path distances between all pairs of vertices is known as the All-Pairs Shortest Path problem (or
APSP), and can be solved inO(nm+ n2 logn) time by running Dijkstra’s algorithm from each vertex or –
for graphs with arbitrary edge weights – Johnson’s algorithm. On unweighted graphs, in turn, it suffices to
run a BFS from each vertex, which requires Θ(n2 + nm) time.

14

In addition to the aforementioned combinatorial techniques, shortest-path distance problems can also be
solved algebraically via matrix multiplication. APSP can be solved in O(nω logn) by repeatedly squaring
the adjacency matrix of a graph, where ω < 2.373 [9] is the matrix multiplication exponent, i.e., the small-
est constant such that the product of two n × n matrices can be performed within O(nω+o(1)) algebraic
operations. The logarithmic factor of the time complexity can be saved by a recursive decomposition of the
problem [4, Theorem 5.7, p. 204]. In case of integral edge weights, further improvements have been proposed
for undirected [267] and directed graphs [296, 297]. Despite being asymptotically faster than combinatorial
algorithms on dense graphs,10 methods based on matrix multiplication are in practice not applicable to
large graphs because they require to store dense matrices.

2.3.2 Resistance Distance

In the context of determining the distance between two vertices in a graph, some applications require to take
into account not only the shortest paths, but all the paths between the two vertices [57, 70, 274]. A typical
example are electrical networks: an electrical network can be regarded as an undirected weighted graph
G = (V,E, r) where edges are resistors and r : E → R>0 is the resistance of an edge. The conductance of
an edge e is defined as the reciprocal its resistance: c(e) = 1/r(e). Let e = {a, b} ∈ E and let p(a, b) =
p(a)− p(b) be the electric potential difference between a and b; then, according to Ohm’s law, an amount

i(a, b) =
p(a, b)

r(e)

of electrical current flows from a to b. Notice that, although the graph is undirected, the electrical current
has a direction which is determined by the sign of potential difference, and thus p(a, b) = −p(b, a) and
i(a, b) = −i(b, a). The current always flows from the vertex with the highest potential to the vertex with
the lowest potential. Potential differences and currents in an electrical network are governed by the two
well-known Kirchhoff ’s potential and current laws [54, 196].

Kirchhoff’s potential law. The potential differences round any cycle (u1, u2, . . . , uℓ) sum to zero:

p(u1, u2) + p(u2, u3) + . . .+ p(uℓ, u1) = 0.

Kirchhoff’s current law. The total current outflow from any vertex u is zero:

i(u,∞) +
∑

v∈N(u)

i(u, v) = 0.

Here i(u,∞) denotes the amount of current leaving the network at vertex u – in accordance with our no-
tation, i(∞, u) = −i(u,∞) is the amount of current entering the network at vertex u.

10The density of a graph is m/
(
n
2

)
, i.e., the fraction of edges actually present in the graph over the maximum possible number

of edges. Consider a sequence of graphs of increasing number of vertices n. If the density approaches zero as n becomes large,
the graphs are said to be sparse. Otherwise, a graph where the density remains non-zero in the limit of large n is said to be dense.
Clearly, we cannot take the limit of real-world networks and thus we cannot determine formally whether they are sparse or dense.
Informally, however, for these networks “sparse” means that most of the edges that could exist in the network are not present [227,
Section 6.10.1].

15

In most problems, current enters the network at some vertices and leaves it at others. Such a general
problem can be reduced to the fundamental problem where a unit of current enters the network at a vertex
s, called the source, and leaves it at another vertex t, called the sink.

The effective conductance from s to t, ceff(s, t), is the amount of current flowing from s to twhen p(s, t) =
1. The effective resistance reff(s, t) = 1/ceff(s, t) is the potential difference between s to t when a unit of
current flows from s to t [54, Ch. IX]. This quantity is also referred to as the resistance distance between s
and t [120].

Definition 2.3.4 (Resistance Distance). LetG = (V,E, r) be a graph. The resistance distance (or effective
resistance) is a metric ρ : V × V → R≥0 defined as the potential difference between two vertices s and t
ensuring s as the source vertex, t as the sink vertex, and a unit of current from s to t.

Let z ∈ V and ez be the canonical unit vector for z, i.e., ez[u] = 0 for all u ̸= z and ez[z] = 1. The
resistance distance between s and t can be computed as follows:

ρ(s, t) = (es − et)⊤L†(es − et) = L†[s, s]− 2L†[s, t] + L†[t, t], (2.2)

where L† is the Moore-Penrose pseudoinverse of the Laplacian matrix [126, p. 290]. L† can be expressed
as [281]:

L† =
(
L+

1

n
J
)−1

− 1

n
J, (2.3)

where J is the n × n-matrix with all elements equal to one. L† has numerous applications in physics and
engineering [281] as well as appliedmathematics [126] and graph (resp. matrix) algorithms [183]. A straight-
forward way to compute the resistance distance between two vertices is to compute L†. However, this ap-
proach is limited to small graphs because it requires O(n3) time and O(n2) memory as L† is generally a
dense matrix. Clearly, to compute ρ(s, t), only three elements of L† are needed, and selected elements of L†

can be computed in practice more efficiently than computing the whole L† [151, 187].
The resistance distance between two vertices u and v is proportional to the commute time between u and

v, namely:
tc(u, v) := th(u, v) + th(v, u) = vol(G) · reff(u, v),

where th(u, v) is the hitting time fromu to v, i.e., the expected length of a randomwalk (seeDefinition 2.2.2)
that starts in u and ends in v, and vol(G) is the volume ofG, i.e., the sum of the edge weights of the graph.
The commute time can be interpreted as the expected length of a random walk for going from u to v and
back to u again [62].

2.3.3 Forest Distance

Forest distance is a one-parametric family of metrics introduced by Chebotarev and Shamis [69, 71] that
takes into account all the paths between two vertices. Contrary to resistance distance, forest distance (i)
applies to disconnected graphs out of the box11 and (ii) allows to control the influence of the length of the
paths between the two vertices over the value of their distance via a parameter α > 0. Forest distances have

11Resistance distance requires some adjustments to handle disconnected graphs.

16

been shown to effectively capture sensitive relationship indices such as social proximity and group cohesion
and thus has found application in sociology [72].

Definition 2.3.5 (Rooted Spanning Forest). Let G = (V,E,w) be an undirected graph with c connected
components (C1, C2, . . . , Cc) and let Ti be a spanning tree of the component Ci. A spanning forest on G
is the disjoint union ∪ci=1Ti. A spanning forest is rooted if each spanning tree Ti has a vertex marked as its
root.

Let G = (V,E,w) be an undirected graph and let α > 0. The forest distance is defined in terms of the
parametric forest matrix ofG, i.e.,

Ωα := (I+ αL)−1. (2.4)

The name forest stems from the fact that the element Ωα[u, v] is the fraction of rooted spanning forests
where u is the root of a tree and v belongs to the same tree [69, 153]. An alternative definition of the forest
matrix preferred in other works such as Ref. [70] is (αI + L)−1, which is equivalent to the one given in
Eq. (2.4) up to a scaling factor of the edge weights of the graph. The forest matrix Ωα is symmetric and
doubly stochastic [213], i.e., for all i, j ∈ {1, . . . , n}:

Ωα[i, j] ≥ 0, j⊤Ωα = j⊤, Ωαj = j,

where j is the all-ones vector. Further, Ωα[i, j] is 0 iff i and j are in two different components, whereas
Ωα[i, i] ≤ 1 with equality iff i is an isolated vertex [214].

Definition 2.3.6 (Forest Distance [69]). Let G = (V,E,w) be an undirected graph, α > 0, and s, t ∈ V .
The forest distance is a one-parametric metric ζα : V × V → R≥0 defined as:

ζα(s, t) := (es − et)⊤Ωα(es − et) = Ωα[s, s]− 2Ωα[s, t] +Ωα[t, t].

Higher values of α give greater importance to long paths. To see this we analyze the asymptotic behavior
of ζα(s, t) with respect to α. As α→ 0, ζα(s, t) tends to the discrete metric:

ζ0(s, t) =

0 if s = t

1 otherwise.

Let us denote by Vs the set of vertices in the connected component that contains vertex s. As α → ∞,
ζα(s, t) tends to [69]:

ζ∞(s, t) =

0 if t ∈ Vs
1
2

(
1

|Vs| +
1

|Vt|

)
otherwise.

2.4 Centrality Measures

Given a graph G = (V,E,w), a centrality measure is a function c : V → R that assigns a centrality score
to each vertex depending on its structural position in the graph. The main intuition is that, if a vertex has a
central position in the graph (i.e., it is structurally central), then it is also important or has some degree of

17

influence in the network under consideration. Clearly, what makes a vertex central in a network is highly
application-dependent, and thus a universal definition of centrality cannot be given. Over the past decades,
numerous centralitymeasureswere introduced and applied in amultitude of contexts and applications [3, 35,
81, 197, 241, 269]. In this section, we describe the centrality measures that are relevant to our contributions,
for a broader survey see [57, 132, 227, Ch. 7.1]. As in [53], we categorize centrality measures into three main
classes: distance-based measures, spectral measures and path-based measures. For the sake of comparison,
in the heatmaps in Figure 2.2, we exemplify the centrality of the members of the popular Zachary’s karate
club social network [289] according to different centrality measures.

2.4.1 Distance-based Measures

Distance-based centrality measures express the importance of a vertex u as a function of a distance metric
between u and other vertices (see Section 2.3). The distance to other vertices is one of the most natural
ways to assess the importance of a vertex in a network, and therefore these measures are among the first
ever defined.

Degree Centrality. The degree of a vertex is probably the simplest and oldest centrality measure ever
used [109]. Even though it only takes into account the immediate neighbors of a vertex, degree centrality
has been shown to be strongly correlated with other centralitymeasures such as closeness, betweenness, and
eigenvector centrality in real-world networks [186, 280]. This is also clear from the example in Figure 2.2:
the vertices with highest degree (see Figure 2.2a) are also central according to other measures.

Closeness Centrality. Recall from Section 1.1 that closeness was introduced in 1950 by Bavelas in his
attempt of capturing how a communication pattern may affect the performance of a group of people [34]. A
vertex in a network is considered central if the sum of the geodesic distances to all the other vertices is low.
Intuitively, the time required by a message to be spread throughout an entire network is minimized if the
message originates from the most central vertex.

Such a definition of closeness depends upon the number of vertices in the network from which it is cal-
culated, and therefore comparing the closeness of vertices in networks with different sizes would be mean-
ingless. Beauchamp [35] solved this issue by suggesting a normalization factor for closeness of n − 1. The
closeness centrality of a vertex u is thus defined as:

cc(u) :=
n− 1∑

v∈V d(u, v)
. (2.5)

The denominator is also known as the farness of u, or f(u). Closeness centrality may also be interpreted
as the reciprocal of the average distance from u to the other vertices. Notice that cc(·) is only defined on
(strongly) connected graphs – if some vertex u cannot reach some other vertex v, then d(u, v) is infinity.
To overcome this limitation, Lin introduced Lin’s index [188]:

cLin(u) :=
r2(u)∑

v∈R(u) d(u, v)
,

18

(a) Degree centrality (b) Betweenness centrality

(c) Closeness centrality (d) Harmonic centrality

(e) Electrical closeness centrality (f) Forest closeness centrality

(g) Eigenvector centrality (h) Katz centrality

(i) PageRank

Figure 2.2: Heatmaps of vertex centrality scores of the vertices in the Zachary’s karate club social network [289]. Red
means high centrality score, blue means low centrality score. Images were generated with the Gephi soft-
ware [31].

where R(u) is the set of vertices reachable from u and r(u) is |R(u)|. Olsen et al. [231] proposed a further
definition of closeness for disconnected graphs:

cc(u) :=
(r(u)− 1)2

(n− 1)
∑

v∈R(u) d(u, v)
.

19

0.00

0.05

0.10

0.15

0.20
= 0.31

= 0.23

= 0.24
= 0.16

= 0.26
= 0.21

= 0.25
= 0.17

= 0.24
= 0.25

= 0.31
Closeness Centrality

ad
vo

ga
to

cit
-Hep

Ph

cit
-Hep

Th

cit
ese

er
fol

do
c

loc
-br

igh
tki

te_
ed

ge
s

matr
ix

p2
p-G

nu
tel

la3
1

soc
-Ep

inio
ns1

wikip
ed

ia_
link

_am

wikip
ed

ia_
link

_ba
t_s

mg
0.0

0.1

0.2

0.3

0.4

= 3.32= 4.32

= 4.25
= 6.41

= 3.92
= 4.87

= 4.04
= 6.02

= 4.30
= 4.10

= 3.38
Shortest-path distance

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n

Figure 2.3: Relative standard deviation for shortest-paths
distances and for closeness centrality for the
networks in Table 2.1.

Network n m Diameter

advogato 5,042 52,195 9
cit-HepPh 34,401 421,529 14
cit-HepTh 27,400 352,580 15
citeseer 365,154 1,742,596 34
foldoc 13,356 120,238 8
loc-brightkite_edges 56,739 212,945 18
matrix 79,116 515,397 12
p2p-Gnutella31 62,561 147,878 11
soc-Epinions1 75,877 508,836 15
wikipedia_link_am 20,883 105,714 12
wikipedia_link_bat_smg 21,814 123,756 13

Table 2.1: Graphs used in Figure 2.3 (downloaded from the
public repository KONECT [173]).

Unless stated differently, hereafter we refer to the definition in eq. (2.5), which is well-established in the
literature [53].

Apart from requiring some adjustments to handle disconnected graphs, another known weakness of
closeness centrality is its limited capability to discriminate different vertices, especially on complex net-
works. A typical characteristic of complex networks is having a small diameter [6]. Hence, all distances
– and thus all closeness values – lie within a narrow interval [132]. To show this in practice, we pick 100

vertices uniformly at random from the networks of Table 2.1 and we compute their closeness centrality and
the shortest-path distances from those vertices to the others. Figure 2.3 reports the mean and the relative
standard deviation of the shortest-path distances and of the closeness centrality for the networks of Ta-
ble 2.1. The relative standard deviation is the standard deviation (σ) divided by the mean (µ) and shows the
extent of variability with respect to the mean of the distribution. For example, for the “advogato” network,
the standard deviation is 14.88% of the mean µ = 0.31, which is quite low.12 Such limitation can also be
observed from Figure 2.2c: compared to other measures (e.g., betweenness or PageRank), closeness fails
in discriminating highly-central vertices from the others – as several vertices have a high or very similar
centrality score.

HarmonicCentrality. Marchiori and Latora [204] introduced the connectivity length of a graph in order
to measure the efficiency of a network in terms of information propagation. The connectivity length of a
graph is defined as the harmonic mean of all the pairwise distances between the vertices in a graph. Later,
harmonic centrality was independently devised by Dekker [86] (with the name “valued centrality”) and by
Rochat [253]. Harmonic centrality is defined as:

ch(u) :=
∑

v∈V \{u}

1

d(u, v)
. (2.6)

12In this example, σ = 0.05 which means that, assuming a normal distribution of the closeness scores,≈ 68% of the values of
cc(·) are in the interval [0.26, 0.35] while≈ 95% of the values are in [0.22, 0.40].

20

Under the reasonable assumption that the reciprocal of infinity is zero, harmonic centrality is well-defined
also on disconnected graphs. Further, from an axiomatic point of view, harmonic centrality enjoys several
desirable properties [53].

Electrical Closeness. Electrical closeness [62] – also known as current-flow closeness or information
centrality [274] – ranks vertices according to their average resistance distance to the others:

ce(u) :=
n− 1∑

v∈V \{u} ρ(u, v)
. (2.7)

Analogously to combinatorial closeness, electrical closeness is not directly applicable to disconnected
graphs due to the aforementioned infinite distances issue. However, generalizations to disconnected graphs
such as Lin’s [188] or Olsen’s [231] apply as well.

Because it takes into considerations all the paths between two vertices, electrical closeness solves two
issues concerning the vertex rankings computed by combinatorial closeness: (i) having a low discriminative
power, especially on complex networks, and (ii) being highly susceptible to changes in the graph [132]. These
claims are corroborated by the experiments in Ref. [41].

ForestCloseness. Forest distance closeness centrality (abbreviatedwith forest closeness) is a further vari-
ation of closeness centrality where the shortest-path distance is replaced by the forest distance:

cf,α(u) :=
n∑

v∈V \{u} ζα(u, v)
. (2.8)

The denominator of cf,α(u) is also called the forest farness of u. Compared to other centrality measures,
forest closeness presents twomain advantages: (i) by taking all paths into account it has a high discriminative
power [153] and (ii) it handles disconnected graphs out of the box.

2.4.2 Spectral Centrality Measures

Spectral centrality measures compute the importance of the vertices of a graphG by using the left dominant
eigenvector of a matrix derived from a matrix representation of G. The existence and the uniqueness of
most of these measures is guaranteed by the theory developed by Perron and Frobenius [110, 240] about
non-negative matrices [42].

Eigenvector Centrality. Eigenvector centrality implements the idea that a vertex in a network is im-
portant if adjacent to vertices that are themselves important. It can also be interpreted as an extension of
degree centrality where the centrality of a vertex is proportional to the centrality of its neighbors.

Let λ be the dominant eigenvalue of the adjacency matrix A of a graph. Assuming that V = {1, . . . , n},
i.e., all vertices inG are indexed from 1 to n, the eigenvector centrality of a vertex u ∈ V is defined as:

ceig(u) =
1

λ

n∑
v=1

A[u, v] · ceig(v), (2.9)

21

In matrix notation, Eq. (2.9) is equivalent to ceig(u) = x[u] where x is the right leading eigenvector that
solves the linear system Ax = λx.

If A is irreducible,13 the Perron-Frobenius theorem implies that λ > 0 and that all the entries of x are
strictly positive. A is irreducible iff the corresponding graph is strongly connected [42]. In case of discon-
nected graphs, however, the eigenvector centrality of some vertices could be zero [227], which makes this
measure suitable for (strongly) connected graphs only.

Katz Centrality. The limitation of eigenvector centrality of being restricted to strongly connected
graphs is resolved by Katz centrality [159]. Conversely to distance-based based centrality measures that
only consider shortest paths, thismeasure takes into account all the walks between two vertices, with shorter
walks having a greater contribution to the centrality score than longer walks. The Katz centrality of a vertex
u is:

cK(u) :=
∞∑
i=1

αi
∑
v∈V

Ai[u, v], (2.10)

which converges if the attenuation factor α > 0 is less than the reciprocal of the largest singular value of A.
Eq. (2.10) can be rewritten in matrix terms:

cK =
(
(I− αA)−1 − I

)
j, (2.11)

where cK[u] is the Katz centrality of u ∈ V .

PageRank. Originally designed with the purpose of developing a search engine, PageRank [235] is among
the most recent and popular spectral centrality measures. Despite being tailored to the Internet graph, as
of today this measure is used in applications beyond web graphs [122]. PageRank models the stationary
distribution of a random walk over the vertices of a graph. At any step, the random walk jumps to another
random vertex with probability 1 − α, where α ∈ (0, 1) is called the damping factor. The PageRank score
of a vertex u is defined as:

cPR(u) := α
∑

v∈N(u)

cPR(v)

deg(v)
+

1− α
n

.

2.4.3 Path-based Centrality Measures

Path-based centrality measures take into account all the (shortest) paths hitting a vertex. Notice that, in
unweighted graphs, degree centrality can also be considered a path-based measure since it evaluates the
number of incoming or outgoing paths of length one.

Betweenness Centrality. Freeman [108] introduced betweenness centrality as a measure of how much
a vertex controls the information flow in a network. A vertex is considered central if it stands between other

13A square matrix M is called reducible if there exists a permutation matrix P such that:

PMP−1 =

(
B1,1 B1,2

0 B2,2

)
,

where B1,1 and B2,2 are non-empty square matrices. A matrix that cannot be reduced is called irreducible.

22

vertices, as it can control or influence their communications – under the assumption that information flows
through shortest paths exclusively. More formally, the betweenness centrality of a vertex u is defined as
the probability that a shortest path between any two vertices x, y ∈ V \ {u} passes through u. Let σx,y
be the number of shortest paths from x to y, and σx,y(u) be the number of such paths that cross u. The
betweenness centrality of u is defined as:

cb(u) :=
∑

x,y∈V \{u}
x ̸=y, σx,y ̸=0

σx,y(u)

σx,y
. (2.12)

Vertices with high betweenness centrality can also be interpreted as crucial actors whose removal from
the network would disrupt most communications between other vertices [52]. Indeed, in the example in
Figure 2.2b, the removal of the vertex with highest betweenness (the red one) would isolate six vertices
from the entire network.

ED-Walk Centrality. Inspired by Katz centrality, in Ref. [13], we define ED-Walk, a new centrality
measure designed to possess two main properties: (i) to take into consideration all walks (not just shortest
paths) of any length that cross a vertex and (ii) to admit a natural generalization to sets of vertices, leading to a
monotone and submodular group centralitymeasure (see Section 2.5) and to a scalable greedymaximization
algorithm.

ED-Walk stands for exponentially decayingwalk as the contribution of awalk to the centrality score decays
exponentially with its length according to a parameterα > 0. Letϕi(S) be the number of i-walks (i.e., walks
of length i) that contain at least one vertex in S ⊆ V . The ED-Walk for u ∈ V is defined as [13]:

cED(u) :=

∞∑
i=1

αiϕi({x}).

For the series to converge, α needs to be chosen small enough. As for Katz centrality, αmust be less than
the reciprocal of the largest singular value of the adjacency matrix of the graph [13, Sec. 2.2].

2.5 Group Centrality Measures

The centrality measures we describe in Section 2.4 are also called single-vertex centrality measures because
they indicate the importance of a single vertex in a graph with respect to the others. However, determining
the centrality of a group of vertices as a whole, or to find the most central group of vertices – or group cen-
trality maximization – are two frequent problems that arise in graph mining applications such as influence
maximization [162, 291], facility location [121, 185], congestion avoidance [285], and others.

Everett andBorgatti [104]proposed a general framework to generalize single-vertex centralitymeasures to
groups of vertices.14 Given a graphG = (V,E,w) a group centrality measure is a set function g : 2V → R

that assigns to each subset of V a group centrality score. A group centrality measure is a proper generaliza-
tion of a single-vertex centrality measure if the two yield the same score when applied to a group consisting

14In their work, Everett and Borgatti extended degree, closeness, betweenness, and flow betweenness centrality to groups of
vertices.

23

(a) Red vertices: top-k vertices with highest closeness. (b) Red vertices: group of vertices with high group-closeness
(computed with the Grow-Shrink algorithm, see Chap-
ter 6).

Figure 2.4: Comparison between top-k closeness centrality and group-closeness centrality (k = 10) on the Euro-
pean road network [276] (downloaded from the public repository KONECT [173] and drawn with the
Fruchteman Reingold algorithm [111]). Red vertices represent in Figure 2.4a the top-k vertices with high-
est closeness and, in Figure 2.4b, the k vertices in a set with high group-closeness centrality. For the other
vertices, the bluest they are the greater is their distance to the nearest red vertex. Images were generated
with the Gephi software [31].

of a single vertex [104]. In general, the vertices in the most central group “cover” well the entire graph to-
gether; thus, they often differ considerably from the top-k most individually central vertices. Figure 2.4
exemplifies this difference in the closeness centrality case. The top-10 vertices with highest cc(·) in Fig-
ure 2.4a are clustered in the center of the graph and, consequently, far from peripheral vertices. The set S
of 10 vertices in Figure 2.4b, in turn, has high group-closeness: compared to Figure 2.4a, vertices in S are
much more scattered around the network and thus the average distance from a vertex to the nearest in S is
lower.

Properties of Set Functions. Properties of set functions such asmonotonicity and submodularity have
played a crucial role in combinatorial optimization [106, 193, 226, 282].

Definition 2.5.1 (Monotonicity). Let X be a non-empty finite set. A set function f : 2V → R is called
non-decreasing if f(T) ≥ f(S) for all T ⊇ S. Similarly, f is called non-increasing if for every S ⊆ T , we
have f(S) ≥ f(T). In both cases, f is called monotone.

Definition 2.5.2 (Submodularity and Marginal Gain). A set function f : 2X → R is called submodular if,
for every S ⊆ T ⊆ X and every x ∈ X \ T , we have that:

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ∪ {x}).

In this context, the value f(S ∪ {x}) − f(S) is called the marginal gain of x w.r.t. the set S. Similarly,
f is called supermodular if f(S ∪ {x}) − f(S) ≤ f(T ∪ {x}) − f(T) for every S ⊆ T ⊆ X and every
x ∈ X \ T .

24

The relevance of these properties stems from a classical result about optimization of monotone and sub-
modular set function:

Proposition 2.5.1 ([226]). Let f : 2X → R be a non-decreasing submodular set function. Consider the
problem of maximizing f over all possible subsets S ⊆ X w.r.t. the cardinality constraint |S| ≤ k for some
k ∈ N. Let S⋆ be the optimal solution to this problem:

S⋆ := argmax
S⊆X,|S|≤k

f(S).

The greedy algorithm that constructs S by iteratively adding the element x ∈ X with highest marginal
gain f(S, x) := f(S ∪ {x}) − f(S) to S yields a (1 − 1/e)-approximation for this problem. Specifically,
if S̃ is the result of the greedy algorithm, it holds that f(S̃) ≥ (1− 1/e)f(S⋆).

Group-Degree Centrality. The group-degree centrality of a group S ⊂ V is the number of vertices in
V \ S that are neighbors of at least a vertex in S [104]:

gd(S) := |{v ∈ V \ S : (u, v) ∈ E for some u ∈ S}|.

It is simple to verify that group-degree is not monotone: in a triangular graph the group-degree of a single
vertex is two, whereas the group-degree of any set with two vertices is one. On the other hand, group-degree
is submodular.

Lemma 2.5.1. Group-degree is submodular.

Proof. Let δu(S) be 1 if {u, v} ∈ E for some v ∈ S, 0 otherwise. We need to show that gd(S ∪ {u}) −
gd(S) ≥ gd(T ∪ {u})− gd(T). Because T ⊇ S it holds that:

gd(S ∪ {u})− gd(S) = |N(u) \ S| − δu(S) ≥ |N(u) \ T | − δu(T) = gd(T ∪ {u})− gd(T).

Group-Closeness Centrality. For a group S ⊂ V , its group-closeness centrality is defined as [38]:

gc(S) :=
n∑

v∈V \S d(S, v)
, (2.13)

where d(S, v) is mins∈S d(s, v), see Eq. (2.1). The denominator of gc(S) is also called the group-farness of
S. As with closeness centrality, group-closeness is only defined on strongly connected graphs. Further, it is
easy to see that gc(·) is monotone: for each S ⊆ T ⊂ V and u ∈ V \ T we have that d(T, u) ≤ d(S, u),
and thus gc(T) ≥ gc(S). However, group-closeness is not submodular, and this can be demonstrated with
a simple counterexample.

Lemma 2.5.2. Group-closeness is not submodular.

25

Proof. Consider a complete undirected graph with five vertices numbered from 0 to 4, let S = {0, 1},
T = {0, 1, 2}, and v = 3:

gc(S ∪ {v})− gc(S) =
5

2
− 5

3
=

5

6
< gc(T ∪ {v})− gc(T) =

5

1
− 5

2
=

5

2
.

Group-Harmonic Centrality. The group-harmonic centrality of a group S ⊂ V is defined as [12]:

gh(S) :=
∑

v∈V \S

1

d(S, v)
,

where, as for ch(·), 1/d(S, v) = 0 if no vertex in S reaches v. Hence, group-harmonic also handles discon-
nected graphs. This measure is submodular but not monotone [12]. Although such a definition is a natural
generalization of harmonic centrality to groups of vertices, the way it handles vertices in the group may
seem questionable. Indeed, vertices in S count as 0 in the harmonic centrality score of S while they are the
closest ones to S. On the other hand, assigning them an arbitrary value greater than 0 would be unsatisfac-
tory. A workaround for this problem is to always compare the group-harmonic centrality of groups with
equal cardinality, so that the value assigned to vertices in the group does not have any impact [12].

GED-Walk Centrality. As described in Section 2.4, ED-Walk was designed to naturally generalize to
groups of vertices S ⊆ V . This leads us to GED-Walk:

gED(S) :=

∞∑
i=1

αiϕi(S).

As we show in Chapter 8, GED-Walk not only is both monotone and submodular, but it is also faster to
maximize (for groups of small size) than existing shortest-path based group centrality measures.

2.6 Matchings

LetG = (V,E,w) be an undirected weighted graph. Amatching inG is a subset of pairwise disjoint edges
M ⊆ E. A vertex is called matched in M if it is incident to an edge e ∈ M ; otherwise, it is called free
or unmatched. A matching M is called maximal if no further edge can be added to M while retaining
the matching property, and maximum if no other matching with higher cardinality exists. Computing a
maximum cardinality matching (or MCM) of a graph is a popular combinatorial optimization problem that
can be solved inO(m

√
n) by the algorithm ofMicali and Vazirani [215]. By restricting the input algorithms

to planar graphs, MCM can be solved inO(nω) [221].

The weight of a matching M is the sum of the weights of the edges in M and a maximum weighted
matching (orMWM) is amatchingwithmaximumweight. The fastest known algorithm for finding aMWM
is by Galil et al. [116] and it takes O(mn logn) time. Algorithms for MWM with lower time complexity
exist but they are specialized for bipartite graphs [257] or graphs with integral edge weights [114]. A broader
overview over matching theory and algorithms is provided in Refs. [Ch. 5 49, 194].

26

2.7 Dynamic Graphs

So far we only considered static graphs, i.e., graphs that do not change over time. However, graphs that
occur in real-world scientific and commercial applications are often dynamic, i.e., they evolve over time:
vertices and edges are inserted, removed, or edge weights are updated. Examples include social network
analysis [294], computational biology [105], advertisements on search engines [211] and many more.

We target fully-dynamic graphs, i.e., dynamic graphs where update operations are restricted to edge inser-
tions and removals [101].15 These operations are also called edge updates. More formally, letG = (V,E,w)

be a graph; an edge update is an operation that transformsG into another graphG′ = (V,E′, w′). In case
of the insertion of an edge (u, v) /∈ E with weight α, we have that E′ = E ∪ {(u, v)}, w′(e) = w(e)

for all e ∈ E and w′(u, v) = α. Conversely, in case of the removal of an edge (u, v) ∈ E, we have that
E′ = E \ {(u, v)} and w′(e) = w(e) for all e ∈ E′. Further, we denote with superscript ′ any additional
property of the graphG′, e.g., d′(u, v) is the shortest-path distance from u to v inG′.

2.8 Performance and Quality Indicators

An algorithm’s performance is commonly measured by its running time and the wall-clock time is a widely
used indicator for running time. For solution quality, indicators are usually problem-specific; we often
measure the gap between the algorithm’s solution and the optimum, if known, or a highly accurate solution.
In the following, we describe the indicators we use in our experiments to evaluate the performance and the
solution quality of our algorithms.

Running Time. We often compare the running time of two algorithmsA andB on several instances. As
recommended in Ref. [14], in order to make a concise evaluation, we aggregate the wall-clock times over ra-
tios, whichmeans computing the algorithmic speedup ofAw.r.t. B. For a fair comparison of the algorithmic
aspects, the algorithmic speedup is often measured over the sequential executions of the algorithms – i.e.,
using a single thread. To summarize multiple algorithmic speedup values we use the geometric mean [50]:

GM(speedup) =

(# of values∏
i=1

speedup on instance i

) 1
of values

as it has the fundamental property that GM(speedup) = GM(running times of A)
GM(running times of B) .

Concerning parallel algorithms, we evaluate how efficiently they can be parallelized. To do so we use the
parallel speedup of an algorithmA, i.e., the speedup of a parallel execution ofA over its sequential execution.

Solution Quality. The quality of the results yielded by the algorithms we consider in this work is rep-
resented by either a scalar, a vector of scores, or a ranking. The first category concerns problems such as
group centrality maximization: the solution is a set S of vertices and its quality is the group centrality score
of S. In this case, we measure the gap between the computed solution and the optimum as a percentage
and we aggregate multiple results with the geometric mean.16

15On weighted graphs, edge weight updates can be represented as an edge removal followed by an edge insertion.
16If the optimum is too computationally expensive to compute, we resort to high-quality approximations of it.

27

In the second category, we have solutions where a score is computed for each vertex (or edge) in the graph.
Let us assume that all vertices in the graph are indexed from 1 to n, let x̃ be the computed vector (where x̃[i]
is the score computed for the i-th vertex) and let x be vector of the exact scores. Recall the definition of a
vector norm.

Definition 2.8.1 (Vector Norm [244]). Let Z be a vector space over R. A vector norm on Z is a function
∥·∥ : Z → R such that:

1. for each z ∈ Z , ∥z∥ ≥ 0 and ∥z∥ = 0⇔ z = 0;

2. for each z ∈ Z and every α ∈ R, ∥αx∥ = |α| · ∥x∥;

3. for each z1, z2 ∈ Z , ∥z1 + z2∥ ≤ ∥z1∥+ ∥z2∥ (triangle inequality).

For error estimation purposes, we are interested in three vector norms on Rn, the 1-norm, the 2-norm,
and the max-norm, which are defined as follows for a vector z ∈ Rn [244]:

∥z∥1 :=

n∑
i=1

|z[i]|,

∥z∥2 :=

√√√√ n∑
i=1

z[i]2,

∥z∥∞ := max(|z[1]|, |z[2]|, . . . , |z[n]|).

Depending on the problem under consideration and the algorithm’s quality guarantees, we evaluate the
gap between the computed result x̃ and the baseline x on the basis of the 1-norm, 2-norm, and/or the
max-norm of the absolute error vector (|x̃[1] − x[1]|, . . . , |x̃[n] − x[n]|) and/or of the relative error vector(
|̃x[1]−x[1]|

x[1] , . . . , |̃x[n]−x[n]|
x[n]

)
.

Finally, the third category accounts for solutionswhere the quality ismeasured by a ranking of the vertices
according to their individual scores, which is often more relevant than the scores per se [227, 229]. As we
did above, let x be the vector of exact scores (or a high-quality approximation of it) and let x̃ be the vector of
the computed scores. A pair of scores ⟨(x[i], x̃[i]), (x[j], x̃[j])⟩ with i < j is said to be concordant if either
(x[i] > x[j]) ∧ (x̃[i] > x̃[j]) or (x[i] < x[j]) ∧ (x̃[i] < x̃[j]), ties are neglected for simplicity; otherwise,
they are said to be discordant. We measure the quality of a ranking it terms of:

• Percentage of concordant pairs:
of concordant pairs(

n
2

) ;

• Kendall τ coefficient:

τ :=
(# of concordant pairs)− (# of discordant pairs)(

n
2

) .

28

Part II

Algorithms for Single-Vertex Centrality
Measures

29

Introduction

Vertex centrality is arguably one of the most popular concepts in network analysis. Given a graph G, cen-
trality measures assign to each vertex v in G a centrality score that represents the importance of v in G by
considering the structural properties of the graph. Because importance highly depends on the application,
several centrality measures have been proposed and none is universal [53, 132].

Today, graph datasets easily reach millions (sometimes billions) of edges and thus the efficiency and scal-
ability of network analysis algorithms is a major concern. Kang et al. [156] observed that “measuring cen-
trality in billion-scale graphs poses several challenges. Many of the ‘traditional’ definitions such as closeness
and betweenness were not designed with scalability in mind”. This often implies that complete exact com-
putations of such measures on large graphs is prohibitively expensive and thus not practical – especially for
global measures that take the whole graph into account. On the other hand, complete exact computation
is often not necessary as several applications require either a reliable ranking of the vertices [227, 229] or to
identify the top-k most central vertices [231].

Another challenge is posed by dynamic graphs, i.e., graphs that change over time – see Section 2.7. Edges
can be inserted or deleted and thismight change the centrality score of some vertices. Recomputing central-
ity scores from scratch every time the graph changes is expensive and, if the changes are frequent, it easily
becomes computationally infeasible. A promising strategy implemented by several dynamic algorithms [39,
40, 129, 157] is to re-use previously computed information – e.g., from an initial static run – to identify the
vertices affected by the edge update. Then dynamic algorithm can then ignore all the unaffected vertices
and this results in better performance in practice.

Contribution and Outline. In the following, we describe successful attempts to scale up vertex cen-
trality computations in three main settings: fully-dynamic graphs, top-k rankings, and approximation. In
Chapter 3, we present new dynamic algorithms top-k closeness centrality ranking in fully-dynamic graphs.
Our dynamic algorithms are developed on top of the static ones by Bergamini et al. [37]: after an edge
update, they only process the affected vertices that could change their position in the top-k ranking, and
ignore all the others. Our algorithms are exact, i.e., they provide the correct top-k ranking and closeness
centrality scores of the top-k vertices; furthermore, they can handle multiple edge updates at a time. Our
experimental results show that, compared to a static recomputation, our algorithms are up to four orders of
magnitude faster for single edge updates and up to two orders of magnitude faster for batches of 100 edge
updates.

In Chapter 4, we present new parallel sampling-based approximation algorithms for betweenness cen-
trality. Approximation via sampling is a widely adopted strategy for computational problems that cannot
be solved exactly within a reasonable time budget [127]. We focus on adaptive sampling (ADS), a particular
subclass of sampling algorithms (also called progressive sampling algorithms) where the number of required

31

samples is not computed statically (e.g., from the input instance). Instead, the algorithmdetermines dynam-
ically when to stop by checking a stopping condition that also depends on the data sampled so far. While
non-adaptive sampling algorithms are often trivial to parallelize (e.g., by drawing multiple samples in par-
allel), this is not necessarily true for adaptive sampling. Indeed, checking the stopping condition for ADS
constitutes a challenge as the algorithm requires to access all the data generated so far and thus mandates
some form of synchronization. We introduce two new parallel ADS algorithms we call local-frame and
shared-frame, both of which try to avoid expensive synchronization overheads when checking the stopping
condition. We also propose a third variant called indexed-frame which, at the cost of additional synchro-
nization, guarantees deterministic results. To demonstrate the effectiveness of the proposed algorithms, we
turn to the state-of-the-art KADABRA betweenness approximation algorithm from Borassi and Natale [56]
– note, however, that our techniques can easily be adjusted to other ADS algorithms. Experimental re-
sults show that, on 32 cores, our algorithms are up to 2.9× faster than a straightforward OpenMP-based
parallelization. Moreover, also due to implementation improvements and parameter tuning, our best best
algorithm performs adaptive sampling 65.3× faster than the existing implementation of KADABRA.

Finally, in Chapter 5, we introduce algorithms to approximate electrical centrality measures. Those mea-
sures interpret the graph under consideration as an electrical network [192] and determine the centrality of
a vertex by taking into accounts paths of arbitrary lengths. We consider two well-known electrical centrality
measures: electrical closeness centrality [62] – or current-flow closeness or information centrality [274] –
as well as other generalizations of electrical closeness such as normalized random-walk betweenness and
Kirchhoff-related indices, and forest closeness centrality [153]. A straightforward way to compute electrical
closeness and related centralities is to compute the Moore-Penrose pseudoinverse L† of the Laplacian ma-
trix L of the graph under consideration, which is as expensive as dense matrix multiplication and standard
tools in practice even require cubic time [249]. Further, L† requires O(n2) space which is not practical for
large graphs. State-of-the-art approximation algorithms use the Johnson-Lindenstrauss transform [155] and
require the solution ofO(logn/ε2) Laplacian linear system to guarantee a relative error, which is still very
expensive for large inputs. We observe that, to compute electrical closeness as well as related centralities,
the only relevant part of L† is its diagonal diag

(
L†
)
. Our algorithm approximates diag

(
L†
)
of a Laplacian

matrix L corresponding to a weighted undirected graph by exploiting a strong connection between uniform
spanning trees and resistance distance. It requires the solution of only one Laplacian linear systemwhile the
remaining part is based on the sampling of uniform (i.e., random) spanning trees (USTs). For small-world
graphs, our algorithm achieves a ±ε-approximation guarantee with high probability in O(m log4 n · ε−2)

time. Experiments show that, compared to the state of the art, our strategy ismuch faster andmorememory-
efficient, it yields a better approximation of diag

(
L†
)
, which results in a more accurate complete ranking

the elements of diag
(
L†
)
. We then generalize our algorithm for electrical closeness to approximate forest

closeness. This results in a nearly-linear time algorithm with an absolute probabilistic error guarantee that
outperforms the state of the art in terms of both running time and solution quality.

32

3 Closeness Centrality Ranking in
Fully-Dynamic Networks

3.1 Introduction

Closeness centrality (see Section 2.4.1) is among the oldest and most widely-studied centrality measures.
The intuition of closeness is that information often travels through shortest paths and thus a vertex is im-
portant or influential if its distance to the others is short. Popular applications that require to identify such
highly central vertices are influence maximization [162, 291], facility location [121, 185], game theory [142],
biology [21] and sociology [34].

Formally, the closeness centrality of a vertexu is defined as the reciprocal of the average distance fromu to
the others and computing it exactly requires a complete exploration of the graph – i.e., a BFS on unweighted
graphs or a complete run of Dijkstra’s algorithm on weighted graphs. Therefore, computing the closeness
centrality of every vertex of a graph requires to solve the APSP problem, which is impractical on large real-
world instances.

Related Work. In practical applications, centrality is often used to find the top-k most central vertices
and the actual computational effort for this problem can be substantially cheaper than APSP for large real-
world networks [37, 231]. Despite their superior performance in practice, these strategies have the same
asymptotics as APSP. In particular, assuming the Strong Exponential Time Hypothesis (SETH) [145], for
any ε > 0, no algorithm can compute the vertex with highest closeness centrality in O(n2−ε) time for
sparse graphs and inO(m2−ε) time for general graphs [2].

To overcome this limitation, several approximation techniques were introduced. Eppstein and Wang’s
method [102] selects 1 ≤ k < n pivot vertices, runs a complete SSSP from each of them, and estimates the
closeness of a vertex v as c̃c(u) := k(n−1)

n

∑k
i=1 d(u, vi). It is shown that 1/c̃c(u) is an unbiased estimator

of 1/cc(u), i.e., E[1/c̃c(u)] = 1/cc(u). By choosing k ∈ Θ
(
log(n)/ε2

)
pivot vertices, the algorithm is

guaranteed to approximate cc(u) for each u ∈ V within an absolute error of ε ·diam(G)with probability at
least 1− 1/n. Cohen et al. [79] refine this approach and present a 3-approximation algorithm for closeness.
Chechik et al. [73], in turn, propose an algorithm that approximates closeness centrality either within a fixed
relative standard deviation (i.e., the ratio between the standard deviation and the mean) ε by performing
O(ε−2) SSSPs, orwithin amaximumrelative error of εwith probability atmost 1−1/poly(n) by performing
O(log(n)/ε2) SSSPs.

Even though these algorithms provide a precise approximation the closeness centrality scores, they often
fail in ranking the top-k most central vertices exactly. This is not surprising considering the limited dis-
criminative power of closeness centrality (as we saw in Section 2.4.1), especially for complex networks [227,

33

Ch. 7]. In order to provide a correct ranking, approximation algorithms would lose their competitiveness.
For example, Bergamini et al. [37] argue that the algorithm by Chechik et al. [73] would require O(n2m)

time in unweighted graphs.

Motivation. Many real-world networks undergo continuous changes (see Section 2.7). Edge insertions
and removals may impact the closeness centrality score of some vertices and recomputing the ranking after
each edge update is not a scalable solution. A more efficient strategy that was shown to achieve promising
results on related problems [39, 40, 129, 157] is to exploit previously computed information to update the
ranking of the top-k most central vertices more efficiently in practice than a static recomputation.

Contribution. In this chapter, we present new dynamic algorithms for top-k closeness centrality rank-
ing in fully-dynamic graphs. Our algorithms are developed upon the static algorithm by Bergamini et
al. [37]: they use the information computed on an initial run of the static algorithm to efficiently update
the top-k ranking after multiple edge updates. Further, they are exact, meaning that they provide the cor-
rect top-k ranking and the exact closeness centrality scores. Because the traditional definition of closeness
centrality (Eq. (2.5), Section 2.4.1) does not apply to not strongly connected graphs, our algorithms com-
pute the harmonic centrality (Eq. (2.6), Section 2.4.1), which does not have such a restriction. However, our
techniques can be easily adapted to the traditional closeness centrality as well.

In Section 3.5, our experimental evaluation shows that, compared to a static recomputation, our dynamic
algorithms are up to four orders of magnitude faster for single edge updates and up to two orders of mag-
nitude faster for batches of 100 edge updates.

Bibliographic Notes. My contributions among those presented in this chapter involve the re-
implementation of all the dynamic algorithms (the algorithms for single edge updates were rewritten with
additional improvements that avoid to run BFScut or BFSbound when not needed), the extension of the
algorithms to batch updates, and carrying out the experiments. The remaining contributions are joint work
with Patrick Bisenius, Elisabetta Bergamini, and Henning Meyerhenke. A preliminary version [48] of this
work was published in the Proceedings of the Twentieth Workshop on Algorithm Engineering and Experi-
ments (ALENEX 2018). The aforementioned improvements to the dynamic algorithms for single edge up-
dates, the extension of the dynamic algorithms to batch updates, and additional experimental results are
presented in an extended version accepted for publication as a chapter in the “Massive Graph Analytics”
book edited by David A. Bader and expected to be released in February 2022. Preliminary results were
part of Patrick Bisenius’s Master Thesis, entitled “Computing Top-k Closeness Centrality in Fully-dynamic
Graphs”.

3.2 Overview of Algorithms for Closeness Centrality

In this section, we provide an overview of existing algorithms for top-k closeness centrality ranking for both
static and dynamic graphs.

34

3.2.1 Static Algorithms

The problem of finding the top-k closeness centrality has been targeted with heuristics, probabilistic ap-
proaches and exact algorithms. Proposed heuristics [186, 212] are based on sampling or they exploit the
correlation between closeness and degree centrality. Okamoto et al. [229] introduced a probabilistic algo-
rithm to compute the top-k closeness centrality ranking in O((k + n2/3 log1/3 n)(n logn +m)) time on
general graphs with probability at least 1− 1/n, which is faster than APSP if k ∈ o(n). Their strategy is to
approximate the centrality scores of every vertex in the graphwith the algorithmby Eppstein andWang [102]
and then to compute the exact centrality scores for a set of “promising” candidate vertices. Olsen et al. [231]
presented an exact algorithm that efficiently finds the top-k ranking by scheduling centrality computa-
tions in order to minimize the running time and by reusing intermediate results. These approaches were
outperformed by Bergamini et al. [37] who proposed two functions to compute exactly the top-k vertices
with highest closeness centrality on unweighted undirected graphs: NBCut and NBBound, optimized for
complex and high-diameter networks, respectively. Since our dynamic algorithms are based on these two
functions, we provide a detailed description of them in Section 3.3.

3.2.2 Dynamic Algorithms

Proposed dynamic algorithms for closeness centrality either maintain the scores of all vertices or the score
of just one vertex. In any case, the main strategy is to run a static algorithm on the initial graph in order to
reduce the computation after an edge update.

Kas et al. [157] extended the dynamic APSP algorithm by Ramalingam and Reps [248] to also update
the closeness centrality scores of all the vertices of a graph. A similar strategy was adopted by Khopkar et
al. [164] who developed a partially dynamic APSP algorithm that only handles vertex or edge insertions; the
algorithm was extended to update the closeness and the betweenness centrality of all the vertices of a graph
as well. However, these methods require to compute – and store – all the exact pairwise distances, resulting
in unfeasible time and memory requirements on large networks.

Yen et al. [287] overcame this limitation by designing a data structure that efficiently identifies the ver-
tices whose average distance to the other vertices changes after an edge update. The data structure takes a
linear amount of memory w.r.t. the size of the graph but is restricted to undirected and unweighted graphs.
Sariyüce et al. [259, 260, 261] present further optimizations tailored to complex networks to identify ver-
tices whose closeness centrality score is unaffected by an edge update and therefore can be skipped. These
optimizations were extended to harmonic centrality by Putman et al. [245]. Santos et al. [258] proposed a
partially dynamic algorithm that only handles edge deletions. The main drawback of the aforementioned
dynamic algorithms is that they require to compute the closeness centrality of every vertex of the initial
graph, which is not practical on large-scale graphs.

Finally, the fully-dynamic algorithm by Ni et al. [228] address the problem of updating the closeness
centrality of a single vertex under the assumption that all edge updates are already known.

35

i+ 2

i+ 1

Exact

u

∑
v s.t. d(u,v)≤i

1

d(u, v)

ñi+1(u)

i+ 1

r(u)−
∑i

j=1 nj(u)− ñi+1(u)

i+ 2

Figure 3.1: Upper bound c̃h(u) of ch(u) computed by the NBCut algorithm. For all the vertices up to distance i from
u we know their exact distance from u. Then, we assume that ñi+1(u) vertices are at distance i + 1 and
that the remaining vertices reachable from u are at distance i+ 2.

3.3 Static Algorithm for Top-k Closeness Centrality

The NBCut and NBBound functions try to reduce the computational cost of running a complete BFS from
each vertex in the graph by exploiting upper bounds of closeness centrality and lazy evaluation. More pre-
cisely, NBCut starts a BFS from each vertex u in the graph and interrupts the BFS as soon as it is certain
that u cannot be in the top-k ranking. Conversely, NBBound does not attempt to prune BFSs, but it runs
complete BFSs from a limited number of vertices.

3.3.1 The NBCut Algorithm for Complex Networks

Assume that we already computed the exact closeness centrality for at least k vertices and let hk be the k-th
highest closeness centrality. While running a BFS from a vertex u, let c̃h(u) be an upper bound of ch(u).
Clearly, if c̃h(u) < hk, then u cannot be among the top-k vertices with highest closeness centrality, and
thus we can interrupt the BFS. This possibly pruned BFS is named BFScut. In the following, we illustrate
how c̃h(u) is defined.

While running a BFScut from u, assume that we just visited all the vertices up to distance i and thus all
the remaining vertices are at distance at least i+ 1. Assuming that all the unvisited vertices are at distance
i+1 would already give us a (rather weak) bound. However, we can make further observations. LetNi(u)

be the set of vertices at distance exactly i from u and letni(u) be its cardinality; each vertex inNi+1(u)must
have an (incoming) neighbor in Ni(u), and thus we have that Ni+1(u) ⊆

⋃
v∈Ni(u)

Nout(v) – recall from
Section 2.1 thatNout(v) are the out-neighbors of v, i.e., N1(v). This implies that the number of vertices at
distance i + 1 from u is, in directed graphs, at most ñi+1(u) :=

∑
v∈Ni(u)

degout(v) and, in undirected
graphs, at most ñi+1(u) :=

∑
v∈Ni(u)

(deg(v) − 1) – the latter holds because we can always discard v’s
parent in the BFS tree. The distance from u to all the remaining reachable vertices have to be at least i+ 2.
These observations are summarized in the following bound on ch(u):

c̃h(u) :=
∑

v s.t. d(u,v)≤i

1

d(u, v)
+
ñi+1(u)

i+ 1
+
r(u)−

∑i
j=1 nj(u)− ñi+1(u)

i+ 2
. (3.1)

36

Algorithm 1 NBCut algorithm for top-k closeness centrality in static graphs [37].
Input: A graphG = (V,E), an integer 1 ≤ k < n.
Output: Top-k vertices with highest closeness centrality.
1: TopK← empty min-priority queue with keys ch(u) and values u
2: compute the number of reachable vertices r(u) for each vertex u ∈ V
3: hk ← 0
4: for each u ∈ V sorted by an orderingO do
5: ⟨c̃h(u), isExact(u)⟩ ← BFScut(u, hk)
6: if isExact(u) and c̃h(u) > hk then
7: TopK.push(c̃h(u), u) ▷ Note that here c̃h(u) = ch(u)
8: if TopK.size() > k then
9: TopK.removeMin()

10: if TopK.size() = k then
11: hk ← TopK.getMinKey()
12: return TopK

As shown in Figure 3.1, the first summand is the contribution to ch(u) due to the vertices up to distance
i from u – we know their exact distance from u. In the second summand, we assume that ñi+1(u) vertices
are at distance i+ 1 from u17 whereas in the third summand that all the remaining vertices reachable from
u are at distance i+ 2 from u. As i increases the bound tightens: the more BFScut proceeds the fewer are
the vertices whose distance from u is underestimated. If c̃h(u) < hk for some i, then NBCut interrupts
BFScut and dcut(u) = i is called the cutoff distance for u. Otherwise, BFScut is equivalent to a BFS: it visits
all the vertices reachable from u and we have that c̃h(u) equals ch(u).

Notice that the third therm of Eq. (3.1) requires the number of vertices reachable from any vertex u. In
undirected graphs, this is the size of the connected component of u and can be computed in linear time w.r.t.
the graph size. In directed graphs, this is the transitive closure, which would be too expensive to compute.
Thus, the authors of Ref. [37] replace r(u) with an upper bound based on a topological sorting of the SCCs
DAG. Furthermore, we observe that the numerator of the third summand of Eq. (3.1) cannot be greater than
n −

∑i
j=1 nj(u) − ñi+1(u). Again, for simplicity, this detail is omitted in the equation but implemented

in practice.
Algorithm 1 shows the NBCut algorithm. Becausehk is not known before k BFSs are completed, in Line 3

the k-th highest closeness centrality is set to 0. Then, for each vertex u in the graph, the algorithm starts a
BFScut from u (Line 5), which returns the upper bound c̃h(u) of u and isExact(u), i.e., whether c̃h(u)
equals ch(u). If BFScut computes the exact closeness centrality of u, then in Lines 7–11 the algorithm
updates the top-k ranking. Clearly, BFScut is more likely to be interrupted if hk is high. Hence, ideally, we
want to process the vertices by decreasing closeness centrality. Two promising ordering criteria proposed
by the authors of [37] are degree centrality or a measure based on the number of walks.

3.3.2 The NBBound Algorithm for High-Diameter Networks

NBBound computes an initial upper bound c̃h(u) for each vertex u ∈ V , and stores all the vertices in
a max priority queue PrioQ (Lines 2 and 3 of Algorithm 2). Note that c̃h(u) is unrelated to the upper
bound c̃h(u) used by NBCut described in Section 3.3.1, for more details about c̃h(u) see [37]. In Lines 5–7

17The numerator can be further tightened by taking min(n − ni(u), ñi+1(u)). However, to simplify our notation, we keep
ñi+1(u) in the text, but implement the better bound in practice.

37

Algorithm 2 NBBound algorithm for top-k closeness centrality in static graphs [37].
Input: A graphG = (V,E), an integer 1 ≤ k < n.
Output: Top-k vertices with highest closeness centrality.
1: TopK← empty min-priority queue with keys ch(u) and values u
2: compute the initial upper bound c̃h(u) for each u ∈ V
3: PrioQ←max-priority queue with keys c̃h(u) and values all u ∈ V
4: while PrioQ is not empty do
5: u← PrioQ.extractMax()
6: if TopK.size() = k and TopK.getMinKey() > c̃h(u) then
7: return TopK
8: ch(u)← BFSbound(u) ▷Might modify c̃h(v) for some v ∈ PrioQ
9: Update PrioQ according to the new upper bounds

10: TopK.push(ch(u), u)
11: if TopK.size() > k then
12: TopK.removeMin()
13: return TopK

the algorithm extracts the vertex u in PrioQ with highest c̃h(u) and terminates if c̃h(u) is smaller than
the k-th largest closeness centrality computed exactly so far. Otherwise, in Lines 8 and 9 the closeness
centrality of u is computed exactly by the BFSbound function. BFSbound might also modify the upper
bound of other vertices in PrioQ: assume we are running BFSbound from u and let x and y be any two
visited vertices; from the triangle inequality if follows that d(x, y) ≥ |d(u, x)− d(u, y)|. By assuming that
d(x, y) = |d(u, x) − d(u, y)| for each x, y ∈ V we obtain an upper bound of the closeness centrality of
all vertices. If for some vertex v the newly computed upper bound is smaller than their current one, then
c̃h(v) and PrioQ are updated. Eventually, the TopK ranking is updated (Lines 10–12).

3.4 Dynamic Top-k Closeness Centrality

When an edge is inserted into or removed from the graph, the top-k closeness centrality ranking might
change. Our goal is to update the top-k ranking faster than re-running NBCut or NBBound. In the fol-
lowing, we present new dynamic algorithms to handle single edge updates and how we generalize them to
batches of edge insertions and removals. We use hereafter the notation for dynamic graphs described in
Section 2.7.

3.4.1 Updating the Number of Reachable Vertices

Recall that, in Eq. (3.1), the upper bound c̃h(u) computed by BFScut requires the number of reachable
vertices r(u) or an upper bound of it. As mentioned in Section 3.3.1, in undirected graphs, this is the
number of vertices in the connected component of u. Instead of recomputing the connected component
from scratch after each edge or batch update, we update them with a simple dynamic algorithm similar
to the one presented in [98]. Briefly, we compute a spanning forest of the graph. When an edge (u, v) is
inserted where u and v belong to different components, we merge the components and add (u, v) to the
forest. When an edge (u, v) that is part of the forest is removed, we simultaneously run two BFSs: one from
u and one from v. We interrupt the two BFSs as soon as one vertex is explored by both of them. If u does not

38

reach v anymore, we split the components; otherwise, we add to the forest the edge connecting u’s spanning
tree to v’s.

In directed graphs, as described in Section 3.3.1, we donot compute r(u) exactly butwe compute an upper
bound of it based on a topological sorting of the SCCsDAG. Preliminary experiments showed that updating
this after each edge update is the bottleneck of our dynamic algorithm. Hence, we replace this bound with
the number of vertices in the weakly connected component of u, which still represents an upper bound of
r(u) and can be updated efficiently with the same strategy we use for connected components in undirected
graphs.

3.4.2 Finding Affected Vertices

Assume that an edge (u, v) is inserted into or removed from a graph G. This could change the closeness
centrality of some vertices. We call such vertices affected. More formally, the set of affected vertices is defined
as:

A :=
{
x ∈ V : ∃y ∈ V s.t. d′(x, y) ̸= d(x, y)

}
.

Clearly, if x ∈ A, then either d′(x, u) ̸= d(x, u) or d′(x, v) ̸= d(x, v). In other words, if the distance be-
tween a vertex x and both u and v remains the same after the edge update, then x cannot be affected because
the BFS DAG rooted at x is unchanged. The set of affected vertices is computed by running two complete
BFSs from u and v inG followed by two pruned BFSs from u and v inG′ that only visit the vertices whose
distance from u or to v change due to the edge update – i.e., the affected vertices. In directed graphs, the
BFSs from v run onG transposed andG′ since we want to determine the vertices that change their distance
to v. A rather obvious optimization is possible when the insertion/removal of an edge connects/disconnect
two (weakly) connected components: in this case we already know that the affected vertices will be the ones
in the two components, and thus we only need to run two BFSs – one from u and one from v – instead of
four.

3.4.3 Update After an Edge Insertion – Based on NBCut

We focus on the NBCut algorithm first. We assume that, after the initial static run of NBCut, the quantities
dcut(u), c̃h(u), and isExact(u) are know for every vertex u ∈ V . Further, we assume that the top-k
vertices are stored in a min-priority queue TopK. A simple strategy to update the top-k vertices after an
edge insertion would be to run BFScut for every affected vertex. This would already be an improvement
compared to the static algorithm – unaffected vertices are skipped – but further optimizations are possible.

Algorithm 3 shows our dynamic algorithm. In Lines 3–5 we compute the number of vertices reachable
after the update and the set A of affected vertices as described in Sections 3.4.1 and 3.4.2. Then, in Lines 7
and 8, all the affected top-k vertices are removed from TopK. In Lines 13–20 we try to avoid starting a new
BFScut from each affected vertexx by computing the new bound c̃h′(x) –more details below – andwe store
x in a max-priority queue PrioQ sorted by c̃h′(x). Finally, in Lines 21–31, we resume the NBCut algorithm
but only for the affected vertices in PrioQ and we interrupt it as soon as it is certain that TopK contains the
exact top-k vertices. In the following, we illustrate how c̃h

′(x) is computed depending on dcut(x) and the
distance from x to the newly added edge. IfG is undirected, let us assume w.l.o.g. that d(x, u) < d(x, v).18

18Recall that, as described in Section 3.4.2, d(·, u) is known from the computation of the affected vertices.

39

Algorithm 3 Dynamic NBCut algorithm to update the top-k vertices after an edge insertion.
Input: A graph G = (V,E), an edge (u, v) /∈ E, TopK.
Output: Top-k vertices with highest closeness centrality in G′ = (V,E ∪ {(u, v)}).
1: PrioQ← empty max-priority queue with keys c̃h′(x) and values x
2: hk ← TopK.getMinKey()
3: compute r′(x) for each x ∈ V
4: A← compute the set of affected vertices
5: compute d(u, x), d′(u, x), d(x, v), d′(x, v) for each x ∈ A

6: for each x ∈ A do ▷ Compute the new bound c̃h
′(x) for each x ∈ A

7: if x ∈ TopK then
8: TopK.remove(x)
9: hk ← 0

10: y ← u
11: if G is undirected then
12: y ← argminz∈{u,v} d(x, z)

13: if not isExact(x) and dcut(x) < d(x, y) then
14: c̃h

′(x)← c̃h(x)− r(x)
dcut(x)+2

+ r′(x)
dcut(x)+2

▷ x is a far-away vertex
15: else if not isExact(x) and dcut(x) = d(x, y) then
16: c̃h

′(x)← c̃h(x)− r(x)−r′(x)+1
dcut(x)+2

+ 1
dcut(x)+1

▷ x is a boundary vertex
17: else
18: c̃h

′(x)← c̃h(x) +
∑imax

i=1
1

i+d(x,y)
(n′

i(y)− ni(y)) ▷ Distance-based bound
19: dcut(x)←∞
20: PrioQ.push(x)

21: while PrioQ is not empty do
22: x← PrioQ.extractMax()
23: if c̃h′(x) ≥ hk then
24:

〈
c̃h

′(x), isExact(x)
〉
← BFScut(x, hk) ▷ We have to run a new BFScut from x

25: else break
26: if isExact(x) and c̃h

′(x) ≥ hk then
27: TopK.push(c̃h′(x), x) ▷ Note that here c̃h′(x) = ch(x)

28: if TopK.size() > k then
29: TopK.removeMax()
30: if TopK.size() = k then
31: hk ← TopK.getMinKey()
32: update c̃h(x), r(x), and ni(u) to c̃h

′(x), r′(x), and n′
i(x), respectively for each x ∈ V

33: return TopK

Far-away vertices. Let x be an affected vertex such that the BFScut rooted at x has been interrupted
at the cutoff distance dcut(x). If d(x, u) > dcut(x) and r′(x) = r(x), then c̃h(x) is still valid because, as
shown in Figure 3.2a, u has not been by visited by the BFScut rooted at x, and therefore the new edge (u, v)
does not affect c̃h(x). If d(x, u) > dcut(x) but r′(x) ̸= r(x) – i.e., the insertion increased the number of
vertices reachable from x – then in Eq. (3.1) we simply replace r(x) with r′(x), and we obtain:

c̃h
′(x) = c̃h(x)−

r(x)

dcut(x) + 2
+

r′(x)

dcut(x) + 2
.

We call u and v far-away vertices w.r.t. x, and they are handled in Line 14 of Algorithm 3.

Boundary vertices. If d(x, u) equals dcut(x), then the bound c̃h(x) is affected because, as shown in
Figure 3.2b, u ∈ Ndcut(x)(x) and the (out)-degree of u increases by one. Recall from Section 3.3.1 that in di-
rected graphs ñi+1(x) :=

∑
y∈Ni(x)

degout(y) while in undirected graphs ñi+1(x) :=
∑

y∈Ni(x)
(deg(x)−

40

1). Hence, the upper bound ñ′dcut(x)+1(x) of the number of vertices at distance dcut(x) + 1 from x after the
insertion equals ñdcut(x)+1(x) + 1. We can compute the new bound c̃h′(x) from the old one as follows:

c̃h
′(x)− c̃h(x) =

ñdcut(x)+1(x) + 1

dcut(x) + 1
+
r′(u)−

∑dcut(x)
j=1 nj(x)− ñdcut(x)+1(x)− 1

dcut(x) + 2
−

ñdcut(x)+1(x)

dcut(x) + 1
−
r(u)−

∑dcut(x)
j=1 nj(x)− ñdcut(x)+1(x)

dcut(x) + 2

=
1

dcut(x) + 1
+
r′(x)− 1− r(x)
dcut(x) + 2

.

Vertices such as u are called boundary vertices w.r.t. x and they are handled in Line 16 of Algorithm 3.

Distance-based Bounds. Let x be an affected vertex such that d(x, u) < dcut(x) and let y be any vertex
such that d′(x, y) < d(x, y) – if x is affected then such a vertex y has to exist. Since all new shortest paths
from x have to go through (u, v) (and thus through u), we can write d′(x, y) as d′(x, u) + d′(u, y) =

d(x, u) + d′(u, y). This holds because the distance from x to u cannot change as a consequence of the
insertion of (u, v) – recall our assumption at the beginning of this section that d(x, u) < d(x, v) if G is
undirected. As for d(x, y) before the insertion there are two options: either u was part of a shortest path
from x to y, and thus d(x, y) = d(x, u)+d(u, y), or there was a shortest path from x to y not going through
u, and therefore d(x, y) < d(x, u)+d(u, y). In any case, d(x, y) ≤ d(x, u)+d(u, y). Putting this together
we have that 1

d′(x,y) −
1

d(x,y) ≤
1

d(x,u)+d′(u,y) −
1

d(x,u)+d(u,y) and thus:

c′h(x)− ch(x) =
∑
y∈V

(
1

d′(x, y)
− 1

d(x, y)

)

≤
∑
y∈V

(
1

d(x, u) + d′(u, y)
− 1

d(x, u) + d(u, y)

)

≤
imax∑
i=1

1

i+ d(x, u)
(n′i(u)− ni(u)),

(3.2)

where imax is the highest value of i such that n′i(u) > ni(u). Eq. (3.2) implies that, if c̃h(x) is an upper
bound of ch(x), then c̃h′(x) := c̃h(x) +

∑imax
i=1

1
i+d(x,u)(n

′
i(u) − ni(u)) is an upper bound of c′h(x). The

values (n′i(u)−ni(u)) can easily be computed with two BFSs from u: one inG and one inG′ – we integrate
this in the BFSs we run to find the affected vertices, see Section 3.4.2. Notice that the computation of the
new bound requires imax ∈ O(diam(G)) operations. Since the diameter of complex networks is very small
– often assumed to be logarithmic in n, or constant [6, 271] – this is much faster than running BFScut,
which takes up toO(n+m) time. For each affected vertex x for which u is neither far-away nor boundary,
we compute the new upper bound as in Eq. (3.2) – Line 18 of Algorithm 3. In Line 19, we set dcut(x) to∞
to indicate that the new bound c̃h′(u) is not a result of NBCut anymore and thus it should not be used in
future to identify far-away or boundary vertices.

Handling multiple edge insertions – based on NBCut. A straightforward strategy to handle mul-
tiple edge insertions would be to run Algorithm 3 for each individual edge insertion, which is unnecessarily

41

Exact

x

dcut(x)

u v

(a) u and v are far-away vertices for x.

u

v

Exact

x

dcut(x)

(b) u is a boundary vertex for x.

Figure 3.2: Example of far-away (left) and boundary (right) vertices.

expensive because it recomputes the top-k ranking after each edge insertion – we are interested in the top-k
ranking after multiple edge insertions. A more efficient approach is to modify Algorithm 3 so that it com-
putes all the affected vertices x ∈ A and their new bounds c̃h′(x). The top-k ranking is recomputed only
once afterwards. This can be done as follows: for each edge insertion, we update the bounds of the affected
vertices (Lines 3–20); then, in Line 20, we push x into PrioQ only if x /∈ PrioQ, otherwise, we just update
its key. Finally, we recompute the top-k ranking by running Lines 21–31.

3.4.4 Update After an Edge Insertion – Based on NBBound

Algorithm 4 shows the pseudocode of our dynamic algorithm for single edge insertions based on NBBound.
Let us assume that NBBound has been executed on the initial graph. Recall from Section 3.3.2 that
NBBound runs complete BFSs until it finds k vertices whose exact closeness centrality is higher than the
upper bounds on the remaining vertices. Thus, there is no cutoff distance that we can exploit to identify
far-away or boundary vertices, but we can still make some considerations. First, for unaffected vertices
x /∈ A, ch(x) and c̃h(x) are still valid and do not need to be changed. Further, the distance-based bounds
described in Section 3.4.3 can be applied to NBBound as well (Line 13 of Algorithm 4) and, if there are ver-
tices whose new bound is higher than the k-th highest closeness centrality value, we run a BFSbound from
them (Line 19). Similarly to the static NBBound, we interrupt the algorithm when there are no affected
vertices x whose upper bound c̃h(x) is higher than the k-th highest closeness centrality (Line 18).

Handling multiple edge insertions – based on NBBound. Similarly to the NBCut case, Algo-
rithm 4 can be easily adapted to handle multiple edge insertions: Lines 3 and 4 are executed for each edge
insertion and then Lines 5–24 are executed only once.

3.4.5 Update After an Edge Removal

Edge removals are, in some sense, easier to handle than edge insertions: closeness centrality can only de-
crease as a consequence of a removal – distances can only increase – and thus nothing needs to be done
if none of the top-k vertices are affected. For edge insertions, in turn, there could be some vertex that in-
creases its closeness centrality and “overtakes” the previous k-th highest closeness centrality. Further, for
an affected vertex x, its previous upper bound c̃h(x) is still valid – although it might be less tight.

42

Algorithm 4 Dynamic NBBound algorithm to update the top-k vertices after an edge insertion.
Input: A graphG = (V,E), an edge (u, v) /∈ E, TopK.
Output: Top-k vertices with highest harmonic centrality inG′ = (V,E ∪ {(u, v)}).
1: PrioQ← empty max-priority queue with keys c̃h(x) and values x
2: hk ← TopK.getMinKey()
3: A← compute the set of affected vertices
4: compute d(u, x), d′(u, x), d(x, v), d′(x, v) for each x ∈ A
5: for each x ∈ A do ▷ Compute the new bound c̃h′(x) for each x ∈ A
6: if x ∈ TopK then
7: TopK.remove(x)
8: hk ← 0

9: y ← u
10: if G is undirected then
11: y ← argminz∈{u,v} d(x, z)

12: /* update the bounds of the affected vertices */
13: c̃h

′(x)← c̃h(x) +
∑imax

i=1
1

i+d(x,y) (n
′
i(y)− ni(y))

14: PrioQ.push(c̃h′(x), x)

15: while PrioQ is not empty do
16: x← PrioQ.extractMax()
17: if TopK.size() = k and c̃h(x) < hk then
18: return TopK
19: ch(x)← BFSbound(x) ▷Might modify c̃h(z) for some z ∈ PrioQ
20: Update PrioQ according to the new upper bounds
21: TopK.push(ch(x), x)
22: if TopK.size() > k then
23: TopK.removeMin()
24: return TopK

Algorithm 5 shows our dynamic algorithm for single edge removals based on NBCut. If we know the
exact ch(x) of an affected vertex x before the removal, this becomes an upper bound on the closeness cen-
trality of x inG′; then, we set isExact(x) to false and, if x ∈ TopK, we remove it from TopK (Lines 6–8).
Once this is done, the algorithm processes the vertices in themax-priority queue PrioQ sorted by c̃h(x) and
terminates when TopK contains k vertices and the highest c̃h(x) ∈ PrioQ is smaller than the k-th highest
closeness centrality (Line 14). Note that this strategy works for both NBCut and NBBound, with the only
difference that, in Line 17, we either run BFScut or BFSbound.

Handling multiple edge removals. As with multiple edge insertions, multiple edge removals are han-
dled in two steps. First, all the affected vertices are computed by executing Lines 2–9 for each edge removal.
Then, the top-k ranking is updated by running Lines Lines 10–25 only once.

3.4.6 Time Complexity and Memory Requirements

Updating the number of reachable vertices described in Section 3.4.1 and computing the set of affected
vertices take O(n + m) time in the worst case (the time complexity of a complete BFS). Then, the algo-
rithms described in Sections 3.4.3–3.4.5 have to run, in the worst case, one BFScut (or BFSbound, if we
are considering the algorithm based on BFSbound) for each affected vertex. Since worst-case time com-
plexity of both BFScut and BFSbound is O(n +m) [37], the running time of our dynamic algorithms is

43

Algorithm 5 Dynamic NBCut algorithm to update the top-k vertices after an edge removal.
Input: A graphG = (V,E), an edge (u, v) ∈ E, TopK.
Output: Top-k vertices with highest closeness centrality inG′ = (V,E \ {(u, v)}).
1: hk ← TopK.getMinKey()
2: compute r′(x) for each x ∈ V
3: A← compute the set of affected vertices
4: compute d(u, x), d′(u, x), d(x, v), d′(x, v) for each x ∈ A
5: for each x ∈ A do
6: isExact(x)← false
7: if x ∈ TopK then
8: TopK.remove(x)
9: hk ← 0

10: PrioQ←max-priority queue with keys c̃h′(x) and values all x ∈ V \ TopK
11: while PrioQ is not empty do
12: x← PrioQ.extractMax()
13: if c̃h(x) < hk then
14: break
15: if not isExact(x) then
16: /* we run a new BFScut from x */
17:

〈
c̃h

′(x), isExact(x)
〉
← BFScut(x, hk)

18: if isExact(x) and c̃h′(x) > hk then
19: TopK.push(c̃h′(x), x) ▷ Note that here c̃h(x) = ch(x)

20: if TopK.size() > k then
21: TopK.removeMin()
22: if TopK.size() = k then
23: hk ← TopK.getMinKey()
24: update c̃h(x), r(x), and ni(u) to c̃h′(x), r′(x), and n′i(x), respectively for each x ∈ V
25: return TopK

O(|A|(n+m)) in the worst case, where |A| is the number of affected vertices. However, as shown in Sec-
tion 3.5, in real-world networks the actual number of calls to BFScut is usually a small fraction of the total
number of affected vertices – which is, in turn, often only a small fraction of the total number of vertices.

Concerning memory requirements, for each vertex u ∈ V our algorithms need to store the bound c̃h(u),
isExact(u), the number of reachable vertices r(u), the cutoff distance dcut(u), and the TopK priority queue
with the k vertices with highest closeness centrality. This takes onlyΘ(n)memory, which is asymptotically
the same as the static top-k algorithms.

3.5 Experimental Results

In this section, we present the results of our experimental study. We study the impact of the optimizations
proposed in Section 3.4.3 and the algorithmic speedup (ratio between the sequential running times, see
Section 2.8) of our dynamic algorithms on the static ones.

3.5.1 Experimental Setup

We test our algorithms on numerous directed and undirected real-world complex and high-diameter net-
works we retrieved from the public repositories SNAP [181], KONECT [173], OpenStreetMap [83], and from

44

the 9th DIMACS Implementation Challenge [87]. The graphs are listed in Tables B.1–B.4 in Appendix B.1.
For high-diameter networks, we only test road networks because they can be retrieved easily from public
repositories, but we are confident that our dynamic algorithms can handle other types of high-diameter
networks as well without significant difference in performance. To test more undirected networks, we read
as undirected three of the directed road networks (“seychelles”, “comores”, and “liechtenstein”) by ignoring
the direction of the edges.

For each tested graph, we either add or remove 100 batches of edges selected uniformly at random and
then run both the static and the dynamic algorithms. For edge insertions, we remove from the original
graph an equivalent number of edges selected uniformly at random before running the algorithms and then
we add them one-by-one, whereas for removals we just remove edges uniformly at random. Due to time
constraints, we only run the static algorithms once every 10 edge updates – this does not affect the results
considerably, since the running time of the static algorithms is always approximately the same.

Implementation and settings. Since NBCut outperforms NBBound on complex networks, for our
experiments on complex networks we only use NBCut and our new dynamic algorithms based on it – i.e.,
Algorithms 3 and 5. Similarly, we only use NBBound (Algorithm 2) and the dynamic algorithms based
on it (Algorithm 4) for our experiments on road networks. We recall that, for performance reasons, our
dynamic algorithms based on NBCut for directed graphs use the number of vertices in the WCCs instead
of the bound originally proposed in [37]. However, in order to make a fair comparison with previous work,
for the static case we use the original bound. Further, we recall that all algorithms are exact, i.e., the find the
k vertices with highest closeness centrality and their exact scores, so they only differ by their running time
and not in the results they find.

The machine we use for our experiments is a shared-memory Linux server equipped with 192GiB of
RAM and an Intel Xeon Gold 6126 with 2 × 12 cores, of which we use only one because we execute all
algorithms sequentially – i.e., using a single thread. To ensure reproducibility, all experiments are managed
by the SimexPal software [14]. The code has been written in C++ on top of the open-source NetworKit
framework [273].

3.5.2 Speedups on Recomputation

DynamicComplexNetworks. Table 3.1a shows the average number of affected vertices over single edge
insertions and the percentage of affected vertices that are far-away, boundary, or that have been updated
using the distance bound on undirected graphs (results are for k = 10). The average number of affected
vertices is at most 4.36% of the total number of vertices and for the great great majority of them c̃h

′(·) can
be computed in constant time as they are either far-away or boundary. The “BFScuts” column shows the
percentage of affected vertices from which a new BFScut is executed after c̃h′(·) has been computed for all
the affected vertices. For single edge insertions, our dynamic algorithm always run BFScut for less than
0.01% of the number of affected vertices, while for batches of 10 and 100 edge insertions the number of
BFScut is at most 0.08% and 1.0% the number of vertices in the graph, respectively. The higher number of
BFScut the batch size can be explained by the fact that each edge insertion weakens the bounds c̃h′(·) and
thus reduces the possibility for Algorithm 3 to terminate early at Line 25.

45

Table 3.1: Impact of optimizations in complex networks for k = 10, averaged over 100 batches of 1, 10, 100 random
edge insertions using the geometric mean. The column “Aff.” shows the average number of vertices affected
by a single edge insertion, while “Aff. (%)” the percentage of affected vertices over the total number of
vertices of the graph. The next three columns report the percentage of affected vertices that are far-away,
boundary, or that are updated using the distance bound. The last column shows the percentage of affected
vertices for which a BFScut has been run.

(a) Undirected networks

Network Aff. Aff. (%) F (%) B (%) D (%) BFScuts (%)
Batch size 1 10 100

petster-cat-household 3,505 3.33 99.45 0.32 0.23 < 0.01 0.03 0.22
petster-catdog-household 14,518 4.36 89.09 10.68 0.23 < 0.01 0.04 0.22
petster-cat-friend 26 0.01 84.69 14.16 1.15 < 0.01 < 0.01 < 0.01
petster-friendships-cat 30 0.02 86.89 12.07 1.05 < 0.01 < 0.01 < 0.01
petster-friendships-dog 1,440 0.34 88.76 9.58 1.66 < 0.01 0.01 0.17
petster-dog-friend 446 0.10 24.59 66.61 8.80 < 0.01 0.02 0.17
petster-catdog-friend 1,620 0.26 92.43 6.37 1.20 < 0.01 < 0.01 0.15
higgs-twitter-social 10,342 2.26 84.54 13.59 1.87 < 0.01 0.08 1.05
petster-carnivore 269 0.04 66.75 27.55 5.70 < 0.01 0.02 0.18

(b) Directed networks

Network Aff. Aff. (%) F (%) B (%) D (%) BFScuts (%)
Batch size 1 10 100

wikipedia_link_li 2,531 5.15 0.10 0.30 99.60 3.51 32.53 94.26
cit-HepPh 615 1.78 65.31 4.97 29.73 0.37 3.66 29.08
slashdot-zoo 1,888 2.39 51.99 11.59 36.43 0.53 7.53 41.64
wiki_talk_sv 1,397 0.23 94.37 5.27 0.36 < 0.01 1.16 5.31
munmun_twitter_social 139 0.03 47.80 20.74 31.46 < 0.01 < 0.01 0.04
wiki_talk_ja 1,475 0.14 15.98 18.33 65.68 0.05 0.47 2.61
wikipedia_link_gu 191 0.63 11.43 12.11 76.46 0.47 4.73 25.54
web-NotreDame 6,332 1.94 91.81 3.33 4.86 0.08 0.36 3.74
digg-friends 708 0.02 66.00 18.05 15.95 < 0.01 0.03 0.26

46

k = 1 k = 10 k = 100

1 10 100
Batch size

100

101

102

103

Sp
ee

du
p

(lo
g)

Edge insertions

1 10 100
Batch size

100

101

102

103

Sp
ee

du
p

(lo
g)

Edge removals

(a) Complex undirected

1 10 100
Batch size

100

101

102

103

104

Sp
ee

du
p

(lo
g)

Edge insertions

1 10 100
Batch size

100

101

102

103

104

Sp
ee

du
p

(lo
g)

Edge removals

(b) Complex directed

1 10 100
Batch size

100

101

102

103

Sp
ee

du
p

(lo
g)

Edge insertions

1 10 100
Batch size

100

101

102

103

104
Sp

ee
du

p
(lo

g)
Edge removals

(c) High-diameter undirected

1 10 100
Batch size

100

101

102

103

104

Sp
ee

du
p

(lo
g)

Edge insertions

1 10 100
Batch size

100

101

102

103

104

105

Sp
ee

du
p

(lo
g)

Edge removals

(d) High-diameter directed

Figure 3.3: Geometric mean of the average speedups over all tested networks, for different values of k and batch sizes.
Figures 3.3a and 3.3b show the results for complex networks, whereas Figures 3.3c and 3.3d show the results
for road networks. Detailed numbers can be found in Sections B.2.1 and B.2.2.

Table 3.1b shows the results for the directed case. Compared to undirected graphs, insertions typically
affect smaller portions of the graph – average values are at most 5.15%. However, a smaller percentage of
affected vertices is far-away, probably because most of the vertices that are very close to the inserted edge
are affected. Therefore, the new bounds c̃h′(·) of the affected vertices are less tight than in the undirected
case and Algorithm 3 runs BFScut more often – up to 3.5% for single edge insertions and up to 94.3% for
batches of 100 edge insertions.

Figures 3.3a and 3.3b summarize the speedup of our dynamic algorithm on the static one for complex
networks while Figures 3.4a and 3.4b show the fraction of time spent by the dynamic algorithm computing
c̃h

′(·) of the affected vertices w.r.t. the algorithm’s overall running time (i.e., computing c̃h′(·) and the new
top-k ranking) for complex networks. Detailed results for insertions in complex networks are reported
in Tables B.5 and B.9. For undirected networks, the geometric mean of the speedups over 100 single edge
insertions are always at least in the double-digit range for every instance. Also, the speedups grow for bigger
values of k, reaching an average speedup (over all tested undirected instances) of 827.8× for k = 100. A
possible explanation for this pattern is that separating the top-k vertices with highest closeness centrality
from the others is harder for larger values of k and the dynamic algorithm does this faster because it exploits
precomputed values of c̃h′(·). This is also clear from the left plot of Figure 3.4a, as updating the ranking
becomes more expensive for larger values of k.

For larger batches of edge insertions, our dynamic algorithm yields diminishing returns. This is expected
because, themore the graph changes, the less accurate the bounds c̃h′(·) become. As we can clearly see from
Figure 3.4a, inaccurate bounds jeopardize the performance of the dynamic algorithm since the recomputa-
tion of the ranking becomes more expensive as we increase the batch size. Nevertheless, averaging over all

47

k = 1 k = 10 k = 100

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge insertions

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge removals

(a) Complex undirected

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge insertions

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge removals

(b) Complex directed

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge insertions

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge removals

(c) High diameter undirected

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge insertions

1 10 100
Batch size

0.00

0.25

0.50

0.75

1.00
Edge removals

(d) High diameter directed

Figure 3.4: Geometric mean of the average time spent by the dynamic algorithm computing c̃h′(·) w.r.t. the total
time spent in updating the top-k nodes with highest closeness centrality over all the tested networks, for
different values of k and batch sizes. Figures 3.4a and 3.4b show the results for complex networks, whereas
Figures 3.4c and 3.4d show the results for road networks.

the undirected networks, with k = 1 the dynamic algorithm handles batches of 100 edge insertions 1.5×
faster than the static algorithm, 2.2× faster with k = 10, and 4.9× faster with k = 100.

Concerning directed graphs, the average speedups for single edge insertions are better than for the undi-
rected case: the average speedup over all the tested directed networks are 465.7× for k = 1, 978.4× for
k = 10 and 1,583.8× for k = 100. This can be explained by the smaller number of affected vertices in
directed networks (see Table 3.1b). The performance of the dynamic algorithm for directed networks seems
to be more susceptible to the batch size than for undirected networks; for example, for k = 10 and 10 edge
insertions, the average speedup is 19.4× on directed networks and 21.2× on undirected networks, while
for 100 edge insertions the average speedup is 1.6× and 2.2× respectively. Similarly to the undirected case,
this is likely due to the inaccuracy of the updated bounds as the dynamic algorithm spends the vast majority
of its running time in recomputing the ranking (see the left plot in Figure 3.4b).

Speedups for edge removals on complex networks are summarized in the right of Figures 3.3a and 3.3b –
detailed results are reported in Tables B.6 and B.10. Interestingly, for directed graphs, our algorithm handles
removals faster than insertions, whereas the performance does not change substantially w.r.t. insertions
in the undirected case. In general, for shortest-path based problems insertions are easier to handle than
removals; for example, pairwise distances can be updated in O(n2) time after an edge insertion, but not
after an edge removal [88]. In our case, we know that removals can only decrease centrality. Thus, the upper
bounds of the centralities are still valid and, if none of the top-k vertices is affected, nothing needs to be
done. In insertions, on the contrary, any vertex could increase its centrality and become one of the top-k.
If the number of affected vertices is small – as in most cases for directed graphs, see Table 3.1b – it is quite
unlikely that a top-k vertex is affected. This happens more often in undirected graphs, where often a larger
number of vertices are affected. Consequently, as shown in Figures 3.4a and 3.4b, updating the ranking

48

is less expensive after an edge removal than after an edge insertion. As for insertions, speedups increase
with k and decrease with the batch size: for single edge removals, the geometric mean of the speedups in
undirected graphs is 135.5× for k = 1, 223.8× for k = 10, and 845.9× for k = 100, whereas for directed
graphs it is 548.2× for k = 1, 1,112.7× for k = 10, and 1,299.3× for k = 100. For edge removals,
the decrease of the speedups w.r.t. the batch size is less severe than for edge insertions; the bounds on the
closeness centrality after a batch of edge removals are likely to be tighter than the ones computed after a
batch of edge insertions, allowing Algorithm 5 to terminate often earlier than Algorithm 3.

Dynamic Road Networks. Figures 3.3c and 3.3d summarize the speedups for directed and undirected
road networks, respectively – detailed results are shown in Tables B.7, B.8, B.11 and B.12 – whereas Fig-
ures 3.4c and 3.4d show the fraction of time spent by the dynamic algorithm updating c̃h′(·) w.r.t. the
algorithm’s overall running time. As for complex networks, speedups in road networks are generally higher
in the directed case and they decrease with the batch size. However, differently from complex networks,
speedups generally decrease with k: If k is large, it is also more likely that some affected vertices are either
among the top-k or “overtake” one of the top-k, making the algorithm run BFSbound more often and thus
slowing it down. The bar plots in the left of Figures 3.4c and 3.4d also show that the running time of the
dynamic algorithm is dominated by the recomputation of the ranking, which is expected because closeness
centrality distinguishes vertices in complex networks less efficiently than in high-diameter networks [227,
Ch. 7]. Nevertheless, even for k = 100, for a single edge insertion the dynamic algorithm is on average
417.1× faster than a static recomputation in undirected road networks and 660.1× faster in directed road
networks. Furthermore, regarding multiple edge insertions, the dynamic algorithm is faster than a static
recomputation on all the considered instances and for all the considered batch sizes.

Results for removals are significantly better: for k = 1 and single edge removals the dynamic algorithm is
on average 12,505.6× faster in the undirected case and 18,236.9× in the directed one, while for k = 100 the
speedups are 1,950.4× and 4,252.6×, respectively. As we described previously, the impact on the ranking
due to edge removals is in general lower than edge insertions, so the dynamic algorithm spends less time on
recomputing the ranking. This is also clear from the bar plots in the right of Figures 3.4c and 3.4d: after edge
removals the fraction of time spent by the dynamic algorithm updating c̃h′(·) w.r.t. the total running time
is greater than after edge insertions. Finally, concerning batches of 10 [100] edge removals, the dynamic
algorithm is on average two to three [one to two] orders of magnitude faster than a static recomputation.

3.6 Conclusions

In this chapter, we addressed the problem of preserving an exact top-k ranking of the vertices with highest
closeness (including their exact score). We implemented batch-dynamic algorithms for top-k closeness
centrality tailored to both complex and high-diameter networks. Our dynamic algorithms are developed
on top of the static algorithms for top-k closeness centrality by Bergamini et al. [37]; in particular, they
maintain upper bounds c̃h(·) on the closeness centrality of every vertex, which accelerates the computation
of the top-k vertices in practice. By re-using such bounds as well as other precomputed information, we
are able to significantly reduce the number of operations required to update the most central vertices in the
graph after multiple graph updates.

49

As a result, for single edge updates, we achieve high speedups on a static recomputation, in line with re-
sults obtained by other dynamic algorithms for related problems [39, 40, 129, 157] – confirming that efforts in
developing dynamic algorithms are well spent. As we increase the batch sizes, our strategy yields diminish-
ing returns. This is expected because, the more the graph changes, the less precise the upper bounds c̃h′(·)
become and this impacts the performance of our dynamic algorithms. Nevertheless, experimental data
show that, averaging results over the tested instances, our dynamic algorithms are always faster than a static
recomputation. In contrast to most existing algorithms for updating shortest-path based centralities that
require O(n2) additional memory, the techniques we propose require an amount of memory that is only
linear in n. Although storing more data (e.g., the distances computed during BFScut on the initial graph)
might lead to even higher speedups, a quadratic memory footprint would not allow us to target networks
with millions of vertices. An interesting question is whether the memory requirements of other dynamic
algorithms for related problems can be reduced by using techniques similar to the ones we presented in this
chapter.

A possible direction for future research is the extension of our strategies for batch updates to other central-
ity measures such as betweenness – for which a static algorithm for finding the top-k vertices with highest
betweenness has already been proposed in Ref. [180]. Thus, an interesting question is whether this algorithm
can be further improved and/or efficiently updated in fully-dynamic networks.

50

4 Parallel Approximation of Betweenness
Centrality

4.1 Introduction

With large datasets being the rule and not the exception today, approximation is frequently applied [127]
to problems that cannot be solved exactly within a desired time budget, including polynomial-time prob-
lems [56]. We focus on a particular subclass of approximation algorithms: sampling algorithms. They sample
data according to some (usually algorithm-specific) probability distribution, perform some computation on
the sample and induce a result for the full dataset.

More specifically, we consider adaptive sampling (ADS) algorithms – also called progressive sampling
algorithms. Here, the number of samples that are required is not statically computed (e.g., from the in-
put instance) but also depends on the data that has been sampled so far. While non-adaptive sampling
algorithms can often be parallelized trivially by drawing multiple samples in parallel, adaptive sampling
constitutes a challenge for parallelization: checking the stopping condition of an ADS algorithm requires
access to all the samples drawn so far and thus mandates some form of synchronization.

Motivation and Contribution. Our initial motivation was a parallel implementation of the sequential
state-of-the-art approximation algorithm KADABRA [56] for betweenness centrality (cb) approximation.
Betweenness is a very popular centrality measure in network analysis, see Sections 2.4.3 and 4.2.2 for more
details. To the best of our knowledge, parallel adaptive sampling has not received a generic treatment yet.
Hence, we propose techniques to parallelize ADS algorithms in a generic way, while scaling to large numbers
of threads. While we turn to KADABRA to demonstrate the effectiveness of the proposed algorithms, our
techniques can be adjusted easily to other ADS algorithms.

We introduce two new parallel ADS algorithms, which we call local-frame and shared-frame. Both algo-
rithms try to avoid extensive synchronization when checking the stopping condition. This is done by main-
taining multiple copies of the sampling state and ensuring that the stopping condition is never checked on
a copy of the state that is currently being written to. Local-frame is designed to use the least amount of syn-
chronization possible – at the cost of an additional memory footprint ofΘ(ns) per thread, wherens denotes
the size of the sampling state. This algorithm performs only atomic load-acquire and store-release
operations for synchronization, but no expensive read-modify-write operations (like CAS or fetch-add).
Shared-frame, in turn, aims instead at meeting a desired trade-off between memory footprint and synchro-
nization overhead. In contrast to local-frame, it requires onlyΘ(1) additional memory per thread, but uses
atomic read-modify-write operations (e.g., fetch-add) to accumulate samples. We also propose the de-
terministic indexed-frame algorithm; it guarantees that the results of two different executions is the same
for a fixed random seed, regardless of the number of threads.

51

Algorithm 6 Generic Adaptive Sampling
1: /* Variable initialization */
2: d← new sampling state structure
3: d.data← (0, . . . , 0) ▷ Sampled data
4: d.num← 0 ▷ Number of samples
5: /* Main loop */
6: while not checkForStop(d) do
7: d.data← d.data ◦ sample()
8: d.num← d.num+ 1

Our experimental results show that local-frame, shared-frame, and indexed-frame achieve parallel
speedups of 15.9×, 18.1×, and 10.8× on 32 cores, respectively. Using the same number of cores, our
OpenMP-based parallelization (functioning as a baseline) only yields a speedup of 6.3×; thus, our algo-
rithms are up to 2.9× faster. Moreover, also due to implementation improvements and parameter tun-
ing, our best algorithm performs adaptive sampling 65.3× faster than the existing implementation of
KADABRA (when all implementations use 32 cores).

Bibliographic Notes. The contributions presented in this chapter were published in the Proceedings of
the Twenty-Fifth European Conference on Parallel Processing (Euro-Par 2019). My contributions involve the
development of the indexed-frame algorithm with bounded memory complexity (Section 4.4.5) in collabo-
ration with Alexander van der Grinten and the implementation of all presented algorithms. The rest is joint
work with Alexander van der Grinten and Henning Meyerhenke. Proofs to which I did not contribute are
omitted and can be found in the original paper [131].

4.2 Preliminaries and Baseline for Parallelization

4.2.1 Basic Definitions

Memory Model. Throughout this chapter, we target a multi-threaded shared-memory machine with T
threads. Wework in theC11memorymodel [147]. Theweakest operations in thismodel are load-relaxed
and store-relaxed operations; those only guarantee the atomicity of the memory access (i.e., they guar-
antee that no tearing occurs) but no ordering at all. Hence, the order in which store-relaxed writes be-
come visible to load-relaxed reads can differ from the order in which the stores and loads are performed
by individual threads. Additionally, load-acquire and store-release do provide ordering guarantees:
if thread t0 writes a word X to a given memory location using store-release and thread t1 reads X
using load-acquire from the same memory location, then all store operations – whether atomic or not –
done by thread t0 before the store ofX become visible to all load operations done by thread t1 after the load
of X . We note that C11 defines even stronger ordering guarantees that we do not require in this chapter.
Furthermore, on a hardware level, x86_64 implements a stronger total store order; thus, load-acquire
and store-release compile to plain load and store instructions and our local-frame algorithm does not
perform any synchronization instructions on x86_64.

52

Adaptive sampling. For our techniques to be applicable, we expect that an ADS algorithm behaves as
depicted in Algorithm 6: it iteratively samples data (in sample) and aggregates it (using some operator ◦)
until a stopping condition (checkForStop) determines that the data sampled so far is sufficient to return
an approximate solution within the required accuracy. This condition does not only consider the number
of samples (d.num), but also the sampled data (d.data). Throughout this chapter, we denote the size of
that data (i.e., the number of elements of d.data) by ns. We assume that the stopping condition needs to
be checked on a consistent state, i.e., a state of d that can occur in a sequential execution.19 Furthermore,
to make parallelization feasible at all, we need to assume that ◦ is associative. For concrete examples of
stopping conditions, we refer to Sections 4.2.3 and 4.2.4.

4.2.2 Betweenness Centrality and its Approximation

Betweenness Centrality (cb) is one of the most popular vertex centrality measures for network analysis (see
Section 2.4.3). Th betweenness of a vertex u ∈ V is defined as:

cb(u) :=
∑

x,y∈V \{u}
x ̸=y, σx,y ̸=0

σx,y(u)

σx,y
,

where σx,y is the number of shortest x-y paths and σx,y(u) is the number of shortest x-y paths that contain
u. Betweenness is extensively used to identify the key vertices in large networks, e.g., cities in a transporta-
tion network [136] or lethality in protein networks [152].

Unfortunately, cb(·) is rather expensive to compute: the standard exact algorithmbyBrandes [61] has time
complexity Θ(n · m) for unweighted graphs. Moreover, unless the Strong Exponential Time Hypothesis
(SETH) fails, this asymptotic running time cannot be improved [55]. Numerous approximation algorithms
for betweenness centrality have been developed – we refer to Section 4.6 for an overview. The state of the art
of these approximation algorithms is the KADABRA algorithm [56] of Borassi and Natale, which happens
to be an ADS algorithm. With probability (1− δ), KADABRA approximates the cb(·) values of the vertices
within an additive error of±ε in nearly-linear time complexity, where δ and ε are user-specified constants.

While our techniques apply to any ADS algorithm, we recall that, as a case study, we focus on scaling the
KADABRA algorithm to large number of threads.

4.2.3 The KADABRA Algorithm

At each iteration, KADABRA samples a vertex pair (s, t) ofG = (V,E,w) uniformly at random and then
selects a shortest s-t-path uniformly at random (sample in Algorithm 6). After τ iterations, this results in
a sequence of randomly selected shortest paths (π1, π2, . . . , πτ). From those paths, cb(u) is estimated as:

c̃b(u) =
1

τ

τ∑
i=1

xi(u), xi(u) =

1 if v ∈ πi
0 otherwise.

19That is, d.num and all entries of d.data must result from an integral sequence of samples – parallelization would be trivial
otherwise.

53

∑τ
i=1 xi is exactly the sampled data (d.data) that the algorithm has to store – the accumulation ◦ in Al-

gorithm 6 sumsxi over i. To compute the stopping condition (checkForStop inAlgorithm 6), KADABRA
maintains the invariants:

Pr(cb(u) ≤ c̃b(u)− f) ≤ δL(u) and Pr(cb(u) ≥ c̃b(u) + g) ≤ δU (u) (4.1)

for two functions f = f(c̃b(u), δL(u), τmax, τ) and g = g(c̃b(u), δU (u), τmax, τ) depending on a maxi-
mum number τmax of samples and per-vertex probability constants δL and δU (more details in the original
paper [56]). The value of those constants are computed in a preprocessing phase – mostly consisting of
computing an upper bound of the diameter of the graph. δL and δU satisfy

∑
u∈V δL(u) + δU (u) ≤ δ

for a user-specified parameter δ ∈ (0, 1). Thus, the algorithm terminates once f, g < ε; with probability
(1− δ), the result is correct with an absolute error of±ε. We note that checking the stopping condition of
KADABRA on an inconsistent state leads to incorrect results. For example, this can be seen from that fact
that g is increasing with c̃b(·) and decreasing with τ , see Section 4.2.4.

4.2.4 The Stopping Condition in Detail

In this section, we illustrate the stopping condition more in detail and show that evaluating it in a consistent
state is crucial for the correctness of the algorithm. The functions f and g we mentioned in Eq. (4.1) are
defined as [56]:

f(c̃b(u), δL(u), τmax, τ) =
1

τ

(
log

1

δL(u)

)1

3
− τmax

τ
+

√√√√(1

3
− τmax

τ

)2

+
2c̃b(u)τmax

log 1
δL(u)

g(c̃b(u), δU (u), τmax, τ) =

1

τ

(
log

1

δU (u)

)1

3
+
τmax
τ

+

√√√√(1

3
+
τmax
τ

)2

+
2c̃b(u)τmax

log 1
δU (u)

,
where c̃b(u) is the approximation of the betweenness centrality of vertex u obtained after τ samples. When
the stopping condition is evaluated, f and g are computed for every vertex of the graph and the algorithm
terminates if:

f(c̃b(u), δL(u), τmax, τ) ≤ ε and g(c̃b(u), δU (u), τmax, τ) ≤ ε

hold for every vertex u ∈ V . It is straightforward to verify that both f and g grow with c̃b(u) but that g
decreases with τ . Thus, evaluating the stopping condition with inconsistent data (e.g., if accesses to τ and
c̃b(u) are not synchronized) could lead to an erroneous termination of the algorithm.

4.2.5 First Attempts at KADABRA Parallelization

In the original KADABRA implementation,20 a lock is used to synchronize concurrent access to the sam-
pling state. As a first attempt to improve the scalability, we consider an algorithm that iteratively computes
a fixed number of samples in parallel (e.g., using an OpenMP parallel for loop) and checks the stop-
ping condition afterwards. While sampling, atomic increments are used to update the global sampling data.
This algorithm is arguably the “natural” OpenMP-based parallelization of an ADS algorithm and can be

20Available at https://github.com/natema/kadabra

54

https://github.com/natema/kadabra

int epoch ← e
int num ← 0
int data[ns] ← (0, . . . , 0)

(a) Structure of a state frame (SF) for epoch e. num: Number
of samples, data: Sampled data

bool stop ← false
int epochToRead ← 0

SF ∗ sfFin[T] ← (null, . . . , null)
(b) Shared variables

Figure 4.1: Data structures used in epoch-based algorithms, including initial values

implemented in a few extra lines of code. Moreover, it already improves upon the original parallelization.
As shown by the experiments in Section 4.5 however, further significant improvements in performance are
possible by switching to more lightweight synchronization.

4.3 Scalable Parallelization Techniques

To improve upon the OpenMP parallelization from Section 4.2.5, we have to avoid to synchronization bar-
rier before the stopping condition can be checked. This is the objective of our epoch-based algorithms that
constitute the main contribution of this chapter. In Section 4.3.1, we formulate the main idea of our al-
gorithms as a general framework. The subsequent subsections present specific algorithms based on this
framework and discuss the trade-offs between them.

4.3.1 Epoch-based Framework

In our epoch-based algorithms, the execution of each thread is subdivided into a sequence of discrete epochs.
During an epoch, each thread iteratively collects samples; the stopping condition is only checked at the end
of an epoch. The crucial advantage of this approach is that the end of an epoch does not require global
synchronization. Instead, our framework guarantees the consistency of the sampled data by maintaining
multiple copies of the sampling state.

As an invariant, it is guaranteed that no thread writes to a copy of the state that is currently being read by
another thread. This is achieved as follows: each copy of the sampling state is labeled by an epoch number
e, i.e., a monotonically increasing integer that identifies the epoch in which the data was generated. When
the stopping condition has to be checked, all threads advance to a new epoch e + 1 and start writing to a
new copy of the sampling state. The stopping condition is only verified after all threads have finished this
transition and it only takes the sampling state of epoch e into account.

More precisely, the main data structure that we use to store the sampling state is called a state frame (SF).
Each SF f (depicted in Figure 4.1a) consists of (i) an epoch number (f.epoch), (ii) a number of samples
(f.num), and (iii) the sampled data (f.data). The latter two symbols directly correspond to d.num and
d.data in our generic formulation of an ADS algorithm (Algorithm 6). Aside from the SF structures, our
frameworkmaintains three global variables that are shared among all threads (depicted in Figure 4.1b): (i) a
simple Boolean flag stop to determine if the algorithm should terminate, (ii) a variable epochToRead that
stores the number of the epoch we want to check the stopping condition on, and (iii) a pointer sfFin[t] for
each thread t that points to a SF finished by thread t. Incrementing epochToRead is our synchronization
mechanism to notify all threads that they should advance to a new epoch. Figure 4.2 visualizes such an epoch

55

epochToRead = 5

Thread 2

Thread 9

SF of
epoch

4

SF of
epoch

5

SF of
epoch

6
. . .

sfFin[2]
fsam

SF of
epoch

4

SF of
epoch

5

SF of
epoch

6
. . .

sfFin[9]
fsam

Figure 4.2: Transition after epochToRead is set to 5. Thread 2 already writes to the SF of epoch 6 (using the fsam
pointer). Thread 9 still writes to the SF of epoch 5 but advances to epoch 6 once it checks epochToRead
(dashed orange line). Afterwards, thread 9 publishes its SF of epoch 5 to sfFin (dashed blue line). Finally,
the stopping condition is checked using both SFs of epoch 5 (i.e., the SFs now pointed to by sfFin).

transition. In particular, it depicts the update of the sfFin pointers after an epoch transition is initiated by
incrementing epochToRead.

Algorithm 7 states the pseudocode of our framework. By ←relaxed, ←acquire, and ←release, we denote
relaxed memory access, load-acquire and store-release, respectively (see Section 4.2.1). In the al-
gorithm, each thread maintains an epoch number esam. To be able to check the stopping condition, thread
0 maintains another epoch number echk. Indeed, thread 0 is the only thread that evaluates the stopping
condition (in checkFrames) after accumulating the SFs from all threads. The checkFrames procedure
determines whether there is an ongoing check for the stopping condition (inCheck is true; Line 16). If
that is not the case, a check is initiated (by incrementing echk and all threads are signaled to advance to
the next epoch (by updating epochToRead). Note that inCheck is needed to prevent thread 0 from repeat-
edly incrementing echk without processing data from the other threads. Afterwards, checkFrames only
continues if all threads t have published their SFs for checking (i.e., sfFin[t] points to a SF of epoch echk;
Line 20). Once that happens, those SFs are accumulated (Line 27) and the stopping condition is checked
on the accumulated data (Line 31). Eventually, the termination flag (stop, Line 32) signals to all threads
that they should stop sampling. The main algorithm, on the other hand, performs a loop until this flag is
set (Line 2). Each iteration collects one sample and writes the results to the current SF (fsam). If a thread
needs to advance to a new epoch (because an incremented epochToRead is read in Line 7), it publishes its
current SF to sfFin and starts writing to a new SF (fsam; Line 12). Note that the memory used by old SFs
can be reclaimed (Line 9); note, however, that there is no SF for epoch 0). How exactly this is done is left to
the algorithms described in later subsections.

Proposition 4.3.1 ([131]). Algorithm 7 always checks the stopping condition on a consistent state; in par-
ticular, the epoch-based approach is correct.

56

Algorithm 7 Epoch-based Approach
Per-thread variable initialization:

esam ← 1
fsam ← new SF for esam = 1
if t = 0 then

echk ← 0
inCheck← false

Main loop for thread t:
1: loop
2: doStop←relaxed stop
3: if doStop then
4: break
5: fsam.data← fsam.data ◦ sample()
6: fsam.num← fsam.num+ 1
7: r←relaxed epochToRead
8: if r = esam then
9: reclaim SF of epoch esam − 1

10: sfFin[t]←release fsam
11: esam ← esam + 1
12: fsam ← new SF for esam

13: if t = 0 then
14: checkFrames()

Check of stopping condition by thread 0:
15: procedure checkFrames()
16: if not inCheck then
17: echk ← echk + 1
18: epochToRead←relaxed echk
19: inCheck← true
20: for t = 0 to T − 1 do
21: ffin←acquire sfFin[t]
22: if ffin = null then
23: return
24: if ffin.epoch ̸= echk then
25: return
26: d← new SF for accumulation
27: for t = 0 to T do
28: ffin←relaxed sfFin[t]
29: d.data← d.data ◦ ffin.data
30: d.num← d.num+ ffin.num
31: if checkForStop(d) then
32: stop←relaxed true
33: inCheck← false

4.3.2 Local-frame and shared-frame Algorithm

We present two epoch-based algorithms relying on the general framework from the previous section:
namely, the local-frame and the shared-frame algorithm. Furthermore, in Sections 4.4.4 and 4.4.5, we
present two variants of the deterministic indexed-frame algorithm – as both local-frame and shared-frame
are non-deterministic. Local-frame and shared-frame are both based on the pseudocode of Algorithm 7.
They differ, however, in their allocation and reuse of SFs (Line 9 of the pseudocode). The local-frame algo-
rithm allocates one pair of SFs per thread and cycles through both SFs of that pair (i.e., epochs with even
numbers are assigned to the first SF while odd epochs use the second SF). This yields a per-thread memory
requirement of O(ns); as before, ns denotes the size of the sampling state. The shared-frame algorithm
reduces this memory requirement toO(1) by only allocating F pairs of SFs in total, for a constant number
F . Thus, T/F threads share a SF in each epoch and atomic fetch-add operations need to be used to write
to the SF. The parameter F can be used to balance the memory bandwidth and synchronization costs –
a smaller value of F lowers the memory bandwidth required during aggregation but leads to more cache
contention due to atomic operations.

4.3.3 Synchronization Costs

In Algorithm 7, all synchronization of threads t > 0 is done wait-free in the sense that the threads only have
to stop sampling for Θ(1) instructions to communicate with other threads (i.e., to check epochToRead,
update per-thread state and write to sfFin[t]). At the same time, thread t = 0 generally needs to check all
sfFin pointers. Taken together, this yields the following statement:

Proposition 4.3.2 ([131]). In each iteration of the main loop, threads t > 0 of local-frame and shared-frame
algorithms spend Θ(1) time to wait for other threads. Thread t = 0 spends up to O(T) time to wait for
other threads.

57

In particular, the synchronization cost does not depend on the problem instance – this is in contrast to
the OpenMP parallelization (Section 4.2.5) in which threads can idle for O(S) time, where S denotes the
time complexity of a sampling operation (e.g., S = O(n+m) in the case of KADABRA).

Nevertheless, this advantage in synchronization costs comes at a price: the accumulation of the sampling
data requires additional evaluations of ◦. The local-frame algorithm requires O(Ts) evaluations, whereas
the shared-frame requires O(Fs). No accumulation is necessary in the OpenMP baseline. As can be seen
in Algorithm 7, we perform the accumulation in a single thread (i.e., thread 0). Compared to a parallel
implementation (e.g., using parallel reductions), this strategy requires no additional synchronization and
has a favorable memory access pattern (as the SFs are read linearly). A disadvantage, however, is that there
is a higher latency (depending on T) until the algorithm detects that it is able to stop. In Section 4.4.3, we
discuss how a constant latency can be achieved heuristically.

4.4 Optimization and Tuning

4.4.1 Improvements to the KADABRA Implementation

In the following, we document some improvements to the sequential KADABRA implementation of Borassi
and Natale [56]. First, for undirected graphs, we avoid searching for non-existing shortest paths between a
pair (s, t) of randomly selected vertices by checking if s and t belong to the same connected component.21

Then, we reduce thememory footprint of the sampling procedure: the original KADABRA implementation
stores all predecessors on shortest paths in a separate graphG′, which is used to backtrack the path starting
from the last explored vertices. Our implementation avoids the use of G′ by reconstructing shortest s-t-
paths from the original graphG and a distance array. Furthermore, for each shortest s-t-path sampled, the
original KADABRA implementation needs to reset a Boolean “visited” array with an overall additional cost
of Θ(n) time per sample. We avoid doing this by using 7 bits per element in this array to store a timestamp
that indicates when the vertex was last visited; therefore, the array needs to be reset only once in 27 = 128

SSSPs.

4.4.2 Balancing Costs of Termination Checks

Although the pseudocode of Algorithms 6 and 7 checks the stopping condition after every sample, this
amount of checking is excessive in practice. Hence, both the original KADABRA and the OpenMP ADS al-
gorithms check the stopping condition after a fixed numberN of samples. N represents a trade-off between
the time required to check the stopping condition and the time required to sample a shortest path. In the
original KADABRA implementation,N is set to 11; in our experiments, however, this choice turned out to
be inefficient. Thus, we formed a small set of the instances for parameter tuning [14], and ran experiments
with different values ofN .22 As a result, we found thatN = 1000 empirically performs best.

21Connected components are computed along with the diameter during preprocessing.
22We chose the instances com-amazon, munmun_twitter_social, orkut-links, roadNet-PA, wikipedia_link_de, and

wikipedia_link_fr.

58

4.4.3 Termination Latency in Epoch-based Approach

In the epoch-based approach, we also need to balance the frequency of checking the stopping condition
and the time invested into sampling; however, we face a different problem: the accumulation of all SFs
before the stopping condition is checked takes O(Tns) time, thus the length of an epoch depends on T
(see Section 4.3.3). This is an undesirable artifact as it introduces an additional delay between the time
when the algorithm could potentially stop (because enough samples have been collected) and the timewhen
the algorithm actually stops (because the accumulation is completed). It would be preferable to check the
stopping condition after a constant number of samples (summed over all thread) – as the sequential and
OpenMP variants naturally do.23

While it seems unlikely that a constant number of samples per epoch can be achieved (without additional
synchronization overhead), we aim to satisfy this property heuristically. Checking the stopping condition
after N0 = (1/T)N samples per thread seems to be a reasonable heuristic. However, it does not account
for the fact that only one thread performs the check while all additional threads continue to sample data.
Thus, we check the stopping condition after

N0 =
1

T ξ
N

samples from thread 0. Here, ξ is another parameter that can be tuned. Using the same approach as in
Section 4.4.2 (and running the algorithmon 32 cores), we empirically determined ξ = log32(N/10) ≈ 1.33

to be a good choice.

4.4.4 Indexed-frame Algorithm

In this subsection, we introduce the indexed-frame algorithm that is a variant of local-frame but always
obtains deterministic results. In particular, we highlight the modifications compared to local-frame that are
necessary to avoid non-determinism.

There are two sources of non-determinism in the epoch-based algorithms: First, because threads gener-
ate random numbers independently from each other and the pseudo-random number generator (PRNG)
of each thread is seeded differently, the sequence of generated random numbers depends on the number of
threads. Secondly, and more importantly, the point in time where a thread notices that the stopping condi-
tion needs to be checked (i.e., epochToRead is read in Line 7 of Algorithm 7) is non-deterministic. Thus,
among multiple executions of the algorithm, the SFs that are checked differ in (i) the number of samples
and (ii) in the PRNG state used to generate the samples.
Indexed-frame avoids the first problem by re-seeding the randomnumber generator of each thread when-

ever the threadmoves to a new epoch. To avoid a dependence on the number of threads, the new seed should
only vary based on a unique index of the generated SF (not to be confused with the epoch number). As an
index for the SF of epoch e, we choose (eT + t), as every thread t contributes exactly one SF to each epoch
e. This scheme is depicted in Figure 4.3a.

Handling the second issue turns out to bemore involved. Asweneed to ensure that the stopping condition
is always checked on exactly the same SFs, the point in time where a thread moves to a new epoch must be

23As a side effect, doing so improves the comparability of those algorithms.

59

0 T 2T …

1 T + 1 2T + 1 …

2 T + 2 2T + 2 …

...
...

...
. . .

Epoch

0 0 0

1 1 1

2 2 2

1 2 3

(a) SF indices in indexed-frame algorithm (not to be confused
with epoch numbers).

3T
2

…

1 2 3 4

Epoch

T + 1

1

2T + 1

0

3T + 1 …

3T + 2 …

(b) Relaxation of the indexed-frame condition with T = 3.
Thread 0 (blue) and Thread 2 (green) have both finished
the SFs of epochs 1, 2, and 3, while Thread 1 (red) did not
finish SF T + 1 yet. Assuming that Thread 0 finished SF
2T before Thread 2, Thread 0 starts computing the SF with
index 2T + 1. Then, Thread 2 starts computing SF 3T .

Figure 4.3: Indices of SFs in indexed-frame algorithm. Central numbers indicate SF indices. Numbers in bottom right
corners (and colors) denote the thread that will compute the SF. Dashed SFs are already finished.

independent of the time when the stopping condition is checked. To achieve that, indexed-frame writes a
fixed number of samples to each SF. That, however, means that by the time a check is performed, a thread
can have finished multiple SFs. To deal with multiple finished SFs, we use a per-thread queue of SFs which
have already been finished but which were not considered by the stopping condition yet. While the size of
this queue is unbounded in theory, in our experiments we never observed a thread buffering more than 12

SFs at a time – with an average of 3 SFs allocated per thread. Thus, we do not implement in indexed-frame
a sophisticated strategy to bound the queue length. The following subsection discusses such a strategy for
ADS algorithms where this becomes a problem.

4.4.5 Bounded Memory Complexity in Indexed-frame

As our experiments in Section 4.5.5 demonstrate, the SF buffering overhead of the deterministic algorithm is
not problematic in our betweenness centrality case study. However, at the cost of additional synchronization,
it is possible to bound the theoretical memory complexity of the algorithm as well. In particular, if there
are lower and upper bounds Cℓ and Cu on the time to compute a single SF,24 we can relax the condition that
every thread t samples the SF of epoch e with index (eT + t): instead of computing the SFs with indices
(t, t+T, t+2T, . . .), each thread t determines (by synchronizing with all other threads) the smallest index i
of a SF that is not being computed yet by any other thread – see Figure 4.3b for an illustration of this process.
Determinism is guaranteed because, before starting to compute a new SF, every thread re-seeds its random
number generator with a seed that depends exclusively on the SF index, not on the thread sampling the SF.
The bounds on the computation time of a single SF imply that all other threads can only compute a constant
number Cu/Cℓ of SFs until an epoch is finished (and all SFs of the epoch can be reclaimed).

24Such bounds trivially exist if the algorithmic complexity of a single sampling operation is bounded.

60

Table 4.1: List of instances used for the experiments.
Network name n m Diameter Category

tntp-ChicagoRegional 12,979 20,627 106 Infrastructure
dimacs9-NY 264,346 365,050 720 Infrastructure
dimacs9-COL 435,666 521,200 1,255 Infrastructure
munmun_twitter_social 465,017 833,540 8 Social
com-amazon 334,863 925,872 47 Co-purchase
loc-gowalla_edges 196,591 950,327 16 Social
web-NotreDame 325,729 1,090,108 46 Hyperlink
roadNet-PA 1,088,092 1,541,898 794 Infrastructure
roadNet-TX 1,379,917 1,921,660 1,064 Infrastructure
web-Stanford 281,903 1,992,636 753 Hyperlink
petster-dog-household 256,127 2,148,179 11 Social
flixster 2,523,386 7,918,801 8 Social
as-skitter 1,696,415 11,095,298 31 Computer
dbpedia-all 3,966,895 12,610,982 146 Relationship
actor-collaboration 382,219 15,038,083 13 Collaboration
soc-pokec-relationships 1,632,803 22,301,964 14 Social
soc-LiveJournal1 4,846,609 42,851,237 20 Social
livejournal-links 5,204,175 48,709,621 23 Social
wikipedia_link_ceb 7,891,015 63,915,385 9 Hyperlink
wikipedia_link_ru 3,370,462 71,950,918 10 Hyperlink
wikipedia_link_sh 3,924,218 76,439,386 9 Hyperlink
wikipedia_link_de 3,603,726 77,546,982 14 Hyperlink
wikipedia_link_it 2,148,791 77,875,131 9 Hyperlink
wikipedia_link_sv 6,100,692 99,864,874 10 Hyperlink
wikipedia_link_fr 3,333,397 100,461,905 10 Hyperlink
wikipedia_link_sr 3,175,009 103,310,837 10 Hyperlink
orkut-links 3,072,441 117,184,899 10 Social

4.5 Experiments

4.5.1 Settings

The platform we use for our experiments is a Linux server equipped with 1.5TiB of RAM and two Intel
Xeon Gold 6154 with 18 cores (for a total of 36 cores) at 3.00GHz. Each thread of the algorithm is pinned
to a unique core; hyperthreading is disabled. Our implementation is written in C++ building upon the Net-
worKit toolkit [273]. In the experiments, we use the 27 undirected real-world graphs reported in Table 4.1.
The largest instances take tens of minutes for our OpenMP baseline and multiple hours for the original
implementation of KADABRA. The error probability for KADABRA is set to δ = 0.1 for all experiments.
Absolute running time are reported in Appendix C.1.

4.5.2 OpenMP Baseline

In a first experiment, we compare our OpenMP baseline against the original implementation of KADABRA
(see Section 4.2.5 for these two approaches). We set the absolute approximation error to ε = 0.01. The
overall speedup (i.e., both preprocessing and ADS) are reported in Figure 4.4a. The results show that our
OpenMP baseline outperforms the original implementation considerably (by a factor of 1.7×), even in a
single-core setting. This is mainly due to implementation tricks (see Section 4.4.1) and parameter tuning (as
discussed in Section 4.4.2). Furthermore, for 32 cores, our OpenMP baseline performs 13.5× better than
the original implementation of KADABRA – or 22.7× if only the ADS phase is considered. Hence, for the
remaining experiments, we discard the original implementation as a competitor and focus on the parallel
speedup of our algorithms.

61

1 2 4 8 16 32
cores

1

2

4

8

16

32

Sp
ee

du
p

(v
s.

or
ig

in
al

)

OpenMP
Original KADABRA

(a) Average speedup (preprocessing + ADS, geom. mean) of
OpenMP baseline over the original sequential implemen-
tation of KADABRA.

0.0

0.2

0.4

0.6

0.8

1.0

O
=0.1
W D O

=0.01
W D O

=0.005
W D O

=0.001
W D

PP (seq.) PP (par.) ADS

(b) Breakdown of sequential KADABRA running times into
preprocessing and ADS (in percent) on instances orkut-
links (O), wikipedia_link_de (W), and dimacs9-COL (D)

Figure 4.4: Performance of OpenMP baseline.

1 2 4 8 16 32
cores

1

2

4

8

16

32

Sp
ee

du
p

(v
s.

Op
en

M
P)

OpenMP
Local-frame
Shared-frame
Indexed-frame

(a) Average ADS speedup (geom. mean) of epoch-based algo-
rithms over sequential OpenMP baseline.

0 10 20 30
F

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

(v
s.

lo
ca

l-f
ra

m
e)

3.83

4.10

4.37

4.63

4.90

M
em

or
y

(G
B)

Speedup
Memory

(b) Average ADS speedup (over 36-core local-frame, geom.
mean) and memory consumption of shared-frame, de-
pending on the number of SFs.

Figure 4.5: Performance of epoch-based algorithms.

4.5.3 Preprocessing and ADS Costs

To understand the relation between the preprocessing and ADS phases of KADABRA, we break down the
running times of the OpenMP baseline in Figure 4.4b. In this plot, we present the fraction of time that is
spent on ADS on three exemplary instances and for different values of ε. Especially if ε is small, the ADS
running time dominates the overall performance of the algorithm. Thus, improving the scalability of the
ADS phase is of critical importance. For this reason, we neglect the preprocessing phase and only consider
ADS when comparing to our local-frame and shared-frame algorithms.

4.5.4 Parallel Speedup

In Figure 4.5a we report the parallel speedup of the ADS phase of our epoch-based algorithms relative to
the OpenMP baseline. All algorithms are configured to check the stopping condition after a fixed number
of samples (see Section 4.4.3 for details). The number F of SF pairs of shared-frame has been configured
to 2, which we found to be a good setting for T = 32. On 32 cores, local-frame and shared-frame achieve
parallel speedups of 15.9× and 18.1×; they both significantly improve upon the OpenMP baseline, which

62

can only achieve a parallel speedup of 6.3× (i.e., local-frame and shared-frame are 2.5× and 2.9× faster,
respectively; they also outperform the original implementation by factors of 57.3× and 65.3×, respectively).
The difference between local-frame and shared-frame is insignificant for lower numbers of cores; this is
explained by the fact that the reduced memory footprint of shared-frame only improves performance once
memory bandwidth becomes a bottleneck. For the same reason, both algorithms scale very well until 16
cores; due to memory bandwidth limitations, this nearly ideal scalability does not extend to 32 cores. This
bandwidth issue is known to affect graph traversal algorithms in general [26, 195].

4.5.5 Indexed-frame Algorithm

The indexed-frame algorithm is not as fast as local-frame and shared-frame on the instances depicted in
Figure 4.5a; it achieves a parallel speedup of 10.8× on 32 cores. However, it is still considerably faster than
the OpenMP baseline (by a factor of 1.7×). There are two reasons why the determinism of indexed-frame is
costly: indexed-frame has similar bandwidth requirements as local-frame; however, it has to allocate more
memory as SFs are buffered for longer periods of time. On the other hand, even when enough samples are
collected, the stopping condition has to be checked on older samples first, while local-frame and shared-
frame can just check the stopping condition on the most recent sampling state.

4.5.6 Impact of Parameter F

In a final experiment, we evaluate the impact of the parameter F of shared-frame on its performance.
Note that this experiment also demonstrates the difference in memory consumption of shared-frame
(F ∈ {1, . . . , T}) and local-frame (equivalent to F = T). Figure 4.5b depicts the results. The experi-
ment is done with 36 cores; hence, memory pressure is even higher than in the previous experiments. The
plot demonstrates that, in this situation, minimizing thememory bandwidth requirements at the expense of
synchronization overhead is a good strategy. Hence, for larger number of cores, we can minimize memory
footprint and maximize performance at the same time.

4.6 Related Work

ADS Algorithms. Our parallelization strategy can be applied to arbitrary ADS algorithms. ADS was
first introduced by Lipton and Naughton to estimate the size of the transitive closure of a digraph [189].
It is used in a variety of fields, e.g., in statistical learning [243]. In the context of betweenness centrality,
ADS has been used to approximate distances between pairs of vertices of a graph [230], to approximate the
cb(·) value of the vertices in a graph [27, 252], and to approximate the betweenness centrality of a single
vertex [75]. An analogous strategy is exploited by Mumtaz and Wang [222] to find approximate solutions to
the group-betweenness maximization problem.

Betweenness Centrality Approximation Algorithms. Regardingmore general (i.e., not necessarily
ADS) algorithms for cb(·), a survey fromMatta et al. [205] provides a detailed overview of the state of the art.
The RK [251] algorithm represents the leading non-adaptive sampling algorithm for betweenness centrality
approximation; KADABRA was shown to be 100× faster than RK in undirected real-world graphs, and

63

70× faster thank RK in directed graphs [56] McLaughlin and Bader [210] introduced a work-efficient paral-
lel algorithm for betweenness centrality approximation, implemented for single- and multi-GPU machines.
Madduri et al. [198] presented a lock-free parallel algorithms optimized for specific massively parallel non-
x86_64 architectures to approximate or compute cb(·) exactly in massive networks. Unlike our approach,
this lock-free algorithm parallelizes the collection of individual samples and is thus only applicable to be-
tweenness centrality and not to general ADS algorithms. Additionally, according to the authors of [198] this
approach hits performance bottlenecks on x86_64 even for 4 cores.

Concurrent Data Structures. The SFs used by our algorithms are concurrent data structures that
enable us to minimize the synchronization latencies in multi-threaded environments. Devising concurrent
(lock-free) data structures that scale over multiple cores is not trivial and much effort has been devoted to
this goal [59, 216]. A well-known solution is the Read-Copy-Update mechanism (RCU); it was introduced
to achieve high multi-core scalability on read-mostly data structures [209], and was leveraged by several
applications [19, 77]. Concurrent hash tables are another popular example [85].

4.7 Conclusions

In this chapter, we observed that previous techniques to parallelize ADS algorithms are insufficient to scale
to large numbers of threads. However, we found that significant speedups can be achieved by employing
adequate concurrent data structures. Using such data structures in connection with our new epoch-based
mechanism, we were able to devise parallel ADS algorithms that, in our betweenness centrality case study,
consistently outperform the state of the art but also achieve different trade-offs between synchronization
costs, memory footprint, and determinism of the result.

Sampling-based strategies are used to estimate other centralities such as closeness [63, 102], group be-
tweenness [198], electrical closeness [17], or (group-) forest closeness [133]. Hence, regarding future work,
a promising direction for our algorithms is to adapt them to approximate other centrality measures beyond
betweenness.

64

5 Approximation of the Diagonal of a
Laplacian’s Pseudoinverse for Complex
Network Analysis

5.1 Introduction

In this chapter, we address the problem of approximating electrical centrality measures for the analysis
of complex networks – also known as small-world networks, i.e., graphs whose diameter is bounded by
O(logn), see Section 1.3. The small-world feature is typical of many real-world networks such as social
networks, biological networks, informationnetworks, etc. [227]. Asdescribed in Section 2.4,many centrality
measures exist, some of which are based on shortest paths (or shortest-path distances) while others consider
paths of arbitrary lengths. Electrical centrality measures interpret the graph as an electrical network [192]
and thus fall in the latter category. Here we consider two electrical centrality measures: electrical closeness
centrality (ce) [62] – a.k.a. current-flow closeness or information centrality [274] – and forest closeness
centrality (cf,α) [153].

Electrical Closeness. The electrical closeness of a vertex u ∈ V (see Eq. (2.7)) is defined as the recip-
rocal of the average effective resistance ρ(u, ·) from u to all other vertices.25 The effective resistance between
two vertices u, v ∈ V can be computed by solving the linear system Lx = eu − ev for x, where ez is the
canonical unit vector for vertex z. Then, ρ(u, v) = x[u] − x[v]. It is well-known that L does not have full
rank and is thus not invertible. Its Moore-Penrose pseudoinverse [126] L†, however, can be used to compute
ρ(u, v) as shown in Eq. (2.2).

A straightforward way to compute the electrical closeness of any vertex would be to compute L† which,
without exploiting the structure of L, takes in practice cubic time in n, cf. Ref. [249]. Further, this strategy
would require Θ(n2) memory since L† is in general a dense matrix – even for sparse L. Therefore, full
(pseudo)inversion is clearly limited to small inputs.

Conceptually similar to inversion would be to solve Θ(n) Laplacian linear systems. Fewer linear sys-
tems suffice in applications with lower accuracy requirements: the Johnson-Lindenstrauss Transform (JLT)
combined with a fast Laplacian solver (such as Ref. [80]) achieve a relative approximation guarantee by solv-
ingO(logn/ε2) systems [272] in Õ(m log1/2 n log(1/ε)) time each, where Õ(·) hides aO((log logn)3+δ)

factor for δ > 0.
As pointed out by Bozzo and Franceschet [60], the (only) relevant part of L† for computing the electri-

cal closeness is its diagonal – we will see that this is true for other electrical centrality measures as well.
25We remark that effective resistance has numerous applications well beyond its usage in electrical centrality measures – cf.

Refs. [8, 120].

65

Numerical methods for sampling-based approximation of the diagonal of implicitly given matrices already
exist [36]. Yet, for our purpose, they solve O(logn/ε2) linear system as well to obtain an ε-approximation
with high probability. While Laplacian linear systems can be solved independently in parallel, their solution
can still be time-consuming in practice, in part due to high constant overheads hidden in theO-notation.

Forest Closeness. Forest closeness (see Eq. (2.8)) is based on the forest distance, a metric introduced by
Chebotarev and Shamis [69]. It is defined as closeness centrality where the shortest-path distance is replaced
by the forest distance. In sociology, forest distances are shown to effectively capture sensitive relationship
indices such as social proximity and group cohesion [72]. Hence, forest closeness has two main advantages
over many other centrality measures [153]: (i) unlike electrical closeness, it can handle disconnected graphs
out of the box and, by considering not only shortest paths, (ii) it has a high discriminative power.

Jin et al. [153] provided an approximation algorithm for forest closeness centrality with nearly-linear time
complexity. Similarly to the aforementioned strategy for electrical closeness, their algorithm uses the JLT
and fast linear solvers; it is, however, still time-consuming. For example, in their experimental study [153],
graphs with ≈ 1M to ≈ 2-3M edges require more than 2.3 to 4.7 hours for a reasonably accurate ranking.
Clearly, this hardly scales to larger graphs with more than a few million edges.

As already realized by Chebotarev and Shamis [69], forest distance is closely connected to effective resis-
tance. In particular, as we describe in Section 5.5, any algorithm that computes the electrical closeness can
easily be adapted to compute the forest closeness with just an additional linear-time overhead.

5.1.1 Related Work

Solving Laplacian Systems. As mentioned above, a straightforward approach to compute electrical
closeness is to compute L† by solving a number of Laplacian systems. Brandes and Fleischer [62] compute
electrical closeness from the solution of n linear systems using Conjugate Gradient (CG) in O(mn

√
κ),

where κ is the condition number of the appropriately preconditioned Laplacian matrix.26 Later, Spielman
and Srivastava [272] proposed an approximation algorithm to compute effective resistance distances. The
main components of the algorithm are (i) a dimension reduction with JLT [155] and (ii) the use of a fast
Laplacian solver forO(logn/ε2) Laplacian systems. The algorithm approximates effective resistance values
for all edges with a factor of (1 ± ε) in O(I(n,m) logn/ε2) time, where I(n,m) is the running time of
the Laplacian solver, assuming that the solution of the Laplacian systems is exact. With an approximate
Laplacian solution, the algorithm yields a (1+ ε)2-approximation. Significant progress in the development
of Laplacian solvers with theoretical guarantees [80, 161, 169, 170, 174] has resulted in the currently best
one running in O(m log1/2 n log 1/ε) time (up to polylogarithmic factors) [80]. Parallel algorithms for
solving linear systems on the more general SDD matrices also exist in the literature [51, 239]. To date, the
fastest algorithms for electrical closeness and spanning edge centrality27 extend the idea of Spielman and
Srivastava [41, 139, 207] – similar ideas are also used for centrality measures based on the Kirchhoff index,
see Section 5.4. Since theoretical Laplacian solvers rely on heavily graph-theoretic machinery such as low-
stretch spanning trees, multigrid solvers [41, 171, 190] are used in practice instead.

26Brandes and Fleischer provide a rough estimate of κ as Θ(n), leading to a total time ofO(mn1.5).
27The spanning edge centrality of an edge e in a graph G is defined as the number of spanning trees in G that contain e and it

is equivalent to the effective resistance of e [207].

66

Diagonal Estimation. Recall that only the diagonal of L† [or ofΩ, resp.] is enough to compute the elec-
trical closeness – or, in case of the Kirchhoff index, only the sum of diag

(
L†
)
, i.e., the trace tr

(
L†
)
is required

– [or the forest closeness]. Algorithms that approximate the diagonal (or the trace) of matrices that are only
implicitly available often use iterative methods [268], sparse direct methods [10, 151], Monte Carlo [144] or
deterministic probing techniques [36]. A popular approach is the standard Monte-Carlo method for the
trace of a matrix B, due to Hutchinson [144]. The idea is to estimate the trace of B by observing the action
of B (in terms of matrix-vector products) on a sufficiently large sample of random vectors. In our case, this
would require to solve a large number of Laplacian linear systems with random vectors as right-hand sides.
Avron and Toledo [24] proved that the method requiresO(logn/ε2) samples to achieve a maximum error
of εwith probability at least 1−δ. The approach fromHutchinson [144] was extended by Bekas et al. [36] for
estimating diag(B). Finally, Barthelemé et al. [30] proposed a combinatorial algorithm to approximate the
trace (not the diagonal) of the inverse of a matrix closely related to the Laplacian. Their algorithm can be
seen as a special case of our algorithm in a situation where a universal vertex exists (i.e., a vertex connected
to all the other vertices of the graph).

5.1.2 Contribution and Outline

We introduce a new algorithm for approximating diag
(
L†
)

of a Laplacian matrix L that corresponds to
weighted undirected graphs (Section 5.3). Our main technique is the approximation of effective resistances
between a pivot vertex u ∈ V and all other vertices of G. It is based on sampling uniform (= random)
spanning trees (USTs). The resulting algorithm is highly parallel and (almost) purely combinatorial – it
relies on the connection between Laplacian linear systems, effective resistances, and USTs. Because effec-
tive resistance also plays a major role in normalized random-walk betweenness [224] and Kirchhoff index
centrality [184], in this chapter we consider these measures as well.

For small-world graphs, our algorithm obtains an absolute±ε-approximation guarantee with high prob-
ability in (sequential) time O(m log4 n · ε−2). In particular, compared to the fastest theoretical Laplacian
solvers in connection with JLT, our approach is off by only a polylogarithmic factor. More importantly from
a practical perspective, after some algorithm engineering (Section 5.6), our algorithm performsmuch better
than the state of the art, already in our sequential experiments (Section 5.7): (i) it is much faster and more
memory-efficient, (ii) it yields a maximum absolute error that is one order of magnitude lower, and (iii)
results in a more accurate complete centrality ranking of elements of diag

(
L†
)
. Furthermore, due to good

parallel speedups, we can even compute a reasonably accurate diagonal of L† on a small-scale cluster with
16 compute nodes in less than 8 minutes for a graph with≈ 13.6M vertices and≈ 334.6M edges.

Concerning forest closeness centrality, we adapt our UST sampling technique to approximate cf,α(·) for
each vertex in the graph. Our experiments in Section 5.8 show that our algorithm for ranking individual
vertices is always substantially faster than the state of the art [153]; specifically, for sufficiently large networks
and in a sequential setting, it is one to two orders of magnitude faster while often achieving better accuracy.
Our new algorithm can rank all vertices in networks with up to 334.6M edges with reasonable accuracy in
less than 20 minutes if executed in an MPI-parallel setting on a small-scale cluster with 16 compute nodes.

Bibliographic Notes. The algorithms for approximating diag
(
L†
)
were published in the Proceedings of

the Twenty-Eighth Annual European Symposium on Algorithms (ESA 2020) while the approximation algo-

67

rithms for forest closeness were presented in the Proceedings of the Twenty-First SIAM International Con-
ference on Data Mining (SDM 2021). Among those presented in this chapter, my contributions involve the
implementation of all presented algorithms and carrying out the experiments. The rest is joint work with
Maria Predari, Alexander van der Grinten, and Henning Meyerhenke. Proofs to which I did not contribute
are omitted and can be found in in the original papers [17, 133].

5.2 Preliminaries

As input we consider simple undirected graphs G = (V,E,w) with non-negative edge weights – for elec-
trical closeness, we also assume that G is connected. For the complexity analysis, we usually assume that
diam(G) ∈ O(logn), but our algorithm works correctly even without this assumption.

Graphs as ElectricalNetworks. Recall our notation for electrical networks provided in Section 2.3.2.
We interpret G as an electrical network in which every edge e ∈ E represents a resistor with resistance
1/w(e). The effective resistance between two vertices u, v ∈ V , denoted by ρ(u, v), is defined as the po-
tential difference between u and v when a unit of current is injected into G at u and extracted at v – see
Definition 2.3.4. To compute ρ(u, v), we can either use the Moore-Penrose pseudoinverse as shown in
Eq. (2.2):

ρ(u, v) = (eu − ev)⊤L†(eu − ev) = L†[u, u]− 2L†[u, v] + L†[v, v], (5.1)

or, equivalently, ρ(u, v) = x[u] − x[v], where x is the solution vector of the Laplacian linear system Lx =

eu − ev . Recall from Eq. (2.3) that L† can be expressed as:

L† =
(
L+

1

n
J
)−1

− 1

n
J,

where J is the n × n-matrix with all entries being 1. Also, note that the effective resistance between the
endpoints of an edge e ∈ E equals the probability that e is an edge in a UST, i.e., a spanning tree selected
uniformly at random among all spanning trees ofG, cf. [54, Ch. II].

Electrical Closeness. The combinatorial counterpart of electrical closeness (Eq. (2.5)) is based on
shortest-path distances: cc(u) := (n − 1)/f(u), where the denominator is the combinatorial farness of
u:

f(u) :=
∑

v∈V \{u}

d(u, v). (5.2)

Electrical farness (fe) is defined analogously to combinatorial farness – shortest-path distance in Eq. (5.2)
is replaced by effective resistance ρ(u, v). Both combinatorial and electrical farness are not defined for
disconnected graphs due to infinite distances. A solution to this issue already exists: Lin’s index [188] is a
generalization of combinatorial closeness to disconnected graphs and can easily be adapted to the electrical
case as well. Thus, our assumption ofG being connected is no limitation.

NormalizedRandom-WalkBetweenness. Contrary to classical betweenness, which is based on short-
est paths (see Eq. (2.12)), normalized random-walk betweenness (cnrwb(·), abbreviated with NRWB) con-

68

siders random walks [224]. More precisely, let s ∈ V be a source vertex, t ∈ V \ {s} be a destination
vertex, and assume we are trying to obtain the NRWB of some other vertex u ∈ V \ {s, t}; cnrwb(u) counts
the fraction µs,t(u) of random walks starting from s passing through u only once. To compute cnrwb(u),
µs,t(u) is averaged over all s ∈ V and t ∈ V \ {s}:

cnrwb(u) =
1

n(n− 1)

∑
s,t∈V \{u}

s ̸=t

(µs,t(u) + (n− 1)).

Narayan and Saniee [224] obtain a closed-form expression of NRWB:

cnrwb(u) =
1

n
+

1

n− 1

∑
t∈V \{u}

M−1[t, t]−M−1[t, u]

M−1[t, t] +M−1[u, u]− 2M−1[t, u]
, (5.3)

whereM := L+P, with P the projection operator onto the zero eigenvector of the Laplacian L, i.e., P[i, j] =
1/n. In Section 5.4 (Lemma 5.4.1), we show how to simplify this expression and how our algorithm can be
adapted to NRWB.

Kirchhoff Index and Related Centrality Measures. The Kirchhoff index K(G) [100, 167] – a.k.a.
(effective) graph resistance – is the sum of the effective resistance distances over all pairs of vertices inG and
is an importantmeasure for network robustness. TheKirchhoff index is often computed via the closed-form
expressionK(G) = n tr

(
L†
)
[167].

Li and Zhang [184] adapted the Kirchhoff index to obtain two new edge centrality measures for e ∈ E.
Let G\θe be the graph obtained by deactivating edge e, i.e., decreasing its weight of e from w(e) to θw(e)
for some small θ ∈ (0, 1/2], and let L\θe be the Laplacian matrix ofG\θe. The new measures are:

• cθ(e) := n tr
(
L†\θe

)
, i.e., the Kirchhoff index of the graphG\θe;

• c∆θ (e) := cθ(e)−K(G) i.e., the difference between the Kirchhoff indices of graphG\θe andG.

To calculate the Kirchhoff edge centralities, Li and Zhang [184] use techniques such as partial Cholesky
factorization [175], fast Laplacian solvers, and the Hutchinson estimator. For c∆θ (e), which is the more
interesting measure in our context, they propose an ε-approximation algorithm that approximates c∆θ (e)
for all edges inO(mε−2θ−2 log2.5 n log(1/ε)) time – up to polylogarithmic factors. The algorithm uses the
Sherman-Morrison formula [266], which gives a fractional expression of

(
L†\θe− L†

)
. The numerator is

approximated by the Johnson-Lindenstrauss lemma and the denominator by effective resistance estimates
for all edges.

Following the definition of K(G), it is easy to see that an algorithm that approximates diag
(
L†
)

also
approximates the Kirchhoff index.

Forest Closeness. Similarly to its combinatorial counterpart, forest closeness is inversely proportional
to forest farness, i.e., the sum of the forest distances from a vertex to all other vertices. The forest distance

69

between two vertices u, v ∈ V (see Definition 2.3.6 in Section 2.3.3) is a one-parametric metric ζα(u, v)
defined in terms of the forest matrix Ωα := (αL+ I)−1 [69]:

ζα(u, v) := (eu − ev)⊤Ωα(eu − ev) = Ωα[u, u]− 2Ωα[u, v] +Ωα[v, v]. (5.4)

Hence, the forest farness and the forest closeness of a vertex u are defined as:

ff,α(u) :=
∑

v∈V \{u}

ζα(u) and cf,α(u) :=
n

ff,α(u)
, (5.5)

respectively. Non-parametric variants of forest closeness fix α to 1 [70]. To simplify our notation, in the
following we omit α when clear from the context. As we explain in more detail in Section 5.5, a close
connection between forest closeness and electrical closeness allows us to easily adapt our algorithm for
electrical closeness approximation to forest closeness.

5.3 Approximation Algorithm for Electrical Closeness

5.3.1 Overview

In order to compute the electrical closeness for all vertices in V , the main challenge is obviously to compute
their electrical farness fe(·). Recall from Section 5.1 that the diagonal of L† is sufficient to compute fe(·)
for all vertices simultaneously – comp. Ref. [60, Eq. (15)]) with a slightly different definition of electrical
closeness. This follows from Eq. (5.1) and from the fact that each row/column in L† sums to 0:

fe(u) :=
∑

v∈V \{u}

ρ(u, v) = nL†[u, u] + tr
(
L†
)
− 2

∑
v∈V

L†[u, v] = nL†[u, u] + tr
(
L†
)
,

since tr(·) is the sum over the diagonal entries. We are interested in an approximation of diag
(
L†
)
, since we

do not necessarily need exact values for our particular applications. To this end, we propose an approxima-
tion algorithm for whichwe give a rough overview first. Our algorithmworks best for small-world networks
– thus, we focus on this important input class. Let G be unweighted for now; we discuss the extension to
weighted graphs in Section 5.4.

1. Select28 a pivot vertex u ∈ V and solve the linear system Lx = eu − 1
n j, (recall that j = (1, . . . , 1)⊤).

Out of all solutions x, we want the one such that x ⊥ j, since this unique normalized solution is equal
to L†[:, u], i.e., the column of L† corresponding to u – see Ref. [281, pp. 6-7].

2. As a direct consequence from Eq. (5.1), the diagonal entries L†[v, v] for all v ∈ V \ {u} can be
computed as:

L†[v, v] = ρ(u, v)− L†[u, u] + 2L†[v, u].

3. It remains to approximate these n− 1 effective resistance values ρ(u, ·). To do so, we employ Kirch-
hoff ’s theorem, which connects electrical flows with spanning trees [54, Ch. II]. Let N be the total

28As we will see later on, one can improve the empirical running time when u is not chosen arbitrarily, but so as to have a low
eccentricity. The correctness and the asymptotic time complexity of the algorithm are not affected by the selection, though.

70

Algorithm 8 Approximation algorithm for diag
(
L†).

Input: Undirected graph G = (V,E,w), pivot u ∈ V , error bound ε > 0, probability δ ∈ (0, 1)

Output: diag
(
L̃†
)
, i.e., an (ε, δ)-approximation of diag

(
L†)

1: ρ̃(u, v)← 0 ∀v ∈ V \ {u} ▷O(n)
2: Pick a constant κ ∈ (0, 1) arbitrarily
3: η ← κε

3
√

mn logn diam(G)

4: Compute the BFS tree Bu of G with root u ▷O(n+m)

5: τ ← ecc(u)2 ·
⌈

log(2m/δ)

2(1−κ)2ε2

⌉
▷O(1)

6: for j ← 1 to τ do
7: Sample UST Ti of G with root u ▷O(m logn)
8: ρ̃(u, ·)← Aggregate(Ti, ρ̃(u, ·), Bu) ▷O(n logn), see Algorithm 9
9: Solve Lx = eu − 1

n
j for x with accuracy η ▷ Õ(m log1/2 n log(1/η))

10: L̃†[u, u]← x[u]
11: for v ∈ V \ {u} do ▷ Overall: O(n)
12: L̃†[v, v]← ρ̃(u, v)/τ − x[u] + 2x[v]
13: return diag

(
L̃†
)

number of spanning trees ofG and letNs,t(a, b) be the number of spanning trees in which the unique
from s to t traverses the edge {a, b} in the direction from a to b. Further, recall from Section 2.3.2 that
i(a, b) denotes the amount of electrical current that flows from a to b.

Theorem 5.3.1 (Kirchhoff, comp. [54]). Let i(a, b) := (Ns,t(a, b) − Ns,t(b, a))/N . Distribute the
current flows on the edges ofG by sending a current of size i(a, b) from a to b for every edge {a, b}.
Then there is a total current of size 1 from s to t satisfying Kirchhoff ’s laws.

As a result of Theorem 5.3.1, the effective resistance between s and t is the potential difference be-
tween s and t induced by the current-flow given by i. Conversely, since the current flow is induced
by potential differences (Ohm’s law), one simply has to add the currents on a path from s to t to
compute ρ(s, t) – see Eq. (5.6) in Section 5.3.2. Actually, as a proxy for the current flows, we use the
(approximate)N(·)-values mentioned in Theorem 5.3.1.

4. For large graphs, it is impractical to compute the exact values forN (e.g., by Kirchhoff ’s matrix-tree
theorem [123], which would require the determinant or all eigenvalues of L†) or N(·). Instead, we
obtain approximations of the desired values via sampling: we sample a number uniform spanning
trees and determine the N(·)-values by aggregation over the sampled trees. This approach provides
a probabilistic absolute approximation guarantee.

Note that Steps 2-4 of the algorithm are entirely combinatorial. Step 1 may or may not be combina-
torial, depending on the Laplacian solver used. Corresponding implementation choices are discussed in
Section 5.6.

Overall Algorithm. Algorithm 8 shows the pseudocode of our algorithm. The pivot vertex u is already
received as an input parameter. Lines 1–8 approximate the effective resistances ρ(u, ·). To do so, Lines 1–5
perform initializations: first the estimate of the effective resistance ρ̃(u, v) is set to 0 for all vertices v ∈ V .
Then, the accuracy η of the linear solver is computed so as to ensure an absolute ε-approximation for the

71

whole algorithm. A BFS is performed from u in order to compute shortest paths from u to all other vertices
(more details in Section 5.3.2). The sample size τ depends on the parameters ε and δ, among others.

The first for-loop in Line 6 performs the actual sampling and aggregation of the USTs – the latter with
Algorithm 9. Afterwards, Lines 9–12 fill the u-th column and the diagonal of L†– to the desired accuracy.

Remark 5.3.1. Note that, due to the fact that Laplacian linear solvers provide a relative error guarantee
(and not an absolute±ε guarantee), the (relative) accuracy η for the initial Laplacian linear system (Lines 3
and 9) depends in a non-trivial way on our guaranteed absolute error ε. For details, see [17, Appendix A.4].

We also remark that the value of the constant κ does not affect the asymptotic running time (nor the
correctness) of the algorithm. However, it does affect the empirical running time by controlling which
fraction of the error budget is invested into solving the initial linear system vs. UST sampling.

In the reminder of Section 5.3, we describe more in detail the components and properties of Algorithm 8.

5.3.2 Effective Resistance Approximation by UST Sampling

Extending and generalizing work by Hayashi et al. [139] on spanning edge centrality, our main idea is to
compute a sufficiently large sample of USTs and to aggregate the N(·)-values of the edges in those USTs.
Recall that, given an electrical flow with source u and sink v, the effective resistance between u and v equals
the difference x[u]− x[v], where x is the solution vector of the Laplacian linear system Lx = eu − ev . Since
x is a potential and the electrical flow i flows from its difference, ρ(u, v) can be computed given any path
(u = v0, v1, . . . , vℓ−1, vℓ = v) as:

ρ(u, v) =
ℓ−1∑
j=0

i(vj , vj+1) =
1

N

ℓ−1∑
j=0

(Nu,v(vj , vj+1)−Nu,v(vj+1, vj)). (5.6)

Recall that the sign of the current flow changes if we traverse an edge against the flow direction. This
is reflected by the second summand of Eq. (5.6). Since we can choose any path from u to v, for efficiency
reasons we use one shortest pathPu,v per vertex v ∈ V \{u}. We compute these paths with one breadth-first
search (BFS) with root u, resulting in a treeBu whose edges are considered implicitly directed from the root
to the leaves. For each vertex v ∈ V \ {u}, we maintain an estimate ρ̃(u, v) of ρ(u, v), which is initially
set to 0 for all v. After all USTs have been sampled and processed, we divide all ρ̃(u, ·) by τ , the number of
sampled trees – i.e., τ takes the role ofN in Eq. (5.6).

Sampling USTs. In total, we sample τ USTs, where τ depends on the desired approximation guarantee
and is determined later. The choice of the UST algorithm depends on the input: for general graphs, the algo-
rithm by Shild [262] with time complexityO(m1+o(1)) is the fastest. Among others, it uses a sophisticated
shortcutting techniques using fast Laplacian solvers to speed up the classical Aldous-Broder [7, 64] algo-
rithm. For unweighted small-world graphs, however, Wilson’s [284] simple algorithm using loop-erased
random walks takesO(m logn) time, as we outline in the following. Thus, for our class of inputs, Wilson’s
algorithm is preferred.

Wilson’s UST Algorithm. Given a path P , its loop erasure is a simple path created by removing all
cycles of P in chronological order. Wilson’s algorithm grows a sequence of sub-trees of G, in our case

72

starting with u as root of T . LetM = {v1, . . . , vn−1} be an enumeration of V \ {u}. Following the order
inM , a random walk starts from every unvisited vi, until it reaches (some vertex in) T and its loop erasure
is added to T .

Proposition 5.3.1 ([284] comp. [139]). For a connected and unweighted undirected graphG = (V,E) and
a vertex u ∈ V , Wilson’s algorithm samples a UST ofGwith root u. The expected running time is the mean
hitting time ofG,

∑
v∈V \{u} ϕG(v)tc,G(v, u), where ϕG(v) is the probability that a random walk stays at v

in its stationary distribution and where tc,G(v, u) is the commute time between v and u.

Lemma 5.3.1 ([133]). Let G be as in Proposition 5.3.1. Its mean hitting time can be rewritten as∑
v∈V \{u} deg(v) · ρ(u, v), which isO(ecc(u) ·m). In small-world graphs, this isO(m logn).

Data Structures. When computing the contribution of a UST T to N(·), we need to update for each
edge e = (a, b) ∈ E(T) its contribution toNu,v(a, b) andNu,v(b, a), respectively – for exactly every vertex
v for which (a, b) [or (b, a)] lies on Pu,v . Hence, the algorithm that aggregates the contribution of UST T
to ρ̃(u, ·) needs to traverse Pu,v for each vertex v ∈ V . To this end, we represent the BFS treeBu as an array
of parent pointers for each vertex v ∈ V . On the other hand, the tree T can conveniently be represented
by storing a child and a sibling for each vertex v ∈ V . Compared to other representations (e.g., adjacency
lists), this data structure can be constructed and traversed with low constant overhead.

Tree Aggregation. After constructing a UST T , we process it to update the intermediate effective re-
sistance values ρ̃(u, ·). Note that we can discard T afterwards as we do not need to store the full sample,
which has a positive effect on the memory footprint of our algorithm. The aggregation algorithm is shown
in Algorithm 9. Recall that we need to determine for which vertex v and each edge (a, b) ∈ Pu,v , whether
(a, b) or (b, a) occurs on the unique u-v path in T . To simplify this test, we root T at u; hence, it is enough
to check if (a, b) [or (b, a)] appears above v in T . For general graphs, such a test still incurs quadratic
overhead in running time – in particular, the number of vertex-edge pairs that need to be considered is
f(u) =

∑
v∈V \{u} |Pu,v| ∈ O(n2). We remark that, perhaps surprisingly, a bottom-up traversal of T does

not improve on this, either; it is similarly difficult to determine all ρ̃(u, v) that a given (a, b) ∈ E(T) con-
tributes to – those v form an arbitrary subset of descendants of b in T . However, we can exploit the fact
that, on small-world networks, the depth of Bu can be controlled, i.e., f(u) is sub-quadratic. To accelerate
the test, we first compute a DFS data structure for T , i.e., we determine discovery and finish timestamps
for all vertices in V , respectively (Line 2). For an arbitrary v ∈ V and (a, b) ∈ V × V , this data structure
allows us to answer in constant time (i) whether either (a, b) or (b, a) is in T and (ii) if (a, b) ∈ E(T),
whether v appears below (a, b) in T . Finally, the first for-loop iterates over all v ∈ V \ {u} while the
second for-loop iterates over all e = (a, b) ∈ Pu,v and aggregates the contribution of T toNu,v(a, b). To
do so, we test whether (a, b) [or (b, a)] is in T in Line 5 [or Line 8, respectively]. If that is indeed the case,
in Line 6 [or Line 9] we check whether v is below (a, b) [or (b, a), respectively] and, if that is the case, we
add [subtract] 1 to [from] ρ̃(u, v) in Line 7 [Line 10]. If e is not inBu, ρ̃(u, v) does not change.

73

Algorithm 9 Aggregation of T ’s contribution to ρ̃(u, ·).
Input: Spanning tree T , effective resistance estimates ρ̃(u, ·), BFS tree Bu

Output: ρ̃(u, ·) updated with T ’s contribution
1: function Aggregate((T, ρ̃(u, ·), Bu))
2: ⟨tdis, tfin⟩ ← DFS(T) ▷ tdis(v), tfin(v): discovery and finish timestamps of vertex v
3: for v ∈ V \ {u} do
4: for (a, b) ∈ Pu,v obtained from Bu do
5: if parent(b) = a then
6: if tdis(b) < tdis(v) and tfin(v) < tfin(b) then
7: ρ̃(u, v)← ρ̃(u, v) + 1

8: else if parent(a) = b then
9: if tdis(a) < tdis(v) and tfin(v) < tfin(a) then

10: ρ̃(u, v)← ρ̃(u, v)− 1

11: return ρ̃(u, ·)

5.3.3 Algorithm Analysis

The choice of the pivot u has en effect on the time complexity of our algorithm. The intuitive reason is that
the BFS tree Bu should be shallow in order to have short paths to the root u. This is achieved by a root u
with small eccentricity. Regarding tree aggregation, we obtain:

Lemma 5.3.2 ([17]). Tree aggregation (Algorithm 9) has time complexityO(f(u)), which can be bounded
byO(n · ecc(u)) = O(n · diam(G)).

In high-diameter networks, the farness of u can become quadratic in n (consider a path graph) and thus
problematic for large inputs. In small-world graphs, however, we obtain O(n logn) time per aggregation.
We continue the analysis with the main algorithmic results.

Theorem 5.3.2 ([17]). Let G be an undirected and unweighted graph with Laplacian matrix L = L(G).
Then, Algorithm 8 computes an approximation of diag

(
L†
)
with absolute error ±ε with probability 1 − δ

in timeO(m · ecc3(u) · ε−2 · log(m/δ)). For small-world graphs and with δ := 1/n to get high probability,
this yields a time complexity ofO(m log4 n · ε−2).

Thus, for small-world networks, we have an approximation algorithmwhose running time is nearly-linear
in m (i.e., linear up to a polylogarithmic factor), quadratic in 1/ε, and logarithmic in 1/δ. By choosing a
“good” pivot u, it is often possible to improve the running time of Algorithm 8 by a constant factor (i.e.,
without affecting theO-notation). In particular, there are vertices u with ecc(u) as low as 1

2diam(G).

Remark 5.3.2. IfG has constant diameter, Algorithm 8 obtains an absolute ε-approximation guarantee in
O(m logn · ε−2) time. This is faster than the best JLT-based approximation – which, in turn, provides a
relative approximation guarantee.

5.4 Generalizations

In this section, we show how our algorithm can be adapted to work for weighted graphs, for normalized
random-walk betweenness, and for Kirchhoff-related indices.

74

Extension to Weighted Graphs. For an extension to weighted graphs, we need a weighted version of
Kirchhoff ’s theorem. To this end, the weight of a spanning tree T is defined as the product of the weights
(i.e., the conductances) of its edges. Then, letN∗ be the sum of the weights of all spanning trees ofG; also,
letN∗

s,t(a, b) be the sum of the weights of all spanning trees in which the unique path from s to t traverses
the edge {a, b} in the direction from a to b.

Theorem 5.4.1 (comp. [54], p. 46). There is a distribution of currents satisfying Ohm’s law and Kirchhoff ’s
laws in which a current of size 1 enters at s and leaves at t. The value of the current on an edge {a, b} is
given by (N∗

s,t(a, b)−N∗
s,t(b, a))/N

∗.

Consequently, our sampling approach needs to estimateN∗ as well as theN∗(·)-values. It turns out that
no major changes are necessary. Wilson’s algorithm also yields a UST for weighted graphs (if its random
walk takes edge weights for transition probability into account [284]). Yet, the running time bound for
Wilson needs now to mention the graph volume vol(G), specifically: O(ecc(u) · vol(G)). The weight of
each sampled spanning tree can be accumulated during each run of Wilson. It has to be integrated into
Algorithm 9 by adding [subtracting] the tree weight in Line 7 [Line 10] instead of 1. For the division at the
end (Algorithm 8, Line 12), one has to replace τ by the total weight of the sampled trees. Finally, the treeBu

remains a BFS tree. The eccentricity and farness of u still refer in the analysis to their unweighted versions,
respectively, as far asBu is concerned.

To conclude, the only important change regarding bounds happens in Theorem 5.3.2. In the time com-
plexity,m is replaced by vol(G).

Normalized Random-Walk Betweenness. Narayan and Saniee [224] propose NRWB as a measure for
the influence of a vertex in the network, but the paper does not provide an algorithm to compute it – beyond
implicit (pseudo)inversion. We propose to compute NRWB with Algorithm 8 and derive the following
Lemma.

Lemma 5.4.1 ([17]). Normalized random-walk betweenness cnrwb(v) (Eq. (5.3)) can be rewritten as:

cnrwb(v) =
1

n
+

tr
(
L†
)

(n− 1)fe(v)
.

Hence, since Algorithm 8 approximates the diagonal of L† and both trace and electrical farness depend
only on the diagonal, the following proposition holds:

Proposition 5.4.1. Let G = (V,E) be a small-world graph as in Theorem 5.3.2. Then, Algorithm 8 ap-
proximates with high probability cnrwb(v) for all v ∈ V with absolute error±ε inO(m log4 n · ε−2) time.

Kirchhoff Index and Edge Centralities. It is easy to see that Algorithm 8 can approximate Kirchhoff
index by exploiting the expressionK(G) = n · tr

(
L†
)
[167]. As a direct consequence, we have:

Proposition 5.4.2. Let G be a small-world graph as in Theorem 5.3.2. Then, Algorithm 8 approximates
with high probabilityK(G) with absolute error±ε inO(m log4 n · ε−2) time.

75

We also observe that we can use a component of Algorithm 8 to approximate c∆θ (e). Recall from Sec-
tion 5.2 that c∆θ (e) = cθ(e) − K(G) = n(tr

(
L†\θe

)
− tr

(
L†
)
). Using the Sherman-Morrison formula, as

done in Ref. [184], we have that:

θ∆(e) = n(1− θ)
w(e)tr

(
L†beb⊤e L†

)
1− (1− θ)w(e)b⊤e L†be

, (5.7)

where be for e = (u, v) is the vector eu − ev .
Li and Zhang [184] approximate c∆θ (e) with an algorithm that runs in time
O(mθ−2 log2.5 n log(1/ε)poly(log logn) · ε−2). The algorithm is dominated by the denominator of
Eq. (5.7), which takesO(mθ−2 log2.5 npoly(log logn) · ε−2) time. For the numerator of Eq. (5.7), they use
the following Lemma:

Lemma 5.4.2 (paraphrasing from Ref. [184]). Let L be a Laplacian matrix and ε be a scalar such that 0 <
ε ≤ 1/2. There is an algorithm that achieves an ε-approximation of the numerator of Eq. (5.7) with high
probability inO(m log1.5 n log(1/ε) · ε−2).

The algorithm in Lemma 5.4.2 uses the Monte-Carlo estimator with O(ε−2 logn) random vectors zj to
calculate the trace of the implicit matrix y⊤j beb⊤e yj , where yj is the approximate solution of yj := L†zj –
derived from solving the corresponding linear system involving L†. For each system, the Laplacian solver
runs inO(m log1/2 n log(1/ε)) time.

Wenotice that aUST-based sampling approachworks again for the denominator: Thedenominator is just
1− (1− θ)w(e)ρ(e), where e ∈ E and ρ(e) = b⊤e L†be. Approximating ρ(e) for every e ∈ E then requires
sampling USTs and counting for each edge e the number of USTs it appears in. Moreover, we only need to
sample q =

⌈
2ε−2 log(2m/δ)

⌉
to get an ε-approximation of the effective resistances for all edges (using [139,

Theorem 8]). Since ρ(e) are approximate, we need to bound their approximation when subtracted from 1.
Following Ref. [184], we use the fact that θ ∈ (0, 1) and that for each edge w(e)ρ(e) is between 0 and 1,
bounding the denominator. The above algorithm can be used to approximate the denominator of Eq. (5.7)
with absolute error ±ε in O(m log2 n · ε−2) time. Combining the above algorithm and Lemma 5.4.2, it
holds that:

Proposition 5.4.3. LetG = (V,E) be a small-world graph as inTheorem 5.3.2. Then, there is an algorithm
(using Lemma 5.4.2 and our Wilson-based sampling algorithm) that approximates with high probability
c∆θ (e) for all e ∈ E with absolute error±ε inO(m log2 n log(1/ε) · ε−2) time.

5.5 Extension to Forest Closeness

In this section, we describe how our algorithm can be adapted to forest closeness. The key ingredient is the
relation between forest distance and effective resistance which allows us to approximate the forest farness
more efficiently than existing approximation algorithms. By adapting Algorithm 8 to forest closeness, we
obtain an algorithmwith a (probabilistic) additive approximation guarantee of±ε that runs in nearly-linear
(inm) expected time.

76

Algorithm 10 Approximation algorithm for diag(Ω).
Input: Undirected graph G = (V,E,w), control parameter α, error bound ε ∈ (0, 1), probability δ ∈ (0, 1)

Output: diag
(
Ω̃
)
, i.e., an (ε, δ)-approximation of diag(Ω)

1: Create augmented graph G⋆ = (V⋆, E⋆) as described in Section 5.5.1, compute vol(G) and c ▷O(m+ n)
2: u⋆ ← universal vertex of G⋆

3: Pick constant κ ∈ (0, 1) arbitrarily
4: η ← κε

6
√

α(c+2)vol(G)

5: τ ←
⌈

log(2m/δ)

2(1−κ)2ε2

⌉
6: for j ← 1 to τ do
7: ρ̃⋆(u⋆, ·)← SampleUST(G⋆, u⋆) ▷O(αvol(G) + n)

8: Solve L⋆x = eu⋆ − 1
n+1
· j for x with accuracy η ▷ Õ(m log1/2 n log(1/η))

9: for v ∈ V do ▷ Overall: O(n)
10: Ω̃[v, v]← ρ̃⋆(u⋆, v)/τ − x[u⋆] + 2x[v] ▷ Unweighted case, see text for weighted case
11: return diag

(
Ω̃
)

5.5.1 From Forest Farness to Electrical Farness (And Back Again)

As mentioned above, we exploit a result that relates forest distance to effective resistance. This requires the
creation of an augmented graphG⋆ := G⋆,α := (V⋆, E⋆) from the original graphG = (V,E). To this end,
a new universal vertex u⋆ is added to G, such that V⋆ = V ∪ {u⋆} and E⋆ = E ∪ {{u⋆, v}} ∀v ∈ V . In
particular, u⋆ is connected to all other vertices of G⋆ with edges of weight 1. Furthermore, the weights of
all edges in E⋆ that belong to E are multiplied by α.

Proposition 5.5.1 (comp. Ref. [69]). For a weighted graph G = (V,E,w) and any vertex pair ⟨u, v⟩ ∈
V × V , the forest distance ζ(u, v) inG equals the effective resistance ρ(u, v) in the augmented graphG⋆.

The full proof of Proposition 5.5.1 can be found in Ref. [69]. Nevertheless, we provide here an explanation
of why the above proposition holds. Recall that the effective resistance between any two vertices of G is
computed by meas of L†, while the forest distances of the same pair are computed by means of the forest
matrix of G, i.e., Ω = (αL+ I)−1. When calculating the effective resistance in G⋆, we use its Laplacian
matrix L⋆, which consists of a block matrix corresponding to (αL + I) and an additional row and column
that correspond to the universal vertex u⋆. It turns out that the Moore-Penrose pseudoinverse of L⋆ is the
block matrix that consists of Ω with an additional row and column corresponding to u⋆ [69]. Thus:

Ω[u⋆, u⋆] +Ω[v, v]− 2Ω[u⋆, v] = L†⋆[u⋆, u⋆] + L†⋆[v, v]− 2L†⋆[u⋆, v],

which corresponds to the pairwise effective resistance ρ(u⋆, v) in G⋆ – hereafter, we refer to this quantity
as ρ⋆(u⋆, v).

Corollary 5.5.1. Forest closeness in graphG equals electrical closeness in the augmented graphG⋆.

5.5.2 Forest Farness Approximation Algorithm

Asmentioned, our algorithm for forest closeness exploits the algorithmic results we presented in Section 5.3
fir approximating diag

(
L†
)
and electrical closeness. To do so, we rewrite the forest farness ff (v) following

Ref. [213]:

77

Algorithm 11 Sampling algorithm for USTs based on Wilson’s algorithm [284]
Input: Graph G = (V,E), universal vertex u⋆ ∈ V
Output: Estimated effective resistance values ρ̃⋆(u⋆, ·)
1: function SampleUST(G, u⋆))
2: ρ̃⋆(u⋆, v)← 0 ∀v ∈ V
3: T ← {u⋆}
4: Let v1, . . . , vn be a reordering of the vertices in V in ascending degree
5: for j ← 1 to n do
6: P ← random walk on G from vj to T
7: LE(P)← loop erasure of P in order of appearance
8: T ← T ∪ LE(P)
9: if last vertex of LE(P) is u⋆ then

10: z ← last visited vertex before u⋆

11: ρ̃⋆(u⋆, z)← ρ̃⋆(u⋆, z) + 1

12: return ρ̃⋆(u⋆, ·)

ff (v) = n ·Ω[v, v] + tr(Ω)− 2
∑
z∈V

Ω[v, z] = n ·Ω[v, v] + tr(Ω)− 2, (5.8)

where the last equation holds since Ω is doubly stochastic (Ω[v, v] = 1 −
∑

z∈V \{v}Ω[v, z]) [213]. From
Eq. (5.8) it is clear that we only require the diagonal elements of Ω to compute ff (v) for any v ∈ V . We
approximate the diagonal elements of Ω with Algorithm 10; similarly to Algorithm 8, the main idea is to
sample USTs to approximate diag

(
L†⋆
)
:

1. We build the augmented graph G⋆ (Line 1) and let the universal vertex u⋆ of G⋆ = (V⋆, E⋆) be the
pivot vertex (Line 2) – due to its optimal eccentricity of 1. Later, in Line 8, we compute the column of
Ω that corresponds to u⋆, namelyΩ[:, u⋆], by solving the Laplacian linear system L⋆x = eu⋆ − 1

n+1 j.
The solver’s accuracy is controlled by η, which is set in Line 4 – as in Algorithm 8, κ is used to trade
the accuracy of the solver with the accuray of the following sampling step.

2. We sample τ USTs inG⋆ with Wilson’s algorithm [284] (Algorithm 11), where the sample size τ is yet
to be determined. With this sample we approximate the effective resistance ρ⋆(u⋆, v) for all v ∈ V
(Lines 6–7). More precisely, if an edge {u⋆, v} appears in the sampled tree, we increase ρ̃⋆(u⋆, v)
by 1 (in the unweighted case) or by the weight of the current tree (in the weighted case) – and later
“return” ρ̃⋆(u⋆, v)/τ (unweighted case) or the relative total weight of all sampled trees (weighted case)
that contain edge {u⋆, v} in Line 10.

3. We compute the remaining Ω[v, v] in Lines 9–10 following Eqs. (5.1) and (5.4):

Ω[v, v] = ζ(u⋆, v)−Ω[u⋆, u⋆] + 2Ω[v, u⋆] = ρ⋆(u⋆, v)−Ω[u⋆, u⋆] + 2Ω[v, u⋆],

where ρ⋆(u⋆, v) is approximated by ρ̃⋆(u⋆, v)/τ . The weighted case is handled as described in the
previous step.

By using G⋆ and thus a universal vertex u⋆ as pivot, there are several noteworthy changes compared to
Algorithm 8. First, the graphG⋆ has constant diameter and the vertex u⋆ constant eccentricity 1. This will
important for our redefined running time analysis. Second, the approximation of the effective resistances

78

can be simplified: while Algorithm 8 requires an aggregation along shortest paths, we notice that here u⋆
and all other vertices are connected by paths of one edge only; thus, the relative frequency of an edge {u⋆, v}
in the UST sample forG⋆ is sufficient here for our approximation:

Proposition 5.5.2 ([133]). Let u⋆ be the universal vertex inG⋆. Then, for any edge {u⋆, v} ∈ E⋆ holds: its
relative frequency (or weight) in the UST sample is an unbiased estimator for ρ⋆(u⋆, v).

As we will see in Theorem 5.5.1, Algorithm 10 is not only an unbiased estimator, but even provides a
probabilistic approximation guarantee. To bound its running time, we analyze Wilson’s algorithm for gen-
erating USTs first.

Proposition 5.5.3 ([133]). For an undirected graph G with constant diameter, each call to Wilson’s algo-
rithm onG⋆ (in Line 7) takesO(α · vol(G) + n) expected time.

Note that, in the unweighted case withα = 1 andm = Ω(n) (which is not uncommon in our context, see
e.g., Ref. [153]), we obtain a time complexity ofO(m) (the volume is 2m by the handshake lemma). Taking
all the above into account, we can adapt Theorem 5.3.2 to forest centrality. Note that, when considering
forest (as opposed to electrical) closeness centrality, we exploit the constant diameter of G⋆ and improve
the time by a factor of (ecc(u))3, where u is the selected pivot vertex. This expression isO(log3 n) for small-
diameter graphs, but can be larger for general graphs. In the following theorem, Õ hides polylogarithmic
factors from the linear solver [80].

Theorem 5.5.1 ([133]). Let n/(α · vol(G)) be bounded from above by a constant29 and let ε, δ ∈ (0, 1).
Then, with probability 1− δ, Algorithm 10 computes an approximation of diag(Ω) with absolute error±ε
in (expected) time Õ((m log1/2 n log(

√
α · vol(G)/ε))) +O(log(n/δ) · ε−2 · α · vol(G)).

Let us simplify the result for a common case:

Corollary 5.5.2. If G is unweighted, α a constant and δ := 1/n to get high probability, the (expected)
running time of Algorithm 10 becomes Õ(m(log1/2 n log(n/ε) + ε−2 logn)). Assuming ε small enough
so that logn ≤ 1/ε, we can further simplify this to Õ(mε−2 log3/2 n).

This is nearly-linear inm, which is also true for the JLT-based approximation (with high probability) of
Jin et al. [153]. They state a running time of Õ(mε−2 log5/2 n log(1/ε)) for unweightedG and fixed α = 1.
While we save at least a factor of logn, they achieve a relative approximation guarantee, which is difficult to
compare to our absolute approximation guarantee.

5.6 Engineering Aspects and Parallelization

In this section, we illustrate important engineering decisions concerning the choice of the UST sampling
algorithm, selection of the pivot u,30 and the linear solver used for the initial linear system.

29This condition ensures that the algorithm is not affected by unduly heavy additional edges to u⋆. If the condition is met, the
graph edges still play a reasonable role in the distances and in the UST computations.

30Note that optimizations to the pivot selection only apply to the electrical closeness case; for forest closeness, we always pick
the universal vertex u⋆ as pivot (see Line 3, Algorithm 11).

79

5.6.1 UST Generation, Pivot Selection, and the Linear System

Wilson’s algorithm [284] using loop-erased randomwalks is the best choice in practice forUST sampling and
also the fastest asymptotically for unweighted small-world graphs. For our implementation in Algorithm 8,
we use a variant of Wilson’s algorithm to sample each tree, proposed by Hayashi et al. [139]: first, one com-
putes the biconnected components of G, then applies Wilson to each biconnected component, and finally
combines the component trees to a UST inG. In each component, we use a vertex with maximal degree as
root for Wilson’s algorithm. Using this approach, Hayashi et al. [139] experience an average performance
improvement of 40% on sparse graphs compared to running Wilson directly.

As a consequence Theorem 5.3.2, the pivot vertex u should be chosen to have low eccentricity. As finding
the vertex with lowest eccentricity with a naive APSP approach would be too expensive, we compute a lower
bound on the eccentricity of all vertices of the graph and choose u as the vertex with lowest bound. These
bounds are computed using a strategy analogous to the double sweep lower bound by Magnien et al. [199]:
we run a BFS from a random vertex v, then another BFS from the farthest vertex from v, and so on. At each
BFS we update the bounds of all the visited vertices; an empirical evaluation has shown that 10 iterations
yield a reasonably accurate approximation of the vertex with lowest eccentricity.

As a result from preliminary experiments, we use a general-purpose CG solver for the single (sparse)
Laplacian linear systems, together with a diagonal preconditioner. We choose the implementation of the
C++ library Eigen [135] for this purpose and found that the accuracy parameter κ = 0.3 yields a good
trade-off between the CG and UST sampling steps.

5.6.2 Parallel Implementation

In the following, we explain how we parallelize our algorithms to take advantage of multiple cores and
multiple compute nodes. We always assume that the entire input graph fits into main memory, even in the
distributed case.

Shared Memory. We turn the main sampling loops in Algorithms 8 and 10 into parallel for-loops. Our
implementation uses OpenMP for shared-memory parallelism. We aggregate ρ̃(u, ·) (for forest closeness,
ρ̃⋆(u⋆, ·)) in thread-local arrays and perform a final parallel reduction over all ρ̃(u, ·). We found that on
the graphs that we can handle in shared memory, no sophisticated load balancing strategies are required
to achieve reasonable parallel scalability. We do not employ parallelism in the other steps of the algorithm.
In particular, the BFS to compute Bu is executed sequentially. We also do not parallelize over the loops in
Algorithm 9 to avoid nested parallelism with multiple invocations of Algorithm 9. We note that, in contrast
to the theoretical work-depth model, solving the initial Laplacian system and performing the BFS are not
the main bottlenecks in practice. Instead, sampling USTs (and aggregating them, for electrical closeness)
consume the majority of CPU time (see Figure 5.4).

Distributed Memory. We provide an implementation of our algorithm for replicated graphs in dis-
tributed memory that exploits hybrid parallelism based on MPI + OpenMP. On each compute node, we
take samples and aggregate ρ̃(u, ·) as in shared memory. Compared to the shared-memory implementa-
tion, however, our distributed-memory implementation exhibits two main peculiarities: (i) we still solve

80

the initial Laplacian system on a single compute node only; we interleave, however, this step, with UST sam-
pling on other compute nodes, and (ii) we employ explicit load balancing. The choice to solve the initial
system on a single compute node only is done to avoid additional communication overheads among nodes.
In fact, we only expect distributed CG solvers to outperform this strategy for inputs that are considerably
larger than the largest graphs we consider. Furthermore, since we interleave this step of the algorithm with
UST sampling on other compute nodes, our strategy only results in a bottleneck on input graphs where
solving a single Laplacian system is slower than taking allUST samples – but these inputs are already “easy”.

For load balancing, the naive approach would consist of statically taking ⌈τ/p⌉ UST samples on each
of the p compute nodes. However, in contrast to the shared-memory case, this does not yield satisfactory
scalability. In particular, for large graphs, the running time of the UST sampling step has a high variance.
To alleviate this issue, we use a simple dynamic load balancing strategy: periodically, we perform an asyn-
chronous reduction (MPI_Iallreduce) to calculate the total number of UST samples taken so far (over
all compute nodes). Afterwards, each compute node calculates the number of samples that it takes before
the next asynchronous reduction – unless more than τ samples were taken already, in which case the al-
gorithm stops. We compute this number as

⌈
τ/(b · pξ)

⌉
for fixed constants b and ξ. We also overlap the

asynchronous reduction with additional sampling to avoid idle times. Finally, we perform a synchronous
reduction (MPI_Reduce) to aggregate ρ̃(u, ·) on a single compute node before returning the resulting diag-
onal values. By parameter tuning [14], we found that choosing b = 25 and ξ = 0.75 yields the best parallel
scalability.

5.7 Experiments – Electrical Closeness

We conduct experiments to demonstrate the performance of our algorithm for electrical closeness (Sec-
tion 5.3) compared to the state-of-the-art competitors.

5.7.1 Settings

Unless stated otherwise, all algorithms are implemented in C++, using the NetworKit graph APIs [273].
Our own algorithm is labelled UST in the sections below. All experiments are conducted on Intel Xeon
Gold 6126 machines with 2 × 12 cores and 192GiB of RAM each. Unless stated otherwise, experiments
run sequentially on a single core. To ensure reproducibility, all experiments were managed by the Simex-
Pal [14] software. We executed our experiments on the graphs in Table 5.1. All graphs are unweighted and
undirected and have been downloaded from the public repository KONECT [173].

Quality Measures and Baseline. To evaluate the diagonal approximation quality, we measure the
maximum absolute error – i.e., maxv |L†[v, v] − L̃†[v, v]|. Since for some applications [227, 229] a cor-
rect ranking of the entries is more relevant than their scores, in our experimental analysis we compare the
complete rankings of the diagonal entries. Note that the lowest entries of diag

(
L†
)

– corresponding to
the vertices with highest electrical closeness – are distributed on a significantly narrow interval. Hence, to
achieve an accurate electrical closeness ranking of the top-k vertices, one would need to solve the problem
with very high accuracy. For this reason, all approximation algorithms we consider do not yield a precise
top-k ranking, so that we (mostly) consider the complete ranking.,

81

Table 5.1: Real-world instances used in our experiments for electrical closeness.

(a) Medium-size instances with ground truth

Network Type ID n m diam, ecc(u)

slashdot-zoo social sz 79,116 467,731 12 6
petster-cat-household social pc 68,315 494,562 10 6
wikipedia_link_ckb web wc 60,257 801,794 13 7
wikipedia_link_fy web wf 65,512 921,533 10 5
loc-gowalla_edges social lg 196,591 950,327 16 8
petster-dog-household social pd 255,968 2,148,090 11 6
livemocha social lm 104,103 2,193,083 6 4
petster-catdog-household social pa 324,249 2,642,635 12 7

(b) Medium-size instances without ground truth

Network Type ID n m diam. ecc(u)

eat words ea 23,132 297,094 6 4
web-NotreDame web wn 325,729 1,090,108 46 23
citeseer citation cs 365,154 1,721,981 34 18
wikipedia_link_ml web wm 131,288 1,743,937 12 7
wikipedia_link_bn web wb 225,970 2,183,246 11 6
flickrEdges images fe 105,722 2,316,668 9 6
petster-dog-friend social pr 426,485 8,543,321 11 7

(c) Large instances

Network Type n m diam. ecc(u)

hyves social 1,402,673 2,777,419 10 7
com-youtube social 1,134,890 2,987,624 24 12
flixster social 2,523,386 7,918,801 8 4
petster-catdog-friend social 575,277 13,990,793 13 7
flickr-links social 1,624,991 15,473,043 24 12

(d) Instances used only on 16× 24 cores

Network Type n m diam. ecc(u)

petster-carnivore social 601,213 15,661,775 15 8
soc-pokec-relationships social 1,632,803 22,301,964 14 8
soc-LiveJournal1 social 4,843,953 42,845,684 20 10
livejournal-links social 5,189,808 48,687,945 23 12
orkut-links social 3,072,441 117,184,899 10 6
wikipedia_link_en web 13,591,759 334,590,793 12 7

82

Using pinv in NumPy or Matlab as a baseline would be too expensive in terms of time (cubic) and space
(quadratic) on large graphs – see Table 5.1. Thus, as a quality baseline we employ the LAMG solver [190] (see
also next paragraph) as implemented within NetworKit [273] in our experiments (with 10−9 tolerance). The
results in Table D.1 in Appendix D.1 indicate that the diagonal obtained in this way is sufficiently accurate.

Competitors in Practice. In practice, the fastest way to compute electrical closeness so far is to com-
bine a dimension reduction via the JLT lemma [155] with a numerical solver. In this context, Algebraic
MultiGrid (AMG) solvers exhibit better practical running time than fast Laplacian solvers with a worst-
case guarantee [207]. For our experiments, we use JLT combined with LAMG [195] (named Lamg-jlt); the
latter is an AMG-type solver for complex networks. We also compare against a Julia implementation of
JLT together with the fast Laplacian solver proposed by Kyng et al. [183], for which a Julia implementa-
tion is already available in the package Laplacians.jl.31 This solver generates a sparse approximate Cholesky
decomposition for Laplacian matrices with provable approximation guarantees in O(m log3 n log(1/ε))
time; it is based purely on random sampling – and does not make use of graph-theoretic concepts such as
low-stretch spanning trees or sparsifiers. We refer to the above implementation as Julia-jlt throughout the
experiments. For both Lamg-jlt and Julia-jlt, we try different input error bounds – they correspond to the
respective numbers next to the method names in Figure 5.1. This is a relative error, since these algorithms
use numerical approaches with a relative error guarantee, instead of an absolute one – see Section 5.7.6 for
results in terms of different quality measures.

Finally, we compare against the diagonal estimators due to Bekas et al. [36], one based on random vectors
and one based onHadamard rows. To solve the resulting Laplacian systems, we use LAMG in both cases. In
our experiments, the algorithms are referred to as Bekas and Bekas-h, respectively. Excluded competitors
are discussed in the following.

Excluded Competitors. PSelInv [151] is a distributed-memory tool for computing selected elements of
a matrix M−1 – exactly those that correspond to the non-zero entries of the original matrix M. However,
when a smaller set of elements is required (such as diag

(
L†
)
), PSelInv is not competitive on our input graphs:

preliminary experiments of ours have shown that, even on 4× 24 cores, PSelInv is one order of magnitude
slower than a sequential run of UST.

Another conceivable way to compute diag
(
L†
)
is to extract the diagonal from a low-rank approximation

of L† [60] using a few eigenpairs. However, our experiments have shown that this method is not competitive
– neither in terms of quality nor in running time.

Hence, we do not include [60, 151] in the presentation of our experiments.

5.7.2 Running Time and Quality

Figure 5.1a shows that, in terms of maximum absolute error, every configuration of UST achieves results
with higher quality than the competitors. Even when setting ε = 0.9, UST yields amaximum absolute error
of 0.09, and it is 8.3× faster than Bekas with 200 random vectors – which, in turn, achieves a maximum
absolute error of 2.43. Furthermore, the running time of UST does not increase substantially for lower

31https://github.com/danspielman/Laplacians.jl

83

https://github.com/danspielman/Laplacians.jl

UST 0.9
UST 0.8
UST 0.7
UST 0.5
UST 0.3

Julia-JLT 1.0
Julia-JLT 0.75
Julia-JLT 0.5
Julia-JLT 0.25
Julia-JLT 0.2

Lamg-JLT 1.0
Lamg-JLT 0.75
Lamg-JLT 0.5
Lamg-JLT 0.25
Lamg-JLT 0.2

Bekas 10
Bekas 20
Bekas 50
Bekas 100
Bekas 200

Bekas-h 16
Bekas-h 32
Bekas-h 64
Bekas-h 128
Bekas-h 256

0 5 10 15 20 25 30
Running time relative to UST 0.9

0
1
2
3
4
5

M
ax

 a
bs

ol
ut

e
er

ro
r

(a) Maximum of the maximum abso-
lute errors.

0 5 10 15 20 25 30
Running time relative to UST 0.9

0
1
2
3
4
5

M
ax

 a
bs

ol
ut

e
er

ro
r

(b) Arithmetic mean of the maximum
absolute error.

0 10 20
Running time relative to UST 0.9

0

5

10

15

%
 o

f i
nv

er
te

d
pa

irs

(c) Geometric mean of the percentage
of inverted pairs in the full ranking
of diag

(
L†).

Figure 5.1: Quality measures over the instances of Table 5.1a. All runs are sequential.

values of ε and its quality does not deteriorate quickly for higher values of ε. Regarding the average of the
maximumabsolute error, Figure 5.1b shows that, among the competitors, Bekas-h with 256Hadamard rows
achieves the best precision. UST, however, yields an average error of 0.07while also being 25.4× faster than
Bekas-h, which yields an average error of 0.62. Note also that the number next to eachmethod in Figure 5.1
corresponds to different values of absolute (for UST) or relative (for Lamg-jlt and Julia-jlt) error bounds,
and different number of samples (for Bekas and Bekas-h). For Bekas-h, the number of samples needs to be
a multiple of four due to dimension of Hadamard matrices.

In Figure 5.1c, we report the percentage of inverted pairs in the full ranking of the vertices according to
diag

(
L̃†
)
. Note that JLT-based approaches are not depicted in this plot because they yield > 15% of rank

inversions. Among the competitors, Bekas achieves the best time-accuracy trade-off. However, when using
200 random vectors, it yields 4.3% inversions while also being 8.3× slower than UST with ε = 0.9, which
yields 2.1% inversions only.

For validation purposes, we also measure how well the considered algorithms compute the set (not the
ranking) of top-k vertices, i.e., those with highest electrical closeness centrality, with k ∈ {10, 100}. For
each algorithm we only consider the parameter settings that yields the highest accuracy. JLT-based ap-
proaches appear to be very accurate for this purpose, as their top-k sets achieve a Jaccard index of 1.0. As
expected (due to its absolute error guarantee), UST performs slightly worse: on average, it obtains 0.95 for
k = 10 and 0.98 for k = 100, which still shows a high overlap with the ground truth.

5.7.3 Memory Consumption

We measure the peak memory consumption of all the algorithms while running sequentially on the in-
stances of Tables 5.1a and 5.1b. More precisely, we subtract the peak resident set size before launching the
algorithm from the peak resident size after the algorithm finished. Figure 5.2 shows that UST requires less
memory than the competitors on all the considered instances. This can be explained by the fact that, un-
like its competitors, our algorithm does not rely on Laplacian solvers with considerable memory overhead.

84

UST Bekas-h Bekas Lamg-JLT Julia-JLT

ea sz pc wc wf lg wn cs wm pd wb lm fe pa pr

101

102

103

104

M
em

or
y

(M
B)

Figure 5.2: Difference between the peak resident set size before and after a sequential run of each algorithm on the
instances of Tables 5.1a and 5.1b.

1 2 4 8 16 24
#of cores

1

2

4

8

16

Sp
ee

du
p

UST

(a) Geometric mean of the speedup of UST on multiple
cores (shared memory) w.r.t. a sequential run. Data
points are aggregated over the instances of Tables 5.1a
and 5.1b.

1 2 4 8 16
#of compute nodes

1

2

4

8

16

Sp
ee

du
p

UST

(b) Geometric mean of the speedup of UST on multiple
compute nodes w.r.t. UST on a single compute node
(1 × 24 cores). Data points are aggregated over the
instances of Tables 5.1a–5.1c.

Figure 5.3: Parallel scalability of UST (with ε = 0.3) with shared and with distributed memory.

For the largest network in particular, the peak memory is 487.0 MB for UST, and at least 1.6 GB for the
competitors.

5.7.4 Parallel Scalability

The log-log plot in Figure 5.3a shows that, on shared memory, UST achieves a moderate parallel scalability
w.r.t. the number of cores; on 24 cores in particular, it is 11.9× faster than on a single core. Even though
the number of USTs to be sampled can be evenly divided among the available cores, we do not see a nearly-
linear scalability: on multiple cores the memory performance of our NUMA system becomes a bottleneck.
Therefore, the time to sample a UST increases and using more cores yields diminishing returns. Limited
memory bandwidth is a known issue affecting algorithms based on graph traversals in general [26, 195].

Finally, we compare the parallel performance of UST indirectly with the parallel performance of our
competitors. Specifically, assuming a perfect parallel scalability for our competitors Bekas and Bekas-h on
24 cores, UST would yield results 4.1 and 12.6 times faster, respectively, even with this strong assumption
for the competition’s benefit.

UST scales better in a distributed setting. In this case, the scalability is affected mainly by its non-parallel
parts and by synchronization latencies. The log-log plot in Figure 5.3b shows that, on up to 4 compute
nodes, the scalability is almost linear, while on 16 compute nodes UST achieves a 15.1× speedup w.r.t. a
single compute node.

85

Sequential Init.
UST sampling
DFS
UST aggregation

1 2 4 8 16 24
#of threads

0.00

0.25

0.50

0.75

1.00

Figure 5.4: Breakdown of the running times of UST with ε = 0.3 w.r.t. #of cores on 1× 24 cores. Data is aggregated
with the geometric mean over the instances of Tables 5.1a and 5.1b.

106 107 108

#of edges

101

102

103

Ti
m

e
(s

)

UST

(a) Running time of UST w.r.t. #of edges.

106 107 108

#of edges

1.5

2.0

2.5

3.0

Ti
m

e
ra

tio

1e 10

UST

(b) Ratio between the running time of UST and its theo-
retical running time (see Theorem 5.3.2.

Figure 5.5: Scalability of UST on random hyperbolic graphs (ε = 0.3, 1× 24 cores).

Figure 5.4 shows the fraction of time UST spends on different tasks depending on the number of cores.
We aggregated over “Sequential Init.” the time spent on memory allocation, pivot selection, solving the
linear system, the computation of the biconnected components, and on computing the BFS tree Bu. In all
configurations, UST spends the majority of the time in sampling, computing the DFS data structures, and
aggregating USTs. The total time spent on aggregation corresponds to “UST aggregation” and “DFS” in
Figure 5.4, indicating that computing the DFS data structures is the most expensive part of the aggregation.
Together, sampling time and aggregation time account for 99.4% and 95.3% of the total running time on 1
core and 24 cores, respectively. On average, sampling takes 66.8% of this time, while total aggregation takes
31.2%. Since sampling a UST is on average 2.2×more expensive than computing the DFS timestamps and
aggregation, faster sampling techniques would significantly improve the performance of our algorithm.

5.7.5 Scalability to Large Networks

Resultson SyntheticNetworks. The log-log plot in Figure 5.5a show the average running time of UST
1 × 24 cores on random hyperbolic networks [191].32 For each network size, we take the arithmetic mean
of the running times measured on five different randomly generated networks. Our algorithm requires 184
minutes for the largest inputs – with up to 83.9 million edges. Interestingly, Figure 5.5b shows that the
algorithm scales slightly better than our theoretical bound predicts. In Figure 5.6 we present additional

32The random hyperbolic generator generates networks with a heavy-tailed degree distribution. We set the average degree to
20 and the exponent of the power-law distribution to 3.

86

106 107 108

#of edges

100

101

102

103

Ti
m

e
(s

)

UST

(a) Running time of UST w.r.t. #of edges.

106 107 108

#of edges

1.0

1.5

2.0

Ti
m

e
ra

tio

1e 10

UST

(b) Ratio between the running time of UST and its theo-
retical running time (see Theorem 5.3.2.

Figure 5.6: Scalability of UST on R-MAT graphs (ε = 0.3, 1× 24 cores).

Table 5.2: Running time (s) of UST on large real-world networks (16× 24 cores).

Network n m
Time (s) Time (s)
ε = 0.3 ε = 0.9

petster-carnivore 601,213 15,661,775 16.8 4.8
soc-pokec-relationships 1,632,803 22,301,964 55.5 9.5
soc-LiveJournal1 4,843,953 42,845,684 277.0 75.5
livejournal-links 5,189,808 48,687,945 458.4 80.6
orkut-links 3,072,441 117,184,899 71.8 19.9
wikipedia_link_en 13,591,759 334,590,793 429.9 88.3

results on R-MAT graphs [65]. For this experiment, we use the Graph 500 [223] parameter setting – i.e.,
edge factor 16, a = 0.57, b = 0.19, c = 0.19, and d = 0.05. On these instances, the algorithm requires
only 18 minutes on inputs with up to 134.2 million edges. In particular, since these graphs have a nearly-
constant diameter, our algorithm is faster than on random hyperbolic graphs. Qualitatively, it exhibits a
similar scalability. The comparison to the theoretical bound is, however, less conclusive.

Results on Large Real-World Networks. In Table 5.2 we report the performance of UST in a dis-
tributed setting (16× 24 cores) on large real-world networks. With ε = 0.3 and ε = 0.9, UST always runs
in less than 8 minutes and 1.5 minutes, respectively.

5.7.6 Additional Experimental Results

Relative Error Quality Measures. Because our algorithm computes an absolute ±ε-approximation
of diag

(
L†
)
with high probability, it is expected to yield better results in terms of maximum absolute error

and ranking than numerical approaches with a relative error guarantee. Indeed, as we show in the following,
the quality assessment changes if we consider quality measures on a relative error such as:

87

UST 0.9
UST 0.8
UST 0.7
UST 0.5
UST 0.3

Julia-JLT 1.0
Julia-JLT 0.75
Julia-JLT 0.5
Julia-JLT 0.25
Julia-JLT 0.2

Lamg-JLT 1.0
Lamg-JLT 0.75
Lamg-JLT 0.5
Lamg-JLT 0.25
Lamg-JLT 0.2

Bekas 10
Bekas 20
Bekas 50
Bekas 100
Bekas 200

Bekas-h 16
Bekas-h 32
Bekas-h 64
Bekas-h 128
Bekas-h 256

0 5 10 15 20 25 30
Running time relative to UST 0.9

0

5

10

15

20

L1
re

l

0 5 10 15 20 25 30
Running time relative to UST 0.9

0.0

2.5

5.0

7.5

10.0

L2
re

l

0 5 10 15 20 25 30
Running time relative to UST 0.9

0

20

40

60

80

100

E r
el

Figure 5.7: L1rel, L2rel, and Erel w.r.t. the running time of our algorithm with ε = 0.9. All data points are aggregated
using the geometric mean over the instances of Table 5.1a.

L1rel :=

∥∥∥diag(L†)− diag
(
L̃†
)∥∥∥

1

∥diag(L†)∥1
,

L2rel :=

∥∥∥diag(L†)− diag
(
L̃†
)∥∥∥

2

∥diag(L†)∥2
,

Erel := gmeanv

∣∣∣L†[v, v]− L̃†[v, v]
∣∣∣

L†[v, v] .

Quality in terms of Relative Error. Figure 5.7 shows that, when assessing the error in terms of L1rel,
L2rel, or Erel, for the same running time, UST yields results that are still better in terms of quality than the
competitors’, but not by such a wide margin. This can be explained by the fact that the numerical solvers
used by our competitors often employ measures analogous to L1rel and L2rel in their stopping conditions.

5.8 Experiments – Forest Closeness

We now study the empirical performance of our algorithm for forest closeness (Section 5.5) on real-world
graphs.

Settings. Unless stated otherwise, all algorithms are implemented in C++, using the NetworKit [273]
graph APIs. All experiments are conducted on Linux machines equipped with an Intel Xeon Gold 6126
with 2× 12 cores and 192GiB of RAM each. Unless stated otherwise, all experiments run on a single core.
We manage our experiments with the SimexPal software [14] to ensure reproducibility. For evaluation,
we use a large collection of undirected graphs of different sizes, coming from a diverse set of domains.
All graphs have been downloaded from the public repositories KONECT [173], OpenStreetMap [83], and
NetworkRepository [254]. We denote our proposed algorithm for forest closeness by UST and, as done
in [153], we set α = 1.

88

Table 5.3: Running time and KT ranking scores of UST and JLT-based algorithms. In the JLT column we report, for
each instance, the competitor with highest KT score. For equal KT scores – up to the second decimal place
– we choose the fastest competitor.

(a) Complex networks

Graph n m
Time (s) KT

UST JLT UST JLT

loc-brightkite_edges 58K 214K 46.4 186.4 0.98 0.95
douban 154K 327K 80.8 370.9 0.71 0.61
soc-Epinions1 75K 405K 55.5 339.6 0.95 0.90
slashdot-zoo 79K 467K 59.9 412.3 0.95 0.92
petster-cat-household 105K 494K 61.8 372.1 0.98 0.92
wikipedia_link_fy 65K 921K 58.2 602.9 0.98 0.96
loc-gowalla_edges 196K 950K 230.9 1,215.5 0.99 0.97
wikipedia_link_an 56K 1.1M 50.7 562.6 0.96 0.93
wikipedia_link_ga 55K 1.2M 44.8 578.6 0.98 0.97
petster-dog-household 260K 2.1M 359.6 2,472.1 0.98 0.96
livemocha 104K 2.2M 107.4 1,429.3 0.98 0.97

(b) Road networks

Graph n m
Time (s) KT
UST JLT UST JLT

mauritania 102K 150K 98.1 217.6 0.88 0.77
turkmenistan 125K 165K 118.5 273.6 0.92 0.85
cyprus 151K 189K 149.4 315.8 0.89 0.80
canary-islands 169K 208K 185.5 382.0 0.92 0.84
albania 196K 223K 192.6 430.2 0.90 0.82
benin 177K 234K 188.1 406.8 0.92 0.83
georgia 262K 319K 322.1 605.3 0.91 0.83
latvia 275K 323K 355.2 665.4 0.91 0.83
somalia 291K 409K 420.1 747.5 0.92 0.84
ethiopia 443K 607K 825.9 1,209.7 0.91 0.83
tunisia 568K 766K 1,200.1 1,629.0 0.89 0.79

Competitors. For the forest closeness of individual vertices, the main competitor is the JLT-based algo-
rithm by Jin et al. [153], which uses the Laplacian solver fromRef. [175]. We compare against two implemen-
tations of this algorithm: one provided by the authors written in Julia v1.0.2 and our own implementation
based on Eigen’s [135] CG algorithm. We denote them by JLT-Julia and JLT-CPP, respectively. Like in
Ref. [153], we compute the number of linear systems for JLT-Julia and JLT-CPP as

⌈
logn
ε2

⌉
– which gives

an (ε · c)-approximation for a fixed constant c > 1.

5.8.1 Performance of UST

We measure the performance of UST compared to the state of the art. Each method is executed with
multiple settings of its respective quality parameter.

Accuracy and Running Time. We report the maximum absolute error of the estimated diagonal values
(i.e., maxv |Ω[v, v] − Ω̃[v, v]|) over all vertices and instances from Table 5.3.33 As ground truth, we take
Ω[v, v] values that are computed using Eigen’s [135] CG solver with a tolerance of 10−9; exact inversion
of (L + I) would be infeasible for many of the input graphs. A preliminary comparison against the values
if Ω[v, v] computed with the NumPy pinv function demonstrated the CG provides a sufficiently accurate
ground truth.

Figure 5.8 shows that UST achieves the best results in terms of quality and running time for both complex
and road networks. More precisely, for complex networks and ε = 0.4, UST yields a maximum absolute
error of 0.14, which is less than the most accurate result of both competitors (0.15 achieved by JLT-Julia
with ε = 0.1), while being 397.5× faster. Also, the running time of UST does not increase substantially
for lower values of ε, and its quality does not deteriorate quickly for higher values of ε. A similar pattern is
observed for road networks as well. Detailed running time values are reported in Table D.2, Appendix D.2.

33Note that, as for electrical closeness, the top vertices in the forest closeness ranking are the ones with the lowest Ω[v, v] (see
Eq. (5.8)); hence, we also evaluate the ranking accuracy in a following experiment.

89

UST, = 0.50
UST, = 0.40
UST, = 0.30

UST, = 0.20
UST, = 0.10
UST, = 0.05

JLT-CPP, = 0.3

JLT-CPP, = 0.2

JLT-CPP, = 0.1

JLT-Julia, = 0.3

JLT-Julia, = 0.2

JLT-Julia, = 0.1

0 250 500 750
Time relative to UST, = 0.50

0.0

0.2

0.4

M
ax

 a
bs

ol
ut

e
er

ro
r

Complex networks

0 100 200 300
Time relative to UST, = 0.50

0.1

0.2

0.3

M
ax

 a
bs

ol
ut

e
er

ro
r

Road networks

Figure 5.8: maxv
∣∣∣Ω[v, v]− Ω̃[v, v]

∣∣∣ over the instances of Table 5.3.

1 2 4 8 16 24
of cores

1

2

4

8

16

Sp
ee

du
p

ov
er

 1
 c

or
e

Complex networks

ust

1 2 4 8 16 24
of cores

1

2

4

8

16

Sp
ee

du
p

ov
er

 1
 c

or
e

Road networks

ust

Figure 5.9: Geometric mean of the speedup of UST with ε = 0.05 on multiple cores over a sequential run (shared
memory). Data points are aggregated over the instances of Table 5.3.

Vertex Ranking. Moreover, we measure the accuracy in terms of vertex rankings, which is often more
relevant than individual scores [227, 229]. In Table 5.3, we report the Kendall’s rank correlation coefficient
(KT) of the vertex ranking w.r.t. the ground truth along with running times for complex networks (Ta-
ble 5.4a) and for road networks (Table 5.4b). For each instance, we pick the best run, i.e., the “UST” and
“JLT” columns display the run with highest respective KT value. If the values are the same up to the second
decimal place, we pick the fastest one. UST has consistently the best vertex ranking scores; at the same time,
it is faster than the competitors. In particular, UST is on average 7.6× faster than the JLT-based approaches
on complex networks and 1.9× faster on road networks.

Parallel Scalability. As described in Section 5.6.2, UST is well-suited for parallel implementations
since each UST can be sampled independently in parallel. Hence, we provide parallel implementations of
UST based onOpenMP (formulti-core parallelism) andMPI (to scale tomultiple compute nodes) for forest
closeness as well.

In Figure 5.9, we report the parallel scalability of UST on multiple cores. Unsurprisingly, analogously
to the results achieved in Section 5.7.4, UST exhibits a moderate scalability w.r.t. the number of cores. In
particular, our OpenMP implementation on 24 cores exhibits a speedup of 8.7× on complex networks and
9.2× on road networks. As with electrical closeness, we hypothesize that this is mainly due to memory

90

1 2 4 8 16
of compute nodes

1

2

4

8

16

Sp
ee

du
p

Complex networks

ust

1 2 4 8 16
of compute nodes

1

2

4

8

16

Sp
ee

du
p

Road networks

ust

Figure 5.10: Geometric mean of the speedup of UST with ε = 0.1 on multiple compute nodes over a single compute
node (1× 24 cores). Data points are aggregated over the instances of Table 5.5.

Table 5.5: Large networks used for scalability experiments in distributed memory and running time of UST for forest
closeness on 16× 24 cores.

(a) Complex networks

Graph n m
Time (s)

ε = 0.1 ε = 0.3

soc-LiveJournal1 4,846,609 42,851,237 348.9 118.5
wikipedia_link_fr 3,333,397 100,461,905 205.4 90.7
orkut-links 3,072,441 117,184,899 293.5 92.2
dimacs10-uk-2002 18,483,186 261,787,258 1,101.3 365.8
wikipedia_link_en 13,593,032 334,591,525 919.3 295.4

(b) Complex networks

Graph n m
Time (s)

ε = 0.1 ε = 0.3

slovakia 543,733 638,114 28.1 9.9
netherlands 1,437,177 1,737,377 82.9 31.1
greece 1,466,727 1,873,857 74.5 29.8
spain 4,557,386 5,905,365 273.0 86.2
great-britain 7,108,301 8,358,289 419.0 136.6
dach 20,207,259 25,398,909 1,430.1 473.7
africa 23,975,266 31,044,959 1,493.4 499.3

latencies: while sampling a UST, our algorithm performs several random accesses to the graph data struc-
ture (i.e., an adjacency array [273]), which are prone to cache misses. The results for MPI are depicted in
Figure 5.10. In this setting, UST obtains a speedup of 12.2× on complex and 11.5× on road networks on
up to 16 compute nodes – for this experiment we set ε = 0.1 and we use the instances in Table 5.5. More
sophisticated load balancing techniques are likely to increase the speedup in the MPI setting, they are left
for future work. Still, the MPI-based algorithm can rank complex networks with up to 334M edges in less
than 20 minutes. Road networks with 31M edges take less than 25 minutes.

5.9 Conclusions

This chapter addressed the problemof approximating electrical centralitymeasures, namely, electrical close-
ness, normalized random-walk betweenness, Kirchhoff-related indices, and forest closeness. The core con-
tribution is a new efficient parallel algorithm for approximating diag

(
L†
)

of Laplacian matrices L corre-
sponding to small-world weighted undirected networks, which is enough to compute the aforementioned
measures. Compared to the main competitors, our algorithm is about one order of magnitude faster, it
yields results with superior quality in terms of absolute error and ranking of diag

(
L†
)
, and it requires less

memory.
Furthermore, we extended our algorithm to forest closeness, which can now be approximated faster and

more accurately than previously possible. Because the augmented graph has constant diameter, in the forest

91

closeness case we can target any graph – not only small-world graphs – without degrading the performance
of the algorithm.

The gap between the theoretical bounds and the much better empirical error yielded by our algorithm in
approximating diag

(
L†
)
suggests that tighter bounds on the number of samples are a promising direction

for future research. Another potentially interesting research direction is to devise a newUST-based adaptive
sampling strategy, as it could reduce the number of samples and thus the running time of our UST algorithm
and it would benefit from our epoch-based framework for parallel ADS described in Chapter 4. Other
conceivable ideas for future work are an improvement of the running time for high-diameter graphs, both
in theory and in practice, and extensions of our strategies to directed graphs.

92

Part III

Algorithms for Group Centrality Measures

93

Introduction

As we saw in Part II, finding highly central vertices in a graph is a fundamental problem in network analysis
(see also Ref. [227]). To this end, several centrality measures have been introduced over the past decades
(see Ref. [53] and Section 2.4). The problem of identifying the top-k most central vertices in a graph has
been widely studied [37, 180, 229, 231]. However, many network analysis applications do not require the k
most individually central vertices, but rather a group of k vertices that is central as a whole [121, 162, 185,
285, 291].

Everett and Borgatti [104] were the first to extend the centrality concept to groups of vertices and defined
group-degree, group-closeness, group-betweenness, and flow betweenness. Group centrality maximiza-
tion problems are often NP-hard: group-degree maximization can be reduced from vertex cover [13], for
group-closeness see Ref. [76] and for group-harmonic see Ref. [12]. Consequently, exact methods for these
problems such as ILP solvers [38] take too long on graphs with non-trivial size – a few thousands of ver-
tices/edges or more. Thus, group centrality maximization is generally approached via approximation [183,
200] or heuristics [38, 76]. Yet, existing algorithms for group centrality maximization fail to scale to large
real-world networks. In addition, early attempts to attribute a constant-factor approximation to a popu-
lar greedy algorithm for group-closeness maximization were flawed (see Section 7.4.1), leaving the open
questions of whether this problem can be approximated and, if so, how well. Another weakness of existing
group centralitymeasures is that, without proper adjustments, they are not designed to handle disconnected
graphs.

In the following, we address the lack of scalability of group centrality maximization algorithms from
two directions: (i) in the context of group-closeness centrality, we introduce new fast local search heuris-
tics to compute highly central groups of vertices in large graphs (Chapter 6) and (ii) we introduce a novel
group centrality measure called GED-Walk as well as efficient parallel algorithms compute it and to approx-
imate the group of vertices with highest GED-Walk centrality (Chapter 8). Concerning the group-closeness
approximation issue, building on top of the results presented in Ref. [12], we provide an efficient implemen-
tation of the first approximation algorithm for this problem (Chapter 7). Finally, we address the lack of
electrical group centrality measures for disconnected graphs by extending forest closeness to disconnected
graphs (Chapter 8); as its single-vertex counterpart, group forest closeness handles disconnected graphs out
of the box.

Contribution and Outline. In Chapter 6, we introduce new fast local search heuristics for group-
closeness to compute highly central groups of vertices. Our heuristics start from an initial a group of ver-
tices S and perform exchanges between vertices within S and the rest of the graph until they reach a local
optimum. Compared to the state-of-the-art greedy algorithm [38], experimental results show that, on un-
weighted graphs, our strategy is two orders of magnitude faster and achieves 99.4% of the solution quality;

95

on weighted graphs, it yields solutions of 12.4% higher quality while also being 127.8× faster. Further-
more, our algorithms handle graphs with hundreds of million of edges in only around ten minutes, while
the greedy algorithm requires more than ten hours.

Heuristics, however, do not provide any approximation guarantees, leaving the question of approxima-
bility for group-closeness maximization unsettled. In Chapter 7, we address this issue. By exploiting the
theoretical results from Ref. [12], we build the first approximation algorithm for group-closeness maximiza-
tion by adapting to group-closeness the local search algorithm for k-Median by Arya et al. [20]. In addition,
we also address group-harmonic maximization – to the best of our knowledge, we are the first to study this
optimization problem. We implement an efficient greedy algorithm as well as a local search approximation
algorithm to maximize group-harmonic. In our experimental study we show that, compared to a greedy
strategy, our local search approximation algorithm yields solutions with superior quality at the cost of ad-
ditional running time. In particular, local search is one to three orders of magnitude slower than greedy,
which is expected due to the approximation guarantees. Indeed, local search approximation algorithms
often cut greedy’s (empirical) gap to optimality by half or more.

Finally, in Chapter 8, we introduce two new group centralitymeasures: GED-Walk, a novel group central-
ity measure inspired by Katz centrality, and group forest closeness, that is, forest closeness (see Chapter 5)
extended to sets of vertices. Similarly to Katz centrality, GED-Walk takes into account walks of any length
and gives to shorter walks greater importance than to longer walks. Since it is not based on shortest paths,
GED-Walk can be optimized significantly faster (for groups with moderate size) compared to shortest-path
based measures such as group-closeness, group-harmonic or group-betweenness. We describe efficient
parallel algorithms to compute the GED-Walk score of a given group and to efficiently approximate the
group of vertices with highest GED-Walk centrality. Experimental results show that GED-Walk improves
the precision of popular graph mining applications such as semi-supervised vertex classification and graph
classification [278]. Also, our algorithm for maximizing GED-Walk (in approximation) is two orders of
magnitude faster than state-of-the-art algorithms for group-betweennessmaximization [200] and, for group
sizes up to 100 vertices, one to two orders of magnitude faster than group-harmonic and group-closeness
maximization [38].

Group forest closeness, in turn, is defined as the reciprocal of group forest farness, i.e., the sum of forest
distances from a group S to the other vertices. Maximizing this measure turns out to be NP-hard, so
we adapt the greedy approximate algorithm from Li et al. [183] for group electrical closeness to group forest
closeness. Semi-supervised vertex classification results on disconnected graphs indicate that, in comparison
to existing measures, group forest closeness improves the precision to a much greater extent.

96

6 Local Search for Group-Closeness
Maximization on Big Graphs

6.1 Introduction

Closeness centrality is one of the oldest and most widely-used vertex centrality measures (see Ref. [33] and
Chapter 3). It is defined as the reciprocal of the average shortest-path distance from a vertex to all the others
– see Eq. (2.5).

Group-closeness can be interpreted as a special case (on graphs) of thewell-known k-Median problem for
facility location. Example of applications include: (i) retailers that want to advertise their products via social
media; promoters could be selected as the group of kmembers with highest centrality in order to maximize
the influence over the othermembers [293]; (ii) in P2Pnetworks, shared resources could be placed on k peers
so that they are easily accessible by others [121]; (iii) in citation networks, group centrality measures can be
employed as alternative indicators for the influence of journals or papers within their research field [182].

The problem of finding the group of k vertices with highest group-closeness (group closeness maximiza-
tion) is shown to be NP-hard [76]. While exact algorithms to find a group with maximal closeness are
known – e.g., algorithms based on Integer Linear Programming (ILP) [38] – they do not scale to graphs
with more than a few thousand edges. Hence, in practice, groups with high closeness centrality are com-
puted through heuristics [38, 76].

Related Work. For group-betweenness maximization, sampling-based algorithms have been pro-
posed [200, 288]. An extensive analysis of algorithms for group-betweenness estimation is provided by
Chehreghani et al. [74], who also introduce a new algorithm based on an alternative definition of distance
between a vertex and a set of vertices.

Concerning group-closeness maximization, in Ref. [290] the definition of group-closeness differs from
the original one and only serves as an estimate of the original – we use the latter, defined in Eq. (2.13), which
is widely accepted. Therefore, theirNP-hardness and submodularity proofs do not necessarily carry over to
the original definition. In fact, the standard group-closeness is not submodular (see Lemma 2.5.2). Hence,
submodular optimization results in [282] do not apply to this case directly. Chen et al. [76] argued that
group-closenessmaximization isNP-hard by relating it to theNP-hard k-means problem. Their proposed
greedy algorithm was later improved by Bergamini et al. [38], who made algorithm more memory-efficient
and exploited the supermodularity of the reciprocal of group-closeness for search pruning. Exploiting the
supermodularity of the reciprocal also works when the distance function is replaced by the resistance dis-
tance (see Section 2.3.2). This leads to the so-called group current-flow closeness, for which Li et al. [183]
proposed approximation algorithms based on greedy strategies and random projections.

97

Motivation. Still, even for group-closeness with the usual graph distance, the greedy algorithm can be
time-consuming on large instances. Indeed, pruning ismost effectivewhen the group is already large. When
performing the first addition, however, the greedy algorithm has to perform one (pruned) SSSP for each
vertex in the graph to compute its marginal contribution, and this phase scales superlinearly in the size of
the graph. As a result, real-world graphs with hundreds of millions of edges still require several hours to
complete. This motivates us to develop new local search heuristics that quickly find highly central groups
of vertices on large-scale real-world graphs without sacrificing too much solution quality.

Contribution. In this chapter, we develop new heuristic algorithms for group-closeness maximization.
Specifically, we present two novel local search heuristics that start from an initial group of vertices S ⊂ V

and perform exchanges of vertices from S and V \ S until a local optima is reached. The first algorithm,
Local-Swaps, requires little time per iteration but only exchanges vertices locally. The second algorithm,
Grow-Shrink, performs also non-local vertex exchanges, but iterations are more computationally expensive.

Experiments on unweighted graphs show that extended Grow-Shrink, a variation of Grow-Shrink, com-
putes groups with closeness scores greater than 99.4% of the score of a greedy solution while being 127.8×
faster (results for k = 10). We see extended Grow-Shrink as the best trade-off between speed and solution
quality. When quality is not a primary concern, our other algorithms accelerate the computation by sacri-
ficing solution quality. For example, for groups with size 10 the non-extended variant ofGrow-Shrink yields
solutions whose quality is 91.1% compared to the state of the art while being 700.2× faster. The speedup
varies between 927.9× and 43.0× for groups with sizes 5 and 100, respectively. On weighted graphs, our
algorithms improve both the quality and the running time performance of the state of the art: for exam-
ple, for k = 10, they return solutions of 12.4% higher quality with a 793.6× speedup. Different trade-offs
between quality and running time are possible, we discuss them in Section 6.7.

Bibliographic Notes. The contributions presented in this chapter were published in the Proceedings
of the IEEE International Conference on Big Data, 2019. My contributions involve the development of the
initial algorithm that led to the ones presented in the paper. The development of the presented algorithms
is a collaborative effort with Alexander van der Grinten. Further, I implemented all the presented algo-
rithms (acceleration techniques with SIMD vector operations were implemented together with Alexander
van der Grinten) and carried out the experiments. The rest is joint work with Alexander van der Grinten
andHenningMeyerhenke. Proofs to which I did not contribute are omitted and can be found in the original
paper [15].

6.2 Preliminaries

Let S ⊂ V be a group of vertices. As reported in Section 2.5, the group-closeness centrality of S is defined
as gc(S) := n∑

u∈V \S d(S,u) . In the literature, a similar objective has been addressed as well, namely, the
farness of a set S, defined as gf (S) := 1

n ·
∑

u∈V \S d(S, u). Note that the farness of a group is defined as
the reciprocal of its closeness.

98

Problem Addressed. In this chapter, we study the problem of finding groups that maximize group-
closeness and subject to a cardinality constraint, i.e., for a given integer 1 ≤ k < n, our objective is to find
a group with size k of large group-closeness. Formally:

Group-Closeness Maximization
Input: GraphG = (V,E,w), integer 1 ≤ k < n.
Find: Set S⋆ ⊂ V with |S| = k s.t. gc(S⋆) is maximum.

We assume G to be undirected, connected, and with positive edge weights. We consider the problem of
improving the group-closeness of a given set S of vertices with local search. More precisely, we consider
exchanges of vertices from S and V \S. Let u be a vertex in S and v ∈ V \S. To simplify the presentation,
we use the notation S+v

−u := (S \{u})∪{v} to denote the set resulting by the exchange of uwith v. We also
use the notationS−u := S\{u} andS+v := S∪{v} to denote vertex removals and insertions, respectively.

As our algorithms can only perform vertex exchanges, before they can start they require the construction
of an initial solution S. Since a superlinear initialization step would compromise our algorithms’ running
times, for all our local search algorithms we choose the initial set S uniformly at random. For large graphs,
this initialization can be expected to cover the graph reasonably well. Exploratory experiments revealed that
our algorithms do not benefit from other obvious initialization techniques – such as selecting the k vertices
with highest degree.

6.3 Estimating the Quality of Vertex Exchanges

The greedy ascent algorithm starts with an empty set S and iteratively adds vertices v ∈ V \ S to S that
maximize gf (S) − gf (S+v) [38]. Depending on the input graph and the value of k, however, the greedy
algorithm might need to evaluate the difference in gf for a substantial number of vertices, and this is rather
expensive for large real-world graphs.

The algorithms we present in this section aim to improve upon the running time of the greedy algorithm.
We achieve this by first considering exchanges with only local vertices, i.e., vertices that already “near” S.
Clearly, selecting only local vertices would decrease the quality of a greedy solution – as the greedy algo-
rithm does not have the ability to correct suboptimal choices. However, this is not necessarily true for our
algorithms based on vertex exchanges. Then, we generalize this strategy by extending vertex exchanges to
non-local vertices, and allowing exchanges of multiple vertices per time (Section 6.6).

To make our notion of locality more concrete, let BS ⊆ G be the DAG constructed by running a SSSP
from the vertices in S. Here, all the vertices in S are considered as sources of the SSSP, i.e., they are at
distance 0. Further, define

∆−(v) := gf (S)− gf (S+v) =
∑

x∈V \S

d(S, x)− d(S+v, x).

To compute the greedy solution, it seems to be necessary to compute∆− exactly for a substantial number
of vertices. Pruning techniques can avoid some of the computational costs [38], butmany evaluations of∆−

still have to be performed, which seems to be impractical for large graphs. However, a lower bound for∆−

99

S

DAG
v Here: |Dv| = 7

Figure 6.1: Example of shortest-path DAGBS ; orange vertices are inDv .

can be computed from the shortest-path DAGBS . To this end, letDv be the set of vertices reachable from
v inBS .

Lemma 6.3.1. [15] It holds that:
∆−(v) ≥ |Dv| · d(S, v)

In the unweighted case, equality holds if v is a neighbor of S.

An illustration of Lemma 6.3.1 is shown in Figure 6.1. This bound will be used in the two algorithms
presented in Sections 6.4 and 6.5. Instead of picking vertices that maximize ∆−, those algorithms pick
vertices that maximize the right-hand side of Lemma 6.3.1, i.e.,Dv ·d(S, v). The bound is local in the sense
that it is more accurate for vertices near S: in particular, letN(S) be set of vertices that have a neighbor in
S; the reachability sets of vertices in N(S) \ S are larger in G than those in BS , as BS does not contain
back edges. Unfortunately, computing the cardinality of Dv for all v seems to be prohibitively expensive:
indeed, the fastest know algorithm to compute the size of the transitive closure of a DAG relies on iterated
(Boolean) matrix multiplication – hence, the best known exact algorithm has a complexity ofO(n2.373) [9].
However, we can use Cohen’s randomized algorithm [78] to approximate the sizes ofDv for all v at the same
time. In multiple iterations, this algorithm samples a random number for each vertex inG, accumulates in
each vertex v the minimal random number of any vertex reachable from v, and estimates |Dv| based on this
information.

We remark that Cohen’s algorithm yields an approximation, not a lower bound for the right-hand side
of Lemma 6.3.1, therefore in our algorithms the inequality of the Lemma can be violated; in particular, it
can happen that our algorithms pick a vertex v such that ∆−(v) < 0. In this case, instead of decreas-
ing the closeness centrality of the current group, our algorithms terminate. Nevertheless, our experiments
demonstrate that, on real-world instances, a coarse approximation of the reachability set size is enough for
Lemma 6.3.1 to identify useful candidates for vertex exchanges (see Section 6.7).

6.4 The Local-Swaps Algorithm

Let us first focus on unweighted graphs. A straightforward idea to construct a fast local search algorithm is
to allow swaps betweenness vertices in S and their neighbors in V \S. This procedure can be repeated until
no swap can decrease gf (S). Let u be a vertex in the group and let v ∈ N(S) \ S be one of its neighbors
outside the group. To determine whether swapping u and v (i.e., replacing S by S+v

−u) is beneficial, we have
to check whether gf (S) − gf (S+v

−u) > 0, i.e., whether the farness decreases after the swap. The challenges

100

Algorithm 12Overview of the Local-Swaps Algorithm
1: repeat
2: approximateDv for all v ∈ V \ S with [78]
3: ⟨u, v⟩ ← argmaxu,∈S, v∈N(u)\S |Dv| − |Λu|
4: S ← S+v

−u

5: run pruned BFS from v ▷ to recompute gf (S)
6: until previous iteration did not decrease gf (S)

here are (i) to find a pairu, v that satisfies such inequality without checking all pairsu, v exhaustively and (ii)
to compute the difference gf (S)−gf (S+v

−u) quickly. Note that a crucial property that allows us to construct
an efficient algorithm is that, after a swap, the distance from S to any other vertex can only change by ±1.
Hence, to compute gf (S)− gf (S+v

−u), it suffices to count the number of vertices where the distance changes
by−1 and the number of vertices where it changes by+1. To this end, our algorithm requires a few auxiliary
data structures; in particular, we store the following:

• the distance d(S, x) from S to all vertices x ∈ V \ S;

• a set λx := {s ∈ S : d(S, x) = d(s, x)} for each vertex x ∈ V \S that contains all vertices in S that
realize the shortest distance from S to x;

• the value |Λs| for each s ∈ S, where Λs := {x ∈ V \ S : λx = {s}} is the set of vertices for which
the shortest distance is realized exclusively by s.

Note that the sets λx consume O(kn) memory in total. However, since k ≪ n, we can afford this even
for large real-world graphs.34

All of those auxiliary data structures can be maintained dynamically during the entire algorithm with
little additional overhead. More precisely, after a u-v swap is done, v is added to all λx satisfying d(v, x) =
d(S, x); for x ∈ V \ S such that d(v, x) < d(S, x), the set λx is replaced by {v}. Vertex u can be removed
from all λx by a linear-time scan through all x ∈ V \ S.

Algorithm 12 states a high-level overview of our Local-Swaps algorithm. In the following, we discuss how
we pick a “good” swap (Line 3 of the pseudocode) and how to update the data structures after a swap (Line 5).
The running time of the algorithm is dominated by the initialization of λx. Thus, it runs inO(kn+m) time
per swap.

6.4.1 Choosing a Good Swap

Because it would be too expensive to compute the exact difference in gf for each possible swap, we find the
pair of vertices ⟨u, v⟩ such that:

⟨u, v⟩ = argmax
u∈S,

v∈N(S)\S

|Dv| · d(S, v)− |Λu|

= argmax
u∈S,

v∈N(S)\S

|Dv| − |Λu|.

34In our implementation, we store each λx in only k bits.

101

S

DAG
v

u

(a) State of S and DAG before swapping u with v.

S

DAG
+1

+1

−1 −1 −1

−1
−1

−1
−1

Here:

f(S)− f(S+v
−u) = 7− 2 = 5

(b) State ofS andDAG after the u-v swap. Vertices inmagenta are the ones inH+
u,v (their distance fromS increased by 1) whereas

H−
u,v vertices are in blue (their distance from S decreased by 1). Overall, the farness of S decreased by 5.

Figure 6.2: Example of computation of the difference in farness after a u-v swap with the Local-Swaps algorithm. The
states of S and of the DAG before and after the u-v swap are shown in Figures 6.2a and 6.2b, respectively.

Note that this value is a lower bound for the decrease of gf (S) after swapping u and v: In particular,
Lemma 6.3.1 implies that |Dv| is a lower bound for the decrease in farness when adding v toS. Additionally,
|Λu| is an upper bound for the increase in farness when removing u from S – and thus also for the increase
in farness when removing u from S+v .35 Hence, we can expect this strategy to yield pairs of vertices that
lead to a decrease of gf . In practice, to maximize |Dv| − |Λu|, for each v ∈ V \ S we first compute the
neighbor u ∈ N(v) ∩ S that minimizes |Λu|, which requires O(n +m) time. Afterwards, we maximize
|Dv| − |Λu| by a linear scan over all v ∈ V \ S.

6.4.2 Computing the Difference in Farness

Instead of comparing actual distances, it suffices to define sets of vertices whose distance to S is increased
or decreased (by 1) by the swap, namely:

H+
u,v :=

{
x ∈ V : d(S, x) < d(S+v

−u, x)
}
,

H−
u,v :=

{
x ∈ V : d(S, x) > d(S+v

−u, x)
}
.

As d(S, x)− d(S+v
−u, x) ∈ {−1, 0, 1}, it holds that:

Lemma 6.4.1 ([15]). gf (S)− gf (S+v
−u) = |H−

u,v| − |H+
u,v|.

An illustration of Lemma 6.4.1 is depicted in Figure 6.2. Computing H−
u,v is straightforward: it suffices

to run a BFS from v that counts those vertices x for which d(v, x) < d(S, x). To check this condition, we
35Note, however, that this bound is trivial if |Dv| − |Λu| ≤ 0.

102

have to store the values of d(S, x) for all v ∈ V . We remark that it is not necessary to run a full BFS: indeed,
we can prune the search at each vertex x such that d(v, x) ≥ d(S, x) – i.e., the search continues without
visiting x. However, as we will see in the following, we relax the pruning condition and prune the BFS only
if d(v, x) > d(S, x); this allows us to update our auxiliary data structures on the fly.
H+

u,v ca be computed from |Λu| with the help of the auxiliary data structures. We note thatH+
u,v ⊆ Λu,

as only vertices x whose distance d(S, x) is uniquely realized by u – out of all the vertices in the group
– can have their distance from S increased by the swap. Since H+

u,v ∩ H−
u,v = ∅, we can further re-

strict this inclusion to H+
u,v ⊆ Λu \ H−

u,v , but, in general, Λu \ H−
u,v will consist of more vertices

than just H+
u,v . More precisely, Λu \ H−

u,v can be partitioned into Λu \ H−
u,v = H+

u,v ∪ H0
u,v , where

H0
u,v := {x ∈ Λu : d(u, x) = d(v, x)} consists of the vertices whose distance is neither increased nor de-

creased by the swap. By construction,H0
u,v andH+

u,v are disjoint. This proves the following Lemma:

Lemma 6.4.2 ([15]). |H+
u,v| = |Λu| − |Λu ∩H−

u,v| − |H0
u,v|.

Notice that H0
u,v as well as Λu ∩ H−

u,v are completely visited by our BFS. To determine |H0
u,v|, the BFS

only has to the vertices x satisfying d(v, x) = d(S, x) and λx = {u}. On the other hand, to determine
|Λu ∩H−

u,v|, it has to count the vertices x that satisfy d(v, x) < d(S, x) and λx = {u}.

6.5 The Grow-Shrink Algorithm

The main issue with the Local-Swaps algorithm from Section 6.4 is that it can exchange a vertex u ∈ S

exclusively with one of its neighbors v ∈ N(u) \ S. Due to this restriction, the algorithm might take many
swaps to converge to a local optimum. It alsomakes it hard to escape a local optimum: indeed, the algorithm
terminates if no swap with a neighbor improves the closeness.

Our second algorithm lifts those limitations. It also allows G to be a weighted graph. In particular, it
allows vertex exchanges that change the distance from S to the vertices in V \S by arbitrary amounts. Since
computing the exact differences gf (S)−gf (S+v

−u) for all possible pairs of u and v seems to be impractical in
this setting, we decompose the vertex exchange of u and v into two operations: (i) the addition of v to S and
(ii) the removal of u from S+v . In particular, we allow the set S to grow to a size of k + 1 before we shrink
the size of S back to k. Thus, the cardinality constraint |S| = k is temporarily violated and, eventually,
restored again.

The individual differences gf (S) − gf (S+v) and gf (S+v) − gf (S+v
−u) (or bounds for those differences)

turn out to be efficiently computable for all possible u and v, at least in approximation. We remark, however,
that while this technique finds the vertex v thatmaximizes gf (S)−gf (S+v) and the vertexu thatmaximizes
gf (S

+v) − gf (S+v
−u), u and v are not necessarily the pair of vertices maximizing gf (S) − gf (S+v

−u). Nev-
ertheless, our experiments in Section 6.7 demonstrate that the solution quality of this algorithm is superior
to the quality of the Local-Swaps algorithm.

To perform these computations, our algorithm maintains the following data structures:

• the distance dS(x) of each vertex x ∈ V \ S to S, and a representative rx ∈ S that realizes this
distance, i.e., it holds that d(S, x) = d(rx, x) = dS(x);

• the distance d′S(x) fromS\{rx} tox and a representative r′x for this distance (satisfying the analogous
equality).

103

i, j ∈ S

i

j

rx = i
rx = j

r′y = i
r′y = j

Figure 6.3: Illustration of the data structures maintained by Grow-Shrink. Here we show two vertices i, j ∈ S: within
the blue lines are those vertices x whose representative rx is either i (on the left) or j (on the right); the
vertices y within the dashed orange lines, in turn, have either i or j as their representative r′y .

Figure 6.3 illustrates an example of the data structures maintained by the Grow-Shrink algorithm. Since
the graph is connected, these data structures are well-defined for all groups S of size |S| ≥ 1. Furthermore,
the sum of the differences between d′S(x) and dS(x) is exactly the difference in farness when rx is removed
from S. Later, we will use this fact to quickly determine differences in farness due to the removal of vertices
from the group.

Notice that it can happen that dS(x) = d′S(x); nevertheless, rx and r′x are always distinct. Indeed, there
can be two different vertices rx, r′x ∈ S that satisfy d(rx, x) = d(r′x, x) = d(S, x). We also define:

Ru := {x ∈ V \ S : rx = u},

R′
u :=

{
x ∈ V \ S : r′x = u

}
.

Algorithm 13Overview of the Grow-Shrink Algorithm
1: repeat
2: approximateDv for all v ∈ V \ S with Cohen’s algorithm [78]
3: v ← S+v

4: run pruned BFS from v ▷ to recompute gf (S), d, and d′
5: u← argminu∈S

∑
x∈Ru

d′(x)− d(x)
6: S ← S−u

7: run Dijkstra-like algorithm ▷ to recompute gf (S), d, and d′
8: until previous iteration did not decrease gf (S)

Algorithm 13 gives a high-level overview of the Grow-Shrink algorithm. In the following, we discuss the
growing phase (Lines 2–4) and the shrinking phase (Lines 5–7). The time complexity of Grow-Shrink is
dominated by the Dijkstra-like algorithm in Line 7. Therefore, it runs in O(n +m logn) time per swap –
if using an appropriate priority queue. The space complexity isO(n+m).

6.5.1 Vertex Additions

When adding a vertex v to S, we want to select v such that gf (S+v) is minimized. Note that minimizing
gf (S

+v) is equivalent to maximizing the difference gf (S) − gf (S+v) = ∆−(v). Instead of maximizing
∆−(v), we maximize the lower bound |Dv| · d(S, v). We perform a small number of iterations of Cohen’s
reachability set size approximation algorithm [78] (see Section 6.3) to select the vertex v with (approxima-
tively) largest |Dv|.

104

z

u

z′

d′S-boundary
dS-boundary

Figure 6.4: z, u and z′ are vertices in S. Vertices within the solid regions belong to Rz , Ru and Rz′ , respectively.
Verticeswithin the dashed regions belong toR′

z andR′
u, respectively. After removingu fromS, the vertices

x ∈ R′
u will have an invalid r′x and d′S(x).

After v is selected, we perform a BFS from v to compute ∆−(v) exactly. As we only need to visit the
vertices whose distance to S+v is smaller than to S, the BFS can be pruned at each vertex x with d(S, x) <
d(v, x). During the BFS, the values dS , d′S , rx, and r′x are updated to reflect the vertex addition, i.e., whether
v realizes the new distance dS or d′S .

6.5.2 Vertex Removals

For vertex removals, we can efficiently calculate the exact increase in farness ∆+(u) := gf (S−u) − gf (S)
for all vertices u ∈ S, even without resorting to approximation. In fact, ∆+(u) is given as:

∆+(u) =
∑
x∈Ru

d′S(x)− dS(x).

We need to compute k such sums – i.e., ∆+(u) for each u ∈ S. All of them, however, can be computed
at the same time by a single linear scan through all the vertices in V .

On the other hand, it is more challenging to update dS , d′S , rx, and r′x after the removal of a vertex u
from S. For vertices xwith an invalid dS(x) – i.e., vertices x ∈ Ru – we can simply update dS(x)← d′S(x)

and rx ← r′x. This update invalidates d′S(x) and r′x. In the following, we treat d′S(x) as infinite and r′x
as undefined for all updated vertices x; eventually, those expressions will be restored to valid values using
the algorithm that we describe in the remainder of this section. Indeed, we now have to handle all vertices
with an invalid d′S(x) – i.e., those in Ru ∪ R′

u. This computation is more involved. We run a Dijkstra-
like algorithm (even in the unweighted case) to “fix” d′S(x) and r′S(x). The following definition yields the
starting point of our Dijkstra-like algorithm.

Definition 6.5.1 (dS-boundary and d′S-boundary pair). Let x ∈ V be any vertex and let y ∈ N(x)∩ (Ru∪
R′

u) be a neighbor of x that needs to be updated.

• We call ⟨x, y⟩ a dS-boundary pair for y iff rx ̸= ry . In this case, we set b(x, y) := dS(x) + d(x, y).

• We call ⟨x, y⟩ a d′S-boundary pair for y iff rx = ry and x /∈ Ru ∪R′
u. In this case, we set b(x, y) :=

d′S(x) + d(x, y).

In both cases, we call b(x, y) the boundary distance of ⟨x, y⟩.

105

Thedefinition is illustrated in Figure 6.4. Intuitively, boundary pairs define the boundary between regions
of G that have a valid d′S(x) – blue regions in Figure 6.4 – and regions of the graph that have an invalid
d′S(y) – orange region in Figure 6.4. The boundary distance b(x, y) corresponds to the value of d′S that a
SSSP algorithm could propagate from x to y. We need to distinguish dS-boundary pairs and d′S-boundary
pairs as the boundary distance can either be propagated on a shortest path from S over x to y (in case of a
dS-boundary pair) or on a shortest path from S−rx over x to y (in case of a d′S-boundary pair).

Consider all y ∈ V \ S such that there exists at least one (dS- or d′S-)boundary pair for y. For such y,
let ⟨x, y⟩ be the boundary pair with minimal boundary distance b(x, y). Our algorithm first determines all
such y and updates d′S(y) ← b(x, y). If ⟨x, y⟩ is a dS-boundary pair, we set ry ← rx; for d′S-boundary
pairs, we set ry ← r′x. After this initial update, we run a Dijkstra-like algorithm starting from these vertices
y for which a boundary pair exists. The algorithm treats d′S as the distance. Compared to the standard
Dijkstra algorithm, ours needs the following modifications: For each vertex x, our algorithm only visits
those neighbors y that satisfy ry ̸= r′x; furthermore, whenever such a visit results in an update of d′S(y), we
propagate r′y ← r′x. Note that these conditions imply that we never update r′y such that r′y = ry .

Lemma 6.5.1 ([15]). After the Dijkstra-like algorithm terminates, for all the explored vertices x, d′S(x) and
r′x are correct.

6.6 Variants and Algorithmic Improvements

6.6.1 Semi-local Swaps

One weakness of the Local-Swaps algorithm from Section 6.4 is that it only performs local vertex exchanges.
Indeed, the algorithm always swaps a vertex u ∈ S and a vertex in v ∈ N(u) \ S. This condition can be
generalized: in particular, it is sufficient that u ∈ S also satisfies u ∈ N(S+v). In this situation, the
distances of all vertices can still only change by one and the algorithm remains correct. Note that this
naturally partitions candidates u into two sets: (i) the setN(v)∩S of candidates that the original algorithm
considers and (ii) the set N(S) ∩ S. Candidates in the latter set can be determined independently of v;
indeed, they can be swapped with any v ∈ N(S)\S. Hence, our swap selection strategy from Section 6.4.1
continues to work with little modifications.

6.6.2 Restricted Swaps

To further improve the performance of our Local-Swaps algorithm at the cost of its solution quality, we
consider the following variant: instead of selecting the pair of vertices ⟨u, v⟩ that maximizes |Dv| − |Λu|,
we just select the vertex v that maximizes |Dv| and then choose u ∈ N(v)∩S such that |Λu| is minimized.
This restricts, however, the choices for u; hence, we expect this Restricted Local-Swaps algorithm to yield
solutions of worse quality. On the other hand, due to the restriction, we also expect it to converge faster.

6.6.3 Local Grow-Shrink

During exploratory experiments, it turned out that Grow-Shrink sometimes overestimates the lower bound
|Dv| · d(S, v) of the decrease in farness gf (S) − gf (S+v) after the addition of a vertex v. This happens

106

because errors in the approximation of |Dv| are amplified by the multiplication with a large d(S, v). Hence,
we found that restricting the algorithm’s choices for v to vertices near S improves the solution quality of the
algorithm.

It may seem that this variant of Grow-Shrinkmakes it vulnerable to the same weaknesses of Local-Swaps.
Namely, local choices imply that large numbers of exchanges might be required to reach a local optima, and
it becomes hard to escape local optima. Fortunately, additional techniques discussed in Section 6.6.4 can
be used to avoid this problem.

6.6.4 Extended Grow-Shrink

Even in the case of Grow-Shrink, the bound of Lemma 6.3.1 becomes worse for vertices at long distances
from S. As detailed in Section 6.3, this happens as our reachability set size approximation strategy does not
take back edges into account. This problem affects our algorithm especially on graphs with high diameter
where we expect that many back edges exist. We mitigate this problem – as well as the problems mentioned
in Section 6.6.3 – by allowing the group to grow bymore than one vertex before shrink it again. In particular,
we allow the group to grow to size k + h for some h ≥ 1, before we shrink it back to k.

In our experiments in Section 6.7, we consider two strategies to choose h. First, we consider constant
values for h. However, we do not expect this to be appropriate for all graphs: specifically, we want to take
the diameter of the graph into account. Hence, a more sophisticated strategy selects h = diam(G)/kp for
a fixed exponent p. This strategy is inspired by mesh-like graphs (e.g., real-world road networks or other
infrastructure networks): if we divide a quadratic two-dimensional mesh G into k quadratic sub-meshes
(where k is a power of 2), the diameter of the sub-meshes is diam(G)/

√
k. Hence, if we assume that each

vertex of the group covers an equal amount of vertices in the remaining graph, h = diam(G)/
√
k vertex

additions should be sufficient to find at least one “good” vertex that improves a size-k group. As we expect
that large real-world networks deviate from ideal two-dimensional meshes to some extent, we consider not
only p = 1/2 but also other values of p.

6.6.5 Engineering the Reachability Set Size Approximation Algorithm

Cohen’s reachability set size approximation algorithm [78] has multiple parameters that need to be chosen
appropriately. In particular, there is a choice of probability distribution (exponential vs. uniform), the es-
timator function (averaging vs. selection-based), the number of samples, and the width of each random
number. For the estimator, we use the averaging estimator because it can be implemented more efficiently
than a selection-based estimator – it only requires averaging numbers instead of finding the k-smallest
number. We performed exploratory experiments to determine a good configuration of the remaining pa-
rameters. Our conclusions are that, while the exponential distribution empirically offers better accuracy
than the uniform distribution, the algorithm can be implemented much more efficiently using the uniform
distribution: specifically, for the uniform distribution, it suffices to generate and store per-vertex random
numbers as (unsigned) integers, while the exponential distribution requires floating point calculations. We
compensate the decrease in accuracy by simply gathering more samples.

For the uniformdistribution in real-world graphs, 16 bits per integer turns out to yield sufficient accuracy.
In this setting, we found that 16 samples are enough to accurately find the vertexwith highest reachability set

107

size. In particular, while the theoretical guarantee in [78] requires the number of samples to growwith logn,
we found this number to have a negligible impact on the solution quality of our group-closeness heuristic
(see Section 6.8.2).

6.6.6 Memory Latency in Reachability Set Size Approximation

It is well-known that the empirical performance of graph traversal algorithms (such as BFS and Dijkstra) is
often limited by memory latency [26, 195]. Unfortunately, the reachability set size approximation algorithm
needs to performmultiple traversals of the same graph. Tomitigate this issue, we performmultiple iterations
of the approximation algorithm at the same time. This technique reduces the running time of the algorithm
at the cost of a higher memory footprint. More precisely, during each traversal of the graph, we store 16
random integer per vertex andwe aggregate all 16minimal values per vertex at the same time. This operation
can be performed very efficiently by utilizing SIMD vector operations. Specifically, we use 256-bit AVX
operations of our Intel Xeon CPUs to take the minimum of all 16 values at the same time. As mentioned
above, aggregating 16 randomnumbers per vertex is enough for our use case; thus, using SIMD aggregation,
we only need to perform a single traversal of the graph.

6.6.7 Accepting Swaps and Stopping Condition

As detailed in Sections 6.4 and 6.5, our algorithms stop once the cannot find another vertex exchange that
improves the closeness score of the current group. Exchanges that worsen the score are not accepted. To
prevent vertex exchanges that increase the group-closeness score only negligibly, we also set a limit on the
number of vertex exchanges. In our experiments, we choose a conservative limit that does not impact the
solution quality measurably (see Section 6.8.1).

6.7 Experimental Results

In this section, we evaluate the performance of our algorithms against the state-of-the-art greedy algo-
rithm by Bergamini et al. [38] – we do not consider the naive greedy algorithm and the OSA heuristic
of [76] because they are both dominated by [38]. We evaluate two variants, LS and LS-restrict (see Sec-
tion 6.6.2), of our Local-Swaps algorithm, and three variants, GS, GS-local (see Section 6.6.3), and GS-
extended (see Section 6.6.4) of our Grow-Shrink algorithm. We evaluate these algorithms for group sizes
of k ∈ {5, 10, 20, 50, 100} on the largest connected component of the input graph. We measure the perfor-
mance in terms of running time and closeness centrality of the group computed by the algorithms. Because
our algorithms construct an initial group S by selecting k vertices uniformly at random (see Section 6.2),
we average the results of five runs, each one with a different random seed, using the geometric mean to
aggregate speedups and relative closeness scores.36 Unless stated otherwise, our experiments are based on
the graphs listed in Table 6.1. They are all undirected and have been downloaded from the 9th DIMACS
Challenge [87] and KONECT [173] public repositories. On those instances, the running time of the greedy

36These five runs are done to average out particularly bad (or good) selections of initial groups; as one can see from Section 6.8.2,
the variance due to the randomized reachability set size algorithm is negligible.

108

Table 6.1: Networks used in the experiments.

(a) Unweighted networks.

Network n m Category

dimacs9-NY 264,346 365,050 Road
dimacs9-BAY 321,270 397,415 Road
web-Stanford 255,265 1,941,926 Hyperlink
hyves 1,402,673 2,777,419 Social
youtube-links 1,134,885 2,987,468 Social
com-youtube 1,134,890 2,987,624 Social
web-Google 855,802 4,291,352 Hyperlink
trec-wt10g 1,458,316 6,225,033 Hyperlink
dimacs10-eu-2005 862,664 16,138,468 Road
soc-pokec-relationships 1,632,803 22,301,964 Social
wikipedia_link_ca 926,588 27,133,794 Hyperlink

(b) Weighted road networks of US states.

State n m

DC 9,522 14,807
HI 21,774 26,007
AK 48,560 55,014
DE 48,812 59,502
RI 51,642 66,650
CT 152,036 184,393
ME 187,315 206,176
ND 203,583 249,809
SD 206,998 249,828
WY 243,545 293,825
ID 265,552 310,684
MD 264,378 312,977
WV 292,557 320,708
NE 304,335 380,004

const h const p

1 5 10 50
h

0

100

200

300

400

Sp
ee

du
p

ov
er

 g
re

ed
y

2.0 1.7
5

1.5 1.2
5

1.0 0.7
5

0.5
p

(a) Speedup over the greedy algorithm (geometric mean).

0.90
0.92
0.94
0.96
0.98
1.00

Re
la

tiv
e

clo
se

ne
ss

1 5 10 50
h

0

2.0 1.7
5

1.5 1.2
5

1.0 0.7
5

0.5
p

(b) Closeness score relative to the score of the group re-
turned by greedy (geometric mean).

Figure 6.5: Performance of the extended Grow-Shrink algorithm for different values of h or p; unweighted graphs,
k = 10.

baseline always varies between 10 minutes to 2 hours – detailed running times are reported in Tables E.1
and E.2, Appendix E.1.

Our algorithms are implemented in the NetworKit [273] C++ framework and use PCG32 [234] to effi-
ciently generate random numbers. All experiments were executed with sequential code on a Linuxmachine
with an Intel Xeon Gold 6154 and 1.5TiB of RAM of memory.

6.7.1 Results for Extended Grow-Shrink

In a first experiment, we evaluate the performance of our extendedGrow-Shrink algorithmagainst the greedy
heuristic. Because of its ability to escape local optima, we expect it to be the best algorithm in terms of quality
– hence, it should be a good default choice among our algorithms. For this experiment, we set k = 10.

As discussed in Section 6.6.4, we implement two strategies to determine h: we either fix a constant h,
or we fix a constant p. For both strategies, we evaluate multiple values for h or p; results are shown in
Figure 6.5. As expected, higher values of h (or, similarly, lower values of p) increase the algorithm’s running
time – while h > 1 allows Grow-Shrink to perform better choices, it does not converge h times as fast. Still,

109

17 18 19 20 21 22 23 24
Scale

100

101

102

103

Ti
m

e
(s

)

GS-extended

(a) R-MATnetworks; 217 to224 vertices (up to268million
edges).

17 18 19 20 21 22 23 24 25 26
Scale

100

101

102

103

Ti
m

e
(s

)

GS-extended

(b) Random hyperbolic networks; 217 to 226 vertices (up
to 671 million edges).

Figure 6.6: Running time (in seconds) of the extendedGrow-Shrink algorithm on synthetic graphs; p = 0.75, k = 10.

Table 6.2: Running time of the extended Grow-Shrink algorithm on large real-world networks; p = 0.75, k = 10.

Network n m Time (s)

soc-LiveJournal1 4,843,953 42,845,684 95.3
livejournal-links 5,189,808 48,687,945 135.6
orkut-links 3,072,441 117,184,899 199.9
dbpedia-link 18,265,512 126,888,089 368.0
dimacs10-uk-2002 18,459,128 261,556,721 333.1
wikipedia_link_en 13,591,759 334,640,259 680.1

for all tested values of h or p, the extended Grow-Shrink algorithm is one to two orders of magnitude faster
than the greedy baseline. Furthermore, values of p < 1 yield results of very good quality: for p = 0.75,
for example, we achieve a quality of 99.4%. At the same time, using this setting for p, our algorithm is
127.8× faster than the greedy algorithm. We remark that, for all but the smallest values of h (i.e., those
corresponding to the lowest quality), choosing constant p is a better strategy than choosing constant h: for
the same running time, constant p always achieves solutions of higher quality.

6.7.2 Scalability to Large Graphs

We also analyze the running time of our extended Grow-Shrink algorithm on large-scale networks. To this
end, we switch to graphs larger than the ones in Table 6.1. We fix p = 0.75, as Section 6.7.1 demonstrated
that this setting results in a favorable trade-off between solution quality and running time. The greedy
algorithm is not included in this experiments as it requires multiple hours of running time, even for the
smallest real-world graphs we consider in these experiments.

Results on Synthetic Data. Figure 6.6 shows the average running time of our algorithm on randomly
generated R-MAT [65] as well as graphs from a generator for random hyperbolic graphs [191].37 For the
R-MAT generator, we use the same parameter setting as in the Graph 500’s benchmark [223] – i.e., edge
factor 16, a = 0.57, b = 0.19, c = 0.19, and d = 0.05. Concerning the random hyperbolic generator, we
set the average degree to 20, and the exponent of the power-law degree distribution to 3.

In the (log-log) plot, the straight lines represent a linear regression of the running times. In both cases,
the running time curves are almost as steep as the regression line, i.e., the running time grows linearly in
the number of vertices for the considered network models and sizes.

37Like R-MAT, the random hyperbolic model yields graphs with a skewed degree distribution, similar to the one found in
real-world complex networks.

110

LS-restrict LS GS GS-local GS-extended

5 10 20 50 100
Group size

0

500

1000

1500

Sp
ee

du
p

ov
er

 g
re

ed
y

(a) Speedup over the greedy algorithm (geometric mean).

0.7

0.8

0.9

1.0

Re
la

tiv
e

clo
se

ne
ss

5 10 20 50 100
Group size

0

(b) Closeness score relative to the score of the group returned by
greedy (geometric mean).

Figure 6.7: Performance of our local search algorithms for different values of k; unweighted graphs.

Results on Large Real-World Datasets. Table 6.2 reports the algorithm’s performance on large real-
world graphs. In contrast to the greedy algorithm – which would requires hours, our extendedGrow-Shrink
algorithm handles real-world networks with hundreds of millions of edges in a few minutes. For the orkut-
links network, Bergamini et al. [38] report running times for the greedy of 16 hours on their machine – it is
the largest instance in their experiments.

6.7.3 Accelerating Performance on Unweighted Graphs

While the extended Grow-Shrink algorithm yields results with very high quality, if quality is not a primary
concern, even faster algorithms might be desirable for very large graphs. To this end, we also evaluate the
performance of the non-extendedGrow-Shrink and the Local-Swaps algorithms. For extendedGrow-Shrink,
we fix p = 0.75 again. The speedup and the quality of our algorithms over the greedy baseline, for different
values of the group size k, are shown in Figures 6.7a and 6.7b, respectively. Note that the greedy algorithm
scales well for large k, so that the speedup of our algorithms decreases with k.38 However, even for large
groups of k = 100, all of our algorithms are still at least 43.0× faster.

Our non-extended local version ofGrow-Shrink is the next best algorithm after extendedGrow-Shrink. As
explained in Section 6.6.3, this variant gives better solutions than non-localGrow-Shrink; further, it achieves
a speedup of 3.1× over extended Grow-Shrink with p = 0.75 and k = 10 – and a speedup of 365.8× over
greedy. The solution quality in this case is 92.1% of the greedy quality.

The non-restricted Local-Swaps algorithm is dominated by Grow-Shrink, both in terms of running time
and solution quality. Furthermore, compared to other algorithms, the restricted Local-Swaps algorithmonly
gives a rough estimate of the group with highest closeness; it is, however, significantly faster than all other
algorithms and may be employed in exploratory analysis of graph datasets.

6.7.4 Results on Weighted Road Networks

Recall that the Local-Swaps algorithm does not support weighted graphs; thus, in the weighted case, we re-
port onlyGrow-Shrink data. The performance ofGrow-Shrink and localGrow-Shrink on weighted graphs is
shown in Figure 6.8. In contrast to the unweighted case, the quality of the non-localGrow-Shrink algorithm
is superior to the greedy baseline for all the considered group sizes. Furthermore, contrary to unweighted

38Indeed, as mentioned in Section 6.1, the main bottleneck of the greedy algorithm is adding the first vertex into the group.

111

GS GS-local

5 10 20 50 100
Group size

0

250

500

750

1000

Sp
ee

du
p

ov
er

 g
re

ed
y

(a) Speedup over the greedy algorithm (geometric
mean).

0.9

1.0

1.1

Re
la

tiv
e

clo
se

ne
ss

5 10 20 50 100
Group size

0

(b) Closeness score relative to the score of the group
returned by greedy (geometric mean).

Figure 6.8: Performance of our local search algorithms for different values of k; weighted graphs.

LS-restrict LS GS GS-local GS-extended

0.6

0.8

1.0

Re
la

tiv
e

clo
se

ne
ss

0 2 4 6 8 10 12 14
Number of exchanges

0

(a) Unweighted graphs.

0.8

1.0

Re
la

tiv
e

clo
se

ne
ss

0 1 2 3 4 5 6 7 8 9 1011
Number of exchanges

0

(b) Weighted graphs.

Figure 6.9: Behavior of the relative closeness score (compared to the group returned by greedy, geometric mean) over
the execution of the algorithms (in terms of vertex exchanges); k = 10.

graphs, the ability to perform non-local vertex exchanges greatly benefits the non-local Grow-Shrink com-
pared to local Grow-Shrink.39 Thus, on the weighed graphs in our benchmark set, Grow-Shrink clearly
dominates both the greedy and the local Grow-Shrink algorithms – both in terms of speedup and solution
quality.

6.8 Additional Experiments

6.8.1 Impact of the number of vertex exchanges

Figures 6.9a and 6.9b depict the closeness score relative to the one of the group computed by the greedy
algorithm depending on number of vertex exchanges performed by the algorithm. Again, for extended
Grow-Shrink, we fix p = 0.75. All of the local search algorithms quickly converge to a value near their
final result – additional exchanges improve the closeness score by small amounts. Thus, in order to avoid
an excessive number of iterations, setting a limit on the number on the number of vertex exchanges seems
a reasonable choice. In our experiments, we set a conservative limit of 100 exchanges.

112

GS GS-local

16 32 64 128 256
Number of samples

0

200

400

600

800

Sp
ee

du
p

ov
er

 g
re

ed
y

(a) Speedup over the greedy algorithm (geometric mean).

0.90

0.92

Re
la

tiv
e

clo
se

ne
ss

16 32 64 128 256
Number of samples

0

(b) Closeness score relative to the score of the group re-
turned by greedy (geom. mean).

Figure 6.10: Performance of the Grow-Shrink algorithm for different numbers of samples to estimate reachability set
size; k = 10.

6.8.2 Impact of reachability set size approximation

As mentioned in Section 6.6.3, the errors in the approximation of |Dv| are amplified by the multiplication
with d(S, v). This results in GS-local computing higher quality solutions than GS. We study how increasing
the accuracy of the reachability set size approximation by increasing the number of samples impacts the
performances of both GS and GS-local. Figure 6.10a shows that GS needs at least 64 samples to converge to
a better local optimum than GS-local. However, in both cases increasing the number of samples degrades
the speedup without leading to a substantial quality improvement (see Figure 6.10b).

6.8.3 Summary of Experimental Results

On unweighted graphs, a good trade-off between running time and solution quality is achieved by the ex-
tended Grow-Shrink algorithm with constant p = 0.75. This strategy yields solutions with at least 99.4%
of the closeness score of a greedy solution – greedy, in turn, was at most 3% away from the optimum on
small networks in previous work [38]. With k = 10, extended Grow-Shrink is 127.8× faster than greedy.
Thus, it is able to handle graphs with hundreds of millions of edges in a few minutes – while the state of
the art needs multiple hours. Further, if a fast but inaccurate algorithm is needed for applications such as
exploratory analysis of graph datasets, we recommend to use the non-extended Grow-Shrink algorithm, or,
if only a very coarse estimate of the group with maximal closeness is needed, restricted Local-Swaps.

On weighted graphs, our recommendation is always to use ourGrow-Shrink algorithm, as it outperforms
the greedy state of the art both in terms of quality – yielding solutions that are on average 12.4% better than
greedy solutions – and in terms of running time performance – with a speedup of two orders of magnitude,
at the same time.

6.9 Conclusions

In this chapter, we introduced two new families of local search algorithms for group-closeness maximiza-
tion in large networks. As maximizing group-closeness exactly is infeasible for graphs with more than a few

39For this reason, we do not include the extended Grow-Shrink in this experiment. In fact, we expect that it improves only
slightly on GS-local (red line/bars in Figure 6.8) but cannot compete with (non-local) GS: indeed, the ability of performing non-
local vertex exchanges, as done by GS (green line/bars in Figure 6.8) appears to be crucial to obtain high-quality results on weighted
graphs.

113

thousand edges, our algorithms are heuristics – just like the state-of-the-art greedy algorithm [38]. How-
ever, for small real-world networks where the optimum can be computed reasonably fast, the results are
empirically known to be close to optimal solutions [38].

Compared to previous state-of-the-art heuristics, our algorithm (extended Grow-Shrink in particular)
allows to find groups with high closeness centrality in real-world networks with hundreds of millions of
edges in seconds to minutes instead of multiple hours, while sacrificing less than 1% in quality. In weighted
graphs, Grow-Shrink (GS) even dominates the best known heuristic: the GS solution quality is more than
10% higher and GS is two orders of magnitude faster.

114

7 Group-Harmonic and Group-Closeness
Maximization – Approximation and
Engineering

7.1 Introduction

In Chapter 6, we introduced the group-closeness maximization problem. This problem isNP-hard and re-
cent work focused on heuristics [15, 38, 76]. Heuristics, however, do not provide approximation bounds,
leaving the open question of approximability of group-closeness maximization. The close relationship be-
tween group-closeness maximization and the metric k-Median problem as well as know local search algo-
rithms with constant-factor approximation bounds for the latter [20] motivate us to investigate whether the
k-Median results can be transferred not only to group-closeness maximization, but also to group-harmonic
maximization.

Contribution. In this chapter, we illustrate how the new theoretical results presented in [12] can be used
to develop the first approximation algorithms for group-harmonic and group-closeness maximization. For
group-harmonic, we implement an efficient greedy algorithm which, as shown in [12], has approximation
ratios of λ(1 − 2/e) in directed graphs and λ(1 − 1/e)/2 in undirected graphs, where λ is the ratio of
the minimal and the maximal edge weights. Additionally, since gh is submodular [12] but not necessarily
monotone, we directly apply the local search algorithm by Lee et al. [179], which evaluatesΩ(n2) swaps per
iteration and achieves an approximation factor of 1+ε

6 .
Concerning group-closeness, we adapt the local search algorithm for k-Median by Arya et al. [20] to

group-closeness maximization. The algorithm yields constant-factor approximation for undirected graphs,
whereas in directed case the approximation factor is Θ(n−ε), with ε < 1/2.

In our experimental study, we show that, on small instances where an optimum can be computed in
reasonable time, the quality of both the greedy and the local search algorithms are on average less than
0.5% away from the optimum. On larger instances, our local search algorithms yield results with superior
quality compared to existing greedy [38] and local search solutions [15] at the cost of additional running
time. In particular, local search is one to three orders of magnitude slower than greedy, but this is to be
expected due to a high quality demand – indeed, unlike the local search heuristics presented in Chapter 6,
local search approximation algorithms often cut greedy’s (empirical) gap to optimality by half or more. We
thus advocate local search approximation for scenarios where solution quality is of highest concern.

Bibliographic Notes. The contributions presented in this chapter were published in the Proceedings
of the Twenty-Third Workshop on Algorithm Engineering and Experiments (ALENEX 2021). My contribu-

115

tions involve the engineering improvements (Section 7.3.3), the implementation of all presented algorithms,
and carrying out the experiments. The rest is joint work with Ruben Becker, Gianlorenzo D’Angelo, Hugo
Gilbert, Alexander van der Grinten, and Henning Meyerhenke. Proofs to which I did not contribute are
omitted and can be found in the original paper [12].

7.2 Preliminaries

Recall from Section 2.5 the definitions of group-harmonic and group-closeness centrality of a groupS ⊂ V ,
namely: gc(S) := n∑

u∈V \S d(S,u) and gh(S) :=
∑

u∈V \S
1

d(S,u) , where 1
d(S,u) = 0 if there is no path from

S to u.

Problems Addressed. In this chapter, we address the problems of finding groups with size 1 ≤ k < n

that maximize group-harmonic and group-closeness, more formally:

Group-Harmonic Maximization
Input: GraphG = (V,E,w),

integer 1 ≤ k < n.
Find: Set S⋆ ⊂ V with |S| = k s.t.

gh(S
⋆) is maximum.

Group-Closeness Maximization
Input: GraphG = (V,E,w),

integer 1 ≤ k < n.
Find: Set S⋆ ⊂ V with |S| = k s.t.

gc(S
⋆) is maximum.

While group-closeness maximization has already been studied in other works [15, 38, 76], to the best of
our knowledge, we are the first to study the group-harmonic maximization problem.

In both problems we study, we are given a (possibly directed) weighted graphG = (V,E,w)with weight
function w : E → N>0. For group-closeness maximization, we assume that G is (strongly) connected,
whereas for group-harmonic we only assume that there are no isolated vertices. Further, we denote by
wmin := mine∈E w(e) and wmax := maxe∈E w(e) the lowest and the highest edge weights, respectively,
and by λ := wmin

wmax
the ratio of the smallest and the largest edge weights.

7.3 Group-Harmonic Maximization

7.3.1 Mathematical Properties

First of all we consider the mathematical properties of gh. We observe that the function is submodular but
not monotone.

Lemma 7.3.1. The function gh : 2V → Q≥0 is submodular [12, Lemma 3.1].

The non-monotonicity of gh can be shown with a counterexample: consider an undirected graph with
V = {u, v} and E = {{u, v}}; we have that gh({u}) = 1, while gh({u, v}) = 0.

7.3.2 Approximation Algorithms

As gh is submodular, we can directly apply the algorithm by Lee et al. [179] and obtain a (1+ε
6)-

approximation – the exact cardinality constraint corresponds to the case of a single matroid base constraint,

116

Algorithm14Greedy algorithm formaximizing amonotone submodular set function f under a cardinality
constraint |S| = k.
1: S ← ∅
2: while |S| < k do
3: u← argmaxv∈V \S{f(S ∪ {v})− f(S)}
4: S ← S ∪ {v}
5: return S

where the matroid is the uniform one. This algorithm was notably improved by Vondrák [282], who de-
signed a randomized local search method with an approximation factor of 1

4 − o(1). Another candidate
approximation algorithm for group-harmonic maximization is the greedy algorithm (see Algorithm 14). It
provides an approximation factor of 1 − 1

e for maximizing a monotone and submodular set function un-
der a cardinality constraint |S| = k. However, as observed in Section 7.3.1, gh is not monotone and we
cannot use this result directly. Algorithm 14 still guarantees approximation bounds nonetheless, they are
summarized in the following Theorem.

Theorem7.3.1 ([12]). Algorithm 14 guarantees the following approximation factor for the group-harmonic
maximization problem, where λ := wmin

wmax
is the ratio of the minimum and the maximum edge weights:

• λ
(
1− 2

e

)
> 0.264λ in the directed case;

• λ
2

(
1− 1

e

)
> 0.316λ in the undirected case.

While these approximation factors may be worse than the ones provided by Lee et al. [179] and Von-
drák [282], they offer better guarantees for the group-harmonic maximization problem in unweighted
graphs.

Lemma 7.3.2 ([12]). If G is unweighted, then the set returned by Algorithm 14 provides a 1
2

(
1− 1

e

)
-

approximation.

7.3.3 Engineering Improvements

In the following, we illustrate engineering techniques to accelerate the greedy and the local search algorithms
for group-harmonic maximization.

Greedy Algorithm. The pseudocode of our greedy algorithm is given by Algorithm 15. The first vertex
to be added to the group is the vertex with highest harmonic centrality (Line 1); this vertex can be found by
a ranking algorithm such as the one from Bisenius et al. [48]. Afterwards, the algorithm iteratively adds to
the group the vertex u with highest marginal gain gh(S ∪ {u})− gh(S).

Since gh is submodular, we can evaluate marginal gains lazily, i.e., the marginal gain from previous itera-
tions ĝh(S, u) serves as an upper bound of the marginal gain gh(S ∪{u})− gh(S) in the current iteration.
Since ĝh(S, u) ≥ gh(S ∪ {u}) holds after S is initialized with the vertex with highest harmonic centrality,
we initialize ĝh(S, u) to c̃h(u) for each u ∈ V \ S, that is the upper bound on ch(u) computed by the
Bisenius et al. algorithm [48]. To determine the vertex with highest marginal gain, we use the well-known
lazy strategy [217]: we evaluate the marginal gain of the vertex with highest upper bound – and adjust the

117

Algorithm 15 Greedy algorithm for group-harmonic maximization.

1: toph ← topHarmonicCloseness() [48]
2: S ← {toph}
3: while |S| < k do
4: PQ←max-priority queue with key ĝh(S, u) and value u
5: for each u ∈ V \ S do
6: PQ.push(u)
7: x← null ▷ Vertex with highest marginal gain computed so far
8: gh(S ∪ {x})← −∞
9: repeat ▷ This loop is done in parallel

10: u← PQ.extractMax()
11: if ĝh(S, u) ≤ gh(S ∪ {x}) then
12: break ▷ x has the highest marginal gain
13: ⟨isExact, gh(S ∪ {u})⟩ ← pruned SSSP(u, gh(S ∪ {x}))
14: if isExact and gh(S ∪ {u}) > gh(S ∪ {x}) then
15: x← u
16: until PQ is empty
17: S ← S ∪ {x}
18: return S

upper bound to the true marginal gain – until we know the true marginal gain of the top vertex w.r.t. the
upper bound (Lines 4–17 of Algorithm 15, by using a priority queue).

To evaluate themarginal gain of a vertex u, we run a pruned SSSP from u (Line 13) that only visits vertices
v such that d(u, v) < d(S, v) and updates ĝh(S, u) after every vertex at distance i from u has been explored.
The traversal is interrupted if ĝh(S, u) ≤ gh(S ∪ {x}), where x is the vertex with highest marginal gain
computed so far; otherwise, the SSSP visits all the vertices that are closer to u than toS and returns the exact
value of gh(S ∪ {u}). As for group-closeness, ĝh is defined differently for weighted than for unweighted
graphs.

Pruning – Unweighted Graphs. In unweighted graphs, we exploit additional bounds to interrupt the
SSSP earlier. Let us assume that the pruned SSSP – i.e., a BFS – has explored all vertices up to distance i.
We denote be Φ≤i

S,u the set of vertices v such that d(u, v) ≤ i and d(u, v) < d(S, v), with Φi
S,u the set of

vertices v such that d(u, v) = i and d(u, v) < d(S, v) and with niS,u its cardinality. An additional upper
bound on the marginal gain of u is:

∑
v∈Φ≤i

S,u\{u}

(
1

d(u, v)
− 1

d(S, v)

)
+
ñi+1
S,u

i+ 1
+
r(u)− |Φ≤i

S,u| − ñ
i+1
S,u

i+ 2
− 1

d(S, u)
. (7.1)

The first summand is the contribution to the marginal gain due to the explored vertices up to distance i.
In the second summand, we assume that ñi+1

S,u ≥ ni+1
S,u vertices are at distance exactly i + 1 from u, where

ñi+1
S,u is defined as

∑
x∈Φi

S,u
degout(x) for directed graphs and

∑
x∈Φi

S,u
(deg(x)−1) for undirected graphs.40

In the third summand we assume that all the remaining vertices reachable from u are at distance i+2 from
u – recall that r(u) is the number of vertices reachable from u.41 Finally, we subtract the contribution of u
to the centrality of S.

40As done with upper bound for NBCut in Eq. (3.1), a tighter numerator of the second summand of Eq. (7.1) is min(n −
ni
S,u, ñ

i+1
S,u). However, to simplify our notation, we keep writing ñi+1

S,u in the text, but implement the better bound in practice.
41Because in directed graphs it is too expensive to compute r(u) for each vertex, we use an upper bound as described in [37].

118

As a further optimization for unweighted and undirected graphs, for every vertex u ∈ V \S we subtract
from r(u) all the vertices in u’s connected component that are at distance 1 from S. In this way, we avoid
to count them in the third summand of Eq. (7.1).

Pruning – Weighted Graphs. In weighted graphs, the SSSP is a pruned version of the Dijkstra algo-
rithm. Let i be the distance from u to the last explored vertex. Upon completion of Dijkstra’s relaxation
step, ĝh(S, u) is updated as follows:

ĝh(S, u) =
∑

v∈Φ≤i
S,u\{u}

(
1

d(u, v)
− 1

d(S, v)

)
+
r(u)− |Φ≤i

S,u|
i

− 1

d(S, u)
, (7.2)

i.e., we count the contribution to ĝh(S, u) of (i) the vertices visited by the SSSP and of (ii) the unexplored
vertices assuming that they are all at distance i from u.

Local Search. The local search algorithm by Lee et al. [179] needs to evaluateΩ(n2) swaps per iteration.
This is already quite expensive, so it is desirable to perform only few iterations. To this end, we initialize
the local search with a greedy solution – this does not affect its approximation guarantee but accelerates the
algorithm considerably in practice.

Although we cannot use lazy evaluation for local search – we need to consider swaps, not vertex additions
– we can still make use of the bound from Eq. (7.1) while evaluating a swap.

Parallelism. Both greedy and local search typically need to evaluate either the marginal gains or the
objective function for several vertices before performing a single addition (or swap). Since these evaluations
are independent of each other, it is desirable to utilize parallelism. We parallelize multiple evaluations of
the objective function in a straightforward way: Each thread evaluates the marginal gain for one candidate
vertex; this incurs ofO(n) additional memory per thread as it needs to store the state of a single SSSP.

7.4 Group-Closeness Maximization

7.4.1 Preliminary Discussion

Different variants of the group-closeness maximization problem occur depending on whether the graph at
hand is undirected or directed. Froman approximation algorithm’s perspective, it is tempting to observe that
the group-farness gf is a supermodular set function and conclude that gc is submodular. In the literature,
this argument was used in the paper by Chen et al. [76]. Unfortunately, this approach is flawed because the
reciprocal of a supermodular set function is not necessarily submodular and the approximation question
remains unanswered. Indeed, as shown in Lemma 2.5.2, gc is not submodular.

A similar, yet not flawed, strategy was taken by Li et al. [183]. In they work they deal with the current-flow
closeness centrality – also known as electrical closeness, see Section 2.4 – and they measure the approxima-
tion factor of their algorithms in a different way, allowing them to obtain constant-factor approximation
results. As argued in Ref. [12, Appendix C], an analogous approach can be applied in our setting, yield-
ing constant-factor approximation algorithms for group-closeness maximization in their sense (see Ap-

119

pendix F.1 for further details). We remark, however, that the notion of approximation used by Li et al. is a
fundamentally different notion of approximation.

7.4.2 Approximation Algorithms

We start by introducing the metric k-Median problem and how we adapt it to our setting.

Metric k-Median
Input: Set of clients C , set of facilities F , cost function c : C × F → R≥0 satisfying

triangle inequality, integer k.
Find: Set S ⊆ F with |S| ≤ k s.t. c(S) :=

∑
i∈C minj∈S c(i, j) is minimum.

Arya et al. [20] show that the local search algorithm that performs p swaps at each step leads to a solution
with approximation ratio at most 3 + 2/p for Metric k-Median.

The group-farness minimization problem can be seen as a special case of the metric k-Median problem
whereC andF are both taken to be the vertex setV and the cost function being obtained using the shortest-
path distances. Since gf is monotone, the result of Arya et al. carries over to the undirected group-farness
minimization problemwith exact cardinality constraint, yielding an approximation factor of p

3p+2 for group-
closeness maximization.

7.4.3 Engineering Improvements

Since the greedy algorithm for group-closeness has already been studied before [38], in the following, we
discuss local search and engineering improvements.

Local Search. We consider the local search algorithm that, at each iteration, evaluates all possible pairs
of swaps. For the k-Median case, Arya et al. [20] minimize the cost function of an initial solution S. A
swap is done only if c(S′) ≤ (1 − ε/Q) · c(S), where S′ is the solution after the swap, Q is the number
of neighboring solutions – i.e., how many different S′ are one swap away from S – and ε > 0. For group-
closeness, the cost function is represented by gf – minimum farness is maximum closeness – and Q is
k(n− k), i.e., the number of possible swaps. The algorithm has an approximation ratio of 5.

Like in the group-harmonic case, the local search algorithm is much faster in practice if we start from a
good initial solution. To this end, we use theGrow-Shrink algorithm described in Section 6.5 which, despite
being heuristic, in real-world graphs it quickly finds high-quality solutions. The lack of approximation ratio
inGrow-Shrink is not an issue in our case, the approximation guarantee of our local search does not depend
on the initial solution.

Prioritizing Swaps. The actual number of swaps that need to be evaluated before a local optimum is
reached is heavily affected by the sequence of swaps that are done. Algorithm 16 summarizes how we pri-
oritize the swaps. Similarly to Grow-Shrink, we prioritize swaps depending on their estimated impact on
gf (S). First, we sort in ascending order the vertices in S by the increase in gf due to their removal from S,
i.e., gf (S \ {u})− gf (S) for all u ∈ S (Lines 4–6 of the pseudocode). Afterwards, in Lines 13–15, we sort
in descending order all the vertices v ∈ V \S by g̃f ((S ∪ {v}) \ {u}), which is an estimate of the decrease

120

Algorithm 16 Overview of the single-swap algorithm for group-closeness maximization.

1: S ← Grow-Shrink(G, k)
2: gf (S)← SSSP(S)
3: repeat
4: PQu ←min-priority queue with key (gf (S \ {u})− gf (S) and value u
5: for each x ∈ S do
6: PQu.push(x)
7: didSwap← false
8: repeat
9: u← PQu.extractMin()

10: /* Compute the exact farness increase */
11: g+f (u)← gf (S \ {u})− gf (S)
12: compute g̃f ((S ∪ {v}) \ {u}) for all v ∈ V \ S
13: PQv ←max-priority queue with key g̃f ((S ∪ {v}) \ {u}) and value v
14: for each x ∈ V \ S do
15: PQv.push(x)
16: repeat
17: v ← PQv.extractMax()
18: /* Compute the exact farness decrease */
19: gf ((S ∪ {v}) \ {u})← pruned SSSP from v

20: if gf ((S ∪ {v}) \ {u}) ≤
(
1− ε

k(n−k)

)
gf (S) then

21: S ← (S ∪ {v}) \ {u}
22: gf (S)← SSSP(S)
23: didSwap← true
24: break
25: until PQv is empty
26: if didSwap then
27: break
28: until PQu is empty
29: until not didSwap
30: return S

in farness, i.e., gf ((S ∪ {v}) \ {u}) − gf (S). We use the same estimate based on the size of the shortest
path DAGs as described in Chapter 6.

As a further optimization, we exclude swaps with vertices in V \ S with degree 1 because, in (strongly)
connected graphs, they cannot result in a decrease in gf .

Additional Pruning. Recall from Section 6.5 that the Grow-Shrink algorithm performs a pruned SSSP
to evaluate whether a swap is advantageous. We modify the algorithm to incorporate additional pruning
conditions that interrupt the SSSP when a swap is not good enough to be considered in the local search – in
contrast, Grow-Shrink performs any swap that improves the objective function, regardless of the difference
in score. Specifically, wemaintain a lower bound ĝf (S, u, v) ≤ gf ((S∪{v})\{u}) so that we can interrupt
the pruned SSSP as soon as ĝf (S, u, v) >

(
1− ε

k(n−k)

)
gf (S).

ĝf (S, u, v) is computed in two steps: we first compute g+f (S, u) := gf (S \{u})−gf (S) exactly (Line 11
in Algorithm 16) that is, the increase in farness of S due to the removal of u. Then, during every pruned
SSSP from v, we keep updating an upper bound of the decrease in farness ofS \{v} due to the addition of v:
ĝf

−(S, v) := gf (S \ {u})− ĝf (S, u, v). Then, ĝf (S, u, v) is computed as gf (S) + g+f (S, u)− ĝf
−(S, v).

To compute g+f (S, u) exactly we maintain the following information for each vertex x ∈ V \ S: the
distance d(S, x), a representative vertex rx ∈ S such that d(rx, x) = d(S, x), and the distance d′(S, x) =

121

d(S \ {rx}, x). In this way, g+f (S, u) can be computed in O(n) time as done by the original Grow-Shrink
algorithm:

g+f (S, u) =
∑

x∈{V \S:d(S,x)=d(u,x)}

d(S, x)− d(S′, x).

ĝf
−(S, v) is computed differently in unweighted andweighted graphs. In unweighted graphs, the pruned

SSSP is a BFS, and we define bounds inspired by the ones used for top-k closeness centrality in Ref. [37]: For
every distance 1 ≤ i ≤ diam(G) we maintain N≥i(S), i.e., the set of vertices at distance ≥ i from S, and
Φ≤i
S,v , i.e., the set of vertices x such that d(v, x) ≤ i and d(v, x) < d(S, x). Once every vertex in Φ≤i

S,v has

been visited by the pruned BFS, we know that at most ñi+1(v) := min
(
|N≥i+2(S)|,

∑
x∈Φi

S,v
degout(x)

)
vertices can be at distance i+1 from v, while the remaining unexplored vertices will be at least at distance i+
2– in undirected graphs, ñi+1(v) := min

(
|N≥i+2(S)|,

∑
x∈Φi

S,v
(deg(x)− 1)

)
. This, we update ĝf−(S, v)

as follows:

ĝf
−(S, v) =

∑
x∈Φ≤i

S,v

(d(S, x)− d(v, x)) +

∑
x∈Λ

(d(S, x)− i− 1) +
∑

x∈Ni≥3(S)\Λ

(d(S, x)− i− 2).

The first summand represents the decrease in farness due to the vertices that have already been visited by
the BFS. In the second summand,Λ ⊆ N≥i+2(S) contains the ñi+1(v) vertices closest to S, and we assume
that they are at distance i + 1 from v.42 Finally, in the third summand we assume that all the remaining
unvisited vertices are at distance≥ i+3 from S and not counted inΛ can be reachable from v in i+2 hops.
From the third summand we exclude vertices at distance i+2 from S because, under our assumption, their
distance from S would remain unchanged. At the cost of additional O(diam(G)) space, ĝf−(S, v) can be
computed inO(diam(G)) time.

For weighted graphs, we update ĝf−(S, v) by adapting our strategy from gh to gf (see Eq. (7.2)).

Parallelism. We employ the same parallelization technique as for group-harmonic maximization. The
fact that in the greedy and local search algorithms evaluations of the objective function can be parallelized
can be seen as an advantage over the Grow-Shrink algorithm which, in turn, is inherently sequential.

7.5 Experiments

We conduct experiments to evaluate our algorithms in terms of solution quality and running time. For
group-harmonic, we first evaluate the quality of our greedy algorithm (Greedy-H), our local search algo-
rithm that starts from a greedy solution (Greedy-LS-H), and the best over 100 sets selected uniformly at
random (Best-Random-H) against the optimal solution on small-sized networks. Then, we measure the
quality and the running time performance of Greedy-H and Greedy-LS-H and we use Best-Random-H as
baseline.

42This assumption is done in order to consider the “worst-case scenario” (in terms of decrease in farness) where the vertices ad
distance i+ 1 from v are also the closest ones to S.

122

Regarding group-closeness, we compare our local search algorithm against the greedy algorithm by
Bergamini et al. [38], the Grow-Shrink algorithm (see Chapter 6),43 and the best of 100 randomly chosen
sets. Hereafter, these algorithms are referred to as Greedy-C, GS, and Best-Random-C, respectively. Our
local search algorithm for group-closeness uses either Greedy-C or GS to initialize the initial solution: in
the former case we label it as Greedy-LS-C, and GS-LS-C in the latter.

7.5.1 Settings

We implement all algorithms in C++ using the NetworKit [273] graph APIs and we use SCIP [118] to solve
ILP instances. All experiments are conducted on a Linuxmachine with an Intel XeonGold 6126 with 2×12

cores and 192GiB of RAM, and managed by the SimexPal [14] software for reproducibility. We aggregate
approximation ratios and speedups using the geometric mean. All experiments have a timeout of one hour.

7.5.2 Instances Statistics

Datasets. Experiments are executed on real-world complex and high-diameter networks reported in Ta-
bles F.1–F.4, Appendix F.2. In the “Type” columns, the first letter indicates whether the network is undi-
rected (U) or directed (D), while the second letter whether the network is unweighted (U) or weighted (W).

Instances have been downloaded from the public repositories KONECT [173], OpenStreetMap [83] (from
which we build the car routing graph using RoutingKit [89]) and from the 9th DIMACS Implementation
Challenge [87]. Small instances used for the experiments with the ILP solver are reported in Tables F.1
and F.2, while the rest of the experiments are conducted on the instances in Tables F.3 and F.4.

Because algorithms for group-closeness maximization only handle (strongly) connected graphs, we run
them on the (strongly) connected components of the instances of our datasets. For high-diameter networks,
we test mainly road networks because they are the most common type of networks in the aforementioned
repositories. We are confident, however, that our local search algorithms are capable of handling other types
of high-diameter networks as well without significant difference in performance. Because public reposito-
ries do not provide a reasonable amount of weighted complex networks, we omit these networks from our
experiments.

7.5.3 Group-Harmonic Maximization

Comparison to Exact ILP Solutions. Figure 7.1a shows a comparison of the solution quality of our
algorithms for group-harmonic maximization against to exact solutions on complex networks. We observe
that random groups cover unweighted graphs reasonably well; hence, Best-Random-H already yields solu-
tions of > 70% of the optimum. This peculiarity is amplified by the fact that the networks are rather small
compared to k – they have at most 1,000 vertices. Indeed, the quality of Best-Random-H increases with k
on complex networks, a behavior that no other algorithm shows. Still, Greedy-H yields substantially better
solutions in all cases: its solutions are > 99.5% of the optimum for all group sizes. These solutions are
further improved by Greedy-LS-H, which yields groups with at least 99.72% of the optimal quality.

43Weuse the extended variant ofGrow-Shrinkwith p = 0.75. As discussed in Section 6.7.1, it achieves a reasonable time-quality
trade-off.

123

Greedy-H Greedy-LS-H Best-Random-H

0.996

0.998

1.000

Qu
al

ity

Undirected unweighted

5 10 50
Group size

0.8

0.9

0.996

0.998

1.000

Qu
al

ity

Directed unweighted

5 10 50
Group size

0.7
0.8
0.9

(a) Complex networks

0.990

0.995

1.000

Qu
al

ity

Undirected unweighted

5 10 50
Group size

0.7

0.8

0.990

0.995

1.000

Qu
al

ity

Directed unweighted

5 10 50
Group size

0.7

0.8

(b) High-diameter networks

Figure 7.1: Quality relative to the optimum for group-harmonic maximization over the networks of Table F.1, Ap-
pendix F.2.

In high-diameter networks (Figure 7.1b), Best-Random-H is not a serious competitor. Its solutions are
less than 80% the optimal quality. Indeed, due to the higher diameter, it is expected that a random group of
vertices is less likely to be central. On the other hand, Greedy-H and Greedy-LS-C yield solution qualities
from 98.76% and 99.75%, respectively. For k = 5 in particular, solutions returned by Greedy-LS-H have
> 99.99% the quality of the optimal solution.

Concerning weighted high-diameter networks, the ILP solver runs out of time or memory on nearly all
instances. Tentative results on the two remaining instances suggest that Greedy-H yields solutions that are
almost optimal but, due to the small size of the dataset, we cannot conclude definitive results.

Quality and Running Time on Larger Instances. Figure 7.2 summarizes quality and running time
results of Greedy-H and Greedy-LS-H (absolute running time are reported in Tables F.5 and F.6, Ap-
pendix F.3). Due to the size of these graphs, it is not feasible to compute an ILP solution. Thus, we use
Best-Random-H as baseline. In unweighted complex networks (Figure 7.2a), Greedy-H finds solutions
with quality (compared to Best-Random-H) from 1.407 (with k = 5) to 1.525 (with k = 50) in directed
networks, and from 1.445 to 1.504 in undirected networks. Compared to Greedy-H, and Greedy-LS-H is
not competitive: it improves the quality by at most 0.05% while being 5.7× to 27.3× slower.

Greedy-H achieves even better results in high-diameter networks: in weighted directed high-diameter
networks (Figure 7.2b), Greedy-H’s quality is 2.4 to 2.6 Best-Random-H’s while being just 2.5× to 3.6×
slower. Concerning Greedy-LS-H, it is even less competitive than in complex networks: it improves Greedy-
H’s quality by at most 0.01%, while being 54.9× to 448.9× slower. Results are more promising in high-
diameter unweighted networks: here Greedy-LS-H improves Greedy-H’s quality by 0.58% to 0.69% while
being 3.2× to 12.2× slower.

7.5.4 Group-Closeness Maximization

Comparison to Exact ILP Solutions. Figure 7.3 summarizes the quality of our local search algorithms
form group-closeness maximization and the competitors relative to the optimum.

Concerning unweighted complex networks (Figure 7.3a), in the directed case, for groups of size 5 Greedy-
LS-C is the only algorithm achieving optimal solutions, while for the remaining group sizes it yields solu-
tions with nearly the same quality as Greedy-C. In the undirected case, Greedy-LS-C and GS-LS-C achieve

124

Greedy-H Greedy-LS-H

5 10 50
Group size

1.0

1.2

1.4

1.6
Qu

al
ity

 re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Undirected unweighted

5 10 50
Group size

100

101

102

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Undirected unweighted

5 10 50
Group size

1.0

1.2

1.4

1.6

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om
-H

Directed unweighted

5 10 50
Group size

100

101

102

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Directed unweighted

(a) Complex networks

5 10 50
Group size

1.0

1.2

1.4

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om
-H

Undirected unweighted

5 10 50
Group size

100

101

102

103
Ru

nn
in

g
tim

e
re

la
tiv

e
to

Be
st

-ra
nd

om
-H

Undirected unweighted

5 10 50
Group size

1.0

1.2

1.4

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om
-H

Directed unweighted

5 10 50
Group size

100

101

102

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Directed unweighted

5 10 50
Group size

1.0

1.5

2.0

2.5

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om
-H

Undirected weighted

5 10 50
Group size

100

102

104

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Undirected weighted

5 10 50
Group size

1.0

1.5

2.0

2.5
Qu

al
ity

 re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Directed weighted

5 10 50
Group size

100

102

104

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

-H

Directed weighted

(b) High-diameter networks

Figure 7.2: Quality and time w.r.t. Best-Random-H over the networks of Table F.3.

solutions with at least 99.77% and 99.76% the optimal quality, respectively. For k = 5 and k = 100 in
particular, they achieve optimal solutions.

In high-diameter networks (Figure 7.3b), our local search algorithms always achieve better results than
Greedy-C and GS. The best results are on unweighted graphs: here Greedy-LS-C and GS-LS-C yield solu-
tions at least 98.66% and 98.50% away from optimality, respectively.

Interestingly, the quality of Greedy-LS-C is often higher that GS-LS-C, especially in complex networks
and high-diameter weighted networks. We conjecture that local search has a narrower improvementmargin
on GS solutions compared to Greedy-C solutions since GS is based on local search as well.

Quality and Running Time on Larger Instances. In Figure 7.4 we report the quality and running
time of GS-LS-C, Greedy-LS-C, Greedy-C, and GS compared to Best-Random-C (absolute running times
are reported in Tables F.8 and F.9, Appendix F.4). In terms of quality, our local search algorithms always
reach the best results in all our experiments: in directed complex networks (right of Figure 7.4a), GS-LS-C,
Greedy-LS-C, and Greedy-C yield similar quality, while GS has consistently the lowest quality. On the other
hand, quality can be traded for running time: GS is the fastest algorithm – even faster than Best-Random-C
for small group sizes – Greedy-C is no average 16.4× slower than Best-Random-C (average among all k),
whereas GS-LS-C and Greedy-LS-C are respectively 28.33× to 233.01×, and 22.99× to 485.09× slower
than Best-Random-C. Interestingly, for small group sizes Greedy-LS-C is often faster than GS-LS-C, and

125

GS-LS-C
Greedy-LS-C

Greedy-C
GS

Best-Random-C

0.996

0.998

1.000

Qu
al

ity

Undirected unweighted

5 10 50 100
Group size

0.50

0.75

0.99

1.00

Qu
al

ity

Directed unweighted

5 10 50 100
Group size

0.50
0.75

(a) Complex networks

0.96

0.98

1.00

Qu
al

ity

Undirected unweighted

5 10 50 100
Group size

0.50
0.75

0.96

0.98

1.00

Qu
al

ity

Directed unweighted

5 10 50 100
Group size

0.50
0.75

0.92

0.94

0.96

0.98

Qu
al

ity

Undirected weighted

5 10 50 100
Group size

0.25
0.50
0.75

0.92

0.94

0.96

0.98

Qu
al

ity

Directed weighted

5 10 50 100
Group size

0.25
0.50
0.75

(b) High-diameter networks

Figure 7.3: Quality relative to the optimum over the networks of Table F.2.

vice versa for larger groups. This is likely due to the difference between GS and Greedy-C solutions: Greedy-
C aims to maximize the objective function regardless of the group size, while for GS the group size deter-
mines how many vertices are consecutively added and removed in a single iteration. Therefore, for larger
groups, GS solutions need less swaps to reach a global optimum than Greedy-C solutions.

In high-diameter networks (Figure 7.4b), Greedy-LS-C often achieves the highest quality faster than GS-
LS-C for all group sizes but 100.

7.5.5 Parallel Scalability

Strong scaling plots for GS-LS-C, Greedy-LS-C, and Greedy-C are reported in Figure 7.5. On average, our
local search algorithms scale better than Greedy-C on both complex and high-diameter networks. This is
not surprising: local search needs to evaluate at least k(n − k) swaps, which is a highly parallel operation,
and often much more expensive than running Greedy-C.

On high-diameter networks in particular (Figure 7.5b), Greedy-C has a poor parallel scalability; we con-
jecture that, since closeness centrality distinguishes vertices in high-diameter networks better than in com-
plex networks [227, Ch. 7], Greedy-C needs to evaluate only few vertices per iteration before finding the
vertex with highest marginal gain. In that case, multiple cores do not speed this process up significantly.

7.6 Conclusions

This chapter investigated engineering aspects of approximating two group centrality maximization prob-
lems, namely, group-harmonic maximization and group-closeness maximization. We illustrated how to

126

GS-LS-C Greedy-LS-C Greedy-C GS

5 10 50 100
Group size

1.6

1.7

1.8
Qu

al
ity

 re
la

tiv
e

to
Be

st
-ra

nd
om

Undirected unweighted

5 10 50 100
Group size

10 1

101

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

Undirected unweighted

5 10 50 100
Group size

1.5

1.6

1.7

1.8

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om

Directed unweighted

5 10 50 100
Group size

10 1

100

101

102

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

Directed unweighted

(a) Complex networks

5 10 50 100
Group size

2.0

2.5

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om

Undirected unweighted

5 10 50 100
Group size

10 1

101

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

Undirected unweighted

5 10 50 100
Group size

2.0

2.5

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om

Directed unweighted

5 10 50 100
Group size

10 1

101

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

Directed unweighted

5 10 50 100
Group size

2.6

2.8

3.0

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om

Undirected weighted

5 10 50 100
Group size

10 1

101

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

Undirected weighted

5 10 50 100
Group size

2.8

3.0

3.2

3.4

Qu
al

ity
 re

la
tiv

e
to

Be
st

-ra
nd

om

Directed weighted

5 10 50 100
Group size

10 1

101

103

Ru
nn

in
g

tim
e

re
la

tiv
e

to
Be

st
-ra

nd
om

Directed weighted

(b) High-diameter networks

Figure 7.4: Quality and time w.r.t. Best-Random-C over the networks of Table F.4.

efficiently implement greedy and local search approximation algorithms and presented the results of a de-
tailed experimental study. Our experiments suggest that the quality of both the greedy and the local search
algorithms come very close to the optimum. This finding is consistent with the theoretical results illustrated
in Ref. [12], which assess that, in most cases, these algorithms have good approximation guarantees. Inter-
estingly, the twomethods also performwell on directed instances for group-closeness maximization despite
the hardness of approximation results which holds for this class of instances.

On the other hand, the quality guarantees comewith a cost in running time. Concerning group-harmonic
maximization, the results presented in Section 7.5.3 suggest that, despite the better approximation guaran-
tees, our local search algorithm is not competitive compared to our greedy algorithm. In comparison to
Greedy-H, Greedy-LS-H is 5.7× to 448.9× slower and yields solutions that improve Greedy-H solutions
only by a thin margin. Hence, in a practical scenario, we recommend using the greedy algorithm.

For group-closeness maximization, we conclude that, unlike the group-harmonic case, our local search
approximation algorithms are not dominated by existing greedy [38] and local search (see Chapter 6) heuris-
tics. Despite being one to two orders of magnitude slower, results in Figure 7.4 convey that our GS-LS-C
and Greedy-LS-C algorithms (especially the latter) improve Greedy-C and GS solutions by a solid mar-
gin. Therefore, among the available algorithms, Greedy-LS-C is the most amenable choice for applications
dealing with networks of moderate size and where solution quality is of highest concern.

127

GS-LS-C Greedy-LS-C Greedy-C

1 2 4 8 16
#of cores

5

10

Sp
ee

du
p

ov
er

 1
 c

or
e

Undirected unweighted

1 2 4 8 16
#of cores

5

10
Sp

ee
du

p
ov

er
 1

 c
or

e

Directed unweighted

(a) Complex networks

1 2 4 8 16
#of cores

2

4

6

8

Sp
ee

du
p

ov
er

 1
 c

or
e

Undirected unweighted

1 2 4 8 16
#of cores

2

4

6

Sp
ee

du
p

ov
er

 1
 c

or
e

Directed unweighted

1 2 4 8 16
#of cores

2

4

Sp
ee

du
p

ov
er

 1
 c

or
e

Undirected weighted

1 2 4 8 16
#of cores

2

4
Sp

ee
du

p
ov

er
 1

 c
or

e

Directed weighted

(b) High-diameter networks

Figure 7.5: Parallel scalability of our algorithms for group-closeness maximization over the networks of Table F.4,
Appendix F.2.

128

8 Algebraic Group Centrality Maximization
for Large-Scale and Disconnected Graphs

8.1 Introduction

As described in Chapters 6 and 7, finding the most central group of vertices according to popular mea-
sures is anNP-hard problem. Since real-world applications may not require exact results, approximation
algorithms to maximize group centralities were introduced. Despite a nearly-linear running time, algo-
rithms for group-betweenness [200, 288] and, to a lesser extent, group-closeness [38] and group-harmonic
(see Chapter 7) fail to scale to large real-world instances due to high constant overheads.

Moreover, a limitation of popular group centrality measures is that they are based on shortest paths while
some applicationsmay be interested in all the paths between two vertices (see Section 2.3.2). Thismotivated
the introduction of electrical single-vertex centrality measures. However, limited efforts were devoted to
extend these measures to groups of vertices. Only recently, Li et al. [183] proposed current flow group
closeness centrality, i.e., the extension of electrical closeness to sets of vertices. As with electrical closeness,
this new group centrality measure – without proper adjustments – only handles connected graphs, leaving
the problem of electrical group centrality measures for disconnected graphs open.

Contribution. In this chapter, we overcome the two aforementioned limitations by introducing two new
group centrality measures: GED-Walk for group exponentially decaying walk and group forest closeness.

Inspired by Katz centrality, GED-Walk takes into account walks of any length and considers shorter ones
as more important. We show ourmeasure to bemonotone and submodular and we develop efficient nearly-
linear parallel algorithms to compute the GED-Walk score of a given group and to efficiently approximate
the group of k vertices with highest GED-Walk centrality. Our greedy maximization algorithm keeps lower
and upper bounds of the marginal gain of every vertex to the GED-Walk score and iteratively adds to the
(initially empty) group the vertex with highest marginal gain until the desired size is reached.

Group forest closeness, in turn, is the extension to groups of vertices of forest closeness and, analogously,
it handles disconnected graphs out of the box. To the best of our knowledge, we are the first to address the
group case for this centrality measure. It turns out that group forest closeness centrality maximization is
NP-hard and we adapt the greedy approximation algorithm by Li et al. [183] to this problem.

Experiments show that our greedy algorithm for GED-Walk is two orders of magnitude faster than
the state of the art for group-betweenness approximation [200]. Compared to the greedy group-closeness
heuristic [38] and the greedy approximation algorithm for group-harmonic (see Chapter 7), we achieve a
speedup of one to two orders of magnitude for groups with up to 100 vertices. Further, for GED-Walk ap-
proximation, our experiments indicate a running time that is in practice linear w.r.t. the input graph size

129

– despite a higher worst-case time complexity. We show potential applications for GED-Walk: (i) choos-
ing a training set with high GED-Walk score leads to improved performance for semi-supervised vertex
classification and (ii) features derived based on GED-Walk improve graph classification performance.

We repeat the semi-supervised vertex classification experiment on disconnected graphs in order to
demonstrate the practical usefulness of group forest closeness as well. Results demonstrate that our new
measure improves upon existing measures as well in the case of disconnected graphs.

Bibliographic Notes. The contributions presented in this chapter about GED-Walk were published in
the Proceedings of the Twenty-Second Workshop on Algorithm Engineering and Experiments (ALENEX
2020) in collaboration with Alexander van der Grinten, Aleksandar Bojchevski, Daniel Zügner, Stephan
Günnemann, and Henning Meyerhenke; the ones concerning group forest closeness were published in the
Proceedings of the Twenty-First SIAM International Conference on Data Mining (SDM 2021) in collabora-
tion with Alexander van der Grinten,Maria Predari, andHenningMeyerhenke. About the former topic, the
development of the newmeasureGED-Walk and the implementation of the algorithms forGED-Walk com-
putation and maximization were a collaborative effort of Alexander van der Grinten and myself. Further,
I carried out the experiments of Sections 8.5.1–8.5.5. Regarding group forest closeness, my contributions
involve the implementation of the algorithm and carrying out the experiments. Contributions not men-
tioned above are joint work with my coauthors. Proofs to which I did not contribute are omitted and can
be found in the original papers [13, 133].

Related Work. An overview of algorithms for maximizing established group centrality measures is pro-
vided in Section 6.1. The idea of developing alternative group centrality measures is not new. In fact,
Ishakian et al. [146] define single-vertex centrality measures based on a generic concept of path and gener-
alize them to sets of vertices. In contrast to GED-Walk, however, those measures are defined for directed
acyclic graphs only. Puzis et al. [246] introduce path betweenness centrality, a group centrality measure that
counts the fraction of shortest paths that cross all vertices within the group. Their proposed algorithms
for finding groups with high path-betweenness are quadratic in the best case (both in time and memory);
hence, they cannot scale to large networks – indeed, the largest graphs considered in their paper have only
500 vertices. Fushimi et al. [112] define a new measure called connectedness centrality, targeting the specific
problem of identifying the appropriate locations where to place evacuation facilities on road networks. For
this reason, their measure assumes the existence of edge failure probabilities and thus it is not applicable to
general graphs. Additionally, due to expensive Monte Carlo simulations, computing their measure requires
many hours on graphs with 100,000 edges, while GED-Walk handles graphs with hundreds of millions of
edges in minutes.

Finally, concerning electrical group centrality measures, Li et al. [183] defined current flow group close-
ness centrality, i.e., electrical closeness extended to set of vertices, and proposed two greedy approxima-
tion algorithms to maximize this measure: (i) a deterministic algorithm with O(n3) running time and
quadratic memory requirements (it performs matrix inversions) and (ii) a faster randomized algorithm
with Õ(kmε−2) running time (Õ hides a polylogarithmic factor) that exploits JLT in combination with
nearly linear time solvers for Laplacian and symmetric, diagonally dominant, M-matrices.

130

8.2 Preliminaries

8.2.1 GED-Walk Centrality

For GED-Walk, we deal with unweighted (possibly directed) graphs. To avoid complexity-theoretic barriers
typical of shortest-path based centrality measures,44 we derive our new measure from Katz centrality. As
described in Section 2.4, Katz centrality is another popular centrality measure which can be computedmore
efficiently compared to measures based on shortest paths. Let ai(u) :=

∑
v∈V Ai[u, v] be the number of

walks of length i that start at a vertex u ∈ V , where A is the adjacency matrix of the graph.45 For a small
enough attenuation α > 0, the Katz centrality of a vertex u is defined as:

cK(u) :=

∞∑
i=1

αi
∑
v∈V

Ai[u, v] =

∞∑
i=1

αiai(u), (8.1)

Note that cK(·) does not only consider shortest paths, but walks of any length – with shorter walks having
higher importance due to the exponential decrease of αi. Since it does not rely on APSP, cK(·) can be
computed faster than betweenness centrality. For example, following from the algebraic formulation of
Katz centrality (see Eq. (2.11), Section 2.4), iterative linear solvers – such as conjugate gradient – can be
used to compute cK(·) for all vertices at the same time. Furthermore, efficient nearly-linear time algorithms
for Katz centrality approximation and ranking exist [134]. In fact, the algorithms that we present in this
chapter are based on those algorithms for Katz centrality.

In contrast to cb(·) and cc(·), however, replacing the single vertex u in Eq. (8.1) by a set leads to a rather
uninteresting measure: as ai(u) and ai(v) count distinct walks for u ̸= v, such a “group Katz” would just
be equal to the sum of the individual Katz scores. Hence, a group with maximal Katz centrality would just
consist of the top-k vertices with highest cK(·). Indeed, this contrasts with the intuition of group centrality:
parts of a graph that are covered by one vertex in the group does not need to be covered by a second group
vertex.

Fortunately, we can construct a centrality measure satisfying this intuition by replacing cK(·) by a natural
variant of it: instead of considering all walks that start at a given vertex u, we consider all that cross u. This
leads to our definition of ED-Walk:

Definition 8.2.1 (ED-Walk). Let ϕi(S) be the number of i-walks – i.e., walks of length i – that contain at
least one vertex in S ⊆ V . The ED-Walk (for Exponentially Decaying walk) centrality for u ∈ V is:

cED(u) :=

∞∑
i=i

αiϕi({u}),

where α > 0 is a parameter of the centrality.

44Recall from Chapter 3 (Section 3.1) that the existence of a sub-cubic algorithm for betweenness (on general graphs) would
also imply the existence of a faster algorithm for APSP [1]. The vertex with highest closeness, in turn, cannot be computed in
sub-quadratic time unless SETH [145] fails [53] (see Chapter 4, Section 4.2.2).

45Katz centrality is sometimes alternatively defined by taking into account walks ending at a given vertex; from an algorithmic
perspective, however, this difference is irrelevant.

131

As mentioned in Section 2.4, in order for the series to converge, α needs to be chosen small enough – an
upper limit for α is provided in Section 8.2.2. As claimed above, ED-Walk naturally generalizes to a group
measure:

Definition 8.2.2. (GED-Walk) The GED-Walk centrality of a group S ⊆ V of vertices is given by:

gED(S) :=
∞∑
i=1

αiϕi(S). (8.2)

In the context of group centrality, we are interested in two problems:

• the problem of computing the centrality of a given group S ⊆ V ;

• the problem of finding a group that maximizes the group centrality measure.

We deal in particular with the latter optimization problem:

GED-Walk Maximization
Input: GraphG = (V,E), integer 1 ≤ k ≤ n.
Find: Set S⋆ ⊂ V with |S| = k s.t. gED(S⋆) is maximum.

Note again that, in contrast to Katz centrality, the GED-Walk maximization problem is different from the
top-k ED-Walk centrality problem.

8.2.2 Mathematical Properties of GED-Walk

Since GED-Walk is based on similar concepts as Katz centrality, it is not surprising that the two measures
have analogous mathematical properties. Indeed, the convergence properties of cK(u) and GED-Walk are
identical:

Proposition 8.2.1 ([13]). The following holds:

1. gED(V) =
∑

u∈V cK(u).

2. Let σmax be the largest singular value of the adjacency matrix of G. If α < 1/σmax, then gED(S) is
finite for all S ⊆ V .

Note that the quality of the first claim of Proposition 8.2.1 does not hold for groups S ⊂ V .
We have now established that GED-Walk is a well-defined measure. In the following, we prove further

basic properties of the gED function:

Proposition 8.2.2. GED-Walk is both non-decreasing and submodular as a set function.

Proof. Monotonicity is obvious from Eq. (8.2): as the input set S becomes larger, gED(S) cannot decrease.
To see that GED-Walk is also submodular, we observe that the marginal gain gED(S ∪ {u}) − gED(S) is
exactly the sum of the number of walks that contain u but no vertex in S, with each walk weighted by a
power of α. As such, the marginal gain can only decrease if S is replaced by a superset T ⊇ S.

132

Given an algorithm to compute gED, Proposition 8.2.2 would immediately allow us to construct a greedy
algorithm to approximate GED-Walk maximization – as a consequence Proposition 2.5.1. However, as we
show in Section 8.3.2, we can do better than naively applying the greedy approach.

As with other group centrality measures, maximizing GED-Walk turns out to be an NP-hard prob-
lem [13, Theorem 2.1].

8.3 Algorithms for GED-Walk

8.3.1 Computing GED-Walk Centrality

In this section, we address the problem of computing gED(S) of a given group S. As we are not aware of
an obvious translation of our gED(S) definition to a closed form expression, we employ an approximation
algorithm that computes the infinite series of gED(S) up to an arbitrarily small additive constant error ε > 0.
To see how our algorithm works, let ℓ ∈ N be a positive integer. We split the gED(S) series into the first
ℓ terms and a tail of infinite terms. This allows us to break the problem of approximating gED(S) into two
sub-problems: (i) computing (exactly) theh ℓ-th partial sum g≤ℓ

ED(S) :=
∑ℓ

i=1 α
iϕi(S) and the problem of

finding an upper bound on the tail g>ℓ
ED(S) :=

∑∞
i=ℓ+1 α

iϕi(S). In particular, we are interested in an upper
bound that converges to zero as ℓ approaches∞. Given such an upper bound, our approximation algorithm
chooses ℓ so that this bound is below the given error threshold ε and returns g≤ℓ

ED(S) once such ℓ is found.

Computing ϕi(S). To compute g≤ℓ
ED(S) is obviously enough to compute ϕi(S) for i ∈ {1, . . . , ℓ}. The

key insight to compute ϕi(S) efficiently is that, similarly to Katz centrality, it can be expressed as a series
of recurrences: let ϕhit

i (u, S) be the number of i-walks ending in u and containing at least one vertex from
S. Clearly, the number of walks that contribute to ϕhit

i partition the walks that contribute to ϕi in the sense
that:

ϕi(S) =
∑
u∈V

ϕhit
i (u, S). (8.3)

On the other hand, ϕhit
i can be expressed in terms of ϕmiss

i (u, S), i.e., the number of i-walks that end in
u but do not contain any vertex from S:

ϕhit
i (v, S) =

∑

(u,v)∈E ϕ
hit
i−1(u, S) + ϕmiss

i−1(u, S) v ∈ S∑
(u,v)∈E ϕ

hit
i−1(u, S) v /∈ S.

(8.4)

This derives from the fact that any i-walk is the concatenation of a (i−1)-walk and a single edge. Eq. (8.3)
considers (i − 1)-walks which do not contain a vertex in S only if the last concatenated edge ends in S.
Similarly, ϕmiss

i (u, S) can be expressed as the recurrence:

ϕmiss
i (v, S) =

0 v ∈ S∑
(u,v)∈E ϕ

miss
i−1(u, S) v /∈ S.

(8.5)

In the v ∈ S case, all walks ending in v have a vertex in S, so no walks contribute to ϕmiss
i . Notice

that the base cases of ϕhit
1 and ϕmiss

1 can easily be computed directly from G. Collectively, this gives us an

133

Algorithm 17 GED-Walk Computation
Input: GraphG = (V,E), parameters α, ε, and group S ⊆ V .
Output: gED(S)± ε.
1: c← 0
2: i← 1
3: while true do
4: compute ϕi(S)
5: c← c+ αiϕi(S)
6: compute boundBℓ s.t. g>ℓ

ED(S) ≤ Bℓ

7: if Bℓ < ε then
8: return c
9: i← i+ 1

O(ℓ(n+m))-time algorithm for computing the GED-Walk score of a given group. Furthermore, note that
the computation of ϕhit

i and ϕmiss
i can be trivially done for multiple vertices in parallel.

Bounding g>ℓ
ED(S). To complete our algorithm, we need to define a sequence of upper bounds on g>ℓ

ED(S)

that converges to zero for ℓ → ∞. Using Proposition 8.2.1, we can lift tail bounds of Katz centrality to
GED-Walk. In particular, from the first claim of this proposition leads to:

g>ℓ
ED(S) ≤ g>ℓ

ED(V) =
∑
u∈V

∞∑
i=ℓ+i

αiai(u). (8.6)

Bounds for the latter term can be found in the literature on Katz centrality. For example, let degmax be
the maximum degree of any vertex in the graph; for α < 1/ degmax it was shown that [134]:

∑
i=ℓ+1

ai(u) ≤
degmax

1− α degmax
αℓ+1aℓ(u). (8.7)

Combining Eq. (8.6) and Eq. (8.7) leads to the following bound for GED-Walk:

g>ℓ
ED(V) ≤ αℓ+1 degmax

1− α degmax

∑
u∈V

aℓ(u). (8.8)

We call this bound the combinatorial bound – due to the nature of the proof in [134]. We generalize this
statement to arbitrary α (i.e., α < 1/σmax), at the cost of a factor

√
n.

Lemma 8.3.1. It holds that:

g>ℓ
ED(V) ≤

√
nαℓ+1 σmax

1− ασmax

∑
u∈V

aℓ(u). (8.9)

We call the bound of Eq. (8.9) the spectral bound.

Complexity Analysis. Algorithm 17 shows the pseudocode of the algorithm to compute gED(S) of a
given S ⊆ V . Line 4 computes ϕi(S) using Eq. (8.3) and the recurrences for ϕhit

i and ϕmiss
i from Eqs. (8.4)

and (8.5). This can be done inO(n+m) time by storing ϕhit
i−1 and ϕmiss

i−1 , which requires an additionalO(n)

134

memory. Line 6 computes an upper bound on g>ℓ
ED(S), which can be either the combinatorial or the spectral

bound.

Lemma 8.3.2 ([13]). The GED-Walk score of a given group can be approximated up to an additive error of
ε > 0 inO

(
log(n/ε)

log 1/(ασmax)

)
iterations.

Corollary 8.3.1. The GED-Walk score of a given group can be approximated up to an additive error of
ε > 0 inO

(
log(n/ε)

log 1/(ασmax)
(n+m)

)
time.

8.3.2 Maximizing GED-Walk Centrality

Let gED(S, u) be the marginal gain of a vertex uw.r.t. a group S, i.e., gED(S, u) := gED(S ∪{u})− gED(S).
As observed in Section 8.2.2, the properties given by Proposition 8.2.2 imply that a greedy algorithm that
successively picks a vertex u ∈ V with highest marginal gain gED(S, u) yields a (1 − 1/e)-approximation
for the GED-Walk maximization problem. Note, however, that we do not have an algorithm to compute
gED(S, u) exactly. While we could use the approximation algorithm of Section 8.3.1 to feed approximate
values of gED(S, u) into a greedy algorithm, this procedure would involve more work than necessary: in-
deed, the greedy algorithm does not need the value of gED(S, u), but to ascertain that there is no u′ ∈ V
with gED(S, u′) > gED(S, u).

This consideration is similar to a top-1 centrality problem. Hence, we adapt the ideas of the top-k Katz
centrality algorithm that was introduced in [134] to the case of gED(S, u).46 Applied to the marginal gain of
GED-Walk, the main ingredients of this algorithm are families Lℓ(S, u) and Uℓ(S, u) of lower and upper
bounds on gED(S, u) satisfying the following definition:

Definition 8.3.1. We say that families of functions Lℓ(S, u) and Uℓ(S, u) are suitable bounds on the
marginal gain gED(S, u) if the following conditions are all satisfied:

1. Lℓ(S, u) ≤ gED(S, u) ≤ Uℓ(S, u);

2. limℓ→∞ Lℓ(S, u) = limℓ→∞ Uℓ(S, u) = gED(S, u);

3. Lℓ(S, u) and Uℓ(S, u) are non-increasing in S.

In addition to Lℓ and Uℓ, we need the following definition:

Definition 8.3.2 (ε-separation). Let ε > 0 and fix some ℓ ∈ N. Let u, u′ ∈ V be two vertices. IfLℓ(S, u) ≥
Uℓ(S, u

′)− ε, we say that u is ε-separated from u′.

It is easy to see that, if there is a vertex u ∈ V that is ε-separated from all other u′ ∈ V \{u}, then either u
is the vertex with highestmarginal gain gED(S, u) or the highestmarginal gain is atmost gED(S, u)+ε – this
follows directly from the first property of Definition 8.3.1. Note that the introduction of ε is required here to
guarantee that the separation can be achieved for finite ℓ even if u and u′ have truly identical marginal gains.
Furthermore, while the first condition of Definition 8.3.1 is required for ε-separation to work, the second
and third conditions are required for the correctness of Algorithm 18 that we construct in the following.

46Note that the vertex that maximizes gED(S, u) = gED(S ∪{u})− gED(S) is exactly the vertex that maximizes gED(S ∪{u}).
Algorithmically, it is simpler to deal with gED(S ∪ {u}) because it allows us to construct a lazy greedy algorithm.

135

ConstructionofLℓ(S, u)andUℓ(S, u). In order to implement the strategywedescribed in this section,
we need suitable families Lℓ(S, u) and Uℓ(S, u) of bounds. Luckily, we can re-use some of the bounds we
developed in Section 8.3.1. More precisely, it holds that:

gED(S, u) = g≤ℓ
ED(S ∪ {u})− g

≤ℓ
ED(S) + g>ℓ

ED(S ∪ {u})− g>ℓ
ED(S)

≥ g≤ℓ
ED(S ∪ {u})− g

≤ℓ
ED(S).

In the above calculation, g>ℓ
ED(S ∪ {u}) − g>ℓ

ED(S) ≥ 0 because ϕi is non-decreasing as a set function.
Hence, Lℓ(S, x) := g≤ℓ

ED(S ∪ {u}) − g
≤ℓ
ED(S) yields a family of lower bounds on the marginal gain of gED.

On the other hand:

gED(S, u) = g≤ℓ
ED(S ∪ {u})− g

≤ℓ
ED(S) + g>ℓ

ED(S ∪ {u})− g>ℓ
ED(S)

≤ gED(S ∪ {u})− g≤ℓ
ED(S) + g>ℓ

ED(S ∪ {u})

Thus, a family of upper bounds on the marginal gain gED(S, u) is given by Uℓ(S, u) := g≤ℓ
ED(S ∪ {u})−

g≤ℓ
ED(S) + Bℓ(V), where Bℓ denotes either the combinatorial or the spectral bound developed in Sec-

tion 8.3.1.

Lemma 8.3.3 ([13]). Let g≤ℓ
ED(S, u) := g≤ℓ

ED(S ∪ {u})− g
≤ℓ
ED(S). The two families

Lℓ(S, u) := g≤ℓ
ED(S, u)

Uℓ(S, u) := g≤ℓ
ED(S, u) +Bℓ(V)

form suitable families of bounds on the marginal gain of gED.

Lazy-Greedy Algorithm. Taking advantage of the bounds defined in Lemma 8.3.3, we can construct
a greedy approximation algorithm for GED-Walk maximization. To reduce the number of evaluations of
the objective function – without impacting the solution quality or the (worst-case) time complexity – we
use a lazy strategy inspired by the well-known lazy greedy algorithm for submodular approximation [217].
However, in contrast to the standard lazy greedy algorithm, we do not evaluate our submodular objective
function gED directly; instead, we apply Definition 8.3.2 to find the vertex with highest marginal gain. To
this end, we need to find the vertex x ∈ V \ S that maximizes Lℓ(S, x) and the vertex y ∈ V \ (S ∪ {x})
that maximizes Uℓ(S, y). Hence, we rank all vertices according to priorities L(u) ≥ Lℓ(S, u) and U(u) ≥
Uℓ(S, u) and lazily compute the true values Lℓ(S, u) and Uℓ(S, u) until x and y are identified.

Algorithm 18 depicts the pseudocode of this algorithm. Procedure lazyUpdate (Line 5) lazily updates
the priorities L(u) and U(u) until the exact values of Lℓ(S, u) and Uℓ(S, u) are known for the vertex on
top of the given priority queue. In Line 23, the resulting vertices x and y are checked for ε/k-separation.
It is necessary to achieve an (ε/k)-separation (and not only an ε-separation) in order to guarantee that the
total absolute error is below ε even after k iterations. If separation fails, ℓ is increased (Line 28) and we reset
L(u) and U(u) for all u ∈ V (Line 15); otherwise, x (i.e., the vertex with highest marginal gain) is added
to S (Line 27).

136

Algorithm 18 Lazy greedy algorithm for GED-Walk maximization.
Input: Graph G = (V,E), parameter α, and group size k.
Output: Group S ⊆ V with gED(S) ≥ (1− 1/e) times the optimum score.
1: S ← ∅, ℓ← 1
2: L(u)←∞, U(u)←∞ for all u ∈ V
3: PQL ← empty max-priority queue with keys L(u) and values u ∈ V
4: PQU ← empty max-priority queue with keys U(u) and values u ∈ V
5: procedure LazyUpdate(PQ)
6: repeat
7: u← PQ.max()
8: L(u)← Lℓ(S, u)
9: U(u)← Uℓ(S, u)

10: PQL.update(u), PQU .update(u)
11: until u = PQ.max()
12: return u

13: loop
14: for each u ∈ V do
15: L(u)←∞, U(u)←∞
16: PQL.push(u), PQU .push(u)
17: loop
18: if |S| = k then
19: return S
20: x← lazyUpdate(PQL)
21: PQL.remove(x), PQU .remove(x)
22: y ← lazyUpdate(PQU)
23: if L(x) ≤ U(y)− ε/k then ▷ Check if x is (ε/k)-separated from y
24: /* x and y are not (ε/k)-separated, increase ℓ */
25: PQL.push(x), PQU .push(x)
26: break
27: S ← S ∪ {x}
28: ℓ← 2ℓ ▷ Increase ℓ using geometric progression

Lemma 8.3.4 ([13]). If Lℓ and Uℓ are suitable families of bounds according to Definition 8.3.1, then Algo-
rithm 18 computes a group S such that gED(S) ≥ (1−1/e)gED(S

⋆)−ε, where S⋆ is the group with highest
GED-Walk score.

Initialization of L(u) and U(u). To accelerate the algorithm in practice, it is crucial to choose the
bounds L(u) and U(u) appropriately at each reset: if we reset L(u) = U(u) = ∞ as in Algorithm 18, the
algorithm has to evaluate Lℓ(S, u) and Uℓ(S, u) for all u ∈ V \ S whenever ℓ increases. To avoid such an
inefficiency, we use ϕmiss

i (x, S) to provide a better initialization for our bounds. Letψmiss
i (u, S) be the value

of ϕmiss
i (u, S) in the reverse graph ofG, i.e., ψmiss

i (u, S) is the number of i-walks that start at u but do not
contain any vertex of S. Our initialization strategy is summarized in the following lemma:

Lemma 8.3.5 ([13]). Let

Pi(S, u) :=
i∑

j=0

ϕmiss
i−j (u, S)ψ

miss
j (S, u).

The following holds:

1. Pi(S, u) ≥ ϕi(S ∪ {u})− ϕi(S);

137

2. Let Bℓ denote the bound from the construction of Uℓ. Pi yields the following bounds on Lℓ and Uℓ:

Lℓ(S, u) ≤
ℓ∑

i=1

αiPu(S, u)

Uℓ(S, u) ≤
ℓ∑

i=i

αiPi(S, u) +Bℓ(V).

Thus, instead of initializingL(u) = U(u) =∞, we computePi(S, u) and use the right-hand sides of the
second statement of Lemma 8.3.5 as initial values for L(u) and U(u). Note that using the recurrence for
ϕmiss
i from Section 8.3.1 (and an analogous recurrence forψmiss

i),Pℓ(S, u) can be computed inO(ℓ(n+m))

time simultaneously for all u ∈ V .

Complexity of the Lazy Algorithm. Assume that Algorithm 18 uses the spectral bound from
Lemma 8.3.1. The worst-case value to achieve (ε/k)-separation is given by Lemma 8.3.2, namely
O
(

log(kn/ε)
log 1/(ασmax)

)
. Note that the algorithm does some iterations that do not achieve (ε/k)-separation. We

calculate the cost of each iteration in terms of the number of evaluations of ϕi. In this measure, the cost of
each iteration is ℓ. As ℓ is doubled on unsuccessful (ε/k)-separations, the cost of all unsuccessful attempts to
achieve (ε/k)-separation is always smaller than the cost of a successful attempt to achieve (ε/k)-separation.
Hence, the worst-case running time of Algorithm 18 is O

(
kn log(kn/ε)

log 1/(ασmax)
(n+m)

)
: in each of the k suc-

cessful iterations, it can be necessary to extractO(n) elements from the priority queues and evaluate Lℓ(u)

and Uℓ(u) for each of them.
We expect, however, that much fewer evaluations of Lℓ(u) and Uℓ(u) will be required in practice than in

the worst case: in fact, we expect almost all vertices to have low marginal gains (i.e., only a few walks cross
those vertices) and gED will never be evaluated on those vertices. We study the practical performance of
Algorithm 18 in Section 8.5.

8.3.3 Dealing with Large k

For large groups, our algorithm for GED-Walk maximization needs to increase the walk length ℓ (see Al-
gorithm 18, Line 28). Thus, evaluating Lℓ(S, u) and Uℓ(S, u) becomes more expensive as k grows. To
overcome this issue, we follow the approach of [218]. This stochastic algorithm is similar to the lazy algo-
rithm. However, instead of considering all vertices in V \S when maximizing the marginal gain – or when
trying to (ε/k)-separate the vertex with maximal marginal gain from the others – stochastic greedy only
considers a subset of all vertices. Specifically, when adding a new vertex to the group, the algorithm sam-
ples n

k log 1
η vertices at random, where η is a parameter of the algorithm. Marginal gain maximization or

separation only consider the sampled vertices and ignore all others – i.e., only the sampled vertices are in-
serted in the priority queues. Note that if (ε/k)-separation fails, the sampled vertices are not discarded; the
algorithm does exactly one round of sampling for each vertex added to the group. This is necessary as the
probability that we find a vertex with high marginal gain is not independent from the probability that the
vertex can be separated against the other vertices of the sample.

138

Complexity of the StochasticAlgorithm. In contrast to the lazy greedy algorithm, stochastic greedy
evaluates gED at most n

k log 1
η times per ε/k-separation, instead of n times. Hence, its worst-case time

complexity isO
(
n log 1

η
log kn/ε

log 1/(ασmax)
(n+m)

)
. Further, the approximation ratio of stochastic greedy is (1−

1/e− η) instead of lazy greedy’s (1− 1/e).

8.4 Group Forest Closeness Centrality

For group forest closeness, we consider undirected weighted graphs G = (V,E,w) with non-negative
edge weights. Recall the definitions of augmented graph G⋆ from Section 5.5.1 and of forest farness from
Eq. (5.8). In order to extend the concept of forest closeness to groups of vertices, it is enough to define the
forest farness gff(S) of a vertex set S ⊂ V ; the forest closeness of S is then given by gfc,α(S) := 1

gff,α(S)
.

Recall from Proposition 5.5.1 that the forest farness of a single vertex v ofG equals the electrical farness
of v in the augmented graphG⋆. We use this fact to generalize the forest farness of a set S of vertices inG.
In particular, we define gff(S) := tr

(
((L⋆)−S)

−1
)
, where L⋆ is the Laplacianmatrix of the augmented graph

G, and by (L⋆)−S we denote the matrix that is obtained by removing all rows and columns with indices in
S. This definition is based on a corresponding definition of electrical farness by Li et al. [183]. For |S| = 1,
it coincides with the definition of electrical closeness from Section 5.2 [150]; thus, our definition of group
forest closeness is compatible with the definition of the forest closeness of individual vertices (i.e., Eq. (5.5)).

Given our definition, it is natural to ask for a set S of k vertices that maximizes gfc(S) over all possible
size-k sets S; indeed, this optimization problem has also been considered for many other group centrality
measures [132]. The complexity of this problem is settled in the following theorem:

Theorem 8.4.1 ([133]). Maximizing group forest closeness subject to a cardinality constraint isNP-hard.

Since an efficient algorithm for maximizing group forest closeness is unlikely to exist (due to Theo-
rem 8.4.1), it is desirable to construct an inexact algorithm for this problem. The next two results enable
the construction of such an algorithm; they immediately follow from respective results on group electrical
closeness onG⋆ (see Ref. [183, Theorems 5.4 and 6.1]).

Lemma 8.4.1 ([133]). gff(·) is a non-increasing and supermodular set function.

For the following corollary, we consider a greedy algorithm that constructs a set S of size k. This set is
initially empty; while |S| is smaller than k, the algorithm adds the vertex v toS thatmaximizes themarginal
gain: v = argmaxx∈V \S gff(S)− gff(S ∪ {v}).

Corollary 8.4.1 ([133]). The greedy algorithm computes a set S such that:

gff({v0})− gff(S) ≥
(
1− k

e(k − 1)

)(
gff(v0)− gff(S∗)

)
,

where v0 is the vertex with highest (individual) forest closeness and S∗ is the set of size k that maximizes
the group forest closeness.

Note that a naive implementation of the greedy algorithm would invert (L⋆)−(S∪{v}) for each v, i.e., it
would require k·nmatrix inversions in total. By using the ideas of Li et al. for group electrical closeness [183]

139

Algorithm 19 Greedy algorithm for group forest closeness maximization – adapted from Li et al. [183]
Input: Undirected graph G = (V,E), group size k
Output: Group S ⊆ V of k vertices
1: L†

⋆ ← pseudoInverse(L⋆)

2: v ← argminv∈V n(L†
⋆[v, v]) + tr

(
L†
⋆

)
3: M← inverse((L⋆)−v) ▷ Invariant: M← (L⋆)

−1
−S throughout the algorithm

4: S ← {v}
5: while |S| < k do
6: v ← argmaxv∈V \S

(Mev)⊤(Mev)
e⊤v Mev

7: M←
(
M− Meve⊤v M

e⊤v Mev

)
−{v}

8: S ← S ∪ {u}
9: return S

(depicted in Algorithm 19 for the case of forest closeness), these inversions can be avoided, such that only
a single matrix inversion is required in total. This makes use of the fact that whenever a vertex u is added
to the set S, we can decompose (L⋆)−S into a block that consists of (L⋆)−(S∪{u}) and a single row/column
that corresponds to u. It is now possible to apply block-wisematrix inversion to this decomposition to avoid
the need to recompute ((L⋆)−(S∪{u}))

−1 from scratch (in Line 7 of the pseudocode). We remark that the
greedy algorithm can be further accelerated by utilizing the JLT lemma [183]; however, since this necessarily
results in lower accuracy, we do not consider this extension in our experiments.

Furthermore, we note that, by applying standard reduction by Gremban [130], it would also be possible
to apply our UST-based algorithm (i.e., Algorithm 10) to the case of group forest closeness. However, if
the aforementioned block-wise matrix inversion is not applied, this would require us to sample USTs for
each of the k · n vertex evaluation. On the other hand, in order to apply block-wise inversion, the entire
inverse of (L⋆)−S must be available (and not only the diagonal). Computing this inverse via UST sampling
is prohibitively expensive so far. Hence, in our experiments, we prefer the algorithmic approach by Li et al.–
adapted for group forest closeness.

8.5 Experiments – GED-Walk

Settings. Our algorithms for GED-Walk computation and maximization are implemented in C++ on
top of the open-source framework NetworKit [273], which also includes implementations of the aforemen-
tioned algorithms for group-betweenness, group-harmonic, and group-closeness maximization. All exper-
iments are executed on a Linux server with an Intel Xeon Gold 6154 (36 cores in total) and 1.5TiB of RAM
of memory. Unless stated differently, every experiments uses 36 threads (one per core), and the default
algorithm for GED-Walk maximization uses the combinatorial bound (see Eq. (8.8)) and the lazy-greedy
strategy described in Section 8.3.2 with ε = 0.5.

Datasets. All networks are undirected; real-world graphs have been downloaded from the Koblenz Net-
work Collection [173] and from the 9th DIMACS challenge [87], detailed statistics are reported in Table 8.1.
Synthetic networks have been generated using the Erdős Rényi, R-MAT [65], and Barabàsi-Albert [28] mod-
els as well as the random hyperbolic generator from von Looz et al. [191], all of which are available in Net-
worKit. More precisely, for the Erdős Rényi generator, we set as probability the parameter p = 20/n. For

140

Table 8.1: Largest connected component of the real-world instances we used in our experiments.

Network n m Category

dimacs9-COL 435,666 521,200 Road
munmun_twitter_social 465,017 833,540 Social
com-dblp 317,080 1,049,866 Co-author
wikipedia_link_mr 92,875 1,396,893 Hyperlink
roadNet-PA 1,087,562 1,541,514 Road
citeseer 365,154 1,721,981 Citation
roadNet-TX 1,351,137 1,879,201 Road
web-Stanford 255,265 1,941,926 Hyperlink
petster-dog-household 255,968 2,148,090 Social
wikipedia_link_bn 225,970 2,183,246 Hyperlink
petster-catdog-household 324,249 2,642,635 Social
wikipedia_link_uz 439,263 2,920,885 Hyperlink

GED GCC GHC GBC

5 10 20 50 100
Group size

100

101

102

103

Ti
m

e
(s

)

(a) Running time (s) of GED-Walk, GCC, GHC, and GBC
maximization (note that k is in log-scale).

510 20 50 100
Group size

8.0

8.5

9.0

9.5

10.0

 (W
al

k
le

ng
th

)

(b) Length of the walks considered by our algorithm for
GED-Walk maximization.

Figure 8.1: Scalability w.r.t. group size of GED-Walk, GCC, GHC, and GBC maximization (Figure 8.1a), and highest
walk length considered by our GED-Walk maximization algorithm (Figure 8.1b).

R-MAT, the parameter setting is the same as in the Graph 500’s benchmark [223] – i.e., edge factor 16,
a = 0.57, b = 0.19, c = 0.19, and d = 0.05. For the Barabàsi-Albert generator, we set the average degree
to 20 and, for the random hyperbolic generator, we set the average degree to 20 and the exponent of the
power-law distribution to 3.

8.5.1 Scalability w.r.t. Group Size

Figure 8.1 shows the average running time in seconds of GED-Walk (GED), group-closeness (GCC), group-
harmonic (GHC), and group-betweenness (GBC) maximization for group sizes from 5 to 100 – detailed
running times are reported in Table G.1, Appendix G.1. For small group sizes, GED-Walk can be maxi-
mized much faster than the other considered measures: for k = 5, our algorithm for GED-Walk maximiza-
tion is on average 67.7×, 21.26×, and 52.6× faster than GCC, GHC and GBC maximization, respectively,
whereas for k = 100 it is respectively 8.9×, 1.83×, and 90.1× faster. On the other hand, GCC and GHC
maximization scale better than both GBC and GED-Walk maximization w.r.t. the group size. This be-
havior is expected since the evaluation of the marginal gain becomes computationally cheaper for GCC and
GHC for larger groups. This property, however, does not apply to our algorithm for maximizing GED-Walk
which, in turn, needs to increase the length ℓ of the while the group grows – see Algorithm 18, Line 28.

Yet, one can also observe that the group-closeness score increases only very slowly – or more slowly than
GED-Walk’s – when increasing the group size (see Figure 8.4b). This means that, from a certain group size

141

17 18 19 20 21 22 23 24
Scale

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)
GED

(a) Erdős Rényi

17 18 19 20 21 22 23 24
Scale

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

GED

(b) R-MAT

17 18 19 20 21 22 23 24
Scale

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

GED

(c) Barabàsi-Albert

17 18 19 20 21 22 23 24
Scale

10
1

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

GED

(d) Random hyperbolic

Figure 8.2: Running time (s) on 36 cores of our lazy greedy algorithm for GED-Walk maximization on synthetic net-
works with 217 to 224 vertices, k = 10. Data points are aggregated over three different randomly generated
networks using the geometric mean.

Table 8.2: Running time (s) of GED-Walk maximization on 36 cores on large real-world networks, k = 10.

Network Category n m Time (s)

petster-friendships-cat Social 148,826 5,447,464 4.7
dimacs9-W Road 6,262,104 7,559,642 45.3
dimacs9-CTR Road 14,081,816 16,933,413 86.9
flickr-growth Social 2,173,370 22,729,227 47.2
soc-LiveJournal1 Social 4,843,953 42,845,684 35.0
livejournal-links Social 5,189,808 48,687,945 47.1
orkut-links Social 3,072,441 117,184,899 76.5
dbpedia-link Hyperlink 18,265,512 126,888,089 348.7
dimacs10-uk-2002 Hyperlink 18,459,128 261,556,721 47.5
wikipedia_link_en Hyperlink 13,591,759 334,590,793 276.4

on, the choice of a new group member hardly makes a difference for group-closeness – in most cases, only
the distance to very close vertices can be reduced. In that sense, GED-Walk seems to distinguish better
between more and less promising candidates.

Figure 8.1 shows the length ℓ of the walks considered by our algorithmw.r.t. the group size. In accordance
to our expectations about number of evaluations ofLℓ(u) andUℓ(u)we stated in Section 8.3.2, ℓ grows sub-
linearly w.r.t. k.

8.5.2 Scalability to Large (Synthetic) Graphs

Figure 8.2 shows the running time in seconds of GED-Walk maximization with k = 10 on randomly gen-
erated networks using the Erdős Rényi, R-MAT, Barabási-Albert, and random hyperbolic models models.
The thin blue lines represent the linear regression on the running times. With respect to the running time
curves, the regression lines either have a steeper slope (Figures 8.2a–8.2c) or, in the case of the random
hyperbolic generator in Figure 8.2d, they match it almost perfectly. Thus, for the network types and sizes
under consideration, GED-Walk maximization scales (empirically) linearly w.r.t. n.

Table 8.2 shows the running times in seconds of GED-Walk maximization on large real-world instances
with up to hundreds of millions of edges with k = 10. For the largest networks, our algorithm needs up to
six minutes to finish, but in most cases it requires only around one minute.

142

GED GCC GHC GBC

1 2 4 8 16 32
Number of cores

1

2

4

8

S
pe

ed
up

(a) Multi-core speedups of GED-Walk maximization over
single-core GED-Walk maximization.

1 2 4 8 16 32
Number of cores

100

101

102

103

Ti
m

e
(s

)

(b) Running time of GED-Walk, GCC, GHC, and GBC
maximization w.r.t. the number of cores.

Figure 8.3: Parallel scalability of GED-Walk, GCC, GHC, andGBCmaximization, k = 10. Data points are aggregated
over the instances of Table 8.1 using the geometric mean.

8.5.3 Parallel Scalability

As stated in Section 8.3.1, the algorithm to compute GED-Walk can be parallelized easily by computing
ϕhit
i (u) and ϕmiss

i (u) in parallel for different u ∈ V . Figure 8.3a shows the parallel speedup of our algorithm
for maximizing GED-Walk over itself running on a single core for k = 10. The scalability is moderate up
to 16 cores, while on 32 cores it does not gain much additional speedup. A similar behavior was observed
before for group-closeness [38]. Figure 8.3b shows the running time in seconds of GED-Walk, GBC, and
GCCmaximizationwith increasing number of cores, fork = 10. On a single core, GED-Walkmaximization
is on average 30.5×, 14.76×, and 124.1× faster than GCC, GHC, and GBC maximization, respectively. As
we increase the number of cores, the decrease of the running time of the three algorithms is comparable
– except for GCC and GHC on 32 cores: In this case, GCC and GHC are slower than on 16 cores on the
considered instances.

The limited scalability affecting all three algorithms is probably due tomemory latency becoming a bottle-
neck in the execution onmultiple cores [26, 195]. Further, Figure 8.3b shows that, on 16 cores, our algorithm
for GED-Walk maximization finishes on average within a few seconds. Here the running time of the algo-
rithm is dominated by its sequential parts, and it is not surprising that adding 16 more cores does not speed
the algorithm up substantially.

8.5.4 Scalability with Large Groups

We evaluate the performance of the stochastic algorithm with ε = 0.5 and η = 0.1 on large groups. Fig-
ure 8.4a shows the running time of GED-Walk (both lazy and stochastic greedy strategies) GCC, and GHC
maximization for large values of k. For k ≥ 1,000, the stochastic algorithm is significantly faster than the
lazy algorithm. However, as explained in Section 8.5.1, GCC maximization scales better than both GED
strategies w.r.t. k, and for k ≥ 1,000 it is even faster than GED-S. On the other hand, Figure 8.4b shows
the relative GED-Walk, group-harmonic, and group-closeness scores of the groups computed using GED,
GED-S, GCC, andGHCmaximization algorithms. Results demonstrate that the stochastic greedy approach
computes groups with nearly the same quality as GED in less time, which makes it a reasonable alternative
to lazy greedy for large values of k.

143

GED GED-S GCC GHC

102 103 104

Group size

101

102

103

Ti
m

e
(s

)

(a) Running time (s) of GED-Walk, GCC, and GHC max-
imization.

102 103 104

Group size

100

101

102

Sc
or

e

(b) GED-Walk, group-harmonic, and group-closeness
scores of groups computed by GED-Walk, GCC, and
GHC maximization. For each k, scores are divided by
the scores for k = 1.

Figure 8.4: Running time (s) and scores of GED-Walk with lazy greedy (GED), and stochastic greedy (GED-S) strate-
gies with large k (log-scale). Data points are aggregated over the instances of Table 8.1 using the geometric
mean.

0.1 0.2 0.3 0.4 0.5 0.6
0.96

0.97

0.98

0.99

1.00

R
el

at
iv

e
′ s

co
re′ = 0.1

′ = 0.2
′ = 0.3
′ = 0.4
′ = 0.5
′ = 0.6

(a) Relative δ′ score (i.e., gδ
′

ED(S
δ)/gδED(S

δ)) for δ, δ′ ∈ [0.1, . . . , 0.6],
ε = 0.1 and k = 10.

0.1 0.2 0.3 0.4 0.5 0.6
0.0

2.5

5.0

7.5

10.0

S
lo

w
do

w
n

GED

(b) Slowdown of our algorithm for maximizing
GED-Walk using the spectral bound with α =
δ/σmax over the lazy algorithm using the combi-
natorial bound.

Figure 8.5: Quality and running time performance of our GED-Walk maximization algorithm using the spectral
bound. Data points are aggregated over the instances of Table 8.1 using the geometric mean.

8.5.5 Impact of Parameter α

Wenow analyze how different settings of the parameterα impact the groups computed by our algorithm for
GED-Walk maximization. For this experiment we use the spectral bound (see Eq. (8.9)). Proposition 8.2.1
implies that GED-Walk converges iff α < 1/σmax. Let δ ∈ (0, 1]; obviously, GED-Walk also converges if
α < δ/σmax. In this experiment, we compute groups Sδ for a certain value α = δ/σmax and we measure of
the resulting group using α′ = δ′/σmax. We denote this score by gδ′ED(Sδ).

Figure 8.5a shows the ratio gδ′ED(Sδ)/gδED(S
δ) with δ, δ′ ∈ [0.1, . . . , 0.6], ε = 0.1 and k = 10. Fig-

ure 8.5b shows the slowdown, i.e., running time of computing Sδ divided by the running time of the lazy
algorithm using the combinatorial bound. Computing gδ′ED(Sδ)with δ ∈ [0.1, . . . , 0.3] yields similar scores
independently of δ, meaning that the GED-Walk score of a group does not change significantly within such
an interval for δ. Increasing δ above 0.3, however, leads to a noticeable reduction of the relative scores
computed using δ′ ≤ 0.3 and to a steeper growth of the ones computed using δ′ ≥ 0.5.

8.6 Applications of GED-Walk

We demonstrate the relevance of GED-Walk for graph mining applications by showing that it improves the
performance of two popular graph mining tasks: semi-supervised vertex classification and graph classifi-

144

200 400 600
number of labelled nodes

0.750

0.775

0.800

0.825

ac
cu

ra
cy GED

RND
DEG
PPR
SBC
GBC

(a) Cora

200 400 600
number of labelled nodes

0.400

0.500

0.600

ac
cu

ra
cy GED

RND
DEG
PPR
SBC
GBC

(b) Wiki

Figure 8.6: Semi-supervised vertex classification accuracy for different strategies for choosing the training set.

cation. As a preprocessing step, for both tasks before applying GED-Walk we first construct a weighted
graph using the symmetrically normalized adjacency matrix D

1
2AD

1
2 , which is often used in the litera-

ture [166, 292].47 Here, instead of taking the contribution of an i-walk (e1, . . . , ei) to be α, we define it to be
α
∏i

j=1w(ej), where w(ej) ≤ 1 is the edge weight of edge ej . Except for the introduction of coefficients
in the recurrences ϕhit and ϕmiss, no modifications of our algorithms are required. Compared to our un-
weighted definition of GED-Walk, this weighted variant converges even faster, as the contribution of each
walk is smaller.

8.6.1 Vertex Classification

Vertex classification is a fundamental graph mining problem where the goal is to predict the class labels
of all vertices in a graph given a small set of labelled vertices and the graph structure [278]. The choice of
which vertices we label (i.e., the vertices we include in the training set) before building a classificationmodel
can have a significant impact on the test accuracy, especially when the number of labelled vertices is small
compared to the size of the graph [23, 265]. Since many models rely on diffusion to propagate information
on the graph [278], we expect that selecting a training set with high GED-Walk centrality will improve
diffusion, and thus also the model’s accuracy. To test this hypothesis, we evaluate the performance of Label
Propagation [66, 292] given different strategies for choosing the training set. The choice of the vertices for
the training set can influence the accuracy of the classifier, especially when the number of labelled vertices
is small compared to n [23, 265].

A key aspect in semi-supervised learning problems is the so-called cluster assumption, i.e., vertices that
are close or that belong to the same cluster typically have the same label [67, 292]. Several models label
vertices by propagating information through the graph via diffusion [278]. We expect GED-Walk to cover
the graph more thoroughly than shortest-path based group centrality measures. Therefore, we conjecture
that choosing vertices with high GED-Walk improves the diffusion – and thus the accuracy of propagation-
based models. We test this hypothesis by comparing the classification accuracy of the label propagation
model [278, 292] where the training set is chosen using different strategies.48 The main idea of label propa-
gation is to start from a small number of labelled vertices and each vertex iteratively propagates its label to
its neighbors until convergence.

47Recall that D is the degree matrix, see Section 2.1.
48While this model is less powerful than state-of-the-art predictors, our strategy to select the training set could also be applied

to more sophisticated models like graph neural networks.

145

Table 8.3: Graph classification datasets.

Dataset # of graphs # of classes

Mutagenicity [160, 250] 4,337 2
PROTEINS [58, 90] 1,113 2
ENZYMES [58, 263] 600 6
IMDB-BINARY [286] 1,000 2
REDDIT-BINARY [286] 2,000 2

In our experiments, we use the Normalized Laplacian variant of the Label Propagation model as our
baseline49 and we set the value for the return probability hyper-parameter to 0.85.

We evaluate the classification accuracy on two common benchmark graphs: Cora (n = 2,810, m =

7,981) and Wiki (n = 2,357,m = 11,592) [264]. We let the vertices with highest GED-Walk centrality be
in the training set and the rest of the vertices be in the test set. We compare GED-Walk with the following
baselines for selecting the training set: RND (select vertices at random, with results averaged over 10 trials),
DEG (select the vertices with highest degree), SBC (select vertices with highest individual betweenness
centrality), GBC (select vertices with highest group-betweenness centrality), and PPR (select vertices with
highest Personalized PageRank).

Figure 8.6 shows that, for both the considered datasets and across different number of labelled vertices,
selecting the training set using GED-Walk leads to highest (or comparable) test accuracy. Furthermore,
while the second-best baseline strategy is different on different datasets – on Cora it is the GBC strategy
while on Wiki it is the SBC strategy), GED-Walk is consistently better. Overall, these results confirm our
hypothesis.

8.6.2 Graph Classification

Graph classification is another fundamental graph mining problem. The goal is to classify entire graphs
based on features derived from their topology/structure. In contrast to the vertex classification task where
each dataset is a single graph, here each dataset consists ofmany graphswith varying size and their associated
ground-truth class labels. In this setting, our hypothesis is that groups of vertices with high GED-Walk
centrality capture rich information about the graph structure and thus can be used to derive features that
are useful for graph classification.

To extract features based on GED-Walk, we first compute the group of k vertices with highest (approx-
imate) group centrality score. The group centrality score is the first feature that we extract. In addition,
we summarize the marginal gains of all the remaining vertices in the graph in a histogram with b bins. We
concatenate these features to get a feature vector xi ∈ Rb+1 for each graph i in the dataset. These features
are useful since graphs with similar structure will have similar group scores and marginal gains. We denote
this base setting by Ged.

In addition, we obtain the topic-sensitive PageRank vector of each graph, where we specify the teleport
set to be equal to the vertices in the group with highest (approximate) group centrality. Then, we summarize

49Our strategy to select the training set also applies to more sophisticated vertex classification models such as graph neural
networks [166].

146

Table 8.4: Graph classification accuracy (in %) on the datasets of Table 8.3. Best performance per dataset marked in
bold.

Dataset ENZ. IMD. Mut. PRO. RED.

Eig-T 23.02 56.59 56.90 73.35 75.31
Eig-H 23.47 70.28 68.88 72.42 72.02

Ged 19.18 60.64 64.51 71.95 70.59
Ged+PPR∗-H 20.85 65.18 65.46 72.18 71.59
Ged+PPR∗∗-H 20.39 66.27 65.86 72.44 75.95

Eig-T+Ged-T 26.46 63.56 64.14 74.06 80.18
Eig-H+Ged-H 23.14 69.74 69.08 73.13 75.16

Eig-T+ 27.45 69.25 62.78 73.54 76.70Ged+PPR∗-T
Eig-H+ 24.12 71.62 69.18 73.10 74.17Ged+PPR∗-H
Eig-T+ 27.88 68.53 62.43 73.72 80.48Ged+PPR∗∗-T
Eig-H+ 24.78 70.54 68.81 72.97 81.43Ged+PPR∗∗-H
∗: PageRank teleport probability 0.85;
∗∗: PageRank teleport probability 0.15

this vector (i) by using a histogram of b bins and (ii) by extracting the top p values, denoted by PPR-H and
PPR-T, respectively. Intuitively, these features capture the amount of diffusion in the graph.

As a strong baseline, we compute the eigenvalues of the adjacency matrix and summarize them (i) in a
histogram of b bins and (ii) by extracting the top p eigenvalues, denoted by Eig-H and Eig-T, respectively.
This latter strategy is inspired by recent work on graph classification [117] showing that spectral features
can outperform deep-learning based approaches. Further, the ability of efficiently compute the eigenvalue
histograms motivates using them as a feature for graph classification [92]. Similarly, a strong advantage
of these features based on GED-Walk is that we can efficiently compute them. Last, we also combine the
spectral- and GED-based features by concatenation, i.e., Eig-T+GED denotes the combination of Eig-T
and Ged features. In the following experiments, we fix the value of the hyper-parameters k = 10, b = 20,
and p = 10; in practice, however, these parameters can also be tuned using, for example, cross-validation.
We split the data into 80% training and 20% test set and average the results for 10 independent random
splits.

Table 8.4 summarizes graph classification results over the instances of Table 8.3. Notice that enriching
the baseline features with our GED-Walk-based features improves the classification accuracy on all datasets,
with variants using all available features (i.e., Eig+Ged+PPR) performing best. Moreover, as shown in Ta-
ble 8.5, using the most central group according to GED-Walk as teleport set yields performance improve-
ments over standard PageRank – i.e., with teleport to all vertices.

In summary, these results show that GED-Walk captures meaningful information about the graph struc-
ture that is complementary to baseline spectral features. We argue that GED-Walk can be used as a relatively
inexpensive to compute additional source of information to enhance existing graph classification models.

147

Table 8.5: Graph classification accuracy (in %) on the datasets of Table 8.3. PR denotes PageRank with all vertices as
the teleport set.

Dataset ENZYMES IMDB-BINARY Mutagenicity PROTEINS REDDIT-BINARY

Eig-H+Ged+PPR∗-H 24.12 71.62 69.18 73.10 74.17
Eig-T+Ged+PPR∗-T 27.45 69.25 62.78 73.54 76.70
Eig-H+Ged+PPR∗∗-H 24.78 70.54 68.81 72.97 81.43
Eig-T+Ged+PPR∗∗-T 27.88 68.53 62.43 73.72 80.48
Eig-H+Ged 23.14 69.74 69.08 73.13 75.16
Eig-T+Ged 26.46 63.56 64.14 74.06 80.18
Eig-H+PPR∗-H 24.20 71.62 69.18 73.08 74.17
Eig-T+PPR∗-T 27.49 69.25 62.78 73.56 76.71
Eig-H+PPR∗∗-H 24.78 70.54 68.80 72.97 81.43
Eig-T+PPR∗∗-T 27.88 68.53 62.43 73.72 80.48
Eig-H+PR∗-H 23.54 70.00 68.85 72.33 75.11
Eig-T+PR∗-T 23.18 57.06 57.38 73.25 76.00
Eig-H+PR∗∗-H 23.54 70.42 69.17 72.49 76.33
Eig-T+PR∗∗-T 23.18 58.42 57.79 73.31 76.59
Eig-H 23.47 70.28 68.88 72.42 72.02
Eig-T 23.02 56.59 56.90 73.35 75.31
Ged+PPR∗-H 20.85 65.18 65.46 72.18 71.59
Ged+PPR∗∗-H 20.39 66.27 65.86 72.44 75.95
Ged 19.18 60.64 64.51 71.95 70.59
PPR∗-H 21.01 60.93 60.44 71.79 72.74
PPR∗∗-H 19.46 66.39 62.27 71.86 73.79
PR∗-H 20.11 57.04 61.31 71.78 73.19
PR∗-T 16.98 51.15 55.85 71.84 69.66
PR∗∗-H 20.11 60.84 61.75 71.77 73.43
PR∗∗-T 16.98 56.64 57.19 72.12 73.31
∗: PageRank teleport probability 0.85; ∗∗: PageRank teleport probability 0.15

8.7 Experiments – Group Forest Closeness

As we did for GED-Walk, to demonstrate the relevance of group forest closeness in graph mining applica-
tions, we apply it to semi-supervised vertex classification [278] (see Section 8.6.1).

Settings. We implement our algorithm for forest closeness maximization in C++ upon the Net-
worKit [273] toolkit and we manage our experiments with SimexPal [14] to ensure reproducibility.

In our experiments, we used the Normalized Laplacian variant of label propagation [292]. We set the
return probability hyper-parameter to 0.85 and we evaluate its accuracy on two well-known disconnected
graph datasets: Cora (n = 2,708, m = 5,278) and Citeseer (n = 3,264, m = 4,536) [264]. Since this
variant of label propagation cannot handle graphs with isolated vertices (i.e., zero-degree vertices), we re-
move all isolated vertices from these datasets. For a fixed size k of the training set, we select its vertices as the
group of vertices computed by our greedy algorithm for group forest maximization and as the top-k vertices
with highest estimated forest closeness. We also include several well-known (individual) vertex selection
strategies for comparison: average over 10 random trials, the top-k vertices with highest degree, the top-k
vertices with highest betweenness centrality, and the top-k vertices with highest Personalized PageRank.

Results. Figure 8.7 shows that, for disconnected graphs and for a moderate number of labelled vertices,
selecting the training set by group forest closeness maximization yields consistently superior accuracy than

148

Group Forest
Top-k Forest

Random
Degree

PPR
Betweenness

200 400 600
of labeled nodes

0.65

0.70

0.75

0.80
Ac

cu
ra

cy
cora

200 400 600
of labeled nodes

0.50

0.60

Ac
cu

ra
cy

citeseer

Figure 8.7: Accuracy in semi-supervised vertex classification in disconnected graphs when using different strategies
to create the training set.

Group Forest
Top-k Forest

Random
Degree

PPR
Betweenness

200 400 600
of labeled nodes

0.70

0.75

0.80

Ac
cu

ra
cy

cora-lcc

200 400 600
of labeled nodes

0.60

0.65

0.70

Ac
cu

ra
cy

citeseer-lcc

Figure 8.8: Accuracy in semi-supervised vertex classification on the largest connected component of the datasets
(Cora-lcc: n = 2,485, m = 5,069; Citeseer-lcc: n = 2,110, m = 3,668) when using different strate-
gies to create the training set.

strategies based on existing centralitymeasures – including top-k forest farness. As expected, the accuracy of
existingmeasures improves if one considers connected graphs. Figure 8.8 shows the accuracy for connected
graphs when using different strategies to create the training set. Compared to disconnected graphs, the
competitors perform better in this setting. However, in our datasets, choosing the training set by group
forestmaximization yields nearly the same accuracy as the best competitors. The running time of our greedy
algorithm for group forest maximization is reported in Table D.3, Appendix D.3.

8.8 Conclusions

In this chapter, we addressed the issues of scaling group centrality to large networks and the lack of electrical
group centrality measures capable of handling disconnected graphs. We introduced two new centrality
measures, GED-Walk and group forest closeness. For the former, we implemented efficient approximation
algorithms for its maximization and for computing the GED-Walk score of a given group. For the latter, we
adapted the cubic approximation algorithm from Li et al. [183].

149

GED-Walk’s descriptive power is demonstrated by experiments on two fundamental graph mining tasks:
both semi-supervised vertex classification and graph classification benefit from the new measure. As GED-
Walk can be optimized faster than earlier group centrality measures, it is often a viable replacement for
more expensivemeasures in performance-sensitive applications. Group forest closeness achieved analogous
results for the semi-supervised vertex classification task on disconnected graphs. On the other hand, cubic
time cannot scale to large graphs; we leave the development of faster approximation algorithms tomaximize
this measure to future work.

In terms of running time, our algorithm forGED-Walkmaximization significantly outperforms the state-
of-the-art algorithms for maximizing group-closeness, group-harmonic, and group-betweenness centrality
when group sizes are at most 100. The fact that GED-Walk scales worse than group-closeness and group-
harmonic w.r.t. to k may seem as a limitation; however, we expect that many applications are interested in
group sizes considerably smaller than 100.

Experiments on synthetic networks indicate that our algorithm for GED-Walk maximization scales lin-
early with the number of vertices. For graphs with 224 vertices and more than 100M edges, it needs up to
half an hour – often less. In fact, our algorithm can maximize GED-Walk for small groups on real-world
graphs with hundreds of millions of edges within a few minutes. A promising direction for future research
is to apply GED-Walk to other practical applications. Examples include network and traffic monitoring [91,
247], the development of immunization strategies to lower the vulnerability of a network to epidemic out-
breaks [236], and improving landmark-based shortest path queries [124].

150

Part IV

Maximum Weighted Matching in Fully-Dynamic
Graphs

151

Introduction

Stable Marriage is the popular problem introduced by Gale and Shapley [115] of matching an equal number
of women and men, each of whom has ranked the participants of the opposite sex in order of preference so
that no couple prefer each other to the partners they are matched with. In other scenarios, however, there
may not be a separation of the participants into two classes (e.g., same-gender couples or pairing players
in a chess tournament [172]), hence the Stable Roommates Problem (SRP). SRP, originally described in the
paper of Gale and Shapley [115], is essentially the stable marriage problem with just one set and appears in
a variety of practical applications [149]. Every person in the set (of even cardinality n) ranks the others in
order of preference. The objective is to partition the set into n/2 pairs of “roommates” such that no two
persons that are not roommates both prefer each other to their current roommates – i.e., finding a stable
matching.

Some commercial and scientific applications, however, demand to find matchings that are not only sta-
ble, but that also have the maximum weight, which leads to the Maximum Weighted Matching problem
(MWM) [49, 58, 82, 138, 176, 219, 237, 283]. To this end, several algorithms to solve MWM have been pro-
posed; because optimal solutions are expensive to compute,50 approximation algorithms with nearly-linear
time complexity are numerous in the literature [47, 94, 95, 202, 203, 206, 242]. As we argued in Section 1.2,
networks often change over time, leading to the problem of updating an (approximate) MWM after those
change(s). The naive solution is to re-run a static algorithm on the new graph; this, however, is a rather
inefficient strategy: as we saw in Chapter 3, reusing the information computed on an initial snapshot of the
graph can reduce enormously the amount of work required to update the results on the new graph. This
would be beneficial especially for applications dealing with rapidly-evolving networks where multiple up-
dates happen every second – running a linear-time algorithm from scratch after each update would not be
practical.

Numerous dynamic algorithms for approximate MWM were proposed [11, 84, 137, 275] but just a few of
them have been implemented [16] and none supports edge updates in batches. In Chapter 9, we address the
problem of updating a (1/2)-approximate MWM after multiple edge updates by presenting a new batch-
dynamic algorithm inspired by the Suitor algorithm by Manne and Halappanavar [203]. Despite having a
worst-case time complexity that is linear in the size of the input graph, our extensive experimental analysis
suggests that, compared to the state of the art [16], our dynamic Suitor algorithm traverses less edges to
handle single edge updates and yields solutions with 0.1% quality or higher. Further, for batches with up to
104 edge updates, it requires milliseconds – or less, for the batches of smaller size – that is 102× to 106×
faster than re-running Suitor from scratch.

50The fastest know algorithm for MWM on general graphs takes O(mn logn) time [116], other faster strategies exploit as-
sumptions on the input graph [97].

153

9 Approximate Maximum Weighted Matching
in Dynamic Networks

9.1 Introduction

Context. Given a graphG = (V,E,w), a matchingM ⊆ E is a set of pairwise non-adjacent edges, i.e.,
all the vertices in G are incident to at most one edges inM . A matching is called maximal if no edge can
be added to it without violating the matching property. It is called maximum, in turn, if there is no other
matching with higher cardinality. Computing the maximum cardinality matching (MCM) of a graph can
be done inO(m

√
n) time in general graphs byMicali and Vazirani [215] and inO(nω) time in planar graph

with the algorithm by Mucha and Sankowski [221].51

On weighted graphs, the maximum weighted matching (MWM) is the matching with maximum edge
weight – the edge weight of a matchingM is the sum of the weights of the edges inM . The fastest known al-
gorithms for this problem are byGabow [113], which takesO(nm+n2 logn) time, and byGalil [116], which
takes O(mn logn). Assuming integral edge weights, Gabow and Tarjan [114] require O(m

√
n log(nW))

time, whereW is the highest edgeweight, while Sankowski [257] (by restricting the input to bipartite graphs)
requires Õ(Wnω) time, where Õ hides a polylogarithmic factor. For a broader overview of matching algo-
rithms, we refer the reader to Refs. [49, 178, 194].

Motivation. Computing amaximum (weighted)matching requires superlinear running time and is thus
impractical on today’s large real-world graph datasets. To mitigate long running times, it is common to re-
sort to approximation. Preis’s greedy algorithm [242] computes a (1/2)-approximation of thematching with
highest weight in O(m) time; the same result is also achieved with the path-growing algorithm (PGA) by
Drake and Hougardy [95]. The main disadvantage of those algorithms is that they are inherently sequential
and thus cannot exploit parallelism, a common acceleration strategy formassive data. Birn et al. [47], in turn,
provide a parallel implementation of the local max algorithm [141], which computes a maximal matching of
an unweighted graph and a (1/2)-approximation of the MWM of a weighted graph inO(log2 n) expected
time. Manne and Halappanavar [203] introduced Suitor, a parallel (1/2)-approximation algorithm based
on local domination that is faster previous strategies and is amenable to parallelism.

Real-world networks are not only large but often change over time: edges are inserted, deleted, or change
their weight – see Section 2.7. Even with a linear-time algorithm, it would be excessively expensive to
compute (or approximate) a maximum (weighted) matching from scratch every time the graph changes. In
recent years, several fully-dynamic algorithms for both exact and approximateMCM [18, 29, 32, 44, 45, 46, 68,
128, 137, 148, 158, 225, 232, 256, 270] andMWM [11, 137, 275]have been proposed. These algorithms perform a

51Recall that ω < 2.373 is the matrix multiplication exponent.

155

static computation of thematching on an initial snapshot of the graph and exploit this information to update
thematchingmore efficiently than a static rerun when the graph changes. Main limitations of existing fully-
dynamic algorithms are either a weaker quality guarantee (e.g., Ref. [11]), or an expensive time complexity
(e.g., Ref. [137]). To the best of our knowledge, none of the existing algorithms for fully-dynamic MWM
support batch updates and the only existing implementation is provided in Ref. [16].

Contribution. In this chapter, we introduce a new algorithm that takes inspiration from Suitor [203] and
maintains a (1/2)-approximation of the MWM in fully-dynamic graphs. The main idea is simple: we use
the staticSuitor algorithm to compute an approximateMWMon an initial snapshot of the graph. Then, after
an edge update, our dynamic algorithm identifies the affected vertices (i.e., those whose matching partner
needs to be updated) and updates the matching accordingly.

Our implementation also supports multiple edge insertions or removals in batches. For single edge up-
dates, our dynamic algorithm has a worst-case time complexity of O(n + m), whereas for batches with
b edge updates it is O(b · (n + m)). Although this does not improve the static time complexity, our dy-
namic algorithm performs remarkably well in practice: in our experiments, we evaluate its running time
on real-world (complex and road) and synthetic networks with up to 2.5 billion edges. Our results show
that, compared to the best algorithm presented in Ref. [16], our dynamic Suitor algorithm handles single
graph updates faster and yields matchings with at most 99.9% lower weight. Concerning batch updates,
in comparison to a static recomputation (for lack of another meaningful MWM baseline in this setting),
our algorithm can handle batches of 104 of such updates 102× to 103× faster. Furthermore, the time re-
quired by our dynamic algorithm for every considered batch size is always below a millisecond. Thus, our
algorithm’s implementation provides real-time capabilities even without parallelism.

Bibliographic Notes. My contributions among those in this chapter involve the new dynamic algo-
rithms and proofs, part of the implementation work, carrying out the experiments, and the presentation
of the results. Preliminary work and experiments on dynamic algorithms for MWM were conducted by
Michał Boroń under the supervision of Henning Meyerhenke. The contributions of this chapter are also
joint work with Michał Boroń and Henning Meyerhenke and are currently in revision for international
journal publication.

9.2 Preliminaries

9.2.1 Problem Definition and Notation

LetG = (V,E,w) be a simple undirected graph with positive edge weights. A matching inG is a subset of
pairwise non-adjacent edgesM ⊆ E – alternatively, one can see a matching as a subgraph ofG (restricted
to the edges) with degree at most 1. A vertex is matched if it is incident to an edge in M , otherwise it is
called unmatched or free.

In the maximum-weight matching problem (MWM), the objective is to compute a matching M⋆ that
maximizes the sum of the edge weights.

156

Maximum-weight Matching
Input: Undirected weighted graphG = (V,E,w).
Find: MatchingM⋆ s.t.

∑
e∈M⋆ w(e) is maximal.

In the context of fully-dynamic graphs, if an edge update52 happens toG, we denote byG′ = (V,E′, w′)

the graph after the edge update. Similarly, we denote byN ′(u) the set of neighbors of a vertex u inG′. Given
a matchingM computed on G and a sequence of graph updates, our objective is to updateM in G′ faster
(in terms of empirical running time) than recomputing a new matching inG′ from scratch, while retaining
the theoretical bound on the solution quality.

9.2.2 Related Work

In the following, we summarize relevant works concerning MCM and MWM in both static and dynamic
settings.

Static Algorithms. Edmond’s blossom algorithm [99] (time complexity: O(mn2)) and the later im-
proved algorithm by Micali and Vazirani [215] (O(m

√
n) time) are two popular strategies to compute an

MCM based on augmenting paths. Goldberg and Karzanov [125] propose a blocking skew-symmetric flow
algorithm that achieves the same running time as Micali and Vazirani. More recent works use data reduc-
tion rules [168] or shrink-tree data structures [96] to achieve better running times in practice on sparse
real-world networks. If we restrict the input to planar graphs, the randomized algorithm by Mucha and
Sankowski [221] computes an MCM inO(nω) time via Gaussian elimination.

Concerning the MWM problem, Galil [116] provides the fastest known algorithm, which takes
O(mn logn) time. Assuming integral edge weights, the algorithm by Duan et al. [97] takes
O(m

√
n log(nW)) time, improving over Gabow and Tarjan’s algorithm [114]. The latter takes Õ(log(nW))

time, where Õ hides a polylogarithmic factor and W is the highest edge weight. On bipartite graphs,
Sankowski [257] requires Õ(Wnω) time.

Running a superlinear algorithm is often too expensive on large graphs. Therefore, several approximation
algorithms with (nearly-)linear running time have been introduced. A naive greedy algorithm that itera-
tively adds to thematching the (heaviest) edge that does not violate thematching condition takesO(m logn)
time and achieves a (1/2)-approximation for both the MCM and MWM problems [22]. Preis [242] reduced
the running time toO(m) while retaining the same quality guarantee. Further strategies to obtain the 1/2
bound are the one by Manne and Bisseling [202] based on dominant edges, the local max algorithm inves-
tigated by Birn et al. [47], the path growing algorithms by Drake and Hougardy [94, 95], the global paths
algorithm by Maue and Sanders [206], and Suitor by Manne and Halappanavar [203].

Dynamic Algorithms. A trivial strategy maintains a (1/2)-approximation of a maximal matching on
dynamic graphs in O(n) time per update by resolving all augmenting paths of length one. This result
has been improved in several works. The update time was reduced for the first time to O((n + m)

√
2/2)

by Ivković and Lloyd [148]. The randomized algorithm by Onak and Rubinfeld [232] maintains a O(1)-
approximation of an MCM inO(log2 n) expected amortized update time; this result was further improved

52Recall that by “edge update” we mean either an edge insertion, an edge removal, or an edge weight change.

157

by Baswana et al. [32], who reduced the update time to O(logn) and the approximation ratio to 1/2.
Solomon [270] further reduced the amortized update time of Baswana et al. from logarithmic to constant.
Deterministic algorithms for approximate MCM have been presented first by Bhattacharya et al. [46], who
maintain a (3 + ε)-approximate MCM in Õ(min(

√
n,m1/3/ε)) amortized update time; the update time

was later reduced to constant but at the cost of a weaker O(1)-approximation guarantee [45]. In terms of
worst-case bounds for MCM, the best known algorithms are the ones from Gupta and Peng [137] (which
maintains a (1+ε)-approximation withO(

√
m/ε) update time), Neiman and Solomon [225] (whichmain-

tains a 3/2-approximation with O(
√
m) update time), and Bernstein and Stein [44] (which maintains a

(3/2 + ε)-approximation withO(m1/4 · ε−2.5) update time). The first (2 + ε)-approximation algorithms
inO(poly logn) update time were introduced independently by Charikar and Solomon [68] and by Arar et
al. [18], whereas Grandoni et al. [128] gave a (1 + ε)-approximation algorithm in the incremental setting
requiring a constant amortized update time. For graphs with constant neighborhood independence, Baren-
boim and Maimon [29] present an algorithm for MCM with deterministic Õ(n) update time. For lax and
eager algorithms, i.e., two subclasses of fully-dynamic algorithms for maintaining an MCM, Kashyop and
Narayanaswamy [158] prove a conditional lower bound for the update time that is sublinear in the number
of edges.

Despite the vast variety of algorithms for dynamicMCM, very little effort has been invested in implement-
ing them and evaluating their practical performance on real-world instances. Only recently, Henzinger et
al. [140] evaluated dynamic algorithms for MCM in practice. These are the algorithms by Baswana et al. [32]
(2-approximate MCM inO(

√
n) update time), by Neiman and Solomon [225] (3/2-approximate MCM in

O(
√
m) update time), and two novel algorithms: one based on random walks and one that uses a depth-

bounded blossom algorithm to find augmenting paths. Their experimental evaluation shows that (i) the
optimal matching can be maintained more than 10× faster than a naive static recomputation, (ii) the con-
sidered approximation algorithms aremultiple orders ofmagnitude faster than a naive static recomputation,
and (iii) the extended random-walk based algorithms achieve the best practical performance.

Concerning the dynamic MWM problem, Anand et al. [11] propose a fully-dynamic algorithm for main-
taining an 8-MWMwith an expected amortized time ofO(logn log C) per edge update, where C is the ratio
between the maximum and the minimum edge weights of the graph. They also show that the approxima-
tion ratio can be reduced to 4.910,8 without sacrificing performance by using geometric rounding. Gupta
and Peng [137] maintain a (1 + ε)-approximation in O(m1/2 · ε−2−O(1/ε) logW) update time in graphs
with edge weights between 1 and W ; their strategy runs the static algorithm from time to time, trims the
graph into smaller equivalent graphs whenever possible and partitions the edges into geometrically shrink-
ing intervals depending on their weights. Stubbs and Williams [275] present metatheorems to show that, if
there exists anα-approximation algorithm forMCMwith update time T , then there also exists a 2α(1+ε)-
approximation algorithm for MWM withO(T · ε−2 log2W) update time, whereW is the maximum edge
weight. Themain idea relies on improving and extending the algorithm by Crouch and Stubbs [84], who ad-
dressed the dynamicMWMproblem in the semi-streamingmodel. None of the aforementioned algorithms
forMWMhas been implemented. For the semi-streamingmodel, Ghaffari andWajc [119] describe a single-
pass MWM algorithm with a (2 + ε)-approximation ratio requiring O(n logn) bits, improving previous
results [84, 103, 107, 208, 238]. Again, as in the MCM case, only a few of these algorithms have recently been
implemented [16]. Ref. [16] provides an experimental evaluation of dynamic algorithms for MWM inspired

158

Algorithm 20 Recursive findSuitor function
1: function findSuitor(u)
2: mate(u)← argmaxv∈N(u){w(u, v) : w(u, v) > w(v, suitor(v)}
3: if p(u) ̸= null then
4: y ← suitor(mate(u))
5: suitor(mate(u))← u
6: if y ̸= null then
7: findSuitor(y)

Algorithm 21 Static recursive Suitor algorithm [203]
Input: Undirected graphG = (V,E,w)
Output: (1/2)-approximation of the MWM ofG
1: for each u ∈ V do
2: mate(u)← null
3: suitor(u)← null
4: for each u ∈ V do
5: findSuitor(u) ▷ Algorithm 20

by the ones by Maue and Sanders [206] and by Stubbs and Williams [275]. Experimental data indicate that
the approach by Maue and Sanders [206] – which combines random walks with dynamic programming to
find augmenting paths – yields the best results in terms of running time and quality. Hereafter, as done in
Ref. [16], we call this algorithm DynMWMRandom.

9.2.3 The Static Suitor Algorithm

Since our dynamic algorithm is built on top of the static one called Suitor [203], for self-containment pur-
poses we provide in the following a brief overview of this latter algorithm.

Recall that w is the weight function of the edge. By convention, if {u, v} /∈ E, or if a vertex reference
v is null, then w(u, v) is 0. To guarantee a correct execution, we assume that all vertices in the graph are
indexed from 1 to n; in addition, the following total ordering of the edges incident to the same vertex u is
enforced: if {u, x} and {u, y} have the same edge weight and x < y, than w(u, x) < w(u, y). During the
course of the algorithm, Suitor keeps two references for each vertex u ∈ V : mate(u) and suitor(u). When
the execution is finished, mate(u) refers to the matching partner of u or is null if u remains unmatched.
The crucial condition for selecting a matching partner is given by:

mate(u) = argmax
v∈N(u)

{w(u, v) : ∄x ∈ N(v) s.t.

mate(x) = v ∧ w(x, v) > w(u, v)}.
(9.1)

In other words, v = mate(u) is the neighbor of u for which there is no other neighbor x of v “pointing”
to v with {u, x} dominating {u, v}. If no such vertex exists, mate(u) is set to null (i.e., u is unmatched).

159

Algorithm 22 Iterative findSuitor function

1: function findSuitor(u)
2: cur← u
3: done← false
4: repeat
5: partner← suitor(cur)
6: heaviest← ws(cur)
7: for each v ∈ N(cur) do
8: if w(cur, v) > heaviest and w(cur, v) > ws(v) then
9: partner← v

10: heaviest← w(cur, v)
11: done← true
12: if heaviest > 0 then
13: y ← suitor(partner)
14: suitor(partner)← cur
15: ws(partner)← heaviest
16: if y ̸= null then
17: cur← y
18: done← false
19: until done is true

Algorithm 23 Static iterative Suitor algorithm [203]
Input: Undirected graph G = (V,E,w)
Output: (1/2)-approximation of the MWM of G
1: for each u ∈ V do
2: suitor(u)← null
3: ws(u)← 0

4: for each u ∈ V do
5: findSuitor(u) ▷ Algorithm 22

Algorithm 21 shows the pseudocode of the Suitor algorithm: mate and suitor are initially set to null
for every vertex in the graph; then, the recursive function findSuitor (Algorithm 20) setsmate according to
Eq. (9.1) for every vertex. The progress of the algorithm can be described in the following Lemma:

Lemma 9.2.1 ([203], Lemma 3.2). Following each call to findSuitor in Algorithm 21 from the loop over the
vertices ofG, mate(u) is set according to Eq. (9.1) for each vertex u processed so far.

Clearly, after the execution of Algorithm 21, the condition in Eq. (9.1) is true for all vertices and this leads
us to the next property of the resulting matching:

Lemma 9.2.2 ([203], Lemma 3.1). If mate(u) is set according to Eq. (9.1) for each vertex u ∈ V , then
mate(·) defines the same matching as the greedy algorithm.

Proof. See Ref. [163, Section 3.2]. The proof is for b-matching, but contains the MWM problem by setting b
to 1.

Thus, regardless of the order in which the for-loop (Line 4, Algorithm 21) processes the vertices, Suitor
is a deterministic algorithm that computes the samematching as the well-known greedy algorithm that adds
permissible edges in the order of decreasing weight. Due to our assumption of a total edge ordering, this
matching is unique.

160

Algorithm 23 shows the iterative version of Suitor, which does not use mate any more but only suitor.
An additional array ws stores the value w(u, suitor(u)) for each vertex u ∈ V . We rewrite the condition
in Eq. (9.1) in terms of suitor as follows:

suitor(u) = argmax
v∈N(u)

{w(u, v) : ∄y ∈ N(v) s.t.

suitor(v) = y ∧ w(y, v) > w(u, v)}.
(9.2)

If no such vertex exists, suitor(u) is null. Similarly to its recursive counterpart, for every vertex
u ∈ V , Algorithm 23 initializes suitor and ws to null and 0, respectively, and calls the iterative function
findSuitor(u) (Algorithm 22). findSuitor uses a variable cur to store the vertex that is seeking a new partner
in the current iteration – i.e., a vertex u in the recursive findSuitor. In Lines 7–10, it determines whether
there exists a neighbor v of cur and, if so, it stores v and w(cur, v) into the partner and heaviest variables,
respectively. In Line 12, if heaviest is 0, no such neighbor exists and the function terminates because done
is left to true– hence, cur remains unmatched. Otherwise, partner was set to the matching partner of cur
and heaviest to w(cur, partner); in Lines 13–15, y stores the previous matching partner of partner (if any)
before making cur the new matching partner of partner by setting suitor(partner) to cur and ws(partner)
to heaviest. Then, in Lines 16–18, if y is not null, then partner had a previous potential matching partner
y; therefore y needs to seek a new potential matching partner and this is done by setting cur to y and done
to false – which is equivalent to a recursive call of Algorithm 20.

9.3 Dynamic Suitor Algorithm for Single Edge Updates

In this section, we first describe howwe extend the staticSuitor algorithm to also handle single edge updates.
Building upon that, we generalize our approach to multiple edge updates in batches in Section 9.4.

We index variables of the Suitor algorithm with the superscript (i) (for intermediate) [or (f) for final,
resp.] if they refer to the state directly after the edge change [or after the dynamic Suitor algorithm has been
run], e.g., suitor(i)(u) [or suitor(f)(u)]. The matching M (i) as well as other Suitor variables are derived
fromM (and the other counterparts) by taking the edge update onG into account. For example, if an edge
e is deleted fromG that is part ofM , thenM (i) =M \{e}. Our goal is to update/improve the intermediate
matchingM (i) efficiently, i.e., to avoid redundant computations when computing the final matchingM (f).
We will show that M (f) equals the matching M ′ computed by the static Suitor algorithm on G′. To this
end, we define the notion of affected vertex.

Definition 9.3.1. A vertex u is called affected iffM (i) violates Eq. (9.2) for suitor(i)(u), i.e., iff:

suitor(i)(u) ̸= argmax
v∈N ′(u)

{w′(u, v) : ∄y ∈ N ′(v) s.t. suitor(i)(v) = y ∧ w′(y, v) > w′(u, v)}.

Our dynamic algorithm computes M (f) after an edge update by finding all the vertices affected by the
edge update (findAffected function in Algorithm 24) and by then updating their matching partner so that
Eq. (9.2) is satisfied (updateAffected function in Algorithm 25). If Eq. (9.2) is satisfied for every vertex in
G′, it follows from Lemma 9.2.2 that the resulting matching is (the unique)M ′.

161

Algorithm 24 Extended version of the findSuitor function (Algorithm 22) that finds the affected vertices
Input: Affected vertex z
Output: Stack of affected vertices
1: function findAffected(z)
2: SA ← empty stack
3: cur← z
4: done← false
5: repeat
6: partner← suitor(cur)
7: heaviest← ws(cur)
8: for each x ∈ N(cur) do
9: if not affected(x) and w(cur, x) > heaviest and w(cur, x) > ws(x) then

10: partner← x
11: heaviest← w(cur, x)
12: done← true
13: if heaviest > ws(partner) then
14: y ← suitor(partner)
15: suitor(partner)← cur
16: ws(partner)← heaviest
17: SA.push(partner)
18: affected(partner)← true
19: if y ̸= null then
20: suitor(y)← null
21: ws(y)← 0
22: affected(y)← true
23: cur← y
24: done← false
25: else
26: affected(cur)← false
27: until done is true
28: return SA

The findAffected function (Algorithm 24) is an extended version of the findSuitor function (Algo-
rithm 22) used by the iterative Suitor algorithm; it uses a boolean array affected to keep track of the af-
fected vertices and pushes the affected vertices whose suitor and ws variables need to be updated onto a
stack SA. As in findSuitor, cur is the vertex we are trying to find a new matching partner for, partner
is the preferred matching partner for cur – i.e., the vertex that satisfies Eq. (9.2) for cur, if any – and
heaviest = w′(cur, partner). Then, in Lines 15–16, if a new matching partner for cur is found, the
suitor(f)(partner) and ws(f)(partner) variables are updated to cur and heaviest, respectively; additionally,
partner is pushed onto SA (Line 17). If partner is matched in M with another vertex y, then the edge
{partner, y} would violate the matching condition and this needs to be removed from the matching; this
is done in Lines 20–21 by “invalidating” the vertex y, i.e., setting the values of suitor(f)(y) and ws(f)(y) to
null and 0, respectively. As in findSuitor, in the next iteration we seek for a new partner for the invalidated
vertex y by updating cur to y. This procedure is repeated until either a new partner for cur cannot be found
(i.e., cur is free inM ′), or partner is free inM . By keeping track of the affected vertices, we guarantee that
a previously invalidated vertex is not selected as new matching partner in future iterations of the loop (see
Line 9).

The stack SA is later used by updateAffected (Algorithm 25) to match the affected vertices that were not
updated by findAffected (i.e., the ones that were stored in the cur variable) to their new partner (Lines 4–
5). Once a pair of matched vertices has eventually been processed, they are not affected anymore and thus

162

Algorithm 25 Updates suitor and ws of the matching partners of the vertices into the stack SA

Input: Stack of affected vertices SA

1: while SA is not empty do
2: x← SA.pop()
3: y ← suitor(x)
4: suitor(y)← x
5: ws(y)← ws(x)
6: affected(x)← false
7: affected(y)← false

Algorithm 26 Dynamic Suitor algorithm for single edge insertions
Input: Graph G′ = (V,E ∪ {u, v}, w′), an edge {u, v} /∈ E

1: if w′(u, v) > max{w′(u, suitor(i)(u)), w′(v, suitor(i)(u))} then
2: affected(x)← false ∀x ∈ V
3: for z ∈ {v, u} do
4: affected(z)← true
5: SA ← findAffected(z)
6: updateAffected(SA \ {suitor(i)(z)})

updateAffected marks them as unaffected (Lines 6–7). In the following, we show how these two functions
are used in case of an edge insertion or an edge removal and that our dynamic algorithm yields a matching
M (f) that equals the matchingM ′ computed by the static Suitor algorithm onG′. Concerning edge weight
updates, they can be handled as an edge removal followed by an edge insertion.

9.3.1 Edge Insertions

Let us first address the case in which an edge is inserted intoG, i.e.,G′ = (V,E,∪{u, v})with e = {u, v} /∈
E. Intuitively, this new edge will only be part of the new matchingM ′ iff it is “a better deal” for both u and
v. In other words: e ∈M ′ iff w′(u, v) is heavier than both w′(u, suitor(i)(u)) and w(v, suitor(i)(v)) and is
thus the dominant edge for both. We show this in the following lemma:

Lemma 9.3.1. LetG′ = (V,E ∪ e) with e = {u, v} /∈ E.
Then: e ∈M ′ ⇔ w′(u, v) > max

{
w(u, suitor(i)(u)), w(v, suitor(i)(v))

}
.

Proof. We develop the proof w.l.o.g. for u by assuming that w(u, suitor(i)(u)) > w(v, suitor(i)(v)); the
proof for v is symmetric. Let Y ⊆ N(u) be the set of vertices y that do not have any neighbor x such that
w(x, y) > max{w(x, suitor(i)(x)), w(u, y)}, i.e., the set of vertices among which Eq. (9.2) selects suitor(u)
as the vertex y with maximum w(y, u). We also define Y (v) := Y ∪ {v}.

“⇒”: From e ∈ M ′ we have that suitor′(v) = u, and from Eq. (9.2) it follows that v =

argmaxy∈Y (v) w′(u, y). Therefore, since suitor(i)(u) ∈ Y (v), w′(u, v) > w′(u, suitor(i)(u)).
“⇐”: By definition, we have that suitor(i)(u) = argmaxy∈Y w′(u, y) and that suitor′(u) =

argmaxy∈Y (v) w′(u, y). By hypothesis, w′(u, v) > w(u, suitor(i)(u)), and thus suitor′(u) =

argmaxy∈Y (v) w′(u, y) = v. The same holds if we exchange u and v in the argument. Therefore,
e ∈M ′.

Algorithm 26 shows our dynamic algorithm for single edge insertions. In Line 1, given a newly added
edge e = {u, v}, the algorithm excludes e if it does not satisfy Lemma 9.3.1 because e is then also not part
ofM ′. As we will show later, all the vertices affected by an edge insertion lie on two alternating paths that

163

x1 x2

x3 x4

x5

u

v

(a) Theaffected vertices are covered by one alternating pathPv .

x1 x2

x3 x4

x5

y1 y2

y3 y4

u

v

(b) The affected vertices are covered by two alternating paths
Pu and Pv .

Figure 9.1: Examples of alternating paths that cover the vertices affected by the insertion of an edge {u, v}. Solid lines
and dashed lines represent edges inM ′ \M and edges inM \M ′, respectively. In Figure 9.1a there is only
one alternating path because u is matched inM and v is not, whereas in Figure 9.1b there are two because
both u and v are matched inM .

start from u and v and that alternate edges inM ′ \M with edges inM \M ′, as shown in Figure 9.1. In the
for-loop, our algorithm finds the affected vertices that lie on these two alternating paths and updates their
matching partner according to Eq. (9.2). This is done as follows: the first vertex in the path is marked as
affected, findAffected updates the suitor and ws variables of the affected partner vertices and pushes them
onto a stack SA. Finally, updateAffected matches the vertices in SA to their new partner. Note that, in
Line 6, suitor(i)(z) is removed from SA to avoid overwriting suitor(z) in updateAffected; this information
is needed in the next iteration of the for loop to find the affected vertices in the alternating path that starts
from u.

We now analyze inmore detail which vertices are affected by the insertion of an edge e = {u, v} /∈ E that
satisfies Lemma 9.3.1 (and is thus inM ′) and howM (f) is computed starting fromM (i). In the following,
we split our analysis into three possible scenarios: both u and v are unmatched (Case 1), only one of u and
v is matched (Case 2), and both u and v are matched (Case 3).

9.3.1.1 Case 1: u and v both unmatched

Let us first cover the trivial case where both u and v are unmatched inM , i.e., there is no vertex in G that
satisfies Eq. (9.2) for both u and v. In the following Lemma, we show thatM ′ =M (i) ∪{e} and that u and
v are the only affected vertices.

Lemma 9.3.2. Let e = {u, v} /∈ E. If both u and v are unmatched inM , thenM ′ = M ∪ {e} and u and
v are the only affected vertices.

Proof. The proof is symmetric for u and v, we develop it for u. If u is unmatched inM , then suitor(i)(u) =
null and there is no neighbor of u that satisfies Eq. (9.2) in G. After the insertion of e we have that 0 =

w′(u, suitor(i)(u)) < w′(u, v) and thus v satisfies Eq. (9.2) for u. Further, all the neighbors of u in G are
already matched, and matching u with v cannot invalidate Eq. (9.2) for any of them. Therefore, M ′ =

M (i) ∪ {e} and no other vertex apart from u and v is affected.

We now show thatM (f) equalsM ′, i.e., Eq. (9.2) is fulfilled byM (f) for every vertex inG′. The condition
in Line 1 in Algorithm 26 is clearly true because both u and v are free. In findAffected(v), we have that

164

cur = v and partner = u. Thus, suitor(f)(u) is set to v and u is pushed onto SA. findAffected(v) performs
only one iteration since y = suitor(i)(u) = null and updateAffected has no effect since its input stack is
empty. The next iteration of the for loop performs the same operations but with u and v swapped. Thus, the
resulting matching isM (f) =M (i) ∪ {e} =M ′.

9.3.1.2 Case 2: u matched and v unmatched

To analyze the casewhere just one ofu and v ismatched inM , our analysis assumesw.l.o.g. thatu ismatched
inM and v is not; the other case is symmetric. We first describe how Algorithm 26 identifies all the affected
vertices and then how it updates their matching partner.

In this scenario, u and v are not the only vertices affected by the insertion of e because Eq. (9.2) is violated
also for suitor(i)(u). In particular, we show in Lemma 9.3.3 that the vertices affected by the insertion of e are
covered by a simple (i.e., without loops) path that, starting from v, alternates edges inM ′ \M with edges
inM \M ′ as shown in Figure 9.1a. We show this in the following lemma.

Lemma 9.3.3. Let e = {u, v} /∈ E be a newly inserted edge such that e ∈M ′. If u is matched inM and v
is not, then all the vertices affected by the insertion of e are connected by a simple alternating path Pv that
starts from v and that alternates edges inM ′ \M with edges inM \M ′. Further, the weights of the edges
alongPv are decreasing, i.e., for each e1, e2 ∈ Pv where e1 precedes e2 inPv , we have thatw′(e1) > w′(e2).

Proof. Clearly, e ∈ M ′ \M is the first edge in Pv . As shown in Figure 9.1a, let x1 = suitor(i)(u): e ∈ M ′

implies that Eq. (9.2) is violated for x1 in G′. If no vertex x2 ∈ N ′(x1) satisfies Eq. (9.2) for x1, then
x1 remains unmatched in M ′ and no further vertex is affected. Otherwise, there exists another vertex
x2 ∈ N ′(x1) that satisfies Eq. (9.2) for x1. In the former case, the alternating path has only two edges: e
and e1 = {u, x1} ∈ M \M ′. In the latter case, suitor(f)(x1) = x2 and suitor(f)(x2) = x1. Hence, in
addition to e1, the alternating path has at least another edge e2 = {x1, x2} ∈ M ′ \M . By repeating with
e1 the same logic we applied to e, it follows that the vertices affected by the insertion of e lie on a path Pu

that, starting from u, follows edges inM ′ and inM alternately.
What’s left to be shown is that Pv is simple, which can be done similarly as in the final part of the

proof of [203, Lemma 3.2]. Note that, if x1 is affected, then w′(u, x1) < w′(u, suitor(f)(u) = v) and
w′(x1, suitor(f)(x1) = x2) < w′(u, x1), and thus w′(x1, suitor(f)(x1)) < w′(u, suitor(f)(u)). In words,
the weights of the edges along Pv are decreasing because every time an affected vertex x1 loses its matching
partner suitor(i)(x1), it holds: if it finds a new partner suitor(f)(x1) = x2, thenw′(x1, x2)must be smaller
than w′(x1, suitor(i)(x1)). Therefore, it is not possible for x1 to be matched in M ′ with a vertex that is
already covered by Pv , which implies that Pv is simple.

Note that, as shown in Figure 9.1a, the alternating path Pv = (u, v, x1, . . . , xℓ) alternates vertices xi that
are matched in M ′ with a “worse partner” (in terms of edge weight) than the one they had in M (i.e., the
ones where i is odd), and vertices xi that are matched inM ′ with a “better partner” than the one they had
inM (i.e., u, v, and the ones where i is even). Hereafter, we will call the former ones “downgraded” and the
latter ones “upgraded”. More formally:

165

Lemma 9.3.4. For each vertex xi in an alternating path Pv = (v, u, x1, . . . , xℓ), for each 1 ≤ i ≤ ℓ it
holds: if i is odd, then w′(xi, suitor(f)(xi)) < w′(xi, suitor(i)(xi)) (i.e., xi is downgraded); otherwise, i is
even and w′(xi, suitor(f)(xi)) > w′(xi, suitor(i)(xi)) (i.e., xi is upgraded).

Proof. Every downgraded vertex xi loses its initial matching partner suitor(i)(xi) because suitor(i)(xi)
is matched in M ′ with another (upgraded) vertex – e.g., x1 loses its initial matching partner u because
{u, v} ∈ M ′. Note that, in Pv , the upgraded vertex matched with suitor(i)(xi) in M ′ comes always ear-
lier than xi; from Lemma 9.3.3 we know that the weights of the edges along Pv are decreasing, and thus
w′(xi, suitor(i)(xi)) < w′(xi, suitor(f)(xi)). Further, by construction of the alternating path, Pv alternates
downgraded and upgraded vertices from x1 on. Thus, knowing that x1 is downgraded, all the remaining xi
with odd i are also downgraded.

If xi is upgraded, it is either one of u and v, or it is suitor(f)(xi−1) of the previous downgraded ver-
tex xi−1 in Pv . Since by our hypothesis xi is in Pv , we also have that suitor(f)(xi) = xi−1, hence
w′(xi, suitor(f)(xi) = xi−1) > w′(xi, suitor(i)(xi)).

Remark 9.3.1. Due to the total ordering of the edge weights, the alternating path Pv is unique and can be
computed deterministically as the sequence of the vertices stored in the cur and partner variables of the
findSuitor(v) function (Algorithm 22).

From Lemma 9.3.3 it follows that, to computeM ′, we need to find the affected vertices in the alternating
path Pv and update their suitor(f) and ws(f) values according to Eq. (9.2). In the following we show that
Algorithm 26 finds all the vertices in Pv and updates their matching partner according to Eq. (9.2), so that
M (f) equalsM ′.

Proposition 9.3.1. The findAffected(v) function (Algorithm 24) computes suitor(f) and ws(f) according
to Eq. (9.2) for the upgraded vertices in Pv and pushes them onto a stack SA.

Proof. The function maintains the following loop invariant: cur is either v or an invalidated downgraded
vertex xi ∈ Pv ; in the first case, partner is u; in the second case, if the condition in Line 13 is true, then
partner is an improving vertex xi+1 ∈ Pv – otherwise both the loop and Pv stop. Maintaining the invariant
guarantees that findAffected(v) covers all affected vertices in Pv and that all the improving vertices xi are
updated according to Eq. (9.2) and pushed onto SA.

The invariant obviously holds in the first two iterations. In the first one, we have that cur = v, partner = u,
and y = suitor(i)(u) = x1 (see Figure 9.1a). In the next one, cur = x1 is invalidated from the previous
iteration, and thus it is a downgraded vertex in Pv that is seeking a new partner to replace the previous
partner u; if a new partner x2 is found, partner = x2 is an upgraded vertex in Pv , thus suitor(f)(x2)
and ws(f)(x2) are updated to x1 and w′(x1, x2), respectively, and it is pushed onto SA (Lines 15–17). By
applying the same logic to the remaining vertices in Pv , the invariant also holds for the remaining iterations
of findAffected(v). We remark that, by marking the vertices in Pv as affected, the function cannot iterate
on the same vertices multiple times. The function terminates when either partner is a free vertex (hence
y = null), or there is no neighbor of cur that satisfies Eq. (9.2), and thus cur remains unmatched in
M (f).

166

Note that, if Pv ends with a downgraded (hence free) vertex xℓ, findAffected(v) invalidates it before
terminating, i.e., suitor(f)(xℓ) andws(f)(xℓ) are updated according to Eq. (9.2). Therefore, xℓ is not affected
anymore inG′ and thus marked as unaffected (Line 26).

Proposition 9.3.2. After updateAffected finishes, all vertices in Pv satisfy Eq. (9.2) inG′.

Proof. FromProposition 9.3.1we know that, when updateAffected is called, all the upgraded vertices satisfy
Eq. (9.2) inG′ and that they are stored in the stack SA. updateAffected “completes” the matchingM (f) by
updating, for all the downgraded vertices xi ∈ Pv matched inM ′, their suitor(f)(xi) and ws(f)(xi) values
to xi+1 and w′(xi, xi+1), respectively, and thus all vertices in Pv satisfy Eq. (9.2) inG′.

Proposition 9.3.3. If u is matched inM and v is not (or vice versa), Algorithm 26 has a worst-case running
time that is linear in the number of the affected vertices and in the sum of their degrees.

Proof. Algorithm 26 invokes findAffected and updateAffected twice. The number of iterations of find-
Affected is linear in the length of a simple alternating path that covers the vertices affected by the edge
insertion (Lemma 9.3.3). In each iteration, findAffected iterates over all the neighbors of the current vertex
(Line 8) and all the other operations have constant time complexity.

updateAffected performs constant-time operations on each vertex in SA. findAffected pushes at most
one vertex onto SA in each iteration, and thus the worst-case time complexity of updateAffected is linear
in the number of affected vertices.

Remark 9.3.2. In the worst case, all vertices in the graph are affected by an edge insertion and then findAf-
fected performs at most n iterations and visits all edges twice. Therefore, the worst-case time complexity of
Algorithm 26 isO(n+m).

9.3.1.3 Case 3: u and v both matched

To settle the final case, we show (i) that the affected vertices are covered by two alternating paths Pv and Pu

and then (ii) that the matchingM (f) computed by Algorithm 26 equalsM ′.

Lemma 9.3.5. Let {u, v} /∈ E be a newly inserted edge such that e ∈ M ′. If both u and v are matched in
M , then all the vertices affected by the insertion of e are connected by two simple alternating paths Pv and
Pu with decreasing edge weights that start from v and u, respectively, and that alternate edges inM ′ \M
and edges inM \M ′.

Proof. We proceed similarly as in Lemma 9.3.3. As shown in Figure 9.1b, e ∈ M ′ \M is the first edge for
both Pv and Pu. Thus, Eq. (9.2) is violated for both x1 = suitor(i)(u) and y1 = suitor(i)(v) (due to the
matching condition, x1 ̸= y1). Consequently, the edges e1,u = {u, x1} and e1,v = {v, y1} are removed
from M (i), which implies that e1,u, e1,v ∈ M \M ′. Now let x2 and y2 be the two vertices (if any) that
satisfy Eq. (9.2) for x1 and y1, respectively, inG′. Clearly, we have that {x1, x2}, {y1, y2} ∈M ′ \M . If x2
and/or y2 are matched inM , then we can apply recursively to their matching partners the same logic as we
did with x1 and y1. Hence, Pv and Pu are constructed exactly as described in Lemma 9.3.3 and thus they
are both simple and have decreasing edge weights.

167

In the following, we show that the vertices along Pv and Pu are computed in the two iterations of Algo-
rithm 26. A crucial observation is that our dynamic algorithm computes one alternating path at a time –
Pu is computed after Pv . Therefore, when a new partner vertex for cur is found while computing Pv (i.e.,
in findAffected(v)), this might not be the actual vertex that satisfies Eq. (9.2) for cur in G′ because it is
computed without considering the affected vertices in Pu – they are yet to be computed. If this is the case,
then it results in a wrong computation of Pv and thus, immediately after the first iteration of Algorithm 26,
some of the vertices covered by findAffected(v) are in a “wrong state”, i.e., Eq. (9.2) is locally satisfied for
them but not for all the vertices in G′. However, we show later that, in this case, the second iteration of
Algorithm 26 not only updates the affected vertices in Pu, but also corrects the vertices that are in a wrong
state, so that eventually all vertices inG′ fulfill Eq. (9.2) and thusM (f) =M ′. For this purpose, we expand
our notation by denoting the values of the variables of Suitor and Pv immediately after the first iteration of
Algorithm 26 with superscript (ii).

Clearly, if in P (ii)
v there are no vertices in a wrong state, then P (ii)

v = Pv and Pu is computed exactly in
the same way as Pv (as in Case 2) and no further analysis is required. Otherwise, the two paths intersect:
let yi be the last vertex in Pu before Pu intersects P (ii)

v and let xj be the vertex in P (ii)
v adjacent to yi (e.g.,

vertices x5 and y5 in Figure 9.2b). We observe that an intersection always happens when findAffected(u)
selects a vertex in P (ii)

v as new matching partner for the current vertex yi in Pu. Therefore, yi is always
a downgraded vertex and xj satisfies Eq. (9.2) for yi in G′. Depending on the position of xj in P (ii)

v , we
identify three possible subcases and treat them separately: (i) xj is downgraded and it is the last vertex
in P (ii)

v (as in Figure 9.2b), (ii) xj is downgraded and internal in P (ii)
v (as in Figure 9.2c), and (iii) xj is

upgraded (as in Figure 9.2d).

Subcase (i) – xj is downgraded and it is the last vertex in P (ii)
v . In this case (see Figure 9.2b), xj

is free inM (ii) because suitor(ii)(yi) = yi−1 and no other vertex inN ′(xj) satisfies the condition in Line 9
of findAffected(v) for xj . Hence, xj is in a wrong state because it is not matched with yi, its actual matching
partner inM ′. The wrong state of xj is corrected by findAffected(u): whenPu reaches yi, suitor(f)(xj) and
ws(f)(xj) are set to yi and w′(xj , yi), respectively. Also, xj is pushed onto SA, so that yi will eventually be
matched with xj in updateAffected.

Subcase (ii) – xj is downgraded and it is internal in Pu. Here, xj is in a wrong state for the same
reason as in subcase (i). Themain difference (see Figure 9.2c) is thatP (ii)

v does not finish in xj because there
exists a vertex partner = xj+1 ∈ N ′(xj) that satisfies the conditions in Lines 9 and 13 in findAffected(v).
Thus, all the vertices in P (ii)

v after xj are in a wrong state as well, because they are not affected, but their
matching partner is updated by Algorithm 26. However, in the following lemma we show that the second
iteration of the algorithm matches xj to its matching partner in M ′ and restores the original matching
partners of the vertices in P (ii)

v after xj .

Lemma9.3.6. Thesecond iteration ofAlgorithm26matchesxj with itsmatching partner inM ′ and restores
the original matching partners of the vertices in P (ii)

v after xj .

Proof. As in case (i), xj fulfills Eq. (9.2) for yi and once findAffected(u) reaches yi it matches xj to yi.
Recall that the vertices in P (ii)

v after xj are in a wrong state in M (ii), because their matching has been

168

x1 x2

x3 x4

x5

u

v

(a) Affected vertices immediately after the computation ofP (ii)
v

and before the computation of Pu. This represents M (ii),
not M (f) since Pu is yet to be computed.

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

u

v

(b) Case 1: matchingM (f) afterPu is computed. The last vertex
x5 in P

(ii)
v is free in M (ii), Pu intersects P (ii)

v in x5, and
x5 is matched with y5 in M (f).

x1 x2

x3 x4

x5

y1 y2

y3

u

v

(c) Case 2: matching M (f) after Pu is computed. Pu intersects
P

(ii)
v in x3, which is internal in P

(ii)
v . P (ii)

v from x4 on is
undone.

x1 x2

x3 x4

x5

y1 y2

y3

z4

z5
u

v

(d) Case 3: matchingM (f) after Pu is computed. Pu intersects
P

(ii)
v in x4 which is upgrade and continues with x3.

Figure 9.2: Examples of intersecting alternating paths computed by Algorithm 26 to update the matching after the
insertion of an edge {u, v}. Figure 9.2a shows the status of the affected vertices after the computation of
P

(ii)
v and before the computation of Pu. Figures 9.2b–9.2d show the three possible cases of intersection

between P (ii)
v and Pu. Dashed and solid edges have the same meaning as in Figure 9.1, dotted edges are

inM (ii) \M (f), dash-dotted edges are inM (f) \M (ii).

updated, although they are not affected by the edge insertion. Hence, we need to show that for these vertices,
findAffected(u) restores the matching partner they have inM – i.e., the same as inM ′ since they are not
affected.

Let xj+1 be suitor(i)(xj); in the iteration where partner is xj , findAffected(u) keeps iterating with cur =
xj+1. Hereafter, findAffected(u) maintains the following invariant: cur is an upgraded vertex inM (i) and,
if heaviest > ws(ii)(partner), then partner is the matching partner of cur inM ; otherwise cur is free inM ′.
Due to the properties of the alternating path we have that, in M (i), xj+1 is an upgraded vertex, because
it is matched with xj and w′(xj , xj+1) > w′(xj+1, xj+2). In M ′, in turn, we have that xj+1 is either
free or matched with another vertex xj+2. In the first case, findAffected(u) stops at xj+1 and leaves it
unmatched, because there is no other vertex inN ′(xi+1) that satisfies Eq. (9.2). Otherwise, we need to show
that findAffected(u) selectsxj+2 asmatching partner forxj+1. FromLemma 9.3.5, the vertices onP (ii)

v and
Pu beforexj+1 satisfy Eq. (9.2) and thus cannot be selected as partners forxj+1. Furthermore, xj+2 satisfies
Eq. (9.2) forxj+1 inG′, and it is downgraded inM (ii) (hencew′(xj+2, suitor(ii)(xj+2)) < w′(xi+1, xj+2)),
which means that the conditions in Lines 9 and 13 hold. Also, the edge weights are decreasing along P (ii)

v

(Lemma 9.3.5), implying that no other neighbor of xi+1 in P (ii)
v satisfies Eq. (9.2) for xj+1 in G′; hence,

{xi+1, xi+2} ∈M (f). The same applies to the remaining vertices in P (ii)
v .

169

Algorithm 27Dynamic Suitor algorithm for single edge removals
Input: GraphG′ = (V,E \ {u, v}, w′), an edge {u, v} ∈ E
1: if suitor(u) = v then
2: affected(x)← false ∀x ∈ V
3: suitor(u)← null
4: suitor(v)← null
5: ws(u)← 0
6: ws(v)← 0
7: for z ∈ {u, v} do
8: affected(z)← true
9: SA ← findAffected(z)

10: updateAffected(SA)

Subcase (iii) – xj is upgraded.. In this case (see Figure 9.2d), we have that {xj−1, xj} ∈ M (ii) and
that w′(yi, xj) > w′(xj−1, xj) > w′(xj , xj+1). Thus, xj−1 is in a wrong state because {yi, xj} ∈ M (f),
whereas the remaining part of P (ii)

v from xj on is not necessarily wrong, because xj is upgraded also in
Pu. findAffected(u) corrects xj−1 by continuing the alternating path from it: once cur = yi is matched
with xj , in the next iteration of findAffected(u) we have that cur is xj−1. Let zj be the vertex that satisfies
Eq. (9.2) for xj−1 in G′ (e.g., z4 in Figure 9.2d). If no such vertex exists, then xj−1 is free in M (f) and
findAffected(u) stops; otherwise, Pu continues with zj .

We covered now all possible cases that can occur after an edge insertion. In the following lemma we
generalize our results.

Proposition 9.3.4. After an edge insertion, Algorithm 26 computesM ′; its worst-case time complexity is
O(n+m).

Proof. Thecorrectness of the resultingmatching is shown for every possible case of edge insertion described
in Case 1 to 3. Concerning the worst-case time complexity, from Proposition 9.3.3 and Remark 9.3.2 it
follows that the first iteration of Algorithm 26 has O(n + m) worst-case running time. The same also
holds for the second iteration: due to Lemma 9.3.5 Pu is simple, so that its length is bounded byO(n), and
therefore the worst-case time complexity of Algorithm 26 isO(n+m).

Unfortunately, a bound using the number of affected vertices and their degrees as in Proposition 9.3.3 is
difficult to determine here due to the vertices in a “wrong” state.

9.3.2 Edge Removals

We now address the case in which an edge {u, v} ∈ E is removed fromG, i.e.,G′ = (V,E \ {u, v}).

Lemma 9.3.7. LetG′ = (V,E \ e) with e = {u, v} ∈ E. Then: u and v are affected⇔ e ∈M .

Proof. We develop the proof w.l.o.g. for u, for v it is symmetric.
“⇐”: If e ∈M , then u is trivially affected since suitor(i)(u) = v /∈ N ′(u); u thus violates Eq. (9.2) inG′.
“⇒”: Let Y ⊆ N(u) be defined as in Lemma 9.3.1, i.e., as the set of neighbors y of u among which

Eq. (9.2) selects suitor(u) as the vertex y with maximum w(u, y). Further, let Y (v) := Y \ {v}. Let us
assume for sake of contradiction that e /∈ M . Hence, suitor(i)(u) = argmaxy∈Y w(u, y) ̸= v and, in

170

G′, this suitor does not change by having removed v from the neighborhood of u. Hence, we have that
suitor′(u) = argmaxy∈Y (v) w′(u, y) = suitor(i)(u), meaning that u is not affected, which contradicts our
hypothesis.

Algorithm 27 shows our dynamic algorithm for edge removals. According to Lemma 9.3.7, Line 1 ex-
cludes all the removals where the removed edge e = {u, v} is not in M . Similarly to edge insertions, we
show later that the vertices affected by an edge removal lie on two alternating paths that start from u and
v and that alternate edges in M ′ \M with edges in M \M ′. If e ∈ M , both u and v are affected down-
graded vertices for which we have to find a new partner. First, Lines 3–6 invalidate them. Then, as for
edge insertions in Algorithm 26, the for-loop uses findAffected to compute the alternating paths of the
affected vertices and to update the matching partner of the upgraded vertices in the path. Then, it uses
updateAffected to update the matching for the downgraded vertices in the path.

Lemma 9.3.8. Let e = {u, v} ∈M . If e is removed fromG, then all the vertices affected by the removal of
e are connected by two simple alternating paths Pu and Pv with decreasing edge weights that start from u

and v, respectively, and that alternate edges inM ′ \M and edges inM \M ′.

Proof. As we did in Lemma 9.3.5, we need to show that the construction of Pu and Pv is equivalent to the
construction of an alternating path that connects the vertices affected by an edge insertion as described in
Lemma 9.3.3. The only difference is that, after an edge removal, the alternating paths start from a down-
graded vertex rather than from an upgraded vertex. We develop our proof w.l.o.g. foru, for v it is symmetric.

Due to Lemma 9.3.8, u is affected and downgraded. If there exists a vertex x1 that satisfies Eq. (9.2) for
u in G′, then x1 is upgraded and e1 = {u, x1} ∈ M ′ \M ; otherwise, u remains free in G′ and it is the
only vertex in Pu. Similarly, if x1 is matched in M with a vertex x2, then x2 is affected and downgraded,
e2 = {x1, x2} ∈ M \M ′, and we can apply to x2 the same logic we applied to u; otherwise, x1 is free in
G and Pu has only one edge e1. Thus, as in Lemma 9.3.3, the resulting path Pu alternates edges inM ′ \M
and edges inM \M ′ as well as downgraded and upgraded vertices.

Thus, the vertices affected by an edge removal are covered by alternating paths as the ones shown in
Figure 9.1, with the difference that the solid lines represent edges inM \M ′ and the dashed lines represent
edges inM ′ \M .

Proposition 9.3.5. After Algorithm 27 finishes, the resulting matchingM (f) equalsM ′ inG′.

Proof. Algorithm 27 works analogously to Algorithm 26, namely, it uses findAffected and updateAffected
to find the affected vertices along an alternating path and to compute their suitor(f)(·) and ws(f)(·). From
Lemma 9.3.8 we know that the vertices affected by an edge removal are covered by two alternating paths
as described in Lemma 9.3.3. Thus, the correctness of Algorithm 27 follows from the correctness of Algo-
rithm 26.

Proposition 9.3.6. The worst-case running time of Algorithm 27 isO(n+m).

As argued in Proposition 9.3.5, Algorithm 27 works analogously to Algorithm 26. Thus, they have the
same worst-case time complexityO(n+m) – see also Proposition 9.3.4.

171

Algorithm 28Dynamic Suitor algorithm for a batch of edge insertions
Input: GraphG′ = (V,E ∪B,w′), batch of edge insertionsB = {{u, v} s.t. {u, v} /∈ E}
1: affected← false ∀u ∈ V
2: i← 0
3: suitor[i](u)← suitor(i)(u) ∀u ∈ V
4: ws[i](u)← ws(i)(u) ∀u ∈ V
5: for each {u, v} ∈ B do
6: if w′(u, v) > max

{
w′(u, suitor[i](u)), w′(v, suitor[i](v))

}
then

7: for each z ∈ {u, v} do
8: affected(z)← true
9: SA ← findAffectedB(z) ▷ Edge weights in Pz are decreasing, see Section 9.4.1

10: updateAffected(SA \
{
suitor[i](z)

}
)

11: i← i+ 1

9.4 Extension to Batch Updates

Our dynamic algorithms for single edge updates can be generalized to batches of edge updates. The main
idea is to run the algorithms for single edge updates multiple times on the updated graphG′. When doing
this, we might modify the suitor and ws variables multiple times. Thus, in this section we use superscript
[i] to denote the values of these variables after we ran the algorithm for single edge updates i times. Hence,
if the total number of updates in the batch is b, then [b] is equivalent to (f).

Note that the crucial difference to an algorithm that updates thematching after every single edge insertion
is that our algorithm runs directly on the graph G′ that already includes a batch B of edge updates. Thus,
the intermediate matching computed by our algorithm after i < |B| = b iterations is not necessarily the
matching that Suitor computes on the initial graph with the first i edge updates in the batch. As we explain
in Sections 9.4.1 and 9.4.2, this allows our algorithm to update vertices affected by different edge updates in
the same iteration; albeit this does now lower the time complexity, it results in better practical performances
(see Section 9.6.4).

9.4.1 Multiple Edge Insertions

Algorithm 28 shows our dynamic algorithm to handle a batchB = {{u, v} s.t. {u, v} /∈ E} of edge inser-
tions – which essentially applies Algorithm 26 to every individual edge in B. For every edge e = {u, v} ∈
B, Algorithm 28 checks if e ∈M [i+1] (Line 6) and, if so, it computes the values of suitor[i] and ws[i] of the
vertices in G′ affected by the insertion of e as done by Algorithm 26. As in Section 9.3.1, these vertices lie
along two alternating pathsPu andPv that alternate edges inM [i+1]\M [i] and edges inM [i]\M [i+1]. In ad-
dition to their first edge, we allow Pu and Pv to include further edges inB whose weight is lower compared
to any other preceding edge in the alternating path. This condition is necessary to ensure the correctness
of the resulting matching: if an alternating path does not have decreasing edge weights, this could result in
violations of Eq. (9.2) for some vertices after Algorithm 28 finishes. Furthermore, allowing the alternating
paths to includemore than one edge inBmakes our batch-dynamic algorithmmore competitive in practice
than an algorithm that only handles single edge insertions (see Section 9.6.4).

172

u

v

y1 y2

y3 y4

y5

10
20

8
5

2

18
15

Figure 9.3: Example of alternating path (including edge weights) with non-decreasing edge weights where Eq. (9.2)
is violated for y5. Thick solid edges are in B, solid edges are in M [i+1] \ M [i], and dashed edges are
in M [i] \M [i+1]. The dash-dotted edge shows the violation: assuming that y1 satisfies Eq. (9.2) for y5,
findAffected ignores it because, when cur is y5, y1 is marked as affected, and thus not considered as a
potential partner for y5 (see Line 9 in Algorithm 24).

Remark 9.4.1. LetP be an alternating path computed by findAffected in the i-th iteration of Algorithm 28.
If the edge weights of P are not decreasing, then Eq. (9.2) could be violated for some vertices inM (f).

Figure 9.3 shows a simple example when such a violation occurs. Let us assume that B =

{{u, v}, {y3, y4}}, that Algorithm 28 is computing Pu with findAffected(u), and that {y3, y4} is yet to
be processed by Algorithm 28 in the for-loop in Line 5. Once Pu reaches y5 (by adding {y4, y5} ∈ B),
y5 cannot choose y1 as matching partner, because y1 is already in Pu, and thus findAffected marked it
as affected and does not consider it as a potential matching partner for y5 (see Line 9 in Algorithm 24).
Thus, Eq. (9.2) is violated for y5 and y1; further, updateAffected matches together y3 and y4, thus the next
iteration of Algorithm 28 does not have any effect and the violation of Eq. (9.2) remains inM (f).

Consequently, in case of a batch of edge insertions, we enforce findAffected to discard heavier edges than
the ones that are already part of the alternating path and, to distinguish it from the function inAlgorithm 24,
we denote it as findAffectedB (Algorithm 29). As we prove in Lemma 9.4.1, this guarantees that, for every
vertex x in an alternating path computed in the i-th iteration of Algorithm 28, if suitor[i+1](x) does not
satisfy Eq. (9.2) inM [i+1], then the vertex y that satisfies Eq. (9.2) for x inM [i+1] is such that {x, y} ∈ B
and {x, y} is yet to be processed by Algorithm 28. Hence, once Algorithm 28 finishes, all vertices in G′

satisfy Eq. (9.2), and thus the resulting matchingM (f) (i.e.,M [b]) equalsM ′.

Lemma 9.4.1. LetP be an alternating path computed in the i-th iteration of Algorithm 28. For every vertex
x ∈ P such that suitor[i+1](x) does not satisfy Eq. (9.2) inM [i+1] (if any), let y be the vertex that satisfies
Eq. (9.2) inM [i+1] for x. Then {x, y} is in B and it is yet to be processed by Algorithm 28 in the for loop
in Line 5.

Proof. We first show that {x, y} ∈ B: in case of single edge insertions, as shown in Lemma 9.3.5, the
resulting alternating paths have always decreasing edge weights. Therefore, an alternating path computed
by findAffected (Algorithm 24) can have non-decreasing edge weights only if multiple edges are added toG
at once – as shown in the example in Figure 9.3; such edges are excluded by findAffectedB in Algorithm 28
(Line 9). Thus, suitor[i+1](x) does not satisfy Eq. (9.2) inM [i+1] only if {x, y} is inB and it is discarded by
findAffectedB .

Further, if y satisfies Eq. (9.2) for x in M [i+1], then we have that w′(x, y) >

max{w′(x, suitor[i](x)), w′(y, suitor[i](y))}. Thus, if {x, y} was processed by Algorithm 28 in an

173

Algorithm 29 Generalization of the findAffected function (Algorithm 24) for batches of edge updates
Input: affected vertex z
Output: Stack of affected vertices
1: function findAffectedB(z)
2: SA ← empty stack
3: nextCandidate[z]← 0
4: done← false
5: cur← z
6: repeat
7: partner← suitor(cur)
8: heaviest← ws(cur)
9: found← false

10: for i← nextCandidate[cur] to deg(cur) do
11: x← adjList[cur][i] ▷ i-th neighbor in the adjacency list of vertex cur
12: nextCandidate[cur]← i+ 1
13: if not affected(x) and w(cur, x) > heaviest and w(cur, x) > ws(x) then
14: partner← x
15: heaviest← w(cur, x)
16: found← true
17: break
18: done← true
19: if found then
20: y ← suitor(partner)
21: suitor(partner)← cur
22: ws(partner)← heaviest
23: SA.push(partner)
24: affected(partner)← true
25: if y ̸= null then
26: suitor(y)← null
27: ws(y)← 0
28: affected(y)← true
29: cur← y
30: done← false
31: else
32: affected(cur)← false
33: until done is true
34: return SA

earlier iteration than i, then findAffectedB would have matched together x and y. Since {x, y} /∈ M [i],
{x, y} is yet to be processed by Algorithm 28.

9.4.2 Multiple Edge Removals

As shown in Algorithm 30, a batch of edge removalsB ⊆ E is handled similarly to batch insertions, namely
we apply Algorithm 27 to every edge inB. For every vertex z adjacent to the current edge e = {u, v} ∈ B,
we check in Line 7 if suitor[i](z) violates Eq. (9.2) in M [i] due to the removal of e. If so, we update it in
Lines 8–8 as done in Algorithm 27. Otherwise, z has already been updated in a previous iteration of the
algorithm and no further action needs to be done.

Proposition 9.4.1. Let P be an alternating path computed in the i-th iteration of the outermost for-loop in
Algorithm 30. Every vertex x ∈ P satisfies Eq. (9.2) inG′.

Proof. Conversely to batches of edge insertions, in case of a batch of edge removals, all the alternating paths
computed in Lines 11–12 of Algorithm 30 have decreasing edge weights because no edge is added to the

174

Algorithm 30Dynamic Suitor algorithm for a batch of edge removals
Input: GraphG′ = (V,E ∪B,w′), batch of edge removalsB ⊆ E
1: affected(u)← false ∀u ∈ V
2: i← 0
3: suitor[i](u)← suitor(i)(u) ∀ u ∈ V
4: ws[i](u)← ws(i)(u) ∀ u ∈ V
5: for {u, v} ∈ B do
6: for z ∈ {u, v} do
7: if suitor[i](z) = {u, v} \ {z} then
8: suitor[i+1](z)← null
9: ws[i+1](z)← 0

10: affected(z)← true
11: SA ← findAffected(z)
12: updateAffected(SA)
13: i← i+ 1

graph. The new matching partner of every vertex x ∈ P is chosen by findAffected according to Eq. (9.2)
and thus once Algorithm 30 finishes, all vertices inG′ satisfy Eq. (9.2).

From Proposition 9.4.1 it follows that, after Algorithm 30 finishes, M (f) equalsM ′. Note that an alter-
nating path computed by Algorithm 30 can update vertices adjacent to other removed edges inB; similarly
to Algorithm 28, this does not improve the worst-case time complexity of the algorithm but, as reported in
Section 9.6.4, makes it faster in practice.

We can combine Algorithm 30 to handle batches with both edge insertions and removals, with the only
difference that we have to use findAffectedB instead of findAffected in Algorithm 30. In this way we guar-
antee that every alternating path P computed by our algorithm has decreasing edge weights and thus, as
shown in Lemma 9.4.1, for each vertex x ∈ P either suitor[i](x) satisfies Eq. (9.2) in G′ or x is adjacent to
an edge update inB that is yet to be processed by our algorithm.

Corollary 9.4.1. Let B be a batch with |B| = b edge updates. Our dynamic algorithms compute M ′ in
O(b · (n+m)) worst-case time complexity.

As shown in Propositions 9.3.3 and 9.3.4, the worst-case time complexity of Algorithms 26 and 27 is
O(n+m). Thus, after a batch with b edge updates,M (f) =M ′ is computed inO(b · (n+m)) time.

9.5 Implementation

We implement SortSuitor, i.e., the variant of Suitor where the adjacency list of every vertex is sorted by
decreasing edge weight so that every vertex considers a neighbor as matching partner at most once [203].
If the additional preprocessing cost is not taken into account, Manne and Halappanavar show empirically
that SortSuitor is faster than Suitor. We implement this by keeping, for each vertex u in the graph, an
additional index in the adjacency list of u that indicates the next vertex in the adjacency list of u to be
considered as potential matching partner for u. Such indices are stored in the array nextCandidate; they
are incremented in each iteration of the for-loop in Line 10 of Algorithm 29, which is interrupted as soon
as a new matching partner is found (Line 17).

175

On dynamic graphs we need to update the adjacency lists and nextCandidate before running both
SortSuitor and our dynamic algorithm. In case of b edge insertions, we insert the new edges into the sorted
edge lists. Under the reasonable assumption that the newly added edges are inserted at the back of every
adjacency list, we sort the new edges andwemerge the first (already sorted) part of the adjacency list with the
second one. With this strategy the adjacency list of each vertexx ∈ V can be sorted inO(deg(x)+bx log bx),
where bx is the number of edges in B adjacent to x. When rerunning SortSuitor, for each vertex in G′,
nextCandidate is updated to the first (i.e., heaviest) edge in the adjacency list. In our dynamic algorithm,
in turn, for each vertex u adjacent to an edge insertion, nextCandidate[u] is updated so that in G′ it
indicates the same edge as in G. This prevents findAffectedB from computing paths with non-decreasing
edge weight (as required by Algorithm 28), because every vertex x in an alternating path, when seeking a
new partner, can only consider edges that are lighter than ws[i](x). Newly inserted edges adjacent to x and
heavier than ws[i](x) are taken into account by updating the neighbor index of the current vertex x to the
first (i.e., heaviest) edge in the adjacency list of x.

In case of b edge removals, the adjacency lists are updated with the same time complexity as edge inser-
tions – for each vertex x ∈ V , the index of an edge in B adjacent to x can be found inO(log deg(x)) time
and all removed edges adjacent to x can be deleted from the adjacency list inO(deg(x)) time. Concerning
the neighbor indices, in SortSuitor they are updated to the first edge in the adjacency list, whereas in our
dynamic algorithm this is done only for the vertices adjacent to a removed edge.

9.6 Experimental Results

We conduct experiments to compare the performance of our dynamic Suitor algorithm against the state-
of-the-art DynMWMRandom [16] for single edge updates and, since DynMWMRandom does not support
batch updates, against a static recomputation for batches of edge updates.

9.6.1 Settings

We implement both the static and dynamic Suitor algorithms in C++ and we use the NetworKit [273] graph
APIs. DynMWMRandom is implemented in C++ as well but the graph data structure, contrary to ours, also
uses hash tables53 for faster edge lookup and update operations. All experiments are conducted on a Linux
machine equipped with 192GiB of RAM and an Intel Xeon Gold 6126 CPU with two sockets, 12 cores each
(24 cores in total) at 2.6 GHz. Our algorithms are sequential and thus in all our experiments we only use
one core. All the experiments are managed by the SimexPal [14] software to ensure reproducibility; they
are executed on both real-world graphs and randomly generated instances – see Tables 9.1 and 9.2. All the
complex networks in Table 9.1 are downloaded from the KONECT [173] repository; the road networks, in
turn, are downloaded from OpenStreetMap [83]. From the road networks we build the pedestrian routing
graph using RoutingKit [89] and choose the geographic distance as weight function. Synthetic networks
are generated using the R-MAT [65] and the random hyperbolic54 models. For the R-MAT model we use
the Graph500 [223] parameter setting (i.e., edge factor 16, a = 0.57, b = 0.19, c = 0.19, and d = 0.05),
and the generator from Khorasani et al. [165]. For the random hyperbolic model we use the generator from

53See https://github.com/sparsehash/sparsehash.
54The random hyperbolic model generates networks with a power-law degree distribution.

176

https://github.com/sparsehash/sparsehash

Table 9.1: Real-world instances used in the experiments. We refer to every instance by its “ID”. For complex networks,
edge weights are randomly generated using either a normal distribution or an exponential distribution.

(a) Road networks

Graph ID n m Avg. Deg.

belgium be 1,216,902 1,563,642 2.6
czech-republic cz 1,713,252 2,181,152 2.5
finland fi 2,177,796 2,639,775 2.4
austria au 2,621,866 3,082,590 2.4
canada ca 3,795,591 4,780,472 2.5
poland po 5,567,642 7,200,814 2.6
italy it 6,339,229 7,818,183 2.5
great-britain gb 7,108,301 8,358,289 2.4
france fr 11,063,911 13,785,539 2.5
russia ru 10,984,765 14,079,238 2.6
germany ge 15,918,055 20,266,409 2.5
dach da 20,207,259 25,398,909 2.5
africa af 23,975,266 31,044,959 2.6
us us 41,256,068 51,271,328 2.5
asia as 57,736,107 72,020,649 2.5

(b) Complex networks

Graph ID n m Avg. Deg.

hyves hy 1,402,673 2,777,419 4.0
com-youtube cy 1,134,890 2,987,624 5.3
flixster fx 2,523,386 7,918,801 6.3
youtube-u-growth yg 3,223,589 9,375,374 5.8
flickr-growth fg 2,302,925 22,838,276 19.8
livejournal-links ll 5,204,176 48,709,621 18.7
soc-LiveJournal1 lj 4,846,609 68,475,391 14.1
orkut-links ol 3,072,441 117,184,899 76.3
dimacs10-uk-2002 di 18,483,186 261,787,258 28.3
wikipedia_link_en we 13,593,032 437,167,958 32.2
twitter tw 41,652,230 1,468,364,884 35.3
twitter_mpi tm 52,579,682 1,963,263,507 37.3
friendster fs 68,349,466 2,586,147,869 37.8

Table 9.2: R-MAT and random hyperbolic networks used in the experiments. For each size, we generate five networks
using a different random seed. For a fixed number of vertices, the randomhyperbolic generator [191] gener-
ates networks with different number of edges; thus, we report theminimum, the average, and themaximum
number of edges in themmin,mavg, andmmax columns, respectively. Edge weights are randomly generated
using either a normal distribution or an exponential distribution.

(a) R-MAT networks

Graph n m Avg. Deg.

rmat-22 222 67,108,864 32.0
rmat-23 223 134,217,728 32.0
rmat-24 224 268,435,456 32.0

(b) Random hyperbolic networks

Graph n mmin mavg mmax Avg. Deg.

hyp-22 222 41,876,800 41,951,095.8 42,013,293 20.0
hyp-23 223 83,705,169 83,830,659.2 83,928,747 20.0
hyp-24 224 167,562,625 167,697,480.2 167,902,689 20.0

von Looz et al. [191] within NetworKit; we set the average degree to 20, and the exponent of the power-law
distribution to 3. Detailed statistics about synthetic networks are reported in Table 9.2. Experiments on
synthetic networks are repeated five times, in each one we generate the network using a different random
seed – this results in a different graph for every experiment.

Because the real-world complex networks and the synthetic networks are initially unweighted, unless
stated differently, we generate edge weights using a normal distribution withmean 1 and standard deviation
0.5 and an exponential distribution with parameter 1. Experiments with random edge weights are repeated
five times; in each one we generate random weights using a different random seed.

For each tested graph, we either add or remove a batch of edges selected uniformly at random and run the
dynamic algorithm(s) after each batch update (for DynMWMRandom comparison we only perform single
edge updates, so the batch size is always 1). We repeat this process 100 times. For batch, insertions we first
remove a random batch of edges from the original graph and re-add them back, whereas for removals we
first add a batch of edges and then remove them. Therefore, after every batch of graph updates the resulting
graph G′ is always the same and we need to run the static Suitor algorithm only once on G′ regardless of
the batch size.

177

100 101 102 103 104

Batch size

100

101

102

103

104

105
Af

fe
ct

ed
 v

er
tic

es
Edge insertions

100 101 102 103 104

Batch size

100

101

102

103

104

105

Af
fe

ct
ed

 v
er

tic
es

Edge removals

(a) Road networks

normal exponential

100 101 102 103 104

Batch size

100

102

104

Af
fe

ct
ed

 v
er

tic
es

Edge insertions

100 101 102 103 104

Batch size

100

102

104

Af
fe

ct
ed

 v
er

tic
es

Edge removals

(b) Complex networks

Figure 9.4: Average number of vertices affected by a batch of edge updates in the real-world networks of Table 9.1.

normal exponential

100 101 102 103 104

Batch size

100

101

102

103

Af
fe

ct
ed

 v
er

tic
es

Edge insertions

100 101 102 103 104

Batch size

100

101

102

103

Af
fe

ct
ed

 v
er

tic
es

Edge removals

(a) R-MAT networks

normal exponential

100 101 102 103 104

Batch size

100

102

104

Af
fe

ct
ed

 v
er

tic
es

Edge insertions

100 101 102 103 104

Batch size

100

102

104

Af
fe

ct
ed

 v
er

tic
es

Edge removals

(b) Random hyperbolic networks

Figure 9.5: Average number of vertices affected by a batch of edge updates in the synthetic networks of Table 9.2.

9.6.2 Affected Vertices

We first analyze how many vertices are affected by a batch of edge updates according to Definition 9.3.1.
The average number of affected vertices for real-world and synthetic instances is summarized in Figures 9.4
and 9.5, respectively. In road networks, the number of affected vertices is on average moderately higher
than the batch size for both edge insertions and removals: Intuitively, a random edge update is more likely
to update the matching of its adjacent vertices if their degree is low, and road networks are the ones with
lowest average degree – see Table 9.1. Also, as explained in Section 9.3, updating thematching of two vertices
might also impact the matching of other vertices, which explains why in road networks we have a higher
number of affected vertices w.r.t. the batch size.

Regarding complex networks (both real-world and synthetic), their average degree is higher than road
networks and, as expected, the number of affected vertices is lower – it is on average one order of magnitude
smaller than the batch size. Results do not change notably between the two distributions of edge weights.

9.6.3 Comparison Against DynMWMRandom

In the following, we evaluate the performance and the quality of dynamic Suitor against the state-of-the-art
DynMWMRandom algorithm on real-world networks. We remark that, as explained in Section 9.2.3, our
dynamic algorithm yields the same matching as Suitor. Because DynMWMRandom maintains a (1 + ε)-
approximate MWM, we evaluate this algorithm with ε ∈ {0.1, 0.2, . . . , 0.9, 1}. Further, as suggested in
Ref. [16], we use the “stop early” heuristic with β = 5. Note that, with this setting, we are reducing the
number of random walks sampled by the algorithm and thus the approximation guarantee does not hold
anymore – solutions yielded by the “stop early” heuristic, however, have been shown to be much closer to
the optimum than (1 + ε) for nearly all the instances considered in Ref. [16].

178

0.1 0.5 1.0

10

15

20

Av
g.

 #
of

 tr
av

er
se

d
ed

ge
s

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge insertions

0.1 0.5 1.0
20

25

30

35

40

Av
g.

 #
of

 tr
av

er
se

d
ed

ge
s

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge removals

(a) Road networks

0.1 0.5 1.0

40

60

80

Av
g.

 #
of

 tr
av

er
se

d
ed

ge
s

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge insertions

0.1 0.5 1.0

60

80

100

Av
g.

 #
of

 tr
av

er
se

d
ed

ge
s

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge removals

(b) Complex networks

Figure 9.6: Average number of edges traversed by DynMWMRandom relative to the ones traversed by dynamic Suitor
for a single edge update and for different values of ε. Results are averaged over 100 edge updates and over
the networks of Table 9.1.

0.1 0.5 1.0

2.0

2.5

3.0

Sp
ee

du
p

Edge insertions

0.1 0.5 1.0

3.0

3.5

4.0

4.5

Sp
ee

du
p

Edge removals

(a) Road networks

0.1 0.5 1.0

1.0

1.2

1.4

1.6

Sp
ee

du
p

Edge insertions

0.1 0.5 1.0
1.75

2.00

2.25

2.50

2.75

Sp
ee

du
p

Edge removals

(b) Complex networks

Figure 9.7: Geometric mean of the speedups of dynamic Suitor over DynMWMRandom for single edge updates and
for different values of ε. Results are averaged over 100 edge updates and over the networks of Table 9.1.

Since the implementation of DynMWMRandom only supports integral edge weights, in this section, we
generate random weights for complex networks using a normal distribution with mean 100 and standard
deviation 10 andwe round to the nearest integer value. In addition, because the two algorithms use different
graph data structures, we employ an implementation-agnostic performance measurement, i.e., the number
of edges traversed by the two algorithms to handle a single edge update. Detailed results are reported in
Appendices H.2–H.4.

Results on High-Diameter Networks. Figures 9.6a and 9.7a summarize the average number of tra-
versed edges and the algorithmic speedups (i.e., ratio between the running times), respectively, on high-
diameter networks. On average, for edge insertions, DynMWMRandom traverses 8.9× (with ε = 1) to
20.3× (with ε = 0.1) more edges than our dynamic algorithm – results for removals are 19.8× and 41.0×,
respectively. This is expected because, as we explained in Section 9.3, dynamic Suitor only needs to “fix”
the affected vertices which, in the case of a single update, are usually very few – as we saw in Section 9.6.2.
DynMWMRandom, in turn, performs random walks after each update – apart from the trivial case when
adding a new edge between two unmatched vertices. In terms of speedup, our dynamic Suitor algorithm is
1.9× and 2.8× (geometricmean over all instances) faster than DynMWMRandom with ε = 1 for insertions
and removals, respectively.

Figure 9.8a shows that the two algorithms yield solutions with nearly the same quality. More precisely,
compared to DynMWMRandom, dynamic Suitor solutions are 99.5% to 99.9% for both of insertions and
removals. Hence, we conclude that, for high-diameter graphs, dynamic Suitor is a competitive algorithm.

179

0.1 0.5 1.0
0.0

0.2

0.4

Qu
al

ity
 im

pr
ov

em
en

t (
in

 %
)

re
la

tiv
e

to
 d

yn
. S

ui
to

r
Edge insertions

0.1 0.5 1.0
0.0

0.2

0.4

Qu
al

ity
 im

pr
ov

em
en

t (
in

 %
)

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge removals

(a) Road networks

0.1 0.5 1.0
0

2

4

6

8

Qu
al

ity
 im

pr
ov

em
en

t (
in

 %
)

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge insertions

0.1 0.5 1.0
0

2

4

6

8

Qu
al

ity
 im

pr
ov

em
en

t (
in

 %
)

re
la

tiv
e

to
 d

yn
. S

ui
to

r

Edge removals

(b) Complex networks

Figure 9.8: Difference (in %) of the weight of the matching computed after 100 edge updates by DynMWMRandom
for different values of ε. Results are relative to dynamic Suitor solutions. Results are averaged over the
networks of Table 9.1.

Results on Complex Networks. Results are different in complex networks (see Figures 9.6b and 9.7b).
In terms of traversed edges, our dynamic algorithm achieves even better results than in high-diameter net-
works: w.r.t. dynamic Suitor, DynMWMRandom traverses at least 34.3× more edges (insertions, ε = 1).
As argued in Section 9.6.2, such a discrepancy is expected because, in complex networks, vertices have on
average a higher degree than in high-diameter networks and thus are less likely to be affected by an update.
This implies low overhead for dynamic Suitor.

Our speedup results, in turn, seem to contradict the observations we made so far: compared to Dyn-
MWMRandom with ε = 1, dynamic Suitor is slightly slower for edge insertions, and 1.8× faster for edge
removals – which is worse than what we achieved for road networks. A possible explanation is that the two
algorithms use different graph data structures: hash maps (used by DynMWMRandom) enable fast edge
lookup and update operations; we conjecture that this has a substantial performance impact, especially for
networks with high-degree vertices – such as complex networks.

In terms of solution quality, the gap between the two dynamic algorithms is more pronounced than in
high-diameter networks. Relatively to DynMWMRandom, dynamic Suitor yields solutions that are 0.1%
to 93.0%. A possible explanation for this result is that, typically, vertices in complex networks tend to
form densely-connected clusters (or communities) [227, Ch. 10]; we hypothesize that a random walk finds
augmenting paths in such dense structures more successfully than in road networks – which, instead, are
more sparse. Hence, in complex networks, while our dynamic algorithm is more likely to “skip” edge up-
dates (because, as explained above, they do not affect any vertex), DynMWMRandom is more likely to find
augmenting paths, which leads to better solution quality.

9.6.4 Speedups on the Static Algorithm

We now evaluate the speedup of our dynamic Suitor algorithm against a static recomputation, both on
real-world and on synthetic networks. Because both the dynamic and the static algorithm need to sort the
adjacency lists of the vertices after a batch of edge updates, we discard this step in the speedup computation
(i.e., we only compare the running time of both algorithms after the adjacency lists have been sorted). As
shown in Figure H.1 in Appendix H.7, in terms of running time this preprocessing step is almost negligible
as it always takes less than 6% – but mostly less than 2% – of the overall running time of the static Suitor
algorithm.

180

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge insertions

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge removals

(a) Road networks

normal exponential

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge insertions

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge removals

(b) Complex networks

Figure 9.9: Geometric mean of the speedups of the dynamic algorithm over a static recomputation over the real-world
networks of Table 9.1.

Detailed speedup results are reported in Tables H.8–H.11 in Appendix H.5. Running times in seconds
are reported in Tables H.12–H.15 in Appendix H.6.

SpeedupsonReal-worldNetworks. Figure 9.9a summarizes the speedup on roadnetworks. For single
edge insertions and removals, the dynamic algorithm is 5 orders of magnitude faster than a static recom-
putation. As we consider larger batches the number of affected vertices increases, and thus the dynamic
algorithm becomes slower. Nevertheless, the speedup is still higher than 103 for batches with up to 103

edge updates. For batches of 104 edge insertions and removals, the speedup is still 196.1× and 310.4×,
respectively.

Concerning complex networks, our dynamic algorithm performs even better: Figure 9.9b shows that,
with both distributions of random edge weights, the speedup is always greater than 106 for single edge
updates, and greater than 104 for batches of up to 103 edge edge updates. For batches of 104 edge updates
with edge weights generated using a normal distribution, the dynamic algorithm is 1,362.1× and 2,135.7×
faster than a static recomputation, respectively; using an exponential distribution to generate edge weights
yields similar speedups: 1,352.5× for edge insertions and 2,114.1× for edge removals.

As discussed in Section 9.6.2, better speedups on complex networks can be explained by the fact that the
number of affected vertices on complex networks are on average lower compared to road networks, and
therefore the dynamic algorithm needs to perform less work. Further, these results show that the worst-
case time complexity of our algorithms is very pessimistic compared to their practical performance, and
thus that the length of the alternating paths described in Section 9.6.2 – which determine the running time
of our algorithms – is, in practice, usually only a small fraction of the number of vertices in the graph.

Our speedup results are comparable to the ones achieved by Henzinger et al. for MCM [140]: their dy-
namic algorithms are roughly 105× faster than a static recomputation with an optimal MCM algorithm.
Note that they compare against an exact algorithm, which is speed-wise a weaker baseline than an approxi-
mate algorithm. This advantage, on the other hand, may be compensated by the fact that their comparisons
are run on rather small networks (25K vertices), where higher speedups are more difficult to obtain.

Speedups on Synthetic Networks. Results on R-MAT and random hyperbolic networks are shown in
Figures 9.10a and 9.10b, respectively. Compared to the static Suitor algorithm, for both models and for
both distributions of the edge weights, our dynamic algorithm is 5 to 6 orders of magnitude faster on single
edge updates, and 3 to 5 orders of magnitude faster on batches with up to 103 edge updates. Concerning

181

scale: 22 - normal
scale: 23 - normal
scale: 24 - normal

scale: 22 - exponential
scale: 23 - exponential
scale: 24 - exponential

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge insertions

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge removals

(a) R-MAT networks

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge insertions

100 101 102 103 104

Batch size

100

102

104

106

Sp
ee

du
p

Edge removals

(b) Random hyperbolic networks

Figure 9.10: Geometric mean of the speedups of the dynamic algorithm over a static recomputation over the synthetic
networks networks of Table 9.2. The considered graphs have 2s vertices, where s is the scale shown in the
legend.

batches of 104 edge updates, the speedup for edge insertions and removals on R-MAT networks is always at
least 2,228.7× and 3,719.2×, respectively, and always at least 550.5× and 811.6×, respectively, on random
hyperbolic networks.

From Figures 9.10a and 9.10b we can also see that, for every batch size, the speedups increase with the
size of the networks. A possible interpretation of this result is that, as for real-world networks, even though
our algorithms have a worst-case time complexity ofO(n+m) for a single edge update (see Sections 9.3.1
and 9.3.2), in a real-world scenario, this is too pessimistic and the algorithm is instead much faster. As
we have shown in Section 9.6.2, in complex networks edge updates either do not change the matching of
any vertex in the graph (and thus they are handled in constant time), or they affect a very small number of
vertices, leading to short processing times.

Speedup of BatchUpdates on SingleUpdates. Finally, wemeasure the speedup of our batch-dynamic
algorithm against the more naive approach of handling the edge updates in the batch one by one. We per-
form these experiments for batches of size b = 100 edge updates. As described in Section 9.4, although
the worst-case time complexity of the two algorithms is the same, in a real-world scenario we observe that
the batch-dynamic algorithm is faster than the naive one. On road networks (Table 9.1), the batch-dynamic
algorithm is on average 4.3× and 5.3× faster than the naive one on batches of edge insertions and removals,
respectively. Regarding complex networks (Table 9.1), when edge weights are generated with a normal dis-
tribution, the speedups on batches of edge insertions and removals are 7.7× and 10.2×, respectively; the
results for edge weights drawn from an exponential distribution are similar: 7.5× and 10.7× for batches of
edge insertions and removals, respectively.

9.7 Conclusions

We have developed and implemented a batch-dynamic (1/2)-approximation algorithm for MWM based
on the Suitor algorithm by Manne and Halappanavar [203]. Our dynamic algorithm updates the match-
ing results from an initial static computation quickly after a batch of edge updates, leading to results that
are equivalent to the static algorithm’s. Our experimental data show that it can handle in less than a mil-
lisecond batch sizes of up to 104, thus providing real-time capabilities. Compared to the state-of-the-art

182

DynMWMRandom [16] algorithm, dynamic Suitor requires less work (in terms of traversed edges) and,
on high-diameter networks, yields solutions with nearly the same quality. The solution quality in complex
networks is, in turn, 8.4% worse w.r.t. DynMWMRandom’s or higher.

In comparison with static recomputation, our dynamic algorithm is 2 to 6 orders of magnitude faster,
depending on the input network and on the batch size; further, our speedup results are comparable to the
ones achieved by Henzinger et al. for the related dynamic MCM problem [140]. The main reason of such
high speedups is that the running time of our dynamic algorithms is determined by the length of the al-
ternating paths. In the worst case, these paths can contain all vertices in the graph. However, as shown
in Section 9.6.4, in practice these paths are much shorter. Conversely, even in a best-case scenario, the
complexity of the static Suitor algorithm is linear in the size of the input network.

Note that the strategy we exploit here is very similar to the one we implemented in Chapter 3 for top-k
closeness centrality: after the graph changes, we first identify the vertices affected by the edge update(s)
and then we update the result. The better performance of our dynamic algorithm compared to DynMWM-
Random and the static one is justified by the very small number (compared to n) of affected vertices (see
Section 9.6.2). Hence, an interesting direction for future research is to investigate whether this strategy is
successful in other scenarios beyond closeness and betweenness (cf. Ref. [40]) centrality or matching.

Further directions for futurework are conceivable. One possibility is to improve the quality of the solution
by adapting the two-round approach [203, Sec. IV] to dynamic graphs. Another one is to investigate whether
the performance of dynamic Suitor would benefit frommore sophisticated graph data structures – e.g., hash
maps as done in Ref. [16].

183

Part V

Conclusion

185

Conclusion

In this thesis, we presented efficient and scalable algorithms that address three families of network anal-
ysis problems, namely: vertex centrality (Part II), group centrality maximization (Part III), and matching
(Part IV), on either static or dynamic graphs.

Vertex Centrality. In Part II, we focused on two main aspects of vertex centrality: updating the top-k
most central vertices in fully-dynamic graphs (Chapter 3) and approximating the centrality scores of all the
vertices of large-scale networks (Chapters 4 and 5).

The algorithms presented in Chapter 3 update the exact top-k ranking of the vertices with highest close-
ness centrality in fully-dynamic graphs with tens of millions of edges in a matter of seconds or at most 3
minutes after batches of up to 100 edge updates. Compared to a static recomputation, they are up to 104×
faster. Similarly to other dynamic algorithms [39], these results are achieved by avoiding unnecessary work
and by exploiting precomputed information on the initial graph. In particular, vertices that are not affected
by the edge update(s) (i.e., their distance to the others is unchanged) are ignored. In addition, maintain-
ing upper bounds of the closeness centrality of each vertex allows to prune graph traversals and to skip the
computation for several affected vertices (e.g., far-away vertices in Table 3.1). This strategy has been shown
to be very effective with moderately-sized batches of edge updates but, as we increase the batch size, it yields
diminishing returns. This is easily explained by the fact that, if the graph undergoes many edge updates, the
information we know about the initial graph is less accurate, many vertices are affected and, consequently,
the possibilities of reducing the workload are narrowed down.

In Chapters 4 and 5, we introduce algorithms that target vertex centrality approximation in static graphs.
Our approaches improve upon the state of the art by avoiding unnecessary work and by efficiently exploiting
parallelism. In Chapter 4, we introduce a general epoch-based framework for parallel adaptive sampling,
which we apply to betweenness centrality approximation as a case study. Our motivation stems from the
static state-of-the-art KADABRA [56] ADS algorithm for betweenness approximation. Due to the synchro-
nization overheads required to correctly check the stopping condition, a trivial OpenMP-based paralleliza-
tion of KADABRA fails to scale to large numbers of threads. To overcome this limitation, we introduce three
parallel ADS algorithms, all of which implement a novel epoch-basedmechanism that avoids extensive syn-
chronizationswhen checking the stopping condition by keepingmultiple copies of the sampling state. On 32
cores, shared-frame is the fastest among our algorithms and requires less than two minutes to yield a±0.01
approximation for the betweenness centrality of all the vertices of networks with hundreds of millions of
edges. This is an interesting result as it shows the trade-off between memory footprint and synchronization
costs. Shared-frame uses onlyΘ(1) additional memory per thread (SFs are shared among threads) and thus
it needs to synchronize writing operations to SFs; local-frame, in turn, has a greater memory footprint (uses
O(n) additional memory per thread as SFs are thread-local) and therefore writing operations to SFs are not

187

synchronized. In our case study, it seems that, on 32 cores, memory latencies overcome synchronization
costs. This is also clear from Figure 4.5b: on 36 cores, the fastest shared-frame configuration is the one with
the lowest memory footprint. We also propose further variations of our algorithms which, at the cost of
additional synchronizations, guarantee bounded memory footprint and determinism of the results.

Finally, in Chapter 5, we introduce a parallel UST-based algorithm to approximate diag
(
L†
)
(or, in the

case of forest closeness, diag(Ω)), and thus several electrical centrality measures such as electrical closeness,
forest closeness, and others. Compared to the state of the art, our algorithm is faster, it yields more accurate
results in terms of absolute error, and requires lessmemory. In addition, our algorithm is trivial to parallelize
– as most of the work consists in sampling USTs – and thus the workload can be easily distributed among
multiple cores and/or compute nodes. For example, on our small cluster with 16× 24 cores, it requires less
than 20 minutes to achieve a ±0.3 approximation of diag

(
L†
)
on a network with ≈ 334.6M edges. Thus,

ourmethod can be used to approximate with reasonable accuracy and in amatter of a fewminutes electrical
centrality measures on networks with hundreds of millions of edges with commodity hardware.

It is worth observing that the results from Chapters 3 and 5 give an empirical demonstration that worst-
case analysis does not always reflect the actual performance of an algorithm on real-world instances. In fact,
compared to competitors, our algorithms have either the same (Chapter 3) or slightly worse (Chapter 5)
time complexity but they are consistently much faster in practice. This confirms the crucial importance of
experimental evaluation in the algorithm engineering process.

Another aspect that emerges from the results in Chapters 3 and 4 is that using an additional amount
of memory to store intermediate results can bring considerable benefits in terms of speed. Specifically,
in Chapter 3, storing the upper bounds of the closeness centrality allows to skip unnecessary work. In
Chapter 4, in turn, multiple copies of the sampling state reduce the need for synchronization and thus the
overhead. On the other hand, the choice of which data to store should bemade carefully because, as emerged
from our experiments in Chapter 4, a large memory footprint limits the scalability of an algorithm to large
instances.

Group Centrality Maximization. In Part III, we addressed the lack of algorithms for group centrality
maximization capable of: (i) finding highly central sets of vertices in large-scale networks quickly and (ii)
yielding solutions with approximation guarantees.

The first issue is targeted in Chapters 6 and 8. Chapter 6 introduces a family of fast local search heuristics
that, for the first time, make it possible to compute sets of vertices with high group-closeness centrality on
networks with hundreds of millions of edges in minutes without sacrificing too much solution quality –
previous state-of-the-art methods require several hours and yield less than 1% better solution quality. We
propose several variations of our local search algorithms offering to the user trade-offs between running
time and solution quality. In Chapter 8, we propose an alternative solution to the lack of scalable algo-
rithms for group centrality maximization: we observe that shortest-path based measures pose complexity-
theoretic barriers that are hard to overcome; we circumvent this problem by developing GED-Walk, a new
group-centrality measure inspired by Katz centrality that considers walks of any length instead of shortest
paths only. Experiments in Section 8.5 show two main achievements: (i) GED-Walk captures meaning-
ful information of a graph – as graph mining tasks such as semi-supervised vertex classification and graph
classification benefit from the new measure – and (ii) GED-Walk can be maximized (in approximation)

188

considerably faster than other group centrality measures. Therefore, GED-Walk represents a feasible alter-
native to other group centrality measures in applications where performance is of major concern.

Another limitation that we target in Chapter 8 is that the only existing electrical group centrality measure
(i.e., group electrical closeness [183]) does not handle disconnected graphs out of the box. We thus extend
forest closeness [69] to groups of vertices. The result is group forest closeness, an electrical group central-
ity measure that handles disconnected graphs out of the box. We also adapt the greedy approximation
algorithm by Li et al. [183] to group forest closeness. The ability of group forest closeness in finding highly-
central groups in disconnected graphs is demonstrated by semi-supervised vertex classification results: as
GED-Walk in connected graphs, our new measure achieves higher the precision than existing measures.

In Chapter 7, we address the second issue by implementing the first approximation algorithms for group-
closeness and group-harmonic maximization. On small instances where the optimum can be computed in
reasonable time, our algorithms yield nearly-optimal solutions. On larger instances, our greedy algorithm
for group-harmonic maximization yields solutions with nearly the same quality as its local search counter-
part while being one to two orders of magnitude faster; hence, for this problem, the greedy approach seems
to dominate local search. For group-closeness maximization, in turn, the situation is different: in line with
the theoretical findings presented in Ref. [12], our local search algorithm yields solutions with consistently
higher quality than the best known greedy heuristics [38]. Unfortunately, this comes with a cost in run-
ning time as local search needs to evaluate Ω(n2) swaps in each iteration. Despite our engineering efforts
(see Section 7.3.3), this algorithm still cannot handle networks with millions of vertices in reasonable time,
leaving the problem of group-closeness approximation on such big graphs open to future work.

Overall, our experiments in Chapters 6 and 7 indicate that local search is an effective strategy to (i) iden-
tify highly-central groups in large-scale networks and (ii) refining existing solutions. However, due to its
quadratic complexity, it is not practical to use local-search to approximate group-closeness (and group-
harmonic) maximization in large-scale networks. Hence, for applications dealing with large networks and
where quality is of highest concern, a greedy strategy appears to offer the best trade-off between running
time and quality.

Maximum Weighted Matching on Dynamic Graphs. The last problem we address in this thesis is
to maintain a (1/2)-approximate MWM in fully-dynamic graphs (see Chapter 9). We extend the state-
of-the-art Suitor algorithm by Manne and Halappanavar [203] (which yields a (1/2)-approximation of the
MWM) to also handle multiple edge updates. As demonstrated in Chapter 9, our dynamic algorithm yields
the same matching computed by Suitor. Moreover, our experiments in Section 9.6 show that our dynamic
algorithm incurs less overhead (in terms of visited edges) for single edge updates than the state-of-the-art
DynMWMRandom algorithm [16]. Also, it handles batches with up to 104 edge updates in just a fraction
of a second, i.e., several orders of magnitude faster than a static recomputation.

As we observed in Chapter 3, using an additional amount ofmemory to store intermediate results reduces
significantly the workload of the dynamic algorithm compared to a static recomputation. The amount of
work that can be saved with this technique, however, heavily depends on the structure of the graph and, in
a worst-case scenario, it can even be none (when all vertices in the graph are affected). On the other hand,
our experiments in Section 9.6.2 suggest that, in practice, the number of vertices affected by an update is
significantly smaller than n – on average, it grows at most linearly w.r.t. the batch size, see Figures 9.4

189

and 9.5 in Section 9.6.2. Therefore, an extensive experimental study turns out again to be an essential tool
to evaluate an algorithm’s practical performance, as worst-case analysis may be too pessimistic.

In conclusion, in this thesis we presented and implemented – and made publicly available in the open-
source NetworKit toolkit [273] – several algorithms for solving network analysis problems that either did
not have an algorithm to solve them or that could not be solved in reasonable time by existing algorithms.
We devised several directions for future work following directly from our contributions finalized to either
improving the proposed algorithms or extending them to other problems.

190

Appendices

191

A Publications

The research presented in this thesis appeared previously in the following publications:

1. E. Angriman, R. Becker, G. D’Angelo, H. Gilbert, A. van der Grinten, and H. Meyerhenke. “Group-
Harmonic and Group-Closeness Maximization - Approximation and Engineering”. In: Proceedings
of the Symposium on Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference,
January 10-11, 2021. SIAM, 2021, pp. 154–168. doi: 10.1137/1.9781611976472.12.

2. E. Angriman, A. van der Grinten, A. Bojchevski, D. Zügner, S. Günnemann, and H. Meyerhenke.
“Group Centrality Maximization for Large-scale Graphs”. In: Proceedings of the Symposium on Al-
gorithm Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020.
SIAM, 2020, pp. 56–69. doi: 10.1137/1.9781611976007.5.

3. E. Angriman, A. van der Grinten, M. von Looz, H. Meyerhenke, M. Nöllenburg, M. Predari, and C.
Tzovas. “Guidelines for Experimental Algorithmics: A Case Study in Network Analysis”. Algorithms
12:7, 2019, p. 127. doi: 10.3390/a12070127.

4. E. Angriman, A. van derGrinten, andH.Meyerhenke. “Local Search for GroupClosenessMaximiza-
tion on Big Graphs”. In: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,
USA, December 9-12, 2019. IEEE, 2019, pp. 711–720. doi: 10.1109/BigData47090.2019.
9006206.

5. E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke. “Approximation of the Diagonal
of a Laplacian’s Pseudoinverse for Complex Network Analysis”. In: 28th Annual European Symposium
on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 6:1–6:24. doi: 10.4230/LIPIcs.ESA.2020.6.

6. P. Bisenius, E. Bergamini, E. Angriman, andH.Meyerhenke. “Computing Top-kCloseness Centrality
in Fully-dynamic Graphs”. In: Proceedings of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018. SIAM, 2018, pp. 21–35.
doi: 10.1137/1.9781611975055.3.

7. A. van der Grinten, E. Angriman, and H. Meyerhenke. “Parallel Adaptive Sampling with Almost No
Synchronization”. In: Euro-Par 2019: Parallel Processing - 25th International Conference on Parallel
and Distributed Computing, Göttingen, Germany, August 26-30, 2019, Proceedings. Springer, 2019,
pp. 434–447. doi: 10.1007/978-3-030-29400-7_31.

8. A. van der Grinten, E. Angriman, and H. Meyerhenke. “Scaling up network centrality computations
- A brief overview”. it Inf. Technol. 62:3-4, 2020, pp. 189–204. doi: 10.1515/itit-2019-0032.

193

http://dx.doi.org/10.1137/1.9781611976472.12
http://dx.doi.org/10.1137/1.9781611976007.5
http://dx.doi.org/10.3390/a12070127
http://dx.doi.org/10.1109/BigData47090.2019.9006206
http://dx.doi.org/10.1109/BigData47090.2019.9006206
http://dx.doi.org/10.4230/LIPIcs.ESA.2020.6
http://dx.doi.org/10.1137/1.9781611975055.3
http://dx.doi.org/10.1007/978-3-030-29400-7_31
http://dx.doi.org/10.1515/itit-2019-0032

9. A. van der Grinten, E. Angriman,M. Predari, and H. Meyerhenke. “New Approximation Algorithms
for Forest Closeness Centrality - for Individual Vertices and Vertex Groups”. In: Proceedings of the
2021 SIAM International Conference on Data Mining, SDM 2021, Virtual Event, April 29 - May 1,
2021. SIAM, 2021, pp. 136–144. doi: 10.1137/1.9781611976700.16.

194

http://dx.doi.org/10.1137/1.9781611976700.16

B Appendix of Chapter 3

B.1 Overview of Networks

Table B.1: Undirected complex networks

Network n m

petster-cat-household 105,138 494,858
petster-catdog-household 333,111 2,643,012
petster-cat-friend 204,473 5,448,197
petster-friendships-cat 149,700 5,448,197
petster-friendships-dog 426,820 8,543,549
petster-dog-friend 451,710 8,543,549
petster-catdog-friend 623,754 13,991,746
higgs-twitter-social 456,626 14,855,819
petster-carnivore 623,766 15,695,166

Table B.2: Directed complex networks

Network n m

wikipedia_link_li 49,129 375,375
cit-HepPh 34,546 421,534
slashdot-zoo 79,120 515,397
wiki_talk_sv 614,206 597,611
munmun_twitter_social 465,017 834,797
wiki_talk_ja 1,064,391 1,030,161
wikipedia_link_gu 30,430 1,327,386
web-NotreDame 325,729 1,469,679
digg-friends 3,376,023 1,731,653

Table B.3: Undirected road networks

Network n m

DC 9,559 14,841
DE 49,109 59,760
RI 53,658 68,706
HI 64,892 76,139
AK 69,082 77,498
seychelles 42,835 85,730
VT 97,975 106,242
comores 62,143 126,962
liechtenstein 71,878 147,187

Table B.4: Directed road networks

Network n m

kiribati 22,725 46,376
seychelles 42,835 85,730
comores 62,143 126,962
liechtenstein 71,878 147,187
isle-of-man 73,634 151,554
andorra 99,686 197,741
djibouti 96,682 203,142
faroe-islands 107,225 218,910

195

B.2 Speedup Results

B.2.1 Speedups for Complex Networks

Table B.5: Geometric mean of the speedups of the dynamic algorithm over the static one over 100 batches of edge
insertions of size 1, 10, 100 in complex networks, for k ∈ {1, 10, 100}.

(a) Undirected networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

petster-cat-household 10.3 1.2 0.1 23.9 2.5 0.3 423.8 15.8 1.3
petster-catdog-household 33.4 3.2 0.3 48.3 3.6 0.5 116.4 4.9 0.8
petster-cat-friend 82.8 8.4 0.8 82.7 8.2 0.8 2,303.5 218.3 18.8
petster-friendships-cat 114.8 11.4 1.2 113.0 10.8 1.2 2,626.5 253.4 21.7
petster-friendships-dog 106.1 11.3 1.1 250.8 25.6 2.4 377.5 30.1 2.7
petster-dog-friend 60.2 6.0 0.6 212.1 19.5 1.9 315.4 24.6 2.3
petster-catdog-friend 899.6 91.6 9.2 974.2 94.7 9.0 1,144.4 105.0 7.0
higgs-twitter-social 177.6 17.0 2.2 505.8 43.2 3.7 709.6 43.2 2.7
petster-carnivore 6,062.6 559.0 53.8 6,115.6 535.5 50.0 6,327.9 449.8 31.9

geometric mean 139.7 14.0 1.5 229.0 21.2 2.2 827.8 57.1 4.9

(b) Directed networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

wikipedia_link_li 7,049.2 21.2 1.1 7,090.4 25.1 1.1 7,290.0 22.5 1.1
cit-HepPh 1,284.9 29.5 1.6 1,408.2 28.5 1.4 1,565.1 24.9 1.3
slashdot-zoo 623.3 6.6 0.7 791.7 7.2 0.7 1,732.7 10.1 0.9
wiki_talk_sv 14.0 1.4 0.1 20.9 1.8 0.3 43.3 1.7 0.7
munmun_twitter_social 147.0 9.6 0.9 246.7 10.7 1.4 355.2 7.8 1.9
wiki_talk_ja 12.9 1.3 0.1 1,334.5 5.7 1.0 2,066.2 6.8 1.0
wikipedia_link_gu 1,217.7 98.8 10.3 3,010.2 189.4 8.3 14,496.5 566.6 2.8
web-NotreDame 3,452.6 269.6 26.0 2,968.9 90.7 9.6 3,893.3 98.5 9.7
digg-friends 1,627.1 38.8 1.7 1,686.9 39.5 1.6 1,766.9 37.8 1.4

geometric mean 465.7 16.1 1.3 978.4 19.4 1.6 1,583.8 21.7 1.6

196

Table B.6: Geometric mean of the speedups of the dynamic algorithm over the static one over 100 batches of edge
removals of size 1, 10, 100 in complex networks, for k ∈ {1, 10, 100}.

(a) Undirected networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

petster-cat-household 9.3 1.0 0.1 23.6 2.5 0.3 549.6 58.5 6.2
petster-catdog-household 33.9 3.3 0.3 55.1 5.5 0.6 147.0 11.6 1.5
petster-cat-friend 77.6 7.8 0.8 72.6 7.7 0.8 2,187.0 226.4 22.9
petster-friendships-cat 111.3 11.5 1.1 105.6 11.1 1.1 2,555.1 276.2 27.5
petster-friendships-dog 101.9 10.3 1.0 246.2 26.9 2.8 357.2 34.7 3.6
petster-dog-friend 55.5 5.7 0.6 194.0 22.2 2.2 285.4 28.9 3.1
petster-catdog-friend 882.3 89.8 9.2 965.5 104.4 9.9 1,078.2 118.5 11.2
higgs-twitter-social 196.4 18.1 1.9 523.1 55.9 5.9 729.3 79.3 7.9
petster-carnivore 5,726.3 591.3 55.9 5,864.1 585.3 56.3 6,122.9 535.7 50.7

geometric mean 135.5 13.7 1.4 223.8 23.8 2.5 845.9 84.3 8.7

(b) Directed networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

wikipedia_link_li 21,964.8 1,488.3 81.2 22,265.3 1,824.0 86.2 19,597.1 1,072.8 70.7
cit-HepPh 2,195.9 250.4 24.6 2,647.2 255.3 27.7 2,993.5 220.0 26.4
slashdot-zoo 1,357.1 154.0 15.8 1,621.5 160.0 20.2 3,208.1 195.0 35.2
wiki_talk_sv 14.6 2.3 0.3 15.3 2.6 0.6 21.3 2.0 1.3
munmun_twitter_social 77.9 13.2 1.8 58.4 13.3 3.2 33.0 5.7 3.8
wiki_talk_ja 11.3 2.3 0.3 2,038.9 333.3 48.9 1,495.7 131.6 52.0
wikipedia_link_gu 1,038.4 101.3 12.2 2,776.3 290.3 28.9 14,380.5 1,225.7 79.1
web-NotreDame 2,090.3 405.2 48.4 2,487.7 299.2 59.6 2,014.0 89.6 32.7
digg-friends 2,440.4 291.0 32.2 2,178.8 222.5 30.9 1,846.0 91.8 20.9

geometric mean 548.2 71.4 7.6 1,112.7 136.8 18.4 1,299.3 96.1 21.3

197

B.2.2 Speedups for Road Networks

Table B.7: Geometric mean of the speedups of the dynamic algorithm over the static one over 100 batches of edge
insertions of size 1, 10, 100 in road networks, for k ∈ {1, 10, 100}.

(a) Undirected networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

DC 86.5 2.0 4.8 68.9 1.9 4.4 45.0 1.7 3.3
DE 617.4 4.7 1.7 411.9 4.5 1.6 159.9 3.6 1.6
RI 971.6 6.8 1.1 641.8 6.4 1.1 291.4 5.2 1.1
HI 4,962.1 34.9 5.2 4,151.2 32.1 4.9 3,017.2 23.6 4.3
AK 6,132.8 105.5 7.3 3,133.0 84.5 7.1 1,006.1 42.9 5.7
seychelles 3,021.0 85.3 77.8 1,952.6 70.1 67.8 1,102.9 40.8 44.8
VT 364.0 1.9 1.8 220.4 1.8 1.8 86.0 1.8 1.7
comores 4,263.6 27.6 55.5 3,593.0 23.4 48.9 2,416.3 15.9 34.2
liechtenstein 553.8 5.6 2.3 432.8 5.4 2.2 261.9 4.7 2.1

geometric mean 1,169.7 12.2 5.7 814.9 11.0 5.4 417.1 8.2 4.5

(b) Directed networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

kiribati 4,769.1 125.9 56.9 4,779.1 92.1 48.1 4,196.7 43.3 31.4
seychelles 3,021.0 85.3 77.8 1,952.6 70.1 67.8 1,102.9 40.8 44.8
comores 4,263.6 27.6 55.5 3,593.0 23.4 48.9 2,416.3 15.9 34.2
liechtenstein 553.8 5.6 2.3 432.8 5.4 2.2 261.9 4.7 2.1
isle-of-man 814.9 5.1 3.8 648.9 4.9 3.7 407.9 4.6 3.5
andorra 156.3 3.7 19.8 129.8 3.5 18.4 94.0 3.3 14.1
djibouti 1,176.9 10.3 2.1 879.4 9.6 2.1 559.5 7.8 2.0
faroe-islands 2,943.6 22.7 6.0 2,293.5 20.9 5.9 1,392.8 16.0 5.3

geometric mean 1,403.0 17.1 12.4 1,119.3 15.2 11.5 737.5 11.2 9.3

198

Table B.8: Geometric mean of the speedups of the dynamic algorithm over the static one over 100 batches of edge
removals of size 1, 10, 100 in road networks, for k ∈ {1, 10, 100}.

(a) Undirected networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

DC 1,747.3 184.9 9.7 928.0 112.0 8.0 277.0 29.4 4.9
DE 9,620.9 1,400.1 42.6 3,436.6 878.8 35.7 708.3 180.8 21.3
RI 10,710.6 1,288.5 52.7 4,471.9 804.1 45.7 1,135.9 178.2 28.7
HI 14,180.5 1,623.4 74.8 10,152.9 925.2 60.6 5,853.5 211.6 32.6
AK 15,681.7 1,594.3 110.9 6,089.3 790.4 90.5 1,515.4 139.9 42.0
seychelles 14,249.3 883.4 199.2 8,486.8 525.9 160.4 4,141.5 175.1 75.3
VT 18,176.7 2,588.2 48.1 5,456.5 1,561.2 43.4 885.8 374.4 27.9
comores 43,088.2 2,521.7 338.6 30,364.7 1,016.6 263.1 17,394.5 190.9 149.5
liechtenstein 16,741.1 1,709.7 81.9 8,590.6 1,048.1 71.8 3,237.7 199.5 41.5

geometric mean 12,505.6 1,268.6 71.4 6,036.9 717.9 59.5 1,950.4 160.3 33.5

(b) Directed networks

Network k = 1 k = 10 k = 100

Batch size 1 10 100 1 10 100 1 10 100

kiribati 6,758.4 892.8 148.8 5,959.3 425.5 125.2 5,091.4 121.7 58.1
seychelles 14,249.3 883.4 199.2 8,486.8 525.9 160.4 4,141.5 175.1 75.3
comores 43,088.2 2,521.7 338.6 30,364.7 1,016.6 263.1 17,394.5 190.9 149.5
liechtenstein 16,741.1 1,709.7 81.9 8,590.6 1,048.1 71.8 3,237.7 199.5 41.5
isle-of-man 16,315.8 1,905.5 86.8 8,840.8 1,213.0 76.5 3,386.8 272.5 49.2
andorra 26,976.6 2,657.5 203.4 13,187.1 1,427.1 175.2 4,499.6 355.2 96.1
djibouti 24,321.3 2,149.1 135.6 10,358.8 1,082.8 109.8 3,229.7 208.8 63.8
faroe-islands 27,882.7 2,078.0 153.7 14,458.0 1,150.3 129.4 5,550.3 281.5 71.3

geometric mean 19,479.9 1,720.8 153.1 11,099.4 920.2 128.0 4,885.2 215.3 70.1

199

B.3 Running Time Results

B.3.1 Running Times for Complex Networks

Table B.9: Geometric mean of the update times over 100 batches of edge insertions of size 1, 10, 100 with k = 10
in complex networks. The columns “Static” and “Dyn.” report the average time for the static and dynamic
algorithm, respectively.

(a) Undirected networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

petster-cat-household 0.535 0.022 0.539 0.219 0.569 1.980
petster-catdog-household 6.535 0.135 6.565 1.808 6.644 13.737
petster-cat-friend 8.243 0.100 8.239 1.002 7.853 9.250
petster-friendships-cat 9.466 0.084 9.163 0.846 9.457 7.740
petster-friendships-dog 55.566 0.222 55.485 2.170 56.892 23.316
petster-dog-friend 51.116 0.241 51.059 2.619 50.758 26.171
petster-catdog-friend 341.859 0.351 340.979 3.600 340.938 37.869
higgs-twitter-social 164.699 0.326 163.489 3.788 171.672 47.017
petster-carnivore 1,846.805 0.302 1,845.401 3.446 1,862.959 37.227

(b) Directed networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

wikipedia_link_li 102.610 0.014 101.872 4.066 99.228 91.472
cit-HepPh 10.658 0.008 10.694 0.376 10.528 7.276
slashdot-zoo 17.731 0.022 17.153 2.382 17.875 25.584
wiki_talk_sv 0.173 0.008 0.173 0.097 0.174 0.596
munmun_twitter_social 3.576 0.014 3.554 0.332 3.642 2.675
wiki_talk_ja 64.789 0.049 63.567 11.103 63.453 65.358
wikipedia_link_gu 22.743 0.008 22.583 0.119 22.795 2.744
web-NotreDame 46.116 0.016 46.564 0.513 48.906 5.106
digg-friends 70.876 0.042 69.126 1.752 71.783 45.935

200

Table B.10: Geometric mean of the update times over 100 batches of edge removals of size 1, 10, 100 with k = 10 in
complex networks. The columns “Static” and “Dyn.” report the average time for the static and dynamic
algorithm, respectively.

(a) Undirected networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

petster-cat-household 0.549 0.023 0.541 0.214 0.578 1.930
petster-catdog-household 6.438 0.117 6.526 1.181 6.571 11.095
petster-cat-friend 7.913 0.109 7.851 1.017 8.193 9.914
petster-friendships-cat 9.188 0.087 9.136 0.821 9.466 8.240
petster-friendships-dog 55.773 0.227 57.535 2.137 57.275 20.475
petster-dog-friend 51.022 0.263 52.292 2.359 51.796 23.181
petster-catdog-friend 341.331 0.354 343.186 3.288 341.760 34.454
higgs-twitter-social 173.632 0.332 163.485 2.924 168.195 28.685
petster-carnivore 1,839.701 0.314 1,844.400 3.151 1,859.260 33.053

(b) Directed networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

wikipedia_link_li 102.506 0.005 102.981 0.056 99.042 1.149
cit-HepPh 10.663 0.004 10.125 0.040 10.512 0.380
slashdot-zoo 16.826 0.010 17.142 0.107 18.252 0.901
wiki_talk_sv 0.172 0.011 0.173 0.066 0.176 0.294
munmun_twitter_social 3.553 0.061 3.530 0.265 3.800 1.179
wiki_talk_ja 63.633 0.031 64.686 0.194 64.092 1.310
wikipedia_link_gu 22.522 0.008 22.746 0.078 22.103 0.765
web-NotreDame 50.548 0.020 49.550 0.166 51.099 0.857
digg-friends 69.008 0.032 71.794 0.323 71.405 2.308

201

B.3.2 Running Times for Road Networks

Table B.11: Geometric mean of the update times over 100 batches of edge insertions of size 1, 10, 100 with k = 10
in road networks. The columns “Static” and “Dyn.” report the average time for the static and dynamic
algorithm, respectively.

(a) Undirected networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

DC 1.987 0.029 2.054 1.090 0.546 0.125
DE 67.055 0.163 68.003 15.137 37.486 22.722
RI 71.916 0.112 71.798 11.204 53.473 47.266
HI 38.681 0.009 39.574 1.231 18.234 3.748
AK 112.411 0.036 36.267 0.429 14.521 2.035
seychelles 57.041 0.029 23.400 0.334 7.590 0.112
VT 259.058 1.176 257.643 139.302 141.648 79.793
comores 159.105 0.044 80.248 3.429 18.749 0.384
liechtenstein 195.378 0.451 151.988 27.980 55.933 25.127

(b) Directed networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

kiribati 3.594 0.001 2.828 0.031 1.401 0.029
seychelles 57.041 0.029 23.400 0.334 7.590 0.112
comores 159.105 0.044 80.248 3.429 18.749 0.384
liechtenstein 195.378 0.451 151.988 27.980 55.933 25.127
isle-of-man 160.773 0.248 161.238 32.737 55.169 14.888
andorra 456.117 3.515 400.914 113.983 82.327 4.471
djibouti 582.899 0.663 279.441 29.029 92.643 44.369
faroe-islands 363.272 0.158 276.744 13.225 83.478 14.211

202

Table B.12: Geometric mean of the update times over 100 batches of edge removals of size 1, 10, 100 with k = 10
in road networks. The columns “Static” and “Dyn.” report the average time for the static and dynamic
algorithm, respectively.

(a) Directed networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

DC 1.977 0.002 1.986 0.018 0.449 0.056
DE 67.036 0.020 66.847 0.076 33.948 0.950
RI 71.837 0.016 70.214 0.087 48.772 1.068
HI 39.809 0.004 31.872 0.034 13.693 0.226
AK 112.421 0.018 40.739 0.052 12.983 0.143
seychelles 58.981 0.007 22.552 0.043 5.903 0.037
VT 259.975 0.048 258.140 0.165 129.984 2.993
comores 173.579 0.006 95.454 0.094 15.694 0.060
liechtenstein 194.238 0.023 157.700 0.150 47.935 0.668

(b) Undirected networks

Network
Batch size 1 Batch size 10 Batch size 100

Static (s) Dyn. (s) Static (s) Dyn. (s) Static (s) Dyn. (s)

kiribati 3.646 0.001 2.560 0.006 1.266 0.010
seychelles 58.981 0.007 22.552 0.043 5.903 0.037
comores 173.579 0.006 95.454 0.094 15.694 0.060
liechtenstein 194.238 0.023 157.700 0.150 47.935 0.668
isle-of-man 161.947 0.018 158.235 0.130 48.768 0.637
andorra 458.637 0.035 399.007 0.280 60.552 0.346
djibouti 508.516 0.049 263.191 0.243 70.315 0.640
faroe-islands 351.846 0.024 258.117 0.224 62.096 0.480

203

C Appendix of Chapter 4

C.1 Running Time Results

In this appendix, we report the detailed running time of our algorithms on every instance. For better read-
ability, we partitioned the instances into two categories: moderate instances achieved a total running time of
less than 100 seconds (Table C.1); the others are shown in Table C.2. The deviation in running time among
different runs of the same algorithm turned out to be small – e.g., around 3% for our local-frame algorithm
using 36 cores, in geometric mean running time over all instances. As it is specifically small compared to
our speedups, we report data on a single run per instance.

Table C.1: Absolute running times (s) on moderate instances. Total: ADS with preprocessing on a single core.

(a) OMP: OpenMP baseline, L: local-frame

Network Name 1 core 2 cores 4 cores 8 cores 16 cores 32 cores
Total OMP L OMP L OMP L OMP L OMP L OMP L

tntp-ChicagoRegional 6.70 6.62 5.66 3.25 2.83 1.56 1.37 0.85 0.66 0.45 0.33 0.27 0.16
munmun_twitter_social 7.99 1.72 1.49 1.41 0.83 1.09 0.45 0.89 0.24 0.84 0.23 0.78 0.17
com-amazon 10.49 9.47 9.18 4.47 4.38 3.02 2.35 2.27 1.34 1.94 0.86 1.41 0.54
loc-gowalla_edges 2.82 2.50 2.09 1.49 0.99 1.11 0.49 0.87 0.20 0.70 0.11 0.67 0.10
web-NotreDame 7.66 7.33 6.55 4.34 3.30 3.17 1.72 2.50 0.68 2.14 0.43 1.93 0.33
web-Stanford 34.62 33.87 29.95 15.76 15.54 11.62 7.95 7.96 2.79 5.49 1.75 4.48 1.33
petster-dog-household 5.31 4.83 3.89 2.67 2.12 1.82 1.09 1.43 0.67 1.30 0.56 1.32 0.42
flixster 13.99 10.94 10.03 7.87 5.77 6.61 3.20 5.49 1.91 4.90 1.32 4.78 1.32
as-skitter 17.14 13.76 13.16 9.85 7.57 7.33 3.99 5.80 2.55 5.14 1.77 5.11 2.21
actor-collaboration 8.69 5.87 6.21 3.88 3.18 2.60 1.96 1.82 1.16 1.41 0.68 1.09 0.54
soc-pokec-relationships 25.38 16.57 18.21 10.37 9.00 8.00 5.23 6.07 3.02 5.28 2.56 5.40 2.08
soc-LiveJournal1 54.91 36.52 39.08 31.53 22.37 22.29 11.68 17.79 6.12 15.57 4.69 14.82 4.03
livejournal-links 62.27 46.19 44.52 31.16 24.99 23.49 13.43 18.11 7.57 15.46 4.90 15.51 4.33
wikipedia_link_sh 41.54 21.68 17.98 17.43 9.49 14.74 4.68 13.13 2.44 12.36 2.05 12.08 2.11
wikipedia_link_sr 56.30 45.55 42.66 32.21 21.83 20.28 10.69 15.63 6.08 12.92 3.72 12.73 2.69

(b) S: shared-frame, I: indexed-frame

Network Name 1 core 2 cores 4 cores 8 cores 16 cores 32 cores
Total S I S I S I S I S I S I

tntp-ChicagoRegional 6.70 6.71 5.48 3.30 2.75 1.48 1.38 0.64 0.70 0.31 0.43 0.15 0.29
munmun_twitter_social 7.99 1.51 1.60 0.80 0.90 0.45 0.49 0.28 0.29 0.20 0.17 0.19 0.23
com-amazon 10.49 8.44 8.88 4.04 4.21 2.34 2.52 1.43 1.48 0.78 1.22 0.42 0.89
loc-gowalla_edges 2.82 2.23 2.34 0.79 1.11 0.46 0.53 0.28 0.31 0.14 0.17 0.08 0.11
web-NotreDame 7.66 6.34 6.81 3.18 3.52 1.40 1.58 0.76 0.99 0.52 0.66 0.22 0.60
web-Stanford 34.62 28.81 29.51 14.27 14.01 5.73 8.68 4.41 5.50 1.80 2.13 1.18 1.50
petster-dog-household 5.31 4.24 3.68 2.21 1.95 1.05 1.14 0.66 0.75 0.62 0.78 0.46 0.73
flixster 13.99 10.30 11.02 6.03 6.00 3.01 3.31 2.25 1.97 1.36 1.45 1.33 1.90
as-skitter 17.14 13.26 14.23 7.59 8.13 4.11 4.42 2.42 2.44 1.50 2.08 1.13 1.74
actor-collaboration 8.69 6.28 5.48 3.28 3.27 1.85 1.71 1.06 1.03 0.68 0.69 0.48 1.01
soc-pokec-relationships 25.38 16.22 17.18 8.77 9.38 5.57 5.79 3.40 2.98 2.15 2.00 1.40 2.49
soc-LiveJournal1 54.91 35.60 40.49 22.70 18.93 13.13 14.15 7.04 8.28 4.69 6.32 3.29 5.72
livejournal-links 62.27 44.49 44.85 25.44 24.65 12.45 15.29 7.69 8.53 5.07 6.89 3.77 6.95
wikipedia_link_sh 41.54 17.94 21.49 9.81 11.86 4.89 7.04 2.78 3.88 1.96 1.68 1.55 2.26
wikipedia_link_sr 56.30 45.93 41.54 24.91 23.70 11.36 13.18 7.09 6.54 4.44 5.11 2.95 5.23

205

Table C.2: Absolute running times (s) on expensive instances. Total: ADS with preprocessing on a single core.

(a) OMP: OpenMP baseline, L: local-frame

Network Name 1 core 2 cores 4 cores 8 cores 16 cores 32 cores
Total OMP L OMP L OMP L OMP L OMP L OMP L

dimacs9-NY 249 246 212 97 106 54 55 30 28 19 14 10 6
dimacs9-COL 405 397 358 177 177 101 94 55 47 30 23 17 11
roadNet-PA 1,961 1,937 1,851 1,027 942 521 458 284 235 148 121 92 59
roadNet-TX 1,965 1,937 2,001 1,042 1,035 544 496 279 250 165 130 89 64
dbpedia-all 412 402 395 227 215 126 80 76 42 54 22 41 19
wikipedia_link_ceb 1,337 1,272 1,435 701 707 415 307 238 160 156 98 121 74
wikipedia_link_ru 142 126 132 89 73 52 44 36 23 26 12 24 12
wikipedia_link_de 155 145 182 106 100 54 57 37 21 25 12 20 13
wikipedia_link_it 152 112 145 82 70 58 41 27 24 20 14 16 9
wikipedia_link_sv 444 423 472 258 255 160 105 105 61 73 32 60 31
wikipedia_link_fr 194 168 177 131 106 75 58 41 30 32 14 24 12
orkut-links 206 107 110 66 64 44 35 27 19 19 10 15 9

(b) S: shared-frame, I: indexed-frame

Network Name 1 core 2 cores 4 cores 8 cores 16 cores 32 cores
Total S I S I S I S I S I S I

dimacs9-NY 249 198 203 95 101 49 53 26 31 13 14 6 9
dimacs9-COL 405 345 339 177 171 94 93 50 49 22 25 11 17
roadNet-PA 1,961 1,975 1,781 998 950 471 463 242 252 113 151 60 82
roadNet-TX 1,965 1,994 1,943 1,022 1,038 504 514 232 277 119 165 63 89
dbpedia-all 412 411 391 214 205 96 83 49 66 18 25 14 36
wikipedia_link_ceb 1,337 1,421 1,268 691 665 370 399 158 162 86 135 68 117
wikipedia_link_ru 142 134 125 67 69 42 35 25 26 14 19 11 16
wikipedia_link_de 155 155 170 80 98 39 56 24 32 12 19 8 15
wikipedia_link_it 152 120 129 74 68 38 45 21 26 11 20 10 16
wikipedia_link_sv 444 438 429 272 246 111 108 55 58 30 46 24 54
wikipedia_link_fr 194 181 168 96 92 55 60 30 35 15 29 14 20
orkut-links 206 119 107 60 66 34 37 19 25 10 20 7 15

206

D Appendix of Chapter 5

D.1 Baseline

Table D.1: Precision of the diagonal entries computed by the LAMG solver (tolerance: 10−9) compared with the ones
computed by the Matlab pinv function.

Network Type n m diam. max abs. Erel L1rel L2rel Ranking
err. diag.

moreno-lesmis characters 77 254 5 0.000,0 0.00% 0.00% 0.00% 0.48%
petster-hamster-household social 874 4,003 8 0.000,6 0.23% 0.13% 0.07% 0.02%
subelj-euroroad infrastr. 1,039 1,305 62 0.003,1 0.12% 0.09% 0.05% 0.00%
arenas-email emails 1,133 5,451 8 0.000,2 0.13% 0.07% 0.03% 0.00%
dimacs10-polblogs web 1,222 16,714 8 0.000,2 0.18% 0.07% 0.02% 0.01%
maayan-faa infrastr. 1,226 2,408 17 0.000,5 0.08% 0.06% 0.03% 0.00%
petster-hamster-friend social 1,788 12,476 14 0.000,3 0.15% 0.07% 0.02% 0.01%
petster-hamster social 2,000 16,098 10 0.000,1 0.09% 0.04% 0.02% 0.01%
wikipedia-link-lo web 3,733 82,977 9 0.000,1 0.05% 0.02% 0.01% 0.03%
advogato social 5,042 39,227 9 0.000,1 0.03% 0.02% 0.01% 0.01%
p2p-Gnutella06 computer 8,717 31,525 10 0.000,0 0.01% 0.01% 0.00% 0.00%
p2p-Gnutella05 computer 8,842 31,837 9 0.000,1 0.02% 0.01% 0.01% 0.00%

D.2 Running Time – Forest Closeness

Table D.2: Running time (s) of UST on the networks of Table 5.3.

(a) Complex networks

Graph
Time (s)

ε 0.05 0.1 0.2 0.3 0.4 0.5

loc-brightkite_edges 46.4 11.6 3.0 1.4 0.8 0.5
douban 80.8 20.5 5.2 2.4 1.5 0.9
soc-Epinions1 55.5 14.0 3.5 1.6 1.0 0.7
slashdot-zoo 59.9 15.6 3.8 1.8 1.1 0.7
petster-cat-household 61.8 15.7 4.0 1.8 1.1 0.8
wikipedia_link_fy 58.2 15.0 3.9 1.9 1.1 0.8
loc-gowalla_edges 230.9 63.0 15.7 7.1 4.4 2.8
wikipedia_link_an 50.7 12.1 3.1 1.5 0.9 0.7
wikipedia_link_ga 44.8 11.3 3.1 1.6 1.1 0.8
petster-dog-household 359.6 87.7 22.5 10.3 6.0 4.1
livemocha 107.4 28.6 7.3 3.5 2.1 1.5

(b) Road networks

Graph
Time (s)

ε 0.05 0.1 0.2 0.3 0.4 0.5

loc-brightkite_edges 46.4 11.6 3.0 1.4 0.8 0.5
douban 80.8 20.5 5.2 2.4 1.5 0.9
soc-Epinions1 55.5 14.0 3.5 1.6 1.0 0.7
slashdot-zoo 59.9 15.6 3.8 1.8 1.1 0.7
petster-cat-household 61.8 15.7 4.0 1.8 1.1 0.8
wikipedia_link_fy 58.2 15.0 3.9 1.9 1.1 0.8
loc-gowalla_edges 230.9 63.0 15.7 7.1 4.4 2.8
wikipedia_link_an 50.7 12.1 3.1 1.5 0.9 0.7
wikipedia_link_ga 44.8 11.3 3.1 1.6 1.1 0.8
petster-dog-household 359.6 87.7 22.5 10.3 6.0 4.1
livemocha 107.4 28.6 7.3 3.5 2.1 1.5

207

D.3 Running Time – Group Forest Closeness

Table D.3: Running time (s) of our greedy algorithm for group forest maximization.

Graph Group size Time (s)

cora
200 1,559.3
400 2,210.6
600 2,663.4

citeseer
200 2,518.6
400 3,666.5
600 4,642.4

208

E Appendix of Chapter 6

E.1 Running Time Results

Table E.1: Running times (s) of group-closeness maximization algorithms on the unweighted graphs of Table 6.1a;
k = 10. For our local search algorithms, we average data over five runs using the arithmetic mean.

Network Greedy LS-restrict LS GS GS-local GS-extended

dimacs9-NY 1,985.0 2.0 1.0 1.6 0.2 46.8
dimacs9-BAY 3,792.9 3.8 2.5 3.4 0.4 69.1
web-Stanford 699.1 0.9 0.4 1.5 0.9 7.4
hyves 1,458.7 3.9 1.5 5.8 4.5 9.9
youtube-links 829.5 2.7 1.5 4.6 4.0 6.7
com-youtube 803.9 3.3 1.3 4.2 4.3 6.0
web-Google 760.3 3.1 0.9 5.0 2.6 8.2
trec-wt10g 5,545.3 3.6 1.6 6.3 5.0 19.3
dimacs10-eu-2005 4,987.9 2.0 1.8 6.2 3.6 11.5
soc-pokec-relationships 4,845.1 13.2 5.4 25.5 13.3 37.8
wikipedia_link_ca 1,314.7 12.0 6.8 15.1 12.8 21.6

Table E.2: Running times (s) of group-closeness maximization algorithms on the weighted graphs of Table 6.1b. For
our local search algorithms, we average data over five runs using the arithmetic mean.

Network Greedy GS GS-local
k = 5 k = 10 k = 100 k = 5 k = 10 k = 100 k = 5 k = 10 k = 100

DC 2.81 2.96 3.30 0.11 0.07 0.11 0.02 0.03 0.11
HI 13.12 13.29 14.53 0.08 0.08 0.29 0.04 0.07 0.31
AK 74.27 77.36 82.13 0.12 0.25 1.04 0.06 0.12 0.74
DE 76.72 80.56 85.12 0.08 0.33 0.59 0.13 0.16 0.90
RI 62.96 67.01 72.94 0.10 0.37 1.10 0.13 0.18 0.95
CT 606.73 643.37 705.91 3.08 2.42 3.79 0.59 0.87 4.08
ME 867.62 908.08 1,003.82 2.73 2.69 5.67 0.76 0.80 5.56
ND 1,679.77 1,720.69 1,874.39 2.64 2.69 5.97 0.77 1.02 5.41
SD 1,358.51 1,425.83 1,562.83 2.19 1.18 4.89 1.37 1.08 6.09
WY 1,347.51 1,462.56 1,663.29 1.14 3.37 8.75 1.07 1.32 7.71
ID 2,347.94 2,475.44 2,674.39 3.96 5.20 9.53 1.35 1.65 9.23
MD 3,037.70 3,201.99 3,408.18 3.56 4.09 8.43 1.17 2.35 8.54
WV 2,121.26 2,341.11 2,541.09 6.78 9.35 13.22 1.35 1.94 9.91
NE 3,485.90 3,707.90 3,991.72 7.23 6.90 12.80 1.94 2.01 10.22

209

F Appendix of Chapter 7

F.1 Approximation for Group-Closeness in the Sense of Li et al.

As explained in Ref. [12, Appendix C], the approach of Li et al. [183] works for minimizing a general su-
permodular monotone non-increasing function f(·) with respect to a cardinality constraint. They let
x∗1 ∈ argmaxx{f(∅)− f({x})} and use the greedy algorithm on the set function

g(S) := f({x∗1})− f({x∗1} ∪ S),

which is a monotone non-decreasing submodular set function with g(∅) = 0. Thus, the greedy algo-
rithm maximizes the function with respect to a cardinality constraint within an approximation factor of
1 − 1/e [226]. However, there are two caveats. First, the greedy algorithm uses a budget of k − 1 in-
stead of k (budget of one is spent on identifying x∗1) and thus Li et al. obtain an approximation factor of
1− k/((k− 1)e). Second, and most importantly, observe that the approximation factor is obtained on the
function g(S) and not f(S), i.e., they get a set S of size k − 1 such that

f({x∗1})− f({x∗1} ∪ S) ≥
(
1− k

(k − 1)e

)
· (f({x∗1})− f({x∗1} ∪ S∗)),

where S∗ is the optimal set of size k − 1 to be added to {x∗1} with the goal of minimizing f(·). We remark
that this set is not necessarily related to the set that minimizes f(·)with respect to the cardinality constraint.
Clearly, this approach can be applied for the submodular farness function gf (·) in place of f(·). It can not,
however, provide an approximation algorithm for gf (·) in the usual sense – and furthermore it would not
be easily extendable to gc(·).

211

Table F.2: Small networks used for group-closeness experiments with ILP solver.

(a) Complex networks

Graph Type n m

dimacs10-celegans_metabolic U 453 2,025
arenas-meta U 453 2,025
contact U 274 2,124
arenas-jazz U 198 2,742
sociopatterns-infectious U 410 2,765
dnc-corecipient U 849 10,384

moreno_oz D 214 2,658
wiki_talk_lv D 510 2,783
wiki_talk_eu D 617 2,811
dnc-temporalGraph D 520 3,518
dimacs10-celegansneural D 297 4,296
wiki_talk_bn D 700 4,316
wiki_talk_eo D 822 6,076
wiki_talk_gl D 1,009 7,435

(b) High-diameter networks

Graph Type n m

tuvalu UU 152 187
niue UU 461 529
nauru UU 618 729
dimacs10-netscience UU 379 914
asoiaf UU 796 2,823

tuvalu UW 152 187
niue UW 461 529
nauru UW 618 729

tuvalu DU 152 374
niue DU 461 1,055
librec-filmtrust-trust DU 267 1,099
nauru DU 618 1,427

tuvalu DW 152 374
niue DW 461 1,055
nauru DW 618 1,427

F.2 Instances Statistics

Table F.1: Small networks used for group-harmonic experiments with ILP solver.

(a) Complex networks

Graph Type n m

convote U 219 586
dimacs10-football U 115 613
wiki_talk_ht U 537 787
moreno_innovation U 241 1,098
dimacs10-celegans_metabolic U 453 2,025
arenas-meta U 453 2,025
foodweb-baywet U 128 2,106
contact U 275 2,124
foodweb-baydry U 128 2,137
moreno_oz U 217 2,672
arenas-jazz U 198 2,742
sociopatterns-infectious U 411 2,765
dimacs10-celegansneural U 297 4,296
radoslaw_email U 168 5,783

convote D 219 586
wiki_talk_ht D 537 787
moreno_innovation D 241 1,098
foodweb-baywet D 128 2,106
foodweb-baydry D 128 2,137
moreno_oz D 217 2,672
dimacs10-celegansneural D 297 4,296
radoslaw_email D 168 5,783

(b) High-diameter networks

Graph Type n m

dbpedia-similar UU 430 564
niue UU 461 1,055
tuvalu UU 436 1,082
librec-filmtrust-trust UU 874 1,853

niue UW 461 1,055
tuvalu UW 436 1,082

niue DU 461 1,055
tuvalu DU 436 1,082
librec-filmtrust-trust DU 874 1,853

niue DW 461 1,055
tuvalu DW 436 1,082

212

Table F.3: Large networks used for group-harmonic experiments.

(a) Complex networks

Graph Type n m

petster-hamster-household U 874 4,003
petster-hamster-friend U 1,788 12,476
petster-hamster U 2,000 16,098
loc-brightkite_edges U 58,228 214,078
douban U 154,908 327,162
petster-cat-household U 105,138 494,858
loc-gowalla_edges U 196,591 950,327
wikipedia_link_fy U 65,562 1,071,668
wikipedia_link_ckb U 60,722 1,176,289
petster-dog-household U 260,390 2,148,179
livemocha U 104,103 2,193,083
flickrEdges U 105,938 2,316,948
petster-friendships-cat U 149,700 5,448,197

wikipedia_link_mi D 7,996 116,457
foldoc D 13,356 120,238
wikipedia_link_so D 7,439 125,046
wikipedia_link_lo D 3,811 132,837
wikipedia_link_co D 8,252 177,420

(b) High-diameter networks

Graph Type n m

marshall-islands UU 1,080 2,557
micronesia UU 1,703 3,600
kiribati UU 1,867 4,412
opsahl-powergrid UU 4,941 6,594
samoa UU 6,926 15,217
comores UU 7,250 17,554

marshall-islands UW 1,080 2,557
micronesia UW 1,703 3,600
kiribati UW 1,867 4,412
DC UW 9,522 14,807
samoa UW 6,926 15,217
comores UW 7,250 17,554

marshall-islands DU 1,080 2,557
micronesia DU 1,703 3,600
kiribati DU 1,867 4,412
samoa DU 6,926 15,217
comores DU 7,250 17,554
opsahl-openflights DU 2,939 30,501
tntp-ChicagoRegional DU 12,982 39,018

marshall-islands DW 1,080 2,557
micronesia DW 1,703 3,600
kiribati DW 1,867 4,412
samoa DW 6,926 15,217
comores DW 7,250 17,554

213

Table F.4: Large (strongly) connected components of the networks in Table F.3 used for group-closeness experiments.

(a) Complex networks

Graph Type n m

loc-brightkite_edges U 56,739 212,945
douban U 154,908 327,162
petster-cat-household U 68,315 494,562
wikipedia_link_ckb U 60,257 801,794
wikipedia_link_fy U 65,512 921,533
livemocha U 104,103 2,193,083

wikipedia_link_mi D 3,696 99,237
wikipedia_link_lo D 1,622 109,577
wikipedia_link_so D 5,149 114,922
foldoc D 13,274 119,485
wikipedia_link_co D 5,150 160,474
web-NotreDame D 53,968 296,228
slashdot-zoo D 26,997 333,425
soc-Epinions1 D 32,223 443,506
wikipedia_link_jv D 39,248 1,059,059

(b) High-diameter networks

Graph Type n m

seychelles UU 3,907 4,322
comores UU 3,789 4,630
andorra UU 4,219 4,933
opsahl-powergrid UU 4,941 6,594
liechtenstein UU 6,215 7,002
faroe-islands UU 12,129 13,165

seychelles UW 3,907 4,322
comores UW 3,789 4,630
andorra UW 4,219 4,933
liechtenstein UW 6,215 7,002
faroe-islands UW 12,129 13,165
DC UW 9,522 14,807

seychelles DU 3,907 8,225
andorra DU 4,160 8,288
comores DU 3,789 8,952
liechtenstein DU 6,205 13,591
faroe-islands DU 12,077 25,679
opsahl-openflights DU 2,868 30,404
tntp-ChicagoRegional DU 12,978 39,017

seychelles DW 3,907 8,225
andorra DW 4,160 8,288
comores DW 3,789 8,952
liechtenstein DW 6,205 13,591
faroe-islands DW 12,077 25,679

214

F.3 Running Times – Group-Harmonic Maximization

Table F.5: Running times (s) of Greedy-H and Greedy-LS-H on the complex networks of Table F.3a.

(a) Undirected unweighted

Graph Greedy-H Greedy-LS-H
k 5 10 50 5 10 50

petster-hamster-household <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
petster-hamster-friend <0.1 <0.1 <0.1 <0.1 <0.1 0.1
petster-hamster <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
loc-brightkite_edges 1.1 1.0 1.1 4.3 6.6 25.8
douban 8.1 8.1 8.4 40.3 86.3 303.0
petster-cat-household 0.1 0.2 0.3 19.5 23.8 106.1
loc-gowalla_edges 8.9 8.4 8.7 59.8 97.3 1,064.5
wikipedia_link_fy 3.8 3.8 4.0 13.3 15.7 137.9
wikipedia_link_ckb 7.3 7.3 7.4 12.9 14.6 80.2
petster-dog-household 10.3 10.4 10.7 131.9 212.3 843.8
livemocha 11.2 11.4 11.8 52.5 64.6 277.9
flickrEdges 44.2 45.4 46.4 119.5 128.4 217.6
petster-friendships-cat 2.7 2.8 2.9 35.6 55.1 266.7

(b) Directed unweighted

Graph Greedy-H Greedy-LS-H
k 5 10 50 5 10 50

wikipedia_link_mi 0.3 0.3 0.3 0.6 1.0 3.8
foldoc 0.6 0.6 0.6 1.6 1.7 14.7
wikipedia_link_so 0.1 0.1 0.1 0.3 0.4 2.2
wikipedia_link_lo 0.2 0.2 0.2 0.2 0.2 0.7
wikipedia_link_co 0.2 0.3 0.3 0.5 0.5 2.6

Table F.6: Running times (s) of Greedy-H and Greedy-LS-H on the high-diameter networks of Table F.3b.

(a) Undirected unweighted

Graph Greedy-H Greedy-LS-H
k 5 10 50 5 10 50

marshall-islands <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
micronesia <0.1 <0.1 <0.1 <0.1 <0.1 0.2
kiribati <0.1 <0.1 <0.1 <0.1 <0.1 0.3
opsahl-powergrid 0.2 0.2 0.2 1.7 0.9 1.4
samoa 0.8 0.9 0.9 2.6 2.9 5.5
comores 0.5 0.5 0.6 1.1 2.3 8.6

Table (F.7) Undirected weighted

Graph Greedy-H Greedy-LS-H
k 5 10 50 5 10 50

marshall-islands <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
micronesia <0.1 <0.1 <0.1 <0.1 <0.1 0.2
kiribati <0.1 <0.1 <0.1 <0.1 <0.1 0.3
opsahl-powergrid 0.2 0.2 0.2 1.7 0.9 1.4
samoa 0.8 0.9 0.9 2.6 2.9 5.5
comores 0.5 0.5 0.6 1.1 2.3 8.6

(a) Directed unweighted

Graph Greedy-H Greedy-LS-H
k 5 10 50 5 10 50

marshall-islands <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
micronesia <0.1 <0.1 <0.1 <0.1 <0.1 0.2
kiribati <0.1 <0.1 <0.1 <0.1 <0.1 0.3
samoa 0.8 0.9 0.9 2.6 1.9 5.9
comores 0.5 0.5 0.6 1.1 3.3 10.5
opsahl-openflights <0.1 <0.1 <0.1 <0.1 <0.1 0.2
tntp-ChicagoRegional 2.7 2.9 3.2 11.5 20.6 85.8

(b) Directed weighted

Graph Greedy-H Greedy-LS-H
k 5 10 50 5 10 50

marshall-islands <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
micronesia <0.1 <0.1 <0.1 <0.1 <0.1 0.2
kiribati <0.1 <0.1 <0.1 <0.1 <0.1 0.3
samoa 0.8 0.9 0.9 2.6 1.9 5.9
comores 0.5 0.5 0.6 1.1 3.3 10.5
opsahl-openflights <0.1 <0.1 <0.1 <0.1 <0.1 0.2
tntp-ChicagoRegional 2.7 2.9 3.2 11.5 20.6 85.8

215

F.4 Running Times – Group-Closeness Maximization

Table F.8: Running time (s) of GS-LS-C and Greedy-LS-C on the complex networks of Table F.4a.

(a) Undirected unweighted

Graph GS-LS-C Greedy-LS-C
k 5 10 50 5 10 50

loc-brightkite_edges 11.8 22.1 146.4 11.5 20.8 110.9
douban 35.0 59.4 222.0 26.3 43.5 202.5
petster-cat-household 32.7 66.1 363.2 32.2 63.2 341.5
wikipedia_link_fy 100.2 102.5 476.9 27.5 50.3 434.7
wikipedia_link_ckb 19.7 103.2 767.2 19.4 34.1 718.3
livemocha 58.1 86.3 713.0 46.5 58.2 604.9

(b) Directed unweighted

Graph GS-LS-C Greedy-LS-C
k 5 10 50 5 10 50

wikipedia_link_mi <0.1 0.8 2.9 0.1 0.2 1.8
foldoc 2.3 3.5 0.5 1.7 2.2 5.7
wikipedia_link_so 0.7 1.5 23.7 0.5 0.9 3.3
wikipedia_link_lo 0.8 1.6 26.0 0.5 2.1 13.5
wikipedia_link_co 0.8 1.7 42.9 1.2 1.7 18.5
soc-Epinions1 4.2 6.9 30.1 3.6 6.0 28.2
slashdot-zoo 4.1 6.4 19.9 3.4 7.1 15.4
web-NotreDame 14.9 37.3 1,106.5 14.4 23.4 388.6
wikipedia_link_jv 22.9 97.1 30.0 17.7 14.5 49.9

Table F.9: Running time (s) of GS-LS-C and Greedy-LS-C on the high-diameter networks of Table F.4b.

(a) Undirected unweighted

Graph GS-LS-C Greedy-LS-C
k 5 10 50 5 10 50

opsahl-powergrid 0.9 1.1 13.4 0.7 0.4 3.7
andorra 3.6 8.9 55.1 1.9 3.9 26.7
seychelles 1.6 5.3 26.7 0.9 3.4 25.0
liechtenstein 10.8 21.2 56.3 2.2 16.4 38.2
comores 1.2 5.0 22.9 1.4 4.9 18.0
faroe-islands 33.9 77.2 313.5 25.3 96.4 268.4

(b) Directed unweighted

Graph GS-LS-C Greedy-LS-C
k 5 10 50 5 10 50

andorra 5.2 6.2 5.0 4.2 3.5 26.0
seychelles 1.4 5.1 21.0 0.8 3.3 17.6
liechtenstein 17.7 14.4 59.7 4.0 15.5 41.3
comores 1.7 4.3 7.7 1.2 4.1 19.2
faroe-islands 20.2 77.0 254.1 25.7 44.8 189.4
opsahl-openflights <0.1 0.1 1.0 <0.1 0.1 0.6
tntp-ChicagoRegional 45.3 151.4 0.3 32.5 68.2 304.3

(c) Undirected weighted

Graph GS-LS-C Greedy-LS-C
k 5 10 50 5 10 50

andorra 20.5 35.5 182.0 4.5 10.9 64.3
seychelles 2.6 13.7 93.1 2.3 3.3 62.6
liechtenstein 3.8 8.6 230.3 4.1 27.0 265.6
DC 7.8 18.9 473.2 9.9 14.0 98.3
comores 2.3 10.1 140.1 2.3 9.6 55.3
faroe-islands 17.1 137.5 907.0 15.6 27.4 411.3

(d) Directed weighted

Graph GS-LS-C Greedy-LS-C
k 5 10 50 5 10 50

andorra 5.9 16.0 129.3 6.4 5.8 52.8
seychelles 2.1 2.8 59.2 2.3 2.7 29.6
liechtenstein 3.7 16.9 227.5 3.8 22.2 167.9
comores 1.9 7.0 90.0 2.2 10.7 28.1
faroe-islands 16.2 148.1 696.2 15.3 27.2 98.5

216

217

G Appendix of Chapter 8

G.1 Running Times

Table G.1: Running time (s) of GBC, GCC, GHC, and GED-Walk maximization (both lazy and stochastic algorithms)
on 36 cores for groups with size 5 to 100.

k = 5 k = 10 k = 20 k = 50 k = 100

Network
GBC GED GBC GED GBC GED GBC GED GBC GED
GCC GED-S GCC GED-S GCC GED-S GCC GED-S GCC GED-S
GHC GHC GHC GHC GHC

com-dblp
36.7 1.2 71.7 1.5 141.1 2.5 351.7 8.3 709.2 16.4
29.4 1.1 30.3 1.4 33.0 2.4 41.0 5.5 48.3 11.4
24.8 25.0 25.1 25.8 27.4

wikipedia_link_mr
17.7 0.3 35.3 0.5 70.2 0.9 175.1 2.0 354.3 4.6
0.9 0.3 1.0 0.6 1.1 0.8 1.5 1.8 2.0 4.0
0.6 0.6 0.7 0.7 0.9

roadNet-PA
66.3 3.2 131.9 4.1 261.2 7.3 645.5 11.5 1,292.3 28.3

3,903.0 3.0 4,150.4 4.1 4,353.8 5.2 4,676.0 13.4 4,911.8 30.0
5,280.3 5,616.2 5,163.0 3,837.0 5,431.1

citeseer
74.3 1.1 146.4 1.4 290.0 2.6 717.9 5.5 1,440.2 11.8
52.5 1.1 56.9 1.5 62.5 2.3 76.5 5.8 87.7 10.1
53.3 54.3 56.0 58.9 62.4

roadNet-TX
83.9 2.4 165.3 3.4 325.6 4.9 814.9 9.4 1,634.9 28.4

4,903.0 2.4 5,230.8 3.2 5,675.7 4.6 6,149.2 14.8 6,485.9 26.4
4,531.6 4,927.1 6,900.1 5,214.9 5,433.4

web-Stanford
21.7 0.7 43.1 1.1 88.0 3.2 223.8 6.6 450.6 12.8
57.8 0.7 59.8 1.1 63.2 2.1 63.0 4.2 66.1 8.1
10.3 10.9 10.8 11.1 11.7

petster-dog-household
83.2 0.4 164.9 0.5 328.1 0.8 823.5 1.9 1,652.9 4.0
17.3 0.4 17.4 0.6 17.8 0.9 19.8 1.8 24.1 3.5
4.2 4.2 4.3 4.6 5.0

wikipedia_link_bn
41.0 0.7 81.5 1.1 162.7 1.7 406.3 3.9 815.9 8.4
6.0 0.7 6.2 1.1 7.2 1.7 8.8 3.6 10.7 6.5
2.9 2.9 3.1 3.3 3.6

petster-catdog-household
95.6 0.5 189.0 0.7 376.2 1.4 935.6 3.2 1,874.0 6.4
61.5 0.6 61.8 0.8 62.3 1.5 64.4 3.2 70.2 6.0
49.5 50.3 47.8 49.5 50.2

wikipedia_link_uz
46.1 0.7 91.4 1.1 182.5 1.7 461.0 4.2 932.3 9.1
20.7 0.8 21.3 1.1 22.0 1.9 25.2 4.3 31.1 9.5
33.3 33.5 33.7 34.1 34.8

dimacs9-COL
21.3 1.0 42.0 1.4 84.2 2.5 207.5 4.4 412.6 6.8

454.0 1.0 480.6 1.2 529.5 1.9 578.7 4.2 616.8 38.0
570.7 618.3 681.7 683.6 607.2

munmun_twitter_social
48.8 0.7 95.7 1.0 189.9 1.5 475.0 3.8 952.1 9.1
20.1 0.7 21.4 0.9 24.9 1.5 36.4 3.4 42.6 6.4
79.4 80.6 80.7 82.8 85.7

218

H Appendix of Chapter 9

H.1 Affected Vertices

Tables H.1–H.4 report the average number of vertices affected by a batch of b ∈
{
1, . . . , 104

}
edge updates

on all the considered instances.

Table H.1: Average number of affected vertices in the road networks of Table 9.1.

Edge insertions

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

be 1.2 12.0 113.5 1,143.7 12,598.5
cz 1.3 11.9 116.0 1,135.4 12,179.6
fi 0.9 10.2 109.9 1,121.2 11,983.8
au 0.8 11.3 116.2 1,156.7 12,236.6
ca 1.1 12.3 110.2 1,116.2 11,477.2
po 1.1 11.6 113.7 1,120.6 11,295.4
it 1.3 10.8 114.2 1,149.6 11,651.4
gb 1.0 11.1 116.0 1,150.1 11,726.8
fr 0.8 11.0 116.8 1,156.5 11,539.0
ru 1.2 11.3 112.0 1,096.9 11,117.6
ge 1.1 11.0 113.1 1,129.5 11,356.4
da 1.1 12.3 114.4 1,132.9 11,421.6
af 0.8 10.7 111.3 1,088.6 10,981.8
us 0.9 10.6 109.1 1,103.7 11,072.7
as 0.9 10.9 111.4 1,096.9 11,039.0

Edge removals

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

be 1.3 12.0 113.6 1,144.9 12,945.1
cz 1.5 11.9 116.2 1,135.9 12,383.4
fi 1.0 10.2 109.9 1,123.1 12,158.1
au 1.0 11.3 116.2 1,160.1 12,413.1
ca 1.3 12.3 110.2 1,120.9 11,564.0
po 1.3 11.6 113.7 1,121.8 11,388.3
it 1.6 10.8 114.2 1,149.2 11,697.5
gb 1.1 11.1 116.0 1,150.2 11,792.9
fr 0.9 11.0 116.9 1,158.3 11,592.1
ru 1.4 11.3 111.9 1,097.1 11,153.0
ge 1.1 11.0 113.1 1,129.5 11,383.1
da 1.3 12.3 114.4 1,132.9 11,439.9
af 0.9 10.7 111.3 1,088.4 10,998.5
us 1.0 10.6 109.1 1,103.2 11,081.2
as 1.1 10.9 111.4 1,096.9 11,043.5

Table H.2: Average number of affected vertices in the R-MAT networks of Table 9.2.

(a) Edge weights generated by a normal distribution

Edge insertions

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.03 0.32 3.16 31.60 317.28
rmat-23 0.03 0.31 2.93 28.64 291.35
rmat-24 0.02 0.29 2.71 27.60 272.77

Edge removals

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.04 0.34 3.04 31.23 316.55
rmat-23 0.01 0.25 2.84 29.13 289.61
rmat-24 0.02 0.27 2.69 27.27 273.35

(b) Edge weights generated by an exponential distribution

Edge insertions

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.03 0.31 3.32 31.71 318.74
rmat-23 0.03 0.26 3.02 28.79 292.93
rmat-24 0.02 0.29 2.69 27.20 273.99

Edge removals

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.03 0.31 3.23 31.63 318.52
rmat-23 0.04 0.26 2.87 28.98 292.65
rmat-24 0.04 0.24 2.77 27.43 274.55

219

Table H.3: Average number of affected vertices in the complex networks of Table 9.1.

(a) Edge weights generated by a normal distribution

Edge insertions

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.09 1.25 11.60 121.27 1,458.87
cy 0.24 2.57 24.97 252.53 2,745.08
fx 0.03 0.37 3.71 38.66 398.10
yg 0.29 2.42 23.59 238.19 2,437.38
fg 0.05 0.85 8.57 82.59 826.29
ll 0.14 1.65 16.12 157.23 1,587.56
lj 0.10 1.85 16.73 162.72 1,625.15
ol 0.11 0.82 8.17 75.39 761.71
di 0.09 0.74 7.36 75.44 745.72
we 0.01 0.53 4.80 48.77 483.54
tw 0.03 0.25 3.26 32.70 325.47
tm 0.03 0.26 3.13 29.73 297.10
fs 0.07 0.54 5.61 58.07 580.53

Edge removals

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.15 1.24 11.96 119.92 1,461.82
cy 0.31 2.70 24.65 249.34 2,734.40
fx 0.04 0.49 3.70 37.78 398.93
yg 0.19 2.52 24.55 238.09 2,431.13
fg 0.06 0.88 7.86 80.81 819.98
ll 0.15 1.43 16.23 156.64 1,586.20
lj 0.10 1.54 16.31 163.42 1,627.85
ol 0.04 0.77 7.42 77.20 758.17
di 0.06 0.71 7.60 76.17 745.27
we 0.00 0.44 5.05 48.32 484.18
tw 0.03 0.38 3.32 32.46 326.62
tm 0.01 0.35 2.82 29.07 301.16
fs 0.01 0.81 6.04 57.13 576.43

(b) Edge weights generated by an exponential distribution

Edge insertions

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 1.08 12.28 121.90 1,462.90
cy 0.20 2.29 24.98 253.57 2,758.08
fx 0.05 0.41 3.96 38.35 400.75
yg 0.21 2.52 23.97 239.36 2,447.33
fg 0.05 0.78 8.09 81.13 827.56
ll 0.12 1.57 16.35 158.27 1,597.29
lj 0.16 1.99 16.77 162.35 1,637.20
ol 0.06 0.82 8.24 74.27 767.03
di 0.07 0.66 7.43 74.23 754.21
we 0.04 0.41 5.12 48.18 486.44
tw 0.02 0.25 3.34 32.67 329.47
tm 0.04 0.41 3.36 30.91 299.93
fs 0.08 0.74 5.74 58.48 585.62

Edge removals

Graph Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.10 1.16 11.88 121.57 1,465.79
cy 0.19 2.38 24.98 253.28 2,766.21
fx 0.05 0.34 3.74 38.19 398.68
yg 0.24 2.46 23.80 240.16 2,453.34
fg 0.04 0.85 7.95 81.96 830.43
ll 0.19 1.60 15.72 160.37 1,592.24
lj 0.17 1.81 16.88 162.95 1,636.81
ol 0.05 0.86 7.81 75.83 762.64
di 0.07 0.68 8.00 73.94 751.44
we 0.04 0.34 4.85 48.05 487.52
tw 0.05 0.35 3.19 32.34 327.00
tm 0.08 0.33 3.33 30.86 303.08
fs 0.09 0.69 5.90 59.63 585.80

Table H.4: Average number of affected vertices in the random hyperbolic networks of Table 9.2.

(a) Edge weights generated by a normal distribution

Edge insertions

Graph
Average #of affected vertices

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.22 2.38 24.08 236.89 2,381.54
hyp-23 0.20 2.46 23.43 237.93 2,376.37
hyp-24 0.24 2.24 23.41 236.56 2,369.67

Edge removals

Graph
Average #of affected vertices

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.24 2.28 23.96 235.66 2,383.13
hyp-23 0.25 2.53 23.42 236.70 2,376.14
hyp-24 0.26 2.22 24.05 237.51 2,372.14

(b) Edge weights generated by an exponential distribution

Edge insertions

Graph
Average #of affected vertices

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.21 2.49 24.15 238.28 2,396.69
hyp-23 0.20 2.27 23.98 238.23 2,388.64
hyp-24 0.19 2.38 23.53 238.20 2,387.47

Edge removals

Graph
Average #of affected vertices

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.26 2.52 23.95 237.98 2,400.01
hyp-23 0.22 2.25 24.16 238.31 2,392.24
hyp-24 0.22 2.35 23.50 238.74 2,388.09

220

H.2 Traversed Edges

Table H.5: Average number of edges traversed to handle a single edge update. Results are averaged over the road
networks of Table 9.1 and over 100 edge updates.

(a) Road networks

Edge insertions

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

be 0.7 22.6 11.0 8.3
cz 1.1 20.6 11.1 8.1
fi 1.0 17.8 11.2 8.5
au 0.9 16.7 10.1 8.2
ca 0.9 21.2 11.1 8.4
po 0.9 19.2 10.3 8.5
it 0.8 18.7 11.3 8.6
gb 1.1 19.4 11.1 8.9
fr 0.9 18.6 9.6 8.0
ru 1.1 19.1 11.2 8.9
ge 1.2 19.8 11.4 8.0
da 0.9 20.1 10.4 8.5
af 1.0 21.9 11.5 8.2
us 0.8 17.4 10.8 8.8
as 1.1 18.0 11.7 9.2

Edge removals

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

be 1.0 40.3 22.5 18.2
cz 1.2 42.2 22.6 18.8
fi 0.9 32.6 22.2 17.6
au 0.8 33.7 23.5 19.2
ca 0.8 37.5 23.1 18.3
po 0.7 39.4 22.4 18.1
it 1.0 41.0 24.4 19.2
gb 1.0 32.2 21.2 17.4
fr 0.8 36.1 23.4 19.6
ru 1.0 40.9 22.9 18.6
ge 0.9 40.5 23.7 18.0
da 0.9 39.1 21.3 16.8
af 0.9 37.8 22.0 17.4
us 0.9 35.5 22.0 18.2
as 0.9 39.4 23.4 18.4

(b) Complex networks

Edge insertions

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

hy 0.1 17.8 11.7 10.2
cy 0.3 15.7 12.7 9.7
fx 0.6 18.8 10.8 9.3
yg 0.3 16.5 11.5 9.4
fg 0.1 20.8 10.8 7.4
ll 0.2 21.9 9.1 6.3
lj 0.2 22.7 9.8 7.2
ol 0.0 23.7 7.2 5.3
di 0.8 26.6 7.9 5.7
we 0.5 11.1 4.9 3.5

Edge removals

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

hy 0.1 25.2 19.9 15.5
cy 0.7 22.7 18.6 16.1
fx 0.0 27.2 17.2 14.1
yg 0.3 24.1 19.0 15.9
fg 0.6 25.4 17.7 14.8
ll 0.9 39.3 19.1 15.1
lj 0.5 44.8 21.5 16.1
ol 0.6 48.8 16.8 12.3
di 0.7 51.8 19.9 14.7
we 0.3 44.9 20.5 15.1

221

H.3 Speedups on DynMWMRandom

Table H.6: Geometric mean of the speedups of dynamic Suitor over DynMWMRandom on real-world networks of
Table 9.1. Results are averaged over 100 edge updates.

(a) Road networks

Edge insertions

Graph
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

be 4.41 2.80 2.30
cz 3.90 2.54 2.32
fi 3.05 2.25 1.89
au 2.96 2.44 2.09
ca 4.42 2.99 2.50
po 2.78 1.90 1.68
it 2.62 1.89 1.68
gb 2.71 1.98 1.69
fr 2.89 2.09 1.74
ru 3.23 2.37 2.07
ge 2.93 2.37 1.97
da 3.29 2.22 1.98
af 3.26 1.75 1.82
us 2.80 2.25 1.91
as 2.43 1.91 1.68

geom. mean 3.13 2.22 1.94

Edge removals

Graph
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

be 6.93 4.44 3.75
cz 5.73 3.76 3.26
fi 4.16 3.16 2.79
au 3.74 3.12 2.74
ca 4.64 3.51 2.91
po 4.23 3.06 2.50
it 4.17 3.01 2.58
gb 3.69 2.78 2.43
fr 4.34 3.45 2.98
ru 4.56 3.05 2.71
ge 3.58 2.56 2.16
da 4.62 3.00 2.67
af 4.08 3.62 2.41
us 5.21 2.85 3.36
as 4.60 3.28 2.80

geom. mean 4.48 3.22 2.78

(b) Complex networks

Edge insertions

Graph
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

hy 1.08 0.94 0.92
cy 1.74 1.63 1.46
fx 1.89 1.48 1.32
yg 0.40 0.35 0.32
fg 1.40 0.86 0.75
ll 4.23 2.61 2.08
lj 3.65 2.18 1.83
ol 4.40 2.10 1.67
di 4.51 2.13 1.62
we 0.40 0.22 0.17

geom. mean 1.73 1.14 0.97

Edge removals

Graph
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

hy 2.78 2.55 2.41
cy 1.65 1.50 1.45
fx 3.26 2.61 2.19
yg 0.67 0.63 0.59
fg 2.06 1.61 1.44
ll 5.50 3.61 2.92
lj 5.40 3.33 2.76
ol 7.97 3.73 2.94
di 6.11 4.38 2.75
we 1.62 1.01 0.86

geom. mean 2.94 2.14 1.80

222

H.4 Running Times Compared to DynMWMRandom

Table H.7: Average running time in seconds to handle a single edge update. Results are averaged over the networks
of Table 9.1 and over 100 edge updates. Contrarily to the tables in Appendix H.6, here we also take into
account the time spent to update the graph data structures.

(a) Road networks

Edge insertions

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

be 1.0 · 10-6 4.5 · 10-6 2.9 · 10-6 2.4 · 10-6

cz 1.1 · 10-6 4.1 · 10-6 2.7 · 10-6 2.5 · 10-6

fi 1.2 · 10-6 3.6 · 10-6 2.7 · 10-6 2.2 · 10-6

au 1.1 · 10-6 3.3 · 10-6 2.7 · 10-6 2.3 · 10-6

ca 9.9 · 10-7 4.4 · 10-6 3.0 · 10-6 2.5 · 10-6

po 1.5 · 10-6 4.1 · 10-6 2.8 · 10-6 2.5 · 10-6

it 1.5 · 10-6 3.9 · 10-6 2.8 · 10-6 2.5 · 10-6

gb 1.5 · 10-6 4.1 · 10-6 3.0 · 10-6 2.6 · 10-6

fr 1.4 · 10-6 4.2 · 10-6 3.0 · 10-6 2.5 · 10-6

ru 1.3 · 10-6 4.1 · 10-6 3.0 · 10-6 2.7 · 10-6

ge 1.5 · 10-6 4.3 · 10-6 3.5 · 10-6 2.9 · 10-6

da 1.4 · 10-6 4.6 · 10-6 3.1 · 10-6 2.7 · 10-6

af 1.8 · 10-6 5.8 · 10-6 3.1 · 10-6 3.2 · 10-6

us 1.4 · 10-6 3.9 · 10-6 3.1 · 10-6 2.6 · 10-6

as 1.6 · 10-6 4.0 · 10-6 3.1 · 10-6 2.7 · 10-6

Edge removals

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

be 1.0 · 10-6 7.2 · 10-6 4.6 · 10-6 3.9 · 10-6

cz 1.3 · 10-6 7.5 · 10-6 4.9 · 10-6 4.3 · 10-6

fi 1.3 · 10-6 5.4 · 10-6 4.1 · 10-6 3.6 · 10-6

au 1.5 · 10-6 5.6 · 10-6 4.7 · 10-6 4.1 · 10-6

ca 1.5 · 10-6 6.7 · 10-6 5.1 · 10-6 4.2 · 10-6

po 1.7 · 10-6 7.3 · 10-6 5.3 · 10-6 4.3 · 10-6

it 1.8 · 10-6 7.3 · 10-6 5.3 · 10-6 4.5 · 10-6

gb 1.6 · 10-6 5.8 · 10-6 4.4 · 10-6 3.8 · 10-6

fr 1.5 · 10-6 6.5 · 10-6 5.1 · 10-6 4.4 · 10-6

ru 1.7 · 10-6 7.7 · 10-6 5.2 · 10-6 4.6 · 10-6

ge 2.2 · 10-6 7.9 · 10-6 5.7 · 10-6 4.8 · 10-6

da 1.7 · 10-6 8.0 · 10-6 5.2 · 10-6 4.7 · 10-6

af 1.8 · 10-6 7.2 · 10-6 6.4 · 10-6 4.3 · 10-6

us 1.8 · 10-6 9.3 · 10-6 5.1 · 10-6 6.0 · 10-6

as 1.6 · 10-6 7.5 · 10-6 5.3 · 10-6 4.5 · 10-6

(b) Complex networks

Edge insertions

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

hy 2.8 · 10-6 3.0 · 10-6 2.6 · 10-6 2.6 · 10-6

cy 1.5 · 10-6 2.6 · 10-6 2.4 · 10-6 2.2 · 10-6

fx 1.9 · 10-6 3.7 · 10-6 2.9 · 10-6 2.6 · 10-6

yg 6.6 · 10-6 2.6 · 10-6 2.3 · 10-6 2.1 · 10-6

fg 3.2 · 10-6 4.5 · 10-6 2.8 · 10-6 2.4 · 10-6

ll 1.5 · 10-6 6.2 · 10-6 3.8 · 10-6 3.1 · 10-6

lj 1.7 · 10-6 6.3 · 10-6 3.8 · 10-6 3.2 · 10-6

ol 2.1 · 10-6 9.4 · 10-6 4.5 · 10-6 3.6 · 10-6

di 2.3 · 10-6 1.0 · 10-5 4.8 · 10-6 3.7 · 10-6

we 1.3 · 10-5 5.1 · 10-6 2.8 · 10-6 2.2 · 10-6

Edge removals

Graph Suitor
DynMWMRandom

ε = 0.1 ε = 0.5 ε = 1

hy 1.4 · 10-6 4.0 · 10-6 3.6 · 10-6 3.4 · 10-6

cy 2.1 · 10-6 3.4 · 10-6 3.1 · 10-6 3.0 · 10-6

fx 1.6 · 10-6 5.1 · 10-6 4.1 · 10-6 3.4 · 10-6

yg 5.7 · 10-6 3.8 · 10-6 3.6 · 10-6 3.4 · 10-6

fg 2.4 · 10-6 5.0 · 10-6 3.9 · 10-6 3.5 · 10-6

ll 1.9 · 10-6 1.0 · 10-5 6.8 · 10-6 5.5 · 10-6

lj 2.2 · 10-6 1.2 · 10-5 7.4 · 10-6 6.1 · 10-6

ol 2.3 · 10-6 1.8 · 10-5 8.6 · 10-6 6.8 · 10-6

di 2.4 · 10-6 1.5 · 10-5 1.0 · 10-5 6.5 · 10-6

we 8.9 · 10-6 1.4 · 10-5 9.0 · 10-6 7.6 · 10-6

223

H.5 Speedups on the Static Algorithm

Table H.8: Geometric mean of the speedups of the dynamic algorithm over a static recomputation on the road net-
works of Table 9.1. Results are averaged over 100 batches with b ∈

{
1, . . . , 104

}
edge updates.

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

be 1.3 · 105 2.4 · 104 3.6 · 103 4.0 · 102 3.1 · 101

cz 1.4 · 105 3.4 · 104 5.0 · 103 5.6 · 102 4.5 · 101

fi 1.8 · 105 4.2 · 104 5.9 · 103 6.5 · 102 5.3 · 101

au 2.3 · 105 6.0 · 104 8.0 · 103 8.7 · 102 7.1 · 101

ca 3.1 · 105 6.1 · 104 1.0 · 104 9.9 · 102 8.4 · 101

po 3.8 · 105 1.1 · 105 1.7 · 104 1.8 · 103 1.5 · 102

it 4.8 · 105 1.2 · 105 1.8 · 104 1.9 · 103 1.7 · 102

gb 6.3 · 105 1.1 · 105 2.0 · 104 2.0 · 103 1.8 · 102

fr 9.8 · 105 1.9 · 105 2.9 · 104 3.4 · 103 3.1 · 102

ru 6.6 · 105 1.6 · 105 2.7 · 104 3.1 · 103 2.8 · 102

ge 1.4 · 106 2.7 · 105 4.4 · 104 5.0 · 103 4.5 · 102

da 1.4 · 106 3.0 · 105 5.1 · 104 6.4 · 103 5.7 · 102

af 1.6 · 106 2.8 · 105 4.7 · 104 5.5 · 103 5.1 · 102

us 2.4 · 106 4.7 · 105 7.1 · 104 9.0 · 103 8.7 · 102

as 3.8 · 106 6.0 · 105 9.4 · 104 1.3 · 104 1.2 · 103

geom. mean 6.0 · 105 1.3 · 105 2.0 · 104 2.2 · 103 2.0 · 102

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

be 1.5 · 105 3.0 · 104 4.2 · 103 4.9 · 102 4.3 · 101

cz 2.1 · 105 4.0 · 104 6.1 · 103 6.9 · 102 6.5 · 101

fi 2.4 · 105 4.9 · 104 7.6 · 103 8.4 · 102 7.7 · 101

au 3.6 · 105 7.1 · 104 9.8 · 103 1.1 · 103 1.0 · 102

ca 3.4 · 105 7.3 · 104 1.2 · 104 1.4 · 103 1.4 · 102

po 4.6 · 105 1.3 · 105 2.1 · 104 2.4 · 103 2.4 · 102

it 4.3 · 105 1.5 · 105 2.3 · 104 2.7 · 103 2.6 · 102

gb 6.6 · 105 1.7 · 105 2.6 · 104 3.0 · 103 3.0 · 102

fr 1.5 · 106 2.6 · 105 4.2 · 104 4.7 · 103 4.8 · 102

ru 7.1 · 105 2.4 · 105 3.7 · 104 4.6 · 103 4.6 · 102

ge 1.4 · 106 3.6 · 105 6.5 · 104 7.4 · 103 7.4 · 102

da 1.8 · 106 5.2 · 105 7.8 · 104 9.2 · 103 9.5 · 102

af 1.7 · 106 4.5 · 105 7.4 · 104 8.7 · 103 8.8 · 102

us 2.9 · 106 7.7 · 105 1.3 · 105 1.5 · 104 1.5 · 103

as 3.9 · 106 10.0 · 105 1.8 · 105 2.1 · 104 2.1 · 103

geom. mean 7.1 · 105 1.7 · 105 2.8 · 104 3.2 · 103 3.1 · 102

224

Table H.9: Geometric mean of the speedups of the dynamic algorithm over a static recomputation on the complex
networks of Table 9.1. Results are averaged over 100 batches with b ∈

{
1, . . . , 104

}
edge updates.

(a) Edge weights generated by a normal distribution

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.3 · 105 5.0 · 104 1.0 · 104 1.2 · 103 1.3 · 102

cy 1.4 · 105 4.2 · 104 6.4 · 103 7.6 · 102 7.9 · 101

fx 1.5 · 105 7.2 · 104 1.7 · 104 2.1 · 103 2.5 · 102

yg 3.1 · 105 1.0 · 105 2.0 · 104 2.4 · 103 2.6 · 102

fg 3.0 · 105 1.1 · 105 2.0 · 104 3.5 · 103 4.2 · 102

ll 9.2 · 105 3.1 · 105 7.5 · 104 8.7 · 103 9.6 · 102

lj 1.1 · 106 2.5 · 105 4.7 · 104 7.2 · 103 8.5 · 102

ol 1.2 · 106 5.0 · 105 7.3 · 104 1.1 · 104 1.4 · 103

di 1.5 · 106 7.3 · 105 1.7 · 105 2.1 · 104 2.2 · 103

we 3.8 · 106 1.1 · 106 1.8 · 105 2.5 · 104 4.2 · 103

tw 1.4 · 107 4.5 · 106 8.2 · 105 1.5 · 105 2.1 · 104

tm 1.7 · 107 6.0 · 106 1.1 · 106 1.5 · 105 2.6 · 104

fs 2.3 · 107 9.4 · 106 1.5 · 106 2.7 · 105 3.1 · 104

geom. mean 1.2 · 106 4.2 · 105 7.9 · 104 1.1 · 104 1.4 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.6 · 105 7.8 · 104 1.8 · 104 2.2 · 103 2.3 · 102

cy 1.6 · 105 6.2 · 104 1.1 · 104 1.2 · 103 1.2 · 102

fx 1.9 · 105 1.0 · 105 3.5 · 104 4.8 · 103 5.7 · 102

yg 4.3 · 105 1.4 · 105 2.9 · 104 3.7 · 103 4.0 · 102

fg 3.2 · 105 1.5 · 105 3.2 · 104 5.7 · 103 6.4 · 102

ll 1.0 · 106 5.0 · 105 9.2 · 104 1.3 · 104 1.3 · 103

lj 1.4 · 106 5.1 · 105 7.4 · 104 1.0 · 104 1.2 · 103

ol 1.6 · 106 7.5 · 105 1.4 · 105 1.6 · 104 2.0 · 103

di 2.2 · 106 1.1 · 106 2.8 · 105 3.6 · 104 3.8 · 103

we 4.6 · 106 1.7 · 106 3.1 · 105 4.1 · 104 6.4 · 103

tw 1.8 · 107 6.1 · 106 1.4 · 106 2.2 · 105 3.5 · 104

tm 2.3 · 107 8.2 · 106 2.0 · 106 2.6 · 105 4.0 · 104

fs 3.0 · 107 1.3 · 107 2.0 · 106 3.5 · 105 4.5 · 104

geom. mean 1.5 · 106 6.3 · 105 1.3 · 105 1.8 · 104 2.1 · 103

(b) Edge weights generated by an exponential distribution

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.2 · 105 5.1 · 104 9.5 · 103 1.2 · 103 1.3 · 102

cy 1.4 · 105 4.1 · 104 6.6 · 103 7.7 · 102 7.9 · 101

fx 1.5 · 105 7.0 · 104 1.7 · 104 2.1 · 103 2.5 · 102

yg 3.2 · 105 1.0 · 105 2.0 · 104 2.4 · 103 2.6 · 102

fg 2.7 · 105 1.1 · 105 2.0 · 104 3.4 · 103 4.2 · 102

ll 1.0 · 106 3.1 · 105 6.6 · 104 8.9 · 103 9.6 · 102

lj 1.0 · 106 2.4 · 105 4.7 · 104 8.4 · 103 8.5 · 102

ol 1.3 · 106 4.8 · 105 6.8 · 104 1.1 · 104 1.4 · 103

di 1.5 · 106 7.1 · 105 1.7 · 105 2.1 · 104 2.2 · 103

we 3.6 · 106 1.1 · 106 1.9 · 105 2.5 · 104 4.2 · 103

tw 1.6 · 107 4.5 · 106 8.3 · 105 1.3 · 105 2.1 · 104

tm 1.5 · 107 6.0 · 106 1.1 · 106 1.5 · 105 2.7 · 104

fs 2.3 · 107 8.7 · 106 1.4 · 106 2.3 · 105 3.0 · 104

geom. mean 1.2 · 106 4.2 · 105 7.7 · 104 1.1 · 104 1.4 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.7 · 105 8.1 · 104 1.7 · 104 2.2 · 103 2.3 · 102

cy 1.8 · 105 6.6 · 104 1.0 · 104 1.2 · 103 1.2 · 102

fx 1.9 · 105 1.2 · 105 3.5 · 104 4.6 · 103 5.7 · 102

yg 3.9 · 105 1.4 · 105 2.9 · 104 3.7 · 103 4.0 · 102

fg 2.9 · 105 1.5 · 105 3.1 · 104 5.4 · 103 6.3 · 102

ll 1.1 · 106 4.8 · 105 8.8 · 104 1.2 · 104 1.3 · 103

lj 1.3 · 106 4.9 · 105 7.3 · 104 1.0 · 104 1.2 · 103

ol 1.5 · 106 6.9 · 105 1.4 · 105 1.8 · 104 2.0 · 103

di 2.0 · 106 1.1 · 106 2.7 · 105 3.7 · 104 3.7 · 103

we 4.1 · 106 1.8 · 106 3.1 · 105 4.0 · 104 6.5 · 103

tw 1.8 · 107 6.6 · 106 1.4 · 106 2.5 · 105 3.5 · 104

tm 2.1 · 107 8.2 · 106 1.9 · 106 2.5 · 105 4.4 · 104

fs 2.6 · 107 1.2 · 107 2.2 · 106 4.3 · 105 3.6 · 104

geom. mean 1.4 · 106 6.4 · 105 1.3 · 105 1.8 · 104 2.1 · 103

225

Table H.10: Geometric mean of the speedups of the dynamic algorithm over a static recomputation on the R-MAT
networks of Table 9.2. Results are averaged over 100 batches with b ∈

{
1, . . . , 104

}
edge updates.

(a) Edge weights generated by a normal distribution

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 5.9 · 105 2.2 · 105 4.5 · 104 8.7 · 103 1.1 · 103

rmat-23 1.1 · 106 4.0 · 105 8.5 · 104 1.8 · 104 2.2 · 103

rmat-24 2.1 · 106 7.6 · 105 1.6 · 105 3.7 · 104 4.5 · 103

geom. mean 1.1 · 106 4.0 · 105 8.5 · 104 1.8 · 104 2.2 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 6.4 · 105 3.0 · 105 7.3 · 104 1.5 · 104 1.9 · 103

rmat-23 1.2 · 106 5.5 · 105 1.4 · 105 2.8 · 104 3.7 · 103

rmat-24 2.4 · 106 1.0 · 106 2.6 · 105 6.3 · 104 7.5 · 103

geom. mean 1.2 · 106 5.5 · 105 1.4 · 105 3.0 · 104 3.7 · 103

(b) Edge weights generated by an exponential distribution

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 5.9 · 105 2.2 · 105 4.4 · 104 8.4 · 103 1.1 · 103

rmat-23 1.1 · 106 4.0 · 105 8.4 · 104 1.8 · 104 2.2 · 103

rmat-24 2.0 · 106 7.6 · 105 1.6 · 105 3.7 · 104 4.5 · 103

geom. mean 1.1 · 106 4.1 · 105 8.4 · 104 1.8 · 104 2.2 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 6.5 · 105 3.1 · 105 7.2 · 104 1.4 · 104 1.8 · 103

rmat-23 1.2 · 106 5.7 · 105 1.4 · 105 2.6 · 104 3.7 · 103

rmat-24 2.4 · 106 1.0 · 106 2.6 · 105 6.4 · 104 7.5 · 103

geom. mean 1.2 · 106 5.7 · 105 1.4 · 105 2.9 · 104 3.7 · 103

Table H.11: Geometric mean of the speedups of the dynamic algorithm over a static recomputation on the random
hyperbolic networks of Table 9.2. Results are averaged over 100 batches with b ∈

{
1, . . . , 104

}
edge

updates.

(a) Edge weights generated by a normal distribution

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.4 · 105 1.2 · 105 2.5 · 104 2.8 · 103 2.8 · 102

hyp-23 6.3 · 105 2.0 · 105 4.6 · 104 5.2 · 103 5.5 · 102

hyp-24 1.3 · 106 3.9 · 105 8.9 · 104 1.0 · 104 1.1 · 103

geom. mean 6.6 · 105 2.1 · 105 4.7 · 104 5.3 · 103 5.5 · 102

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.8 · 105 1.9 · 105 3.8 · 104 4.4 · 103 4.2 · 102

hyp-23 6.5 · 105 3.3 · 105 7.2 · 104 8.6 · 103 8.2 · 102

hyp-24 1.3 · 106 6.7 · 105 1.4 · 105 1.7 · 104 1.6 · 103

geom. mean 6.9 · 105 3.5 · 105 7.3 · 104 8.5 · 103 8.1 · 102

(b) Edge weights generated by an exponential distribution

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.4 · 105 1.1 · 105 2.4 · 104 2.8 · 103 2.8 · 102

hyp-23 6.2 · 105 2.0 · 105 4.6 · 104 5.2 · 103 5.5 · 102

hyp-24 1.3 · 106 3.8 · 105 9.0 · 104 1.0 · 104 1.1 · 103

geom. mean 6.5 · 105 2.1 · 105 4.6 · 104 5.3 · 103 5.5 · 102

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.8 · 105 1.9 · 105 3.8 · 104 4.4 · 103 4.2 · 102

hyp-23 6.7 · 105 3.5 · 105 7.1 · 104 8.5 · 103 8.2 · 102

hyp-24 1.4 · 106 6.8 · 105 1.4 · 105 1.7 · 104 1.6 · 103

geom. mean 7.1 · 105 3.5 · 105 7.3 · 104 8.5 · 103 8.1 · 102

226

H.6 Running Times Compared to the Static Algorithm

Table H.12: Average running times in seconds of the static and the dynamic Suitor algorithms for 100 batches of
b ∈

{
1, . . . , 104

}
edge updates on the road networks of Table 9.1. The columns “Static” and “Dynamic”

report the average time (in seconds) for the static and for the dynamic algorithm, respectively.

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

be 0.07 5.5 · 10-7 3.0 · 10-6 2.1 · 10-5 1.9 · 10-4 2.0 · 10-3

cz 0.10 7.2 · 10-7 3.1 · 10-6 2.1 · 10-5 1.9 · 10-4 2.1 · 10-3

fi 0.11 6.2 · 10-7 2.7 · 10-6 1.9 · 10-5 1.8 · 10-4 2.0 · 10-3

au 0.16 6.9 · 10-7 2.7 · 10-6 2.0 · 10-5 1.9 · 10-4 2.2 · 10-3

ca 0.20 6.5 · 10-7 3.3 · 10-6 2.0 · 10-5 2.1 · 10-4 2.4 · 10-3

po 0.36 9.8 · 10-7 3.4 · 10-6 2.2 · 10-5 2.0 · 10-4 2.3 · 10-3

it 0.41 8.6 · 10-7 3.3 · 10-6 2.2 · 10-5 2.2 · 10-4 2.3 · 10-3

gb 0.45 7.2 · 10-7 4.3 · 10-6 2.3 · 10-5 2.3 · 10-4 2.4 · 10-3

fr 0.72 7.7 · 10-7 3.9 · 10-6 2.6 · 10-5 2.1 · 10-4 2.1 · 10-3

ru 0.67 1.0 · 10-6 4.4 · 10-6 2.5 · 10-5 2.1 · 10-4 2.3 · 10-3

ge 1.17 8.8 · 10-7 4.5 · 10-6 2.7 · 10-5 2.3 · 10-4 2.5 · 10-3

da 1.46 1.1 · 10-6 4.6 · 10-6 3.0 · 10-5 2.3 · 10-4 2.5 · 10-3

af 1.27 8.4 · 10-7 4.7 · 10-6 2.6 · 10-5 2.3 · 10-4 2.5 · 10-3

us 2.29 9.8 · 10-7 5.0 · 10-6 3.3 · 10-5 2.5 · 10-4 2.6 · 10-3

as 3.20 8.6 · 10-7 5.5 · 10-6 3.4 · 10-5 2.5 · 10-4 2.5 · 10-3

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

be 0.07 4.7 · 10-7 2.5 · 10-6 1.8 · 10-5 1.6 · 10-4 1.5 · 10-3

cz 0.10 5.0 · 10-7 2.6 · 10-6 1.7 · 10-5 1.6 · 10-4 1.5 · 10-3

fi 0.11 4.7 · 10-7 2.3 · 10-6 1.5 · 10-5 1.4 · 10-4 1.4 · 10-3

au 0.16 4.5 · 10-7 2.3 · 10-6 1.6 · 10-5 1.6 · 10-4 1.5 · 10-3

ca 0.20 5.9 · 10-7 2.7 · 10-6 1.6 · 10-5 1.5 · 10-4 1.5 · 10-3

po 0.36 8.1 · 10-7 2.9 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

it 0.41 9.6 · 10-7 2.8 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

gb 0.45 6.9 · 10-7 2.8 · 10-6 1.8 · 10-5 1.5 · 10-4 1.4 · 10-3

fr 0.74 5.0 · 10-7 2.9 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

ru 0.67 9.6 · 10-7 2.9 · 10-6 1.8 · 10-5 1.4 · 10-4 1.4 · 10-3

ge 1.17 8.7 · 10-7 3.3 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

da 1.49 8.5 · 10-7 2.9 · 10-6 1.9 · 10-5 1.6 · 10-4 1.5 · 10-3

af 1.26 7.8 · 10-7 2.7 · 10-6 1.8 · 10-5 1.4 · 10-4 1.4 · 10-3

us 2.30 8.1 · 10-7 3.0 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

as 3.19 8.5 · 10-7 3.3 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

Table H.13: Average running times in seconds of the static and the dynamic Suitor algorithms for 100 batches of
b ∈

{
1, . . . , 104

}
edge updates on the R-MATnetworks of Table 9.2. The columns “Static” and “Dynamic”

report the average time (in seconds) for the static and for the dynamic algorithm, respectively.

(a) Edge weights generated by a normal distribution
Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 7.1 · 10-7 1.9 · 10-6 9.3 · 10-6 4.8 · 10-5 3.5 · 10-4

rmat-23 0.84 8.1 · 10-7 2.1 · 10-6 1.0 · 10-5 4.8 · 10-5 3.6 · 10-4

rmat-24 1.73 8.3 · 10-7 2.3 · 10-6 1.1 · 10-5 4.7 · 10-5 3.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 6.6 · 10-7 1.4 · 10-6 5.7 · 10-6 2.8 · 10-5 2.1 · 10-4

rmat-23 0.85 6.9 · 10-7 1.6 · 10-6 6.2 · 10-6 3.1 · 10-5 2.1 · 10-4

rmat-24 1.72 7.2 · 10-7 1.7 · 10-6 6.7 · 10-6 2.8 · 10-5 2.2 · 10-4

(b) Edge weights generated by an exponential distribution
Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 7.1 · 10-7 1.9 · 10-6 9.4 · 10-6 5.0 · 10-5 3.5 · 10-4

rmat-23 0.85 7.9 · 10-7 2.1 · 10-6 1.0 · 10-5 4.9 · 10-5 3.6 · 10-4

rmat-24 1.73 8.7 · 10-7 2.3 · 10-6 1.1 · 10-5 4.8 · 10-5 3.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 6.4 · 10-7 1.4 · 10-6 5.8 · 10-6 3.0 · 10-5 2.1 · 10-4

rmat-23 0.85 7.4 · 10-7 1.5 · 10-6 6.2 · 10-6 3.3 · 10-5 2.1 · 10-4

rmat-24 1.73 7.4 · 10-7 1.7 · 10-6 6.7 · 10-6 2.7 · 10-5 2.2 · 10-4

227

Table H.14: Average running times in seconds of the static and the dynamic Suitor algorithms for 100 batches of b ∈{
1, . . . , 104

}
edge updates on the complex networks of Table 9.1. The columns “Static” and “Dynamic”

report the average time (in seconds) for the static and for the dynamic algorithm, respectively.

(a) Edge weights generated by a normal distribution
Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 6.0 · 10-7 1.6 · 10-6 7.8 · 10-6 6.4 · 10-5 5.6 · 10-4

cy 0.06 4.5 · 10-7 1.5 · 10-6 9.9 · 10-6 8.3 · 10-5 7.3 · 10-4

fx 0.11 7.5 · 10-7 1.6 · 10-6 6.8 · 10-6 5.1 · 10-5 3.9 · 10-4

yg 0.21 7.1 · 10-7 2.1 · 10-6 1.1 · 10-5 9.0 · 10-5 7.9 · 10-4

fg 0.19 6.4 · 10-7 1.7 · 10-6 9.6 · 10-6 5.3 · 10-5 4.1 · 10-4

ll 0.69 7.6 · 10-7 2.3 · 10-6 9.4 · 10-6 8.0 · 10-5 6.7 · 10-4

lj 0.68 6.5 · 10-7 2.9 · 10-6 1.5 · 10-5 9.7 · 10-5 6.6 · 10-4

ol 0.80 7.0 · 10-7 1.6 · 10-6 1.1 · 10-5 7.4 · 10-5 5.2 · 10-4

di 1.19 7.9 · 10-7 1.7 · 10-6 7.1 · 10-6 5.6 · 10-5 5.0 · 10-4

we 2.15 5.9 · 10-7 2.1 · 10-6 1.2 · 10-5 8.9 · 10-5 4.4 · 10-4

tw 11.23 8.9 · 10-7 2.5 · 10-6 1.4 · 10-5 7.6 · 10-5 4.7 · 10-4

tm 14.45 8.9 · 10-7 2.5 · 10-6 1.3 · 10-5 1.0 · 10-4 5.0 · 10-4

fs 21.51 1.0 · 10-6 2.5 · 10-6 1.5 · 10-5 7.6 · 10-5 6.0 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 5.1 · 10-7 1.0 · 10-6 4.6 · 10-6 3.5 · 10-5 3.2 · 10-4

cy 0.06 4.1 · 10-7 1.0 · 10-6 6.0 · 10-6 5.4 · 10-5 4.9 · 10-4

fx 0.11 5.9 · 10-7 1.1 · 10-6 3.3 · 10-6 2.3 · 10-5 1.8 · 10-4

yg 0.22 5.1 · 10-7 1.6 · 10-6 7.6 · 10-6 5.8 · 10-5 5.2 · 10-4

fg 0.19 6.0 · 10-7 1.2 · 10-6 6.0 · 10-6 3.3 · 10-5 2.7 · 10-4

ll 0.69 6.9 · 10-7 1.4 · 10-6 7.6 · 10-6 5.5 · 10-5 4.8 · 10-4

lj 0.68 5.2 · 10-7 1.4 · 10-6 9.6 · 10-6 6.8 · 10-5 4.7 · 10-4

ol 0.80 5.2 · 10-7 1.1 · 10-6 5.7 · 10-6 5.2 · 10-5 3.7 · 10-4

di 1.19 5.6 · 10-7 1.1 · 10-6 4.3 · 10-6 3.4 · 10-5 3.0 · 10-4

we 2.15 4.9 · 10-7 1.3 · 10-6 7.3 · 10-6 5.4 · 10-5 2.8 · 10-4

tw 11.46 7.0 · 10-7 1.9 · 10-6 8.0 · 10-6 5.3 · 10-5 2.9 · 10-4

tm 14.47 6.5 · 10-7 1.8 · 10-6 7.4 · 10-6 5.5 · 10-5 3.3 · 10-4

fs 20.99 7.3 · 10-7 1.7 · 10-6 1.1 · 10-5 5.8 · 10-5 4.2 · 10-4

(b) Edge weights generated by an exponential distribution
Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 6.5 · 10-7 1.5 · 10-6 8.3 · 10-6 6.4 · 10-5 5.7 · 10-4

cy 0.06 4.6 · 10-7 1.6 · 10-6 9.7 · 10-6 8.3 · 10-5 7.4 · 10-4

fx 0.11 7.3 · 10-7 1.6 · 10-6 6.7 · 10-6 5.0 · 10-5 3.9 · 10-4

yg 0.21 6.8 · 10-7 2.1 · 10-6 1.1 · 10-5 8.8 · 10-5 7.9 · 10-4

fg 0.19 7.1 · 10-7 1.7 · 10-6 9.5 · 10-6 5.5 · 10-5 4.1 · 10-4

ll 0.69 7.0 · 10-7 2.3 · 10-6 1.1 · 10-5 7.7 · 10-5 6.7 · 10-4

lj 0.68 7.1 · 10-7 2.9 · 10-6 1.5 · 10-5 8.2 · 10-5 6.6 · 10-4

ol 0.80 6.5 · 10-7 1.7 · 10-6 1.2 · 10-5 7.4 · 10-5 5.2 · 10-4

di 1.18 8.0 · 10-7 1.7 · 10-6 7.1 · 10-6 5.6 · 10-5 5.0 · 10-4

we 2.14 6.3 · 10-7 2.0 · 10-6 1.2 · 10-5 8.9 · 10-5 4.4 · 10-4

tw 11.41 7.9 · 10-7 2.6 · 10-6 1.4 · 10-5 9.1 · 10-5 4.6 · 10-4

tm 14.66 1.0 · 10-6 2.5 · 10-6 1.3 · 10-5 1.1 · 10-4 4.8 · 10-4

fs 21.69 1.0 · 10-6 2.6 · 10-6 1.6 · 10-5 9.3 · 10-5 6.5 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 4.7 · 10-7 9.8 · 10-7 4.5 · 10-6 3.5 · 10-5 3.2 · 10-4

cy 0.06 3.7 · 10-7 9.7 · 10-7 6.2 · 10-6 5.4 · 10-5 4.9 · 10-4

fx 0.11 6.0 · 10-7 9.6 · 10-7 3.2 · 10-6 2.3 · 10-5 1.8 · 10-4

yg 0.22 5.6 · 10-7 1.6 · 10-6 7.6 · 10-6 5.9 · 10-5 5.2 · 10-4

fg 0.19 6.5 · 10-7 1.3 · 10-6 6.1 · 10-6 3.5 · 10-5 2.7 · 10-4

ll 0.69 6.2 · 10-7 1.5 · 10-6 8.1 · 10-6 5.8 · 10-5 4.8 · 10-4

lj 0.68 5.6 · 10-7 1.5 · 10-6 9.8 · 10-6 6.9 · 10-5 4.7 · 10-4

ol 0.80 5.5 · 10-7 1.2 · 10-6 6.0 · 10-6 4.6 · 10-5 3.7 · 10-4

di 1.18 6.1 · 10-7 1.1 · 10-6 4.5 · 10-6 3.3 · 10-5 3.0 · 10-4

we 2.16 5.6 · 10-7 1.2 · 10-6 7.2 · 10-6 5.5 · 10-5 2.9 · 10-4

tw 11.47 7.2 · 10-7 1.8 · 10-6 7.9 · 10-6 4.7 · 10-5 2.8 · 10-4

tm 14.62 7.5 · 10-7 1.9 · 10-6 7.9 · 10-6 5.7 · 10-5 2.9 · 10-4

fs 21.26 8.2 · 10-7 1.9 · 10-6 1.0 · 10-5 5.0 · 10-5 5.0 · 10-4

228

Table H.15: Average running times in seconds of the static and the dynamic Suitor algorithms for 100 batches of
b ∈

{
1, . . . , 104

}
edge updates on the randomhyperbolic networks of Table 9.2. The columns “Static” and

“Dynamic” report the average time (in seconds) for the static and for the dynamic algorithm, respectively.

(a) Edge weights generated by a normal distribution
Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.21 6.4 · 10-7 1.8 · 10-6 8.8 · 10-6 7.7 · 10-5 7.5 · 10-4

hyp-23 0.43 6.8 · 10-7 2.2 · 10-6 9.3 · 10-6 8.2 · 10-5 7.5 · 10-4

hyp-24 0.85 6.5 · 10-7 2.2 · 10-6 9.7 · 10-6 8.3 · 10-5 7.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.22 5.7 · 10-7 1.1 · 10-6 5.7 · 10-6 4.9 · 10-5 5.0 · 10-4

hyp-23 0.43 6.6 · 10-7 1.3 · 10-6 5.9 · 10-6 5.0 · 10-5 5.1 · 10-4

hyp-24 0.85 6.7 · 10-7 1.3 · 10-6 6.1 · 10-6 5.2 · 10-5 5.3 · 10-4

(b) Edge weights generated by an exponential distribution
Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.21 6.3 · 10-7 1.9 · 10-6 8.8 · 10-6 7.7 · 10-5 7.5 · 10-4

hyp-23 0.43 7.0 · 10-7 2.1 · 10-6 9.4 · 10-6 8.2 · 10-5 7.6 · 10-4

hyp-24 0.85 6.6 · 10-7 2.3 · 10-6 9.6 · 10-6 8.3 · 10-5 7.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.22 5.7 · 10-7 1.1 · 10-6 5.7 · 10-6 4.9 · 10-5 5.0 · 10-4

hyp-23 0.43 6.5 · 10-7 1.2 · 10-6 6.1 · 10-6 5.0 · 10-5 5.1 · 10-4

hyp-24 0.85 6.2 · 10-7 1.3 · 10-6 5.9 · 10-6 5.2 · 10-5 5.3 · 10-4

H.7 Preprocessing Time

Figure H.1 shows the percentage of running time spent by the static Suitor algorithm in sorting the adja-
cency lists after a batch of edge updates w.r.t. the overall running time.

100 101 102 103 104

Batch size

0

1

2

3

4

%
 o

f o
ve

ra
ll

ru
nn

in
g

tim
e

Edge insertions

100 101 102 103 104

Batch size

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f o
ve

ra
ll

ru
nn

in
g

tim
e

Edge removals

(a) Road networks

normal exponential

100 101 102 103 104

Batch size

0

2

4

6

%
 o

f o
ve

ra
ll

ru
nn

in
g

tim
e

Edge insertions

100 101 102 103 104

Batch size

0

1

2

3

%
 o

f o
ve

ra
ll

ru
nn

in
g

tim
e

Edge removals

(b) Complex networks

Figure H.1: Percentage of time spent by the static Suitor algorithm for the preprocessing step (i.e., sorting the adja-
cency lists after a batch of edge updates) w.r.t. the overall running time of the algorithm.

229

Acronyms

ADS Adaptive Sampling
APSP All-Pairs Shortest Path
BFS Breadth-First Search
CC Connected Component
CG Conjugate Gradient
DAG Directed Acyclic Graph
DFS Depth-First Search
JLT Johnson-Lindenstrauss Transform
KT Kendall’s Tau
MCM Maximum Cardinality Matching
MWM Maximum Weighted Matching
SCC Strongly Connected Component
SF State Frame (sampling state of the parallel ADS framework de-

scribed in Chapter 4)
SSSP Single-Source Shortest Path
UST Uniform Spanning Tree
WCC Weakly Connected Component

231

Glossary

G⋆,α Augmented graph.
cb(u) Betweenness centrality of u.
cnrwb(u) Normalized random walk betweenness of u.
cc(u) Closeness centrality of u.
ce(u) Electrical closeness of u.
cf,α(u) Forest closeness of u.
cED(u) ED-Walk centrality of u.
ceig(u) Eigenvector centrality of u.
ch(u) Harmonic centrality of u.
cK(u) Katz centrality of u.
cPR(u) PageRank score of u.
tc(u, v) Commute time between u and v.
c(u, v) Conductance between u and v.
deg(u) Degree of u.
degin(u) In-degree of u.
degout(u) Out-degree of u.
diam(G) Diameter of a graphG.
ζα(u, v) Forest distance between u and v.
ρ(u, v) Resistance distance between u and v.
d(u, v) Shortest-path distance between u and v.
ecc(u) Eccentricity of u.
E Set of edges in a graph.
ceff(u, v) Effective conductance between u and v.
reff(u, v) Effective resistance (or resistance distance) between u and v.
i(u, v) Electrical current flowing from u to v.
E[X] Expected value of a random variableX .
f(u) Farness of u.
ff,α(u) Forest farness of u.
gc(S) Group-closeness of S.
gd(S) Group-degree of S.
gf (S) Group-farness of S.
gff,α(S) Group forest farness of S.
gfc,α(S) Group forest closeness of S.
gED(S) GED-Walk centrality of S.

233

ϕi(S) Number of walks of length i that contain at least one vertex in
S ⊆ V .

gh(S) Group-harmonic of S.
th(u, v) Hitting time from u to v.
K(G) Kirchhoff index of graphG.
L†⋆ Moore-Penrose pseudoinverse of the Laplacian matrix L⋆.
A Adjacency matrix.
D Degree matrix.
diag(M) Diagonal of a matrix M.
Ωα Forest matrix.
I Identity matrix.
L Laplacian matrix.
L⋆ Laplacian matrix of the augmented graphG⋆,α.
L† Moore-Penrose pseudoinverse of the Laplacian matrix L.
ω Matrix multiplication exponent.
J Matrix where every element is one.
tr(M) Trace of a matrix M.
eu Canonical unit vector for u.
j All-ones vector.
N(u) Neighbors of u.
N(S) Set of vertices that have at least one neighbor in S ⊆ V .
Nin(u) In-neighbors of u.
Nout(u) Out-neighbors of u.
m Number of edges in a graph.
n Number of vertices in a graph.
p(u) Electric potential of vertex u.
p(u, v) Electric potential difference between u and v: p(u)− p(v).
R(u) Vertices reachable from u.
r(u) Number of vertices reachable from u.
r(u, v) Resistance of edge {u, v}.
σx,y Number of shortest paths from x to y.
σx,y(u) Number of shortest paths from x to y that cross u.
V Set of vertices in a graph.
vol(G) Volume of a graphG.
w(u, v) Weight of the edge {u, v} (or (u, v) if the graph is directed).

234

Bibliography

1. A. Abboud, F. Grandoni, and V.V. Williams. “Subcubic Equivalences Between Graph Centrality
Problems, APSP and Diameter”. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015. SIAM, 2015, pp. 1681–
1697. doi: 10.1137/1.9781611973730.112.

2. A. Abboud, V. V. Williams, and J. R. Wang. “Approximation and Fixed Parameter Subquadratic
Algorithms for Radius and Diameter in Sparse Graphs”. In: Proceedings of the Twenty-Seventh An-
nual ACM-SIAMSymposium onDiscrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. SIAM, 2016, pp. 377–391. doi: 10.1137/1.9781611974331.ch28.

3. R. Action. “the Rise of the Medici”. American Journal of Sociology 98, 1993, pp. 1259–1319.

4. A. V.Aho, J. E.Hopcroft, and J. D.Ullman.TheDesign andAnalysis of Computer Algorithms. Addison-
Wesley, 1974.

5. R. Albert and A. Barabási. “Statistical mechanics of complex networks”. CoRR cond-mat/0106096,
2001.

6. R. Albert, H. Jeong, andA. Barabási. “The diameter of theworldwideweb”. CoRR cond-mat/9907038,
1999.

7. D. J. Aldous. “The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled
Trees”. SIAM J. Discret. Math. 3:4, 1990, pp. 450–465. doi: 10.1137/0403039.

8. V. L. Alev, N. Anari, L. C. Lau, and S. O. Gharan. “GraphClustering using Effective Resistance”. In: 9th
Innovations inTheoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge,
MA, USA. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 41:1–41:16. doi: 10.4230/
LIPIcs.ITCS.2018.41.

9. J. Alman and V.V. Williams. “A Refined Laser Method and Faster Matrix Multiplication”. In: Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021. SIAM, 2021, pp. 522–539. doi: 10.1137/1.9781611976465.32.

10. P. Amestoy, I. S. Duff, J. L’Excellent, and F. Rouet. “Parallel Computation of Entries of A-1”. SIAM J.
Sci. Comput. 37:2, 2015. doi: 10.1137/120902616.

11. A. Anand, S. Baswana,M.Gupta, and S. Sen. “MaintainingApproximateMaximumWeightedMatch-
ing in Fully Dynamic Graphs”. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 257–266. doi: 10.4230/LIPIcs.FSTTCS.
2012.257.

235

http://dx.doi.org/10.1137/1.9781611973730.112
http://dx.doi.org/10.1137/1.9781611974331.ch28
http://dx.doi.org/10.1137/0403039
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.41
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.41
http://dx.doi.org/10.1137/1.9781611976465.32
http://dx.doi.org/10.1137/120902616
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.257
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.257

12. E. Angriman, R. Becker, G. D’Angelo, H. Gilbert, A. van der Grinten, and H. Meyerhenke. “Group-
Harmonic and Group-Closeness Maximization - Approximation and Engineering”. In: Proceedings
of the Symposium on Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference,
January 10-11, 2021. SIAM, 2021, pp. 154–168. doi: 10.1137/1.9781611976472.12.

13. E. Angriman, A. van der Grinten, A. Bojchevski, D. Zügner, S. Günnemann, and H. Meyerhenke.
“Group Centrality Maximization for Large-scale Graphs”. In: Proceedings of the Symposium on Al-
gorithm Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020.
SIAM, 2020, pp. 56–69. doi: 10.1137/1.9781611976007.5.

14. E. Angriman, A. van der Grinten, M. von Looz, H. Meyerhenke, M. Nöllenburg, M. Predari, and C.
Tzovas. “Guidelines for Experimental Algorithmics: A Case Study in Network Analysis”. Algorithms
12:7, 2019, p. 127. doi: 10.3390/a12070127.

15. E. Angriman, A. van derGrinten, andH.Meyerhenke. “Local Search for GroupClosenessMaximiza-
tion on Big Graphs”. In: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,
USA, December 9-12, 2019. IEEE, 2019, pp. 711–720. doi: 10.1109/BigData47090.2019.
9006206.

16. E. Angriman, H. Meyerhenke, C. Schulz, and B. Uçar. “Fully-dynamic Weighted Matching Approx-
imation in Practice”. In: Proceedings of the 2021 SIAM Conference on Applied and Computational
Discrete Algorithms (ACDA21). 2021, pp. 32–44. doi: 10.1137/1.9781611976830.4.

17. E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke. “Approximation of the Diagonal
of a Laplacian’s Pseudoinverse for Complex Network Analysis”. In: 28th Annual European Symposium
on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 6:1–6:24. doi: 10.4230/LIPIcs.ESA.2020.6.

18. M. Arar, S. Chechik, S. Cohen, C. Stein, and D. Wajc. “Dynamic Matching: Reducing Integral Algo-
rithms to Approximately-Maximal Fractional Algorithms”. In: 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 7:1–7:16. doi: 10.4230/LIPIcs.ICALP.2018.
7.

19. M. Arbel andH. Attiya. “Concurrent updates with RCU: search tree as an example”. In:ACM Sympo-
sium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014. ACM, 2014,
pp. 196–205. doi: 10.1145/2611462.2611471.

20. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. “Local Search Heuristics
for k-Median and Facility Location Problems”. SIAM J. Comput. 33:3, 2004, pp. 544–562. doi: 10.
1137/S0097539702416402.

21. M. Ashtiani, A. Salehzadeh-Yazdi, Z. Razaghi-Moghadam, H. Hennig, O. Wolkenhauer, M. Mirzaie,
and M. Jafari. “A systematic survey of centrality measures for protein-protein interaction networks”.
BMC Syst. Biol. 12:1, 2018, 80:1–80:17. doi: 10.1186/s12918-018-0598-2.

22. D. Avis. “A survey of heuristics for the weighted matching problem”. Networks 13:4, 1983, pp. 475–
493. doi: 10.1002/net.3230130404.

236

http://dx.doi.org/10.1137/1.9781611976472.12
http://dx.doi.org/10.1137/1.9781611976007.5
http://dx.doi.org/10.3390/a12070127
http://dx.doi.org/10.1109/BigData47090.2019.9006206
http://dx.doi.org/10.1109/BigData47090.2019.9006206
http://dx.doi.org/10.1137/1.9781611976830.4
http://dx.doi.org/10.4230/LIPIcs.ESA.2020.6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.7
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.7
http://dx.doi.org/10.1145/2611462.2611471
http://dx.doi.org/10.1137/S0097539702416402
http://dx.doi.org/10.1137/S0097539702416402
http://dx.doi.org/10.1186/s12918-018-0598-2
http://dx.doi.org/10.1002/net.3230130404

23. K. Avrachenkov, P. Gonçalves, and M. Sokol. “On the Choice of Kernel and Labelled Data in Semi-
supervised Learning Methods”. In: Algorithms and Models for the Web Graph - 10th International
Workshop, WAW 2013, Cambridge, MA, USA, December 14-15, 2013, Proceedings. Springer, 2013,
pp. 56–67. doi: 10.1007/978-3-319-03536-9_5.

24. H. Avron and S. Toledo. “Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-definite matrix”. J. ACM 58:2, 2011, 8:1–8:34. doi: 10.1145/1944345.1944349.

25. L. Backstrom and J.M. Kleinberg. “Romantic partnerships and the dispersion of social ties: a network
analysis of relationship status on facebook”. In: Computer Supported Cooperative Work, CSCW ’14,
Baltimore, MD, USA, February 15-19, 2014. ACM, 2014, pp. 831–841. doi: 10.1145/2531602.
2531642.

26. D. A. Bader, G. Cong, and J. Feo. “On the Architectural Requirements for Efficient Execution of
Graph Algorithms”. In: 34th International Conference on Parallel Processing (ICPP 2005), 14-17 June
2005, Oslo, Norway. IEEE Computer Society, 2005, pp. 547–556. doi: 10.1109/ICPP.2005.55.

27. D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. “Approximating Betweenness Centrality”. In:
Algorithms and Models for the Web-Graph, 5th International Workshop, WAW 2007, San Diego, CA,
USA, December 11-12, 2007, Proceedings. Springer, 2007, pp. 124–137. doi: 10.1007/978-3-540-
77004-6_10.

28. A.-L. Barabási and R. Albert. “Emergence of scaling in random networks”. science 286:5439, 1999,
pp. 509–512.

29. L. Barenboim and T. Maimon. “Fully Dynamic Graph Algorithms Inspired by Distributed Comput-
ing: Deterministic Maximal Matching and Edge Coloring in Sublinear Update-Time”. ACM J. Exp.
Algorithmics 24:1, 2019, 1.14:1–1.14:24. doi: 10.1145/3338529.

30. S. Barthelmé, N. Tremblay, A. Gaudilliere, L. Avena, and P.-O. Amblard. “Estimating the inverse trace
using random forests on graphs”. arXiv preprint arXiv:1905.02086, 2019.

31. M. Bastian, S. Heymann, and M. Jacomy. “Gephi: An Open Source Software for Exploring and Ma-
nipulating Networks”. In: Proceedings of the Third International Conference on Weblogs and Social
Media, ICWSM 2009, San Jose, California, USA, May 17-20, 2009. The AAAI Press, 2009.

32. S. Baswana, M. Gupta, and S. Sen. “Fully Dynamic Maximal Matching in O(log n) Update Time
(Corrected Version)”. SIAM J. Comput. 47:3, 2018, pp. 617–650. doi: 10.1137/16M1106158.

33. A. Bavelas. “A mathematical model for group structures”. Applied anthropology 7:3, 1948, pp. 16–30.

34. A. Bavelas. “Communication patterns in task-oriented groups”. The journal of the acoustical society
of America 22:6, 1950, pp. 725–730.

35. M.A. Beauchamp. “An improved index of centrality”. Behavioral science 10:2, 1965, pp. 161–163.

36. C. Bekas, E. Kokiopoulou, and Y. Saad. “An estimator for the diagonal of amatrix”. Applied numerical
mathematics 57:11-12, 2007, pp. 1214–1229.

37. E. Bergamini, M. Borassi, P. Crescenzi, A. Marino, andH.Meyerhenke. “Computing top-kCloseness
Centrality Faster in Unweighted Graphs”. ACM Trans. Knowl. Discov. Data 13:5, 2019, 53:1–53:40.
doi: 10.1145/3344719.

237

http://dx.doi.org/10.1007/978-3-319-03536-9_5
http://dx.doi.org/10.1145/1944345.1944349
http://dx.doi.org/10.1145/2531602.2531642
http://dx.doi.org/10.1145/2531602.2531642
http://dx.doi.org/10.1109/ICPP.2005.55
http://dx.doi.org/10.1007/978-3-540-77004-6_10
http://dx.doi.org/10.1007/978-3-540-77004-6_10
http://dx.doi.org/10.1145/3338529
http://dx.doi.org/10.1137/16M1106158
http://dx.doi.org/10.1145/3344719

38. E. Bergamini, T. Gonser, and H. Meyerhenke. “Scaling up Group Closeness Maximization”. In: Pro-
ceedings of the Twentieth Workshop on Algorithm Engineering and Experiments, ALENEX 2018, New
Orleans, LA, USA, January 7-8, 2018. SIAM, 2018, pp. 209–222. doi: 10.1137/1.9781611975055.
18.

39. E. Bergamini and H. Meyerhenke. “Approximating Betweenness Centrality in Fully Dynamic Net-
works”. Internet Math. 12:5, 2016, pp. 281–314. doi: 10.1080/15427951.2016.1177802.

40. E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe. “Faster Betweenness Centrality Updates
in Evolving Networks”. In: 16th International Symposium on Experimental Algorithms, SEA 2017,
June 21-23, 2017, London, UK. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 23:1–
23:16. doi: 10.4230/LIPIcs.SEA.2017.23.

41. E. Bergamini, M. Wegner, D. Lukarski, and H. Meyerhenke. “Estimating Current-Flow Closeness
Centrality with a Multigrid Laplacian Solver”. In: 2016 Proceedings of the Seventh SIAMWorkshop on
Combinatorial Scientific Computing, CSC 2016, Albuquerque, NewMexico, USA, October 10-12, 2016.
SIAM, 2016, pp. 1–12. doi: 10.1137/1.9781611974690.ch1.

42. A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, 1994.
doi: 10.1137/1.9781611971262.

43. H. R. Bernard. “The Development of Social Network Analysis: A Study in the Sociology of Science,
Linton C. Freeman. Empirical Press, Vancouver, BC (2004)”. Soc. Networks 27:4, 2005, pp. 377–384.
doi: 10.1016/j.socnet.2005.06.004.

44. A. Bernstein and C. Stein. “Faster Fully Dynamic Matchings with Small Approximation Ratios”.
In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016. SIAM, 2016, pp. 692–711. doi: 10.1137/1.
9781611974331.ch50.

45. S. Bhattacharya, M. Henzinger, and G. F. Italiano. “Deterministic Fully Dynamic Data Structures for
Vertex Cover and Matching”. SIAM J. Comput. 47:3, 2018, pp. 859–887. doi: 10.1137/140998925.

46. S. Bhattacharya,M. Henzinger, andD. Nanongkai. “New deterministic approximation algorithms for
fully dynamic matching”. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. ACM, 2016, pp. 398–411. doi: 10.
1145/2897518.2897568.

47. M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava. “Efficient Parallel and External Match-
ing”. In: Euro-Par 2013 Parallel Processing - 19th International Conference, Aachen, Germany, August
26-30, 2013. Proceedings. Springer, 2013, pp. 659–670. doi: 10.1007/978-3-642-40047-6_66.

48. P. Bisenius, E. Bergamini, E. Angriman, andH.Meyerhenke. “Computing Top-kCloseness Centrality
in Fully-dynamic Graphs”. In: Proceedings of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018. SIAM, 2018, pp. 21–35.
doi: 10.1137/1.9781611975055.3.

49. R.H. Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP. Oxford University
Press, USA, 2020.

238

http://dx.doi.org/10.1137/1.9781611975055.18
http://dx.doi.org/10.1137/1.9781611975055.18
http://dx.doi.org/10.1080/15427951.2016.1177802
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.23
http://dx.doi.org/10.1137/1.9781611974690.ch1
http://dx.doi.org/10.1137/1.9781611971262
http://dx.doi.org/10.1016/j.socnet.2005.06.004
http://dx.doi.org/10.1137/1.9781611974331.ch50
http://dx.doi.org/10.1137/1.9781611974331.ch50
http://dx.doi.org/10.1137/140998925
http://dx.doi.org/10.1145/2897518.2897568
http://dx.doi.org/10.1145/2897518.2897568
http://dx.doi.org/10.1007/978-3-642-40047-6_66
http://dx.doi.org/10.1137/1.9781611975055.3

50. R. E. Bixby. “Solving Real-World Linear Programs: A Decade and More of Progress”. Oper. Res. 50:1,
2002, pp. 3–15. doi: 10.1287/opre.50.1.3.17780.

51. G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng, and K. Tangwongsan. “Near linear-work
parallel SDD solvers, low-diameter decomposition, and low-stretch subgraphs”. In: SPAA 2011: Pro-
ceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San
Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). ACM, 2011, pp. 13–22. doi: 10.1145/
1989493.1989496.

52. P. Boldi, M. Rosa, and S. Vigna. “Robustness of social and web graphs to node removal”. Soc. Netw.
Anal. Min. 3:4, 2013, pp. 829–842. doi: 10.1007/s13278-013-0096-x.

53. P. Boldi and S. Vigna. “Axioms for Centrality”. Internet Math. 10:3-4, 2014, pp. 222–262. doi: 10.
1080/15427951.2013.865686.

54. B. Bollobás. Modern GraphTheory. Springer, 2002. doi: 10.1007/978-1-4612-0619-4.

55. M. Borassi, P. Crescenzi, and M. Habib. “Into the Square: On the Complexity of Some Quadratic-
time Solvable Problems”. Electron. Notes Theor. Comput. Sci. 322, 2016, pp. 51–67. doi: 10.1016/
j.entcs.2016.03.005.

56. M. Borassi and E. Natale. “KADABRA is an ADaptive Algorithm for Betweenness via Random Ap-
proximation”. In: 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 20:1–20:18. doi: 10.
4230/LIPIcs.ESA.2016.20.

57. S. P. Borgatti. “Centrality and network flow”. Soc. Networks 27:1, 2005, pp. 55–71. doi: 10.1016/j.
socnet.2004.11.008.

58. K.M. Borgwardt, C. S. Ong, S. Schönauer, S. V.N. Vishwanathan, A. J. Smola, and H. Kriegel. “Pro-
tein function prediction via graph kernels”. In: Proceedings Thirteenth International Conference on
Intelligent Systems for Molecular Biology 2005, Detroit, MI, USA, 25-29 June 2005. 2005, pp. 47–56.
doi: 10.1093/bioinformatics/bti1007.

59. S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. T. Morris, and N. Zel-
dovich. “An Analysis of Linux Scalability to Many Cores”. In: 9th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceed-
ings. USENIX Association, 2010, pp. 1–16.

60. E. Bozzo and M. Franceschet. “Resistance distance, closeness, and betweenness”. Soc. Networks 35:3,
2013, pp. 460–469. doi: 10.1016/j.socnet.2013.05.003.

61. U. Brandes. “A faster algorithm for betweenness centrality”. Journal of mathematical sociology 25:2,
2001, pp. 163–177.

62. U. Brandes and D. Fleischer. “Centrality Measures Based on Current Flow”. In: STACS 2005, 22nd
Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26,
2005, Proceedings. Springer, 2005, pp. 533–544. doi: 10.1007/978-3-540-31856-9_44.

63. U. Brandes and C. Pich. “Centrality Estimation in Large Networks”. Int. J. Bifurc. Chaos 17:7, 2007,
pp. 2303–2318. doi: 10.1142/S0218127407018403.

239

http://dx.doi.org/10.1287/opre.50.1.3.17780
http://dx.doi.org/10.1145/1989493.1989496
http://dx.doi.org/10.1145/1989493.1989496
http://dx.doi.org/10.1007/s13278-013-0096-x
http://dx.doi.org/10.1080/15427951.2013.865686
http://dx.doi.org/10.1080/15427951.2013.865686
http://dx.doi.org/10.1007/978-1-4612-0619-4
http://dx.doi.org/10.1016/j.entcs.2016.03.005
http://dx.doi.org/10.1016/j.entcs.2016.03.005
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.20
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.20
http://dx.doi.org/10.1016/j.socnet.2004.11.008
http://dx.doi.org/10.1016/j.socnet.2004.11.008
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://dx.doi.org/10.1016/j.socnet.2013.05.003
http://dx.doi.org/10.1007/978-3-540-31856-9_44
http://dx.doi.org/10.1142/S0218127407018403

64. A. Z. Broder. “Generating Random Spanning Trees”. In: 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989. IEEE
Computer Society, 1989, pp. 442–447. doi: 10.1109/SFCS.1989.63516.

65. D. Chakrabarti, Y. Zhan, and C. Faloutsos. “R-MAT: A Recursive Model for Graph Mining”. In:
Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida,
USA, April 22-24, 2004. SIAM, 2004, pp. 442–446. doi: 10.1137/1.9781611972740.43.

66. O.Chapelle, B. Scholkopf, andA. Zien. “Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book
reviews]”. IEEE Transactions on Neural Networks 20:3, 2009, pp. 542–542.

67. O. Chapelle, J. Weston, and B. Schölkopf. “Cluster Kernels for Semi-Supervised Learning”. In: Ad-
vances in Neural Information Processing Systems 15 [Neural Information Processing Systems, NIPS
2002, December 9-14, 2002, Vancouver, British Columbia, Canada]. MIT Press, 2002, pp. 585–592.

68. M. Charikar and S. Solomon. “Fully Dynamic Almost-Maximal Matching: Breaking the Polynomial
Barrier for Worst-Case Time Bounds”. CoRR abs/1711.06883, 2017.

69. P. Y. Chebotarev and E. Shamis. “The forest metrics of a graph and their properties”. AUTOMA-
TION AND REMOTE CONTROL C/C OF AVTOMATIKA I TELEMEKHANIKA 61:8; ISSU 2, 2000,
pp. 1364–1373.

70. P. Chebotarev and E. Shamis. “On ProximityMeasures for GraphVertices”. CoRR abs/math/0602073,
2006.

71. P. Chebotarev and E. Shamis. “The Forest Metrics for Graph Vertices”. Electron. Notes Discret. Math.
11, 2002, pp. 98–107. doi: 10.1016/S1571-0653(04)00058-7.

72. P. Chebotarev and E. Shamis. “The Matrix-Forest Theorem and Measuring Relations in Small Social
Groups”. CoRR abs/math/0602070, 2006.

73. S. Chechik, E. Cohen, and H. Kaplan. “Average Distance Queries through Weighted Samples in
Graphs and Metric Spaces: High Scalability with Tight Statistical Guarantees”. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2015, August 24-26, 2015, Princeton, NJ, USA. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015, pp. 659–679. doi: 10.4230/LIPIcs.APPROX-RANDOM.2015.659.

74. M.H. Chehreghani, A. Bifet, and T. Abdessalem. “An In-depth Comparison of Group Betweenness
Centrality Estimation Algorithms”. In: IEEE International Conference on Big Data, Big Data 2018,
Seattle, WA, USA, December 10-13, 2018. IEEE, 2018, pp. 2104–2113. doi: 10.1109/BigData.
2018.8622133.

75. M.H. Chehreghani, A. Bifet, and T. Abdessalem. “Novel Adaptive Algorithms for Estimating Be-
tweenness, Coverage and k-path Centralities”. CoRR abs/1810.10094, 2018.

76. C. Chen, W. Wang, and X. Wang. “Efficient Maximum Closeness Centrality Group Identification”.
In: Databases Theory and Applications - 27th Australasian Database Conference, ADC 2016, Sydney,
NSW, Australia, September 28-29, 2016, Proceedings. Springer, 2016, pp. 43–55. doi: 10.1007/978-
3-319-46922-5_4.

240

http://dx.doi.org/10.1109/SFCS.1989.63516
http://dx.doi.org/10.1137/1.9781611972740.43
http://dx.doi.org/10.1016/S1571-0653(04)00058-7
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.659
http://dx.doi.org/10.1109/BigData.2018.8622133
http://dx.doi.org/10.1109/BigData.2018.8622133
http://dx.doi.org/10.1007/978-3-319-46922-5_4
http://dx.doi.org/10.1007/978-3-319-46922-5_4

77. A. T. Clements, M. F. Kaashoek, and N. Zeldovich. “Scalable address spaces using RCU balanced
trees”. In: Proceedings of the 17th International Conference on Architectural Support for Programming
Languages andOperating Systems, ASPLOS 2012, London, UK,March 3-7, 2012. ACM, 2012, pp. 199–
210. doi: 10.1145/2150976.2150998.

78. E. Cohen. “Size-Estimation Framework with Applications to Transitive Closure and Reachability”. J.
Comput. Syst. Sci. 55:3, 1997, pp. 441–453. doi: 10.1006/jcss.1997.1534.

79. E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. “Computing classic closeness centrality, at scale”.
In: Proceedings of the second ACM conference on Online social networks, COSN 2014, Dublin, Ireland,
October 1-2, 2014. ACM, 2014, pp. 37–50. doi: 10.1145/2660460.2660465.

80. M. B. Cohen, R. Kyng, G. L. Miller, J.W. Pachocki, R. Peng, A. B. Rao, and S. C. Xu. “Solving SDD
linear systems in nearly mlog1/2n time”. In: Symposium on Theory of Computing, STOC 2014, New
York, NY, USA,May 31 - June 03, 2014. ACM, 2014, pp. 343–352. doi: 10.1145/2591796.2591833.

81. B. S. Cohn and M. Marriott. “Networks and centres of integration in Indian civilization”. Journal of
social Research 1:1, 1958, pp. 1–9.

82. D. Conte, P. Foggia, C. Sansone, and M. Vento. “Thirty Years Of Graph Matching In Pattern
Recognition”. Int. J. Pattern Recognit. Artif. Intell. 18:3, 2004, pp. 265–298. doi: 10 . 1142 /
S0218001404003228.

83. O. contributors. Planet dump retrieved from https://planet.osm.org. 2017.

84. M. S. Crouch and D.M. Stubbs. “Improved Streaming Algorithms for Weighted Matching, via Un-
weighted Matching”. In: Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 96–104. doi: 10.4230/LIPIcs.APPROX-
RANDOM.2014.96.

85. T. David, R. Guerraoui, and V. Trigonakis. “Everything you always wanted to know about synchro-
nization but were afraid to ask”. In: ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6, 2013. ACM, 2013, pp. 33–48. doi: 10.1145/
2517349.2522714.

86. A. Dekker. “Conceptual Distance in Social Network Analysis”. J. Soc. Struct. 6, 2005.

87. C. Demetrescu, A. V. Goldberg, and D. S. Johnson. The Shortest Path Problem: Ninth DIMACS Im-
plementation Challenge. American Mathematical Soc., 2009.

88. C. Demetrescu and G. F. Italiano. “A new approach to dynamic all pairs shortest paths”. J. ACM 51:6,
2004, pp. 968–992. doi: 10.1145/1039488.1039492.

89. J. Dibbelt, B. Strasser, and D. Wagner. “Customizable Contraction Hierarchies”. ACM J. Exp. Algo-
rithmics 21:1, 2016, 1.5:1–1.5:49. doi: 10.1145/2886843.

90. P. D. Dobson and A. J. Doig. “Distinguishing enzyme structures from non-enzymes without align-
ments”. Journal of molecular biology 330:4, 2003, pp. 771–783.

241

http://dx.doi.org/10.1145/2150976.2150998
http://dx.doi.org/10.1006/jcss.1997.1534
http://dx.doi.org/10.1145/2660460.2660465
http://dx.doi.org/10.1145/2591796.2591833
http://dx.doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1145/2517349.2522714
http://dx.doi.org/10.1145/2517349.2522714
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1145/2886843

91. S. Dolev, Y. Elovici, R. Puzis, and P. Zilberman. “Incremental deployment of network monitors based
on Group Betweenness Centrality”. Inf. Process. Lett. 109:20, 2009, pp. 1172–1176. doi: 10.1016/
j.ipl.2009.07.019.

92. K. Dong, A. R. Benson, and D. Bindel. “Network Density of States”. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,
AK, USA, August 4-8, 2019. ACM, 2019, pp. 1152–1161. doi: 10.1145/3292500.3330891.

93. M. Doostmohammadian, H. R. Rabiee, and U.A. Khan. “Centrality-based epidemic control in com-
plex social networks”. Soc. Netw. Anal. Min. 10:1, 2020, p. 32. doi: 10.1007/s13278-020-00638-
7.

94. D. E. Drake and S. Hougardy. “A simple approximation algorithm for the weighted matching prob-
lem”. Inf. Process. Lett. 85:4, 2003, pp. 211–213. doi: 10.1016/S0020-0190(02)00393-9.

95. D. E. Drake and S. Hougardy. “Linear Time Local Improvements for Weighted Matchings in
Graphs”. In: Experimental and Efficient Algorithms, Second International Workshop, WEA 2003, As-
cona, Switzerland, May 26-28, 2003, Proceedings. Springer, 2003, pp. 107–119. doi: 10.1007/3-
540-44867-5_9.

96. A. Droschinsky, P. Mutzel, and E. Thordsen. “Shrinking Trees not Blossoms: A Recursive Maximum
Matching Approach”. In: Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020. SIAM, 2020, pp. 146–160. doi: 10.
1137/1.9781611976007.12.

97. R. Duan, S. Pettie, and H. Su. “Scaling Algorithms for Weighted Matching in General Graphs”. ACM
Trans. Algorithms 14:1, 2018, 8:1–8:35. doi: 10.1145/3155301.

98. D. Ediger, J. Riedy, D. A. Bader, and H. Meyerhenke. “Computational graph analytics for massive
streaming data”. Large Scale Network-Centric Distributed Systems, 2013, pp. 619–648.

99. J. Edmonds. “Paths, trees, and flowers”. Canadian Journal of mathematics 17, 1965, pp. 449–467.

100. W. Ellens, F. Spieksma, P VanMieghem, A Jamakovic, and R. Kooij. “Effective graph resistance”.
Linear algebra and its applications 435:10, 2011, pp. 2491–2506.

101. D. Eppstein, Z. Galil, and G. F. Italiano. “Dynamic Graph Algorithms”. In: Algorithms and Theory of
Computation Handbook. Ed. by M. J. Atallah. Chapman & Hall/CRC Applied Algorithms and Data
Structures series. CRC Press, 1999.

102. D. Eppstein and J. Wang. “Fast Approximation of Centrality”. J. Graph Algorithms Appl. 8, 2004,
pp. 39–45. doi: 10.7155/jgaa.00081.

103. L. Epstein, A. Levin, J. Mestre, and D. Segev. “Improved Approximation Guarantees for Weighted
Matching in the Semi-streaming Model”. SIAM J. Discret. Math. 25:3, 2011, pp. 1251–1265. doi: 10.
1137/100801901.

104. M.G. Everett and S. P. Borgatti. “The centrality of groups and classes”. The Journal of mathematical
sociology 23:3, 1999, pp. 181–201.

242

http://dx.doi.org/10.1016/j.ipl.2009.07.019
http://dx.doi.org/10.1016/j.ipl.2009.07.019
http://dx.doi.org/10.1145/3292500.3330891
http://dx.doi.org/10.1007/s13278-020-00638-7
http://dx.doi.org/10.1007/s13278-020-00638-7
http://dx.doi.org/10.1016/S0020-0190(02)00393-9
http://dx.doi.org/10.1007/3-540-44867-5_9
http://dx.doi.org/10.1007/3-540-44867-5_9
http://dx.doi.org/10.1137/1.9781611976007.12
http://dx.doi.org/10.1137/1.9781611976007.12
http://dx.doi.org/10.1145/3155301
http://dx.doi.org/10.7155/jgaa.00081
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.1137/100801901

105. E. Eyal and D. Halperin. “Dynamic maintenance of molecular surfaces under conformational
changes”. In: Proceedings of the 21st ACM Symposium on Computational Geometry, Pisa, Italy, June
6-8, 2005. ACM, 2005, pp. 45–54. doi: 10.1145/1064092.1064102.

106. U. Feige, V. S.Mirrokni, and J. Vondrák. “MaximizingNon-monotone Submodular Functions”. SIAM
J. Comput. 40:4, 2011, pp. 1133–1153. doi: 10.1137/090779346.

107. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. “On graph problems in a semi-
streaming model”. Theor. Comput. Sci. 348:2-3, 2005, pp. 207–216. doi: 10.1016/j.tcs.2005.
09.013.

108. L. C. Freeman. “A set of measures of centrality based on betweenness”. Sociometry, 1977, pp. 35–41.

109. L. C. Freeman. “Centrality in social networks conceptual clarification”. Social networks 1:3, 1978,
pp. 215–239.

110. G. Frobenius, F. G. Frobenius, F. G. Frobenius, F. G. Frobenius, and G. Mathematician. “Über Ma-
trizen aus nicht negativen Elementen”, 1912.

111. T.M. J. Fruchterman and E.M. Reingold. “Graph Drawing by Force-directed Placement”. Softw.
Pract. Exp. 21:11, 1991, pp. 1129–1164. doi: 10.1002/spe.4380211102.

112. T. Fushimi, K. Saito, T. Ikeda, and K. Kazama. “A New Group Centrality Measure for Maximizing
the Connectedness of Network Under Uncertain Connectivity”. In: Complex Networks and Their
Applications VII - Volume 1 Proceedings The 7th International Conference on Complex Networks and
Their Applications COMPLEX NETWORKS 2018, Cambridge, UK, December 11-13, 2018. Springer,
2018, pp. 3–14. doi: 10.1007/978-3-030-05411-3_1.

113. H.N. Gabow. “Data Structures for Weighted Matching and Nearest Common Ancestors with Link-
ing”. In: Proceedings of the First Annual ACM-SIAMSymposium onDiscrete Algorithms, 22-24 January
1990, San Francisco, California, USA. SIAM, 1990, pp. 434–443.

114. H.N. Gabow and R. E. Tarjan. “Faster Scaling Algorithms for General Graph-Matching Problems”.
J. ACM 38:4, 1991, pp. 815–853. doi: 10.1145/115234.115366.

115. D. Gale and L. S. Shapley. “College Admissions and the Stability of Marriage”. Am.Math. Mon. 120:5,
2013, pp. 386–391. doi: 10.4169/amer.math.monthly.120.05.386.

116. Z. Galil. “Efficient algorithms for finding maximum matching in graphs”. ACM Computing Surveys
(CSUR) 18:1, 1986, pp. 23–38.

117. A. Galland and M. Lelarge. “Invariant embedding for graph classification”. In: ICML 2019Workshop
on Learning and Reasoning with Graph-Structured Data. 2019.

118. G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander, A. Gleixner,
L. Gottwald, K. Halbig, et al. “The scip optimization suite 7.0”, 2020.

119. M. Ghaffari and D. Wajc. “Simplified and Space-Optimal Semi-Streaming (2+epsilon)-Approximate
Matching”. In: 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego,
CA, USA. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 13:1–13:8. doi: 10.4230/
OASIcs.SOSA.2019.13.

243

http://dx.doi.org/10.1145/1064092.1064102
http://dx.doi.org/10.1137/090779346
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1007/978-3-030-05411-3_1
http://dx.doi.org/10.1145/115234.115366
http://dx.doi.org/10.4169/amer.math.monthly.120.05.386
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.13
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.13

120. A. Ghosh, S. P. Boyd, and A. Saberi. “Minimizing Effective Resistance of a Graph”. SIAM Rev. 50:1,
2008, pp. 37–66. doi: 10.1137/050645452.

121. C. Gkantsidis, M. Mihail, and A. Saberi. “Random walks in peer-to-peer networks: Algorithms and
evaluation”. Perform. Evaluation 63:3, 2006, pp. 241–263. doi: 10.1016/j.peva.2005.01.002.

122. D. F. Gleich. “PageRank Beyond the Web”. SIAM Rev. 57:3, 2015, pp. 321–363. doi: 10.1137/
140976649.

123. C. D. Godsil and G. F. Royle. Algebraic GraphTheory. Springer, 2001. doi: 10.1007/978-1-4613-
0163-9.

124. A. V. Goldberg and C. Harrelson. “Computing the shortest path: A search meets graph theory”.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005,
Vancouver, British Columbia, Canada, January 23-25, 2005. SIAM, 2005, pp. 156–165.

125. A. V. Goldberg and A.V. Karzanov. “Maximum skew-symmetric flows and matchings”. Math. Pro-
gram. 100:3, 2004, pp. 537–568. doi: 10.1007/s10107-004-0505-z.

126. G.H. Golub andC. F. V. Loan. Matrix Computations, Fourth Edition. JohnsHopkins University Press,
2013.

127. T. F. Gonzalez, ed. Handbook of Approximation Algorithms and Metaheuristics, Second Edition, Vol-
ume 1: Methologies and Traditional Applications. Chapman and Hall/CRC, 2018. doi: 10.1201/
9781351236423.

128. F. Grandoni, S. Leonardi, P. Sankowski, C. Schwiegelshohn, and S. Solomon. “(1 + ε)-Approximate
Incremental Matching in Constant Deterministic Amortized Time”. In: Proceedings of the Thirti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019. SIAM, 2019, pp. 1886–1898. doi: 10.1137/1.9781611975482.114.

129. O. Green, R. McColl, and D.A. Bader. “A Fast Algorithm for Streaming Betweenness Centrality”.
In: 2012 International Conference on Privacy, Security, Risk and Trust, PASSAT 2012, and 2012 Inter-
national Confernece on Social Computing, SocialCom 2012, Amsterdam, Netherlands, September 3-5,
2012. IEEE Computer Society, 2012, pp. 11–20. doi: 10.1109/SocialCom-PASSAT.2012.37.

130. K. D. Gremban. “Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Lin-
ear Systems”. PhD thesis. 1996.

131. A. van der Grinten, E. Angriman, and H. Meyerhenke. “Parallel Adaptive Sampling with Almost No
Synchronization”. In: Euro-Par 2019: Parallel Processing - 25th International Conference on Parallel
and Distributed Computing, Göttingen, Germany, August 26-30, 2019, Proceedings. Springer, 2019,
pp. 434–447. doi: 10.1007/978-3-030-29400-7_31.

132. A. van der Grinten, E. Angriman, and H. Meyerhenke. “Scaling up network centrality computations
- A brief overview”. it Inf. Technol. 62:3-4, 2020, pp. 189–204. doi: 10.1515/itit-2019-0032.

133. A. van der Grinten, E. Angriman,M. Predari, and H. Meyerhenke. “New Approximation Algorithms
for Forest Closeness Centrality - for Individual Vertices and Vertex Groups”. In: Proceedings of the
2021 SIAM International Conference on Data Mining, SDM 2021, Virtual Event, April 29 - May 1,
2021. SIAM, 2021, pp. 136–144. doi: 10.1137/1.9781611976700.16.

244

http://dx.doi.org/10.1137/050645452
http://dx.doi.org/10.1016/j.peva.2005.01.002
http://dx.doi.org/10.1137/140976649
http://dx.doi.org/10.1137/140976649
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1007/s10107-004-0505-z
http://dx.doi.org/10.1201/9781351236423
http://dx.doi.org/10.1201/9781351236423
http://dx.doi.org/10.1137/1.9781611975482.114
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.37
http://dx.doi.org/10.1007/978-3-030-29400-7_31
http://dx.doi.org/10.1515/itit-2019-0032
http://dx.doi.org/10.1137/1.9781611976700.16

134. A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke. “Scalable Katz Rank-
ing Computation in Large Static and Dynamic Graphs”. In: 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018, 42:1–42:14. doi: 10.4230/LIPIcs.ESA.2018.42.

135. G. Guennebaud, B. Jacob, et al. Eigen v3. 2010.

136. R. Guimera, S. Mossa, A. Turtschi, and L.N. Amaral. “The worldwide air transportation network:
Anomalous centrality, community structure, and cities’ global roles”. Proceedings of the National
Academy of Sciences 102:22, 2005, pp. 7794–7799.

137. M. Gupta and R. Peng. “Fully Dynamic (1+ e)-Approximate Matchings”. In: 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA.
IEEE Computer Society, 2013, pp. 548–557. doi: 10.1109/FOCS.2013.65.

138. M.M. Halldórsson, S. Köhler, B. Patt-Shamir, and D. Rawitz. “Distributed backup placement in
networks”. Distributed Comput. 31:2, 2018, pp. 83–98. doi: 10.1007/s00446-017-0299-x.

139. T. Hayashi, T. Akiba, and Y. Yoshida. “Efficient Algorithms for Spanning Tree Centrality”. In: Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016. IJCAI/AAAI Press, 2016, pp. 3733–3739.

140. M. Henzinger, S. Khan, R. Paul, and C. Schulz. “Dynamic Matching Algorithms in Practice”. In:
28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual
Conference). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 58:1–58:20. doi: 10.4230/
LIPIcs.ESA.2020.58.

141. J. Hoepman. “Simple Distributed Weighted Matchings”. CoRR cs.DC/0410047, 2004.

142. P. Holme and G. Ghoshal. “Dynamics of networking agents competing for high centrality and low
degree”. Physical review letters 96:9, 2006, p. 098701.

143. H. Hu, J. Zhang, X. Zheng, Y. Yang, and P. Wu. “Self-configuration and self-optimization for LTE
networks”. IEEE Commun. Mag. 48:2, 2010, pp. 94–100. doi: 10.1109/MCOM.2010.5402670.

144. M. F.Hutchinson. “A stochastic estimator of the trace of the influencematrix for Laplacian smoothing
splines”. Communications in Statistics-Simulation and Computation 18:3, 1989, pp. 1059–1076.

145. R. Impagliazzo, R. Paturi, and F. Zane. “Which Problems Have Strongly Exponential Complexity?”
J. Comput. Syst. Sci. 63:4, 2001, pp. 512–530. doi: 10.1006/jcss.2001.1774.

146. V. Ishakian, D. Erdös, E. Terzi, and A. Bestavros. “A Framework for the Evaluation and Management
of Network Centrality”. In: Proceedings of the Twelfth SIAM International Conference on DataMining,
Anaheim, California, USA, April 26-28, 2012. SIAM /Omnipress, 2012, pp. 427–438. doi: 10.1137/
1.9781611972825.37.

147. ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++. International
Organization for Standardization, Geneva, Switzerland, 2012.

148. Z. Ivkovic and E. L. Lloyd. “Fully Dynamic Maintenance of Vertex Cover”. In: Graph-Theoretic Con-
cepts in Computer Science, 19th InternationalWorkshop,WG ’93, Utrecht,TheNetherlands, June 16-18,
1993, Proceedings. Springer, 1993, pp. 99–111. doi: 10.1007/3-540-57899-4_44.

245

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.42
http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1007/s00446-017-0299-x
http://dx.doi.org/10.4230/LIPIcs.ESA.2020.58
http://dx.doi.org/10.4230/LIPIcs.ESA.2020.58
http://dx.doi.org/10.1109/MCOM.2010.5402670
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1137/1.9781611972825.37
http://dx.doi.org/10.1137/1.9781611972825.37
http://dx.doi.org/10.1007/3-540-57899-4_44

149. K. Iwama, S. Miyazaki, and K. Okamoto. “Stable roommates problem with triple rooms”. In: Proc.
10th KOREA-JAPAN joint workshop on algorithms and computation (WAAC 2007). 2007, pp. 105–
112.

150. N. S. Izmailian, R. Kenna, and F. Wu. “The two-point resistance of a resistor network: a new formu-
lation and application to the cobweb network”. Journal of Physics A: Mathematical and Theoretical
47:3, 2013, p. 035003.

151. M. Jacquelin, L. Lin, and C. Yang. “PSelInv - A distributed memory parallel algorithm for selected
inversion:The non-symmetric case”. Parallel Comput. 74, 2018, pp. 84–98. doi: 10.1016/j.parco.
2017.11.009.

152. H. Jeong, S. P. Mason, A.-L. Barabási, and Z.N. Oltvai. “Lethality and centrality in protein networks”.
Nature 411:6833, 2001, pp. 41–42.

153. Y. Jin, Q. Bao, and Z. Zhang. “Forest Distance Closeness Centrality in Disconnected Graphs”. In:
2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11,
2019. IEEE, 2019, pp. 339–348. doi: 10.1109/ICDM.2019.00044.

154. R. Johnson. “The stable marriage problem: Structure and algorithms, by Dan Gusfield and Robert
Irving, The MIT Press, Cambridge, MA, 1989, 240 pp., $27.50”. Networks 24:2, 1994, pp. 129–130.
doi: 10.1002/net.3230240219.

155. W. B. Johnson and J. Lindenstrauss. “Extensions of Lipschitz mappings into a Hilbert space 26”. Con-
temporary mathematics 26, 1984.

156. U Kang, S. Papadimitriou, J. Sun, and H. Tong. “Centralities in Large Networks: Algorithms and
Observations”. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM
2011, April 28-30, 2011, Mesa, Arizona, USA. SIAM /Omnipress, 2011, pp. 119–130. doi: 10.1137/
1.9781611972818.11.

157. M. Kas, K.M. Carley, and L. R. Carley. “Incremental closeness centrality for dynamically changing
social networks”. In: Advances in Social Networks Analysis and Mining 2013, ASONAM ’13, Niagara,
ON, Canada - August 25 - 29, 2013. ACM, 2013, pp. 1250–1258. doi: 10.1145/2492517.2500270.

158. M. J. Kashyop and N. S. Narayanaswamy. “Lazy or eager dynamic matching may not be fast”. Inf.
Process. Lett. 162, 2020, p. 105982. doi: 10.1016/j.ipl.2020.105982.

159. L. Katz. “A new status index derived from sociometric analysis”. Psychometrika 18:1, 1953, pp. 39–43.

160. J. Kazius, R. McGuire, and R. Bursi. “Derivation and validation of toxicophores for mutagenicity
prediction”. Journal of medicinal chemistry 48:1, 2005, pp. 312–320.

161. J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. “A simple, combinatorial algorithm for solving
SDD systems in nearly-linear time”. In: Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013. ACM, 2013, pp. 911–920. doi: 10.1145/2488608.2488724.

162. D. Kempe, J.M. Kleinberg, and É. Tardos. “Maximizing the Spread of Influence through a Social
Network”. Theory Comput. 11, 2015, pp. 105–147. doi: 10.4086/toc.2015.v011a004.

246

http://dx.doi.org/10.1016/j.parco.2017.11.009
http://dx.doi.org/10.1016/j.parco.2017.11.009
http://dx.doi.org/10.1109/ICDM.2019.00044
http://dx.doi.org/10.1002/net.3230240219
http://dx.doi.org/10.1137/1.9781611972818.11
http://dx.doi.org/10.1137/1.9781611972818.11
http://dx.doi.org/10.1145/2492517.2500270
http://dx.doi.org/10.1016/j.ipl.2020.105982
http://dx.doi.org/10.1145/2488608.2488724
http://dx.doi.org/10.4086/toc.2015.v011a004

163. A.M. Khan, A. Pothen, M.M.A. Patwary, N. R. Satish, N. Sundaram, F. Manne, M. Halappanavar,
and P. Dubey. “Efficient Approximation Algorithms for Weighted b-Matching”. SIAM J. Sci. Comput.
38:5, 2016. doi: 10.1137/15M1026304.

164. S. S. Khopkar, R. Nagi, A. G. Nikolaev, and V. Bhembre. “Efficient algorithms for incremental all pairs
shortest paths, closeness and betweenness in social network analysis”. Soc. Netw. Anal. Min. 4:1, 2014,
p. 220. doi: 10.1007/s13278-014-0220-6.

165. F. Khorasani, R. Gupta, and L.N. Bhuyan. “Scalable SIMD-Efficient Graph Processing on GPUs”. In:
2015 International Conference on Parallel Architectures and Compilation, PACT 2015, San Francisco,
CA, USA, October 18-21, 2015. IEEE Computer Society, 2015, pp. 39–50. doi: 10.1109/PACT.
2015.15.

166. T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional Networks”.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

167. D. J. Klein andM.Randić. “Resistance distance”. Journal ofmathematical chemistry 12:1, 1993, pp. 81–
95.

168. V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche. “Data Reduction for Maximum
Matching on Real-World Graphs: Theory and Experiments”. In: 26th Annual European Symposium
on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018, 53:1–53:13. doi: 10.4230/LIPIcs.ESA.2018.53.

169. I. Koutis, G. L. Miller, and R. Peng. “ANearly-m log n Time Solver for SDD Linear Systems”. In: IEEE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011. IEEE Computer Society, 2011, pp. 590–598. doi: 10.1109/FOCS.2011.85.

170. I. Koutis, G. L.Miller, and R. Peng. “ApproachingOptimality for Solving SDDLinear Systems”. SIAM
J. Comput. 43:1, 2014, pp. 337–354. doi: 10.1137/110845914.

171. I. Koutis, G. L. Miller, and D. Tolliver. “Combinatorial Preconditioners and Multilevel Solvers for
Problems in Computer Vision and Image Processing”. In: Advances in Visual Computing, 5th Inter-
national Symposium, ISVC 2009, Las Vegas, NV, USA, November 30 - December 2, 2009, Proceedings,
Part I. Springer, 2009, pp. 1067–1078. doi: 10.1007/978-3-642-10331-5_99.

172. E. Kujansuu, T. Lindberg, and E. Mäkinen. “The stable roommates problem and chess tournament
pairings”. Divulgaciones Matemáticas 7:1, 1999, pp. 19–28.

173. J. Kunegis. “Konect: the koblenz network collection”. In: Proceedings of the 22nd international con-
ference on world wide web. 2013, pp. 1343–1350.

174. R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D.A. Spielman. “Sparsified Cholesky and multigrid
solvers for connection laplacians”. In: Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. ACM, 2016, pp. 842–850.
doi: 10.1145/2897518.2897640.

247

http://dx.doi.org/10.1137/15M1026304
http://dx.doi.org/10.1007/s13278-014-0220-6
http://dx.doi.org/10.1109/PACT.2015.15
http://dx.doi.org/10.1109/PACT.2015.15
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.53
http://dx.doi.org/10.1109/FOCS.2011.85
http://dx.doi.org/10.1137/110845914
http://dx.doi.org/10.1007/978-3-642-10331-5_99
http://dx.doi.org/10.1145/2897518.2897640

175. R. Kyng and S. Sachdeva. “Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Sim-
ple”. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October
2016, Hyatt Regency, New Brunswick, New Jersey, USA. IEEE Computer Society, 2016, pp. 573–582.
doi: 10.1109/FOCS.2016.68.

176. C. Laitang, K. Pinel-Sauvagnat, and M. Boughanem. “DTD Based Costs for Tree-Edit Distance in
Structured Information Retrieval”. In: Advances in Information Retrieval - 35th European Conference
on IR Research, ECIR 2013, Moscow, Russia, March 24-27, 2013. Proceedings. Springer, 2013, pp. 158–
170. doi: 10.1007/978-3-642-36973-5_14.

177. R. Lambiotte, V. D. Blondel, C. DeKerchove, E. Huens, C. Prieur, Z. Smoreda, and P. VanDooren.
“Geographical dispersal of mobile communication networks”. Physica A: Statistical Mechanics and
its Applications 387:21, 2008, pp. 5317–5325.

178. E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corporation, 2001.

179. J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. “Maximizing Nonmonotone Submodular
Functions under Matroid or Knapsack Constraints”. SIAM J. Discret. Math. 23:4, 2010, pp. 2053–
2078. doi: 10.1137/090750020.

180. M. Lee andC. Chung. “Finding k-highest betweenness centrality vertices in graphs”. In: 23rd Interna-
tionalWorldWideWeb Conference,WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, Companion
Volume. ACM, 2014, pp. 339–340. doi: 10.1145/2567948.2577358.

181. J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection. 2014.

182. L. Leydesdorff. “Betweenness centrality as an indicator of the interdisciplinarity of scientific journals”.
J. Assoc. Inf. Sci. Technol. 58:9, 2007, pp. 1303–1319. doi: 10.1002/asi.20614.

183. H. Li, R. Peng, L. Shan, Y. Yi, and Z. Zhang. “Current Flow Group Closeness Centrality for Complex
Networks?” In: TheWorld Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. ACM, 2019, pp. 961–971. doi: 10.1145/3308558.3313490.

184. H. Li and Z. Zhang. “Kirchhoff Index as a Measure of Edge Centrality in Weighted Networks: Nearly
Linear Time Algorithms”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018. SIAM, 2018, pp. 2377–
2396. doi: 10.1137/1.9781611975031.153.

185. Y. Li, J. Luo, C. Chow, K. Chan, Y. Ding, and F. Zhang. “Growing the charging station network for
electric vehicles with trajectory data analytics”. In: 31st IEEE International Conference on Data Engi-
neering, ICDE 2015, Seoul, South Korea, April 13-17, 2015. IEEE Computer Society, 2015, pp. 1376–
1387. doi: 10.1109/ICDE.2015.7113384.

186. Y.-s. Lim, D. S. Menasché, B. Ribeiro, D. Towsley, and P. Basu. “Online estimating the k central nodes
of a network”. In: 2011 IEEE Network Science Workshop. 2011, pp. 118–122.

187. L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E. “SelInv - An Algorithm for Selected Inversion
of a Sparse Symmetric Matrix”. ACM Trans. Math. Softw. 37:4, 2011, 40:1–40:19. doi: 10.1145/
1916461.1916464.

188. N. Lin. Foundations of social research. New York: McGraw-Hill, 1976.

248

http://dx.doi.org/10.1109/FOCS.2016.68
http://dx.doi.org/10.1007/978-3-642-36973-5_14
http://dx.doi.org/10.1137/090750020
http://dx.doi.org/10.1145/2567948.2577358
http://dx.doi.org/10.1002/asi.20614
http://dx.doi.org/10.1145/3308558.3313490
http://dx.doi.org/10.1137/1.9781611975031.153
http://dx.doi.org/10.1109/ICDE.2015.7113384
http://dx.doi.org/10.1145/1916461.1916464
http://dx.doi.org/10.1145/1916461.1916464

189. R. J. Lipton and J. F. Naughton. “Estimating the Size of Generalized Transitive Closures”. In: Pro-
ceedings of the Fifteenth International Conference on Very Large Data Bases, August 22-25, 1989, Am-
sterdam, The Netherlands. Morgan Kaufmann, 1989, pp. 165–171.

190. O. E. Livne and A. Brandt. “Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver”.
SIAM J. Sci. Comput. 34:4, 2012. doi: 10.1137/110843563.

191. M. von Looz, M. S. Özdayi, S. Laue, and H. Meyerhenke. “Generating massive complex networks
with hyperbolic geometry faster in practice”. In: 2016 IEEE High Performance Extreme Computing
Conference, HPEC 2016, Waltham, MA, USA, September 13-15, 2016. IEEE, 2016, pp. 1–6. doi: 10.
1109/HPEC.2016.7761644.

192. L. Lovász. “Random walks on graphs”. Combinatorics, Paul erdos is eighty 2:1-46, 1993, p. 4.

193. L. Lovász. “Submodular functions and convexity”. In:Mathematical ProgrammingThe State of the Art,
XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982.
Springer, 1982, pp. 235–257. doi: 10.1007/978-3-642-68874-4_10.

194. L. Lovász and M.D. Plummer. Matching theory. American Mathematical Soc., 2009.

195. A. Lumsdaine, D. P. Gregor, B. Hendrickson, and J.W. Berry. “Challenges in Parallel Graph Pro-
cessing”. Parallel Process. Lett. 17:1, 2007, pp. 5–20. doi: 10.1142/S0129626407002843.

196. Y. Luo, J. Wang, J. Chen, and S. Chen. “A Distributed Algorithm based on Probability for Refining
Energy-Efficiency of Multicast Trees in Ad Hoc Networks”. In: 30th Annual IEEE Conference on
Local Computer Networks (LCN 2005), 15-17 November 2005, Sydney, Australia, Proceedings. IEEE
Computer Society, 2005, pp. 482–483. doi: 10.1109/LCN.2005.2.

197. K. D. Mackenzie. “Structural centrality in communications networks”. Psychometrika 31:1, 1966,
pp. 17–25.

198. K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D.G. Chavarría-Miranda. “A faster parallel algo-
rithm and efficient multithreaded implementations for evaluating betweenness centrality on massive
datasets”. In: 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009,
Rome, Italy, May 23-29, 2009. IEEE, 2009, pp. 1–8. doi: 10.1109/IPDPS.2009.5161100.

199. C.Magnien,M. Latapy, andM.Habib. “Fast computation of empirically tight bounds for the diameter
of massive graphs”. ACM J. Exp. Algorithmics 13, 2008. doi: 10.1145/1412228.1455266.

200. A. Mahmoody, C. E. Tsourakakis, and E. Upfal. “Scalable Betweenness Centrality Maximization via
Sampling”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM, 2016, pp. 1765–1773.
doi: 10.1145/2939672.2939869.

201. D. F. Manlove. “Algorithmics of Matching Under Preferences”. Bull. EATCS 112, 2014.

202. F. Manne and R.H. Bisseling. “A Parallel Approximation Algorithm for the Weighted Maximum
Matching Problem”. In: Parallel Processing and Applied Mathematics, 7th International Conference,
PPAM 2007, Gdansk, Poland, September 9-12, 2007, Revised Selected Papers. Springer, 2007, pp. 708–
717. doi: 10.1007/978-3-540-68111-3_74.

249

http://dx.doi.org/10.1137/110843563
http://dx.doi.org/10.1109/HPEC.2016.7761644
http://dx.doi.org/10.1109/HPEC.2016.7761644
http://dx.doi.org/10.1007/978-3-642-68874-4_10
http://dx.doi.org/10.1142/S0129626407002843
http://dx.doi.org/10.1109/LCN.2005.2
http://dx.doi.org/10.1109/IPDPS.2009.5161100
http://dx.doi.org/10.1145/1412228.1455266
http://dx.doi.org/10.1145/2939672.2939869
http://dx.doi.org/10.1007/978-3-540-68111-3_74

203. F. Manne and M. Halappanavar. “New Effective Multithreaded Matching Algorithms”. In: 2014
IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, May 19-
23, 2014. IEEE Computer Society, 2014, pp. 519–528. doi: 10.1109/IPDPS.2014.61.

204. M. Marchiori and V. Latora. “Harmony in the small-world”. Physica A: Statistical Mechanics and its
Applications 285:3-4, 2000, pp. 539–546.

205. J. Matta, G. Ercal, and K. Sinha. “Comparing the speed and accuracy of approaches to betweenness
centrality approximation”. Computational Social Networks 6:1, 2019, pp. 1–30.

206. J. Maue and P. Sanders. “Engineering Algorithms for Approximate Weighted Matching”. In: Experi-
mental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings.
Springer, 2007, pp. 242–255. doi: 10.1007/978-3-540-72845-0_19.

207. C. Mavroforakis, R. Garcia-Lebron, I. Koutis, and E. Terzi. “Spanning Edge Centrality: Large-scale
Computation and Applications”. In: Proceedings of the 24th International Conference on World Wide
Web, WWW 2015, Florence, Italy, May 18-22, 2015. ACM, 2015, pp. 732–742. doi: 10.1145/
2736277.2741125.

208. A. McGregor. “Finding Graph Matchings in Data Streams”. In: Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th InternationalWork-
shop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005,
Proceedings. Springer, 2005, pp. 170–181. doi: 10.1007/11538462_15.

209. P. E.McKenney and J. D. Slingwine. “Read-copy update:Using execution history to solve concurrency
problems”. In: Parallel and Distributed Computing and Systems. 1998.

210. A. McLaughlin and D.A. Bader. “Scalable and High Performance Betweenness Centrality on the
GPU”. In: International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014. IEEE Computer Society, 2014, pp. 572–
583. doi: 10.1109/SC.2014.52.

211. A.Mehta, A. Saberi, U. V.Vazirani, andV.V.Vazirani. “AdWords andGeneralizedOn-lineMatching”.
In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings. IEEE Computer Society, 2005, pp. 264–273. doi: 10.1109/
SFCS.2005.12.

212. E. L. Merrer, N. L. Scouarnec, and G. Trédan. “Heuristical top-k: fast estimation of centralities in
complex networks”. Inf. Process. Lett. 114:8, 2014, pp. 432–436. doi: 10.1016/j.ipl.2014.03.
006.

213. R. Merris. “Doubly stochastic graph matrices”. Publikacije Elektrotehničkog fakulteta. Serija Matem-
atika 8, 1997, pp. 64–71.

214. R. Merris. “Doubly stochastic graph matrices, II”. Linear and Multilinear Algebra 45:2-3, 1998,
pp. 275–285.

250

http://dx.doi.org/10.1109/IPDPS.2014.61
http://dx.doi.org/10.1007/978-3-540-72845-0_19
http://dx.doi.org/10.1145/2736277.2741125
http://dx.doi.org/10.1145/2736277.2741125
http://dx.doi.org/10.1007/11538462_15
http://dx.doi.org/10.1109/SC.2014.52
http://dx.doi.org/10.1109/SFCS.2005.12
http://dx.doi.org/10.1109/SFCS.2005.12
http://dx.doi.org/10.1016/j.ipl.2014.03.006
http://dx.doi.org/10.1016/j.ipl.2014.03.006

215. S. Micali and V.V. Vazirani. “An O(sqrt(|v|) |E|) Algorithm for Finding Maximum Matching in
GeneralGraphs”. In: 21stAnnual SymposiumonFoundations of Computer Science, Syracuse,NewYork,
USA, 13-15 October 1980. IEEE Computer Society, 1980, pp. 17–27. doi: 10.1109/SFCS.1980.12.

216. M.M. Michael. “Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects”. IEEE Trans.
Parallel Distributed Syst. 15:6, 2004, pp. 491–504. doi: 10.1109/TPDS.2004.8.

217. M. Minoux. “Accelerated greedy algorithms for maximizing submodular set functions”. In: Opti-
mization techniques. Springer, 1978, pp. 234–243.

218. B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. “Lazier Than Lazy
Greedy”. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA. AAAI Press, 2015, pp. 1812–1818.

219. B. Monien, R. Preis, and R. Diekmann. “Quality matching and local improvement for multilevel
graph-partitioning”. Parallel Comput. 26:12, 2000, pp. 1609–1634. doi: 10.1016/S0167-8191(00)
00049-1.

220. J. L. Moreno. “Who shall survive?: A new approach to the problem of human interrelations.”, 1934.

221. M. Mucha and P. Sankowski. “Maximum Matchings in Planar Graphs via Gaussian Elimination”.
Algorithmica 45:1, 2006, pp. 3–20. doi: 10.1007/s00453-005-1187-5.

222. S. Mumtaz and X. Wang. “Identifying Top-K Influential Nodes in Networks”. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore,
November 06 - 10, 2017. ACM, 2017, pp. 2219–2222. doi: 10.1145/3132847.3133126.

223. R. C. Murphy, K. B. Wheeler, B.W. Barrett, and J. A. Ang. “Introducing the graph 500”. Cray Users
Group (CUG) 19, 2010, pp. 45–74.

224. O.Narayan and I. Saniee. “Scaling of RandomWalk Betweenness inNetworks”. In:ComplexNetworks
andTheir Applications VII - Volume 1 Proceedings The 7th International Conference on Complex Net-
works andTheir Applications COMPLEX NETWORKS 2018, Cambridge, UK, December 11-13, 2018.
Springer, 2018, pp. 41–51. doi: 10.1007/978-3-030-05411-3_4.

225. O. Neiman and S. Solomon. “Simple Deterministic Algorithms for Fully Dynamic Maximal Match-
ing”. ACM Trans. Algorithms 12:1, 2016, 7:1–7:15. doi: 10.1145/2700206.

226. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. “An analysis of approximations for maximizing
submodular set functions - I”. Math. Program. 14:1, 1978, pp. 265–294. doi: 10.1007/BF01588971.

227. M. Newman. Networks. Oxford university press, 2018.

228. P. Ni, M. Hanai, W. J. Tan, and W. Cai. “Efficient closeness centrality computation in time-evolving
graphs”. In: ASONAM ’19: International Conference on Advances in Social Networks Analysis and
Mining, Vancouver, BritishColumbia, Canada, 27-30August, 2019. ACM, 2019, pp. 378–385. doi:10.
1145/3341161.3342865.

229. K. Okamoto, W. Chen, and X. Li. “Ranking of Closeness Centrality for Large-Scale Social Networks”.
In: Frontiers in Algorithmics, Second Annual International Workshop, FAW 2008, Changsha, China,
June 19-21, 2008, Proceeedings. Springer, 2008, pp. 186–195. doi: 10.1007/978-3-540-69311-
6_21.

251

http://dx.doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1016/S0167-8191(00)00049-1
http://dx.doi.org/10.1016/S0167-8191(00)00049-1
http://dx.doi.org/10.1007/s00453-005-1187-5
http://dx.doi.org/10.1145/3132847.3133126
http://dx.doi.org/10.1007/978-3-030-05411-3_4
http://dx.doi.org/10.1145/2700206
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1145/3341161.3342865
http://dx.doi.org/10.1145/3341161.3342865
http://dx.doi.org/10.1007/978-3-540-69311-6_21
http://dx.doi.org/10.1007/978-3-540-69311-6_21

230. H. Oktay, A. S. Balkir, I. Foster, and D.D. Jensen. “Distance estimation for very large networks using
mapreduce and network structure indices”. In: Workshop on Information Networks. 2011.

231. P.W. Olsen, A. G. Labouseur, and J. Hwang. “Efficient top-k closeness centrality search”. In: IEEE
30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4,
2014. IEEE Computer Society, 2014, pp. 196–207. doi: 10.1109/ICDE.2014.6816651.

232. K. Onak and R. Rubinfeld. “Maintaining a large matching and a small vertex cover”. In: Proceedings
of the 42nd ACM Symposium onTheory of Computing, STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010. ACM, 2010, pp. 457–464. doi: 10.1145/1806689.1806753.

233. E. Otte and R. Rousseau. “Social network analysis: a powerful strategy, also for the information
sciences”. J. Inf. Sci. 28:6, 2002, pp. 441–453. doi: 10.1177/016555150202800601.

234. M. E. O’Neill. “PCG: A family of simple fast space-efficient statistically good algorithms for random
number generation”. ACM Transactions on Mathematical Software, 2014.

235. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the
web. Technical report. Stanford InfoLab, 1999.

236. R. Pastor-Satorras and A. Vespignani. “Immunization of complex networks”. Physical review E 65:3,
2002, p. 036104.

237. B. Patt-Shamir, D. Rawitz, and G. Scalosub. “Distributed approximation of cellular coverage”. J.
Parallel Distributed Comput. 72:3, 2012, pp. 402–408. doi: 10.1016/j.jpdc.2011.12.003.

238. A. Paz and G. Schwartzman. “A (2+ε)-Approximation for Maximum Weight Matching in the Semi-
streaming Model”. ACM Trans. Algorithms 15:2, 2019, 18:1–18:15. doi: 10.1145/3274668.

239. R. Peng and D.A. Spielman. “An efficient parallel solver for SDD linear systems”. In: Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014. ACM, 2014, pp. 333–
342. doi: 10.1145/2591796.2591832.

240. O. Perron. “Zur theorie der matrices”. Mathematische Annalen 64:2, 1907, pp. 248–263.

241. F. R. Pitts. “A graph theoretic approach to historical geography”. The professional geographer 17:5,
1965, pp. 15–20.

242. R. Preis. “Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in General
Graphs”. In: STACS 99, 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier,
Germany, March 4-6, 1999, Proceedings. Springer, 1999, pp. 259–269. doi: 10.1007/3- 540-
49116-3_24.

243. F. J. Provost, D.D. Jensen, and T. Oates. “Efficient Progressive Sampling”. In: Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, August 15-18, 1999. ACM, 1999, pp. 23–32. doi: 10.1145/312129.312188.

244. C. C. Pugh and C. Pugh. Real mathematical analysis. Springer, 2002.

245. K. L. Putman,H.D. Boekhout, and F.W. Takes. “Fast incremental computation of harmonic closeness
centrality in directed weighted networks”. In: ASONAM ’19: International Conference on Advances
in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August, 2019.
ACM, 2019, pp. 1018–1025. doi: 10.1145/3341161.3344829.

252

http://dx.doi.org/10.1109/ICDE.2014.6816651
http://dx.doi.org/10.1145/1806689.1806753
http://dx.doi.org/10.1177/016555150202800601
http://dx.doi.org/10.1016/j.jpdc.2011.12.003
http://dx.doi.org/10.1145/3274668
http://dx.doi.org/10.1145/2591796.2591832
http://dx.doi.org/10.1007/3-540-49116-3_24
http://dx.doi.org/10.1007/3-540-49116-3_24
http://dx.doi.org/10.1145/312129.312188
http://dx.doi.org/10.1145/3341161.3344829

246. R Puzis, Y Elovici, and S Dolev. “Fast algorithm for successive group betweenness centrality compu-
tation”. Physical Review E 76, 2007, p. 056709.

247. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, and A. Pentland. “Augmented Between-
ness Centrality for Environmentally Aware Traffic Monitoring in Transportation Networks”. J. Intell.
Transp. Syst. 17:1, 2013, pp. 91–105. doi: 10.1080/15472450.2012.716663.

248. G. Ramalingam and T.W. Reps. “On the Computational Complexity of Dynamic Graph Problems”.
Theor. Comput. Sci. 158:1&2, 1996, pp. 233–277. doi: 10.1016/0304-3975(95)00079-8.

249. G. Ranjan, Z. Zhang, and D. Boley. “Incremental Computation of Pseudo-Inverse of Laplacian”. In:
Combinatorial Optimization and Applications - 8th International Conference, COCOA 2014, Wailea,
Maui, HI, USA, December 19-21, 2014, Proceedings. Springer, 2014, pp. 729–749. doi: 10.1007/
978-3-319-12691-3_54.

250. K. Riesen and H. Bunke. “IAM Graph Database Repository for Graph Based Pattern Recognition
and Machine Learning”. In: Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR In-
ternational Workshop, SSPR & SPR 2008, Orlando, USA, December 4-6, 2008. Proceedings. Springer,
2008, pp. 287–297. doi: 10.1007/978-3-540-89689-0_33.

251. M. Riondato and E.M. Kornaropoulos. “Fast approximation of betweenness centrality through sam-
pling”. Data Min. Knowl. Discov. 30:2, 2016, pp. 438–475. doi: 10.1007/s10618-015-0423-0.

252. M. Riondato and E. Upfal. “ABRA: Approximating Betweenness Centrality in Static and Dynamic
Graphs with Rademacher Averages”. ACM Trans. Knowl. Discov. Data 12:5, 2018, 61:1–61:38.
doi: 10.1145/3208351.

253. Y. Rochat. Closeness centrality extended to unconnected graphs: The harmonic centrality index. Tech-
nical report. 2009.

254. R. A. Rossi and N. K. Ahmed. “The Network Data Repository with Interactive Graph Analytics and
Visualization”. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. AAAI Press, 2015, pp. 4292–4293.

255. P. Sanders. “Algorithm Engineering - An Attempt at a Definition”. In: Efficient Algorithms, Essays
Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. Springer, 2009, pp. 321–340.
doi: 10.1007/978-3-642-03456-5_22.

256. P. Sankowski. “Faster dynamic matchings and vertex connectivity”. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007. SIAM, 2007, pp. 118–126.

257. P. Sankowski. “Maximum weight bipartite matching in matrix multiplication time”. Theor. Comput.
Sci. 410:44, 2009, pp. 4480–4488. doi: 10.1016/j.tcs.2009.07.028.

258. E. E. Santos, J. Korah,V.Murugappan, and S. Subramanian. “EfficientAnytimeAnywhereAlgorithms
for Closeness Centrality in Large and Dynamic Graphs”. In: 2016 IEEE International Parallel and
Distributed Processing SymposiumWorkshops, IPDPS Workshops 2016, Chicago, IL, USA, May 23-27,
2016. IEEE Computer Society, 2016, pp. 1821–1830. doi: 10.1109/IPDPSW.2016.215.

253

http://dx.doi.org/10.1080/15472450.2012.716663
http://dx.doi.org/10.1016/0304-3975(95)00079-8
http://dx.doi.org/10.1007/978-3-319-12691-3_54
http://dx.doi.org/10.1007/978-3-319-12691-3_54
http://dx.doi.org/10.1007/978-3-540-89689-0_33
http://dx.doi.org/10.1007/s10618-015-0423-0
http://dx.doi.org/10.1145/3208351
http://dx.doi.org/10.1007/978-3-642-03456-5_22
http://dx.doi.org/10.1016/j.tcs.2009.07.028
http://dx.doi.org/10.1109/IPDPSW.2016.215

259. A. E. Sariyüce, K. Kaya, E. Saule, and Ü.V. Çatalyürek. “Incremental algorithms for closeness cen-
trality”. In: Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 October 2013,
Santa Clara, CA, USA. IEEE Computer Society, 2013, pp. 487–492. doi: 10.1109/BigData.
2013.6691611.

260. A. E. Sariyüce, K. Kaya, E. Saule, and Ü.V. Çatalyürek. “Incremental Algorithms for Network Man-
agement and Analysis based on Closeness Centrality”. CoRR abs/1303.0422, 2013.

261. A. E. Sariyüce, E. Saule, K. Kaya, andÜ.V.Çatalyürek. “Incremental closeness centrality in distributed
memory”. Parallel Comput. 47, 2015, pp. 3–18. doi: 10.1016/j.parco.2015.01.003.

262. A. Schild. “An almost-linear time algorithm for uniform random spanning tree generation”. In:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018. ACM, 2018, pp. 214–227. doi: 10.1145/3188745.3188852.

263. I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg. “BRENDA,
the enzyme database: updates and major new developments”. Nucleic Acids Res. 32:Database-Issue,
2004, pp. 431–433. doi: 10.1093/nar/gkh081.

264. P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. “Collective classification in
network data”. AI magazine 29:3, 2008, pp. 93–93.

265. O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. “Pitfalls of Graph Neural Network Eval-
uation”. CoRR abs/1811.05868, 2018.

266. J. Sherman and W. J. Morrison. “Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix”. The Annals of Mathematical Statistics 21:1, 1950, pp. 124–127.

267. A. Shoshan and U. Zwick. “All Pairs Shortest Paths in Undirected Graphs with Integer Weights”. In:
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New
York, NY, USA. IEEE Computer Society, 1999, pp. 605–615. doi: 10.1109/SFFCS.1999.814635.

268. R. B. Sidje and Y. Saad. “Rational approximation to the Fermi-Dirac function with applications in
density functional theory”. Numer. Algorithms 56:3, 2011, pp. 455–479. doi: 10.1007/s11075-
010-9397-6.

269. R. R. Singh. Centrality Measures: A Tool to Identify Key Actors in Social Networks. Ed. by A. Biswas,
R. Patgiri, and B. Biswas. Springer Singapore, 2022. doi: 10.1007/978-981-16-3398-0_1.

270. S. Solomon. “Fully Dynamic Maximal Matching in Constant Update Time”. In: IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA. IEEE Computer Society, 2016, pp. 325–334. doi: 10.1109/FOCS.
2016.43.

271. C. Song, S. Havlin, and H.A. Makse. “Self-similarity of complex networks”. Nature 433:7024, 2005,
pp. 392–395.

272. D. A. Spielman and N. Srivastava. “Graph Sparsification by Effective Resistances”. SIAM J. Comput.
40:6, 2011, pp. 1913–1926. doi: 10.1137/080734029.

273. C. L. Staudt, A. Sazonovs, and H. Meyerhenke. “NetworKit: A tool suite for large-scale complex
network analysis”. Netw. Sci. 4:4, 2016, pp. 508–530. doi: 10.1017/nws.2016.20.

254

http://dx.doi.org/10.1109/BigData.2013.6691611
http://dx.doi.org/10.1109/BigData.2013.6691611
http://dx.doi.org/10.1016/j.parco.2015.01.003
http://dx.doi.org/10.1145/3188745.3188852
http://dx.doi.org/10.1093/nar/gkh081
http://dx.doi.org/10.1109/SFFCS.1999.814635
http://dx.doi.org/10.1007/s11075-010-9397-6
http://dx.doi.org/10.1007/s11075-010-9397-6
http://dx.doi.org/10.1007/978-981-16-3398-0_1
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1137/080734029
http://dx.doi.org/10.1017/nws.2016.20

274. K. Stephenson and M. Zelen. “Rethinking centrality: Methods and examples”. Social networks 11:1,
1989, pp. 1–37.

275. D. Stubbs andV.V.Williams. “Metatheorems forDynamicWeightedMatching”. In: 8th Innovations in
Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 58:1–58:14. doi: 10.4230/LIPIcs.ITCS.
2017.58.

276. L. Subelj and M. Bajec. “Robust network community detection using balanced propagation”. CoRR
abs/1106.5524, 2011.

277. J. Tang, T. Lou, and J. Kleinberg. “Inferring social ties across heterogenous networks”. In: Proceedings
of the fifth ACM international conference on Web search and data mining. 2012, pp. 743–752.

278. P.Thomas. “Semi-Supervised Learning byOlivier Chapelle, Bernhard Schölkopf, andAlexander Zien
(Review)”. IEEE Trans. Neural Networks 20:3, 2009, p. 542. doi: 10.1109/TNN.2009.2015974.

279. R. C. Trahair. FromAristotelian to Reaganomics: A dictionary of eponyms with biographies in the social
sciences. Greenwood Publishing Group, 1994.

280. T.W. Valente, K. Coronges, C. Lakon, and E. Costenbader. “How correlated are network centrality
measures?” Connections (Toronto, Ont.) 28:1, 2008, p. 16.

281. P. VanMieghem, K. Devriendt, and H Cetinay. “Pseudoinverse of the Laplacian and best spreader
node in a network”. Physical Review E 96:3, 2017, p. 032311.

282. J. Vondrák. “Symmetry and Approximability of Submodular Maximization Problems”. In: 50th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta,
Georgia, USA. IEEE Computer Society, 2009, pp. 651–670. doi: 10.1109/FOCS.2009.24.

283. Y. Wang, F. Makedon, J. Ford, and H. Huang. “A bipartite graph matching framework for finding
correspondences between structural elements in two proteins”. In: The 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. 2004, pp. 2972–2975.

284. D. B. Wilson. “Generating Random Spanning Trees More Quickly than the Cover Time”. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996. ACM, 1996, pp. 296–303. doi: 10.1145/237814.237880.

285. G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, and B.-H. Wang. “Efficient routing on complex networks”. Physical
Review E 73:4, 2006, p. 046108.

286. P. Yanardag and S. V.N. Vishwanathan. “Deep Graph Kernels”. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and DataMining, Sydney, NSW, Australia,
August 10-13, 2015. ACM, 2015, pp. 1365–1374. doi: 10.1145/2783258.2783417.

287. C. Yen, M. Yeh, and M. Chen. “An Efficient Approach to Updating Closeness Centrality and Average
Path Length in Dynamic Networks”. In: 2013 IEEE 13th International Conference on Data Mining,
Dallas, TX, USA, December 7-10, 2013. IEEE Computer Society, 2013, pp. 867–876. doi: 10.1109/
ICDM.2013.135.

255

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.58
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.58
http://dx.doi.org/10.1109/TNN.2009.2015974
http://dx.doi.org/10.1109/FOCS.2009.24
http://dx.doi.org/10.1145/237814.237880
http://dx.doi.org/10.1145/2783258.2783417
http://dx.doi.org/10.1109/ICDM.2013.135
http://dx.doi.org/10.1109/ICDM.2013.135

288. Y. Yoshida. “Almost linear-time algorithms for adaptive betweenness centrality using hypergraph
sketches”. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014. ACM, 2014, pp. 1416–1425. doi: 10.
1145/2623330.2623626.

289. W.W. Zachary. “An information flow model for conflict and fission in small groups”. Journal of
anthropological research 4, 1977, pp. 452–473.

290. J. Zhao, J. C. S. Lui, D. Towsley, and X. Guan. “Measuring and maximizing group closeness centrality
over disk-resident graphs”. In: 23rd International World Wide Web Conference, WWW ’14, Seoul,
Republic of Korea, April 7-11, 2014, Companion Volume. ACM, 2014, pp. 689–694. doi: 10.1145/
2567948.2579356.

291. J. Zhao, P.Wang, J. C. S. Lui, D. Towsley, and X. Guan. “I/O-efficient calculation of H-group closeness
centrality over disk-resident graphs”. Inf. Sci. 400, 2017, pp. 105–128. doi: 10.1016/j.ins.2017.
03.017.

292. D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. “Learning with Local and Global Con-
sistency”. In: Advances in Neural Information Processing Systems 16 [Neural Information Processing
Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. MIT
Press, 2003, pp. 321–328.

293. T. Zhu, B.Wang, B.Wu, andC. Zhu. “Maximizing the spread of influence ranking in social networks”.
Inf. Sci. 278, 2014, pp. 535–544. doi: 10.1016/j.ins.2014.03.070.

294. H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun. “Influence Maximization in Dynamic Social Net-
works”. In: 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, December
7-10, 2013. IEEE Computer Society, 2013, pp. 1313–1318. doi: 10.1109/ICDM.2013.145.

295. Y. Zuo and K. Zhang. “Using Structural Features to Characterize Social Ties”. In: IEEE First Interna-
tional Conference on Data Science in Cyberspace, DSC 2016, Changsha, China, June 13-16, 2016. IEEE
Computer Society, 2016, pp. 235–242. doi: 10.1109/DSC.2016.63.

296. U. Zwick. “All Pairs Lightest Shortest Paths”. In: Proceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA. ACM, 1999, pp. 61–69.
doi: 10.1145/301250.301271.

297. U. Zwick. “All Pairs Shortest Paths in Weighted Directed Graphs ¾ Exact and Almost Exact Algo-
rithms”. In: 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11,
1998, Palo Alto, California, USA. IEEE Computer Society, 1998, pp. 310–319. doi: 10.1109/SFCS.
1998.743464.

256

http://dx.doi.org/10.1145/2623330.2623626
http://dx.doi.org/10.1145/2623330.2623626
http://dx.doi.org/10.1145/2567948.2579356
http://dx.doi.org/10.1145/2567948.2579356
http://dx.doi.org/10.1016/j.ins.2017.03.017
http://dx.doi.org/10.1016/j.ins.2017.03.017
http://dx.doi.org/10.1016/j.ins.2014.03.070
http://dx.doi.org/10.1109/ICDM.2013.145
http://dx.doi.org/10.1109/DSC.2016.63
http://dx.doi.org/10.1145/301250.301271
http://dx.doi.org/10.1109/SFCS.1998.743464
http://dx.doi.org/10.1109/SFCS.1998.743464

	I Introduction
	1 Introduction
	2 Preliminaries

	II Algorithms for Single-Vertex Centrality Measures
	3 Closeness Centrality Ranking in Fully-Dynamic Networks
	4 Parallel Approximation of Betweenness Centrality
	5 Approximation of the Diagonal of a Laplacian’s Pseudoinverse for Complex Network Analysis

	III Algorithms for Group Centrality Measures
	6 Local Search for Group-Closeness Maximization on Big Graphs
	7 Group-Harmonic and Group-Closeness Maximization – Approximation and Engineering
	8 Algebraic Group Centrality Maximization for Large-Scale and Disconnected Graphs

	IV Maximum Weighted Matching in Fully-Dynamic Graphs
	9 Approximate Maximum Weighted Matching in Dynamic Networks

	V Conclusion
	Appendices
	A Publications
	B Appendix of ch:dyn-topk
	C Appendix of ch:betweenness-approx
	D Appendix of ch:electrical-closeness
	E Appendix of ch:group-closeness-local-search
	F Appendix of ch:group-harm-clos-max
	G Appendix of ch:ged-walk
	H Appendix of ch:dyn-mwm
	Acronyms
	Glossary
	Bibliography

