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Zusammenfassung

In dieser Arbeit untersuchen wir mehrere Anwendungen von photonischen und plasmonischen Na-
nostrukturen unter Verwendung zweier verschiedener numerischer Methoden: die Fourier-Moden-
Methode (FMM) und ein unstetiges Galerkin-Zeitraumverfahren (discontinuous Galerkin time-
domain method, DGTD method). Die Methoden werden für vier verschiedene Anwendungen
eingesetzt, die alle eine Materialmodellerweiterung in der Implementierung der Methoden erfor-
dern. Diese Anwendungen beinhalten die Untersuchung von dünnen, freistehenden, periodisch
perforierten Goldfilmen. Wir charakterisieren die auftretenden Oberflächenplasmonenpolaritonen
durch die Berechnung von Transmissions- und Elektronenenergieverlustspektren, die mit experi-
mentellen Messungen verglichen werden. Dazu stellen wir eine Erweiterung der DGTD-Methode
zur Verfügung, die sowohl absorbierende, impedanzangepasste Randschichten als auch Anre-
gung mit geglätteter Ladungsverteilung für materialdurchdringende Elektronenstrahlen beinhal-
tet. Darüber hinaus wird eine Erweiterung auf nicht-dispersive anisotrope Materialien für eine
Formoptimierung einer volldielektrischen magneto-optischen Metaoberfläche verwendet. Diese
Optimierung ermöglicht eine verstärkte Faraday-Rotation zusammen mit einer hohen Transmis-
sion. Zusätzlich untersuchen wir abstimmbare hyperbolische Metamaterialresonatoren im nahen
Infrarot mit Hilfe der FMM. Wir berechnen deren Resonanzen und vergleichen sie mit dem
Experiment. Zum Schluss wird die Implementierung eines nichtlinearen Vier-Niveau-System-
Materialmodells in der DGTD-Methode verwendet, um die Laserschwellen eines Mikroresonators
mit Bragg-Spiegeln zu berechnen. Bei Einführung eines Silbergitters mit variablen Spaltgrößen
wird eine defektinduzierte Kontrolle der Laserschwellen ermöglicht. Die Berechnung der voll-
ständigen, zeitaufgelösten Felddynamik innerhalb des Resonator gibt dabei Aufschluss über die
beteiligten Lasermoden.
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Abstract

In this thesis, we study several applications of photonic and plasmonic nanostructures by em-
ploying two different numerical methods: the Fourier modal method (FMM) and discontinuous
Galerkin time-domain (DGTD) method. The methods are used for four different applications,
all of which require a material model extension for the implementation of the methods. These
applications include the investigation of thin, free-standing periodically perforated gold films.
We characterize the emerging surface plasmon polaritons by computing both transmittance and
electron energy loss spectra, which are compared to experimental measurements. To this end, we
provide an extension of the DGTD method, including absorbing stretched coordinate perfectly
matched layers as well as excitations with smoothed charge distribution for material-penetrating
electron beams. Furthermore, an extension to non-dispersive anisotropic materials is used for
shape optimization of an all-dielectric magneto-optic metasurface. This optimization enables
an enhanced Faraday rotation along with high transmittance. Additionally, we study tuneable
near-infrared hyperbolic metamaterial cavities with the help of the FMM. We compute the cavity
resonances and compare them to the experiment. Finally, the implementation of a non-linear
four-level system material model in the DGTD method is used to compute lasing thresholds of
a distributed Bragg reflector microcavity. Introducing a silver grating with variable gap sizes
allows for a defect-induced lasing threshold control. The computation of the full time-resolved
field dynamics of the cavity provides information on the involved lasing modes.

xi





Contents

1 Introduction 1
1.1 Different applications and material models . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic electrodynamics 5
2.1 Macroscopic Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Unit system conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Frequency domain Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Field boundary conditions on interfaces . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Symmetries and lower-dimensional systems . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Two-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 One-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Wave equations in homogeneous materials . . . . . . . . . . . . . . . . . . . . . . 15
2.7.1 Plane wave polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Typical scattering quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8.1 Energy conservation and intensity . . . . . . . . . . . . . . . . . . . . . . 20
2.8.2 Scattering and absorption cross sections . . . . . . . . . . . . . . . . . . . 23
2.8.3 Transmittance, reflectance and absorbance . . . . . . . . . . . . . . . . . . 24

3 Material models 27
3.1 Lorentz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Magneto-optic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Hyperbolic metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Periodically stacked metal-dielectric layers . . . . . . . . . . . . . . . . . . 33
3.5 Four-level system for modeling of lasing materials . . . . . . . . . . . . . . . . . . 36

4 Fourier modal method 41
4.1 Scattering setups and staircase approximation . . . . . . . . . . . . . . . . . . . . 41
4.2 Single layer field propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Bloch periodic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Plane-wave basis discretization . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Transfer and scattering matrix algorithm . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Transmittance and reflectance spectra . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Field reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Resonances and quasi-normal modes . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Surface plasmon polariton dispersion . . . . . . . . . . . . . . . . . . . . . 60

xiii



Contents

5 Discontinuous Galerkin time-domain method 65
5.1 Maxwell’s equations in conservation form . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Discretization and local solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Lagrange polynomial basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Element coupling with the numerical flux . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 The one-dimensional Riemann problem . . . . . . . . . . . . . . . . . . . 74
5.3.2 Upwind flux for non-dispersive anisotropic materials . . . . . . . . . . . . 78
5.3.3 Upwind flux for isotropic materials . . . . . . . . . . . . . . . . . . . . . . 86
5.3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Field sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Total field / scattered field source . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Scattered field source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Auxiliary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.1 Lorentz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.2 Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.3 Effective medium approximation HMM . . . . . . . . . . . . . . . . . . . 98
5.5.4 Four-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Perfectly matched layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.1 Uniaxial PMLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.2 Complex frequency-shifted stretched coordinate PMLs . . . . . . . . . . . 103
5.6.3 Upwind flux for CFSPMLs . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Electron energy loss spectroscopy 113
6.1 Basics of EELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 EELP of a single metallic sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 Single EELP spectrum computation . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Electron smoothing radius influence and EELP map . . . . . . . . . . . . 120

6.3 EELS on thin periodically perforated gold films . . . . . . . . . . . . . . . . . . . 122
6.3.1 Single EELP spectrum computations . . . . . . . . . . . . . . . . . . . . . 127
6.3.2 Comparison of experimental and numerical EELP maps . . . . . . . . . . 128

7 Magneto-optic metasurfaces and hyperbolic metamaterial cavities 133
7.1 Convergence behavior for anisotropic materials . . . . . . . . . . . . . . . . . . . 133

7.1.1 Isotropic material tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.1.2 Diagonal material tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.1.3 Fully anisotropic material tensors . . . . . . . . . . . . . . . . . . . . . . . 143
7.1.4 Magneto-optic material tensors . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2 Shape-optimization for enhanced Faraday rotation . . . . . . . . . . . . . . . . . 152
7.2.1 Cylindrical scatterer metasurface . . . . . . . . . . . . . . . . . . . . . . . 153
7.2.2 Shape-modified scatterer metasurface . . . . . . . . . . . . . . . . . . . . 157
7.2.3 Convergence of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3 Designing mid-IR HMM cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 Lasing cavities with distributed Bragg reflectors and plasmonic silver grating 171
8.1 Design of the DBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xiv



Contents

8.2 Introduction of an active material . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2.1 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2.2 Lasing cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.2.3 Introduction of the metal grating into the cavity . . . . . . . . . . . . . . 177

8.3 Lasing thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3.1 Lasing threshold computation for the bare cavity . . . . . . . . . . . . . . 181
8.3.2 Lasing threshold comparison for the different grating realizations . . . . . 187

9 Conclusion and outlook 195

A Electromagnetic field of relativistically moving smoothed charge distributions 199
A.1 Charge distributions and fields in the rest frame . . . . . . . . . . . . . . . . . . 199

A.1.1 Point charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.1.2 Gaussian charge distribution . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.1.3 Cosine-squared charge distribution . . . . . . . . . . . . . . . . . . . . . . 202

A.2 Fields in the frame of reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.2.1 Numerically stable evaluation of the electromagnetic fields . . . . . . . . . 208

B 2D-focused beams in the DGTD method 211
B.1 Pulse construction with Fourier transforms . . . . . . . . . . . . . . . . . . . . . 211
B.2 Pulse time dependencies and spectra . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.2.1 Gaussian modulated pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
B.2.2 Ramped continuous wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Acronyms 223

Acknowledgments 225

Bibliography 227

xv





CHAPTER 1

Introduction

Advances in the fabrication of nanometer-sized optical and optoelectronic systems and the fas-
cination for light-matter interaction therein are the driving force for the investigation of a huge
variety of such systems. Whether one is interested in photonic crystals, waveguides, light-emitting
diodes, lasers, solar cells, or just plasmonic systems, all must be properly designed to exploit one
or another effect in their response to the electromagnetic field. This requires careful material
selection and the determination of a suitable geometrical layout. When designing a specific ex-
periment, numerical computations are an indispensable tool to determine the system parameters
a priori or optimize already fabricated structures. Furthermore, numerical computations help
with the interpretation of the experimental results.

This thesis discusses a few exemplary systems, for which we perform numerical computations.
These computations are used either to obtain an understanding of the internal electromagnetic
fields, the scattering, and emission behavior or to even propose optimized geometries to enhance
resonant effects. For these specific systems, we employ two different numerical methods, which
are extended by and tested for the required material models in order to predict the systems’
behavior and explain the experimental findings.

1.1 Different applications and material models

For the first exemplary structure, the focus lies on the mapping of surface plasmon polariton
(SPP) [1–3] resonances of a periodically perforated gold film using electron energy loss spec-
troscopy (EELS) [4–6]. This experimental method is one possibility to investigate both localized
as well as propagating SPP resonances [7]. Examples include the characterization of localized
SPPs of nanometer-sized metallic spheres given by the corresponding Mie resonances [8, 9],
metallic tapers, which depending on the opening angle exhibit slow light [10–12, K1], and a
strong field enhancement and localization at the apex. This can be, e.g., used for tip-enhanced
Rama spectroscopy (TERS) [13] and apatureless scanning near-field optical microscopy (SNOM)
[14–16]. Micrometer-long metallic nanowires [17–19], as well as indented metallic cones [K2],
allow for a continuous transition between localized and propagating SPP modes. Moreover,
SPPs, as well as Djakonov surface waves [20] and plasmons, can be investigated at anisotropic
thin-film boundaries, see e.g., [21]. Here, the investigated periodically perforated gold films (see
Fig. 1.1) exhibit the effect of extraordinary optical transmission (EOT) [22], as the SPPs carry a
significant amount of radiation through the holes of the gold film. Both the EELS measurement
and computation allow a characterization of the SPPs modes contributing to the transmittance
spectra and also show the dark SPP modes, i.e., modes inaccessible under optical excitation from
far-field for free-standing metal films [23]. The computation of both the transmittance and EELS
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1 Introduction

spectra enables a controlled design of the film parameters important for possible applications
like spectral filters [24, 25], plasmonic printing [26], and chemical sensing applications [27, 28].

v

−e

Figure 1.1: Sketch of an electron beam passing a periodically perforated gold film. EELS
with relativistically moving electrons (v ≈ 0.7c0) is used to map the SPP resonances of the
gold film.

Secondly, we investigate a complementary system, consisting of a metasurface based on shaped-
modified magneto-optic (MO) nano-disk scatterers. While MO materials provide several rare
opportunities to control light at the nanoscale, here we concentrate on the Faraday effect [29]
only. An enhanced Faraday effect is important for photonic applications in non-reciprocal de-
vices but is challenging to achieve due to the relatively weak MO material response within the
optical domain. For our structure, we demonstrate an enhanced Faraday rotation accompanied
by near-unity transmittance in the near-infrared (NIR). There exists a wide variety of plasmonic
systems with different geometries, like metallic nanoparticles [30–33], core-shell systems [34–36],
multilayer structures [37–39] as well as perforated metallic films [40–42]. However, all these sys-
tems suffer from the absorptive losses of the involved metallic MO materials, which might lead
to a strong Faraday rotation but lack sufficient field transmittance. Based on a recently mea-
sured MO response in high permittivity nanoantennas [43], it was shown that an all-dielectric
MO metasurface can lead to a simultaneously high Faraday rotation along with a near-unity
transmittance [44]. In this Huygens’ metasurface, high transmittance is achieved by the spectral
overlap of both the electric and magnetic dipole resonances in the systems [45]. The frequencies
of these two modes are controlled by a careful choice of the scatterer geometry within the meta-
surface. Here, as an extension to the work presented in [44], we show how to even further improve
the Faraday rotation angle of an all-dielectric MO metasurface by optimization of the scatterer
geometry, while simultaneously fulfilling the high transmittance constraint. Fig. 1.2 sketches the
basic idea for improving the Faraday rotation of a metasurface by replacing cylindrical nano-disk
scatterers [44] with scatterers found in basic random search optimization.

As a third system, we investigate hyperbolic metamaterial (HMM) cavities consisting of alter-
nating dielectric and metallic layers. HMMs have been in the spotlight of photonic research for
the past decade [46–48]. They enable a wide variety of applications, such as super-resolution
imaging [49–51], spontaneous emission engineering [52, 53] with an enhanced Purcell effect [54]
and reach as far as an increase in fluctuation induced phenomena like, e.g., quantum friction [55].
Here, we compute resonance frequencies of the field and its distribution to explain the NIR re-
flectance spectra for an HMM cavity based on the tunable, highly doped transparent conducting

2



Outline of the thesis 1.2

oxide ZnO:Ga [56, K3]. This simple, effectively one-dimensional, layered system of dielectric and
metallic layers leads to a hyperbolic dispersion relation. It supports a high photonic local density
of states (LDOS) as well as short-wavelength modes at finite frequencies due to the coupling of
the SPPs between the individual metallic layers [57].

Etrans

Einc

kinc

ktrans

θ

Etrans

Einc

kinc

ktrans

θ

(a) (b)

Figure 1.2: Sketch of a metasurface with a lattice of magneto-optic nano-disk scatterers.
The (a) cylindrical and (b) shape-modified nano-disks are optimized to provide a zero-
order diffraction resonance with near-unity transmittance and high Faraday rotation angle
θ between the incident Einc and transmitted field Etrans polarization.

As the fourth and final system, we investigate an optical microlaser cavity. It consists of a
dye material layer [58, 59] which is embedded into two distributed Bragg reflectors (DBRs)
constituting the cavity [60, K4]. Additionally, a thin metal layer is introduced into the cavity on
one of the DBRs, which gives rise to Tamm plasmon polaritons [61] within the cavity. While a
subwavelength patterning of the metal layer in the lateral direction leads to the formation of spoof
SPPs [62], which, e.g., can be used to design simple terahertz beamsplitters [K5], here a several
wavelengths wide patterning is introduced [K4]. Adjusting the width of the single metal layer
bars allows for direct control of the cavity lasing threshold upon a focused pump beam excitation.
Despite the absorptive losses in the metal, the introduction of a single defect on the order of the
pump beam focal width remarkably leads to the lowest lasing threshold onset in the experiment
[K4]. To explain the basic lasing and field dynamics and the plasmonic confinement in the cavity,
we solve Maxwell’s equations in conjunction with a four-level system (4LS) material model [63,
64] for the dye. We compare the experimental and numerically obtained lasing thresholds.

1.2 Outline of the thesis

To compute the relevant quantities for the analysis of the systems listed in Section 1.1, we use
two different numerical methods in this thesis.

The first method is the Fourier modal method (FMM) [65–71]. It works in the frequency domain.
As it concentrates on periodic layered systems like the aforementioned DBR or the HMM cavities,
it makes use of the scattering matrix (S-matrix) algorithm [72].

3
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The second method is the discontinuous Galerkin time-domain (DGTD) method [73–76]. It is
used to compute the space and time dependence of the fully vectorial electromagnetic field. As a
finite element method, the DGTD is particularly advantageous for setups involving complicated
geometries. Moreover, a time-dependent method easily allows to also incorporate non-linear
material models, e.g., the lasing material model.

The goals of this thesis are to present the basic theory needed for an understanding of the
presented systems and the underlying material models. Furthermore, it shall be shown how
the corresponding equations of motion can be implemented in either the DGTD or FMM and
S-matrix method. Finally, we compute the different quantities of interest and also assess the
computation accuracy for newly implemented material models in the DGTD method.

This thesis is therefore structured in the following way: In Chapter 2 we review the basic elec-
trodynamics and introduce Maxwell’s equations as well as the basic observables, like scattering
cross sections or transmittance and reflectance spectra. In the following Chapter 3, we discuss
the different material models used either in the DGTD or the modal method. This includes
dispersive and non-dispersive iso- and anisotropic material models and also the non-linear 4LS
material model used to describe the lasing system.

Next, we review the numerical methods themselves. In Chapter 4 we present the working prin-
ciple of the S-matrix algorithm used in modal methods. Afterward, we discuss the basics of the
DGTD method in Chapter 5.

As already outlined in the preceding Section 1.1, we investigate different applications. For the
numerical computations of the electron energy loss probability (EELP) spectra of the perforated
gold films with the DGTD method, we use a novel implementation including a smoothed charge
distribution (see Appendix A) to compute the required Green’s tensor components for electron
beams passing through the gold material. Both thorough tests comparing the DGTD EELS
computations to Mie calculations [8, 9] as well as the final gold film characterization are presented
in Chapter 6.

In the following Chapter 7, we analyze the shape-optimized MO metasurfaces and compute both
transmittance and Faraday rotation spectra. These rely on the implementation of the non-
dispersive anisotropic materials within the DGTD method [77]. Here, a full convergence study
of the DGTD computations compared to Mie calculation results [78, 79] is presented. After the
metasurface setup, Chapter 7 focuses on the investigation of the uniaxial HMM cavities, the
characterization of their emerging resonances, and outlines potential use cases.

We close the set of applications with the lasing cavity setup in Chapter 8. This brings together
the characterization of plasmonic systems with the computation of the single cavity modes and
the introduced non-linear 4LS material model for the DGTD method to compute the lasing
threshold characteristics observed in the experiment [K4].

Finally, we conclude the thesis with Chapter 9 in which, we provide a brief outlook on further
applications for the presented methods and material models and discuss how to address open
questions in the future.
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CHAPTER 2

Basic electrodynamics

Any investigation of light-matter interaction and the propagation of light is deeply rooted in
the theory of electrodynamics. Therefore, we start by recapitulating the required concepts of
electrodynamics required for the numerical methods and experimental setups presented in the
introduction Chapter 1.

In this chapter, we present the macroscopic Maxwell equations in Section 2.1 and mention the
basic assumptions on the material models used within this thesis (see Section 2.2). The actual
details on the specific materials and material models are then presented in Chapter 3. Next, we
show which internal unit system is used for all the numeric computations and give the conversion
to the SI unit system in Section 2.3. In the following, all equations explicitly relying on the SI
unit system are marked with a tag (SI), while all others rely on the introduced “dimensionless”
units.

In Section 2.5 we discuss the boundary conditions of the electromagnetic fields, which are im-
portant for both the Fourier modal method (FMM) as well as the discontinuous Galerkin time-
domain (DGTD) method. Furthermore, we show which simplifications in Maxwell’s equations
arise by reducing the effective system dimensions from three to two- and one-dimensional space.
Next, we present the plane wave solution of the wave equation for linear, homogeneous, isotropic
materials in Section 2.7. Finally, we discuss energy conservation and how to compute scattering
and absorption cross sections as well as transmittance, reflectance, and absorbance spectra in
Section 2.8. Please note that this chapter loosely follows the presentation within my (German)
master thesis [80] with a similar notation used in the formulas.

2.1 Macroscopic Maxwell’s equations

The equations of motion in differential form for the electromagnetic fields in classical electrody-
namics read

(SI) ∇ ·D(r, t) = ρf(r, t) , (2.1a)
(SI) ∇ ·B(r, t) = 0 , (2.1b)

(SI) ∇×E(r, t) = − ∂

∂t
B(r, t) , (2.1c)

(SI) ∇×H(r, t) = ∂

∂t
D(r, t) + jf(r, t) , (2.1d)
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2 Basic electrodynamics

as can be found in practically every textbook on electrodynamics (see e.g., [81–84]). In these
equations, E(r, t) is the electric and H(r, t) is the magnetic field, D(r, t) is the dielectric dis-
placement, and B(r, t) is the magnetic induction. These four equations are also commonly
referred to individually by their name. Gauss’s law, Eq. (2.1a), states that free charge carrier
density ρf is the source of the dielectric displacement D. Here, we define free charges as all
the charge carriers which are not considered part of a modeled macroscopic material. These
bound charges are instead accounted for by the constitutive relations of the specific material in
question, which are presented in the following Section 2.2. The magnetic counterpart to Gauss’s
law, Eq. (2.1b), states that there are no magnetic charges. Faraday’s induction law, Eq. (2.1c),
states that the electric field E is induced by a time-varying magnetic induction B. Finally,
Eq. (2.1d) states, that besides a free current density jf (Ampère’s law), also a time-varying
dielectric displacement D (Maxwell’s addition) induces the magnetic field H.

With Maxwell’s addition one also directly obtains charge conservation by the continuity equa-
tion

(SI) ∂

∂t
ρf(r, t) = ∇ · ∂

∂t
D(r, t) (2.1d)= ∇ ·

(
∇×H(r, t)− jf(r, t)

)
= −∇ · jf(r, t) . (2.2)

2.2 Constitutive relations

In the way we presented Maxwell’s equations (2.1), they are still underdetermined. Besides the
information on the boundary and initial conditions, we still need the information on how to
compute the D- and B-fields, given the E- and H-fields. In the most general case, the fields
might have a complicated functional dependence

D = D
(
E,H

)
and B = B

(
E,H

)
. (2.3)

This actual functional dependence itself is determined by the material model in question (see
Chapter 3). In vacuum, the material equations simplify to

(SI) D = ε0E and B = µ0H . (2.4)

Here ε0 is the permittivity and µ0 the permeability of the vacuum. The latter is defined (cf. [85])
to have the value

(SI) µ0 = 4π × 10−7 N A−2 . (2.5)

With the fixed value of the speed of light

(SI) c0 = 299 792 458 m s−1 , (2.6)

also the vacuum permittivity is fixed to

(SI) ε0 = 1
µ0c2

0
≈ 8.854 187 817× 10−12 A s V−1 m . (2.7)
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Hence D and E, as well as B and H are proportional. The scaling factor is absorbed in the
change of units following in Section 2.3.

In the most general case, the material’s constitutive relations are both non-local and non-linear.
Yet in most optical cases, it is sufficient to only deal with local and linear field relations. All
material models considered in this thesis are local materials models. Except for the non-linear
four-level system (4LS) material model described in Section 3.5, also all other material models
are linear. This normally is the case as long as the involved field strengths are not too high. We
assume the materials models to be of the form

(SI) D(r, t) = ε0

∫ ∞

0
dτ ε

(
r, τ
)
·E
(
r, t− τ

)
(2.8a)

(SI) and B(r, t) = µ0

∫ ∞

0
dτ µ

(
r, τ
)
·H

(
r, t− τ

)
. (2.8b)

Here, ε(r, t) and µ(r, t) are the response kernels of the E- andH-field, respectively. This allows
for dispersive material models. Here, we assume no mixing of electric and magnetic fields, as it
is present, e.g., in bi-isotropic and chiral materials [86]. Yet, we consider anisotropic material
tensors ε and µ. Note that causality is preserved in the given time convolutions by the restriction
to positive times τ . For instantaneous field generation, e.g., in vacuum, we have

ε
(
r, τ
)

= ε (r) δ (τ) and µ
(
r, τ
)

= µ (r) δ (τ) . (2.9)

Also notice, that commonly one separates the vacuum part, such that

(SI) D(r, t) = ε0E(r, t) + P (r, t) , (2.10a)
(SI) B(r, t) = µ0H(r, t) +M(r, t) , (2.10b)

with the macroscopic polarization P and magnetization M .

2.3 Unit system conversion

Before proceeding, we want to introduce the unit system used throughout this thesis. While we
so far have used the SI unit system, we change into a “unit-less“ set of equations in order to
perform numeric computations. This is done by fixing some characteristic scales of the system,
i.e., effectively setting some physical constants like the speed of light to one. Normally the
main goal of the unit system choice is to achieve numerical rounding errors as small as possible.
Therefore, one tries to guarantee that all the magnitudes of quantities to be computed are
relatively close to one.

First, we consider the units of space and time. We, therefore, consider the dynamics of the E-
and H-field, which are governed by the curl-equations (2.1c) and (2.1d). We start with the
wave equation in vacuum, which can be derived by double application of the curl-operator on
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2 Basic electrodynamics

the fields:

(SI) ∇×∇×E + ε0µ0
∂2

∂t2
E = 0 and ∇×∇×H + ε0µ0

∂2

∂t2
H = 0 . (2.11)

Using ε0µ0 = c−2
0 , we can motivate the transformation of the time derivative operator

(SI) 1
c0

∂

∂t
= ∂

∂t′
, (2.12)

in order to eliminate the explicit appearance of the speed of light in the wave equation. Conse-
quently, we could set c0 → 1 by introducing a scaled time

(SI) t′ = c0t . (2.13)

However, this time still has a physical length dimension. Here, we can exploit the scale-invariance
of Maxwell’s equations (2.1), i.e., the invariance under the transformation

(SI) r′ = r

λ0
and t′ = c0t

λ0
, (2.14)

where λ0 can be an arbitrary length. Since the characteristic length scales of the optical systems
we are concerned with, lie between several nanometers to a few microns (see Section 1.1), we
conveniently set

(SI) λ0 = 1 nm . (2.15)

Inserting the rescaled time and space coordinates into the source-free curl-equations (2.1c) and
(2.1d), we get

(SI) ∂

∂t′

∫ ∞

0
dτ ε

(
r′, τ

)
E
(
r′, t′ − τ

)
= 1
c0ε0︸︷︷︸
Z0

∇′ ×H
(
r′, t′

)
, (2.16)

(SI) ∂

∂t′

∫ ∞

0
dτ µ

(
r′, τ

)
c0µ0︸︷︷︸
Z0

H
(
r′, t′ − τ

)
= ∇′ ×E

(
r′, t′

)
, (2.17)

substituting the vacuum impedance

(SI) Z0 = µ0c0 = 1
ε0c0

=
√
µ0
ε0
≈ 119.9πΩ . (2.18)

Here, we can either scale the E- or the H-field. In this thesis, we do the latter and thus set

(SI) H ′ = Z0H . (2.19)

The only thing that remains for the wave equation is how the E-field’s amplitude is set:

(SI) E′ = E/E0 . (2.20)
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For all linear material models, we are completely free to choose the scale E0 of said amplitude. It
only becomes important as soon as one deals with non-linear systems, such as the 4LS described
in Section 3.5. There, we use the E-fields amplitude to fix the unit of energy. For now, we
only present its value. The derivation based on setting ~ → 1 is presented in Section 2.8.1.
Subsequently, we use the following unit system within this thesis:

(SI) length: [r] = 1λ0 = 1 nm , (2.21)

(SI) time: [t] = 1λ0c
−1
0 ≈ 3.335 641× 10−3 fs , (2.22)

(SI) frequency: [ν] = [t−1] = 1λ−1
0 c0 = 299 792.458 THz , (2.23)

(SI) E-field: [E] = 1E0
(2.99)
≈ 59.75 GV m−1 , (2.24)

(SI) H-field: [H] = 1E0Z
−1
0

(2.99)
≈ 1.586× 108 A m−1 , (2.25)

(SI) D-field: [D] = 1ε0E0
(2.99)
≈ 0.529 A s m−2 , (2.26)

(SI) B-field: [B] = 1µ0E0Z
−1
0

(2.99)
≈ 199.3 T , (2.27)

(SI) charge density: [ρf ] = 1ε0E0λ
−1
0

(2.99)
≈ 5.291× 108 C m−3 , (2.28)

(SI) current density: [jf ] = 1E0Z
−1
0 λ−1

0
(2.99)
≈ 1.586× 1017 A m−2 . (2.29)

Hereafter, all equations marked with an (SI)-tag explicitly take into account the SI unit sys-
tem [85], while all the others assume the unit conventions above. From now on we do not
distinguish between those quantities and drop the notation including the apostrophes. If nec-
essary, we present the unit change for newly introduced quantities, e.g., the Poynting vector in
Section 2.8.1.

2.4 Frequency domain Maxwell’s equations

Since we not only solve Maxwell’s equations in the time but also in the frequency domain, we
have to specify the convention for the Fourier transform used in this thesis. We define

E
(
r, t
)

= 1
2π

∫ ∞

−∞
E
(
r, ω

)
e−iωt dω and E

(
r, ω

)
=
∫ ∞

−∞
E
(
r, t
)

eiωt dt , (2.30)

where ω = 2πν is the angular frequency. If we insert the Fourier transformed fields into Maxwell’s
equations, we arrive at

∇ ·D(r, ω) = ρf(r, ω) , (2.31a)
∇ ·B(r, ω) = 0 , (2.31b)
∇×E(r, ω) = iωB(r, ω) , (2.31c)
∇×H(r, ω) = −iωD(r, ω) + jf(r, ω) . (2.31d)
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2 Basic electrodynamics

Please note, that when solving the Maxwell equations with linear material equations it suffices
to only take into account positive frequencies ω ≥ 0, since the fields are in general real-valued,
i.e.,

E∗ (ω) = E (−ω) . (2.32)

Furthermore, we can solve the equations for a given frequency one after the other. Due to
the linearity, it is often useful to use complex-valued fields and take the real part after the
computation. We do not assign a new set of letters to the complex-valued amplitudes and only
specify the real part when necessary. Also notice, what happens to the time derivative operators
when inserting the Fourier transformed fields: it is technically a replacement of type

∂t
FT←→ −iω . (2.33)

This substitution under Fourier transform is used a lot for the derivation of auxiliary differential
equations (ADEs) (see Section 5.5) used for dispersive material models in the DGTD method
presented in Chapter 5. The convolution for the linear material models of Eq. (2.8) turns into a
simple product in frequency domain:

D
(
r, ω

)
= ε

(
r, ω

)
·E
(
r, ω

)
, (2.34a)

B
(
r, ω

)
= µ

(
r, ω

)
·H

(
r, ω

)
. (2.34b)

All the linear material models of this thesis are initially parameterized in frequency domain, so
the need to transform them back into time domain arises for the DGTD method discussed in
Chapter 5.

Another important fact from the frequency domain Maxwell’s equations is, that from the curl-
equations (2.31c) and (2.31d) and the charge conservation

iωρf(r, ω) = ∇ · jf(r, ω) (2.35)

it follows that

∇ ·B(r, ω) (2.31c)= i
ω
∇ · ∇ ×E(r, ω)︸ ︷︷ ︸

=0

= 0 (2.36)

and ∇ ·D(r, ω) (2.31d)= i
ω
∇ · ∇ ×H(r, ω)︸ ︷︷ ︸

=0

− i
ω
∇ · jf(r, ω) (2.35)= ρf(r, ω) . (2.37)

This means that for all frequencies ω 6= 0 the divergence conditions are automatically fulfilled.
Hence, for (numerically) solving Maxwell’s equations in frequency domain for non-static fields,
it suffices to look at the curl-equations only. At the same time, this observation transforms into
the statement, that if the divergence conditions in time domain are fulfilled for an arbitrary time
t0, they are also fulfilled for any time thereafter. It is important to note that in case the charge
conservation is violated, as it is slightly by construction in the electron energy loss spectroscopy
(EELS) computations presented in Chapter 6, we expect static fields remaining in the system
of interest for sufficiently long computation times. This can lead to potential systematic errors
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(see Section 6.3.1) for low- frequency field components and derived quantities.

2.4.1 Causality

Due to the integration being constrained to positive times τ , i.e., causal behavior, in the convolu-
tion in the integrals Eqs. (2.8), it immediately follows, from the reality of the fields and response
functions, that both

ε(ω) = 1 + χ
ε
(ω) and µ(ω) = 1 + χ

µ
(ω) , (2.38)

are analytic functions for Im (ω) > 0 (see [81], Chapter 7). Hence, the real and imaginary parts
of the permittivity and permeability can be related using Cauchy’s integral formula [81] via

Re
(
ε(ω)

)
= 1 + 2

π
P
∫ ∞

0

ω′ Im
(
ε(ω′)

)

ω′2 − ω2 dω′ , (2.39)

Im
(
ε(ω)

)
= −2ω

π
P
∫ ∞

0

Re
(
ε(ω′)

)
− 1

ω′2 − ω2 dω′ , (2.40)

and analogous for µ. Here P
∫
denotes Cauchy’s principal value

P
∫ ∞

−∞
f(x) dx := lim

ε→0+

[∫ x0−ε

−∞
f(x) dx+

∫ ∞

x0−ε
f(x) dx

]
, (2.41)

if f(x) has a singularity at x0. These Kramers-Kronig relations have the consequence that for
explicitly ω-dependent, i.e., dispersive permittivities Re

(
ε
)

= Re
(
ε(ω)

)
, there automatically

needs to be a dissipative contribution Im
(
ε(ω)

)
6= 0. So vacuum ε ≡ 1, should be the only

material for which there is no dissipative part, i.e., Im
(
ε(ω)

)
= 0. Though not causal, we also

use permittivities in this thesis with real-valued and hermitian material tensors constant for all
frequencies ω. This is possible as long as one is interested only in an interval of frequencies
for which the dissipative term is negligible. It turns out that causality is a sufficient but not
necessary criterion for the stability of the DGTD method in Chapter 5.

2.5 Field boundary conditions on interfaces

Whether we want to solve Maxwell’s equations either in time or frequency domain, in both cases
we have to deal with different regions of material and their interfaces. It is important to both
the FMM and DGTD method to know how the fields change at such an interface and how to
enforce their boundary condition. To derive the boundary conditions of the fields, one casts
Maxwell’s equations (2.1) into the integral form using Gauss’ and Stokes’ theorem (see e.g., [81,
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83]). Consequently, the Maxwell equations in integral form read
∮

∂V
D · df =

∫

V
ρf dV , (2.42a)

∮

∂V
B · df = 0 , (2.42b)

∮

∂A
E · dr = −

∫

A

∂

∂t
B · df , (2.42c)

∮

∂A
H · dr =

∫

A

[
jf + ∂

∂t
D

]
· df . (2.42d)

Applying Gauss’s theorem for the divergence equations, we integrated over a given closed volume
V containing the material interface S (see Figure 2.1). With Stokes’ theorem applied on the curl
equations, we integrate over a given closed surface A intersecting said interface.

n
n n × t

t
∂V

V

∂A

Aδ′

δ

S

Region II
E2,D2,H2,B2

Region I
E1,D1,H1,B1

Figure 2.1: Sketch how to compute the electromagnetic field boundary conditions using a
Gaussian pillbox and Stokes plane.

From the two Eqs. (2.42a) and (2.42b) we can extract the normal components of the D- and B-
fields. We, therefore, choose the integration volume V and its surface element df ||n as depicted
in Fig. 2.1. Choosing the thickness δ → 0 of the Gaussian pillbox, only the two faces parallel to
the interface contribute to the integral. At the same time, the volume integral over the charge
density ρ vanishes, as long as the charge density is not divergent on the interface. In the latter
case, this might lead to a finite surface charge density σsurf . Hence, we find the condition for the
normal components to be

(
D1 −D2

)
· n = σsurf , (2.43a)(

B1 −B2
)
· n = 0 . (2.43b)

Following the other two Equations (2.42c) and (2.42d) we obtain the condition for the tangential
field components. We, therefore, integrate along a Stokes’ surface A as shown in Fig. 2.1. Using
an infinitesimal thickness δ′ → 0, again only the contour lines parallel, i.e., tangential to the
interface, give a finite contribution. Furthermore, the surface integral over the current density
only contributes for divergent current densities, which lead to a corresponding surface current
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density jsurf . This only contributes if it is binormal to the surface, i.e., df ||n × t. Hence, we
find

(
E1 −E2

)
· t = 0 , (2.44a)(

H1 −H2
)
· t = jsurf · (n× t) , (2.44b)

for any freely chosen vector t tangential to the interface. Although, we see different free source
terms applied with the DGTD method in Chapter 5 and the potential surface currents can
appear in the form of current sheets in that method (see [87]), in the remainder of this thesis we
only use systems that do not contain free surface charges or currents. Hence, we summarize the
field boundary conditions as follows: The divergence equations imply the continuity of normal
components

∇ ·D = 0 ⇒ ∆D⊥ = 0 and ∇ ·B = 0 ⇒ ∆B⊥ = 0 , (2.45)

while the curl-equations imply the continuity of the tangential field components

rotE = −∂tB ⇒ ∆E|| = 0 and ∇ ·H = ∂tD ⇒ ∆H || = 0 . (2.46)

2.6 Symmetries and lower-dimensional systems

In this section, we show how to exploit system symmetries to simplify the solution of Maxwell’s
equations, as it is relevant for the hyperbolic metamaterial (HMM) and lasing system applications
in Chapter 7 and Chapter 8, respectively. First, we consider two-dimensional systems in which
the material configuration is assumed to be constant along one spatial dimension. In the next
step, we discuss what happens, if a system of stacked material layers, i.e., constant material
distributions in two spatial dimensions or an effectively one-dimensional system is considered.
Especially in the latter case, one can exploit the inner symmetry of the source-free Maxwell’s
equations, which remain invariant under the transformation

E →H and H → −E and ε→ µ and µ→ ε . (2.47)

2.6.1 Two-dimensional systems

In the case of an effectively two-dimensional system, both material tensors ε and µ are invariant
under the change in one of the spatial coordinates. Without loss of generality, we assume this to
be the coordinate varying along the y-axis. If one further assumes that also the electromagnetic
fields vary slowly compared to their frequencies (and therefore also characteristic wavelengths)
in the same direction, we approximate the fields as constant in this direction. This means

∂

∂y
E(r, ω) = 0 and ∂

∂y
H(r, ω) = 0 . (2.48)
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Consequently, Maxwell’s equations simplify to

∂yEz︸ ︷︷ ︸
=0

−∂zEy = iω
∑

i

µxiHi , (2.49a)

∂zEx − ∂xEz = iω
∑

i

µyiHi , (2.49b)

∂xEy − ∂yEx︸ ︷︷ ︸
=0

= iω
∑

i

µziHi , (2.49c)

∂yHz︸ ︷︷ ︸
=0

−∂zHy = −iω
∑

i

εxiEi , (2.49d)

∂zHx − ∂xHz = −iω
∑

i

εyiEi , (2.49e)

∂xHy − ∂yHx︸ ︷︷ ︸
=0

= −iω
∑

i

εziEi , (2.49f)

where we sum over i = x, y, z. Although, we here present the frequency domain equations the
same holds for the time-domain as well. It only involves the more unpleasant convolution terms
Eqs. (2.8). In the case, in which we have diagonal material tensors

ε =



εxx 0 0
0 εyy 0
0 0 εzz


 and µ =



µxx 0 0
0 µyy 0
0 0 µzz


 , (2.50)

we find a decoupling of Maxwell’s equations into two sets of equations with three fields each,
namely

H-polarization: Ex, Hy, Ez , (2.51a)
E-polarization: Hx, Ey, Hz . (2.51b)

For this thesis, we use different nomenclature for the two sets depending on the fields’ polarization
(also see Section 2.7.1). The first one is named after the field component perpendicular to the x-z-
coordinate plane, as listed above. For the DGTD method transverse magnetic (TM) polarization
refers to the E-field components being in-plane and transverse electric (TE) polarization to the
H-field components being in-plane. However, this convention changes depending on the potential
experimental setup and the interpretation to what geometrical setup, which field component is
tangential to. For typical scattering setups, one also finds the convention s- and p-polarization
in the literature.
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2.6.2 One-dimensional systems

Assuming the system has yet another spatial invariance, which without loss of generality shall
lie in x-direction, also the partial derivatives in that direction vanish

∂

∂x
E(r, ω) = 0 and ∂

∂x
H(r, ω) = 0 . (2.52)

As a consequence, we arrive at the one-dimensional Maxwell’s equations (in frequency domain)
reading

0− ∂zEy = iω
∑

i

µxiHi , (2.53a)

∂zEx − ∂xEz︸ ︷︷ ︸
=0

= iω
∑

i

µyiHi , (2.53b)

∂xEy︸ ︷︷ ︸
=0

−0 = iω
∑

i

µziHi , (2.53c)

0− ∂zHy = −iω
∑

i

εxiEi , (2.53d)

∂zHx − ∂xHz︸ ︷︷ ︸
=0

= −iω
∑

i

εyiEi , (2.53e)

∂xHy︸ ︷︷ ︸
=0

−0 = −iω
∑

i

εziEi . (2.53f)

For the case of diagonal material tensors, we find that the fields’ z-components for each polar-
ization are

Ez = 0 and Hz = 0 . (2.54)

2.7 Wave equations in homogeneous materials

Though the main point of this thesis is to numerically solve Maxwell’s equations for the setups
provided in the introduction Section 1.1, we require different basic solutions for either construct-
ing the numerical methods (cf. FMM in Chapter 4), introducing source terms, or having analytic
benchmarks to assess the methods’ convergence behavior. To this end, we consider the plane
wave solution of the wave-equations within homogeneous and isotropic media. The wave equa-
tion, or here Helmholtz equation (frequency domain) is obtained by double application of the
curl-operator on Maxwell’s equations (2.31d) and (2.31c), such that

∇×
[
µ−1(r, ω)∇×E(r, ω)

]
= ω2ε(r, ω)E(r, ω) , (2.55a)

∇×
[
ε−1(r, ω)∇×H(r, ω)

]
= ω2µ(r, ω)H(r, ω) . (2.55b)
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With the restriction to homogeneous and isotropic media, we have

ε(r, ω) = ε(ω)1 and µ(r, ω) = µ(ω)1 . (2.56)

We additionally apply the Fourier transform to the fields from real into reciprocal k-space, i.e.,

E(r, ω) = 1
(2π)3

∫

R3
d3kE(k, ω) eik·r and H(r, ω) = 1

(2π)3

∫

R3
d3kH(k, ω) eik·r . (2.57)

Since the fields are real-valued, the field amplitudes fulfill

E∗
(
ki, ω

)
= E

(
−ki, ω

)
and H∗

(
ki, ω

)
= H

(
−ki, ω

)
, (2.58)

for each component ki of the k-vector. Inserting the transformed fields into the Helmholtz
equation (2.55), we get

−k ×
(
k ×E(k, ω)

)
=
(
k · k

)
E(k, ω)−

(
E(k, ω) · k

)
k = ε(ω)µ(ω)ω2E(k, ω) , (2.59a)

−k ×
(
k ×H(k, ω)

)
=
(
k · k

)
H(k, ω)−

(
H(k, ω) · k

)
k = ε(ω)µ(ω)ω2H(k, ω) . (2.59b)

This now poses some restrictions on the plane wave solutions, i.e., field amplitude vectors and
the k-vector. Since the solutions should also satisfy the (here source-free) divergence equa-
tions (2.31a) and (2.31b), this leads to the conditions

ε(ω)k ·E(k, ω) = 0 and µ(ω)k ·H(k, ω) = 0 . (2.60)

Furthermore, the curl-equations themselves must be satisfied, i.e.,

k ×E(k, ω) = ωµ(ω)H(k, ω) . (2.61)

Hence, for each permissible k-vector, there are two linear independent (complex-valued) polar-
izations

E(r, ω) ||p1 or E(r, ω) ||p2 , (2.62)

in which the fields can point (assuming ε(ω) 6= 0 and µ(ω) 6= 0). From Eqs. (2.60) it follows,
that these polarization vectors are perpendicular

k · p1 = 0 and k · p2 = 0 , (2.63)

to the k-vector and according to Eq. (2.61) also form a pairwise right-hand system

k × p1 ∝ p2 , and thus p1 · p2 = 0 . (2.64)

The last restriction on the degrees of freedom of the plane wave solutions arises from the
Eqs. (2.59), i.e., the dispersion relation fixing the amplitude

∣∣k
∣∣ = ω

√
ε(ω)µ(ω) = ω n(ω) . (2.65)

Here n(ω) is the refractive index for the plane wave determined by the underlying material
model.
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As the effective dimension of the system in question is reduced (cf. the preceding Section 2.6), we
find further restrictions to the plane wave solutions Eq. (2.57). For two-dimensional Maxwell’s
equations, we find

∂yE(r, ω) = ∂yH(r, ω) = 0 , such that ky = 0 . (2.66)

So one of the two potential polarizations points in the y-direction. That is the reason for the E-
and H-polarization nomenclature introduced before, which assumes linear polarization. In the
case of one-dimensional Maxwell’s equations, we also have

∂xE(r, ω) = ∂xH(r, ω) = 0 and therefore kx = 0 . (2.67)

That means the polarization vectors lie in the x-y plane and the kz-component of the wave-vector
is completely fixed by the dispersion relation to be

kz = ω n(ω) . (2.68)

In all these cases, different polarization states for the single plane wave contributions to the fields
are allowed. Besides the electric field strength |E|(k, ω) the polarization vectors p1 and p2 can
be complex-valued and point in different directions. These polarizations are discussed in the
following section.

2.7.1 Plane wave polarizations

The electric field has two potential polarization directions perpendicular to the k-vector for
single plane wave contributions. Assume, these two polarization vectors to point in ep1 and ep2
direction. Furthermore, we demand the vectors to form an orthonormal system, i.e.,

epi · epj = δij and epi · ek = 0 and ep2 = ek × ep1 . (2.69)

Thus, we can decompose the E-fields’ amplitude vector into its linear polarization components

E0 = E01ep1 + E02ep2 . (2.70)

Linear polarization

If both E01 and E02 have the same complex phase, we are in the case of linear polarization, i.e.,
the field only oscillates in a single given direction. In principle, it is also possible to rotate the
polarization axis frame such that either E01 or E02 vanish identically to zero.
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2 Basic electrodynamics

Elliptical polarization

In the most general case, the relative complex phase

δ = arg
(
E01
E02

)
, (2.71)

is not zero but takes a finite value. Therefore, in the most generic case, the plane wave is
elliptically polarized, since the electric field

E(t) = Re
(
E0e−iωt

)
, (2.72)

scribes an ellipse in the p1-p2-plane (see Fig. 2.2), as the phase ωt evolves a whole period. While
for the linear polarization only the field strength |E0| is important, there are more characteristic
quantities to specify elliptical polarization.

p1

p2

k

χ

c

θ

A
B

E (t)
E

(
t+ ∆t

)

Figure 2.2: Polarization ellipse, including the main axes A and B (see Eq. (2.73)), the
ellipticity angle χ and relative rotation angle θ against a given axis c

One way is to characterize the elliptical polarization by the ellipse’s real-valued and orthogonal
main axes A and B [88, 89]. To compute these, we can decompose the complex-valued field
amplitude into its real and imaginary parts P and Q and simultaneously into the main axes

E0 = P + iQ ≡
(
A+ iB

)
eiε . (2.73)

Here, ε is the phase shift the field has to evolve to point in the direction of the main axis A (at
t = 0). To avoid ambiguities, we assume that, without loss of generality

|A| ≥ |B| and A · ep1 ≥ 0 . (2.74)
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We can extract the phase ε by multiplying

E0 ·E0 = P 2 −Q2 + 2iP ·Q =
(
A2 −B2

)
e2iε . (2.75)

Since all vectors P ,Q,A, and B are real-valued, we can extract the phase being

ε = 1
2 arg

(
P 2 −Q2 + 2iP ·Q

)
+ nπ with n ∈ Z . (2.76)

The second condition in Eq. (2.74) fixes whether n is even or odd. Furthermore, we can directly
compute the main axes vectors as

A = Re
(
P e−iε + iQe−iε

)
and B = Im

(
P e−iε + iQe−iε

)
. (2.77)

The two main vectors characterize the polarization state of a plane wave completely. However,
often one is interested in derived quantities, such as the angle θ of the main axis A to a given axis
c, e.g., the direction of a polarization filter, and the ellipticity angle, i.e., the angle χ spanned
from the axis A by the length of axis B (see Fig. 2.2). These angles can vary between

θ = arcsin
[(
c×A

)
· ek

|c||A|

]
∈
[
−π2 ,

π

2

]
(2.78a)

and χ = arctan
[(
A×B

)
· ek

|A|2

]
∈
[
−π4 ,

π

4

]
. (2.78b)

Note that given the main axes decomposition the actual E-field of the plane wave

E = Re
((
A+ iB

)
ei(k·r−ωt+ε)

)
, (2.79)

rotates ”from A to B“, i.e., either to the right (clockwise) or the left (counter-clockwise). This
is indicated by the arrow on the ellipse in Fig. 2.2. Here, one has to notice, that the k-vector
points out of plane and we are looking from a potential receiver to the source of the plane wave.
For the case that B ≡ 0 we are back to linear polarization 2.7.1.

Circular polarization

If the ellipticity angle equals

χ = +π

4 or χ = −π4 , (2.80)

we are in the special case of left circular polarization (LCP) or right circular polarization (RCP),
respectively. In these cases, the main axis vectors are of equal length

|A| = |B| (2.81)
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and can thus be rotated arbitrarily in the ep1-ep2-frame. Also note that it is possible to write any
elliptically polarized amplitude vector E0 not only as the superposition of two linearly polarized
waves, but also of two circularly counter-polarized waves, i.e.,

E+
0 = c+

(
ep1 + iep2

)
and E−0 = c−

(
ep1 − iep2

)
. (2.82)

If E0 = E+
0 +E−0 , we find that

c± = 1
2

(
E0 · ep1 ∓ iE0 · ep2

)
. (2.83)

All the presented polarization states are especially important for the characterization of the
magneto-optic (MO) metasurface presented in the introductory Section 1.1 and discussed in
Section 7.2.

2.8 Typical scattering quantities

For nearly all experimental setups presented in the introduction Chapter 1, the main observ-
ables are the field intensities, i.e., the time-averaged energy flux as measured within a specified
detection area. In this section, we, therefore, discuss the underlying energy conservation of the
electromagnetic field and introduce the derived quantities, like the scattering and absorption
cross sections in Section 2.8.2, as well as transmittance, reflectance, and absorbance spectra in
Section 2.8.3. These basics described here can be found in standard textbooks of electrodynamics,
e.g., [81, 83].

2.8.1 Energy conservation and intensity

First, we consider the change of mechanical work per time, i.e., power, which is delivered by the
field acting on charge carriers in a given volume V , e.g., a detector. The mechanical power in a
given volume V , which can be deduced from the Lorentz force density, is given by

d
dtWV =

∫

V
d3r jf(r, t) ·E(r, t) . (2.84)

Inserting Maxwell’s curl-equations, one can directly deduce Poynting’s theorem

jf(r, t) ·E(r, t) = − ∂

∂t
u(r, t)−∇ · S(r, t) . (2.85)

It relates the mechanical power density jf ·E and the change of the electromagnetic fields’ energy
density

∂

∂t
u(r, t) = E(r, t) · ∂

∂t
D(r, t) +H(r, t) · ∂

∂t
B(r, t) (2.86)
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and the energy flow of the field through the boundary of the chosen volume V namely the
divergence of the Poynting vector, which is

S(r, t) = E(r, t)×H(r, t) . (2.87)

Here the term jf · E accounts for energy dissipating into Joule heating, or induced currents in
conductive materials, i.e., movement of free charge carriers. The energy density u accounts for
both the energy stored in the field as well as the dissipation of energy in the volume V , which
is determined by the permittivity and permeability models and consequently the macroscopic
electromagnetic fields. Lastly, the Poynting vector describes the energy flux of the field out or
into the volume’s boundary, as can be easily seen by applying Gauss’ theorem to the energy
conservation Eq. (2.85):

d
dtWV =

∫

V
d3r jf(r, t) ·E(r, t) = − ∂

∂t

∫

V
d3r u(r, t)−

∫

∂V
df · S(r, t) . (2.88)

The following two subsections deal with typical scattering setups relevant for the experimental
applications and their numerical predictions as well as convergence tests for the DGTD method
implementation. For both finite-sized scatterers as well as layer structures, these setups are
sketched in Figs. 2.3 and 2.4, respectively. These setups involve an electromagnetic field source
that irradiates the system. These fields then scatter either on an arbitrarily shaped scatterer or
a scattering layer, composed of potentially several different materials.

Here, the experimental or numerical quantity of interest is the intensity or power, which occurs
on a given detection surface, i.e., a detector model. Note, that the surface chosen for the
computations does not necessarily require to be the same as in the detector opening in the
experiment. This is possible as long as the detector is placed in a (nearly) dissipation-free
environment, e.g., vacuum or air (ε ≈ 1). The intensity I or energy current density is defined
by the time-averaged Poynting vector projected on the detection surface normal vector, i.e.,

I(r) =
〈
S(r, t)

〉
τ
· nf(r) . (2.89)

Here, the normal vector

nf = df∣∣df
∣∣ , (2.90)

is defined at a given point r of the infinitesimal detection surface element df . Due to the fact that
at optical frequencies detectors are not able to resolve the time dependence of the fields, we need
to time-average over a time span τ much greater than the characteristic time period of the fields.
Although the fields cannot be resolved in time, they can be decomposed into their frequency
contributions using a spectrometer. This is the reason we only consider a single frequency ω to
be detected at once. The time-averaged and frequency-dependent Poynting vector consequently
reads

〈
S
〉
τ

(r, ω) = 1
4

〈(
E(r, ω)e−iωt +E∗(r, ω)eiωt

)
×
(
H(r, ω)e−iωt +H∗(r, ω)eiωt

)〉

τ
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= 1
2Re

(
E(r, ω)×H∗(r, ω)

)
+ 1

2Re
(
E(r, ω)×H(r, ω)

〈
e−2iωt

〉
τ

)
. (2.91)

Using the time-average with a time τ � 2πω−1 of the highly oscillatory (ω 6= 0) term
〈

e−2iωt
〉
τ
≈ lim

τ→∞
1
τ

∫ t+τ

t
e−2iωt′dt′ = lim

τ→∞
i

2ωτ e−2iωt
(

e−2iωτ − 1
)

= 0 , (2.92)

we get

〈
S
〉
τ

(r, ω) = 1
2Re

(
E(r, ω)×H∗(r, ω)

)
. (2.93)

The change in total energy inside is changed by field energy flowing to a fixed volume V , e.g.,
the detector volume and is determined by

∆EV
(2.85)= −

∫ ∞

−∞
dt
∫

∂V
df · S(r, t) . (2.94)

We can calculate it by spectral integration of the time-averaged Poynting vector, using

∆EV
(2.30)= − 1

(2π)2

∫ ∞

−∞
dω
∫ ∞

−∞
dω′

∫

∂V
df ·

(
E(r, ω)×H(r, ω′)

)∫ ∞

−∞
dt e−iωte−iω′t

︸ ︷︷ ︸
2πδ(ω+ω′)

,

= − 1
π

∫ ∞

0
dω
∫

∂V
df · Re

(
E(r, ω)×H∗(r, ω)

)
,

(2.93)= − 2
π

∫ ∞

0
dω
∫

∂V
df ·

〈
S
〉
τ

(r, ω) . (2.95)

This change in energy is used in Chapter 8 to compute the lasing thresholds by integration of a
finite emission frequency window. For the used DGTD method, we also fix the units and scale
of the fields. For both intensity and Poynting vector, we find, following the definitions made in
Section 2.3, that

(SI) intensity : [S] = [I] = 1ε0c0E
2
0 = E2

0Z
−1
0

(2.99)
≈ 9.48 · 1018Wm−2 . (2.96)

At the same time, we can also set the E-field amplitude fixing the unit of energy. As energies
of the form E = ~ω appear in the 4LS material model (see Section 3.5), it is convenient to set
~→ 1. Hence, we demand that the energy is scaled as

(SI) E′ = E

Ẽ0
with Ẽ0 = ~ω0 ≡ ~c0λ

−1
0 . (2.97)

From Eq. (2.94) it also follows that

(SI) Ẽ0 = t0λ
2
0[S] = t0λ

2
0E

2
0Z
−1
0 , (2.98)
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such that the E-field amplitude and energy are fixed as

(SI) E-field : [E] = 1
√
~Z0c0λ

−2
0 ≈ 59.75 GV m−1 , (2.99)

(SI) energy : [E] = 1~ω0 ≈ 197.3 eV ≈ 3.162× 10−17 J . (2.100)

2.8.2 Scattering and absorption cross sections

We now consider a scattering setup as shown in Fig. 2.3. Here, we want to compare the power
of an incident wave (package) to the power of the back-scattered electromagnetic waves and
which amount of energy is absorbed by the scatterer. We therefore first perform a total field /
scattered field (Tf/Sf) decomposition, in which the total field (Tf) is split into the incident field
and scattered field (Sf), i.e.,

Etot = Einc +Escat and Htot = H inc +Hscat . (2.101)

Then, the incident power

Pinc(ω) =
∫

Ainc

Iinc(r, ω) df , (2.102)

is defined by the irradiance (maximum intensity)

Iinc(r, ω) =
∣∣∣
〈
Sinc

〉
τ

(r, ω)
∣∣∣ =

∣∣∣
〈
Einc(r, ω)×H inc(r, ω)

〉
τ

∣∣∣ , (2.103)

of the incident field, as recorded on the illuminated surface Ainc.

Sscat

ATfSfAinc

kinc||Sinc

scatterer
ε(ω) 6= 1

Figure 2.3: Sketch of a prototypical scattering setup containing a finite-size scatterer, used
to compute the scattering and absorption cross section. An incident plane wave package
passes the contours Ainc as well as ATf/Sf and is scattered by the particle.

We then compute both the scattering cross section and the absorption cross section of the
scatterer. To this end, we normalize the corresponding field power recorded on a Tf/Sf contour

23



2 Basic electrodynamics

ATf/Sf by the incident intensity. The scattering cross section is defined as

Cscat(ω) = − 1∣∣∣
〈
Sinc

〉
τ

(ω)
∣∣∣

∫

ATf/Sf

〈
Sscat

〉
τ

(ω) · df , (2.104)

and provides an effective area measure of the scatterer’s size (see e.g., [75, 90, 91]). It is de-
termined by the induced Sf, such that Sscat = Escat ×Hscat. The absorption cross section is
consequently defined by

Cabs(ω) = 1∣∣∣
〈
Sinc

〉
τ

(ω)
∣∣∣

∫

ATf/Sf

〈
Stot

〉
τ

(ω) · df . (2.105)

Due to energy conservation, it accounts for the difference between incident and scattered energy.
Thus, it measures the amount of energy lost in the enclosed volume of ATf/Sf and assigns an
effective absorption area to the scatterer due to the normalization to the incidence irradiance.
Assuming there are no free moving charges in said volume, the field energy is absorbed with a
power loss given by

ploss(r, ω) = ωE∗tot(r, ω) · Im
(
ε(r, ω)

)
·Etot(r, ω)

+ ωH∗tot(r, ω) · Im
(
µ(r, ω)

)
·Htot(r, ω) , (2.106)

which can be obtained from the time derivative of the energy density u (cf. Eq. (2.86)) assuming
a monochromatic excitation of the scatterer. Finally, the extinction cross section is defined by

Cext(ω) = Cabs(ω) + Cscat(ω) . (2.107)

Intuitively, the extinction cross section can be understood as the size of the scatterer in the limit
of geometrical optics [91]. However, for nanophotonic scatterers, it can increase significantly on
resonances, which depend on both the material and geometry of the scatterer. In this thesis, we
especially use them for testing DGTD implementations and compare them to Mie calculations
[91] of spherical scatterers.

2.8.3 Transmittance, reflectance and absorbance

We close with the characterization of scattering properties of a (potentially periodic) layered
system of materials (see Fig. 2.4), which extend far in two (lateral) directions compared to
the finite focus size of the incident light. For these structures, we compute the transmittance,
reflectance, and absorbance spectra. In this thesis, we use the spectra to identify the resonances
of the perforated gold films in Chapter 6, the MO metasurfaces and HMM cavities in Chapter 7
as well as the distributed Bragg reflector (DBR) cavities in Chapter 8 and compare them to
the respective experimental spectra. They are defined completely analogous to the scattering
coefficients in the previous section, however, the energy flux is integrated over different detection
contours (see Fig. 2.4).
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Srefl

Strans

Ainc ≡ ATfSf Atrans

kinc||Sinc

scat. layer
ε(ω) 6= 1

Figure 2.4: Sketch of scattering setup with a periodical material layer. The contours
Ainc and Atrans suffused by the incident pulse are used to compute the transmittance and
reflectance.

For the reflectance, we normalize the power of the back-scattered fields to the incident power,
instead of the irradiance:

R(ω) = 1
Pinc(ω)

∫

ATf/Sf

〈
Sscat

〉
τ

(ω) · df . (2.108)

In analogy, the transmittance is defined by normalizing the transmitted field to the incident
power:

T (ω) = 1
Pinc(ω)

∫

Aout

〈
Stot

〉
τ

(ω) · df . (2.109)

By normalizing to the incident power instead of irradiance, we find a dimensionless coefficient
instead of a cross section with the dimension of an area. For passive materials both the reflectance
and transmittance lie between zero and one. Finally, we also define the absorbance

A(ω) = 1
Pinc(ω)

∫

Vl

d3r ploss(r, ω) , (2.110)

which is simply given by the energy loss in the volume V1 enclosed by the surfaces ATfSf and
Atrans. From the energy conservation Eq. (2.85) it follows that

T (ω) +R(ω) +A(ω) = 1 , (2.111)

which can be used to compute the absorbance A(ω), given R(ω) and T (ω), without actually
solving the integral Eq. (2.110).
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CHAPTER 3

Material models

Within this chapter, we provide a brief overview of the different (dispersive) material models used
in this thesis. We present both the Lorentz model in Section 3.1 and Drude model in Section 3.2
to classically describe dielectrics and metals. This is followed by anisotropic materials. First, we
present a model of magneto-optic (MO) materials in Section 3.3. Secondly, we introduce hyper-
bolic metamaterials (HMMs) with an example composition of alternating metal and dielectric
layers. Finally, in Section 3.5 we introduce laser rate equations providing a semi-classical model
for an effective four-level system (4LS) which can be used to model active materials like atoms
and organic dyes [63, 64, 92, 93], quantum dots, or semiconductors [94].

The basic idea for a material model is to provide a model for the relative permittivity tensor
ε, which only needs a few parameters to describe the macroscopic response of a material to
an external electric field E. As the magnetic response is rather weak in the optical regime,
we only consider materials with permeability µ = 1. In the following, material permittivities
are introduced by a model for the microscopic response of either dielectrics or metals. Given a
specific density of charge carriers n0, i.e., electrons within the material, we can then introduce a
macroscopic polarization

(SI) P (r, t) = D(r, t)− ε0E(r, t) = n0p(r, t) , (3.1)

for a given microscopic polarization p, like e.g., dipole moments for bound charges in the Lorentz
model. Then the equation of motion for the microscopic polarization determines both the re-
sponse and susceptibility of the macroscopic system. For metals, e.g., the Drude model, we can
also introduce the polarization current

Jp(r, t) = ∂tP
[
E(r, t)

]
, (3.2)

which then couples back into Maxwell’s curl equations

∇×E(r, t) = −∂tB(r, t) and ∇×H(r, t) = ∂tD(r, t) + Jp(r, t) + jf(r, t) , (3.3)

as additional, essentially relabeled current (see e.g., [81]).

3.1 Lorentz model

The basic idea of the Lorentz model is to describe bound charges in a material as a driven har-
monic oscillator [81, 95]. The susceptibility of the Lorentz model can be derived both quantum-
mechanically (see Section 3.5) as well as in the scope of classical equations of motion (see e.g.,
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[96], Chapter 1). Therein, the external electric field induces fluctuations within the charge car-
rier density. Classically, this behavior can be modeled with a driven microscopic dipole moment
p = p ep, where p is the dipole strength and ep the corresponding direction vector. As the
Lorentz model describes bound oscillating charges q with mass m and resonance frequency ωL,
the charge displacement x is modeled by

(SI) ∂2
t x+ γL∂tx+ ω2

Lx = − q

m
ep ·E

(
rp, t

)
. (3.4)

Here, the charge oscillates around the point rp, generating the microscopic dipole moment
p = q x ep. Within this driven harmonic oscillator model, the interaction with the background
material is accounted for by the damping constant γL and the dipole is driven by the external
E-field with the electric part of the Lorentz force. Thus, in frequency domain, the dipole moment
is

(SI) p
(
rp, ω

) (2.33)= q2

m

1
ω2
L − iγLω − ω2ep

[
ep ·E

(
rp, ω

)]
. (3.5)

Given a dipole density distribution n0(rp), we can directly infer the polarization

(SI) P (r, ω) = ε0χ(ω) ·E(r, ω) (3.1)= n0(r)p(r, ω) . (3.6)

Because of the linearity of the model, this results in an additive term to the relative permittivity
tensor

(SI) ε (ω) = εbg + χ(ω) = εbg + ∆εω
2
L

ω2
L − iγLω − ω2epe

T
p , (3.7)

where

(SI) ∆ε = n0e2

ε0me
fL (3.8)

defines the coupling strength of the dipole moments. Here, fL is the corresponding oscillator
strength (see e.g., [81]) of the corresponding electron (q = −e) transition within the material.

As a linear model, the Lorentz model is additive, such that one can account for several resonances
within the material by adding several Lorentz functions to the background permittivity εbg.
If there are no internal restrictions on allowed dipole transition directions ep, the material is
isotropic and thus the induced dipole moments are aligned to the E-field, i.e.,

ep||E , (3.9)

such that

epe
T
p = 1 , (3.10)

leads also to an isotropic permittivity tensor.
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3.2 Drude model

Contrary to the Lorentz model the Drude model does not describe bound valence but moving
conduction electrons as a free electron gas (see e.g., [81, 95]). Therefore, it is used to describe the
permittivity of metals, in which the electrons can move freely on a positively charged background.
This background is constituted by the positively charged, quasi-static atomic nuclei, which hardly
move on the electron time scale (Born-Oppenheimer approximation [97]). Furthermore, the
Drude model assumes a spatially constant electron charge density n0. Then the response to an
external E-field is governed by the current density

(SI) J(r, t) = − e

me
n0pe(t) , (3.11)

for which the equation of motion for the electron momentum

(SI) ∂tpe(t)− γDpe(t) = −eE(t) , (3.12)

has to be accounted for. Here, the change in momentum is again just equal to Lorentz force and
the phenomenological damping γD accounts for electron scattering with the background material.
Consequently, the current density in frequency domain is

(SI) J (ω) (2.33)= −n0e2

me

1
iω − γD

E (ω) = σ (ω)E (ω) . (3.13)

With the conductivity σ(ω), the resulting polarization current can also be attributed to the
D-field as

D (ω) = εbg ·E (ω) + i
ω
J (ω) = εbg ·E (ω) + i

ω
σ (ω)E (ω) . (3.14)

Thus, the isotropic dielectric tensor reads

ε (ω) = εbg + i
ω
σ(ω)1 = εbg −

ω2
D

ω
(
ω + iγD

)1 , (3.15)

where ωD =
√

n0e2
me

is the plasma frequency of the metal.

3.3 Magneto-optic materials

For both preceding material models, we used only the electric part of the Lorentz force to describe
the action of the external field to the material charges. While accurate modeling requires not
only an external magnetic field but also a quantum mechanical derivation [29], we here merely
add the magnetic interaction term [98, 99]. Hence, the equation of motion for the polarization
within the (isotropic) Lorentz model changes to

∂2
tP (r, t) + γL∂tP (r, t) + ω2

LP (r, t) (3.4)= ∆εω
2
LE(r, t) + Ω(r, t)× ∂tP (r, t) , (3.16)
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where one introduces the auxiliary field

(SI) Ω(r, t) = e

me
B(r, t) . (3.17)

Since the newly introduced term is a nonlinear combination of the polarization current Jp = ∂tP
and the B-field, we linearize the term (similar to [100, K6]), which yields

Ω(r, t)× Jp(r, t)→ Ω0(r)× Jp(r, t) + Ω(r, t)× Jp,0(r) . (3.18)

Here

(SI) Ω0 = e

me
Bext , (3.19)

where Bext is a static and constant magnetic field, which for simulation purposes is accounted
for as an external field. Note, that the term with constant polarization current vanishes, as the
equilibrium polarization current of the unexcited system also vanishes Jp,0 = 0. The change
into frequency domain gives

(
ω2
L − iγLω − ω2

)
P (r, ω) + iωΩ0 × P (r, ω) = ∆εω

2
LE(r, ω) . (3.20)

To obtain the permittivity tensor, we assume that without loss of generality Ω0 = Ω ez and
find

P (r, ω) = χ(ω) ·E(r, ω) (3.21)

= ∆εω
2
L

(ω2
L − iγLω − ω2)2 − ω2Ω2




ω2
L − iγLω − ω2 iωΩ 0
−iωΩ ω2

L − iγLω − ω2 0
0 0 (ω2

L−iγLω−ω2)2−ω2Ω2

ω2
L−iγLω−ω2


E(r, ω),

where Ω is the cyclotron frequency of the electrons with effective mass me and therefore another
parameter to fit for specific experimentally realized materials. As the MO effects are typically
rather weak, we can expand the susceptibility for Ω� ωL, i.e.,

χ(ω) Ω�ωL= ∆εω
2
L

ω2
L − iγω − ω2




1 iΩω
ω2

L−iγω−ω2 0
− iΩω
ω2

L−iγω−ω2 1 0
0 0 1


+O

(
Ω2

ω2
L

)
. (3.22)

Here, we recover the Lorentzian susceptibility for the diagonal elements, while the MO effect
enters the off-diagonal elements, causing different refraction for light with left circular polariza-
tion (LCP) and right circular polarization (RCP). When investigating a material far from the
resonance as done in Chapter 7, it is also sufficient to approximate the dielectric tensor as essen-
tially non-dispersive for frequencies ω ≈ ω0 � ωL. When we also neglect the material damping
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(γL < Ω), this yields

χ(ω) ω�ωL= ∆ε




1 + i γL
ωL

ω
ωL

i Ω
ωL

ω
ωL

0
−i Ω

ωL
ω
ωL

1 + i γL
ωL

ω
ωL

0
0 0 1 + i γL

ωL
ω
ωL


+O

(
ω2

ω2
L

)
ω≈ω0≈




∆ε ig 0
−ig ∆ε 0
0 0 ∆ε


 ,

(3.23)

such that the dielectric displacement D takes the form

D(r, ω) = εrE(r, ω) + g ×E(r, ω) . (3.24)

Here, εr ≡ ∆ε and g ∝ Bext is the gyration vector [29].

The same derivation can also be performed for the Drude model, such that (3.14) can be resolved
for the polarization and turns into

(−iω + γ)P (r, ω)− Ωez × P (r, ω) = iω
2
D
ω
E(r, ω) . (3.25)

Consequently, the susceptibility reads

χ(ω) = −ω
2
D
ω

1
(ω + iγD)2 − Ω2



ω + iγD −iΩ 0

iΩ ω + iγD 0
0 0 (ω+iγD)2−Ω2

ω+iγD


 , (3.26)

which in the regime of small Ω resembles the same form as for the dielectric case Eq. (3.22),
while maintaining the typical ω−2 dependency for metals:

χ(ω) Ω�ωD= − ω2
D

ω(ω + iγD)




1 − iΩ
ω+iγD

0
iΩ

ω+iγD
1 0

0 0 1


+O

(
Ω2

ω2
D

)
. (3.27)

While, this model can be well used to describe metals with strong MO effects, like Nickel [99],
we use the dielectric model Eq. (3.23) to describe an all-dielectric bismuth iron garnet (BIG)
[101] material here.

3.4 Hyperbolic metamaterials

In contrast to the previously described materials, metamaterials are artificially engineered sub-
wavelength structured media with an unusual optical response [46, 102]. While the field of
metamaterial research originated from left-handed materials with negative refraction [102–104]
(ε < 0 and µ < 0), we here introduce HMMs, which provide the eponymous hyperbolic dispersion
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[46, 47, 105]. Considering an effective medium relative permittivity tensor

ε(ω) =



εxx(ω) 0 0

0 εyy(ω) 0
0 0 εzz(ω)


 , (3.28)

the dispersion relation can be obtained similarly as in Section 2.7, leading to a fourth-order
equation in k (see [82], Eq. (7.10)):

εxxεyyεzz + k2

ω4µ2

(
εxxk

2
x + εyyk

2
y + εzzk

2
z

)

− 1
ω2µ

(
k2
xεxx

(
εyy + εzz

)
+ k2

yεyy (εxx + εzz) + k2
zεzz

(
εxx + εyy

))
= 0 . (3.29)

Given an angular frequency ω, the dispersion relation defines an isofrequency contour (IFC) in
k-space, which determines all allowed k-vectors of a plane wave propagating through the bulk
anisotropic material. In the isotropic case (εxx = εyy = εzz = ε) this IFC is a two-fold degenerate
sphere as shown in Fig. 3.1 (a). The degeneracy arises from the two allowed polarization (cf.
Section 2.7) in the isotropic material. In the case of a biaxial anisotropic material εxx < εyy < εzz
this degeneracy is lifted except for four singular points in the kx-kz-plane [82] of the IFC (see
Fig. 3.1 (b)). However, for each direction k of a traveling wave, there are still two different
polarizations allowed. For a uniaxial anisotropic material, with ε⊥ := εxx = εyy orthogonal and
ε|| := εzz parallel to the anisotropy axis, the IFCs turn into hyperboloids, if the permittivity
entries differ in sign, i.e., ε⊥ε|| < 0. As the dispersion relation (3.29) simplifies to

(
k2 − ε⊥ω2

)(
ε||k

2
z + εε⊥

(
k2
x + k2

y

)
− ε⊥ε||ω2

)
= 0 , (3.30)

we recover two IFCs for an HMM type I, where

ε⊥ = εxx + εyy > 0 and ε|| = εzz < 0 . (3.31)

The first is the sphere

k2 = ε⊥(ω)ω2 , (3.32)

from the isotropic case, in which the polarization vector is orthogonal to the anisotropy axis, i.e.,
E⊥ ez. For the second polarization we find a hyperbolic dispersion (see Figure 3.1 (c)) with

ω2 = k2
z

ε⊥(ω) +
k2
x + k2

y

ε||(ω) . (3.33)

However, for an HMM type II with the opposite combination of permittivity tensor entries

ε⊥ = εxx + εyy < 0 and ε|| = εzz > 0 , (3.34)

only one propagating polarization is recovered. The corresponding IFC is shown in Fig. 3.1 (d).
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Figure 3.1: IFCs for a dispersion relation with different classes of relative diagonal
anisotropic permittivity tensors ε. (a) Isotropic case εxx = εyy = εzz = ε. (b) Biaxial
anisotropy with 0 < εxx < εyy < εzz. (c) HMM type I with εxx = εyy > 0 and εzz < 0. (d)
HMM type II with εxx = εyy < 0 and εzz > 0.

3.4.1 Periodically stacked metal-dielectric layers

Although there exists a wide variety of HMM realizations [46] including subwavelength-sized
plasmonic nanowire arrays [106–108], we here concentrate on a simple realization of alternating
metal and dielectric subwavelength-sized material layers. Therefore, we consider the dielectric
layers to be modeled by a simple positive constant and the metal layers with the Drude model
from Section 3.2, i.e.,

εd(ω) = εd and εm(ω) = εbg −
ω2
pl

ω(ω + iγ) . (3.35)

As the thickness dd of the dielectric and dm of the metallic layers are assumed to be much smaller
than the operation (in-medium) wavelength, we can apply an effective medium approximation
(EMA) [109]. Therefore, we average the fields over an entire HMM unit cell thickness d = dd+dm,
such that the original field continuities across surfaces (see Section 2.5) are maintained for the
effective (averaged) fields. We assume the material layers are stacked in z-direction. Due to the
continuity of the normal component of the D-field, we have

D(d)
z ≈ D(m)

z ≈ 〈Dz〉d , (3.36)
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such that the Ez-component can be averaged as

〈Ez〉d(r, ω) = 1
d

[
dd
εd
D(d)
z (r, ω) + dm

εm(ω)D
(m)
z (r, ω)

]
!= 1
ε||(ω)〈Dz〉d(r, ω) . (3.37)

Consequently, we find a relative permittivity

ε||(ω) = dεdεm(ω)
dmεd + ddεm(ω) . (3.38)

Analogously, the tangential E-field components are continuous, such that

E(d)
x,y ≈ E(m)

x,y ≈ 〈Ex,y〉d , (3.39)

and within the EMA we demand

〈Dx,y〉d(r, ω) = 1
d

[
ddεdE

(d)
x,y(r, ω) + dmεm(ω)E(m)

x,y (r, ω)
]

!= ε⊥(ω)〈Ex,y〉d(r, ω) . (3.40)

This defines the second entry of the EMA permittivity tensor as

ε⊥(ω) = ddεd + dmεm(ω)
d

. (3.41)

Although this shows how to construct an effective anisotropic material, the actual material
parameters of the constituting metal and dielectric layers determine the frequency regions, in
which this effective material is hyperbolic. Therefore, we first introduce the fill factor of the
HMM unit cell

f = dd
dd + dm

= dd
d

and 1− f = dm
d
, with f ∈ [0, 1] , (3.42)

which determines the limiting cases of a pure dielectric (f = 1) and pure metallic (f = 0)
material. Furthermore, we assume that the background dielectric constant for the metallic
layers is the same as for the dielectric layer, i.e., εd = εbg. In Figure 3.2 (a-c), we show the
different permittivity tensor entries for different metal damping γ as well as fill factors f . Here,
we normalize both damping and frequency to the effective plasma-frequency

ω̄pl := ωpl√
εbg

(3.43)

of the Drude metal. While the ε⊥ permittivity smoothly varies between the two limiting cases of
a pure dielectric and metallic layer, the permittivity ε|| has a pole, as the denominator in (3.38)
vanishes. For non-zero damping γ, the pole is smoothed, as it shifts in the complex frequency
plane. Nevertheless, the condition of different signs of the two permittivity components is met for
two frequency regions. These both are determined by the pole and the change in sign inherent to
the Drude model. Hence, we compute the frequencies at which Re(ε||(ω)) and Re(ε⊥(ω)) change
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Figure 3.2: (a-c) Permittivities for an HMM in EMA consisting of alternating layers of
a dielectric and Drude metal with effective plasma frequency ω̄pl, damping γ, and different
fill factors f of the HMM unit cell. (a) Poles in ε|| occur at ω =

√
f ω̄pl. (d-f) Fill factor

and frequency map of the dispersion behavior of the resulting anisotropic material in EMA
for same dampings as in the panels above. The intersection point between HMM type I
and type II lies at ω = ω̄pl√

2 as the dielectric constant and metallic dielectric background are
assumed equal (εd = εm).

signs. We find

Re
(
ε⊥(ω)

)
= 0 at ω0,⊥ = ω̄pl

√
F − γ̄2 , (3.44a)

Re
(
ε||(ω)

)
= 0 at ω±0,|| =

ω̄pl√
2

√
1− γ̄2 + F ±

√
(1− γ̄2 + F )2 + 4F , (3.44b)

where

F = 1
1 + 1−f

f
εd
εbg

and γ̄ = γ

ω̄pl
. (3.44c)

The corresponding frequency boundaries are shown in Fig. 3.2 (d-f) and define the different
dispersion types of the EMA material model. If both Re(ε⊥) > 0 and Re(ε||) > 0 it behaves as
a damped anisotropic dielectric. If the tensor components have different signs, the material is
an HMM type I for high frequencies ω > ω̄pl√

2 and a type II HMM for frequencies below. If both
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entries have negative real parts, the material shows metallic behavior. Note, that for the assumed
constituting material models the interchange frequency between the type I and type II HMM is
solely determined by the ratio of εd/εbg given the optimally chosen fill factor f . Furthermore,
with increased damping, it is also possible that the EMA only supports a type II HMM.

3.5 Four-level system for modeling of lasing materials

Despite the Lorentz model being well suited to describe a single absorption transition, we need to
further extend the material model in order to describe a lasing material, which requires at least
a three-level system [93]. Therefore, we follow the modeling of a 4LS suitable for time-domain
methods [64]. In general, this requires a fully quantum mechanical description of the involved
material. This would include both a quantized electronic structure and electromagnetic field as
well as a coupling to a bath of neighboring molecules or atoms, which results in dissipative open
quantum system dynamics [110]. However, we here restrict ourselves to a semiclassical model.
While the electronic structure of the molecules is described quantum-mechanically, the electro-
magnetic field is described classically. Yet, the required spontaneous emission rates are taken
from a fully quantum mechanical derivation for a two-level system (see e.g., [84, 111]). Addi-
tionally, the electronic structure of the material, which for molecules is normally described with
a Jablonski diagram [112–114] and for semiconductors with the corresponding band structure, is
reduced to four states |i〉, such that the electronic Hamiltonian [63, 64, 92] reads:

(SI) Ĥel =
3∑

i=0
~ωiN̂i , with N̂i = |i〉〈i| . (3.45)

Furthermore, we assume a radiative coupling to the electric field in dipole approximation [96,
115], such that the interaction Hamiltonian is given as

ĤI = −
(
µ̂03 + µ̂12

)
·E
(
r, t
)
, (3.46)

with the dipole transition operator

µ̂ij = µij V̂
†
ij + µ∗ij V̂ij , where V̂ij = |i〉〈j| , (3.47)

coupling the two states |i〉 and |j〉. The coupling strength is defined by the dipole transition
moment

(SI) µij = −〈i|er|j〉 . (3.48)

In this model, we restrict the radiative coupling to a pairwise coupling of the energy states, which
is sketched in Figure 3.3.

To obtain the equations of motion for both the occupation numbers 〈N̂i〉(t) and dipole transition
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Figure 3.3: Energy level scheme of a material modeled by a 4LS. Level 0 and 1 are optically
coupled to level 2 and 3, respectively, via dipole transitions with transition frequencies ω03,
ω12, and dephasing rates γ03, γ12. Phenomenological non-radiative transition times τij are
introduced between particular states of the 4LS.

moments 〈µ̂ij〉(t), we need to solve the Heisenberg equation of motion [116] for each operator Â:

(SI) d
dtÂ = i

~

[
Ĥ, Â

]
−
, with Ĥ = Ĥel + ĤI . (3.49)

The involved commutators for the number operators are
[
N̂i, N̂j

]
−

= 0 and
[
N̂i, V̂jk

]
−

= δij V̂ik − δikV̂jk . (3.50)

Because of the pairwise coupling, the transition operators V̂ij commute, i.e.,
[
V̂03, V̂12

]
−

=
[
V̂ †03, V̂12

]
−

=
[
V̂03, V̂

†
12

]
−

=
[
V̂ †03, V̂

†
12

]
−

= 0 . (3.51)

Thus, only the commutators
[
V̂ij , V̂

†
ij

]
−

= −
[
V̂ †ij , V̂ij

]
−

= N̂i − N̂j , (3.52)

result in a state population difference for the 0–3 and 1–2 transitions.

The equation of motion for the transition operators is

(SI) d
dt V̂ij = i

~

[
Ĥ, V̂ij

]
−

(3.49)= i
∑

k

ωk

[
N̂k, V̂ij

]
−
− i

~
µij ·E(r, t)

[
V̂ †ij , V̂ij

]
−
. (3.53)
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Applying the commutators from before, we find

(SI) d
dt V̂ij = = i

(
ωi − ωj

)
V̂ij −

i
~

(
N̂j − N̂i

)
µij ·E(r, t) . (3.54)

Thus the hermitian conjugate operator evolves by

(SI) d
dt V̂

†
ij = −i

(
ωi − ωj

)
V̂ †ij + i

~

(
N̂j − N̂i

)
µ∗ij ·E(r, t) . (3.55)

Consequently, the first-order time-derivatives of the dipole operators are

d
dt µ̂ij = µij

d
dt V̂

†
ij + µ∗ij

d
dt V̂ij = i

(
ωj − ωi

) [
µij V̂

†
ij − µ∗ij V̂ij

]
− γ(ij)µ̂ij . (3.56)

Here, we introduce an empirical dephasing with a damping constant γ(ij), which can be derived
from an open quantum system master equation [110] with a coupling to one or several baths,
e.g., the quantized electromagnetic field, or a coupling to surrounding molecules via phonon-
interaction. As this equation does not directly map back to a function of dipole and number
operators, we also consider the derivative of the resulting difference in transition operators, i.e.,

d
dt

[
µij V̂

†
ij − µ∗ij V̂ij

]
= i
(
ωj − ωi

) [
µij V̂

†
ij + µ∗ij V̂ij

]

︸ ︷︷ ︸
=µ̂ij

+2i
~

[
N̂j − N̂i

]
|µij |2eµijeµij ·E(r, t) ,

(3.57)

where eµij is the direction of the transition dipole moment. When we apply the time derivative
twice to the dipole operator, we obtain the equation of motion

d2

dt2 µ̂ij + γ(ij) d
dt µ̂ij +

(
ωj − ωi

)2
µ̂ij = −

2
(
ωj − ωi

)
|µij |2

~

[
N̂j − N̂i

]
eµijeµij ·E(r, t) ,

(3.58)

which only depends on the dipole transition and number operators. Correspondingly, we also
find that the number operators evolve as

(SI) d
dtN̂i = i

~

[
Ĥ, N̂i

]
−

= − i
~
∑

k<l

[
µklV̂

†
kl + µ∗klV̂kl, N̂i

]
−
·E(r, t) ,

(SI) = i
~
∑

k<i

(
µkiV̂

†
ki − µ∗kiV̂ki

)
·E(r, t)− i

~
∑

i<k

(
µikV̂

†
ik − µ∗kiV̂ki

)
·E(r, t) ,

(SI) (3.56)=
∑

k<i

1
~
(
ωi − ωk

)E(r, t) · d
dt µ̂ki −

∑

i<k

1
~
(
ωk − ωi

)E(r, t) · d
dt µ̂ik . (3.59)

The dynamics are then described by classical fields, i.e., the operator expectations values, which
are computed in a time-domain simulation. For the occupation numbers, we use

Ni(t) = 〈N̂i(t)〉 (3.60)
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and introduce both the macroscopic polarization P ij and microscopic polarization pij :

P ij = Ndyepij with pij = 1
4π

∫
dΩµij 〈µ̂ij〉 . (3.61)

Here, we not only take the expectation value for the dipole operator but also perform an angular
averaging of the dipole directions, which are assumed to be isotropic for a sufficiently high
densities Ndye of dipoles, e.g., molecules. Thus, the coupling term of the driving electric field
and for the resulting microscopic polarization in Equation (3.58) turns to

1
4π

∫
dΩµij eµije

T
µij

= 1
31 , (3.62)

which facilitates an isotropic coupling.

Consequently, we obtain a complete set of equations describing the 4LS material model: The
dielectric displacement is given by

D(r, t) = εbg (r)E(r, t) +Ndye
(
p03(r, t) + p12(r, t)

)
, (3.63)

where

∂tp03(r, t) = j03(r, t) and ∂tp12(r, t) = j12(r, t) , (3.64)

are the microscopic polarizations between the respective levels. The corresponding current den-
sities

∂tj03(r, t) = −γ03j03(r, t) + ω2
03p03(r, t)− ζ03(N3(r, t)−N0(r, t))E(r, t) , (3.65a)

and ∂tj12(r, t) = −γ12j12(r, t) + ω2
12p12(r, t)− ζ12(N2(r, t)−N1(r, t))E(r, t) , (3.65b)

are damped harmonic oscillators with transition frequencies ωij := ωj −ωi and are driven by the
E-field, given the occupation differences ∆Nij = Nj −Ni. The level occupations follow the rate
equations

∂tN3(r, t) = −N3(r, t)
[
1−N2(r, t)

]

τ32
− N3(r, t)

[
1−N0(r, t)

]

τ30
+ E(r, t) · j03(r, t)

~ω03
, (3.66a)

∂tN2(r, t) = +
N3(r, t)

[
1−N2(r, t)

]

τ32
− N2(r, t)

[
1−N1(r, t)

]

τ12
+ E(r, t) · j12(r, t)

~ω12
, (3.66b)

∂tN1(r, t) = +
N2(r, t)

[
1−N1(r, t)

]

τ12
− N1(r, t)

[
1−N0(r, t)

]

τ01
− E(r, t) · j12(r, t)

~ω12
, (3.66c)

∂tN0(r, t) = +
N3(r, t)

[
1−N0(r, t)

]

τ03
+
N1(r, t)

[
1−N0(r, t)

]

τ01
− E(r, t) · j03(r, t)

~ω03
, (3.66d)

and are restricted to

N0, N1, N2, N3 ∈ [0, 1] . (3.67)

Additionally, we introduce non-radiative decays between the levels, which can be realized by
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coupling to a Markovian bath, e.g., phonon-coupling or spontaneous emission at much longer
wavelengths than the optically active transitions. We set decay times τij between the states
shown in Figure 3.3 (see also [64]). However, we neglect the actual spontaneous emission into
the electromagnetic field, as it normally occurs at much larger time scales than the lasing, i.e.,
the stimulated emission. Yet, the coupling constants to the electric field in Eqs. (3.65)

(SI) ζij = 1
3

2ωij
~
|µij |2 = 1

3
6πεbgε0c2

0
ω2
ij τ̃ij

, (3.68)

which includes the dipole-strength of the transition, can be expressed in terms of the spontaneous
emission time τ̃ij [84, 117]. Here, the factor 1/3 results from angular averaging over the dipole
directions. Compared to aligned emitters, it reduces the effective coupling of the polarization in
the homogeneous material to the driving electric field.

This material model enables us to simulate active optical materials, like the guest:host material
with Tris(8-hydroxyquinoline)aluminum (Alq3) as matrix and 4-(dicyanomethylene)-2-methyl-6-
[p-(dimethylamino)-styryl]-4H-pyran (DCM) as emitter (Alq3:DCM) material used for a lasing
cavity in Chapter 8. There, the set of material parameters (cf. Fig. 3.3) is obtained from exper-
imentally accessible quantities. The absorption and photoluminescence spectra can provide the
dephasing rates γ03 and γ12, the transition frequencies ω03 and ω12, and the absorption coupling
ζ03. The spontaneous emission sets the radiative coupling strength ζ12 and the non-radiative
decay times τij in principle can be accessed by pump-probe experiments [118]. A more detailed
explanation for the specific parameters is provided in Section 8.2.1.
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CHAPTER 4

Fourier modal method

In this chapter, we present the basic concepts of the Fourier modal method (FMM) [65, 67,
69, 119], also known as rigorous coupled-wave analysis (RCWA). This method is used to solve
Maxwell’s equations in the frequency domain for periodically layered systems, e.g., gratings. In
Section 4.1 we present the basic assumptions of the FMM and introduce the staircase approx-
imation used to transform any feasible setup into a layered grating system. In the following
Section 4.2, we describe how to solve Maxwell’s equations in a single layer using a plane-wave
basis set, which leads to the use of the Fourier transform eponymous for the FMM. This is fol-
lowed by the introduction of the scattering matrix (S-matrix) algorithm in Section 4.3, which
couples the fields in the different layers. It provides the fields for typical scattering setups, which
enables the computation of transmittance, reflectance, and absorbance spectra. We close with
the computation of the S-matrix pole frequencies in Section 4.4. For a given material setup this
determines the resonances [120], also known as quasinormal modes (QNMs) [121, 122] of the
system.

4.1 Scattering setups and staircase approximation

The main purpose to use the FMM in this thesis is to numerically determine the resonances
and scattering spectra of both the hyperbolic metamaterial (HMM) microcavities presented in
Chapter 7.3 as well as the distributed Bragg reflector (DBR) lasing cavities from Chapter 8.
While the first system is effectively one-dimensional with homogeneous layers in two directions,
the second includes a silver stripe grating as was explained in the introduction Section 1.1.

The characterization of these systems requires solving Maxwell’s equations (2.31) in the frequency
domain for effectively two-dimensional systems. Therefore, the presentation of the FMM is
reduced from a general and complete three-dimensional treatment, which can e.g., be found in
Refs. [70, 71, 123]. We not only restrict ourselves to two-dimensional systems but also only
consider diagonal anisotropic material tensors here, i.e.,

ε(ω) =



εxx(ω) 0 0

0 εyy(ω) 0
0 0 εzz(ω)


 and µ(ω) =



µxx(ω) 0 0

0 µyy(ω) 0
0 0 µzz(ω)


 . (4.1)

Modal methods, like the FMM, are particularly well-suited to compute the fields, resonances,
and scattering properties of layered structures. Throughout this thesis, we assume that the main
layer direction points in z-direction.
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4 Fourier modal method

The main idea of a modal method is to compute the electromagnetic field propagation through
such a layered system. Each of the layers can be periodically patterned in the lateral direction,
e.g., like the silver grating embedded in the DBR setup from Chapter 8. Within the modal
method, gratings are approximated by piecewise constant material layers as shown in Fig. 4.1.
This allows obtaining the field propagation in stacking direction by an expansion into single-
layer modes, which propagate as plane waves through each layer and have a distinct lateral field
distribution. These modes are computed using a plane-wave basis in the FMM. Finally, the
fields are expanded into the specific layer’s modes and matched by the field boundary conditions
Eqs. (2.44) to compute the field distributions in the entire computational domain.

IincIinc IreflIrefl

ItransItransx

z

Figure 4.1: Staircase approximation of an effectively two-dimensional grating with smooth
material distribution. Oblique incident light with field intensity Iinc is reflected (Irefl) and
transmitted (Itrans) into different diffraction orders. The material distribution is approxi-
mated by homogeneous layers stacked in z-direction.

As the field propagation in stacking direction is the essential point of the modal method, we cast
the two-dimensional Maxwell’s equations into the form

− i
ω
∂zq(x, z, ω) = L̂(x, z, ω) · q(x, z, ω) , (4.2)

for both transverse electric (TE) and transverse magnetic (TM) polarization. Here, the respective
fields q contain only the transverse field components, i.e.,

qTE(x, z, ω) =
(
Ey(x, z, ω)
Hx(x, z, ω)

)
or qTM(x, z, ω) =

(
Ex(x, z, ω)
Hy(x, z, ω)

)
, (4.3)

for the respective polarizations, into which the two-dimensional Maxwell’s equations split (see
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Scattering setups and staircase approximation 4.1

Section 2.6.1). The matrix operators are given by

L̂TE(x, z, ω) =
(

0 −µxx
−εyy − ∂x

ω
1
µzz

∂x
ω 0

)
(4.4a)

and L̂TM(x, z, ω) =
(

0 µyy + ∂x
ω

1
εzz

∂x
ω

εxx 0

)
, (4.4b)

respectively, and depend on the lateral x-derivates as well as the spatially and frequency-
dependent material tensors. Note, that the field components aligned to the stacking direction,
i.e., the z-components are completely determined by

Hz(x, z, ω) = ∂xEy(x, z, ω)
iωµzz(x, z, ω) and Ez(x, z, ω) = −∂xHy(x, z, ω)

iωεzz(x, z, ω) , (4.5)

for TE and TM polarization, respectively.

The goal of the modal method is to compute the field propagation, for which Eq. (4.2) can be
solved in closed-form provided an initial field distribution

q0(x, ω) = q(x, z = z0, ω) , (4.6)

by solving for the path-ordered matrix exponential [124]

q(x, z = z1, ω) = P̂ exp
[

iω
∫ z1

z0

dz L̂(x, z, ω)
]
· q0(x, ω) . (4.7)

This is highly non-trivial, especially if the underlying material tensors and therefore the matrix
operator L̂ are explicitly z-dependent. Consequently, we decompose the problem by performing
the aforementioned staircase approximation, which is sketched in Fig. 4.1. While there exist
methods, which approximate the z-dependence of the matrix operator L̂ by polynomials using
the Magnus expansion [125, 126, T1], we here use the simplest piecewise approximation. We
introduce N layers, for which the permittivity and permeability are explicitly z-independent. In
the l-th layer, we may then use the decomposition of the matrix operator

L̂
(l)(x, ω) = L̂(x, z = zl, ω) forz ∈ [zl, zl+1 = zl + dl] , (4.8)

to solve the field propagation Eq. (4.2) in a single layer. Assume, we find the eigenmodes q(l)
λ (x, ω)

of this operator, i.e.,

L̂
(l)(x, ω) · q(l)

λ (x, ω) = λ q
(l)
λ (x, ω) , (4.9)

then the path-ordered matrix exponential Eq. (4.7) simplifies to

q
(l)
λ (x, z = zl + dl, ω) = eiωλdlq

(l)
λ (x, z = zl, ω) . (4.10)

Thus, the mode acquires a plane-wave phase when propagating through the layer of thickness dl.
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4 Fourier modal method

Hence, the field propagation inside a single layer can be easily described by a decomposition of the
field into the modes of the respective operator L̂(l). In order to find such a mode decomposition,
we employ a finite plane-wave basis expansion of the modes in lateral x-direction, which in detail
is described in the following section.

4.2 Single layer field propagation

Since the mode propagation through a single layer of materials in the staircase approximation is
simplified to a phase acquisition, we expand the fields in the l-th material layer into these modes
by

q(l) (x, z, ω
)

=
∑

kz

q(l) (x, kz, ω
)

eikzz . (4.11)

Here, every mode is characterized by the angular wavenumber

kz
(4.10)= ωλ , (4.12)

which is directly related to the spectrum of the TE and TM propagation operators introduced
in Eqs. (4.4). Due to their anti-diagonal form, the computation of the eigenmodes and -values is
reduced to a single field component. Here, we choose the out-of-plane field components for both
polarizations. Within the l-th layer, we recover the Helmholtz equation (2.55) for the respective
polarization, i.e.,

TE polarization: k2
z

ω2E
(l)
y (x, kz, ω) =


µ(l)

xxε
(l)
yy + µ(l)

xx

∂x
ω

1
µ

(l)
zz

∂x
ω




︸ ︷︷ ︸
L̂TE

E(l)
y (x, kz, ω) , (4.13a)

TM polarization: k2
z

ω2H
(l)
y (x, kz, ω) =

(
ε(l)xxµ

(l)
yy + ε(l)xx

∂x
ω

1
ε
(l)
zz

∂x
ω

)

︸ ︷︷ ︸
L̂TM

H(l)
y (x, kz, ω) . (4.13b)

The remaining field components are set by

TE polarization: H(l)
x = − kz

ωµ
(l)
xx

E(l)
y , (4.14a)

TM polarization: E(l)
x = kz

ωε
(l)
xx

H(l)
y . (4.14b)

Here, the permittivity ε(l) = ε(l)(x, ω) and permeability µ(l) = µ(l)(x, ω) are explicitly x-
dependent, to facilitate the modeling of gratings. Additionally, we assume the material dis-
tributions to be periodic as we want to compute the reflectance and transmittance spectra for

44



Single layer field propagation 4.2

gratings or supercell gratings in this thesis. Due to the periodicity of the modes, the field
distributions turn into Bloch periodic functions, which is shown in the following section.

4.2.1 Bloch periodic fields

The periodicity in the lateral direction of the material tensors

ε(l) (x+ xshift
)

= ε(l) (x) and µ(l) (x+ xshift
)

= µ(l) (x) (4.15)

shall hold for any shift

xshift = Na with N ∈ Z . (4.16)

Here a is the unit cell period of the considered grating. The invariance under translation has a
direct impact on the fields. Let

T̂xshiftf(x) := f(x+ xshift) (4.17)

be the shift generating translation operator. Then the invariance of the material tensors implies
that the layer mode propagation operator and the lateral shift operator commutate, i.e.,

[
L̂

(l)
, T̂xshift

]

−
= 0 . (4.18)

Hence, both operators share a common set of eigenmodes. According to the Bloch-Floquet
theorem [95, 127], the field eigenvectors are Bloch functions, i.e.,

q
(l)
λ (x) = eiκxq

(l)
κ,λ (x) , (4.19)

where

q
(l)
κ,λ

(
x+ xshift

)
= q

(l)
κ,λ (x) (4.20)

is a grid-periodic function. The corresponding eigenvalues Φκ of the translation operator

T̂xshiftq
(l)
λ (x) = eiκxshiftq

(l)
λ (x) := Φκq

(l)
λ (x) , (4.21)

are the Bloch phases. They are characterized by the Bloch scalar κ (cf. Bloch vector in [95, 127]),
which in the most general case can be a complex-valued number. This means that in general the
fields inside a single layer are a linear combination of several Bloch modes. Thus, the eigenvalue
problem Eq. (4.13) has to be solved for any contributing κ. In Section 4.3.1, we show that for
transmittance and reflectance computations relying on the excitation of an external plane wave
only a single real-valued κ has to be considered, which is directly related to the plane wave’s
transverse k-vector component and therefore to the incident angle. The reduction to Bloch
modes is a significant simplification. The eigenvalues and modes in Eq. (4.13) only need to be
solved for a single unit cell of the grating. To achieve this, we expand the fields into a plane-wave
basis.
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4 Fourier modal method

4.2.2 Plane-wave basis discretization

To compute the eigenmodes within a unit cell with period a in x-direction, we expand all the
fields in the reciprocal lattice using the Fourier transform, i.e.,

q(x) =
∑

G

q̃Gei(G+κ)x =
∞∑

N=−∞
q̃NTN (x) . (4.22)

Within this expansion for a general field component q,

TN (x) = ei
(

2π
a
N+κ

)
x
, (4.23)

are the plane-wave expansion basis functions and G = 2π
a N are the points in the reciprocal lattice

[95, 127]. By adding κ into the exponent the Bloch-Floquet theorem is automatically fulfilled
for every basis function

TN (x+ a) = eiκaTN (x) , (4.24)

and therefore for the entire solution. For the actual numerical computations, we restrict ourselves
to a finite number N of basis functions and only approximate the field expansion. To compute
the expansion coefficients q̃i, we exploit the plane waves’ orthonormality with respect to the inner
product

1
a

∫ a

0
dxT ∗i (x)Tj(x) = δij . (4.25)

The expansion coefficients are given by the inverse Fourier transform

q̃i = q̃(ki) = 1
a

∫ a

0
dx q(x)T ∗i (x) . (4.26)

With the numerical implementation of the modal method, we restrict the basis size to a finite
number of plane waves and perform the underlying Fourier transform with help of the fast Fourier
transform (FFT) [128, 129]. For this, we sample the unit cell [0, a] with an equidistant grid

xk = ∆x k with ∆x = a

NFFT
and k ∈

[
1, NFFT

]
(4.27)

with NFFT grid points. The field coefficients are then approximated by a finite sum

q̃i = 1
a

∫ a

0
dx q(x)T ∗i (x) ≈ 1

NFFT

NFFT∑

k=1
q(xk)e

i 2π
NFFT

ik
. (4.28)

According to the sampling theorem [130, 131] the approximation of the Fourier coefficients in
the discrete FFT is sufficiently good, as long as the full Fourier transformation of the field q(x)
is bandwidth limited. This means that all frequency components beyond the Nyquist frequency
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should vanish, i.e.,

q̃
(
ki
)

= 0 , ∀
∣∣ki
∣∣ > 1

2∆x
. (4.29)

Correspondingly, only the NFFT smallest frequency components q̃i are computed in the discrete
Fourier transform in Eq. (4.28).

Here, a potential problem arises, if the eigenmodes contain a discontinuity in either the field or
its spatial derivative. These discontinuities occur at material interfaces in the x-direction lying
within a unit cell due to the continuity conditions of the normal D- and B-field components,
as introduced in Eqs. (2.43). In this case, the field is not bandwidth limited, which leads to
field oscillations due to the Gibbs phenomenon [132]. In order to avoid such oscillations, the
number NFFT of Fourier components has to be increased significantly. Although this problem
can be circumvented by using a different piecewise basis set, e.g., piecewise polynomials with
a B-spline basis [80, 133, 134, T2], the coupling of the modes at the single-layer interfaces (cf.
Section 4.3) becomes more challenging in that case. As we use the FFT for the discrete Fourier
transform in Eq. (4.28), the numerical effort increases not quadratically with O

(
N2

FFT

)
but

with O
(
NFFT log2NFFT

)
(see [129]). This reduction in computational effort and a simplified

implementation of the method leads us to resort to the FMM, instead of relying on a different
set of basis functions. Despite the larger basis sets a sufficient numerical accuracy can be achieved
by computing all the modes, as long as a high enough number of Fourier components is used.

To numerically determine both the eigenmodes and eigenvalues defined by Eq. (4.13), we need
to discretize the underlying differential operator L̂ for the respective polarization. Given these
eigenvalue equations of the form

λ2q
(l)
κ,λ(x, ω) = k2

z

ω2 q
(l)
κ,λ(x, ω) = L̂TE/ TM q

(l)
κ,λ(x, ω) , (4.30)

we insert the plane-wave expansion of the modes according to Eq. (4.22). If we furthermore
project the mode expansion onto the same basis function set of plane waves, i.e., we perform a
Galerkin choice, we obtain algebraic eigenvalue equations for the field expansion coefficients q̃i,
which read

λ2
∑

i

1
a

∫ a

0
dxT ∗j (x)Ti(x)

︸ ︷︷ ︸
δij

q̃i =
∑

i

1
a

∫ a

0
dxT ∗j (x) L̂TE/ TM Ti(x)

︸ ︷︷ ︸
L̂(TE/ TM)
ij

q̃i , (4.31a)

λ2q̃ = L̂(TE/ TM) · q̃ . (4.31b)

In order to numerically compute the eigenvalues λ, i.e., the propagation constants kz as well as
the Fourier coefficients determining the associated eigenmodes, we need to determine the matrix
elements

L̂(TE/ TM)
ij =

∫ a

0
dxT ∗j (x) L̂TE/ TM Ti(x) . (4.32)
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As the underlying operators L̂TE/TM contain scalar functions as well as derivatives in the coor-
dinate x, we can exploit the completeness relation of the plane-wave basis functions to simplify
the matrix element computation.

Assume, we want to compute the matrix elements

Âij = 1
a

∫ a

0
dxT ∗i (x) Â Tj(x) , (4.33)

of an operator

Â = B̂ Ĉ , (4.34)

which splits into (at least) two single operators B̂ and Ĉ. As the full plane-wave basis fulfills the
completeness relation (see e.g., [83])

δ(x) = 1
a

∞∑

n=−∞
eiknx = 1

a

∞∑

n=−∞
Tn(x) e−iκx with kn = 2π

a
n , (4.35)

we can split the computation of the elements of matrix Â into that of single matrices B̂ and Ĉ.
We insert the completeness relation from Eq. (4.35) and obtain

Âij = 1
a

∫ a

0
dxT ∗i (x)B̂ Ĉ Tj(x) ,

= 1
a

∫ a

0
dxT ∗i (x)B̂x

∫ a

0
δ
(
x− x′

)
eiκ(x−x′)Ĉx′Tj(x) ,

=
∞∑

n=−∞
B̂inĈnj =

(
B̂ · Ĉ

)
ij
. (4.36)

Thus, the operator product in Eq. (4.34) induces the matrix product

Â = B̂ · Ĉ , (4.37)

for the chosen basis. With this operator splitting, we can compute the entire operator matrix
L̂TE/TM of the eigenvalue problem Eq. (4.32) by the computation of only two generic types of
operators.

The first type of operators are scalar functions. For the matrix elements of a scalar kernel ε(x),
e.g., the permittivity entries in Eq. (4.13), we find that

Êij = 1
a

∫ a

0
dxT ∗n(x) ε(x)Tj(x) = 1

a

∫ a

0
dx ε(x) ei 2π

a (j−i)x = Êi−j . (4.38)

Here, we obtain a Toeplitz matrix [129] of the corresponding Fourier transformed function, like
the permittivity ε(x) supposed here. In cases in which two scalar functions with canceling
discontinuities shall be multiplied, there is a sophisticated method to Fourier transform the
inverted function and then additionally multiply it with the inverse Toeplitz matrix. These
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Fourier factorization rules [71, 135] can avoid convergence problems arising from the Gibbs
phenomenon and are used in the FMM implementation of this thesis.

The second type of operators are the spatial derivatives. For these, the matrix in Fourier space
is diagonal, i.e.,

K̂ij = 1
a

∫ a

0
dxT ∗n(x) ∂x Tj(x) = 1

a

∫ a

0
dx
(
kj + κ

)
ei 2π

a (j−i)x =
(
kj + κ

)
δij . (4.39)

With these matrices, we compute the mode propagation matrices and spectral decomposition

L̂(TE) = ˆ̃ey · λ̂
2 · ˆ̃e−1

y and L̂(TM) = ˆ̃hy · λ̂
2 · ˆ̃h

−1
y . (4.40)

Here, the matrices ˆ̃ey and ˆ̃hy contain the respective eigenvectors of Fourier coefficients, which
define the modes. The modes then propagate with

k±z = ±ωλ , (4.41)

in two opposite directions. Consequently, we obtain 2NFFT modes from theNFFT×NFFT matrices
L̂(TE/TM). This means for each Fourier amplitude eigenvectors of the out-of-plane fields, there
exist two kz-values as well as two associated Fourier amplitude vectors for the in-plane field
components. Based on Eqs. (4.14), we can directly compute the associated ˆ̃hx and ˆ̃ex Fourier
amplitudes of the specific modes for the respective polarization. This allows for a complete
expansion of the transverse field components in the l-th material layer, given by

q(l)(x, z, ω) =
NFFT∑

i,j=1
u

(l)
j (z)Ti(x)


ê(l)

x/y,ij

ĥ(l)
y/x,ij


+

NFFT∑

i,j=1
d

(l)
j (z)Ti(x)


 ê(l)

x/y,ij

−ĥ(l)
y/x,ij


 . (4.42)

Besides the plane-wave basis functions Ti and Fourier components ˆ̃eij and ˆ̃hij of the j-th mode
for the respective polarization, we also introduce the z-dependent amplitudes

u
(l)
j (z) = eik(l)

z,j(z−zl)u(l)
j (zl) and d

(l)
j (z) = eik(l)

z,j(zl+1−z)d(l)
j (zl+1) . (4.43)

These amplitudes contain the propagation constant k(l)
z,j of the associated j-th mode and include

the phase propagation in opposite z-directions. Therefore, they are referred to as up- and
downwards propagating amplitudes.

As the k(l)
z,j-values in the most general case are complex-valued, this also includes a damping

or exponential growth of the amplitudes with increasing position z. For a numerically stable
evaluation of the amplitudes in a single layer, it is important to avoid exponential growth. Hence,
the modes are classified according to Fig. 4.2 into upward damped Im(k(l)

z,j) > 0 (white area) and
downward damped Im(k(l)

z,j) < 0 modes. In the case of non-dispersive real-valued permittivity
materials, e.g., vacuum with ε = µ = 1, the modes have either purely real or purely imaginary
kz values. This corresponds to propagating waves or evanescent fields, respectively. To correctly
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classify the modes, we introduce a small tolerance value kz,tol to include the positive real-axis as
upwards-propagating Re(k(l)

z,j) > 0 modes with a positive phase velocity. The opposite holds for
the negative real axis.

For the actual computation of the amplitude phases in Eq. (4.43), it is only necessary to store
one of the two opposite kz-values. Therefore, we only compute the positive branch in Eq. (4.41)
of the square root from the eigenvalues defined in Eqs. (4.30). We exchange the sign of the
resulting kz-values as indicated by the blue arrow in Fig. 4.2 to only store the upward kz-values.
Additionally, we shift the kz-values to slightly damped values if

∣∣kz
∣∣
∞ < kz,tol, which stabilizes

the numerical field evaluation for else spatially constant modes. Note, that for stability reasons,
we also defined the amplitude propagation for the up-amplitudes from the layer’s lower boundary
zl such that they are potentially damped with increasing z-values. For the down-amplitudes, the
reference point lies at the upper boundary zl+1 of the l-th layer and is damped downwards with
increasing z-values.

Re(kz)

Im(kz)

kz,tol

kz,tol

Figure 4.2: Classification of mode propagation constants kz from Eq. (4.41) into upwards
(white area) and downwards (grey area) propagating modes in a single grating layer. Blue
arrows indicate the exchange of incorrectly classified kz-values or the shift to the tolerance
value ikz,tol if they are too close to zero, to stabilize the numerical computations.

Based on the field expansion of a single layer, one can compute the field in the entire layer
structure obtained from the staircase approximation. For this, we need to match the fields of
two adjacent layers on their interface. This relies on the mode matching of the layers, for which it
is convenient to introduce the complete eigenvectors of the 2NFFT modes in a single eigenvector
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matrix for the two polarizations in the l-th layer, i.e.,

TE polarization: Q̂(l) :=


ˆ̃e(l)

y
ˆ̃e(l)
y

ˆ̃h
(l)
x −ˆ̃h

(l)
x


 , (4.44a)

TM polarization: Q̂(l) :=


ˆ̃e(l)

x
ˆ̃e(l)
x

ˆ̃h
(l)
y −ˆ̃h

(l)
y


 . (4.44b)

With this, the field expansion Eq. (4.42) simplifies to

q(l)(x, z, ω) =
NFFT∑

i=1
Ti(x) ei · Q̂

(l) ·
(
u(l)(z)
d(l)(z)

)
. (4.45)

Here, we additionally introduced a vector of all up- and down-amplitudes for all modes in the
layer. Note that all components are implicitly dependent on the frequency ω as well as the Bloch
value κ. Provided this expansion, we discuss the mode matching and field propagation with both
transfer and S-matrices in the following section.

4.3 Transfer and scattering matrix algorithm

We introduce both the transfer and S-matrix algorithms to compute the up- and down-amplitudes
for all layers, as they are required to determine the field in every single layer and therefore
everywhere in the computational domain. The computation of the scattered fields then allows
computing scattering quantities like the transmittance and reflectance spectra, which we discuss
in detail in Section 4.3.1.

Before discussing the more elaborate S-matrix algorithm, we introduce the transfer matrix, which
is simpler to implement and provides the basic ingredients for the S-matrix algorithm. However,
it is in comparison to the S-matrix only conditionally stable in numerical computations [119]. For
both algorithms, we want to determine the amplitude vectors in an N+1 layer system as sketched
in Fig. 4.3. For the computation of reflectance and transmittance spectra the amplitudes in the
lower, 0-th layer and upper, N -th layer, which both have to be understood as infinite half-spaces,
are of main importance. Within the transfer matrix scheme [119] these are related by a matrix
T̂tot. It couples the lower to the upper amplitudes by

(
u(N)(zN )
d(N)(zN )

)
= T̂tot ·

(
u(0)(z0)
d(0)(z0)

)
. (4.46)

This transfer matrix can be decomposed into propagation matrices T̂(l) and mode matching
interface matrices Î(l, l + 1) by simple matrix multiplication, i.e.,

T̂tot = Î(N,N − 1) · T̂(dN−1) · . . . · T̂(dl+1) · Î(l, l + 1) · . . . · T̂(d1) · Î(0, 1) . (4.47)
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layer number

N

N − 1

...

l + 1
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...
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u(l+1)
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⇑
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⇑

⇑

...

⇑

⇑

d(N)
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d(l+1)

d(l)

...

d(1)

d(0)
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⇓
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⇓

...

⇓

⇓
x

z

Figure 4.3: Schematic representation of the layer system and the field amplitudes used in
the S-matrix algorithm. The N − 1 layer structure is contained in two half-spaces with layer
numbers l = 0 and l = N . Each layer contains the up- and down-amplitude vectors u(l) and
d(l) completely determining the electromagnetic field inside each layer.

The propagation matrices couple the amplitudes at the lower and upper boundary of a single
layer l by

(
u(l)(zl + dl)
d(l)(zl + dl)

)
= T̂(l)(dl) ·

(
u(l)(zl)
d(l)(zl)

)
. (4.48)

The entries of this diagonal matrix are determined by the acquired phases of the single-mode
amplitudes according to Eq. (4.43). Given the thickness dl of the l-th layer, the entries are
determined by

T̂(l)
uu,ij = eik(l)

z,idlδij , T̂(l)
dd,ij = e−ik(l)

z,idlδij , and T̂ud = T̂du = 0̂ . (4.49)

Here, the conditional stability of the transfer matrix method becomes evident. For the down-
amplitude entries, the phases turn into an exponential growth with increasing layer thickness dl
as soon as any Im(k(l)

z,i) � d−1
l . This problem is remedied in the S-matrix algorithm, in which

the amplitudes do not propagate into the same but opposite directions.

The second matrix required for both the transfer as well as the S-matrix algorithm is the in-
terface matrix I(l, l + 1). It relates the amplitudes infinitesimally below the interface to that

52



Transfer and scattering matrix algorithm 4.3

infinitesimally above the interface in adjacent layers, i.e.,
(
u(l+1)(zl+1)
d(l+1)(zl+1)

)
= Î(l, l + 1) ·

(
u(l)(zl + dl)
d(l)(zl + dl)

)
. (4.50)

To determine its entries, we require that the tangential field boundary condition at the interface

q(l)(x, zl + dl, ω) != q(l+1)(x, zl+1, ω) , (4.51)

is fulfilled in accordance with Eq. (2.44). The easiest way is to apply the Fourier transform
Eq. (4.28) for both layers and match the Fourier components of the modes in layers l and l+ 1.
With the introduction of the mode’s Fourier coefficient matrices from Eq. (4.44), we find that

Î(l, l + 1) (4.45)=
[
Q̂(l+1)

]−1
· Q̂(l)

. (4.52)

Provided both the propagation matrix T̂(l) and interface matrix Î(l, l+1) for each layer, we can in
principle reconstruct all amplitudes and therefore the electromagnetic fields in the computational
domain.

Besides the potential stability problem of the transfer propagation matrix, the reflectance and
transmission spectra are computed from the scattered field. For these two reasons, we introduce
the S-matrix, which relates the out-going amplitudes determining the scattered field to the in-
going amplitudes. This in detail means that the S-matrix couples the up-amplitudes of the
lowest layer and down-amplitudes of the topmost layer to the up-amplitudes of the topmost and
down-amplitudes of the lowest layer, respectively. Thus, a system’s S-matrix [72] is given by

(
u(N)(zN )
d(0)(z0)

)
= Ŝtot ·

(
u(0)(z0)
d(N)(zN )

)
. (4.53)

Here, the block entries of the S-matrix can be directly related to that of the associated transfer
matrix by

Ŝuu = T̂uu − T̂ud · T̂
−1
dd · T̂du , (4.54a)

Ŝud = T̂ud · T̂
−1
dd , (4.54b)

Ŝdu = −T̂−1
dd · T̂du , (4.54c)

Ŝdu = T̂−1
dd . (4.54d)

Because the total transfer matrix is only conditionally stable, so would be the directly computed
S-matrix. To prevent an unstable S-matrix scheme, one also splits the total system S-matrix into
single sub-matrices both for the propagation and interface mode matching.

The propagation S-matrix couples the in- and out-going amplitudes from the top and bottom of
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a single layer l as
(
u(l)(zl + dl)
d(l)(zl)

)
= Ŝ(l)(dl) ·

(
u(l)(zl)

d(l)(zl + dl)

)
, (4.55)

where the block entries of the matrix are given by

Ŝ(l)
uu,ij = eik(l)

z,idlδij , Ŝ(l)
dd,ij = eik(l)

z,idlδij , and Ŝud = Ŝdu = 0̂ . (4.56)

Because the down-amplitudes propagate downwards from the top boundary of the layer, the
acquired phase switches sign for the Ŝ(l)

dd entries compared to these of the transfer matrix in
Eq. (4.49). Therefore, the S-matrix algorithm becomes unconditionally stable. Any mode am-
plitude that grows exponentially in the transfer matrix is damped here and set to zero as soon
as it falls below the machine accuracy level.

The S-matrix interface matrix is defined similarly to the interface matrix in Eq. (4.50) as
(
u(l+1)(zl+1)
d(l)(zl+1)

)
= Ŝ(l, l + 1) ·

(
u(l)(zl+1)
d(l+1)(zl+1)

)
. (4.57)

As the interface matrix Î(l, l + 1) does not include divergent terms, we transform it into the
entries of its S-matrix pendant using Eqs. (4.54).

The unconditionally stable S-matrix of the system, given by

Ŝtot = Ŝ(0, 1) ∗ Ŝ(d0) ∗ . . . ∗ Ŝ(l, l + 1) ∗ Ŝ(dl+1) ∗ . . . ∗ Ŝ(N − 1, N) , (4.58)

entails the disadvantage of a newly introduced S-matrix product [72]

Ŝ = Ŝ(1) ∗ Ŝ(2)
. (4.59)

This product couples the up- and down-amplitude blocks as

Ŝuu = Ŝ(2)
uu ·

[
1̂− Ŝ(1)

ud · Ŝ
(2)
du

]−1
· Ŝ(1)

uu , (4.60a)

Ŝud = Ŝ(2)
uu ·

[
1̂− Ŝ(1)

ud · Ŝ
(2)
du

]−1
· Ŝ(1)

uu · Ŝ
(2)
dd + Ŝ(2)

ud , (4.60b)

Ŝdu = Ŝ(1)
du + Ŝ(1)

dd · Ŝ
(2)
du ·

[
1̂− Ŝ(1)

ud · Ŝ
(2)
du

]−1
· Ŝ(1)

uu , (4.60c)

Ŝdd = Ŝ(1)
dd ·

[
Ŝ(2)
du ·

[
1̂− Ŝ(1)

ud · Ŝ
(2)
du

]−1
· Ŝ(1)

uu + 1̂
]
· Ŝ(2)

dd . (4.60d)

In contrast to the simple matrix product for the transfer matrix in Eq. (4.47) it involves the

block matrix inverse
[
1̂− Ŝ(1)

ud · Ŝ
(2)
du

]−1
, which needs to be computed for every consecutive S-
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matrix product for the total system S-matrix in Eq. (4.58). Especially for the computation of the
interface matrices Ŝ(l, l + 1), this involves both the S-matrix product as well as the conversion
between the transfer matrix from Eq. (4.52) to the S-matrix using Eq. (4.54). As this overall
requires two numerically expensive matrix inversions, one defines a third product

Ŝ′ = Ŝ� T̂ ⇔ Ŝ′ = Ŝ ∗ Ŝ(2)(T̂) . (4.61)

It completes the transfer matrix conversion and S-matrix product in a single step using only one
instead of two inversions, such that the resulting S-matrix blocks are given by

Ŝ′uu = T̂uu · Ŝuu −
(
T̂uu · Ŝud + T̂ud

)
·
(
T̂dd + T̂du · Ŝud

)−1
· T̂du · Ŝuu , (4.62a)

Ŝ′ud =
(
T̂uu · Ŝud + T̂ud

)
·
(
T̂dd + T̂du · Ŝud

)−1
, (4.62b)

Ŝ′du = Ŝdu − Ŝdd ·
(
T̂dd + T̂du · Ŝud

)−1
· T̂du · Ŝuu , (4.62c)

Ŝ′dd = Ŝdd ·
(
T̂dd + T̂du · Ŝud

)−1
. (4.62d)

A full derivation can be, e.g., found in [80]. Provided the full system S-matrix and the single steps
on how to compute it, we can apply the S-matrix algorithm to different problems. We start with
the computation of transmittance and reflectance spectra, which is followed by the reconstruction
scheme to compute the complete fields inside a grating structure. Finally, the system’s resonances
defined both by the geometry and used materials are analyzed by the computation of the S-matrix
poles.

4.3.1 Transmittance and reflectance spectra

First, we discuss how to compute the reflectance and transmittance spectra of a layered (grating)
structure for excitation with an oblique incident plane wave, which is used both for the HMM
setup in Chapter 7 as well as the DBR microcavities in Chapter 8. As explained in Section 2.8.3
the reflectance and transmittance spectra require to compute the transmitted and reflected power
from the scattered field Poynting vector. To determine the underlying scattered fields, we employ
the S-matrix algorithm to obtain the out-going amplitudes from the in-going amplitudes of the
exciting plane wave, given by

E
(0)
inc(x, z, ω) = E0(ω)eik·r with k =

(
kx, 0, kz

)T and kz > 0 . (4.63)

Here, we consider the incident field being inside the lower half-plane, which for the scattering
setups is assumed to be air with ε = µ = 1. Setting the associated incident H-field as

H
(0)
inc(x, z, ω) = 1

ω
k ×E0(ω)eik·r , (4.64)
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the plane wave propagates upwards to the layered system. The incident angle θ is defined by the
k-vector, such that

kx = ω sin θ . (4.65)

To apply the S-matrix algorithm, we need to compute the input amplitudes for the incident field.
For this, we can first split the field into both TE and TM polarization contributions and then
apply the Fourier transform of the incident field like in Eq. (4.28) to obtain the corresponding
Fourier components at the fixed position z0 = 0, such that

Ex/y,inc(ki, z = 0, ω) = Ẽx/y,inc,i
!=
∑

j

u
(0)
j eik(0)

z,jz︸ ︷︷ ︸
z=0= 1

ˆ̃e(0)
x/y,ij . (4.66)

Here, we choose κ = kx for the Bloch phase implicitly contained in the plane-wave basis Ti(x).
Due to the continuity of the fields over all system layers, the Bloch phase is the same in each layer.
The incident field’s up-amplitudes are then computed by inversion of the mode eigenvectors ˆ̃e,
such that

u(0) =
[
ˆ̃e(0)]−1

· Ẽinc . (4.67)

As we assume that no field impinges from above into the layered system, the corresponding
down-amplitudes of the N -th layer are

d(N) = 0 . (4.68)

Given all the in-going amplitudes, we apply the S-matrix algorithm as described before to com-
pute the out-going amplitudes u(N) and d(0). Here, the first describes the transmitted, while
the latter describes the reflected field. The fields can be obtained in the corresponding upper or
lower half-space by the respective field expansion according to Eq. (4.42).

With the incident and the two scattered fields, we can compute the time-averaged Poynting
vector. For the respective incident, transmitted and reflected power as e.g., in Eq. (2.102), we
integrate over boundary surfaces parallel to the layers both on top and at the bottom of the
structure (cf. Fig. 2.4). As the corresponding face-normal vectors point in z-direction, we only
require the z-component of the time-averaged Poynting vector, i.e.,

Pinc/scat

(
z0/N , ω

)
=
∫ a

0
dx
〈
Sz,inc/scat

〉
τ

(
z0/N , ω

)
, (4.69)

= 1
2

∫ a

0
dx Re

[
Ex(x, z0/N , ω)H∗y (x, z0/N , ω)− Ey(x, z0/N , ω)H∗x(x, z0/N , ω)

]
.

We insert the field expansion Eq. (4.45), which results in the following incident, transmitted and
reflected powers

Pinc,TE(ω) = −a2Re
[
u(0)∗ · ˆ̃h

(0)†
x · ˆ̃e(0)

y · u(0)

]
, (4.70a)
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Pinc,TM(ω) = a

2Re
[
u(0)∗ · ˆ̃e(0)†

x · ˆ̃h
(0)
y · u(0)

]
, (4.70b)

Prefl,TE(ω) = a

2Re
[
d(0)∗ · ˆ̃h

(0)†
x · ˆ̃e(0)

y · d(0)

]
, (4.70c)

Prefl,TM(ω) = −a2Re
[
d(0)∗ · ˆ̃e(0)†

x · ˆ̃h
(0)
y · d(0)

]
, (4.70d)

Ptrans,TE(ω) = −a2Re
[
u(N)∗ · ˆ̃h

(N)†
x · ˆ̃e(N)

y · u(N)

]
, (4.70e)

Ptrans,TM(ω) = a

2Re
[
u(N)∗ · ˆ̃e(N)†

x · ˆ̃h
(N)
y · u(N)

]
, (4.70f)

for the two respective polarizations. Note, that the integration along the unit cell reduces the
problem to the amplitudes and mode eigenvectors ˆ̃ex,y and ˆ̃hy,x of the respective layers.

Given the power values, we can directly compute both the reflectance and transmittance spectra
as outlined in Section 2.8.3 by

R(ω) = Prefl(ω)
Pinc(ω) and T (ω) = Ptrans(ω)

Pinc(ω) . (4.71)

Finally, the absorbance spectra are computed by

A(ω) = 1−R(ω)− T (ω) . (4.72)

With the computation of the spectra, we are able to analyze the layered system’s resonances as
they cause peaks in the spectra. To gain a deeper insight, we also want to examine the field
distributions inside the investigated cavities, especially for resonance frequencies. Therefore, we
explain how to obtain these fields in every layer.

4.3.2 Field reconstruction

To determine the fields throughout the layered system, we need to evaluate the field expansion
Eq. (4.42) for every query point (x, z). Here, the z-coordinate determines the layer number l.
For this evaluation of the field distribution, we require both the up- and down-amplitudes in the
specific layer.

For the computation of the scattering spectra, we have so far only discussed how to obtain the
amplitudes in the lowest and top-most layer. To obtain all other amplitudes, we can apply the
S-matrix algorithm recursively, as sketched in Fig. 4.4. In this three-step process, we reduce
the effective structure for the S-matrix evaluation one layer after the other. In each iteration of
the recursion algorithm, we determine the amplitudes in the lowest layer and restart with the
amplitude computation in the layer above. To guarantee a stable field evaluation, we require
the up-amplitudes to be at the bottom and the down-amplitudes to be at the top of each single
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layer l. These are propagated by multiplying the phase-difference to reach the query position z
according to Eq. (4.43).

layer number

N

N − 1

N − 2

...

1

0

3. Î(0, 1)

2. Ŝ(0, N)

2. Ŝ(0, N)

1. eik(0)
z,jd0

u
(0)
j

d
(0)
j

u
(1)
j

d
(N)
j

r⊥

z

Figure 4.4: Recursive three-step process to determine all amplitude vectors u and d inside
all layers. Initially, the outer in-going amplitudes are provided. First, the lower up-
amplitudes are propagated. Second, the down-amplitudes in the lower layer are computed
by the S-matrix. Third, the up-amplitudes in the layer above are computed with the help
of the interface matrix Î. Then the process is repeated.

The three-step recursion works as follows. Initially, we assume that the up- and down-amplitudes
of the outermost layers are known, e.g., by the incident field defined in Eq. (4.66). In the first step,
we propagate the up-amplitudes of the lowest layer by multiplying it with the phases of the single
modes according to Eq. (4.43). As these up-amplitudes are only propagated upwards numerical
stability is guaranteed. In the second step, we compute the complete S-matrix as in Eq. (4.58)
between the outermost layers and then apply it to determine the down-amplitudes d(0) at the top
boundary of the lowest layer. In the third and final step, we apply the interface transfer matrix
Î(0, 1) to determine the up-amplitudes u(1) at the layer above. Thus, we have determined both
the up- and down-amplitudes in the bottom layer and restored the initial assumption in which
the first layer now replaces the zeroth one. This recursion is then applied until all amplitudes
and therefore all fields are determined.
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4.4 Resonances and quasi-normal modes

The reflectance and transmittance spectra allow for a general characterization of the resonances
supported in a given cavity, which cause peaks in the spectra [122]. Moreover, one can investigate
the field distributions at the excitation frequency, which corresponds to that of the excited QNM
if the peak is narrow enough. In the case of the degeneracy of the QNMs the field distribution
is a superposition.

A full analysis of the QNMs requires solving Maxwell’s equations in frequency domain with
radiation conditions [136–138]. Within the S-matrix algorithm, this is equivalent to computing
the complex resonance frequencies of the S-matrix [120–122]. As it couples in-going to out-going
amplitudes as

Aout = Ŝ(ω) ·Ain , (4.73)

and at a resonance frequency ω̃ ∈ C the S-matrix has a pole, i.e.,

lim
ω→ω̃

Ŝ(ω)→∞ , (4.74)

the out-going kernel vectors Aout(ω̃) defined by

Ŝ−1(ω̃) ·Aout(ω̃) = 0 , (4.75)

determine the QNM field distributions of the cavity. There are no in-going amplitudes at the
resonance frequency and as the amplitudes Aout(ω̃) 6= 0 lie in the kernel of the inverse S-matrix
the radiation conditions are automatically fulfilled.

The computation of the QNMs requires the analytic continuation of the S-matrix in the frequency
domain. Hence, also the material tensors ε(ω) and µ need to be continued to the complex
frequency plane. To this end, we use the material models from Chapter 3 which are fitted to
experimentally obtained permittivities and can be easily evaluated at any complex frequency.
Although the criterion

det Ŝ−1 (ω̃) = 0 , (4.76)

is sufficient to find the QNM resonance frequencies, we discuss the example of surface plasmon
polaritons (SPPs) in the following section, for which the S-matrix has a pole but its determinant
is one. Instead of the determinant, we compute the full singular value decomposition of the
S-matrix [129], i.e.,

Ŝ(ω) = Û(ω) · Σ̂(ω) · V̂†(ω) . (4.77)

Here, the matrix Σ̂ is diagonal

Σ̂(ω) = diag
(
σ1(ω), . . . , σN (ω)

)
, (4.78)

and contains the singular values σi(ω) of the S-matrix. As several singular values can diverge at
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the same resonance frequency ω̃ also the QNMs can be degenerate. To numerically determine
the poles of the S-matrix, we have to compute

lim
ω→ω̃

[
max
∀i

σi(ω)
]−1

︸ ︷︷ ︸
:=σ̄−1(ω)

= 0 with ω̃ ∈ C . (4.79)

As the singular values are strictly positive in the standard singular value decomposition algorithm
[129], we replace the search for roots to that of the minimization of the logarithm

min
ω∈Ω⊂C

log10 σ̄
−1(ω) , (4.80)

in a predefined region Ω of the complex frequency plane. In the numerical minimization one
sets a tolerance value, for which we assume to have found a numerically approximated resonance
frequency ω̃num once it is undershot.

The reconstruction of the QNM field distributions requires the out-going amplitudes implicitly
defined in Eq. (4.75). Given the singular value decomposition of Ŝ in Eq. (4.77), the singular
value decomposition of the required inverse is

Ŝ−1 = V̂ · Σ̂−1 · Û† . (4.81)

Therefore, the entries of Aout(ω̃num) are defined by the j-th row of the hermitian matrix Û for
each inverse singular value σj in Σ̂−1 tending towards zero, i.e.,

Ai,out(ω̃num) = Ûij for σ−1(ω̃num) ≈ 0 . (4.82)

If the resonance frequency would be perfectly matched, one could use the field reconstruction
from the previous Section 4.3.2 to directly determine the fields. However, the frequency is only
approximated in the numerical minimization, which leads to residual in-going amplitudes

Ain(ω̃num) = Ŝ−1(ω̃num) · Âout(ω̃num) = V̂(ω̃num) · Σ̂−1(ω̃num) · Û†(ω̃num) · Âout(ω̃num) , (4.83)

which we here use to reconstruct the QNM fields. Both the computation of the resonance fre-
quencies and QNM field distributions are of particular interest in Section 7.3 about the HMM
cavities, for which we determine the mode structure despite relatively weak peaks in the re-
flectance spectra.

4.4.1 Surface plasmon polariton dispersion

We close this chapter, with a short, yet important example for the computation of resonances in
layered systems. For this, we consider a single dielectric-metal interface and show that SPPs [1,
84] emerge from the pole spectrum of the associated S-matrix. As we assume a planar, infinitely
extended interface between two isotropic dielectrics ε(0) and ε(1), the system is effectively one-
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dimensional. Therefore, the fields are of the form

E(r, t) = eikxxE(z, ω) and H(r, t) = eikxxH(z, ω) . (4.84)

Here, we introduce the Bloch-phase with the angular wavenumber kx, which without loss of
generality points in the x-direction. Therefore, all derivatives in lateral direction take the form

∂xq(x, z, ω) = ikxq(x, z, ω) . (4.85)

In order to compute the S-matrix, we need to solve the field propagation problem Eq. (4.2) for
both TE and TM polarization. As the fields are only x-dependent in the Bloch phase, the matrix
operators L̂ from Eq. (4.4) simplify to the matrices

L̂TE(ω) =


 0 ω − k2

x
ωε(ω)

ωε(ω) 0


 , (4.86a)

L̂TM(ω) =


 0 ω − k2

x
ωε(ω)

ωε(ω) 0


 . (4.86b)

With these matrices, we solve the eigenvalue problem Eq. (4.9) to determine the angular propa-
gation wavenumbers kz as well as the field expansion matrices Q̂ defined in Eqs. (4.44) in both
half-spaces. For both polarizations, we find

kz = ±
√
ω2 ε(ω)− k2

x , (4.87)

which is equivalent to the standard dispersion relation Eq. (3.32) of a plane wave in an isotropic
dielectric. Here, we explicitly restrict the square root to its positive branch. The associated
eigenmodes are set by the field expansion coefficient matrices

Q̂TE =
(

ω
kz
− ω
kz

1 1

)
and Q̂TM =

(
1 1

ωε(ω)
kz

−ωε(ω)
kz

)
. (4.88)

With the help of these matrices, we can directly compute the interface mode matching matrix
between the two layers according to Eq. (4.52). For both polarizations, the interface matrix takes
the form

Î(0, 1) = 1
2

(
1 + a 1− a
1− a 1 + a

)
, (4.89)

with the entries

aTE =
√
ω2ε(1)(ω)− k2

x√
ω2ε(0)(ω)− k2

x

and aTM = ε(0)(ω)
ε(1)(ω)

√
ω2ε(1)(ω)− k2

x√
ω2ε(0)(ω)− k2

x

. (4.90)
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To compute the resonances, we calculate the S-matrix according to Eq. (4.54), which results in

Ŝ(0, 1) =
(

2a
1+a

1−a
1+a

a−1
1+a

2
1+a

)
, (4.91)

with the same coefficients a from the interface matrix. It is obvious, that the S-matrix has a
pole for

a→ ã = −1 . (4.92)

However, we note that the determinant

det Ŝ(0, 1) = 4a+ (1− a)2

(1 + a)2 = (1 + a)2

(1 + a)2 = 1 . (4.93)

Hence, in this particular case, the larger singular value σ1 of the S-matrix diverges, while the
second singular value σ2 tends to zero, such that

lim
a→−1

det Ŝ(0, 1) = lim
a→−1

σ1σ2 = 1 . (4.94)

Therefore, the numerical search of resonances should always rely on the singular value decom-
position, despite the higher numerical effort compared to simply calculating the determinant.

The resonance condition

ãTE = −1 !=
√
ω2ε(1)(ω)− k2

x√
ω2ε(0)(ω)− k2

x

, (4.95)

cannot be fulfilled in TE polarization, as we are explicitly restricted to the positive branch of
the square root. In contrast, the resonance condition in TM polarization

ãTM = −1 != ε(0)(ω)
ε(1)(ω)

√
ω2ε(1)(ω)− k2

x√
ω2ε(0)(ω)− k2

x

, (4.96)

can be matched, if the two layer permittivities have a different sign. This is the case for interfaces
between dielectrics and metals as considered here, where we find resonances corresponding to
the SPPs with the dispersion relation

kx = ±ω
√

ε(0)(ω)ε(1)(ω)
ε(0)(ω) + ε(1)(ω)

, (4.97)

along the interface.

Fig. 4.5 shows this dispersion relation for an interface between vacuum ε(0) = 1 and a Drude
model describing the metal. Here, we use the permittivity introduced in the material model
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Figure 4.5: SPP dispersion relation Eq. (4.97) for a vacuum and Drude-metal interface.
Solid lines mark the dispersion Re(kx) and dissipation Im(kx) for a Drude metal without
damping γ = 0 and plasma frequency ωpl. Dashed lines show the dispersion for a typical
damping of γ = 0.1ωpl. Both the light-line as well as the surface plasmon frequency ωsp are
marked with grey lines.

Section 3.2 given as

ε(1)(ω) = 1−
ω2

pl
ω(ω + iγ) , (4.98)

such that the dispersion relation reduces to

kx = ω

√√√√√
1− ω2

pl
ω(ω+iγ)

2− ω2
pl

ω(ω+iγ)

. (4.99)

As the Drude permittivity changes to a positive sign for frequencies ω > ωpl, the resonance
condition Eq. (4.96) holds for frequencies below the plasma frequency ωpl. Correspondingly, the
dispersion relation only applies to SPPs bound and traveling along the surface with frequencies
ω < ωpl. While the dispersion curve Re(kx) follows the light line for very small frequencies,
the SPP dispersion approaches the surface plasmon frequency ωsp with increasing Re(kx). The
surface plasmon frequency can be calculated from the damping-free (γ → 0) dispersion

kx = ω

√√√√√1− ω2
pl
ω2

2− ω2
pl
ω2

= ω

√√√√ ω2 − ω2
pl

2ω2 − ω2
pl
, (4.100)
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4 Fourier modal method

for which kx →∞ as

ω → ωsp = ωpl√
2
. (4.101)

If the frequency is increased beyond the surface plasmon frequency ωsp the SPP modes feature
very high losses and the propagation along the surface is strongly inhibited. As the dispersion
Re(kx) for propagating SPPs lies below the light line, the SPP modes cannot be excited by a
plane wave impinging from the far-field onto the metal surface.

We discuss different SPP excitations for various geometries in Chapter 6 for localized SPPs on
Drude metal spheres as well as propagating SPP modes on the freestanding perforated gold films
and the mode mapping using electron energy loss spectroscopy (EELS) computations. While in
Chapter 7 we use the coupling of several SPP modes between the single metal layers forming
the investigated HMM cavities, in Chapter 8 the SPPs are used in the metal grating DBR lasing
cavities to tailor the lasing modes and reach high confinement of light.
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CHAPTER 5

Discontinuous Galerkin time-domain method

After the discussion on how to numerically solve Maxwell’s equations in frequency domain in
the preceding Chapter 4, we here present a numerical method, which works in the time domain.
This method is the discontinuous Galerkin time-domain (DGTD) method. While the latter two
words obviously point out, that we solve the equations of motion in time domain, the first words
indicate which kind of basis functions and weight functions are used to discretize the fields in the
spatial dimensions. In the Fourier modal method (FMM) (cf. Chapter 4), we essentially used a
piecewise plane-wave basis expansion for the fields. Here, we use a polynomial basis defined on a
finite-element mesh (see Section 5.2). Using this finite-element mesh has an advantage over the
commonly used finite difference time domain (FDTD) method [63], which relies on a regular grid
for field discretization. The latter makes it more difficult to approximate or sufficiently resolve
curved surfaces. Yet, this advantage of the DGTD raises the problem of how to couple the
neighboring elements. This is achieved using the so-called numerical flux, which is discussed in
Section 5.3. The numerical flux allows for the implementation of both, boundary conditions (BCs)
as well as the introduction of field sources (see Section 5.4). Both FDTD and DGTD methods
have in common how to handle dispersive material models, which is shown in Section 5.5 about
auxiliary differential equations (ADEs). Last but not least, we discuss in Section 5.6 how these
time-domain methods accomplish simulating quasi-infinite space using perfectly matched layers
(PMLs). These absorb out-going waves while not reflecting them at the interface to the physical
domain.

5.1 Maxwell’s equations in conservation form

While the aforementioned FDTD method uses the Yee-grid [63, 139], the DGTD method [73,
74] uses a finite element mesh. As the first step of the method, only the spatial discretization
of the fields on the single elements is considered. Only then the elements are coupled via their
interfaces in a second step using an approximation for the flux of the field. Hence, to apply the
DGTD method, it requires the equations of motion to be in a conservation law form, i.e.,

Q · ∂
∂t
q(r, t) + ∇ · F

(
q(r, t)

)
= S(q(r, t), r, t) . (5.1)

A closer inspection of Maxwell’s equations (2.1) for non-dispersive materials shows that one can
cast them into this form [73–77] using

Q =
(
ε (r) 0

0 µ (r)

)
, (5.2a)
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5 Discontinuous Galerkin time-domain method

q(r, t) =
(
E(r, t)
H(r, t)

)
, (5.2b)

ei · F
(
q(r, t)

)
=
(
−ei ×H(r, t)
ei ×E(r, t)

)
(5.2c)

and S(q(r, t), r, t) =
(
−jf(r, t)

0

)
. (5.2d)

To handle dispersive material models (cf. Chapter 3), we expand the field vector q with auxiliary
fields (see Section 5.5), which then couple back either over the flux F or source term S, e.g., via
a polarization current, into the E- and H-field components. Despite the field vector extension,
the discretization scheme does not change. Thus, we present it for the basic Maxwell’s equations
first.

5.2 Discretization and local solutions

For all numerical computations, the electromagnetic fields are captured in a finite volume, the
computational domain. It contains all the essential physical features, i.e., regions containing dif-
ferent materials. This domain is decomposed into a tessellation of different sized and potentially
different shaped elements. It forms a mesh. Within this thesis, only two-dimensional triangular
and three-dimensional tetrahedral meshes are considered. As mesh generation is a research area
on its own, we here rely on open-source software. We use both gmsh [140] and Netgen [141] for
the mesh generation, in which you can use constructive solid geometry to define different regions
and contours to be meshed. Fig. 5.1 shows examples for both a two- and three-dimensional
mesh, including a cylindrical or spherical scatterer contained in a finite volume, respectively.
Furthermore, this volume is subdivided by contours and regions to apply both field sources and
BCs.

First, we consider the solution of Maxwell’s equations (5.1) on a single element ∆k. We assume
that the fields can be approximated numerically by expansion into a set of basis functions Ψi:

q
(
r, t
)
≈ qN

(
r, t
)

=
∑

i

q̃
(k)
i (t) Ψi (r) for r ∈ ∆k . (5.3)

To solve Maxwell’s equations (5.1) one then requires that the residual term

Q · ∂
∂t
qN (r, t) + ∇ · F

(
qN (r, t)

)
− S(r, t) = res

(
r, t
)

(5.4)

is orthogonal to a given set of test-functions Φj , i.e.,

∫

∆k

ddrΦj (r) ·
[
Q · ∂

∂t
qN (r, t) + ∇ · F

(
qN (r, t)

)
− S(r, t)

]
=
∫

∆k

ddrΦj (r) · res
(
r, t
) != 0 .

(5.5)
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x
y

scatterer

Tf region

Sf region

PMLs

Tf/Sf-contour

domain boundary y
x

z

(a) (b)

Figure 5.1: Example meshes of a (a) two-dimensional cylindrical and (b) three-dimensional
spherical scatterer contained in a box volume. The surrounding volume is subdivided into
scattered field (Sf) and total field (Tf) regions and includes PMLs as the outer boundary
layer.

Within a Galerkin method, the test functions are chosen to agree with the basis functions Φi =
Ψi. Inserting the field expansion Eq. (5.3), we obtain a set of ordinary differential equations
(ODEs) for the time-dependent field expansion coefficients q̃(k)(t). For the i-th coefficient, the
ODE reads

∂tq̃
(k)
i (t) =−

6N∑

j=1

∫

∆k

ddrΨi ·Q−1 ·
[
∇ · F

(
q̃(k)(t), r, t

)]
·Ψj q̃

(k)
j (t)

+
∫

∆k

ddrΨi(r) ·Q−1 · S(r, t) . (5.6)

Here, we assume the material tensor Q to be spatially constant on each element. The resulting
set of ODEs is numerically solved by using a Runge-Kutta method [129] for numerical integration.
More precisely, for all DGTD computations carried out in this thesis, we use an implementation
of a fourth-order 14-stage low-storage Runge-Kutta solver [142]. The default initial condition for
the electromagnetic field is q̃(k)(t = 0) = 0. It ensures that Maxwell’s divergence equations (2.1a)
and (2.1b) are fulfilled at the beginning and therefore throughout the entire field simulation (s.
Section 2.4). Nevertheless, we still need to address how to couple the individual elements across
their common boundary and, most importantly, the choice of basis functions used for this spatial
discretization.
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5 Discontinuous Galerkin time-domain method

5.2.1 Lagrange polynomial basis

Within the DGTD implementation, we choose a set of N Lagrange polynomial basis functions
Li(r) for each of the six field components. Hence, the basis functions Ψ are of the form

Ψi∈[1,N] =




Li(r)
0
0
0
0
0



,Ψi∈[N+1,2N] =




0
Li−N (r)

0
0
0
0



,Ψi∈[2N+1,3N] =




0
0

Li−2N (r)
0
0
0



, . . . (5.7)

and span a 6N -dimensional polynomial vector space

V ∆k
Ψ = span

{
Ψi

(
r ∈ ∆k

)
: i ∈

{
1, 6N

}}
(5.8)

on each element ∆k. The Lagrange polynomials themselves are determined by a set of interpo-
lation points within the element ∆k by their defining condition

Li(rj) = δij . (5.9)

This gives rise to a nodal scheme, in which the field expansion coefficients q̃(k)
i take the same

value as the field at the corresponding interpolation point ri on the element. The contrary would
be a modal scheme, for which only the entire sum of expansion coefficients weighted by the basis
functions return the corresponding field values.

On one-dimensional elements, i.e., line segments, the Lagrange polynomials of order p are defined
by a set of distinct interpolation points

{
xi, i = [0, p]

}
with

Lj (x) =
p∏

i=0
i 6=j

x− xi
xj − xi

. (5.10)

However, there is no easy definition on higher dimensional elements. Hence, one uses a different
polynomial basis

{
ψi, i = [1, N ]

}
, which would give rise to a modal scheme and then transforms

it into the Lagrange polynomial basis. The transformation

Li (r) =
N∑

j=1

(
V̂T
)−1

ij

ψj (r) (5.11)

is defined by the inverse of the transformation matrix V̂, a generalized Vandermonde matrix
[73], with elements

V̂ij = ψj (ri) . (5.12)

Here, ri are the interpolation points defining the set of Lagrange polynomials. As this definition
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Figure 5.2: (a) Barycentric coordinates λ defined on a triangle. Orange dots mark the
position of fourth-order Lagrange polynomial warp & blend nodes. (b,c,e,f) Examples for
different fourth-order Lagrange polynomials defined by the node set. Each polynomial is 1
at one and 0 at all other nodes. (d) Lebesgue constant Λ(λ) (s. Eq. (5.25)) for the given
node set.

involves the inverse of the Vandermonde matrix the natural choice for {ψi} as monomials up to
order p [75], i.e.,

ψ2D
i (r) = xkiyli with 0 ≤ ki + li ≤ p , i ∈

[
1, N = (p+ 1)(p+ 2)

2

]
, (5.13)

ψ3D
i (r) = xkiylizmi with 0 ≤ ki + li +mi ≤ p , i ∈

[
1, N = (p+ 1)(p+ 2)(p+ 3)

6

]
, (5.14)

is unsuitable. For high polynomial orders p, the Vandermonde matrix becomes more and more ill-
conditioned, as its condition number grows exponentially [143]. Instead of a monomial basis, a set
of orthogonal polynomials on triangles and tetrahedra, the Koornwinder-Dubiner polynomials
[144, 145] are used. To define the polynomials for each element, we introduce a coordinate
transformation

r̄ = Â · (r − r0) (5.15)

onto a reference triangle or tetrahedron. Both in two and three dimensions the element ∆k can
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5 Discontinuous Galerkin time-domain method

be mapped onto a reference element with corner vertices

r̄0 =
(

0
0

)
, r̄1 =

(
1
0

)
and r̄2 =

(
0
1

)
, (5.16)

for the triangle and

r̄0 =




0
0
0


 , r̄1 =




1
0
0


 , r̄2 =




0
1
0


 and r̄3 =




0
0
1


 , (5.17)

for the tetrahedron. Correspondingly, the transformation matrices in two and three dimensions
read

Â =
(
r1 − r0, r2 − r0

)−1 and Â =
(
r1 − r0, r2 − r0, r3 − r0

)−1
. (5.18)

Furthermore, we introduce the barycentric coordinates λ on the reference element. Given the
dimension D of the simplex, one defines

r =
D∑

i=0
λiri , with the normalization

D∑

i=0
λi = 1 , (5.19)

where ri are the corner vertices of the triangle (see e.g., Fig. 5.2 (a)) or tetrahedron. Here, the
barycentric coordinates vary between zero and one within the simplex. The corner ri is reached
when λi = 1 and the opposite face (line or triangle) is reached by λi = 0.

The aforementioned Koornwinder-Dubiner polynomials [144, 145] are defined with respect to
these barycentric coordinates

ψ2D
kl (r) = 1√

(2l + 1)(2l + 2k + 2)
P

(0,0)
l

(
2λ1

1− λ0
− 1
)
(
1− λ0

)l
P

(2l+1,0)
k

(
2λ0 − 1

)
, (5.20)

ψ3D
kln (r) = 1√

(2n+ 1)(2n+ 2l + 2)(2k + 2n+ 2l + 3)
P (0,0)
n

(
2 λ2

1− λ0 − λ1
− 1
)(

1− λ0 − λ1
1− λ0

)n

· P (2n+1,0)
l

(
2 λ1

1− λ0
− 1
)
(
1− λ0

)n+l
P

(2n+2l+2,0)
k

(
2λ0 − 1

)
. (5.21)

As the polynomials incorporate the Jacobi polynomials [146], which are orthogonal with respect
to the inner product
∫ 1

−1
dx (1− x)α(1 + x)βP (α,β)

n P (α,β)
m = 2α+β+1

2n+ α+ β + 1
Γ (n+ α+ 1) Γ

(
n+ β + 1

)

Γ
(
n+ α+ β + 1

)
Γ (n+ 1)

δnm , (5.22)
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the Koornwinder-Dubiner polynomials are orthonormal with respect to the products
∫

∆
d2r ψ2D

kl (r)ψ2D
nm (r) =

∫ 1

0
dλ0

∫ 1−λ0

0
dλ1 ψ

2D
kl

(
λ
)
ψ2D
nm

(
λ
)

= δknδlm (5.23)

and
∫

∆
d3r ψ3D

kln (r)ψ3D
mop (r) =

∫ 1

0
dλ0

∫ 1−λ0

0
dλ1

∫ 1−λ0−λ1

0
dλ2ψ

3D
kln

(
λ
)
ψ3D
mop

(
λ
)

= δkmδloδnp .

(5.24)

These polynomials address the problem of the ill-conditioned Vandermonde matrix contained
in the transformation into the Lagrange polynomial basis set in Eq. (5.11). However, there
is still the freedom to choose the actual interpolation points (nodes) rj defining the Lagrange
polynomial basis set by Eq. (5.9). In the implementation of the DGTD method, we use the warp
& blend nodes presented by T. Warburton in [147]. They are chosen such that they all lie within
the element ∆ and minimize the Lebesgue constant

Λp = max
λ∈∆

N∑

i=1

∣∣∣Li
(
λ
)∣∣∣ := max

λ∈∆
Λ
(
λ
)
, (5.25)

in good approximation. This minimizes the overall spatial discretization error [73, 147]. Fig. 5.2
shows the nodes and example Lagrange basis functions on a triangle for polynomial order p = 4.
Note that the warp & blend nodes follow a D3 symmetry if the element was transformed into an
equilateral triangle. Accordingly, Fig. 5.2 (b)-(f) only show those polynomials which are distinct
under affine and symmetry transformation. Fig. 5.2 (d) shows the outline of the Lebesgue
constant Λ

(
λ
)
. As on the single nodes, it evaluates to Λ = 1, the maxima lie in between the

warp & blend nodes and are located such that all the maxima approximately have the same
value.

5.3 Element coupling with the numerical flux

So far only the local solution on a single element ∆k was outlined in Eq. (5.6). To provide a
coupling between two neighboring elements, we employ the flux term within Eq. (5.5). Integration
by parts results in an integral over the element surface ∂∆k with normal vector n(r) pointing
outwards:

∫

∆k

ddrΨj (r) ·
[
Q · ∂

∂t
qN (r, t)− S(r, t)

]
−

d∑

i=1
ei · F

(
qN (r, t)

)
· ∂iΨj

= −
∫

∂∆k

dd−1rΨj (r) ·
[
n (r) · F

(
qN (r, t)

)]
. (5.26)

Within the surface integral the flux is replaced with an approximate flux

F
(
qN
(
r, t
))
→ F ∗

(
qN
(
r, t
))

, (5.27)
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the so-called numerical flux F ∗ [73, 74]. Reversing the integration by parts results in the strong
form of Maxwell’s equations

∫

∆k

ddrΨj (r) ·
[
Q · ∂

∂t
qN (r, t) + ∇ · F

(
qN (r, t)

)
− S(r, t)

]

=
∫

∂∆k

dd−1rΨj (r) ·
[
n (r) ·

(
F
(
qN (r, t)

)
− F ∗

(
qN (r, t)

))]
. (5.28)

Here, the integral over the element’s surface ∂∆k guarantees the coupling to the neighboring
element, as the numerical flux F ∗

(
qN (r, t)

)
involves the field expansion also on the neighboring

element. Therefore, we extend the numerical approximation of the fields Eq. (5.3) to all N∆
elements within the computational domain:

q
(
r, t
)
≈ qN

(
r, t
)

=
N∆∑

k=1

Np∑

i=1
q̃

(k)
i (t)Ψ(k)

i (r) , where Ψ(k)
i =





Ψi (r) for r ∈ ∆k ,

0 for r /∈ ∆k .
(5.29)

Correspondingly, Maxwell’s equations for non-dissipative media in discretized form are deter-
mined by the ODEs

∂tq̃(t) = Ĥ · q̃(t) + S̃(t) . (5.30)

Here, the Np ·N∆ element-wise ordered field expansion coefficients are

q̃j(t) = q̃
(k)
i (t) , with i =

(
jmodNp

)
+ 1 , and k =

⌈
j

N∆

⌉
, (5.31)

as respective base function and element indices. The field expansion coefficients q̃ describe the
field in the entire computational domain. While the source term S̃ is contributing only element-
wise (cf. Eq. (5.6)), the matrix Ĥ includes both the in-element flux as well as the coupling to
the neighboring elements with the numerical flux. Thus the matrix Ĥ has a block form, with
element self-coupling Ĥ(k) on the diagonal and the coupling between the elements Ĥ(k,k′) in the
off-diagonal entries. The on-element matrix takes the form

Ĥ(k) =
[
M̂(k)

]−1
·
∑

l

D̂(k)
l ·

[
el · F

(
q̃(k)

)]
. (5.32)

Here, we define the on-element mass matrix

M̂(k)
ij =

∫

∆k

ddrΨ(k)
i (r) ·Q(k) ·Ψ(k)

j (r) . (5.33)

It assumes the material tensor Q(k) to be constant on the single element. Furthermore, we define
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the l-th Cartesian component of the differentiation matrix

D̂(k)
l,ij =

∫

∆k

ddrΨ(k)
i (r)∂lΨ(k)

j (r) , with l ∈ {x, y, z} . (5.34)

Here, the flux el · F projected on the l-th Cartesian direction is already interpolated using the
same Lagrange polynomial basis. This means, that the vectorial object el·F for the firstN entries
accounts only for the Ex-field component, the second N entries for the Ey-field component, etc.
Due to the nodal scheme, the flux is computed locally for each node and only depends on the
field expansion coefficients q̃(k) on the element itself.

The off-diagonal terms Ĥ(k,k′) of the overall matrix Ĥ are purely defined by the numerical flux.
It is

Ĥ(k,k′) =
[
M̂(k)

]−1
· Î(k,k′) ·

[
n(k,k′) · F

(
q̃(k)

)
− n(k,k′) · F ∗

(
q̃(k), q̃(k′)

)]
. (5.35)

Here, M̂(k) is the mass matrix of the element ∆k from above and

Î(k,k′)
ij =

∫

∂∆k∩∂∆k′
dd−1rΨ(k)

i (r) ·Ψ(k)
j (r) , (5.36)

is the face mass matrix on the surface between the element ∆k and its neighboring element ∆k′ .
Furthermore, n(k,k′) is the normal vector of the associated interface and points from the element
∆k into the neighboring element ∆k′ . Moreover, the flux terms n(k,k′) ·F and n(k,k′) ·F ∗ have to
be understood as already projected onto the element’s Lagrange basis functions. Additionally,
it is implicitly assumed within the numerical flux, that each element uses the same basis as the
neighboring element. This means, that the nodes defining the Lagrange basis on each element
coincide on each interface for both elements. Note, that also only the field expansion coefficients
on the specific interface do contribute, as the Lagrange basis functions vanish for all nodes which
do not lie on the interface (cf. Fig. 5.2 and Eq. (5.9)).

Although the actual form of the numerical flux determines whether we obtain a stable and
converging discretization scheme, it is not unique [73]. The easiest form for the numerical flux
is given by the central flux. It only includes the average of the local fields on the element’s
surface (“−”-side) and the same surface shared with the neighboring element (“+”-side). Here,
for Maxwell’s equations, it has the form

ei · F ∗
(
q
(
r, t
))

= 1
2



−ei ×

(
H−

(
r, t
)

+H+ (r, t
))

ei ×
(
E−

(
r, t
)

+E+ (r, t
))


 . (5.37)

Although this is the easiest form for the numerical flux, it has a disadvantage. For the central
flux, the spectrum of Ĥ is purely imaginary. Thus, all its modes lie on the stability boundary
for the ODE set (cf. Fig. 5.6 (a)).

Therefore, we use another flux within this thesis, which counters this problem. This is the
upwind flux. For the derivation of the numerical flux following the upwind scheme [73], it is
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5 Discontinuous Galerkin time-domain method

assumed that the actual fields along the element surface (a line element in two-dimensional and
a triangle in three-dimensional setups) only vary slightly along with that interface. However,
the fields may be discontinuous from one element to the other. While this behavior is expected
on material interfaces, it is not physical at interfaces of elements contained in regions with the
same material. Yet, the time-stepping algorithm used to solve the ODE (5.6) may also introduce
field discontinuities at such interfaces within the time-scale of a single time-step ∆t. The upwind
flux takes into account such field discontinuities at the interface by solving the one-dimensional
Riemann problem [148, 149] along the normal direction of the interface in question. It remedies
unphysical field jumps at every time-step ∆t. This is basically achieved by enforcing the correct
field BC only for those parts of the fields, which contribute to a flow into the neighboring element.
Moreover, the upwind flux damps very high-frequency modes in the field expansion coefficient
ODEs (5.30) [73] and stabilizes the DGTD scheme.

5.3.1 The one-dimensional Riemann problem

The one-dimensional Riemann problem solves the time evolution of a field discontinuity across
an element interface. Therefore, we introduce the relative interface coordinates as shown in
Fig. 5.3.

0
x

y

z

r0

n
t1

t2

Figure 5.3: Surface triangle of a single tetrahedral element contained in a three-dimensional
mesh. The local coordinate system is spanned by the normal vector n and two tangential
vectors t1 and t2.

As the numerical flux for a two-dimensional system can be directly inferred from the full three-
dimensional one, we only consider triangular interfaces here. Given the normal-vector

n (r0) = n = nxex + nyey + nzez , (5.38)

of the surface for a given point r0, we can locally construct two surface tangential vectors t1 (r0)
and t2 (r0), such that

n = t1 × t2 and n · t1 = n · t2 = t1 · t2 = 0 . (5.39)
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Introducing the local coordinates (n, t1, t2) on our triangular surface, we have

r = nn (r0) + t1 t1 (r0) + t2 t2 (r0) + r0 , (5.40)

or for a given point r =
(
x, y, z

)T:

n = n (r0) · [r − r0] , t1 = t1 (r0) · [r − r0] , t2 = t2 (r0) · [r − r0] . (5.41)

Since this coordinate transformation only involves a translation and rotation, the divergence
operator acting on a vector-field f is

∇ · f = ∇T · f + n · ∂
∂n
f , (5.42)

where the tangential derivatives are given by

∇T · f = t1 · ∂t1f + t2 · ∂t1f . (5.43)

The electromagnetic field q is assumed to vary slowly in tangential direction on the element
interface, i.e.,

∇T · F
(
q
(
r, t
))

= 0 . (5.44)

Hence, Maxwell’s equations (5.1) in conservation form turn into

Q · ∂tq
(
r, t
)

+ n · ∂nF
(
q
(
r, t
))

= 0 , (5.45)

on the element interface. For the derivation of the numerical flux, we are neglecting the source
terms. While volumetric sources are accounted for within the single element discretization (cf.
Eq. (5.6)), there still can be surface currents, which would change the field boundary conditions.
As this current sheet technique [87, 117, 150] is not used within this thesis, the entire source
term is set to zero here.

For the derivation of the numerical flux, we further assume, that at the beginning of the time-step
∆t, the fields q0 near the surface are discontinuous, but are otherwise constant in n-direction,
i.e.,

q0(n, t1, t2, t) = q−
(
t1, t2, t

)
Θ(−n) + q+ (t1, t2, t

)
Θ(n) . (5.46)

As the conservation form of Eq. (5.45) with parametrically fixed tangential coordinates t1 and
t2 is a one-dimensional hyperbolic partial differential equation (PDE) of the form

∂tq
(
n, t
)

+ Â · ∂nq
(
n, t
)

= 0 , (5.47)

the solution for the fields q
(
r, t+ ∆t

)
is the standard solution of the one-dimensional Riemann
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problem [148, 149]. Here, the matrix Â is defined by

Â(n) = Q−1(n) ·


 0̂ −N̂×

N̂× 0̂


 , where N̂× =




0 nz ny
nz 0 −nx
−ny nx 0


 , (5.48)

for Maxwell’s equations where the matrix N̂× stems from the curl operators. From the Riemann
problem solution, we infer the numerical upwind flux.

n

t

. . .
qp−3

qp−2

qp−1

q+ = qp

. . .
q3

q2

q1

q− = q0

. . .

n = λp−2t

n = λp−1t

n = λpt

. . .

n = λ3t

n = λ2t

n = λ1t

Figure 5.4: Sketched solution of a one-dimensional Riemann problem Eq. (5.47). Initially,
the field q is discontinuous on the left q− and right side q+. The field splits in up to p
discontinuities at the characteristics n = λit.

In the general case, we suppose, that the p× p matrix

Â = V̂ · Λ̂ · V̂−1
, (5.49)

is diagonalizable. Here, Λ̂ is a diagonal matrix containing the real-valued, sorted eigenvalues
λ1, . . . , λp. This allows us to define the field

α(n, t) = V̂−1 · q(n, t) . (5.50)

The field components αi obey

∂tαi(n, t) + λi∂nαi(n, t) = 0 , (5.51)

which is solved by

αi(n, t) = αi(n− λit) . (5.52)
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Hence, each part of the initial condition projected on the corresponding eigenvector contribution
propagates with the characteristic velocity λi. Given the initial condition on q0(n, t), we find
p+ 1 distinct regions in the n-t-plane, with different field values as depicted in Fig. 5.4. As the
field q(n, t) is expanded into the eigenvectors of Â with the amplitudes α(n, t), i.e.,

q(n, t) = α1(n, t)v1 + · · ·+ αp(n, t)vp , (5.53)

passing the i-th characteristic in the n-t-plane, the corresponding field expansion q(n, t) has a
jump from the left to the right value in

αi(n < λit, t) = α−i → αi(n > λit, t) = α+
i , with α± = V̂−1 · q± . (5.54)

Therefore, the field values in the m-th sector are

q(m)(n, t) =
m∑

i=1
α+
i (n, t)vi +

p∑

i=m+1
α−i (n, t)vi . (5.55)

Note, that for m = 0 and m = p the first and second sum is zero, respectively. Consequently,
the field difference of two adjacent regions is given by

q(m)(n, t)− q(m+1)(n, t) =
(
α−m+1 − α+

m+1

)
vm+1 := −δm+1vm+1 for m ∈

[
0, p− 1

]
(5.56)

and directly determined by the amplitude differences δi = α+
i − α−i . Applying the matrix Â to

these equations leads to the well-known Rankine-Hugoniot-conditions [73, 148]

n · F
(
q(m)(n, t)

)
− n · F

(
q(m+1)(n, t)

)
= λm+1

(
q(m)(n, t)− q(m+1)(n, t)

)
. (5.57)

They are relating the change in flux with the characteristic speed and field difference. While
these conditions can be used to derive a numerical flux directly (cf. [75, 76]), we present a
slightly different but yet equivalent approach here. From Eq. (5.56) it follows, that the initial
field difference

q(p) − q(0) = V̂ · δ = q+ − q− , (5.58)

directly fixes the amplitude differences by

δ = V̂−1 ·
(
q+ − q−

)
. (5.59)

The formal solution of the Riemann problem is therefore given by

q(n, t) = q− +
p∑

i=1
Θ
(
n− λit

)
δivi (5.60)

and solely depends on the field values q±. The numerical upwind flux F ∗ is defined for the
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element (“−”-side) as

n · F ∗
(
q
(
r, t
))

:= n · F
(
q
(
n = 0−, t1, t2, t

))
(5.61)

and its neighboring element (“+”-side) as

n · F ∗
(
q
(
r, t
))

:= n · F
(
q
(
n = 0+, t1, t2, t

))
. (5.62)

Consequently, the upwind flux only accounts for the directional components of the fields flowing
into the neighboring element. It requires evaluating the field solution of the Riemann problem
at the different sides of the interface boundary n = 0±.

We define the interface fields as

q−∗
(
t1, t2

)
:= q

(
n = 0−, t1, t2, t

) (5.60)= q− +
∑

λi≤0
δi
(
t1, t2

)
vi
(
t1, t2

)
(5.63a)

and q+∗ (t1, t2
)

:= q
(
n = 0+, t1, t2, t

) (5.60)= q+ −
∑

λi≥0
δi
(
t1, t2

)
vi
(
t1, t2

)
. (5.63b)

As the DGTD scheme requires the difference of the actual and the numerical flux (cf. Eq. (5.28)),
we have to compute

n · F
(
q
(
n = 0±, t1, t2, t

))
− n · F ∗

(
q
(
n = 0±, t1, t2, t

))

(5.61),(5.62)= n · F
(
q±
(
t1, t2, t

)
− q±∗

(
t1, t2, t

))
, (5.64)

where we exploit the linearity of the flux in the fields q for Maxwell’s equations. With this,
we can derive the numerical upwind flux for anisotropic non-dispersive materials. We basically
follow the presentation of Alvarez et al. [77] to compute the field differences

q±
(
t1, t2, t

)
− q±∗

(
t1, t2, t

)
(5.65)

in the following section.

5.3.2 Upwind flux for non-dispersive anisotropic materials

For the calculation of the numerical upwind flux, we transform the non-dispersive material tensors
ε and µ into the local basis

{
n, t1, t2

}
. As an example, the permittivity tensor is given in the

Cartesian tensor components by

ε =
∑

xi,xj

εxixjexi ⊗ exj , where xi, xj ∈
{
x, y, z

}
(5.66)
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are Cartesian coordinates. We introduce the local unit vectors eyi ∈
{
n, t1, t2

}
, i.e.,

ε =
∑

yi,yj

ε̃yiyjeyi ⊗ eyj . (5.67)

Thus, the tensor components in the surface aligned coordinate frame are related to the Cartesian
entries by

ε̃yiyj =
∑

xi,xj

εxixjeyi · exiexj · eyj ⇔ ˆ̃ε = R̂−1 · ε̂ · R̂ , (5.68)

with the rotation matrix

R̂ =
(
n t1 t2

)
, i.e., R̂ij = eyi · exj and R̂−1 = R̂T

. (5.69)

Furthermore, we assume that the fields are constant along the tangential directions according to
Eq. (5.44), i.e.,

∇T ×E
(
r, t
)

= ∇T ×H
(
r, t
)

= 0 . (5.70)

Hence, Maxwell’s curl equations, e.g., Eq. (2.1d), on the element’s interface are of the form


εnn εnt1 εnt2
εt1n εt1t1 εt1t2
εt2n εt2t1 εt2t2


 · ∂t



En
Et1
Et2


 = ∂n

(
n×H

)
=




0
−∂nHt2

∂nHt1


 . (5.71)

Thus the normal component of the E-field is set by

∂tEn = − 1
εnn

(
∂tεnt1Et1 + ∂tεnt2Et2

)
, (5.72)

with which only the field components tangential to the surface contribute to the flux, i.e.,
(
εt1t1 −

εt1nεnt1
εnn

εt1t2 −
εt1nεnt2
εnn

εt2t1 −
εt2nεnt1
εnn

εt2t2 −
εt2nεnt2
εnn

)
· ∂t
(
Et1
Et2

)
=
(
−∂nHt2

∂nHt1

)
. (5.73)

In analogy, we find the H-field time derivatives related to the E-field by
(
µt1t1 −

µt1nµnt1
µnn

µt1t2 −
µt1nµnt2
µnn

µt2t1 −
µt2nµnt1
µnn

µt2t2 −
µt2nµnt2
µnn

)
· ∂t
(
Ht1

Ht2

)
=
(
∂nEt2
−∂nEt1

)
. (5.74)

To derive the numerical upwind flux, we need to solve the Riemann-Problem for the four-
dimensional PDE

Q̂(n) · ∂tq(n, t) + M̂r · ∂nq(n, t) = 0 , (5.75)
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where

Q̂ =




εt1t1 −
εt1nεnt1
εnn

εt1t2 −
εt1nεnt2
εnn

0 0
εt2t1 −

εt2nεnt1
εnn

εt2t2 −
εt2nεnt2
εnn

0 0
0 0 µt1t1 −

µt1nµnt1
µnn

µt1t2 −
µt1nµnt2
µnn

0 0 µt2t1 −
µt2nµnt1
µnn

µt2t2 −
µt2nµnt2
µnn




=:




ε11 ε12 0 0
ε21 ε22 0 0
0 0 µ11 µ12
0 0 µ21 µ22


 =

(
ε̂ 0̂
0̂ µ̂

)
, (5.76)

q =




Et1
Et2
Ht1

Ht2


 and M̂r =


 0̂ D̂

D̂−1 0̂


 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 . (5.77)

The solution of the Riemann problem requires the characteristics n = λit with speeds λi defined
by Eq. (5.49) as well as the field amplitude differences δ defined by Eq. (5.59). Hence, we need
to find the eigenvalues and eigenvectors of the matrix

Â = Q̂−1 · M̂r =


 0̂ ε̂−1 · D̂
µ̂−1 · D̂−1 0̂


 . (5.78)

Due to the off-diagonal form, we can simplify the eigenvalue calculation with

0 = det
(
Â− λ1̂4

)
= det

(
−λ1̂2

)
det
(
−λ1̂2 + λ−1µ̂−1 · D̂−1 · ε̂−1 · D̂

)
,

= det
(
µ̂−1 · D̂−1 · ε̂−1 · D̂︸ ︷︷ ︸

=:Γ̂

−λ21̂2

)
. (5.79)

The resulting biquadratic characteristic polynomial for the eigenvalues λ can, thus, be reduced
to the computation of the eigenvalues of a second-order characteristic polynomial for the matrix
Γ̂. Given the eigenvalues and eigenvectors of this 2× 2-matrix Γ̂ and the diagonalization

Γ̂ = R̂Γ · Λ̂ · Λ̂ · R̂
−1
Γ , (5.80)

we directly find the spectral decomposition of Â, as

Â = V̂ ·
(
−Λ̂ 0̂
0̂ Λ̂

)
· V̂−1

, (5.81)
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where

V̂ =


ε̂−1 · D̂ · R̂Γ · Λ̂

−1 0
0 R̂Γ


 · 1√

2

(
−1̂2 1̂2
1̂2 1̂2

)
(5.82a)

and V̂−1 = 1√
2

(
−1̂2 1̂2
1̂2 1̂2

)
·


Λ̂−1 · R̂−1

Γ µ̂−1 · D̂−1 0
0 R̂−1

Γ


 . (5.82b)

As a consequence, there are always two positive and two negative characteristic speeds.

n

t

n = λ−
2 t

n = λ−
1 t

n = λ+
3,4t

q− = q−
0

q−
1

q−
2 = q−∗

q+
3

q+
2 = q+∗

q+ = q+
4

ε−,µ−
ε+, µ+BC

Figure 5.5: Sketch of the Riemann problem for a non-dispersive anisotropic material inter-
facing an isotropic material. Initially, the field q is discontinuous on the left q− and right
side q+. The discontinuities propagate with the characteristic speeds λi depending on the
polarization components determined in Eq. (5.82) away from the interface at n = 0 gener-
ating different field value zones. The speed λ+

3,4 = c0
√
ε+µ+ is degenerate. The field BC is

enforced on the interface between the fields q−,∗ and q+,∗.

So far, we implicitly assumed that the materials do not change when solving the Riemann
problem. However within the DGTD method, we allow material interfaces and thus the effective
material matrix can jump, i.e.,

Q̂(n) = Q̂−Θ(−n) + Q̂+ Θ(n) . (5.83)

In Fig. 5.5 we show an example case for the Riemann problem, in which we couple an anisotropic
material on one side to a non-dispersive isotropic one on the other. To obtain the solution to the
Riemann problem, we require the fields q to fulfill the correct BC across the element interfaces.
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As only the tangential field components

q =




Et1
Et2
Ht1

Ht2


 , (5.84)

contribute to the flux, the fields

q+,∗ − q−,∗ (2.44)= 0 , (5.85)

have to be continuous across the interface. Moreover, there are two characteristics on each side
of the interface resulting in two field jumps on each side. For the anisotropic material, these
correspond to ordinary and extra-ordinary waves [77]. Consequently, the characteristic velocities
are determined by the intersections of the isofrequency contour (IFC) shown in Fig. 3.1 (b) for
frequency normalized wave vectors pointing in n-direction. For the isotropic case the charac-
teristic velocities λ+

3,4 =
√
ε+µ+c0, i.e., the in-medium speed of light, are degenerate and the

eigenvectors v+
3,4 are set by the two allowed polarization directions as in Section 2.7.1. Following

the material matrix jump in Eq. (5.83), we obtain the field difference

q+ − q− = V̂± · δ , (5.86)

on each side of the interface from the Rankine-Hugoniot conditions Eq. (5.57). Here, the field
expansion matrix V̂± contains the eigenvectors of “−”-side and “+”-side correspondingly for
negative and positive characteristic speeds. It reads

V̂± = 1√
2

(
−M̂− M̂+

1̂ 1̂

)
·
(

R̂Γ,− 0̂
0̂ R̂Γ,+

)
, (5.87)

where

M̂±
(5.82)= ε̂−1

± · D̂ · R̂Γ,± · Λ̂
−1
± · R̂

−1
Γ,± . (5.88)

For the numerical flux, we need the fields on the corresponding interface for times t > 0, i.e.,

q−,∗ − q−0 = δ1v1,− + δ2v2,− . (5.89)

That means, we need to calculate the Riemann problem amplitudes differences δ first. The
required inverse of the matrix V̂± is given by

V̂−1
± =

√
2


R̂−1

Γ,− 0̂
0̂ R̂−1

Γ,+


 ·




(
M̂+ + M̂−

)−1
0̂

0̂
(
M̂+ + M̂−

)−1


 ·

(
−1̂ M̂+
1̂ M̂−

)
. (5.90)
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We define the tangential field differences at the interface at the beginning of the time step as

∆Et :=
(
E+
t1 − E

−
t1

)
t1 +

(
E+
t2 − E

−
t2

)
t2 , (5.91a)

∆Ht :=
(
H+
t1 −H

−
t1

)
t1 +

(
H+
t2 −H

−
t2

)
t2 , (5.91b)

which means

q+ − q− =
(

∆Et
∆Ht

)
. (5.92)

Following Eq. (5.59), the amplitude differences of the associated Riemann problem are

δ = V̂−1
± ·

(
q+ − q−

)
=
√

2




R̂−1
Γ,− ·

(
M̂+ + M̂−

)−1
·
(
M̂+ ·∆Ht −∆Et

)

R̂−1
Γ,+ ·

(
M̂+ + M̂−

)−1
·
(
M̂− ·∆Ht + ∆Et

)


 . (5.93)

The flux difference of actual and numerical flux Eq. (5.64) requires the tangential field difference

q−,∗ − q−0 = δ1v1,− + δ2v2,− . (5.94)

This means, we use the first two columns of V̂± and the amplitudes δ. We find

q−,∗ − q−0 = 1√
2

(
−M̂− · R̂Γ,−

R̂Γ,−

)
·
√

2 R̂−1
Γ,− ·

(
M̂+ + M̂−

)−1
·
(
M̂+ ·∆Ht −∆Et

)

=



−M̂− ·

(
M̂+ + M̂−

)−1
·
(
M̂+ ·∆Ht −∆Et

)

(
M̂+ + M̂−

)−1
·
(
M̂+ ·∆Ht −∆Et

)


 . (5.95)

In principle, this sets the flux from the element (“−”-side) into its neighboring element (“+”-
side). The opposite flux term is obtained with a change of sign in the field differences ∆Et and
∆Ht as well as the interchange of the ±-index of the material parameter related matrices. As
the DGTD scheme operates not with the tangential but the fully six-dimensional electromagnetic
field vector, we cast this flux difference term into a form acting on the entire six-dimensional
field vector as assumed in Eq. (5.28). Thus, the flux term is of the form

n · F − n · F ∗ =



−n×

(
H− −H−,∗

)

n×
(
E− −E−,∗

)


 , (5.96)

for the given normal vector n of the element interface.

To express the flux in terms of the full initial field differences,

∆E = E+ −E− and ∆H = H+ −H− , (5.97)
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we perform a coordinate transformation between the Cartesian field components and the interface
coordinates with the rotation matrix

R̂ =
(
n t1 t2

)
. (5.98)

We use the identities

n×E = n× R̂ ·



En
Et1
Et2


 = R̂ ·




0 0 0
0 0 −1
0 1 0


 ·



En
Et1
Et2


 = R̂ ·

(
0 0T

0 D̂−1

)
·E , (5.99a)

n× n×E = R̂ ·




0 0 0
0 −1 0
0 0 −1


 ·



En
Et1
Et2


 = −R̂ ·E . (5.99b)

We can transform the numerical flux components as

n×
(
E− −E−,∗

)

(5.95)= −R̂ ·




1 0T

0 D̂−1 ·
[
M̂−1

+ + M̂−1
−

]−1
· M̂−1

+ D̂


 · R̂−1 · R̂ ·

(
0 0T

0 D̂ ·∆Et

)

− R̂ ·




1 0T

0 D̂−1 ·
[
M̂−1

+ + M̂−1
−

]−1


 · R̂−1 · R̂ ·

(
0 0T

0 −1̂ ·∆Ht

)
,

= −
[
Ŷ− + Ŷ+

]−1
· Ŷ+ · n×∆E −

[
Ŷ− + Ŷ+

]−1
· n× n×∆H (5.100a)

and − n×
(
H− −H−,∗

)

(5.95)= R̂ ·




1 0T

0 D̂−1 ·
[
M̂+ + M̂−

]−1
· M̂+D̂


 · R̂−1 · R̂ ·

(
0 0T

0 D̂ ·∆Ht

)

− R̂ ·




1 0T

0 D̂−1 ·
[
M̂+ + M̂−

]−1


 · R̂−1 · R̂ ·

(
0 0T

0 −1̂ ·∆Et

)
,

=
[
Ẑ− + Ẑ+

]−1
· Ẑ+ · n×∆H −

[
Ẑ− + Ẑ+

]−1
· n× n×∆E . (5.100b)

Here, we defined the generalized admittance and impedance matrices

Ŷ± := R̂ ·
(

1 0T

0 M̂−1
± · D̂

)
· R̂−1 (5.82)= R̂ ·

(
1 0T

0 R̂Γ,± · Λ̂
−1
± · R̂

−1
Γ,± · µ̂−1

)
· R̂−1

, (5.101a)
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Ẑ± := R̂ ·
(

1 0T

0 M̂± · D̂
−1

)
· R̂−1 (5.88)= R̂ ·

(
1 0T

0 ε̂−1
± · D̂ · R̂Γ,± · Λ̂

−1
± · R̂

−1
Γ,± · D̂

−1

)
· R̂−1

,

(5.101b)

where we used D̂−1 = −D̂ for the latter. These matrices contain the field propagation speeds
in the diagonal matrix Λ̂, the corresponding transversal component of the polarization vectors
in R̂Γ and the interface projected permittivity ε̂ or permeability matrix µ̂ from Eq. (5.76),
respectively. Consequently, the numerical upwind flux term used in the DGTD scheme for non-
dispersive anisotropic materials reads

n · F − n · F ∗ =




[
Ẑ+ + Ẑ−

]−1
·
[
∆E − n

(
n ·∆E

)
+ Ẑ+ · n×∆H

]

[
Ŷ+ + Ŷ−

]−1
·
[
∆H − n

(
n ·∆H

)
− Ŷ+ · n×∆E

]


 . (5.102)

With this numerical flux, we achieve a stable DGTD scheme. Fig. 5.6 (b) shows a prototypical
spectrum for a spatial discretization matrix Ĥ, as defined in Eq. (5.30). As an exemplary setup,
we use a single unit cube containing five elements with a p = 4 Lagrange polynomial basis. The
cube is filled with a magneto-optic (MO) material

ε =




1 − i
2 0

i
2 1 0
0 0 2


 and µ = 1 . (5.103)

Additionally, we apply perfect electric conductor (PEC) BCs (see Section 5.3.4) at the cube
surface.

Here, we only use a small setup with five elements, as the matrix Ĥ has already 1050×1050 entries.
However, it is very sparse, as only neighboring elements are coupled. The eigenvalues λĤ,i of the
discretization matrix Ĥ correspond to the complex frequencies ω̃i = iλĤ,i of the modes supported
in that computational domain. For low frequencies ωi = Im(λĤ,i), the associated damping
−Re(λĤ,i) is negligible. These are the physically relevant modes. With increasing frequencies, the
complex eigenvalues bend more and more into the negative half-plane, which leads to increased
damping. These high-frequency modes are therefore suppressed by the damping introduced by
the upwind flux. It indirectly enforces a sufficiently fine discretization that shifts the same high-
frequency modes back to the imaginary axis. Furthermore, a line of purely damped modes is
supported. These spurious modes emerge from the non-divergence-free basis which also accounts
for static fields introduced by charges [74].

Although Fig. 5.6 (b) shows a prototypical stable spectrum, the DGTD scheme using the upwind
flux Eq. (5.102) is only conditionally stable. Besides the time-step used in the Runge-Kutta
integrator [75, 142], there is a restriction on allowed non-dispersive material tensors used. The
main criterion here is, that characteristic propagation speeds Λ̂ computed in the diagonalization
Eq. (5.80) are real-valued. This sets a restriction on the choice of permittivity and permeability
tensors. In the most general case, the material tensors are complex-valued. This requires an
expansion of the DGTD scheme to complex-valued fields q which is straightforward, as long
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Figure 5.6: Spectrum of a DGTD spatial discretization operator Ĥ (see Eq. (5.30)), for
a unit cube consisting of five tetrahedral elements including a fourth-order Lagrange poly-
nomial basis with PEC BCs applied at the boundary. The unit cube contains (a) vacuum
(ε = µ = 1) or (b) an MO example material Eq. (5.103). Both examples use the upwind
flux (a) Eq. (5.107) and (b) Eq. (5.102), respectively. (a) Gradual variation between up-
wind and central flux with upwind parameter α ∈ [0, 1]. Gray shaded areas mark regions of
exponentially growing, i.e., unstable modes.

as only linear materials are involved in the simulation setup. If non-magnetic materials are
considered, there is also a sufficient criterion for the dielectric tensor. For isotropic permittivities
ε ∈ C, the spectra in Fig. 5.6 rotate around the origin. This means, that the physically relevant
low frequencies modes, either for the negative or positive frequency components shift to positive
real eigenvalues, which corresponds to an exponential gain, i.e., a numerical explosion. A non-
dispersive complex-valued permittivity ε leads to unstable Maxwell’s equations. It violates the
basic stability criterion for any dispersive permittivity model

ε(ω) = ε∗(−ω) , (5.104)

which directly follows from the associated and necessarily real-valued response kernel in Eq. (2.8).
In order to obtain a stable set of PDEs, it at least requires a change in the otherwise constant
Im(ε) for switching between positive and negative frequencies. For the anisotropic non-dispersive
permittivity tensors this translates to the sufficient stability condition

ε = ε† , (5.105)

which is just met for the example with the MO material type used for Fig. 5.6 (b).

5.3.3 Upwind flux for isotropic materials

The numerical upwind flux for the more commonly used non-dispersive isotropic material model
in the DGTD method can be directly inferred from the anisotropic case Eq. (5.102). For this,
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both the admittance and impedance matrices in Eq. (5.101) simplify to diagonal matrices as

Ŷ± → Y± 1̂ =
√
ε±
µ±

1̂ and Ẑ± → Z± 1̂ =
√
µ±
ε±

1̂ . (5.106)

Here, the material tensors ε̂± and µ̂± as well as polarization vectors in R̂Γ,± are diagonal and
the included interface basis rotations R̂ cancel out. We recover the well-known form [73–75] of
the upwind flux

n · F − n · F ∗ =




1
Z̄

(
α
[
∆E − n(n ·∆E)

]
+ Z+n×∆H

)

1
Ȳ

(
α
[
∆H − n(n ·∆H)

]
− Y+n×∆E

)


 , (5.107)

where

Z̄ := Z+ + Z− and Ȳ := Y+ + Y− . (5.108)

Note, that in this case, the characteristics are degenerate for both polarizations contributing
to the flux over the elements interface. This is sketched on the right “+”-side in Fig. 5.5.
Furthermore, we introduce a parameter α. It allows to continuously switch between the upwind
flux (α = 1) and an impedance / admittance weighted form of the central flux (α = 0, cf.
Eq. (5.37)) [73, 74].

In Fig. 5.6 (a) we show a prototypical spectrum of a DGTD spatial discretization matrix Ĥ, as
defined in Eq. (5.30). Hereby the example setup is a unit cube containing five elements with
a p = 4 Lagrange polynomial basis. The unit-cube is filled with vacuum, i.e., ε = µ = 1.
The spectrum is shown for different upwind parameters α. For a pure upwind flux (α = 1),
the spectrum has a similar shape as in the anisotropic test case shown in Fig. 5.6 (b). For a
decreasing upwind parameter, the spectrum is compressed to the imaginary axis further and
further. In the limit of α = 0, it reaches a material-weighted form of the central flux, for which
both low- and high-frequency modes supported by the discretized field are on the edge of the
stability region.

5.3.4 Boundary conditions

Additionally to the flux between elements, we need to specify what happens if an element has
no neighboring element, i.e., if the element lies at the boundary of the computational domain.
Commonly used BCs at the interface include PEC BCs, perfect magnetic conductor (PMC) BCs
as well as radiation conditions, i.e., Silver Müller boundary conditions (SMBCs).

For a PEC the tangential electric field n × E
(
rBC, t

)
= 0 and for the PMC the tangential

magnetic field n ×H
(
rBC, t

)
= 0 at the boundary [81]. This can, for example, be used to

model perfectly conducting metals. In the SMBCs, we assume a first-order approximation to
the radiation condition [136–138] in which the electromagnetic field is assumed to be spherical
and propagate unhindered out of the domain. Consequently, the SMBCs try to emulate infinite
space. As the approximation only holds for sufficiently large computational domains, one can
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additionally use PMLs to suppress the back-scattering at the domain boundary while maintaining
the domain size. PMLs are introduced in Section 5.6. Besides these BCs fixing the fields
dependent on only one boundary element, there also exist periodic boundary conditions (PBCs).
These can be implemented very easily, by mapping the interface of the boundary element to that
of its periodic partner. In this case, the numerical flux behaves the same as for internal elements
of the mesh.

Perfect electric conductor and perfect magnetic conductor boundary conditions

The BCs can be directly implemented using the numerical flux Eq. (5.102). Here, we enforce the
field BCs in the solution of the Riemann problem on the fields q−,∗ as shown in Fig. 5.5. For the
PEC BCs, the tangential electric field must be zero at the boundary, i.e., n × E−,∗ = 0. The
magnetic field can take any value at the same time, inducing an instantaneous surface current
at the boundary. This behavior can be modeled by preventing any flux contribution from the
H-field. For this, one introduces a fictitious neighboring element, setting the field H+ != H−

for any time t. This sets the magnetic field difference ∆H = 0 in the numerical flux Eq. (5.102).
The electric field difference is furthermore determined by the electric part of the numerical flux

n× (E− −E−,∗︸ ︷︷ ︸
PEC= 0

) = −
(
Ŷ− + Ŷ+

)−1
· Ŷ+ · n×∆E . (5.109)

Assuming the same admittance in the fictitious neighboring element Ŷ+ = Ŷ− (mirror condi-
tion), determines the electric field difference. Hence, the PEC BCs are determined by

∆E = −2E− and ∆H = 0 . (5.110)

The PMC BCs are determined in analogy by exchanging the role of the E- and H-field. Thus,
the PMC BCs can be enforced with the numerical flux containing the field differences

∆E = 0 and ∆H = −2H− . (5.111)

Silver-Müller boundary conditions

The basis of the SMBCs is a first-order approximation to the frequency domain radiation condi-
tions in an isotropic medium [136–138], given by

lim
r→∞

r
[(
∇×E(r, ω)

)
× er − ikrE(r, ω)

]
= 0 (5.112a)

and lim
r→∞

r
[(
∇×H(r, ω)

)
× er − ikrH(r, ω)

]
= 0 . (5.112b)

Here, r = |r| is the distance from any given scatterer, er the radial unit vector and kr = √εµω
the corresponding wave vector in radial direction. The condition assumes that in the far-field of
any scatterer the field propagates as a spherical wave into infinity. Hence, SMBCs are absorbing
BCs. Following the derivation presented in [76], we approximate this condition at finite positions

88



Field sources 5.4

r = rBC for which we replace the spherical boundary with the normal vector er by the actual
simulation domain boundary with normal vector n. This yields

(
∇×E(rBC, ω)

)
× n− ikrE(rBC, ω) = 0 (5.113a)

and
(
∇×H(rBC, ω)

)
× n− ikrH(rBC, ω) = 0 . (5.113b)

Inserting Maxwell’s curl-equations (2.31c) and (2.31d) in frequency domain sets the conditions
as

iωµH × n− ikrE = 0 and − iωεE × n− ikrH = 0 . (5.114)

Thus, independent of the frequency the SMBCs are set by

−n×H(r, t) = YE(r, t) and n×E(r, t) = ZH(r, t) , (5.115)

with the impedance Z = Y −1 of the isotropic non-dispersive material (cf. Eq. (5.106)). To obtain
the numerical flux for the SMBCs, we enforce the condition

−n×H− != YE∗ and n×E− != ZH∗ . (5.116)

Thus, we relate the interface fields q∗ after the time step with the initial fields q− at the beginning
of the time step. Inserting the SMBCs into the numerical upwind flux Eq. (5.107) results in

1
Z
n× n×

(
∆E + 2E−

)
= n×

(
∆H + 2H−

)
, (5.117a)

n×
(

∆E + 2E−
)

= − 1
Y
n× n×

(
∆H + 2H−

)
. (5.117b)

As there is no unique solution for the field differences determining the flux, one chooses the only
solution not mixing the fields, i.e.,

∆E = −2E− and ∆H = −2H− . (5.118)

While these SMBCs work very well for plane waves with normal incidence, the reflections caused
by waves impinging with small incidence angles are rather high. To reduce these reflections,
there are two possible ways: Increasing the simulation domain size significantly or the use of
PMLs, which are introduced in Section 5.6. Increasing the simulation domain size typically
also increases the number of elements. Therefore, also the number of degrees of freedom to
be computed increases with the power of the setup dimension. Hence, the use of PMLs often
requires less computational time to achieve the same numerical accuracy.

5.4 Field sources

So far, we have discussed how to setup a computation to solve Maxwell’s curl-equations for non-
dispersive material distributions. We showed how to enforce BCs and compute the fields given
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the Lagrange polynomial interpolation on the elements. As a typical computation starts with
zero-field initial conditions, we introduce source terms for a setup excitation.

For these, we split the fields into a total field, the a priori known incident excitation field as well
as the scattered field, i.e.,

Etot(r, t) = Einc(r, t) +Escat(r, t) and Htot(r, t) = H inc(r, t) +Hscat(r, t) . (5.119)

Typically, one wants to solve Maxwell’s equations for a non-trivial material distribution. How-
ever, the propagation of the incident field shall be analytically known for a simple material setup
with permittivity εbg and permeability µbg. Then, the incident field is a solution to Maxwell’s
equations (2.1) for that setup, i.e.,

(SI) ∂tEinc(r, t) = 1
ε0εbg(r)∇×H inc(r, t) (5.120a)

(SI) and ∂tH inc(r, t) = − 1
µ0µbg(r)∇×Einc(r, t) . (5.120b)

An example widely used in this thesis is a pulsed plane wave in a homogeneous isotropic dielectric
with εbg(r) = εbg and µbg = 1. The fields are given by

(SI) Einc(r, t) = E0 η

(
t−√εbg

n · r
c0

)
(5.121a)

(SI) and H inc(r, t) =
√
εbg

Z0
n×E0 η

(
t−√εbg

n · r
c0

)
, (5.121b)

where E0 defines the field strength and polarization (cf. Section 2.7.1) of the plane wave, n = k
|k|

defines the propagation direction and η(t) is the time dependence of the wave. As exemplary
time dependence, we use a Gaussian modulated wave (see Eq. (B.20)), i.e.,

η(t) = cos
(
ω0(t− t0)

)
e−

(t−t0)2

2σ2 , (5.122)

with a carrier frequency ω0, a temporal width σ, and a time off-set t0. For further details on time
dependencies please refer to Appendix B. These plane waves can for example be used to compute
the scattering spectra of spherical scatterers or the transmittance and reflectance spectra similar
to the FMM in Section 4.3.1.

The main point is to compute the Sf for non-trivial material distributions, which automatically
also determines the Tf. To compute the Sf in the DGTD method there are two possibilities.
The first is the introduction of a total field / scattered field (Tf/Sf) contour which splits the
computational domain into a Tf and Sf region. The incident field is then introduced on that
contour into the domain using the numerical flux. In the second method, one only solves for the
Sf in the entire domain, for which the incident field acts as a volumetric source term.
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5.4.1 Total field / scattered field source

As the Tf/Sf contour (see e.g., Fig. 5.1) splits the domain into a Tf and Sf region, the fields on
the contour jump by the incident field. This means, that for the computation of the numerical
flux on element interfaces, which are part of that contour, the field BCs have to be altered by
that jump. Consequently, we change the BC of the fields in the flux derivation Eq. (5.85) to

q∗,+ − q∗,− = qinc , (5.123)

with which the overall tangential field component differences Eq. (5.59) change to

V̂−1
± ·

(
q+ − q− − qinc

)
= δ . (5.124)

Therefore the Tf/Sf contour source can be applied by exchanging the field differences entering
the numerical flux computation for either anisotropic materials Eq. (5.102) or isotropic materials
Eq. (5.107) to

∆E → ∆E −Einc and ∆H → ∆H −H inc . (5.125)

For the plane wave incident field in Eq. (5.121), an isotropic material is assumed. If only a Tf/Sf
source shall be applied, the Tf region must contain all deviations in the material parameters
from those assumed for the incident field Maxwell’s equations. Examples for these are shown
in Fig. 5.1, which only contain a cylindrical or spherical scatterer completely surrounded by the
Tf/Sf contour. It is also possible to use several closed Tf/Sf contours in a single computational
domain, e.g., two spheres or two planes closing at infinity. If one or more Tf/Sf contours do not
suffice, one needs to additionally apply Sf sources described in the next section.

Additionally to the introduction of incident fields into the computational domain, the Tf/Sf
contours can also be used to obtain important scattering data. Both the Sf qscat(r, t) and Tf
qtot(r, t) are accessible on either side of the contour. Therefore a recording of the respective
fields allows computing the on-the-fly Fourier transform

qscat/tot(r, ω)
(2.30)
≈

∑

j

∆t qscat/tot
(
r, j∆t

)
eiωj∆t . (5.126)

Here, after each time-step ∆t of the Runge-Kutta solver [129, 142], a new field term is added.
These frequency-dependent fields can then be used to compute the time-averaged Poynting vec-
tor 〈S〉τ (r, ω) on the contour and derived scattering quantities like the scattering, absorption,
and extinction cross section (see Section 2.8.2) or reflectance and transmittance spectra (see
Section 2.8.3) depending on the choice of the contour and geometry.

5.4.2 Scattered field source

For the Sf source, we insert the field decomposition Eq. (5.119) of the Tf into Maxwell’s equations
(2.1) and replace the curl of the incident fields [63, 74]. This results in the Sf Maxwell’s equations
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(SI) ε0ε(r) · ∂tEscat(r, t)−∇×Hscat(r, t)
(5.120)= ε0

[
εbg(r)− ε(r)

]
· ∂tEinc(r, t) , (5.127a)

(SI) µ0µ(r) · ∂tHscat(r, t) +∇×Escat(r, t)
(5.120)= µ0

[
µbg(r)− µ(r)

]
· ∂tH inc(r, t). (5.127b)

These can be cast into the same conservation form Eq. (5.1) required for the DGTD method,
replacing the fields with the Sf, i.e.,

q(r, t)→ qscat(r, t) . (5.128)

Here, the incident fields constitute a volumetric source term

S(r, t) =
[
Q

bg
(r)−Q(r)

]
· ∂tqinc(r, t) =




(
εbg(r)− ε(r)

)
· ∂tEinc(r, t)(

µbg(r)− µ(r)
)
· ∂tH inc(r, t)


 , (5.129)

which is non-zero everywhere, where the material distributions Q
bg

(r) of the incident field and
Q(r) differ. This means, in every scatterer, the Sf is generated by the previously specified
incident field.

5.5 Auxiliary differential equations

To implement the dispersive and thus also dissipative material models introduced in Chapter 3,
we have to cast the field relation

(SI) P (r, ω) = ε0χ(r, ω) ·E(r, ω) , (5.130)

with the frequency-dependent susceptibility back into the time domain [63]. Furthermore, the
resulting PDEs shall satisfy the conservation form Eq. (5.1) of the DGTD method [74–76]. This
is done with the help of ADEs which introduce auxiliary fields, like polarization currents into
the DGTD field state vector q(r, t). These ADEs are derived from the frequency-dependent
susceptibilities of the different material models, replacing frequency factors to the fields by the
corresponding time-derivatives (see Eq. (2.33)). Apart from the four-level system (4LS) material
model, all other material models introduced in Chapter 3 are characterized by a susceptibility
of the form

χ(ω) =
∑

c∈{x,y,z}

a0,c + a1,c(−iω) + a2,c(−iω)2

b0,c + b1,c(−iω) + b2,c(−iω)2 ece
T
c . (5.131)

This corresponds to a rational function

χc,c(ω) = p(ω)
q(ω) (5.132)
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in the susceptibility tensor components, with second-order polynomials p and q. Note that
the presented ADE scheme also works for higher orders [74, 75, 131] as well as susceptibilities
rotated into a different coordinate frame. Here, automatically the stability condition of the
DGTD method is fulfilled by

χ†(−ω) = χ(ω) . (5.133)

Furthermore, several material model susceptibilities can be added, i.e.,

χ
tot

(ω) = εbg +
∑

i

χ
i
(ω) . (5.134)

The coupling to Maxwell’s curl equations (2.1d) is mediated by the polarization current

jp(r, t) = ∂tP (r, t) , (5.135)

by

εbg∂tE(r, t) = ∇×H(r, t)− jp(r, t) . (5.136)

For the single polarization and electric field components, the susceptibility Eq. (5.131) implies
(
b0,c + b1,c(−iω) + b2,c(−iω)2

)
Pc(r, ω) =

(
a0,c + a1,c(−iω) + a2,c(−iω)2

)
Ec(r, ω) , (5.137)

and therefore the ADE

∂2
t

(
b2Pc(r, t)− a2Ec(r, t)

)
= −∂t

(
b1Pc(r, t)− a1Ec(r, t)

)
− b0Pc(r, t) + a0Ec(r, t) . (5.138)

One defines an auxiliary field for the highest order time-derivative, in this case an auxiliary
current density

b2,cjaux,c(r, t) := ∂t

(
b2,cPc(r, t)− a2,cEc(r, t)

)
, (5.139)

which is directly related to the polarization current jp reduced by the response at infinite fre-
quencies χc,c (ω →∞) = a2,c

b2,c
by

jp,c(r, t) = jaux,c(r, t)−
a2,c
b2,c

∂tEc(r, t) . (5.140)

It couples back to Eq. (5.136) by
[
εbg + χ

∞

]
· ∂tE(r, t) = ∇×H(r, t)− jaux(r, t) . (5.141)
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To obtain the full set of ADEs, we furthermore compute the time-derivative of the auxiliary
current, i.e.,

∂tjaux,c(r, t)
(5.138),(5.140)= − b1,c

b2,c
jaux,c(r, t) +

(
a1,c
b2,c
− b1,ca2,c

b22,c

)
∂tEc(r, t)

− b0,c
b2,c

Pc(r, t) + a0,c
b2,c

Ec(r, t) . (5.142)

We replace the E-field time derivative with Eq. (5.141) to arrive at the final set of PDEs con-
taining Maxwell’s equations as well as the ADEs. Assuming we add N susceptibilities of the
form Eq. (5.131), the ADEs take the form

Q · ∂tq(r, t) +∇ · F
(
q(r, t)

)
= S

(
q(r, t)

)
, (5.143)

with the field vector and material tensor

q(r, t) =




E
H

P (1)

j
(1)
aux
...

P (N)

j
(N)
aux




and Q =




εbg1 +
∑

i a
(i)
2 ·

[
b(i)

2

]−1
0 0 . . . 0

0 µbg1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1



. (5.144)

Here, we defined the tensors

a(i)
j

=
∑

c∈{x,y,z}
a

(i)
j,cece

T
c and b(i)

j
=

∑

c∈{x,y,z}
b
(i)
j,cece

T
c , (5.145)

for the susceptibilities Eq. (5.131). The flux term has the form

ej · F (r, t) =




−ej ×H(r, t)
ej ×E(r, t)

a(1)
2 ·

[
b(1)

2

]−1
· ε−1
∞ · ej ×H(r, t)

(
a(1)

2 · b
(1)
1 − a

(1)
1 · b

(1)
2

)
·
[
b(1)

2

]−2
· ε−1
∞ · ej ×H(r, t)

...
a(N)

2 ·
[
b(N)

2

]−1
· ε−1
∞ · ej ×H(r, t)

(
a(N)

2 · b(N)
1 − a(N)

1 · b(N)
2

)
·
[
b(N)

2

]−2
· ε−1
∞ · ej ×H(r, t)




, (5.146)
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while the ADE source term is determined by

S(r, t) =




∑
i j

(i)
aux(r, t)
0

j(1)
aux(r, t) + a(1)

2 ·
[
b(1)

2

]−1
· ε−1
∞ ·

∑
i j

(i)
aux(r, t)

(
a(1)

2 · b
(1)
1 − a

(1)
1 · b

(1)
2

)
·
[
b(1)

2

]−2
· ε−1
∞ ·

∑
i j

(i)
aux(r, t)+

. . .+
[
b(1)

2

]−1
·
[
a(1)

0 ·E
(1)(r, t)− b(1)

1 · j
(1)
aux(r, t)− b(1)

0 · P
(1)(r, t)

]

...
j(N)

aux (r, t) + a(N)
2 ·

[
b(N)

2

]−1
· ε−1
∞ ·

∑
i j

(i)
aux(r, t)

(
a(N)

2 · b(N)
1 − a(N)

1 · b(N)
2

)
·
[
b(N)

2

]−2
· ε−1
∞ ·

∑
i j

(N)
aux (r, t)+

. . .+
[
b(N)

2

]−1
·
[
a(N)

0 ·E(N)(r, t)− b(N)
1 · j(N)

aux (r, t)− b(N)
0 · P (N)(r, t)

]




. (5.147)

Here, we defined

ε∞ := εbg1 +
∑

i

a(i)
2 ·

[
b(i)

2

]−1
. (5.148)

In the full set of ADEs, we notice three important things.

First, when the permittivity ε∞ is anisotropic, we require the anisotropic numerical flux Eq. (5.102)
in the DGTD scheme. This is the case as soon as the susceptibility numerator polynomial p(ω)
in Eq. (5.131) has the same order as in the denominator polynomial q(ω), i.e., here a2 6= 0.

Second, when any except the zeroth-order numerator term a0 is non-zero, the entire sum of all
auxiliary currents (see source term Eq. (5.147)) drives both the polarization P and auxiliary
current jaux for each term of the total susceptibility χ

tot
in Eq. (5.134).

Third, for the same case, the flux Eq. (5.146) for the auxiliary fields depends on ∇×H. This,
in principle, requires a derivation of the entire numerical upwind flux for these ADEs.

To calculate the numerical upwind flux for this set of ADEs, we have to solve the one-dimensional
Riemann problem at the interface of two elements of the DGTD mesh. Similarly to Section 5.3.2,
we switch to the interface coordinate system {n, t1, t2}. With the assumption of no tangential
variation of the fields q(r, t) ≈ q(n, t) on the interface as in Eq. (5.44), only the normal-direction
derivative ∇ → n∂n is considered. This allows for a reduction to the tangential field components
(cf. Eqs. (5.73) and (5.74)), as the normal field components do not contribute to the numerical
flux because of the curl-operation. The flux derivation requires the solution of the source-free
Riemann problem Eq. (5.47) with the extension to the ADE fields

q =
(
Et1 , Et2 , Ht1 , Ht2 , Pt1 , Pt2 , jaux,t1 , jaux,t1

)T
. (5.149)

For the derivation, we restrict the fields to only one term of the susceptibility defined in Eq. (5.131).
The extension to the auxiliary fields also requires an extension of the matrix Â→ ÂADE deter-
mining the field propagation in the Riemann problem Eq. (5.47). The new matrix takes a block
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form

ÂADE =
(

Â 0̂
B̂ 0̂

)
, (5.150)

where the matrix Â is the original 4 × 4-matrix for the electromagnetic fields, as defined in
Eq. (5.78). The second 4× 4-matrix B̂ is defined by the coupling tensor entries a

i
and b

i
from

the flux in Eq. (5.146). Although the resulting matrix ÂADE is singular, it can be diagonalized
by

ÂADE = Ŵ · Λ̂ADE · Ŵ
−1
, (5.151)

where

Ŵ =


 V̂ 0̂

B̂ · V̂ · Λ̂−1 1̂


 , Λ̂ADE =

(
Λ̂ 0̂
0̂ 0̂

)
and Ŵ−1 =


 V̂−1 0̂
−B̂ · Â−1 1̂


 . (5.152)

Here, the block entries are determined by the diagonalization in Eq. (5.81) of the original matrix
Â for the anisotropic Maxwell’s equations. Provided the split of the tangential fields

q+ − q− = ∆q =
(

∆qem
∆qaux

)
, (5.153)

into the electromagnetic and auxiliary fields, we can compute the field difference amplitude vector
as in Eq. (5.59)

δ = Ŵ−1
± ·∆q

(5.152)=


 V̂−1

± ·∆qem
−B̂± · Â

−1
± ·∆qem + ∆qaux


 . (5.154)

To finally compute the field difference q− − q−,∗ required for the numerical flux Eq. (5.64),
according to Eqs. (5.56) and (5.89), we need to sum up all eigenvectors


 V̂−

B̂− · V̂− · Λ̂
−1
−


 (5.155)

in Ŵ− associated with negative characteristic velocities in the matrix Λ̂ADE. The resulting field
difference is of the form

q−,∗ − q− (5.56)=


 V̂−

B̂− · V̂− · Λ̂
−1
−


 · δ (5.154)=


 V̂− · V̂

−1
± ·∆qem

B̂− · V̂− · Λ̂
−1
− · V̂

−1
± ·∆qem


 =

(
q−,∗em − q−em
q−,∗aux − q−aux

)
.

(5.156)

Here, the upper entries for the electromagnetic field correspond one-to-one to these derived in
Eq. (5.95). As the flux in Eq. (5.146) only acts on the electromagnetic field part, the correspond-
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ing numerical flux is consequently given by

n · F − n · F ∗ (5.157)

=




[
Ẑ+ + Ẑ−

]−1
·
[
∆E − n(n ·∆E) + Ẑ+ · n×∆H

]

[
Ŷ+ + Ŷ−

]−1
·
[
∆H − n(n ·∆H)− Ŷ+ · n×∆E

]

−a(1)
2,− ·

[
b(1)

2,−

]−1
· ε−1
∞,− ·

[
Ẑ+ + Ẑ−

]−1
·
[
∆E − n(n ·∆E) + Ẑ+ · n×∆H

]

(
a(1)

1,− · b
(1)
2,− − a

(1)
2,− · b

(1)
1,−

)
·
[
b(1)

2,−

]−2
· ε−1
∞,− ·

[
Ẑ+ + Ẑ−

]−1
·
[
∆E − n(n ·∆E) + Ẑ+ · n×∆H

]

...

−a(N)
2,− ·

[
b(N)

2,−

]−1
· ε−1
∞,− ·

[
Ẑ+ + Ẑ−

]−1
·
[
∆E − n(n ·∆E) + Ẑ+ · n×∆H

]

(
a(N)

1,− · b
(N)
2,− − a

(N)
2,− · b

(N)
1,−

)
·
[
b(N)

2,−

]−2
· ε−1
∞,− ·

[
Ẑ+ + Ẑ−

]−1
·
[
∆E − n(n ·∆E) + Ẑ+ · n×∆H

]




.

For this, we basically inserted the already known terms for the electric and magnetic field differ-
ences from Eqs. (5.100). This numerical flux allows the application of all susceptibilities of the
form Eq. (5.131), which covers a wide variety of applications for specific material models.

Based on this general treatment of ADEs, we next discuss the ADEs for the material models
introduced in Chapter 3 and used in this thesis.

5.5.1 Lorentz model

First, we start with the Lorentz model, which describes the response of bound charges. From
the susceptibility Eq. (3.7) in the isotropic case, i.e.,

χL(ω) = ∆εω
2
L

ω2
L − iγLω − ω2 , (5.158)

we can deduce the corresponding tensors

a0 = ∆εω
2
L1 , a1 = a2 = 0 , b0 = ω2

L1 , b1 = γL1 , and b2 = 1 . (5.159)

They are determined by the Lorentz pole strength ∆ε, the pole frequency ωL as well as the
damping γL. Therefore, the ADEs used in the DGTD method for the Lorentz model are

εbg∂tE(r, t) = ∇×H(r, t)− jp(r, t) , (5.160a)
∂tP (r, t) = jaux(r, t) ≡ jp(r, t) , (5.160b)
∂tjp(r, t) = −γLjp(r, t)− ω2

LP (r, t) + ∆εω
2
LE(r, t) . (5.160c)

Consequently, the model is purely local as it does not involve a flux-term in the auxiliary fields.
Furthermore, there is no coupling to currents of other susceptibilities, as only the a0-term in
the susceptibility is non-zero. To compute the influence of a Lorentz model, the DGTD method
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requires two auxiliary fields, i.e., the polarization P and current jp. It doubles the degrees of
freedom to be computed in each element containing the material model.

5.5.2 Drude model

Second, we discuss the ADEs for the Drude model used to describe the response of a metal. The
susceptibility (see Eq. (3.15)) given by

χ(ω) = −
ω2
pl

ω2 + iωγ , (5.161)

determines the susceptibility factors by the plasma frequency ωpl and the damping constant γ
as

a0 = ω2
pl1 , a1 = a2 = b0 = 0 , b1 = γ1 , and b2 = 1 . (5.162)

The corresponding ADEs have the same properties as for the Lorentz model and read

εbg∂tE(r, t) = ∇×H(r, t)− jp(r, t) , (5.163a)
∂tjp(r, t) = −γjp(r, t) + ω2

plE(r, t) . (5.163b)

In contrast to the Lorentz model, only the current, i.e., one auxiliary field is required for the
Drude model.

5.5.3 Effective medium approximation HMM

As third and last material compliant with the rational form of the susceptibility Eq. (5.131), we
discuss the effective medium approximation (EMA) hyperbolic metamaterial (HMM) introduced
in Section 3.4.1. The anisotropic permittivity Eqs. (3.38) and (3.41) of a one-dimensional stack
of dielectric and metallic layers is given by

ε(ω) =




− (1−f)ω2
pl−εdω(ω+iγ)
ω(ω+iγ) 0 0

0 − (1−f)ω2
pl−εdω(ω+iγ)
ω(ω+iγ) 0

0 0 εd
ω2

pl−εdω(ω+iγ)
fω2

pl−εdω(ω+iγ)



. (5.164)

Here, we assume the layers to be stacked in z-direction. The layers are described by a non-
dispersive dielectric εd as well as the Drude model with plasma frequency ωpl and damping γ.
The thickness ratio of the single layers within a unit cell is described by the fill factor f ∈ [0, 1]
from pure metallic to pure dielectric. Thus, the tensor entries in the permittivity similar to
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Eq. (5.131), are determined by

a0 =




(1− f)ω2
pl 0 0

0 (1− f)ω2
pl 0

0 0 ω2
pl


 , a1 = εdγ 1 , a2 = εd 1 , (5.165a)

b0 =




0 0 0
0 0 0
0 0 f

ω2
pl
εd


 , b1 = γ 1 , b2 = 1 . (5.165b)

This results in the set of ADEs describing the EMA HMM given by

εd∂tE(r, t) = ∇×H(r, t)− jp(r, t) , (5.166a)
∂tD(r, t) = ∇×H(r, t) , (5.166b)

∂tjp,x/y(r, t) = −γjp,x/y(r, t) + (1− f)ω2
plEx/y(r, t) , (5.166c)

∂tjp,z(r, t) = −γjp,z(r, t)− f
ω2
pl
εd
Dz(r, t) + ω2

plEz(r, t) . (5.166d)

Here, we see that the ADEs are essentially those of the Drude model, but now with anisotropic
driving parameters for the currents jp. In the metal limit f = 0, the ADEs are identical to those
of the Drude model Eq. (5.163). In the dielectric limit f = 1, the driving terms of the currents
vanish, as in this case D(r, t) = εdE(r, t).

5.5.4 Four-level system

In contrast to the three previous material models, the 4LS material model introduced in Sec-
tion 3.5 does not comply with the form of the susceptibility Eq. (5.131). However, the equations
of motion (3.64) to (3.66) are already in the conservation form required for the DGTD method.
We, therefore, expand the DGTD field vector with the polarizations, currents, and occupation
densities as auxiliary fields, i.e.,

q(r, t) =




E(r, t)
H(r, t)
p03(r, t)
p12(r, t)
j03(r, t)
j12(r, t)
N0(r, t)
N1(r, t)
N2(r, t)
N3(r, t)




, and set Q =




εbg 0 0 . . . 0
0 µ

bg
0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1



. (5.167)

The flux term for the auxiliary fields is zero and the source term is equivalent to the right-hand
sides of Eqs. (3.64) to (3.66), respectively. Another difference lies in the initial condition of the
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auxiliary fields. In contrast to the previous fields, the total occupation must fulfill N0 + N1 +
N2 +N3 = 1. Typically, one chooses a fully occupied ground state N0 = 1 as an initial condition,
while all other fields are zero.

5.6 Perfectly matched layers

After the discussion on dispersive material models used in the thesis, we close this chapter with
a description of PMLs. These are artificial anisotropic absorbing material layers [63, 74, 75,
151] used to prevent back-reflections caused by the BCs discussed in Section 5.3.4. Hereby, the
PMLs are perfectly matched to the adjacent material, i.e., the boundary to the material to be
terminated does not cause any reflections for an ideal PML. This idea of an absorbing material
layer can be implemented with a complex continuation of the coordinates used in the PML
regions [63, 151]. Typically, these regions are set as axis-aligned outer boundary layers to the
computational domain, i.e., as a surrounding box for either two- or three-dimensional meshes as
shown in Fig. 5.1.

As an example of how to introduce such a coordinate transformation, we consider a PML aligned
in x-direction. For this, we replace the coordinates by

x→ x̃ = x+ iσ
ω

(
x− xPML

)
Θ
(
x− xPML

)
. (5.168)

An example path for this transformation is shown in Fig. 5.7 (a). This coordinate continuation
works in frequency domain and the specific choice of the real-valued prefactor σ

ω guarantees, that
for a non-dispersive material all frequency components of a plane wave field

q(x, ω) ∝ eikxx xPML=0→ q(x̃, ω) ∝ eikxxe−σ
kx
ω
x , with kx ≤ √εbgµbg ω , (5.169)

are damped with the same spatial decay length σ−1. The associated damping of a plane wave
inside the PML is sketched in Fig. 5.7 (b).

The continuation of the coordinates within the PMLs causes a change of the spatial derivatives

∂

∂x
→ 1

sx(ω)
∂

∂x
,

∂

∂y
→ 1

sy(ω)
∂

∂y
and ∂

∂z
→ 1

sz(ω)
∂

∂z
, (5.170)

in Maxwell’s curl-equations (2.31) in frequency domain to

−iωεE (ω) = ∇̃ (ω)×H (ω) , (5.171a)
iωµ (ω)H (ω) = ∇̃ (ω)×E (ω) . (5.171b)

Here, we defined

∇̃ (ω) =
(

1
sx (ω)∂x,

1
sy (ω)∂y,

1
sz (ω)∂z

)T

, (5.172)
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Figure 5.7: (a) Path of a complex continued coordinate x̃ used for the implementation
of PMLs. (b) Damping of a plane wave, i.e., Fourier component of the field with a fixed
frequency, impinging on the PML based on the coordinates shown in (a).

with the stretching factors

si (ω) = 1− σi
iω , for i ∈ {x, y, z} . (5.173)

For the implementation of these PMLs, there exist two possibilities.

In the first case of uniaxial perfectly matched layers (uPMLs), the change in the derivatives is
cast onto the material parameters, which introduces an anisotropic dispersive permittivity tensor
ε(ω) and permeability tensor µ(ω). These artificial dispersive materials are described with ADEs
as in the previous Section 5.5. This has the advantage of an unchanged numerical flux in the
DGTD method and is, therefore, easier to implement. However, a trade-off using uPMLs arises,
when dispersive materials shall be terminated. For each dispersive material model, a new set of
ADEs has to be derived and implemented.

The second alternative case is to leave the coordinate stretching in place with the spatial deriva-
tive operators. This gives rise to stretched coordinate perfectly matched layers (SCPMLs). Due
to the frequency-dependence of the stretching factors in Eq. (5.173), these PMLs still require a
set of ADEs. Moreover, a new numerical flux has to be introduced for the auxiliary fields. Once
implemented, the SCPMLs can be directly used with other ADEs for dispersive material models
like those introduced in Section 5.5.

5.6.1 Uniaxial PMLs

Within the thesis, we only use uPMLs to terminate scalar non-dispersive materials defined by
parameters εr for the permittivity and µr for the permeability. For the uPMLs, the material
parameters are replaced by dispersive tensors [63, 152]

εr → εrΛtot(ω) and µr → µrΛtot(ω) . (5.174)
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Here, the overall tensor

Λtot(ω) = Λ
x
(ω) ·Λ

y
(ω) ·Λ

z
(ω) =




sysz
sx

0 0
0 sxsz

sy
0

0 0 sxsy
sz


 . (5.175)

It is composed of the single direction tensors

Λ
x
(ω) =




1
sx

0 0
0 sx 0
0 0 sx


 , Λ

y
(ω) =



sy 0 0
0 1

sy
0

0 0 sx


 and Λ

z
(ω) =



sz 0 0
0 sz 0
0 0 1

sz


 , (5.176)

which introduce the wave-damping in the specific directions. Inside the PML regions, the stretch-
ing factors si(ω) are defined by Eq. (5.173). The resulting frequency-dependent permittivity and
permeability imply another set of ADEs to compute the fields inside the uPMLs. Similar to the
previous Section 5.5, one finds the ADEs for the uPMLs [75, 151] given by

εr∂tE(r, t) = ∇×H(r, t) +




[+σx − σy − σz] εrEx(r, t)
[−σx + σy − σz] εrEy(r, t)
[−σx − σy + σz] εrEz(r, t)


− P (r, t) , (5.177a)

∂tP (r, t) =




[σx(+σx − σy − σz) + σyσz] εrEx(r, t)
[σy(−σx + σy − σz) + σxσz] εrEy(r, t)
[σz(−σx − σy + σz) + σxσy] εrEz(r, t)


−



σxPx(r, t)
σyPy(r, t)
σzPz(r, t)


 , (5.177b)

µr∂tH(r, t) = −∇×E(r, t) +




[+σx − σy − σz] εrHx(r, t)
[−σx + σy − σz] εrHy(r, t)
[−σx − σy + σz] εrHz(r, t)


−M(r, t) , (5.177c)

∂tM(r, t) =




[σx(+σx − σy − σz) + σyσz] εrHx(r, t)
[σy(−σx + σy − σz) + σxσz] εrHy(r, t)
[σz(−σx − σy + σz) + σxσy] εrHz(r, t)


−



σxMx(r, t)
σyMy(r, t)
σzMz(r, t)


 . (5.177d)

This clearly shows that the ADEs for the auxiliary fields P and M do not contain a flux term
and are therefore local.

For the use within the DGTD method, the choice of the spatial damping parameter σ = σx,y,z is
important. Inside a single uPML on the boundary of the computational domain in i-th direction,
the corresponding value σi > 0 is set. Thus, only in the corners of the computational domain
(see Fig. 5.1), the different σi-values are non-zero simultaneously. A thorough analysis of the
ideal choice of damping parameters σ is provided, e.g., in [75, 151]. As an approximate rule,
one sets the parameter to σ ≈ 10

2d , where d is the thickness of the PML which should at least
cover half the main operation wavelength in the computation. If the values for σ are chosen too
small, the uPML is hardly absorbing anything. If the damping σ is set to high, the exponential
decay within an element cannot be approximated by the Lagrange polynomial basis functions
(see Section 5.2.1). Therefore, in the limit of σ → ∞ the PMLs turn into a perfect mirror. To
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use the PMLs with dispersive materials, we next discuss the second option of SCPMLs.

5.6.2 Complex frequency-shifted stretched coordinate PMLs

For the SCPMLs, used to terminate dispersive materials, one additionally introduces a frequency
filter into the damping [63, 153, 154]. This allows for selective damping of, e.g., high-frequency
signals. In contrast to the DGTDmethod which assumes element-wise constant ADE parameters,
the FDTDmethod uses such spatially dependent frequency filters, which can reduce the necessary
PML thickness and partly deal with evanescent fields [63, 154]. One replaces the stretching factors
in Eq. (5.173) by

si(ω) = 1− σi
iω − αi

. (5.178)

Here, the introduced values αi correspond to a low-pass filter. As the parameter is a complex shift
to the frequencies, these PMLs are referred to as complex frequency-shifted perfectly matched
layers (CFSPMLs).

In contrast to the uPMLs, we directly introduce auxiliary fields for the CFSPMLs in the complex
continued Maxwell’s equations (5.171), i.e.,

−iωε (ω)Ei(r, ω) =
∑

j,k

εijk

[
∂iHk(r, ω) +

(
1

sj (ω) − 1
)
∂jHk(r, ω)

︸ ︷︷ ︸
−GEij(r,ω)

]
, (5.179a)

−iωµ (ω)Hi(r, ω) =−
∑

j,k

εijk

[
∂jEk(r, ω) +

(
1

sj (ω) − 1
)
∂jEk(r, ω)

︸ ︷︷ ︸
GHij (r,ω)

]
. (5.179b)

Here, we define the auxiliary fields GE and GH . These can be cast back into the time domain
using

1
si (ω) − 1 = σi

iω − (σi + αi)
, (5.180)

as well as

GEij(r, ω) =−
∑

k

εijk
σj

iω −
(
σj + αj

)∂jHk(r, ω) ,

−iωGEij(r, ω) =−
(
σj + αj

)
GEij(r, ω) +

∑

k

εijkσj∂jHk(r, ω) (5.181a)

and GHij (r, ω) =
∑

k

εijk
σj

iω −
(
σj + αj

)∂jEk(r, ω) ,
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−iωGHij (r, ω) =−
(
σj + αj

)
GHij (r, ω)−

∑

k

εijkσj∂jEk(r, ω) . (5.181b)

Replacing the frequency factors according to Eq. (2.33), the ADEs for the auxiliary fields read

∂tG
E
ij(r, t) =−

(
σj + αj

)
GEij(r, t) +

∑

k

εijkσj∂jHk(r, t) (5.182a)

and ∂tG
H
ij (r, t) =−

(
σj + αj

)
GHij (r, t)−

∑

k

εijkσj∂jEk(r, t) . (5.182b)

Besides the damping with the parameter σj +αj , these contain spatial derivatives of the E- and
H-field as driving terms. Therefore, there is a non-vanishing flux component for the auxiliary
fields. Assuming, without loss of generality, non-dispersive materials, we can cast these ADEs
into the conservation form Eq. (5.1) for the DGTD method. In contrast to the uPMLs, we have
twice as many auxiliary fields and the field vector is given by

q(r, t) =
(
Ex, Ey, Ez, Hx, Hy, Hz, G

E
xy, G

E
xz, G

E
yx, G

E
yz, G

E
zx, G

E
zy, G

H
xy, G

H
xz, G

H
yx, G

H
yz, G

H
zx, G

H
zy

)T
.

(5.183)

The material tensor is extended to

Q = diag
(
ε, ε, ε, µ, µ, µ, σ−1

y , σ−1
z , σ−1

x , σ−1
z , σ−1

x , σ−1
y , σ−1

y , σ−1
z , σ−1

x , σ−1
z , σ−1

x , σ−1
y

)
, (5.184)

while the source term, neglecting other ADE or free volumetric sources, reads

S(r, t) = −
(
GExy +GExz, G

E
yx +GEyz, G

E
zx +GEzy, G

H
xy +GHxz, G

H
yx +GHyz, G

H
zx +GHzy,

αy + σy
σy

GExy,
αz + σz
σz

GExz,
αx + σx
σx

GEyx,
αz + σz
σz

GEyz,
αx + σx
σx

GEzx,
αy + σy
σy

GEzy,

αy + σy
σy

GHxy,
αz + σz
σz

GHxz,
αx + σx
σx

GHyx,
αz + σz
σz

GHyz,
αx + σx
σx

GHzx,
αy + σy
σy

GHzy,

)T

. (5.185)

Finally, the flux entries take the form

ex · F
(
q
)

=
(

0, Hz,−Hy,0,−Ez, Ey, 0, 0, Hz, 0,−Hy, 0, 0, 0,−Ez, 0, Ey, 0
)T

, (5.186a)

ey · F
(
q
)

=
(
−Hz, 0, Hx,Ez, 0,−Ex, −Hz, 0, 0, 0, 0, Hx, Ez, 0, 0, 0, 0,−Ex

)T
, (5.186b)

ez · F
(
q
)

=
(
Hy,−Hx, 0,− Ey, Ex, 0, 0, Hy, 0,−Hx, 0, 0, 0,−Ey, 0, Ex, 0, 0

)T
. (5.186c)

As the auxiliary fields GE and GH contain spatial derivatives of the E- and H-fields and are
determined by non-zero flux terms, we require a derivation of the numerical upwind flux here.
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5.6.3 Upwind flux for CFSPMLs

Due to the splitting of the curl-operator in Eqs. (5.179), the derivation of the CFSPML upwind
flux for the auxiliary fields becomes more challenging. The simplification to only tangential field
components in the Riemann problem Eq. (5.47) used for the upwind flux derivation is no longer
possible here. Based on the splitting which is similar to the original split-field PMLs by Bérenger
[63, 154, 155] used in the FDTD method, the numerical split-flux

[
n · F − n · F ∗

]
GEij

=
∑

k

εijk
nj

Z̄

(
Z+∆H − αn×∆E

)
k
, (5.187a)

[
n · F − n · F ∗

]
GHij

=
∑

k

εijk
nj

Ȳ

(
Y+∆E + αn×∆H

)
k
, (5.187b)

has been suggested in [75, 151]. This split-flux is induced by an analogy consideration from the
isotropic numerical upwind flux Eq. (5.107) including the admittances Y± and impedances Z±
therein. The original flux, e.g.,

[
n · F − n · F ∗

]
Ex

=
[
n · F − n · F ∗

]
GExy

+
[
n · F − n · F ∗

]
GExz

(5.188)

is split into the two contributions of the auxiliary fields.

Here, we provide a full derivation of this flux and show that it agrees with the upwind flux for
the CFSPML set of ADEs (5.182). For the derivation of the upwind flux, we follow the steps
presented in Section 5.3.1. For this, we here consider the one-dimensional Riemann problem
on an element interface for the entire 18-dimensional field vector Eq. (5.183). To obtain the
characteristics and field discontinuities near the interface (see Fig. 5.4), we need to diagonalize
the matrix

ÂCFSPML =




0 0 0 0 nz
ε

−ny

ε

0 0 0 −nz
ε

0 nx
ε

0 0 0 ny

ε
−nx

ε
0

0 −nz
µ

ny

µ
0 0 0

nz
µ

0 −nx
µ

0 0 0
−ny

µ
nx
µ

0 0 0 0
0 0 0 0 0 −nyσy
0 0 0 0 nzσz 0
0 0 0 0 0 nxσx 0̂12×18
0 0 0 −nzσz 0 0
0 0 0 0 −nxσx 0
0 0 0 nyσy 0 0
0 0 nyσy 0 0 0
0 −nzσz 0 0 0 0
0 0 −nxσx 0 0 0

nzσz 0 0 0 0 0
0 nxσx 0 0 0 0

−nyσy 0 0 0 0 0




. (5.189)

It determines the field dynamics in the Riemann problem Eq. (5.47). However, a problem arises
here.
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First, the upper 6×6-matrix block determined by Maxwell’s curl equations is already singular. In
the setup deriving the flux for Maxwell’s equations without any auxiliary fields in Section 5.3.2,
this allowed fixing the normal field components in dependence of the tangential components.
Therefore, the Riemann problem Eq. (5.75) only contains the tangential fields. Despite its
singularity, this matrix is well diagonalizable, similarly to that of the material ADEs shown in
Eq. (5.150).

The second even more important problem arises as the matrix ÂCFSPML is not even diagonaliz-
able, which is assumed for the upwind flux derivation in Eq. (5.49). The matrix ÂCFSPML can
be transformed into a Jordan normal form, i.e.,

ÂCFSPML = V̂ · Ĵ · V̂−1
, (5.190)

in which the matrix Ĵ is not diagonal. It contains block matrices with entries both on the
diagonal and one-entries on the superdiagonal of each block. Here, it takes the form

Ĵ =




0̂10×10 0̂8×10
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

0̂10×8 0 0 0 0 − 1√
εµ 0 0 0

0 0 0 0 0 − 1√
εµ 0 0

0 0 0 0 0 0 1√
εµ 0

0 0 0 0 0 0 0 1√
εµ




. (5.191)

Hence, within the Riemann problem, we have to account for the two non-diagonal 2×2-blocks

Ĵ11,12 = Ĵ13,14 =
(

0 1
0 0

)
, (5.192)

contained in the diagonal of the matrix Ĵ for the Jordan normal form of ÂCFSPML. As the Rie-
mann problem splits apart for every diagonal matrix block, we solve the homogeneous Riemann
problem

∂tq(n, t) + Â∂nq(n, t) = 0 , (5.193)

with two-dimensional fields q(n, t), where

Â = V̂ ·
(
λ 1
0 λ

)
· V̂−1

. (5.194)

As in the fully diagonalizable case, we expand the fields q in terms of the (associated) eigenvectors

106



Perfectly matched layers 5.6

v contained in the matrix V̂ and define

α(n, t) = V̂−1 · q(n, t) . (5.195)

This means we need to solve two equations for the field amplitudes α.

Similar to the fully diagonalizable case Eq. (5.51), this is an advection equation for the second
amplitude given by

∂tα2(n, t) + λ∂nα2(n, t) = 0 . (5.196)

It is solved by

α2(n, t) = α2(n− λt, t = 0) . (5.197)

For the first amplitude, we find the inhomogeneous advection equation

∂tα1(n, t) + λ∂nα1(n, t) = −∂nα2(n, t) . (5.198)

Note, how the solution of α2 acts as a source term here. Considering the solution for the Riemann
problem with the initial field jump ∆α2 = α+

2 − α−2 , this source term is of the form

−∂nα2(n, t) =
(
α+

2 − α−2
)
δ(n− λt) . (5.199)

We can use the Green’s function

G
(
n− n′, t− t′

)
= δ

(
n− n′ − λ(t− t′)

)
, (5.200)

to calculate the solution of the inhomogeneous advection Eq. (5.198). Thus, the solution contains
a δ-distribution. Here, in the relevant case of λ = 0, it is given by

α1(n, t) = −∂nα2(n)t+ α1(n, t = 0) =
(
α+

2 − α−2
)
t δ(n) + α1(n, t = 0) , (5.201)

and contains a δ-discontinuity at the interface n = 0, which grows linearly in time. However, in
this specific case, this δ-discontinuity poses no serious problem. Although we need to know the
field values at the material interface to calculate the flux, the associated eigenvectors only contain
entries for the CFSPML auxiliary field components GE and GH . Similar to the discussion about
the flux derivation for the dispersive material ADEs in Section 5.5, also the CFSPML flux in
Eq. (5.186) relies on the evaluation of the electromagnetic field components only. The relevant
eigenvectors and associated eigenvectors for the non-zero blocks of the Jordan normal form in
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Eq. (5.190) are given by
(
v11 v12 v13 v14 v15 v16 v17 v18

)
= (5.202)




0 0 0 nx
nz√
εµ 0 − nz√

εµ 0
0 0 0 ny 0 − nz√

εµ 0 nz√
εµ

0 0 0 nz − nx√
εµ

ny√
εµ

nx√
εµ − ny√

εµ

0 nx 0 0 nxny

µ −n
2
y+n2

z

µ
nxny

µ −n
2
y+n2

z

µ

0 ny 0 0 n2
y−1
µ

nxny

µ

n2
y−1
µ

nxny

µ

0 nz 0 0 nynz

µ
nxnz

µ
nynz

µ
nxnz

µ

−nynzσy 0 0 0 n2
ynzσy

Z
nxnynzσy

Z −n
2
ynzσy

Z −nxnynzσy

Z

nynzσz 0 0 0
nz

(
n2

x+n2
z

)
σz

Z −nxnynzσz

Z

(
n2

y−1
)
nzσz

Z
nxnynzσz

Z

nxnzσx 0 0 0 −nxnynzσx

Z −n
2
xnzσx

Z
nxnynzσx

Z
n2

xnzσx

Z

−nxnzσz 0 0 0 nxnynzσz

Z −nz

(
n2

y+n2
z

)
σz

Z −nxnynzσz

Z

nz

(
n2

y+n2
z

)
σz

Z

−nxnyσx 0 0 0
nx

(
n2

y−1
)
σx

Z
n2

xnyσx
√
ε√

µ

nx

(
n2

x+n2
z

)
σx

Z −n
2
xnyσx

Z

nxnyσy 0 0 0 −nxn
2
yσy

Z

ny

(
n2

y+n2
z

)
σy

Z

nxn
2
yσy

Z −ny

(
n2

y+n2
z

)
σy
√
ε

√
µ

0 0 nynzσy 0 nxnyσy −n2
yσy nxnyσy −n2

yσy
0 0 −nynzσz 0 0 −n2

zσz 0 −n2
zσz

0 0 −nxnzσx 0 −n2
xσx nxnyσx −n2

xσx nxnyσx
0 0 nxnzσz 0 −n2

zσz 0 −n2
zσz 0

0 0 nxnyσx 0 0 nxnzσx 0 nxnzσx
0 0 −nxnyσy 0 nynzσy 0 nynzσy 0




.

These are calculated with the help of Mathematica [156] for the case in which the element’s
interface normal component |ny| < 1. The vectors v11 and v13 associated with the inhomogeneous
advection equations are zero for the first six electromagnetic field entries and are therefore not
contributing to the numerical flux. The same holds for the first ten vectors v1 to v10 not shown
here.

The calculation of the numerical upwind flux defined in Eq. (5.64) requires the field differences
on the element interface, i.e.,

q−,∗ − q− = δ1v−,15 + δ2v−,16 + δ3v12 + δ4v14 +
∑

j

δ
(nc)
−,j v

(nc)
Lj (5.203a)

and q+ − q+,∗ = δ5v+,17 + δ6v+,18 + δ7v12 + δ8v14 +
∑

k

δ
(nc)
+,k v

(nc)
+,j . (5.203b)

These differences between the fields q± at the beginning of a DGTD time step and the interface
fields q±,∗ at the end of the time step, contain the amplitude differences δ as defined in Eq. (5.59).
Additionally, the eigenvectors, i.e., field polarization states, with either zero and negative or zero
and positive characteristic speeds are included. The characteristic speeds are obtained from the
diagonal of the matrix Ĵ shown in Eq. (5.191). Note, that field eigenvectors v12 and v14 with
zero speed are accounted for twice on each side of the interface. Accordingly, the field amplitude
differences δj are introduced twice on each element side and are fixed by the field BCs. In
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contrast to the defining Eq. (5.59) which shall hold on either element interface side individually,
a new set of indices is introduced here. All eigenvectors without entries in the electromagnetic
fields are labeled as non-contributing (nc), as they do not contribute to the numerical flux, which
is calculated by applying the flux Eq. (5.186) to the interface field differences.

To impose the field BCs, we rely on the interface coordinate system {n, t1, t2} defined in Sec-
tion 5.3.1. The continuity of the tangential E- and H-field components (see Eqs. (2.44)) are
imposed by

(
t1

0(15)

)
·
(
q+,∗ − q−,∗

)
= 0 and




0(3)
t1

0(12)


 ·

(
q+,∗ − q−,∗

)
= 0 , (5.204a)

(
t2

0(15)

)
·
(
q+,∗ − q−,∗

)
= 0 and




0(3)
t2

0(12)


 ·

(
q+,∗ − q−,∗

)
= 0 . (5.204b)

The continuity of the D- and B-fields normal component (see Eqs. (2.43)) is equivalent to

(
n

0(15)

)
·
(
Q̂+ · q+,∗ − Q̂− · q−,∗

)
= 0 and




0(3)
n

0(12)


 ·

(
Q̂+ · q+,∗ − Q̂− · q−,∗

)
= 0 .

(5.205)

All non-contributing eigenvectors v(nc)
± are normal to the vectors used for the BC definition, such

that the specification of the amplitudes δ1 to δ8 suffices to determine the numerical upwind flux.
Since the vectors v12 and v14 correspond to the normal vectors for either the E- or H-field
components, we can not determine the amplitude pairs δ3, δ7 and δ4, δ8 completely. We find,
that

n ·∆D = ε−δ3 + ε+δ7 and n ·∆B = µ−δ4 + µ+δ8 . (5.206)

A possible choice to equal out the amplitudes is

δ3 = δ7 = n ·∆D
ε− + ε+

and δ4 = δ8 = n ·∆B
µ− + µ+

. (5.207)

This equally distributes the field contribution to either side of the interface. The remaining four
contributing field difference amplitudes δj defined in Eqs. (5.203) are fixed by the other four
tangential BCs as well as the initial field differences by




t1 ·∆E
t1 ·∆H
t2 ·∆E
t2 ·∆H


 =




t1 · (E+ −E−)
t1 · (H+ −H−)
t2 · (E+ −E−)
t2 · (H+ −H−)


 = V̂± ·




δ1
δ2
δ5
δ6


 . (5.208)
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Here, the coupling matrix

V̂± =




n2
y−1√
ε−µ−

nxny√
ε−µ−

1−n2
y√

ε+µ+
− nxny√

ε+µ+

0 nz
µ−

0 nz
µ+

0 nz√
ε−µ−

0 − nz√
ε+µ+

1−n2
y

µ−
−nxny

µ−
1−n2

y

µ+
−nxny

µ+



, (5.209)

is obtained by projection of the vectors v15 to v18 on the respective tangential interface vectors

t1 =
(
−nz 0 nx

)T
and t2 =

(
nxny 1− n2

y nynz

)T
(5.210)

used for the BC definitions in Eqs. (5.204). Consequently, the field difference amplitudes are




δ1
δ2
δ5
δ6


 =




(
−∆Eynxny+∆HzZ+ny−∆Eznxnz+∆Ex

(
n2
y+n2

z

)
−∆HynzZ+

)
µ−

nz(Z−+Z+)(
∆Exnxny+∆Eznzny+∆Ey

(
n2
y−1

)
+∆HznxZ+−∆HxnzZ+

)
µ−

nz(Z−+Z+)(
∆Eynxny+∆HzZ−ny+∆Eznxnz−∆Ex

(
n2
y+n2

z

)
−∆HynzZ−

)
µ+

nz(Z−+Z+)

−

(
∆Exnxny+∆Eznzny+∆Ey

(
n2
y−1

)
−∆HznxZ−+∆HxnzZ−

)
µ+

nz(Z−+Z+)




. (5.211)
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With these amplitudes, we obtain the numerical upwind flux for the CFSPML ADEs as

n · F
(
q−
)
− n · F

(
q−,∗

) (5.203),(5.186)=



1
Z̄

([
∆E − n(n · ∆E)

]
+ Z+n× ∆H

)
1
Ȳ

([
∆H − n(n · ∆H)

]
− Y+n× ∆E

)
1
Z̄
ny

[
Z+

[
∆H − n

(
n · ∆H

)]
− n× ∆E

]
z

+ ny
n·∆B
µ++µ−

nz

− 1
Z̄
nz

[
Z+

[
∆H − n

(
n · ∆H

)]
− n× ∆E

]
y

− nz
n·∆B
µ++µ−

ny

− 1
Z̄
nx

[
Z+

[
∆H − n

(
n · ∆H

)]
− n× ∆E

]
z

− nx
n·∆B
µ++µ−

nz

1
Z̄
nz

[
Z+

[
∆H − n

(
n · ∆H

)]
− n× ∆E

]
x

+ nz
n·∆B
µ++µ−

nx

1
Z̄
nx

[
Z+

[
∆H − n

(
n · ∆H

)]
− n× ∆E

]
y

+ nx
n·∆B
µ++µ−

ny

− 1
Z̄
ny

[
Z+

[
∆H − n

(
n · ∆H

)]
− n× ∆E

]
x

− ny
n·∆B
µ++µ−

nx

− 1
Ȳ
ny

[
Y+

[
∆E − n

(
n · ∆E

)]
+ n× ∆H

]
z

− ny
n·∆D
ε++ε−

nz

1
Ȳ
nz

[
Y+

[
∆E − n

(
n · ∆E

)]
+ n× ∆H

]
y

+ nz
n·∆D
ε++ε−

ny

1
Ȳ
nx

[
Y+

[
∆E − n

(
n · ∆E

)]
+ n× ∆H

]
z

+ nx
n·∆D
ε++ε−

nz

− 1
Ȳ
nz

[
Y+

[
∆E − n

(
n · ∆E

)]
+ n× ∆H

]
x

− nz
n·∆D
ε++ε−

nx

− 1
Ȳ
nx

[
Y+

[
∆E − n

(
n · ∆E

)]
+ n× ∆H

]
y

− nx
n·∆D
ε++ε−

ny

1
Ȳ
ny

[
Y+

[
∆E − n

(
n · ∆E

)]
+ n× ∆H

]
x

+ ny
n·∆D
ε++ε−

nx




. (5.212)

Within this numerical flux, we recover the same numerical upwind flux for the electromagnetic
field components as in Eq. (5.107). In contrast, to the first six field entries, the upwind flux
for the CFSPML auxiliary fields GE and GH contain a projection of the same terms onto the
corresponding normal vector components and an additional term depending on either the field
difference ∆D or ∆B, respectively. These terms stem from the imposed normal-component BC
in Eq. (5.207). In the case of identical background permittivities and permeabilities, we find

n ·∆D
ε+ + ε−

ε+=ε−−→ n ·∆E
2 and n ·∆B

µ+ + µ−

µ+=µ−−→ n ·∆H
2 , (5.213)

and the numerical upwind flux Eq. (5.212) reduces to the split-flux presented in Eq. (5.187). This
split-flux is used in the subsequent chapter to terminate a single dispersive gold layer. Within
the thesis, we only use the CFSPMLs with the damping parameters σ chosen as described in
Section 5.6.1 about the uPMLs. The complex frequency shift is set to α = 0 here, as for typical
DGTD setups the computational accuracy depends much stronger on the actual damping σ than
the frequency shift α. This is, e.g., shown in a full parameter screening presented in [151].
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CHAPTER 6

Electron energy loss spectroscopy

Electron energy loss spectroscopy (EELS) is a well-established method for the characterization
of materials using a transmission electron microscope (TEM) [4, 157]. While often used for
atomic resolution imaging, it also provides a versatile tool for the characterization of plasmonic
nanostructures [5]. EELS relies on the measurement of the electron energy loss of a nearly
monoenergetic electron beam interacting with a given sample. Typically the electrons in the
TEM used are accelerated to energies in the range of E ∈ [50 keV, 400 keV] [5]. The energy loss
experienced by the electrons interacting with a sample structure reaches from the meV to keV
regime depending on the different interactions, i.e., from plasmon excitations to the ionization
of inner atomic shells [157].

Here, we concentrate on the excitation of surface plasmon polaritons (SPPs) in metallic nanos-
tructures, which lead to electron energy losses in the regime of a few electronvolts, i.e., ∆Eloss ∈
[0.5 eV, 10 eV]. This electron energy loss is determined in a scanning transmission electron micro-
scope (STEM), in which the electron beam is focused to the vicinity or directly at the metallic
nanostructure. Typically the STEM current is reduced so far that the electron beam becomes so
diluted, such that statistically, the interaction with the plasmonic sample happens single electron
by electron. For the relativistically moving electrons, the interaction time lies in the regime of a
few hundred femtoseconds.

In this chapter, we discuss how to compute the electron energy loss probability (EELP) spectra
for swift electrons interacting with spherical plasmonic nanoparticles as well as a thin periodically
perforated gold film. In Section 6.1 we summarize a short derivation of the EELP which relies on
the perturbative interaction of a single electron charge and its self-induced electromagnetic field.
Normally the EELP computations rely on the induced field of a single electron point-charge [5,
158]. However, we here introduce an approximate computation utilizing smoothed electron charge
distributions, presented in Appendix A. This heuristic treatment allows for the computation of
the EELP not only in the direct vicinity of a plasmonic scatterer, i.e., in the exponential fall-off
region of the SPP modes supported but also for a numerically reliable evaluation of the EELP for
electron trajectories intersecting the metallic sample. A thorough test of this smoothed charge
implementation is carried out in Section 6.2 for a metallic sphere with a Drude model permittivity.
In the final Section 6.3, we compute the transmittance spectra of the periodically perforated gold
films with extraordinary optical transmission (EOT) presented in the introductory Chapter 1.
We close this last section with discontinuous Galerkin time-domain (DGTD) computations of the
EELP mapping, which is related but not identical to the projected photonic local density of states
(LDOS) [159] determined by the SPP modes supported on the gold film. Both transmittance
spectra and EELP maps are compared with experimental data [K7].
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6.1 Basics of EELS

In order to derive the EELP one has in principle to solve both the Dirac equation of the single
electron moving at relativistic speeds simultaneously with quantized electromagnetic field [160].
However, the main focus of this chapter lies in the numerical computation of the EELP. Hence, we
outline the short historical and semiclassical derivation by Ritchie [6] following the presentation
in [5, 161].

The EELP Γ(ω) is defined by the electron energy loss

(SI) ∆Eloss =
∫ ∞

0
dE E Γ(E/~) =

∫ ∞

0
d(~ω) ~ω Γ(ω) , (6.1)

which a single electron experiences during the interaction with a sample. The change in energy

(SI) ∆E = e

∫ ∞

−∞
dt ṙe(t) ·Escat

(
re(t), t

)
, (6.2)

of a classical electron is determined by the scattered field (Sf). The Sf is a response of the
material induced by the electron. It acts back on the electron itself, which follows the (center of
charge) trajectory re(t). Within the derivation [5, 6, 161] both energy losses are equated. For
this, we apply the Fourier transform of the scattered, real-valued E-field and find

(SI) ∆E = e

2π

∫ ∞

−∞
dω
∫ ∞

−∞
dt ṙe(t) ·Escat

(
re(t), ω

)
e−iωt ,

= e

π

∫ ∞

0
dω
∫ ∞

−∞
dt Re

[
ṙe(t) ·Escat

(
re(t), ω

)
e−iωt

]
. (6.3)

Here the electron trajectory re(t) is still parameterized by the time t. As the single electrons are
accelerated to high kinetic energies, they carry a high momentum. Within the no-recoil approx-
imation (NRA) it is assumed that each electron loses energy but hardly changes its trajectory.
For the interaction region, we assume a straight-line trajectory

re(t) = v t+ r0 , where v = vez . (6.4)

Within the thesis and without loss of generality, we set the electron movement into z-direction.
Consequently, the electron trajectory is also parameterized by the coordinates x0 and y0, the
fixed velocity v, and the position z. We can infer the EELP by direct comparison of Eq. (6.1)
and the classical energy loss Eq. (6.3) to be

(SI) Γ(ω) = e

π~2ω

∫ ∞

−∞
dtRe

[
ṙe(t) ·Escat

(
re(t), ω

)
e−iωt

]
,

(6.4)= e

π~2ω

∫ ∞

−∞
dzRe

[
Escat,z

(
x0, y0, z, ω

)
e−iω z−z0

v

]
. (6.5)

As the EELP spectrum contains the scattered electric field Escat induced by the electron point
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charge with charge density

(SI) ρ(r) = −e δ(r − re(t)) , (6.6)

it is also closely related to electric scattered field Green’s tensor Gscat. The dyadic Green’s tensor
can itself be expanded into the resonances, i.e., quasinormal mode (QNM) of the system [122].
This allows for a mapping of these modes, especially SPPs by scanning the impact position of
the electron beam with respect to the lateral coordinates x and y. As the electric scattered field
Green’s tensor Gscat solves the inhomogeneous version of the Helmholtz equation (2.55), i.e.,

(SI) ∇×∇×Gscat(r, r
′, ω)− ω2

c2
0

(
εr(r, ω)− 1

)
Gscat(r, r

′, ω) = 1 δ(r − r′) , (6.7)

it is directly related to the scattered electric field of the electron by

(SI) Escat(r, ω) = iωµ0

∫
d3r′Gscat(r, r

′, ω) · j(r, ω) . (6.8)

The connection between EELP and the electric Green’s tensor follows directly given the current
density associated with the electron passing the sample. By charge conservation Eq. (2.2) it is
determined from the electron’s point charge density Eq. (6.6) by

(SI) j(r, ω) = −ev
∫

dt eiωtδ(r − re(t))
(6.4)= −e δ(x− x0)δ(y − y0)eiω z−z0

v ez . (6.9)

Consequently, the EELP is related to the scattered field Green’s tensor and thus the material
response of the electron by

(SI) Γ(ω) = −e
2µ0
π~2

∫
dz
∫

dz′ Im
[
ez ·Gscat(x0, y0, z, x0, y0, z, ω) · ez , eiω

z′−z
v

]
. (6.10)

This involves the imaginary part of the Green’s tensor projected to the z-direction, in which the
electron passes. This term is very similar to the photonic LDOS [84] given by

(SI) Nz(r, ω) = 2ω
πc2

0
Im
[
ez ·G(r, r, ω) · ez

]
. (6.11)

The LDOS is, e.g., important for the calculation of Purcell factors [54, 84] describing the change
in decay times of fluorescent molecules as are used in Chapter 8. For metallic nanostructures,
the supported SPP modes can lead to a high photonic LDOS as well as EELS signal. Both do
not necessarily generate the same signal [162]. However, it should be noted, that the LDOS
projected on the electron trajectory and the EELP spectrum are proportional for structures,
which are homogeneous in the electron beam direction [159].

As the EELP depends on the Green’s tensor, we essentially reconstruct its z, z-entry within the
DGTD computations. The required imaginary part of the full Green’s tensor in vacuum takes a
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finite value (see e.g., [84])

(SI) ImGtot
(
r, r, ω

)
= ω

6πc0
1 , (6.12)

at the point charge positions, while the real part diverges. As the EELP spectrum only involves
the scattered Green’s tensor, the divergence only poses a problem, when the electron hits a
dielectric or metallic material. If the permittivity εr 6= 1 somewhere in the electron beam also
the imaginary part of the scattered field Green’s tensor Gscat diverges. However, an electron
passing through a material normally experiences a screening on atomic length scales and its
charge distribution is not point-like. Therefore, it is possible to also obtain EELP spectra within
DGTD computations, for which the electron beam hits the material, see e.g., [161, 163, 164].
This relies on the implicit smoothing by the discretization with Lagrange polynomials on the
elements describing the setup geometry (cf. Section 5.2.1). Consequently, the numerical results
are dependent on the specific discretization. Especially in cases in which the electron hits a
discretization node of the Lagrange polynomial basis, the evaluation of close to divergent fields
can lead to an exponential increase in the numerical error and thus incorrect EELP spectra.

To circumvent this deficiency, we introduce smoothed charge distributions into the DGTD
method. This enables a reliable computation of the scattered electric field and EELP for beam
positions within a material. Here, we choose a Gaussian charge distribution

(SI) ρ(r′) = − e
√
π

3
σ3
e

e−r′2/σ2
e , (6.13)

in the electrons rest-frame coordinates r′. The smoothing radius σe determines the width of
the distribution. The computation of the scattered field in the DGTD method requires prior
knowledge of the incident electromagnetic fields to be used as a source term in either an Sf or
total field / scattered field (Tf/Sf) excitation scheme (cf. Section 5.4). A full derivation of these
fields in Appendix A yields

(SI) E(r, t) = − γe

4πε0
r − re(t)

%3

[
erf
(
%

σe

)
− 2√

π

%

σe
e−%2/σ2

e

]
, (6.14a)

(SI) B(r, t) = v

c2
0
×E(r, t) , (6.14b)

in the reference frame of the sample. Here

(SI) % = %(r, t) =

√
[
r − re(t)

]2 + γ2

c2
0

[
v ·
(
r − re(t)

)]2
, (6.15)

is the transformed radial coordinate from the rest-frame. To test and validate the implementation
of these fields used as a source term, we first apply it for DGTD EELP computations of a Drude
metal sphere. The results can be directly compared to Mie calculations [8, 9, 165].
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6.2 EELP of a single metallic sphere

The test setup for the smoothed charge distribution EELS computations relies on a metal sphere
with radius R = 50 nm. For the Drude material model

εAu(ω) = 1−
ω2
pl

ω
(
ω + iγ

) , (6.16)

we use the parameters

(SI) ~ωpl = 8.75 eV and ~γ = 0.058 eV , (6.17)

which are obtained from Johnson and Christy [166] with a fit to the measured gold permittivity.
However, using only the Drude model neglects the gold interband transitions, which can and will
be accounted for by additional Lorentz model susceptibilities for the final perforated gold film
computations covered in Section 6.3. For the swift electron, we use the same kinetic energy

(SI) Ekin = 300 keV , (6.18)

as in the experiments for the gold films [K7]. This corresponds to an electron velocity [167, 168]
of

(SI) v =

√√√√1−
(
Ekin
mec2

0
+ 1
)−2

c0 ≈ 0.77 c0 . (6.19)

For the DGTD computations, we use a mesh similar to that in Fig. 5.1 (b) and apply an Sf source
in order to compute the scattered field in the entire computational domain. For the initialization
of the computations, we set the center of charge of the Gaussian electron charge distribution to
be z0 = −4.5 µm away from the sphere. Fig. 6.1 shows a sketch of the setup.

v
d

R
−e

Figure 6.1: EELS computation setup sketch of a gold sphere with radius R passed by an
electron with velocity v at an impact distance d from the sphere’s center.

Setting the electron start point far away from the scatterer ensures sufficiently small electromag-
netic fields at the start of the computation approximately fulfilling the zero-field initial conditions
for the DGTD method. Additionally, we tune the charge adiabatically both at the start and end
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of the computation. We replace

(SI) q = −e → q(t) = −e η(t) , (6.20)

where we use a polynomial ramped-up and ramped-down time dependence η(t) like the continu-
ous wave introduced in Appendix B.2.2, Eq. (B.23), while setting the carrier frequency to ω0 = 0.
This allows to numerically only evaluate the DGTD source term of the incident field Eq. (6.14)
for a finite time of flight. Here, the charge moves Lz = 9 µm from below to above the sphere.
This corresponds to a flight time of

(SI) T = Lz
v

= 39 fs , (6.21)

while the ramp-up and ramp-down times of the charge are set to tup = tdown = 5 fs each. This
adiabatic ramp-up of the electron charge suppresses high-frequency numeric errors occurring for
a sudden switch-on of the electrons incident field at the beginning of the DGTD computations.
The ramp-down process allows stopping the numerical evaluation of the incident field if the
electron is sufficiently far away from the scatterer. This saves numerical simulation time.

6.2.1 Single EELP spectrum computation
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Figure 6.2: Induced electric field strength |Ez|(z, t) for an electron passing the gold sphere
at a distance of d = 51 nm from the sphere’s center. The sphere radius is R = 50 nm and
the electron reaches the closest proximity at t ≈ 19.5 fs.

Before we investigate the influence of the charge smoothing and the impact distance, we start
with a single exemplary EELP computation. For this computation, the electron passes just
outside the sphere at a distance d = 51 nm from the center. The smoothing radius is set to
σe ≈ 2 nm. Fig. 6.2 shows the recorded scattered electric field Ez(z, t) on the trajectory of the
electron for the entire simulation time. The scattered electric field, which is generated by the Sf
source from within the gold sphere slowly increases until the electron comes into close proximity
of the sphere around t ≈ 19.5 fs. As a consequence, the electron excites the localized SPP modes
supported by the gold sphere. These SPPs decay relatively slowly compared to the time the
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electron needs to pass. It leaves the recorded z-interval after just another 1.3 fs. This restriction
to z ∈ [−0.3 µm, 0.3 µm] is sufficient to compute the EELP spectrum according to the integral
in Eq. (6.5), as the scattered field decreased exponentially from the sphere’s surface. The main
numerical uncertainty is generated by the finite simulation time, which causes windowing [169] in
the fast Fourier transform (FFT) [170, 171] into the frequency-dependent scattered field Ez(z, ω)
required for the EELP computation.
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Figure 6.3: (a) EELP spectrum for a single R = 50 nm gold sphere for a swift electron
passing at d = 51 nm from the sphere’s center. Both spectra are computed with the DGTD
method as well as a Mie solver by García de Abajo [8, 9, 165]. (b) Relative error Eq. (6.22)
between the spectra obtained from the DGTD and Mie calculations.

Fig. 6.3 (a) shows the EELP spectrum computed from the recorded scattered field. The spectrum
is compared to a Mie calculation [8, 9, 165] for the same setup. Here, we observe several
peaks, which correspond with increasing energy to the dipole, quadrupole, and high-order SPP
resonances of the sphere, respectively. As the SPP dispersion flattens (see Fig. 4.5) at the
surface plasmon frequency ωsp = ωpl√

2 for the ideally lossless Drude metal, the resonances show an
accumulation at this energy ~ωsp ≈ 6.2 eV. Here, we observe a limiting factor by the mesh and
Lagrange polynomial discretization of the sphere used for the DGTD computations. The higher
the mode order is, the shorter the SPP wavelength on the surface becomes, which cannot be
resolved any longer for a given discretization. For the DGTD, we use a third-order polynomial
basis, while the sphere elements’ characteristic side length [140] lies below hsph = 40 nm. The
Mie calculations have been performed including spherical harmonics up to the order l = 20.
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Fig. 6.3 (b) shows an increased relative error

EΓ(ω) =
∣∣∣∣∣1−

Γ(DGTD)(ω)
Γ(Mie)(ω)

∣∣∣∣∣ , (6.22)

between the methods for these higher-order mode peaks. For the dipole (~ω ≈ 3.3 eV) and
quadrupole (~ω ≈ 4.7 eV), the relative error lies below five percent for this test setup. As the
higher-order modes are suppressed by the damping of interband transitions accounting for a
more realistic gold permittivity model (see Eq. (6.25)), the chosen coarse discretization used for
the DGTD is reasonably accurate for a quantitative comparison.

6.2.2 Electron smoothing radius influence and EELP map

(a) d1 = 45 nm

2 3 4 5 6 7

0.1

1

10

Energy loss ~ω (eV)

Sm
oo

th
in

g
ra

di
us
σ

e
(n

m
)

(b) d2 = 51 nm

2 3 4 5 6 7

0.1

1

10

Energy loss ~ω (eV)
0

0.01

0.02

0.03

0.04

0.05

EE
LP

Γ(
ω

)
(e

V
−

1 )

Figure 6.4: EELP for a single R = 50 nm gold sphere in dependence of the rest-frame
smoothing radius σe of the swift electron charge distribution for two different excitation
positions: merely inside (a) and outside (b) the gold sphere.

Given the relatively accurate computation of the gold sphere EELP spectra, we investigate the
dependence on the electron charge distribution rest-frame smoothing radius σe as defined in
Eq. (6.13). For this, we perform a scan of computations similar to those of the previous section
and systematically vary the smoothing radius σe ∈ [0.5 nm, 25 nm].

We analyze two different cases for the impact distance d of the electron beam. In the first
case, the electron hits the sphere at a distance d1 = 45 nm < R = 50 nm from the sphere’s
center. In the second case, the electron passes just outside the sphere with d2 = 51 nm. Fig. 6.4
shows the corresponding EELP spectra in relation to the smoothing radius σe. In both cases,
the same resonances as in Fig. 6.3 (a) are observed. The EELP is stronger, however, when the
electron hits the gold sphere. For increasing smoothing radii σe ' 10 nm the EELP fades out
starting at the higher-order modes. This is caused by the averaged excitation of the higher-order
modes. Furthermore, the scattered field Ez is only evaluated on the center of charge trajectory
in Eq. (6.5) instead of a weighted integral over the entire charge distribution cross section. The
main difference between the two cases occurs for small charge smoothing radii σe. For trajectories
outside the gold sphere as in Fig. 6.4 (b), the EELP spectrum converges with decreasing σe. For
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electron trajectories hitting the sphere, the EELP spectra show a significant change at small
values of σe and can even diverge, if the electron hits a single interpolation node of the Lagrange
basis functions used in the DGTD method. In Fig. 6.4 (a) this change happens for σe < 0.1 nm
for the chosen sphere discretization. For the following computations, we use a radius σe ≈ 2 nm
providing reliable spectra for both trajectories inside and outside the gold material.
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Figure 6.5: EELP map for a single gold sphere with radius R = 50 nm (dashed line)
computed with an electron density smoothing radius σe ≈ 2 nm.

Nevertheless, it should be noted that this choice for σe restricts the resolution for the variation of
the electron trajectory with respect to the impact distance d. Fig. 6.5 shows such an EELP map,
in which we record the spectra for different impact distances d. For distances d > R = 50 nm,
we observe how the resonances in the EELP spectra fade away exponentially as does the probed
Ez-field component of the excited SPPs. For the two lowest order modes, the EELP peaks at
the surface, while the higher-order modes show an increasing number of maxima for trajectories
hitting the sphere. These originate from the SPP fields on the top and bottom as well as sides of
the spheres for increasing mode order causing a constructive interference at these distances d.
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Figure 6.6: Energy-averaged error 〈EΓ〉ω between DGTD and Mie calculations of the EELP
for a R = 50 nm gold sphere with respect to both the impact distance d and electron charge
distribution smoothing radius σe.

121



6 Electron energy loss spectroscopy

Finally, we study the relative error with respect to the electron charge distribution smoothing
radius σe as well as the distance d between the DGTD EELP computations and the Mie calcu-
lations [8, 9, 165]. For this, we define a frequency-averaged relative error for the EELP spectra,
i.e.,

〈EΓ(d, σe)〉ω := 1
∆ω

∫
dω
∣∣∣∣∣1−

Γ(DGTD)(ω; d, σe)
Γ(Mie)(ω; d, σe)

∣∣∣∣∣ , (6.23)

where we integrate over the recorded energy window ~ω ∈ [2 eV, 7 eV] containing the SPP reso-
nances. This mean relative error is depicted in Fig. 6.6. We see that for distances d > R outside
the sphere the error is roughly independent of the smoothing radius. Only for large smoothing
radii σe ' 10 nm and small impact distances d / 70 nm, the difference between the Gaussian and
point charge distributions become noticeable, as the incident electric field changes significantly
from the r−2 dependence typical for a point charge. The variation in the mean relative error
with respect to the distance d is caused by the discretization and simulation time. For small
distances, the higher-order modes have a large contribution and are not sufficiently resolved. The
higher-order modes have a stronger spatial exponential decay, therefore the error first decreases.
With further increased distance, the fields of all SPP modes are rather weak. Hence, the error
increases again due to the numerical errors of the FFT of the electric field relying on a finite
simulation time.

In summary, it was shown that the introduction of a smoothed charge distribution into the DGTD
EELS computations can reproduce the spectra obtained by Mie calculations using a point charge
distribution. However, there is a strong dependence on the mesh refinement for high energies
near the surface plasmon frequency ωsp. Furthermore, the smoothed charge distributions open
the possibility to numerically reliable compute spectra for the electron trajectory hitting the
metallic material.

6.3 EELS on thin periodically perforated gold films

In the introduction Chapter 1, we have discussed the effect of EOT on periodically perforated
metallic thin films and potential applications. Although there exists a wide variety of far-field
studies for rectangular gratings with cylindrical holes, only a few near-field studies of comparable
structures can be found. These include scanning near-field optical microscopy (SNOM) [172–176]
and energy-filtered STEM on structures with a few holes or slits [177–179]. Here, we investigate
a free-standing periodically perforated gold film [K7]. This gold film includes a rectangular hole
grating with periods px = 800 nm and py = 600 nm. Each of the 100 × 100 unit cells contains
a hole with radius R ≈ 100 nm and is produced by focused ion beam milling [K7, 180]. The
gold film thickness is d = 22 nm. To characterize the gold film, we investigate both the far-field
response by the computation of transmittance spectra as well as the near-field characterization
with EELS. All the spectra and EELP maps obtained from the DGTD method are then compared
to experimental measurements [K7].

For the DGTD method, we use two similar simulation domains both for the EELP and trans-
mittance spectra computation, which are shown in Fig. 6.7 (a) and (b), respectively. These

122



EELS on thin periodically perforated gold films 6.3

Air, PML

Air, Tf region

Air, Sf region

Tf/Sf contour

Au, Sf region
Au, Tf region

Au, PML

x
y

z

x
y

z

Air, PML

Tf/Sf contour

Air, Tf region

Trans. contour

Air, Sf region

Au, Tf region

Air, PML

(a) (b)

Figure 6.7: Meshes used for the DGTD computations of the (a) EELP spectra and (b)
transmittance spectra of a periodically perforated d = 22 nm thick gold film. Different com-
putational regions are marked by name. The EELS setup (a) includes complex frequency-
shifted perfectly matched layers (CFSPMLs) on the outside of the total field (Tf) region and
includes the gold layer. The transmittance setup (b) contains uniaxial perfectly matched
layers (uPMLs) and periodic boundary conditions (PBCs).

meshes are generated using gmsh [140]. For the EELS computations, we use a 9× 9 rectangular
hole array for the perforated gold film as the electron beam excitation breaks the transversal
symmetry. This film is extruded by 0.8 µm both in the x- and y-direction to the boundary of
the computational domain on which we impose Silver Müller boundary conditions (SMBCs). As
the gold film implicitly extends to infinity, we use CFSPMLs as introduced in Section 5.6.2 to
terminate the gold material layer. Both below and above the gold film we add an air region
with height dair = 6 µm each, which are also terminated by the dPML = 0.5 µm of CFSPMLs.
In contrast to the gold sphere EELS computations, we cannot use a pure Sf source here. As
the CFSPMLs rely on a complex continuation of the spatial coordinates, this would require the
incident field Eq. (6.14), which acts as an Sf source term Eq. (5.129) in the DGTD method, also
to be continued in the complex coordinate plane. Hence, all the PMLs have to be located in a Tf
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region. Consequently, we introduce a Tf/Sf contour including a 3× 3 array in the center of the
gold film as shown in Fig. 6.7 (a). This means we extend the DGTD implementation to apply a
Tf/Sf source on the contour and an Sf source in the inner part of the gold film simultaneously.

For the transmittance computations, we use a pulsed plane wave source Eq. (5.121) with straight
incidence and Gaussian time dependence η(t) according to Eq. (B.20). For the computations,
we only use a single unit cell. The mesh is shown in Fig. 6.7 (b). Both in x- and y-direction,
we apply PBCs. Above and below the gold grating’s unit cell, we arrange two 1 µm thick air
layers (εr = 1) each. Between the layers, we define specific contours. On the upper contour, the
Tf/Sf source is applied. It splits the simulation domain into the Sf and Tf region. On the lower
contour, we record the power flux and consequently the transmittance spectrum Eq. (2.109).
Additionally, the simulation domain is terminated with SMBCs and 0.8 µm thick uPMLs.

As the transmittance and EELP spectra are compared to measured data [K7], we extend the
material model for the gold film to also account for interband transitions. We add three additional
Lorentz poles Eq. (3.7) to the Drude model permittivity, i.e.,

εAu(ω) = εbg −
ω2
pl

ω(ω + iγ) +
3∑

i=1

∆ε,iω
2
L,i

ω2
L,i − iγL,iω − ω2 . (6.24)

Here, the parameters are fitted [K1] to the permittivity data by Johnson and Christy [166] and
take the values

(SI) ∆ε,1 = 1.51 , ~ωL,1 = 2.91 eV and ~γL,1 = 1.02 eV , (6.25a)
(SI) ∆ε,2 = 1.02 , ~ωL,2 = 3.66 eV and ~γL,2 = 1.20 eV , (6.25b)
(SI) ∆ε,3 = 0.80 , ~ωL,3 = 4.42 eV and ~γL,3 = 1.18 eV , (6.25c)

for the Lorentz poles and

(SI) εbg = 6.39 , ~ωpl = 9.03 eV and ~γ = 76 meV , (6.26)

for the background permittivity and Drude model.

Before we numerically determine the EELP spectra, we compute the transmittance of the peri-
odically perforated gold film. We use two different polarizations

E
(1)
0 = ex and E

(2)
0 = ey , (6.27)

along the short and long period axes for the plane wave excitation Eq. (5.121) with straight
incidence k||ez. For the Gaussian time dependence, we set the carrier frequency to ~ω0 =
1.653 eV. We set the temporal width to σ = 2.5 fs with a sufficiently broad spectrum (cf.
Eq. (B.22)) to excite the film within the recording frequency window ~ω ∈ [1 eV, 2.2 eV].

Fig. 6.8 shows both measured [K7] as well as the computed transmittance spectra of the free-
standing gold film. For both polarization directions, the spectra show a very good agreement.
The resonances indicated by the EOT maxima lie at lower frequencies for the excitation po-
larization aligned along the long period px and are blue-shifted for the polarization along the
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Figure 6.8: Transmittance spectra T (ω) for excitation under straight incident plane wave
pulses both along the longer x-direction and shorter y-direction axis of the periodically
perforated gold film. (a) Experimentally obtained spectra with data graciously provided by
M. Prämassing [K7]. (b) Spectra computed by the DGTD method.

short period y-axis. The corresponding mode order can be estimated from the SPP dispersion
Eq. (4.97) and the reciprocal grid vectors Gx/y = 2πnx/y

px/y
ex/y [181]. For this, we neglect the holes

and also only account for a single metal-dielectric interface as the symmetric and antisymmetric
dispersion nearly agrees for frequencies far below the metal plasma frequency ωpl [57]. Given the
grating periods px/y, for straight incidence, the SPP resonances approximately occur at

(SI) ω = 2πc0

√
n2
x

p2
x

+
n2
y

p2
y

√
εAu + εair
εAu εair

, (6.28)

where nx, ny ∈ N determine the corresponding SPP mode order [181]. The lower energy peaks in
the transmittance spectra thereby correspond to the (1, 0)-mode (~ω ≈ 1.29 eV) for x-polarization
and (0, 1)-mode (~ω ≈ 1.5 eV) for y-polarization. The higher frequency ~ω ≈ 1.74 eV in x-
polarization and ~ω ≈ 1.83 eV in y-polarization transmittance peaks correspond to the (1, 1)-
mode excitation but are split in frequency due to the holes and finite film thickness. To spatially
map the underlying SPP resonances we next perform EELS computations.

125



6 Electron energy loss spectroscopy

(a) t ≈ 10 fs

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

Po
sit

io
n

z
(µ

m
)

(b) t ≈ 20 fs

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

10−4

10−3

10−2

10−1

El
ec
tr
ic

fie
ld
|E
|(

V
µm

−
1 )

(c) t ≈ 23 fs
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(d) t ≈ 33 fs
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Figure 6.9: Induced and total field |E|(x, z, t) of an electron passing the periodically perfo-
rated gold film with v = 0.77 c0 ez at x0 = 120 nm from the center hole. The Tf/Sf contour
is marked in red. White lines indicate the PML boundaries and the yellow lines indicate
the position of the gold film. The orange dot marks the electron position. (a) The electron
charge was adiabatically ramped up, but the electron does not hit the film yet. (b) The
electron impacts the gold film. (c) Generated spherical waves and SPPs along the perforated
gold film are launched. (d) The induced electric field is absorbed in the PMLs.
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6.3.1 Single EELP spectrum computations

We start with a single DGTD computation of an EELP spectrum. Here, we set the electron
trajectory intersection point within the gold film close to the edge of the central hole (R = 100 nm)
in the simulation domain shown in Fig. 6.7 (a). The intersection point lies at

(SI) r⊥,0 =
(
x0, y0

)T =
(
120 nm, 0 nm

)T
. (6.29)

Similar to Section 6.2, we use a Gaussian charge distribution Eq. (6.13) for the electron with
a smoothing radius σe = 2 nm. The electron starts at z0 = −4.5 µm below the gold film and
moves upwards with v = 0.77 c0 ez. Additionally, the charge is ramped-up and -down as in the
gold sphere example Eq. (6.20). We use a ramp-up and ramp-down time of tup = tdown = 5 fs.
Given the parameter setup, we can compute the electromagnetic fields in the entire simulation
domain.

Fig. 6.9 shows different snapshots of the scattered and total field |E| computed with the DGTD.
It shows the x-z-coordinate cross section at y = 0 µm for different times t. In Fig. 6.9 (a) the
electron charge was just ramp-up. Outside the Tf/Sf contour (red line) we see a combination
of the electron’s incident field and a static field component, which is introduced by the charge
ramp-up. In the Sf region inside the red line, a small and relatively smoothly extended field is
observed. This low-frequency field is also generated from the Tf/Sf contour due to the ramp-up
process as a numerical artifact. At time t ≈ 19.5 fs the electron hits the gold film which is shown
in Fig. 6.9 (b). In the gold film, we see a strong scattered field, which is generated by the incident
field Eq. (6.14) used in the Sf source. The small low-frequency fields get reflected on the gold
layer. Consequently, there is no field in the upper half-plane Tf region. A few femtoseconds later
the electron has passed the material layer as shown in Fig. 6.9 (c). Besides a spherical field pulse
propagating outwards also the SPP modes on the gold film are excited and well visible by the
field enhancement on the gold layer. After t ≈ 33 fs, both the wavefront and SPPs have reached
the CFSPMLs and get absorbed. The fields decay exponentially in the PML layers, which can
be seen on the white lines in Fig. 6.9 (d).
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Figure 6.10: Induced electric field |Ez| along the electron trajectory used to compute the
EELP Eq. (6.5) for an electron hitting the perforated gold film at x0 = 120 nm and y0 = 0 nm.
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6 Electron energy loss spectroscopy

In addition to the cross section through the computational domain, which provides a good
overview of the excitation behavior, we also record the scattered Ez-field on the electron tra-
jectory. This field is shown in Fig. 6.10 for the entire simulation time T = 135 fs. With
z ∈ [−2.5 µm, 2.5 µm] the recording trajectory lies completely in the Sf region. Besides the
initial pulse propagating to the far-field also the SPP field oscillations on the gold film around
z = 0 µm are well observable. While the field of the SPP modes decays by several orders of
magnitudes during the simulated time, there remains a small quasi-static field both far below
and above the gold film. This static field stems from the ramp-up and -down process, which in-
duces implicit charges in the mesh. However, as the main interest in the EELP computation lies
at frequencies well above zero, this poses a minor problem. The influence of the low-frequency
contribution can be systematically controlled by using longer ramping times as well as setting
the electron’s initial position further away from the gold film.
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Figure 6.11: EELP spectrum Γ(ω) for an electron hitting the periodically perforated gold
film. The impact position x0 = 120 nm and y0 = 0 nm lies in the vicinity of the R = 100 nm
hole. The orange out-of-plane arrow marks the impact position and velocity vector v =
0.77 c0 ez on the sketch of the perforated gold film.

In Fig. 6.11 we show the EELP spectrum resulting from the recorded field according to Eq. (6.5).
The EELP spectrum shows maxima at the same spectral positions as the transmittance spectra
in Fig. 6.8. Especially the SPP (1,0)-mode at 1.29 eV and (0,1)-mode at 1.5 eV are well visible.
Furthermore, we observe an increase at small frequencies which stems from the static fields in
the scattered electric field Ez observed in Fig. 6.10.

6.3.2 Comparison of experimental and numerical EELP maps

To obtain a complete picture of the SPP modes excited in the EELS, we scan the position
r⊥,0 of the electron beam over the length of the unit cell. For each position, we compute
the corresponding EELP spectrum. In Fig. 6.12 we show both experimental [K7] as well as
numerically computed EELP spectra directly compared to the respective transmittance spectra
from Fig. 6.8. For the computation of this EELP scan, the position x0 of the electron beam
is varied between the hole center at x0 = 0 µm and the right boundary of the gold grating’s
unit cell at x0 = 0.4 µm. Simultaneously the beam position y0 = 0 µm remains fixed. For
the comparison with the measured EELP x-position map, the computed map is mirrored and
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EELS on thin periodically perforated gold films 6.3

periodically continued. The computed and measured EELP spectra show a qualitatively good
agreement both for beam positions inside (|x0| < R = 100 nm) and outside the holes. For each
of the maxima in the transmittance spectra Fig. 6.12 (a,c), we find corresponding maxima in the
EELP maps Fig. 6.12 (b,d). The EELP is especially strong on the edges of the holes, as here the
field enhancement of the captured Ez-field component is strongest. Inside the holes, the EELP
decreases significantly, as the SPP modes fall off exponentially towards the center. Additionally
to the transmittance maxima energies marked in Fig. 6.12 (c), we find two more maxima in the
EELP spectra (dashed lines). These correspond to the excitation of dark modes not coupling to
the far-field. Thus, the modes cannot be excited by the straight incident plane wave used in the
transmittance computations.
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Figure 6.12: (b) Experimental and (d) computational EELP maps Γ(x, ω) along the x-
direction mayor axis of the perforated gold film and transmittance spectra (a,c) from Fig. 6.8.
(a,b) Experimental data was graciously provided by M. Prämassing [K7]. Gray lines indicate
the transmittance (c) as well as EELP (d) maxima. Dashed lines mark dark modes.

The computation of the full x0 and y0 dependent EELP maps at the resonances energies marked
in Fig. 6.12 (c.d) allows an indirect mapping of the excited SPP modes. This mapping depends
on the Ez-field distribution of the specific modes excited by the electron. These EELP maps are
shown in Fig. 6.13 for two unit cells in each direction. Due to symmetry, the computation relies
on a scan of the first quadrant of the unit cell only.

For the (1, 0)-mode and (0, 1)-mode, we observe an expected dipolar pattern with orientation
in x- and y-direction shown Fig. 6.13 (a) and (b), respectively. Note, however, that the phase
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6 Electron energy loss spectroscopy

information of the scattered field obtained from the computation is lost by the computation of
the EELP spectrum. Hence, we infer the mode order from the number of EELP maxima. This
can also be directly done from the experimental observation [K7]. Correspondingly, the EELP
maps in Fig. 6.13 (c) and Fig. 6.13 (d) correspond to dark modes, with orders (0.5, 0.5) as well
as (1.5, 0) according to the number of EELP maxima. These modes are dark as the field pattern
repeats over two instead of one unit cell and can thus not be coupled to a straight incident plane
wave. In contrast, the EELP maps in Fig. 6.13 (e,f) show a superposition of the (1,1)-modes
traversing in both diagonal directions. This supports the findings for transmittance spectra.
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Figure 6.13: EELP maps plotted for two unit cells in both directions for the loss energies
marked in Figure 6.12 (d).

Overall, the EELP maps provide an insight into the field distributions of the free-standing gold
film, which can be directly compared to the experiment. Furthermore, the introduction of
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EELS on thin periodically perforated gold films 6.3

the smoothed charge distribution for the EELP spectra computation delivers reliable numerical
results, which withstand a qualitative comparison to the experiment, especially for electron
trajectories traversing the gold film.
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CHAPTER 7

Magneto-optic metasurfaces and hyperbolic
metamaterial cavities

This chapter focuses on resonances in systems containing anisotropic materials, namely magneto-
optic (MO) and hyperbolic metamaterials (HMMs).

Within the optical domain, the MO response is typically rather weak. However, associated
effects like the Faraday rotation [29] are essential for photonic applications like miniaturized
non-reciprocal devices, e.g., optical isolators [182, 183]. Therefore, we discuss in Section 7.2
how to use a system of MO scatterers forming a metasurface [44] to generate a large Faraday
rotation accompanied by a high transmittance. We outline a shape optimization approach [K8]
of the constituting scatterers to even further enhance the Faraday rotation maintaining the high
transmittance. As the numerical computations require the non-dispersive anisotropic material
model for the discontinuous Galerkin time-domain (DGTD) method (cf. Sections 5.1), a full
convergence study on the implementation is provided within the first Section 7.1 of this chapter.

Following the results about the MO metasurfaces, we discuss cavities built of thin, stacked layers
of metallic and dielectric materials forming an HMM cavity. As we show in Section 7.3, these
cavities provide subwavelength resonances as well as a high density of states, which both are well
tuneable with respect to material and geometry parameters determining the HMM properties.

7.1 Convergence behavior for anisotropic materials comparing
DGTD and Mie calculations

In Section 5.3.2 we presented the numerical upwind flux for non-dispersive anisotropic materials
as used in the DGTD method. Both the numerical flux, as well as the on-element operations
(cf. Section 5.2) have been implemented within the C++ code of the research group Theoretical
Optics & Photonics (TO&P group). As so far only the implementation for two-dimensional
anisotropic materials [75, 184] was included, we perform a full extensive convergence study. For
the tests, we compute the scattering efficiencies of spheres filled with a given anisotropic material.
Here, we investigate both the internal DGTD convergence behavior as well as a direct comparison
against the analytical Mie calculations [78, 79] which all have been graciously provided by P.
Varytis.

In the following four sections, we consider four distinct test cases, all of which are sketched in
Fig. 7.1. First, we compare the scattering efficiencies of an isotropic dielectric sphere using the
new anisotropic material implementation against the already existing isotropic one. Secondly,
diagonal anisotropic dielectric tensors are considered, for which it is still possible to obtain
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7 Magneto-optic metasurfaces and hyperbolic metamaterial cavities

(a) (b)

?⇔

(c) (d)

Figure 7.1: Scattering efficiency test cases for the DGTD implementation of non-dispersive
anisotropic materials with different excitation polarizations. Black arrows indicate the prop-
agation direction of the exciting plane wave, while orange arrows indicate the polarization
of the electric field. (a) Comparison of an isotropic dielectric material between Mie com-
putations, the existing isotropic and the new anisotropic DGTD material implementation.
(b) Comparison of a diagonal anisotropic dielectric material with Mie and DGTD compu-
tations. (c) Comparison of a rotated excitation on a diagonal dielectric tensor against the
corresponding full anisotropic dielectric tensor under straight excitation. (d) Scattering ef-
ficiency computations comparing Mie and DGTD computations for a complex-valued MO
dielectric tensor.

the scattering efficiency within the Mie-scattering implementation [78]. Thirdly, we compare
the scattering efficiencies of a fully anisotropic dielectric sphere against the scattering efficiency
obtained in the principal axis frame of the dielectric tensor, in which it is diagonal again. Finally,
we investigate the scattering on an MO dielectric material, which in contrast to the other cases
requires the DGTD to operate with complex-valued, rather than real-valued fields.

7.1.1 Isotropic material tensors

First, we investigate the plane wave scattering on a sphere with a given radius R. We perform
DGTD computations using the mesh already shown Fig. 5.1 (b). Within the DGTD computa-
tions, we use a sphere with a test radius of R = 250 nm which is excited by a Gaussian modulated
plane wave

(SI) Einc
(
r, t
)

= E
(1)
0 η

(
t− c−1

0 ez · r
)
, with η (t) (B.20)= cos

(
ω0(t− t0)

)
e−

(t−t0)2

2σ2 , (7.1)
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Figure 7.2: (a) Scattering efficiency of a dielectric sphere with permittivity ε = 4 computed
both with a Mie scattering implementation [78] and the DGTD method using a p = 4
Lagrange polynomial basis. (b) Relative errors (7.5) between the Mie calculations and
DGTD computations with varying polynomial order p for the finest mesh of the convergence
scan.

using the total field / scattered field (Tf/Sf) formalism from Section 5.4.1. Here, we use a pulse
width of σ ≈ 1.334 fs in order to cover a spectral excitation range of λ ∈ [R, 4R] = [250 nm, 1 µm]
containing both low- and high-order resonances. The central carrier wavelength is chosen as
λ0 = 2πc0

ω0
= 1.8R = 450 nm. Accordingly, we set the time offset t0 = 10σ ≈ 13.34 fs in order

to guarantee vanishing fields at computation start. Here, we consider only the first of the two
different excitation polarizations

E
(1)
0 ||ex and E

(1)
0 ||ey , (7.2)

which are suggested by the arrows used in Figure 7.1 (a), as the scattering spectrum is polar-
ization independent. Within the computation, we record the power flux on the aforementioned
Tf/Sf-contour in order to compute the scattering cross section spectrum Cscat of the sphere.
Thereafter, we compute the scattering efficiency [90] from the scattering cross section and the
sphere radius R:

Qscat = Cscat
πR2 . (7.3)
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7 Magneto-optic metasurfaces and hyperbolic metamaterial cavities

As we use a non-dispersive permittivity for the spherical scatterer and due to the scale invariance
of Maxwell’s equations, we use the rescaled wavelength

λ̄ = λ

R
(7.4)

instead of the wavelength λ to characterize the scattering spectrum.

In Figure 7.2 (a) we show the resulting scattering efficiency spectrum for a sphere with a permit-
tivity of ε = 4 and using the mesh with the finest resolution for the DGTD convergence study
using fourth-order (p = 4) Lagrange polynomial basis functions. Both computations very well
resemble each other, showing the typical Mie resonances. There are only stronger, yet still, rela-
tively small deviations for small wavelengths, as can be expected by the finite resolution imposed
by the mesh element sizes h and the used polynomial order p. Figure 7.2 (b) shows the relative
error

Ep(h̃) =
∣∣∣∣∣1−

Qpscat(h̃)
QMie

scat

∣∣∣∣∣ (7.5)

for the finest mesh (h̃ = h̃min) considered in this convergence study. Here, we define a dimension-
less mesh refinement factor h̃ = h/h0, with which we scale the characteristic element length [140]
h0 = 100 nm over an entire order of magnitude. The error for the p = 1 Lagrange polynomial
computations is significantly different from the p = 2, 3, 4 computations. While one expects a
convergence behavior to be of the type [73]

E ∝ h̃p+1 (7.6)

for the DGTD method, we here see a clear deviation from the exponential convergence with
respect to the polynomial basis function order. This indicates a different source for the numerical
error.

Thus, we next check how much the newly implemented anisotropic material integration kernel
deviates from the already existing isotropic one. We perform the scattering computations with
the same computation parameters and evaluate the kernel difference error

E∆
p (h̃) =

∣∣∣Qpscat,iso(h̃)−Qpscat,aniso(h̃)
∣∣∣ (7.7)

between both material models point-wise for each characteristic mesh element side length scal-
ing factor h̃ and basis function polynomial order p. Figure 7.3 shows the kernel difference error
for four different polynomial orders and different mesh sizes. We observe that for all the com-
putations the scattering spectra obtained with either implementation agree down to machine
accuracy. However, for small wavelengths λ ≈ 1R the error increases. This can be attributed
to the strong decay in the excitation spectrum (cf. Fig. B.2 (b)) which the scattered flux is
normalized to. Hence, the errors on the machine accuracy level get enhanced.

Since the implementations provide consistent results, we have a look into the convergence be-
havior of the scattering spectra with respect to the mesh element size refinement factor h̃. In
Figure 7.4 we show the wavelength-resolved convergence for four polynomial orders. We again
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Figure 7.3: Wavelength-resolved kernel difference error E∆
p (h̃), Eq. (7.7), determined by the

scattering efficiencies computed within the isotropic and anisotropic material implementation
for different basis polynomial orders p and mesh refinements h̃.

observe, that the p = 1 computations strongly deviate from the remaining polynomial order
computations. Especially the p = 3 and p = 4 convergence behavior is very similar.

To get a fast assessment of the convergence, we also show the wavelength-averaged relative error〈
Ep(h̃)

〉
λ
in Fig. 7.5 (a), where we average for all recorded wavelengths λ ∈ [R, 4R]. Additionally,

we introduce the relative error between DGTD computations comparing against the finest mesh
computation for each polynomial order p:

EDG
p (h̃) =

∣∣∣∣∣1−
Qpscat(h̃)

Qpscat(h̃min)

∣∣∣∣∣ . (7.8)

The corresponding wavelength-averaged error
〈
EDG
p (h̃)

〉
λ
is shown in Figure 7.5 (b). For all

the errors, we find an expected polynomial h̃γ convergence. For coarse meshes, i.e., large h̃,
the change in error gets more and more noisy, as we do not track the actual (minimal) element
mesh size, but only the parameter for the maximally allowed element mesh size provided for
the meshing software gmsh [140]. To find the actual convergence order we perform a fit to
the p = 1 and p = 4 mesh size scans, as the p = 2, 3, 4 convergence roughly share the same
slope. For the p = 1 computations we find a convergence exponent of γ1 = 1.26 for the Mie
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Figure 7.4: Wavelength-resolved relative error Ep(h̃), Eq. (7.5), between DGTD and Mie
computations for different basis polynomial order p and mesh refinements h̃.
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Figure 7.5: Wavelength-averaged relative errors, (a) 〈Ep〉λ(h̃) comparing Mie against
DGTD computations and (b) 〈EDG

p 〉λ(h̃) comparing DGTD computations against results
with finest mesh parameter h̃min, for four different basis polynomial orders p. Dashed lines
show polynomial fits h̃γ for the convergence behavior for first and fourth-order basis sets,
with parameters (a) γ1 ≈ 1.26 and γ4 ≈ 2.26, as well as (b) γ1 ≈ 1.42 and γ4 ≈ 2.99.
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and γ1 = 1.42 for the DGTD computations, which clearly lies below the expected value of
two (γp = p + 1). We attribute this deviation to a still insufficient discretization using these
low order basis functions, as the difficulty of resolving highly oscillating fields over the entire
wavelength range arises. For the p = 4 computations, we find exponents γ4 = 2.26 for the
Mie and γ4 = 2.99 for the DGTD computations. While the internal DGTD error is very close
to the expected convergence behavior for an order p = 2 polynomial basis, the deviation for
the error comparing to the Mie computations might be attributed to both mesh size noise as
well as spectral leakage [169] and aliasing [129] in the DGTD spectra. The latter arise due
to the on-the-fly Fourier transform Eq. (5.126), which is used to obtain the scattering spectra.
As the time-dependent fields are artificially cut at the maximal simulation time, this leads to
oscillations in the resulting spectra, which can be systematically decreased with an increasing
simulation time. This oscillatory behavior can be well observed for small wavelengths λ and mesh
refinement factors h̃ in Fig. 7.4 (c,d), as the error is not improving in the same systematic way as
for larger wavelengths. The reason that both the p = 3 and p = 4 computations only provide a
convergence behavior as for a p = 2 polynomial basis lies within the surface discretization of the
sphere. Here, we only use linear tetrahedral elements. Thus, also the surface of the sphere is only
linearly approximated and therefore limiting the convergence order. To circumvent this problem,
one can use curvilinear elements on the surface [185, 186], which utilizes element faces defined
by higher-order (two-dimensional) polynomials. However, with curved element surfaces also the
normal vector of an elements’ surface varies across that surface. Hence, the implementation of
the numerical flux (5.102) becomes much more challenging, especially for anisotropic materials
with their surface normal dependent impedance and admittance matrices (5.101). We therefore
only use linear elements performing p = 4 computations, which still provide smaller errors, while
simultaneously relinquishing the exponential convergence advantage compared to the p = 2
computations.

7.1.2 Diagonal material tensors

In the second setup, we replace the material permittivity of the scattering sphere with a diagonal
anisotropic tensor, while maintaining all other computation parameters from the isotropic case.
Similarly to [77], we choose a dielectric material tensor

ε =




2 0 0
0 2 0
0 0 4


 . (7.9)

Since the scattering with an anisotropic material is no longer polarization-independent, we have
to consider both polarizations: We choose

k||ex with E
(1)
0 ||ey or E

(2)
0 ||ez , (7.10)

i.e., the Gaussian modulated plane wave (7.1) propagates in x-direction and is either linearly y-
or z-polarized. The corresponding scattering efficiency spectra are shown in Figure 7.6 (a,c). In
contrast to the z-polarized excitation, the y-polarized excitation does not cause strong resonances
in the scattering spectrum. Since the permittivity tensor values are set with εxx = εyy, the
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Figure 7.6: Scattering efficiencies of a dielectric sphere with diagonal permittivity tensor
(7.9), for y-polarization (a) and z-polarization (c) from both a Mie calculation [78] and the
DGTD method with a p = 4 polynomial basis. Corresponding relative errors (7.5) (b,d)
between the Mie calculations and DGTD computations for the finest mesh of the convergence
scan and different polynomial orders p.
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strong resonances shift to wavelengths that are smaller than the ones computed here, for this
polarization. We again observe that the relative errors Eq. (7.5) for both polarization directions
and the most finely resolved meshes only differ significantly for the polynomial basis order p = 1
and higher orders p = 2, 3, 4, as the surface discretization does not change within the DGTD
method (see Figure 7.6 (b,d)).
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Figure 7.7: Wavelength-resolved relative error Ep(h̃), Eq. (7.5), between DGTD and Mie
scattering efficiency computations with the diagonal anisotropic permittivity (7.9) and for
different basis polynomial order p and mesh refinements h̃.

Upon closer inspection of the convergence behavior for the wavelength-resolved h-refinement
of the relative error in Figure 7.7, we observe the same behavior. Despite the higher reso-
nances in the z-polarization spectrum (see Figure 7.7 (b,d)), the error is more prone to aliasing
and the actual mesh discretization. However, all computations show a systematic improvement
with increasing h-refinement, which also transfers to the wavelength-averaged convergence plots
in Figure 7.8 (a,b). For both polarizations, the convergence is similar to that observed for
the isotropic scatterer. We again notice that the convergence exponents γ are higher for the
wavelength-averaged DGTD relative internal error (see Figure 7.8 (c,d)) than for those of the
relative error comparing the results to the Mie computations. As the Mie computations converge
exponentially with increasing angular degree l of the underlying vector spherical harmonic basis
functions [78, 90], the errors from the DGTD computations are orders of magnitudes larger.
Therefore, the effect of the apparent faster convergence within the DGTD results indicates, that
the computations systematically improve towards the Mie results from one direction. Due to the
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Figure 7.8: Wavelength-averaged relative errors, (a,b) 〈Ep〉λ(h̃) comparing Mie against
DGTD computations and (c,d) 〈EDG

p 〉λ(h̃) comparing DGTD computations against results
with finest mesh parameter, each for different basis polynomial order p. Dashed lines show
polynomial fits h̃γ for the convergence behavior for first- and fourth-order basis sets. Fit
parameters for the y-polarization are (a) γ1 ≈ 1.50 and γ4 ≈ 2.72, as well as (c) γ1 ≈ 2.25
and γ4 ≈ 3.31. Fit parameters for the z-polarization are (b) γ1 ≈ 1.09 and γ4 ≈ 2.55, as
well as (d) γ1 ≈ 1.73 and γ4 ≈ 3.23.

discretization of the sphere within the meshing software, the polyhedral approximation always
only is inscribed to that sphere. Therefore the actual scatterer simulation volume approaches
the real sphere volume from below and the computed resonances shift from smaller wavelengths
to the actual resonance spectral position with improved h-refinement. Overall it shall be noted,
that within this convergence study we are able to obtain errors as low as 0.5% for a relatively
strongly anisotropic material.
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7.1.3 Fully anisotropic material tensors

In the third test, we investigate the convergence behavior for a fully anisotropic dielectric tensor,
i.e., all off-diagonal entries are non-zero. We, therefore, prepare two different setups for the
DGTD computations, as shown in Figure 7.1 (c). The first setup includes a diagonal ε-tensor as
tested in the previous section and an excitation of the scattering sphere, with both the k-vector
and polarization vector E0 rotated against the main coordinate axis. In the second setup, we
rotate the parameters of the exciting plane wave into the coordinate frame and also rotate the
dielectric tensor, such that all off-diagonal entries are non-zero. The scattering efficiency spectra
are then compared to each other.

For the diagonal material tensor, we again use

εd =




2 0 0
0 2 0
0 0 4


 . (7.11)

Introducing a rotation matrix

R̂
(
α, β, γ

)
=




cosα cos γ − sinα cosβ sin γ sinα cos γ + cosα cosβ sin γ sin β sin γ
− cosα sin γ − sinα cosβ cos γ − sinα sin γ + cosα cosβ cos γ sin β cos γ

sinα sin β − cosα sin β cosβ


 ,

(7.12)

using the three Euler angles [187, 188] α, β and γ, we can set the excitation direction and
polarization vectors for the first “diagonal” setup as

kd = R̂
(
α, β, γ

)
· ex , E

(1)
0,d = R̂

(
α, β, γ

)
· ey and E

(2)
0,d = R̂

(
α, β, γ

)
· ez . (7.13)

For the second “rotated” setup we consequently rotate the permittivity tensor

εr = R̂T (
α, β, γ

)
· εd · R̂

(
α, β, γ

)
, (7.14)

such that the excitation directions and polarization vectors are aligned with the coordinate axes,
i.e.,

kr = ex , E
(1)
0,r = ey and E

(2)
0,r = ez . (7.15)

We choose

α = 1 , β = 2 , and γ = 1
2 , (7.16)
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Figure 7.9: Scattering efficiencies of a dielectric sphere with diagonal permittivity ten-
sor (7.11) upon excitation with rotated polarization vectors (7.18), (a) E(1)

0,d and (c) E(2)
0,d

compared to the rotated fully anisotropic permittivity tensor (7.17) upon excitation in y-
polarization (a) and z-polarization (c). All spectra are computed with the DGTD method
using a p = 4 polynomial basis. (b,d) Corresponding relative errors (7.5) between the differ-
ent DGTD computations for the finest mesh of the convergence scan and different polynomial
orders p.
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such that the fully occupied tensor is

εr ≈




3.17 −0.75 −0.64
−0.75 2.48 0.41
−0.64 0.41 2.23


 , (7.17)

while the excitation vectors for the diagonal tensor turn to

kd ≈




0.64
0.05
0.77


 , E

(1)
0,d ≈




0.63
−0.60
−0.49


 and E

(2)
0,d ≈




0.43
0.79
−0.41


 . (7.18)

All other simulation parameters of the Gaussian modulated plane wave (see Equation (7.1))
remain the same.
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Figure 7.10: Wavelength-resolved relative error Ep(h̃), Eq. (7.5), between the DGTD scat-
tering efficiency computations for the diagonal permittivity tensor with rotated excitation
and the counter-rotated system. Both are computed for different basis polynomial order
(a,b) p = 2 and (c,d) p = 4, different mesh refinements h̃ and the two different polariza-
tions (7.18) used for the excitation with a plane wave.

In Figure 7.9 (a,c) we show the scattering efficiencies for both polarizations. While both spectra
agree well, the deviation is highest in the low wavelength region, in which the resonances become
more pronounced. However, the relative errors in Figure 7.9 (b,d) show the same behavior as
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in the isotropic and diagonal anisotropic case, namely, the p = 1 errors are significantly higher
than the p = 2, 3, 4 computation errors of the scattering efficiencies.
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Figure 7.11: Wavelength-averaged relative errors, 〈Ep〉λ(h̃) comparing DGTD computa-
tions with diagonal (7.11) and rotated permittivity tensor (7.17) for two different linear
excitation polarizations (7.18), (a,b). Dashed lines show polynomial fits h̃γ for the conver-
gence behavior for first- and fourth-order basis sets, with parameters (a) γ(1)

1 ≈ 0.87 and
γ

(1)
4 ≈ 2.81, as well as (b) γ(2)

1 ≈ 0.87 and γ(2)
4 ≈ 2.83.

In Figure 7.10 we show the wavelength-resolved relative error convergence with respect to the
mesh refinement factor h̃. For both polarizations, the error in the small wavelength region λ . 2R
is significantly higher for the p = 2 computations (see Figure 7.10 (a,c)) than compared to that
of the p = 4 computations (see Figure 7.10 (a,c)). But since the convergence of the wavelength-
averaged relative error 〈Ep〉λ shows roughly the same slope in Figure 7.11 for both polynomial
orders, the relative offset factor can be attributed to the lower number of discretization points
used for the lower polynomial order computations. Again the slopes of the p = 2, 3, 4 convergence
behaviors agree and γ(1)

4 = 2.81 as well as γ(2)
4 = 2.83 have the expected value for a second-order

convergence behavior induced by the use of a linearly approximated sphere surface. The p = 1
computations, again provide slopes of γ(1)

1 = 0.87 as well as γ(2)
1 = 0.87, in the same manner

as already seen for the diagonal test case of the previous section. For the chosen mesh sizes we
again obtain relative errors as low as 0.5%, such that the real-valued, three-dimensional, non-
dispersive anisotropic material tensor implementation for the DGTD method can be considered
reliably operating.
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7.1.4 Magneto-optic material tensors

In the fourth and final test setup (see Figure 7.1 (d)), we use a complex-valued anisotropic
material tensor, as derived in Section 3.3 about the MO materials. We use the tensor

ε =



εr ig 0
−ig εr 0
0 0 iεr


 =




6.25 0.1i 0
−0.1i 6.25 0

0 0 i6.25


 . (7.19)

With the increased value of εr = 6.25, a sphere with a radius as large as in the previous examples
would lead to a lot of resonances and requires an even finer mesh resolution. Hence, we here
investigate the scattering of a

(SI) R = 50 nm (7.20)

sphere and record spectra for wavelengths

(SI) λ ∈ [3R, 8R] = [150 nm, 400 nm] . (7.21)

As excitation, we use a Gaussian modulated plane wave with left circular polarization (LCP)
and right circular polarization (RCP). Since both the polarization vectors (2.82) for LCP and
RCP as well as the permittivity tensor (7.19) are complex-valued, we also need to perform the
DGTD computations with complex fields. Here, one exploits the linearity of Maxwell’s equations
and only takes the real values of the fields to compute the final observables. This means the
time-dependent incident field has to be real-valued in the end as well. This means, that given a
real-valued incident field time dependence

η(t) = 1
2π

∫ ∞

−∞
dω η(ω) e−iωt , (7.22)

with its spectral components η(ω) = η∗ (−ω), for each positive frequency ω, the incident plane
wave field in circular polarization has to take the form [189]

E±inc(r, t) = 2Re
[

1
2π

∫ ∞

0
dωE±0 η(ω)eiω

c (ek·r−ct)
]
. (7.23)

Here E±0 are the LCP (+) and RCP (−) polarization vectors, as introduced in Eq. (2.82). While
maintaining the spectrum of the time dependence guarantees the same time-dependent behavior
of the field, we have to restrict ourselves to a positive frequency integral within the Fourier
transform for any elliptically and therefore also circularly polarized incident field. Otherwise,
the rotation direction of the field changes for negative frequencies, as there is a change in the
sign of the complex phase. The factor two has to be introduced in order to recover the incident
field of the form (7.1) for linear polarization, i.e., E±0 → E0 = E∗0. In order to simplify the
source term computation, we introduce a complex-valued time dependence ηc(t), such that for
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any complex-valued polarization vector E0

Einc(r, t) = Re
(
E0ηc

(
t− c−1

0 ek · r
))

. (7.24)

Consequently, we require that

η(t) = 2Re
(

1
2π

∫ ∞

0
dω η(ω)e−iωt

)
!= Re

(
ηc(t)

)
, (7.25)

for the real- and complex-valued time dependence. Therefore, we can compute the complex-
valued time dependence as

ηc(t) = 2
2π

∫ ∞

−∞
dω η(ω)Θ(ω)e−iωt = 2η(t) ∗ F−1 [Θ(ω)

]
(t)︸ ︷︷ ︸

1
2 δ(t)−

i
2πP 1

t

= η(t)− i
π

P
∫ ∞

−∞
dt′ η(t′)

t− t′ = η(t) + iH
[
η(t′)

]
(t) , (7.26)

where the real part per design is the original real-valued time dependence and the imaginary part
is the Hilbert-transformation H [189, 190] of the time dependence η(t). Here P

∫
is the Cauchy

principal value integral. Typical time dependencies used within the DGTD computations take
the form of a slowly modulated carrier wave, i.e.,

η(t) = cos
(
ω0(t− t0) + φ0

)
f (t− t0) . (7.27)

As the envelope function f(t) is assumed to be slowly varying, both Fourier transform of the
carrier wave and f(ω) have negligible spectral overlap. Thus, one can apply the Bedrosian
theorem [191] and the Hilbert transformation is

H
[
η(t′)

]
(t) = f (t− t0)H

[
cos
(
ω0(t− t0) + φ0

)]
(t)

= − sin
(
ω0(t− t0) + φ0

)
f (t− t0) . (7.28)

For the complex-valued field DGTD computations, we use the complex-valued Gaussian modu-
lated plane wave incident field

E±inc(r, t) = E±0 ηc
(
t− c−1

0 ez · r
)

= E±0 e−iω0(t−t0)e−
(t−t0)2

2σ2 . (7.29)

Here, we set the polarization vectors to

E+
0 = 1√

2

(
ex + iey

)
for LCP and E−0 = 1√

2

(
ex − iey

)
for RCP. (7.30)
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Because of the adjusted spectral observation range, also the pulse modulation parameters are
changed to

(SI) λ0 = 2πc0
ω0

= 300 nm , σ ≈ 1.167 fs and t0 = 10σ ≈ 11.67 fs . (7.31)

With the choice of the temporal width σ of the Gaussian envelope determining also the spectral
width (B.22), the Bedrosian theorem (7.28) holds to a sufficient level, as

(SI) 1 / c0σ

λ0
= 7

6 . (7.32)

From the Fourier transformed fields, we again compute the time-averaged Poynting vector (2.93),
the scattering cross section Cscat (2.104) and finally the scattering efficiency Q±scat for both LCP
and RCP. Since the MO material provides different refractive indices for LCP and RCP waves,
we also compute the difference

∆Q = Q+
scat −Q−scat . (7.33)

For the non-absorptive permittivity chosen here, Eq. (7.33) gives a measure for the strength of
the Faraday effect of the material [29], while it also provides a measure for the analog of circular
dichroism [86]. As the spherical particles scatter LCP and RCP light differently, light passing
through such particle dust would appear dichroic, as the overall extinction is solely determined
by the scattering cross sections of the single constituting particles.

In Figure 7.12 (a) we show the scattering efficiencies for both polarizations. We again compare
the DGTD spectra against Mie calculations performed by P. Varytis [78]. The spectra show
a good agreement for both Mie resonances captured in the spectrum. However, a deviation
for small wavelengths λ ≈ 3R can still be observed. In Figure 7.12 (b) we show the left-right
difference signal ∆Q for both the p = 4 DGTD computation as well as the Mie calculations. As
there is no strong deviation, we additionally investigate the relative error

E∆Q
p = |∆Q(DG) −∆Q(Mie)|

max
(
|∆Q(DG)|, |∆Q(Mie)|

) , (7.34)

which is constructed to maximally get to one, if either of the left-right difference spectra becomes
zero. This relative error is shown in Figure 7.12 (c). We again observe that the error for the
p = 1 computations is significantly higher than that for the p = 2, 3, 4 computations which show
a similar behavior. However, the error is an order of magnitude higher than in the previous
sections, as the left-right difference ∆Q is an order of magnitude smaller than the scattering
efficiency spectra it is obtained from.

In Figure 7.13 we show the wavelength-resolved convergence behavior of the left-right scattering
efficiency difference for different polynomial basis function orders p. For the first-order polyno-
mial basis, the relative error does not show a systematic improvement (see Figure 7.13 (a)), as
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Figure 7.12: (a) Comparison of scattering efficiencies of a full-dielectric MO sphere excited
in LCP and RCP, computed with both the complex-valued DGTD method and Mie calcula-
tions [78]. The DGTD computations stem from the finest mesh of the convergence scan and
utilize a polynomial Lagrange basis of order p = 4. (b) Left-right difference signal (7.33)
computed for either method using the spectra above. (c) Relative error (7.34) between the
DGTD computations and the Mie calculations, for different polynomial basis orders p and
the finest mesh used in the convergence scan.

the mesh element size

h = h̃ h0 , (7.35)

is not small enough, even for the lowest mesh refinement factor h̃min. Here the mesh element
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Figure 7.13: Wavelength-resolved relative error (7.34) of the MO left-right scattering ef-
ficiency difference between the Mie calculations and DGTD computations determined for
different mesh refinements h̃ (see Eq. (7.35)) and polynomial orders p.

size was changed to h0 = 20 nm as also the sphere radius was decreased compared to the pre-
vious sections. However, for the other polynomial orders, we can clearly observe a systematic
improvement with increasing h̃-refinement. The same can also be observed for the wavelength-
averaged relative error 〈E∆Q

p 〉λ, shown in Figure 7.14. This holds both for a comparison between
DGTD computations against Mie calculations (a) as well as DGTD with the finest mesh DGTD
computation performed in the convergence scan (b). Since we compare the difference between
the LCP and RCP scattering efficiency spectra, the resulting convergence behavior seems to be
effectively lowered by one degree, i.e., the error decreases with γ4 ≈ 1.63 for the Mie calculations
and γ4 ≈ 1.78 for the DGTD computations respectively. However, with the given mesh size, it
is still possible to obtain relative errors as small as 5%.

Summarizing the convergence study for the anisotropic material implementation, we have shown
that for all viable non-dispersive anisotropic permittivity tensors resulting in a stable DGTD
scheme, we can perform reliable and systematically improvable computations. While the results
from Mie calculations clearly perform better for the spherical scattering problems converging
exponentially with angular momenta l, the DGTD method’s main application lies in the compu-
tation for material distributions with more sophisticated geometries.
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Figure 7.14: Wavelength-averaged relative errors, 〈E∆Q
p 〉λ(h̃) of the left-right scattering

efficiency difference comparing (a) DGTD computations against Mie computations and (b)
DGTD computations with the finest mesh of the convergence study, each for different basis
polynomial order p. Dashed lines show polynomial fits h̃γ for the convergence behavior for
second- and fourth-order basis sets, with parameters (a) γ1 ≈ 0.93 and γ4 ≈ 1.6, as well as
(b) γ1 ≈ 0.68 and γ4 ≈ 1.78.

7.2 Shape-optimization for enhanced Faraday rotation

Ensured of the correct operation of the DGTD’s anisotropic material implementation, we apply
the method to an MO shape-optimization problem. MO nanostructures provide unique opportu-
nities to control the light-matter interaction at the nanoscale. MO materials offer a wide variety
of effects, like the MO Kerr effect and Faraday rotation [29]. While MO effects are typically
rather weak in the optical domain, the main goal often is to provide a resonant enhancement of
the related effects.

Here, we want to concentrate on a specific application to enhance the Faraday rotation of a
Huygens’ metasurface [192] consisting of MO nanoscale scatterers. This work is based on a setup
by A. Christofi et al. [44] and was collaboratively worked on with P. Varytis [K8, 193]. The
original setup is a metasurface of cylindrical bismuth iron garnet (BIG) scatterers embedded in
a silicon dioxide (SiO2) matrix. Upon excitation with linearly polarized light, the polarization
direction is rotated due to the Faraday effect in the MO material. The Faraday rotation angle,
i.e., the rotation angle of the field polarization of the transmitted light compared to the incident
polarization direction, is rather low for a homogeneous layer of MO material. Introducing a peri-
odical array of cylinder scatterers with adjusted height and radius not only leads to a significant
increase in the Faraday rotation angle but also allows for near-unity transmittance due to the
interference of an electric and magnetic dipole resonance [44].

In this thesis, we do not only reproduce the results [44] of the cylindrical scatterer metasurface
with the DGTD method but also outline how to use an algorithm for shape optimization to obtain
both a high Faraday rotation as well as maintaining a high transmittance of the metasurface. For
that purpose, we introduce a shape modification of the scatterers’ surface using spline curves and
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perform a random search test, which in future works can be replaced with more sophisticated
optimization algorithms, like a Bayesian optimization [194].

7.2.1 Cylindrical scatterer metasurface

First, we consider a periodical square lattice with periods px = py = 850 nm composed of MO
cylinders with varying radius R and a height of H = 260 nm, as shown in Figure 7.15 (a). As MO
example material we use BIG, which in the near-infrared (NIR) can be modeled with a relative
permeability of µr = 1 and a relative permittivity tensor

ε =



εr −ig 0
ig εr 0
0 0 εr


 , (7.36)

where the gyration vector is set along the z-direction (by setting a static external magnetic field)
and εr = 6.25 as well as g = 0.06 [195]. The surrounding SiO2 host medium is modeled as
an isotropic non-dispersive medium with εh = 2.1 and µh = 1. In order to compute both the
transmittance spectrum as well as the Faraday rotation angle, we use the DGTD method. For
this purpose, we prepare a computational domain with its lower part depicted in Figure 7.15 (a).
It consists of the unit cell containing a single scatterer in the center (z = 0) and is surrounded
by two 1.5 µm thick layers of SiO2 each. On the bottom, we introduce a Tf/Sf-contour between
the two SiO2 layers to excite the metasurface with a Gaussian modulated plane wave

(SI) Einc(r, t) = exηc

(
t−
√
εh
c0
ez · r

)
, (7.37)

where ηc(t) is the complex version (cf. Eq. (7.26)) of the Gaussian time dependence (B.20) and
the plane wave is originally polarized in x-direction. On top of the metasurface, we use a similar
contour to the Tf/Sf-contour in order to record both the transmittance spectra Eq. (2.109) and
also the frequency-dependent electric fields E

(
x, y, z = ztrans, ω

)
, from which we can compute

the Faraday rotation angle as well as the ellipticity. The parameters of the Gaussian pulse are
chosen as σ = 4.8 fs, t0 = 46.7 fs and λ0 = 2πc0

ω0
= 1.4 µm in order to have a sufficiently broad

excitation spectrum, to record the transmittance and Faraday rotation spectra in the wavelength
range

(SI) λ ∈
[
1.2 µm, 1.45 µm

]
. (7.38)

We use periodic boundary conditions (PBCs) both in x- and y-direction, while the computational
domain is terminated with a 500 nm thick perfectly matched layer (PML) both on the top and
bottom, additionally to the Silver Müller boundary conditions (SMBCs) used.

Given the permittivity of the host medium and wavelength range of excitation (7.38), the exci-
tation of the metasurface almost completely lies within the zeroth diffraction order

(SI) λ > λ(1) = px/y
√
εh ≈ 1.231 µm , (7.39)
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Figure 7.15: Example meshes for the lower part of the computational domain for the MO
metasurfaces, containing (a) a cylindrical scatterer with radius R = 250 nm and (b) the best
shape-modified scatterer found in a random search. The upper parts of the mirror-symmetric
meshes are not shown.

of the grating created. While the transmittance spectrum T (ω) by construction accounts only
for the energy leaving into the far-field, a far-field transformation has to be performed for the
transmitted electric fields recorded at a finite distance ztrans of the metasurface to obtain the
far-field polarization state. Given the computed frequency-dependent field Etrans(r, ω) on the
transmission contour, this far-field transformation simply reduces to a field average over the unit
cell (uc)

E
(0)
trans(ω) = 1

Auc

∫

uc
dx dyEtrans

(
x, y, z = ztrans, ω

)
, (7.40)

as the only contribution to the far-field radiation stems from the zeroth diffraction order. Given
the incident polarization axis c = ex as well as the incident wave vector ek = ez, we can compute
both the Faraday rotation angle θ(ω) and ellipticity angle χ(ω) as described in Section 2.7.1,
specifically Equations (2.78). To quantify the demand for a high transmittance as well as a large
Faraday rotation angle, we define a figure of merit (FoM) as

Θ(ω) :=




|θ(ω)|

√
T (ω) for T (ω) > 0.3 ,

0 else .
(7.41)

Thereby, we introduced a cut-off filter condition for low transmittances.
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Figure 7.16: Transmittance (a), Faraday rotation (b) and FoM (c) spectra for an MO
metasurface consisting of periodically arranged cylindrical scatterers with varying radius R.

While Christofi et al. [44] were able to demonstrate a maximal FoM

Θ+ := max
λ>λ(1)

Θ(λ) (7.42)

as high as Θ+ ≈ 7.5◦ for a relatively large radius of R = 310 nm, we can achieve an even higher
FoM decreasing the radius R of the cylinder scatterers further. However, it already is a huge
improvement to increase the Faraday rotation angle to θ+ = −7.5◦ compared to a homogeneous
layer of the same material only providing angles of θ = −0.75◦ [44]. In Figure 7.16, we show
the transmittance (a), the Faraday angle (b) as well as the resulting FoM (c) for cylinder radii
varying between R ∈

[
100 nm, 400 nm

]
. For large radii R > 350 nm, we observe two distinct
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Figure 7.17: Transmittance (a), Faraday rotation and ellipticity (b) as well as FoM (c)
spectrum for an MO metasurface consisting of cylindrical scatterers with a radius R =
250 nm. The FoM peaks at the wavelength λ+

cyl = 1.2982 µm.

resonances in the transmittance spectra, as also already shown in [44]. With decreasing radius
R these resonances both shift to lower wavelength and interfere. Due to the interference the
resulting setup forms a Huygens’ metasurface and provides a spectrally narrow resonance with
peak transmittance one. This interference again vanishes for further decreased radii R < 200 nm
as the resonances shift towards the edge of the first diffraction order λ(1) (see Eq. (7.39)). At the
same time the Faraday rotation (see Fig. 7.16 (b)), follows the resonance of the transmittance
spectrum and reaches a deep minimum at R ≈ 250 nm. We also notice, that the Faraday rotation
angle reaches very high values (yellow clipped pixels in panel (b)), when the corresponding
transmittance reaches zero value (cf. panel (a)). This is caused by the method used here: In
comparison to a frequency-domain method, the DGTD method is more susceptible to numerical
errors in the transmitted fields. Hence, also the Faraday rotation angle can take arbitrarily high
values as it is essentially computed from random noise. This is the reason to introduce the
transmittance cut-off filter in Eq. (7.41), which was also used in Fig. 7.16 (c). Consequently, the
highest FoM is reached for a radius of R = 250 nm.
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The corresponding spectra for this specific radius are shown in Fig. 7.17 (a-c). For the R =
250 nm radius, we reach both a peak transmittance of T (λ+

cyl) ≈ 1 and a Faraday rotation angle
as low as θ(λ+

cyl) = −Θ(λ+
cyl) ≈ −10.1◦. The corresponding mesh used for the computation is

shown in Fig. 7.15 (a) and the spectra are shown in Fig. 7.17 (a-c). However, we here omitted
the transmittance filter, as the transmittance is well above zero for the computed wavelength
range. Additionally, we also show the corresponding ellipticity spectrum χ(λ). As transmittance
is one at the resonance, the ellipticity is equal to zero, as expected. Thus, the polarization is
completely rotated but remains linear. Therefore, we show that a decreased radius R of the
cylinders can already lead to a further enhancement of the Faraday rotation, up to a maximum
FoM of Θ+ = 10.1◦ compared to the results reproduced by us and originally presented in [44].
However, we can achieve an even higher FoM using a shape-optimization of the scatterers, which
is outlined in the following section.

7.2.2 Shape-modified scatterer metasurface

The idea of varying the scatterer radius is now extended to varying the entire cross section, by
adjusting radial points of the scatterer which then are connected by spline interpolation. We,
therefore, introduce a set of 4N control points

ri =
(
ri cos(i∆φ)
ri sin(i∆φ)

)
, with i ∈ [1, 4N ] , (7.43)

which are equiangularly distributed by ∆φ = 2π
4N in the unit cell. The radial positions ri are

chosen such, that they lie between a minimal radius rmin = 75 nm and a minimal distance to
the unit cell boundary of d = 60 nm, which is shown in Fig. 7.18 (a). To avoid self-intersecting
splines of the scatterer boundary curve, we additionally introduce a Gaussian smoothing for the
control point positions

r̄i =
∑4N

j=1wijrj∑4N
j=1wij

. (7.44)

The Gaussian weights are

wij = exp
(
−|φi − φj |2〈|r|〉2/L2

)
, (7.45)

where L = 5rmin∆φ is the correlation length of neighboring points and φi = i∆φ. This correlation
length on the one hand prevents self-intersections of the shape defining spline interpolation by
introducing a correlation for (at least) five consecutive neighboring points. On the other hand, it
also guarantees that there are no sharp edges on the scatterer contour, such that it also accounts
for natural smoothing in a potential experimental structure. To preserve the independence with
respect to excitations with x- or y-polarization we enforce a four-fold symmetry, thus only varying
N of the 4N points. A corresponding smoothed scatterer cross section is shown in Fig. 7.18 (b),
where we use 4N = 60 control points. For the final three-dimensional scatterers, we keep the
height at H = 260 nm.
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Figure 7.18: Two-dimensional scatterer cross sections created with a spline interpolation
without (a) and with (b) Gaussian smoothing (7.44) for a given set of control points set
within the random search algorithm.

To find an even further enhanced FoM than that for the cylindrical scatterers, we perform a simple
random search of the radii spanning the search space of shape configurations, i.e., we provide
randomly generated [196, 197] sets of the control points r̄i. For each of the 300 configurations,
we use the resulting mesh, e.g., the mesh in Fig. 7.15 (b), to compute the transmittance and
Faraday rotation spectra, as outlined in the previous section. Here, the number of control
points per quadrant is set to N = 15 in order to provide a sufficient angular resolution for the
possible structures spanning the search space. Within the DGTD computations, we keep the
same parameters as in the case of cylindrical scatterers.

In Fig. 7.19, we show the spectra for the scatterer with the highest FoM found in the random
search. For comparison also the spectra of the R = 250 nm cylindrical scatterer are shown.
While the resonance shifts from λ+

cyl = 1.2982 µm for the cylinder scatterer to λ+
sm = 1.295 µm

for the shape-modified scatterer, the transmittance only slightly decreases to T (λ+
sm) = 0.98. At

the same time the chirality of the structure, which is rotated against the unit cell frame (cf.
Fig. 7.15 (b)), supports an even stronger Faraday rotation and the angle decreases to θ(λ+

sm) =
−12.1◦, such that the FoM is even further increased to Θ(λ+

sm) ≈ 12.0◦. At the same wavelength
the ellipticity also consistently is close to χ(λ+

sm) ≈ 0. We thus have shown, that it is possible to
already find a further enhanced FoM by only performing a random search. However, a random
search is merely the first step for a more elaborate and efficient optimization scheme. As the
computations per sample structure require several days of computation time (on an Intel Xeon
E5-2670 using 8 cores), a Bayesian optimization algorithm [194] is a more suitable choice for
a real optimization algorithm. In [K8], we show that with the same structural setup but the
usage of Catmull-Rom splines instead of the Gaussian filter FoMs as high as Θ = 15◦ can be
achieved.
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Figure 7.19: Transmittance (a), Faraday rotation and ellipticity (b) as well as FoM (c)
spectrum for the best shape-modified scatterer structure found in the random search (solid
lines) as well as the spectra for the optimally scaled cylindrical disks for comparison (dashed
lines). The FoM for the metasurface with shape-modified scatterers peaks at the wavelength
λ+
sm = 1.295 µm.

7.2.3 Convergence of spectra

Although the results presented in the previous Section 7.2.2 show a significant improvement
compared to the non-optimized structures, we need to address the bounds of the numerical
uncertainties of the underlying computations. In Section 7.1.4 about the scattering cross sections
of the MO spheres, we observed uncertainties as small as five percent. Therefore, we perform
both a mesh refinement as well as simulation time convergence study in order to assess the
uncertainties tied to the computations presented.

In Figure 7.20 we show the convergence behavior of the transmittance (a), the Faraday angle
(b) as well as the FoM (c) for all recorded wavelengths. Here, we vary the maximally allowed
element side length h [140]. Therefore, we again introduce a dimensionless scaling factor h̃ = h

h0
,

where the element characteristic side length of the scatterers is set to h0 = 80 nm. The mesh is
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Figure 7.20: Convergence with respect to the mesh refinement h̃ of the transmittance (a),
Faraday rotation (b) as well as FoM (c) spectra for the best metasurface found in the
random search. Panel (d) shows the peak FoM Θ+ in dependence of the mesh refinement
factor. (e) Corresponding relative error E+

Θ comparing the FoM with respect to the finest
mesh used in the convergence scan.

uniformly refined with decreasing h̃. Figure 7.15 (b) shows the best example mesh found in the
random search with a refinement factor of h̃ = 0.5. For both the transmittance as well as the
Faraday rotation angle and thus also the FoM we observe that for coarse meshes the spectra show
erratic jumps in the spectral position of the resonance. This can be attributed to the strongly
varying surface geometries of the meshes created. Moreover, we also observe a systematic shift
of the resonances to larger wavelengths, as the actual meshed volume of the scatterer converges
to its boundary from the inside. Thus the effective (meshed) volume increases systematically
with the decreasing h̃, which leads to the systematic shift because of the scale invariance of
Maxwell’s equations. The finer the mesh, the smaller are the deviations in the spectral positions.
Despite the small changes in the spectral position, the maximal value of the FoM-spectrum,
i.e., the actual FoM Θ+ , systematically converges to a fixed value (see Figure 7.20 (d)). In
Figure 7.20 (e) we show the relative error

EΘ+(h̃) =
∣∣∣∣∣1−

Θ+(h̃)
Θ+(h̃∗)

∣∣∣∣∣ , (7.46)
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where h̃∗ = 0.38 defines the finest mesh of the convergence scan. For this relative error, we
observe a polynomial convergence behavior, comparing the single DGTD computations to that
with the finest mesh provided in the scan. This is expected for these third-order Lagrange
polynomial basis computations, as already seen in Section 7.1.4. We again observe a numerical
error on the order of five percent.
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Figure 7.21: Convergence with respect to the total simulation time ttot of the transmittance
(a), Faraday rotation (b) as well as FoM (c) spectra for the best metasurface found in the
random search. Panel (d) shows the peak FoM Θ+ in dependence of the mesh refinement
factor. (e) Corresponding relative error EΘ+ comparing the FoM with respect to the finest
mesh used in the convergence scan.

Another important factor for the convergence of the numerical computations is the simulation
time. Narrow resonances indicate modes with a high quality factor and thus a long lifetime
of the fields, once they are excited. As the underlying spectra are computed within a time-
domain method, we use an on-the-fly Fourier transform (see Eq. (5.126)) in order to recover
the frequency-dependent fields and Poynting vectors. As the computations are initialized with
zero fields, the fields also need to be sufficiently small at the end of the computation in order to
prevent spectral leakage [169] and aliasing [129]: If the fields have a relatively high amplitude
at the end of the simulation at time ttot the resulting frequency-dependent fields get convoluted
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with the Fourier transform of a box function, i.e.,

E(ω)→ ttoteiωttot/2sinc
(ωttot

2

)
∗E(ω) . (7.47)

In Fig. 7.21, we show the convergence behavior of the transmittance (a), Faraday rotation (b)
as well as the FoM (c) for different total simulation times ttot. In all three panels, we can clearly
see, the influence of the sinc-function on the spectra for small times ttot < 3 ps: left and right
of the main resonance we observe oscillations, which are closing in to the resonance peak and
fade away with increasing ttot. The corresponding simulations have been performed with a mesh
refinement of h̃ = 0.5. Both in Figure 7.21 (c) and (d), we can clearly see how the FoM Θ
increases as also the total simulation time ttot grows. As the fields of the resonance radiate from
the metasurface with a temporal exponential decay, also the recorded fields contributing to the
on-the-fly Fourier transform first add up quickly and then less and less with increasing time ttot.
Figure 7.21 (e) shows that the numerical error of the simulation can be well suppressed below the
level of the mesh-refinement error, as we reach errors as low as 0.2% within the simulation time
convergence scan. Overall the relative numerical errors are much smaller than the computed
Faraday rotation enhancement ratio between the cylindrical and shape-modified scatterers.

7.3 Designing mid-IR HMM cavities

Optical microcavities are an integral component in applied and fundamental physics. They enable
a strong light confinement accompanied with large field enhancement and control of light [46,
47], as well as a high density of states and thus also a strong interaction with emitters, leading to
an enhanced Purcell effect [52, 53, T3]. Further applications include subwavelength imaging [49–
51], increased optical nonlinearities [198, 199] and reach as far as increased fluctuation induced
phenomena, like quantum friction [55].

Here, we present an HMM microcavity and how to determine the resonances and field distribu-
tions of the cavity. This cavity is a quasi-one-dimensional setup of a ZnO and heavily doped
ZnO:Ga material stack acting as an HMM microcavity. The work presented was partly published
in [K3] and builds the foundation for a detailed study of the HMM defining parameters, like the
number of unit cells, as well as the fill factor f (see Section 3.4.1), shown in [K9]. The strik-
ing point of the HMM clearly is its dispersion, which allows for (in principal) indefinitely large
k-vectors at finite frequencies. Finite k-vectors are one of the limiting factors of conventional
material cavity sizes at given frequencies, as with decreasing size no resonances can be supported
any longer. While typical setups using noble metals like gold and silver work with an HMM
type II material both up to the visible regime [200, 201], the use of the highly doped ZnO:Ga
enables to also utilize and investigate cavity resonances with an HMM type I material due to the
low plasma frequency. In contrast to an HMM type II material which only couples evanescently
to free-space, the cavity modes originating in the HMM type I frequency region can be directly
excited from the far-field. It is shown how the HMM type I upper-frequency threshold introduces
an accumulation point of cavity resonance frequencies for cavities relatively small compared to
the operating wavelength.
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Figure 7.22: (a) Sketch of the HMM cavity design consisting of 31 interlaced layers of
ZnO and doped ZnO:Ga. (b) Scanning electron microscope (SEM) image of the cavity
cross section provided by E. Travkin [K3]. Darker areas indicate a higher free-electron
concentration.

The geometrical setup of the quasi-one-dimensional ZnO / ZnO:Ga cavities is shown in Fig-
ure 7.22 (a). In the experimental realization, the microcavity samples are grown by molecular
beam epitaxy [K3] on a sapphire substrate. The actual HMM core, consisting of 31 alternating
layers of ZnO and doped ZnO:Ga(A) is embedded in two highly doped ZnO:Ga(B) layers acting
as cavity mirrors. Here the ZnO act as dielectric layers, while the doped ZnO:Ga layers are the
metallic counter-part for the HMM material. Figure 7.22 (b) shows an SEM image of a cav-
ity cross section. The reflectance spectra of the micro-cavities are measured to experimentally
determine the resonances structure for both transverse electric (TE) and transverse magnetic
(TM) polarization. Additionally, a variation of the incident angle θ provides insight into the
mode dispersion. Figure 7.23 shows the reflectance spectra for both polarizations and different
incident angles. In Section 3.4 it was pointed out, that the HMM type I material dispersion
is hyperbolic for only one polarization, here the TM polarization. Therefore we only observe
ordinary Fabry-Pérot resonances in TE polarization. In TM polarization, however, we observe
a broad shoulder as well as additional resonance peaks at around 0.5 eV. These stem from the
hyperbolic dispersion of the system.

In order to numerically assess the resonance structure of the system, the involved materials,
namely the ZnO, doped ZnO:Ga as well as the sapphire substrate need to be modeled with
relative permittivities. It was demonstrated in [56] that it is sufficient to model the ZnO as
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Figure 7.23: Experimental and computational reflectance spectra for a 31 layer HMM ZnO
/ ZnO:Ga microcavity both for TE (a) and TM (b) polarization. The incident angle θ
of the excitation wave is varied in both measurements and scattering matrix (S-matrix)
computations. Dashed lines mark the peaks indicating the underlying resonances. The
shaded area in panel (b) marks the HMM type I frequency region. Experimental spectra
are graciously provided by E. Travkin [K3].

effectively non-dispersive dielectric and the doped ZnO:Ga as a Drude metal, i.e.,

εZnO:Ga(A,B)(ω) = εZnO −
ω2
pl,A,B

ω
(
ω + iγA,B

) . (7.48)

Thereby, the doping level, which is controlled in the growth process, determines the plasma
frequency in the model. Thus, we can compute the reflectance spectra of the cavity for both
polarizations using the S-matrix algorithm from Chapter 4 and fit the material parameters for
both the ZnO and ZnO:Ga(A,B) with the two different doping levels. For the ZnO as well as
the background permittivity for the doped ZnO:Ga layers, one finds εZnO = 3.7. The material
parameters for both the internal doped layers, as well as the highly doped mirroring layers are
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determined as

(SI) ~ωpl,A = 1.01 eV and ~γA = 0.11 eV , (7.49a)
(SI) ~ωpl,B = 1.76 eV and ~γB = 0.11 eV . (7.49b)

Furthermore, the sapphire permittivity is approximated as εα-Al2O3 ≈ 2.89 [202] in the frequency
region of interest. Additionally, the thicknesses of the different layers are determined by the
sample growth process and are

(SI) dZnO = 44 nm , dZnO:Ga(A) = 42 nm , (7.50)

for the internal and

(SI) dZnO:Ga(B) = 145 nm , (7.51)

for the mirror layers. Given the material parameters and layer thicknesses, this also sets the fill
factor of the HMM-core as

f = dZnO
dZnO + dZnO:Ga(A)

≈ 0.51 , (7.52)

and therefore also the HMM type I frequency boundaries Eq. (3.44) shown by the shaded area
in Figure 7.23 (b), which lies between ~ω ∈

[
0.38 eV, 0.52 eV

]
.

Based on these parameters, the resonances of the microcavities can be determined numerically in
two different ways. The easier but less accurate method is to recompute the reflectance spectra
of the cavity with a reduced material damping γ. This assumes, that the resonance frequency
is barely shifting with a reduced damping constant. In Figure 7.24 (a) we show the reflectance
spectrum for an incident angle of θ = 74◦ computed using the S-matrix method. Reducing
the damping of the HMM doped ZnO:Ga(A) core material to a percent of the original value,
the peaks just below the upper HMM type I frequency become more and more distinct, i.e.,
spectrally narrower and thus better to distinguish.

The second option to determine the resonances is to compute the poles of the S-matrix. To
this end, we numerically compute the inverse of the maximal singular value σ̄−1(ω) of the mi-
crocavities S-matrix as explained in Section 4.4. In Figure 7.24 (b) we show the corresponding
logarithmic map of this inverse singular value for complex frequencies ω. The inverse maxi-
mal singular value σ̄−1(ω) is zero if the S-matrix has a pole and thus reaches a resonance. We
can compute the resonance frequencies of the S-matrix with numerical minimization [171] of
log10 σ̄

−1(ω). This is numerically favorable over a direct root search, as the singular values are
always positive and can also include branch cuts in the frequency.

The resonance frequencies for the S-matrix with an effective medium approximation (EMA)
HMM-core are marked with circles in Figure 7.24 (b). Both the reflectance spectra in the low-
loss regime as well as the thorough computation of the S-matrix poles reveal the same resonance
structure. Above the HMM type I frequencies (~ω > 0.523 eV) we again observe ordinary Fabry-
Pérot resonances of the finite size cavity. Below the threshold, however, we find an accumulation
point of resonances, which get weaker and weaker in amplitude when approaching the HMM
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Figure 7.24: (a) Computed scattering spectra of the HMM-cavity for an incident angle
of θ = 74◦ for both the fitted ZnO:Ga material damping γ = γA as well as in the low-loss
regime γ = 0.01γA. (b) Compute inverse maximal singular values of the S-matrix for the
full material damping γ = γA and same incident angle. Insets show the upper spectral
boundary of the HMM type I region including the resonance accumulation point. Circles
mark the resonance frequencies. The corresponding resonance field distributions are shown
in Fig. 7.25 according to the labels.

type I upper frequency. While in the low-loss reflectance spectra the minima in the spectrum get
weaker approaching ~ω ≈ 0.523 eV, also the poles of the S-matrix get less and less pronounced.
This poses a challenge for the numerical minimization algorithm, as the starting value for the
minimization needs to be sufficiently close to the actual pole. It is remarkable, however, that the
S-matrix containing the fully damped ZnO:Ga(A) material model shows all the poles, which are
responsible for the long “shoulder” in the reflectance spectra. As both the reflectance spectra
and computed S-matrix poles agree very well for the EMA HMM as well as the full 31 layer
system, we here only show the EMA results.

Additionally to the resonances, we can also compute the associated field distributions of the
QNMs (see Section 4.4). However, we here compare both the EMA and full layer setup, as
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Figure 7.25: Field distributions of the quasinormal modes (QNMs) at the resonance fre-
quencies shown in Fig. 7.24 both for the full layer system (solid) as well as EMA HMM
model (dashed lines) compute for an incident angle of θ = 74◦.

it indicates the boundaries of the EMA for the HMM model. The field distributions for the
resonances in Fig. 7.24 (b) are shown in Fig. 7.25. For the resonances in the HMM type I
frequency region, we observe that the mode order, determined by the number of in-cavity field
nodes, increases with increasing frequency (see Fig. 7.25 (a) to (d)). This can be explained by the
hyperbolic dispersion of the material providing the relatively high kz-values at finite frequency.
We also notice that the HMM is realized by the internal coupling of surface plasmon polaritons
(SPPs): the field distributions computed within the EMA material model are smooth and the
field distributions for the fully layered material including the isotropic dielectric and Drude metal
show strong cusps at the material interfaces. We also notice, that with increasing mode order the
number of material layers becomes more and more important, as the field oscillation needs to be
realized by the coupling of the single interface SPPs. This effect is already very prominent for the
fifth-order mode shown in Fig. 7.25 (d). This also indicates that in comparison to the EMA S-
matrix the fully layered system can only provide a finite set of resonances below the accumulation
frequency and therefore the EMA as well as the hyperbolic dispersion breaks down. The EMA
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assumption of the internal wavelength being shorter than the material layers does not hold any
longer.

Additionally, to the high order modes of the HMM core, with its high density of states, there are
also two resonances originating from the coupling of the external mirror SPP coupling. These
are the zeroth- and first-order modes (Fig. 7.25 (e) and (f) respectively) coupling in a symmetric
and antisymmetric manner. Here, the zeroth-order mode is frequency-stable regarding changes
of the cavity size, potentially enabling applications with subwavelength cavities. The modes
at even higher frequencies are ordinary Fabry-Pérot resonances, as the ZnO:Ga(A) material in
the HMM core acts as a dielectric. Accordingly also the field distributions (see Fig. 7.25 (g))
show a normal smooth behavior for both the EMA and fully layered systems. As the computed
resonances have a complex frequency the fields also show the QNM typical divergence outside
the cavity [122] well seen in Fig. 7.25 (d).
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Figure 7.26: Dispersion relation of the resonance frequencies computed for different
transversal wave vector components kx, i.e., different incident angles θ. Blue dots mark
the numerically found poles for the EMA S-matrix. Orange crosses show the minima posi-
tions of the experimental spectra from Fig. 7.23. Panel (b) shows a close-up from (a) on the
accumulation point of resonance frequencies. The gray shaded area shows the HMM type I
region. The light line is marked in solid gray.

A variation of the incident angle θ in the computations of the S-matrix poles yields the dispersion
relation of the single resonances with respect to the lateral wave-vector component kx. The
dispersion relation is shown in Fig. 7.26 comparing the computed resonance frequencies with those
obtained from the experimental spectra. For kx = 0 the resonances in TE and TM polarization
are naturally degenerate and show a normal ascending mode order. This, however, changes with
increasing kx and therefore an increasing incident angle θ. Here, the mode continuum below the
HMM type I upper frequency shows a negative dispersion indicating negative group velocities.
Further, both the zeroth- and first-order modes emerge showing a positive curvature in the
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dispersion. We observe that the resonances found in the measured spectra agree well with the
computed spectra over the entire range of incident angles. However, the relatively high damping
in the doped ZnO:Ga materials leads to less pronounced signals in reflectance spectra for the
additional modes emerging from the HMM. This is the limiting factor for this setup, which in
principle could be overcome using another material, e.g., indium tin oxide (ITO) [200, 201].

Furthermore, we observe, that this HMM microcavity provides a high number of modes at the
HMM type I upper limit frequency, which can be tuned by the doping level of the ZnO:Ga.
The mode structure can be tailored in the growth process by changes of the cavity geometry,
i.e., a change in the fill factor f as well as the overall cavity size L and number of layers [K9].
This outlines a variety of applications like the tuneability of the high density of states, which
may allow for a tailored emission control of dye molecules or quantum dots included into or
above the microcavity. Moreover, the plasma frequency of the ZnO:Ga HMM core material can
be dynamically tuned through optical pumping on the picosecond scale [203]. Therefore, the
mode continuum of the HMM type I region can be actively controlled and outlines a way for a
subwavelength-sized dynamical optical switching.
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CHAPTER 8

Lasing cavities with distributed Bragg reflectors
and plasmonic silver grating

In this chapter, we combine both the knowledge about periodic structures from the Fourier
modal method (FMM) and the advantages of the discontinuous Galerkin time-domain (DGTD)
method to understand and describe the lasing cavity setup outlined in the introduction Chap-
ter 1. First, we analyze how to construct the cavity using a titanium dioxide (TiO2) / silicon
dioxide (SiO2) distributed Bragg reflector (DBR) and how to choose its geometrical parame-
ters to obtain a well-defined lasing mode. Furthermore, we introduce a silver metal grating
and investigate the influence on the cold cavity spectrum as well as the field distribution un-
der resonant excitation. As a next step, we include the dye material, for which we use the
four-level system (4LS) material model derived in Section 3.5. There, we provide the concrete
material parameters for the guest:host material with Tris(8-hydroxyquinoline)aluminum (Alq3)
as matrix and 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)-styryl]-4H-pyran (DCM) as
emitter (Alq3:DCM) used and show how to obtain a lasing threshold from the DGTD com-
putations within the simple, metal-free DBR cavity design. Finally, we conclude the chapter
analyzing the full system, containing the DBR cavity, the 4LS material model as well as the
metallic grating.
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Figure 8.1: Measured lasing thresholds of Alq3:DCM filled DBR cavities with and without
silver grating upon different excitations with a focused beam. The focal positions, as well
as the silver grating defect system, are sketched in Figure 8.2, with the same color-coding.
Experimental data was graciously provided by M. Kliem [K4].
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Figure 8.2: Four different focused beam excitation modes of an Alq3:DCM filled DBR
microcavity containing a silver grating. Computations include a grating supercell with period
P . Focused beam excitation of a (a) bare cavity, i.e., without silver grating, as well as (b)
and (c) a regular silver grating with the focus on a gap and stripe of the grating (on-stripe
excitation (OSE)), respectively. (d) Focused beam excitation of a silver grating including a
defect.

The main goal of the numerical investigation is to explain and reproduce the experimentally
obtained lasing thresholds presented in Figure 8.1. In the experiment, we distinguish between
three different excitation modes of the DBR cavity including the silver grating. These are
shown in Figure 8.2. For completeness of the numerical study, we additionally consider a fourth
excitation mode. Thereby the cavity is excited with the pump beam focused into a regular grating
gap, instead of the defect, a silver stripe of the grating or the bare cavity. The experimental
microcavities are constituted by a pair of 21-layer DBRs and contain a dissipative silver grating.
The remarkable result of the measured lasing thresholds is that the defect system (blue line),
despite the dissipative grating, shows the lowest overall threshold. It lies not only below the
threshold for OSE (gray line) of the regular silver grating without defect but also below the lasing
threshold of the bare cavity (red line). To explain this finding, we investigate the underlying
lasing modes provided by the cavities and their influence on the lasing thresholds in the following
sections.
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8.1 Design of the DBR

In principle, a DBR is a quasi-one-dimensional photonic-crystal [204, 205], which consists of
two different dielectric material layers. In the experimental setup presented above and in the
introduction Chapter 1 the DBR consists of alternating layers of SiO2 and TiO2. The photonic
band structure of a DBR contains photonic stop bands [205]. Within that frequency region,
the DBR acts as a perfect mirror for plane waves impinging on the layer system, as no wave
propagation is supported. Thus, DBRs can be utilized as frequency selective mirrors. To obtain
a photonic stop band at a given operation frequency, the alternating dielectric layers of the DBR
have to be designed such that both layers have a thickness of approximately a quarter of the in-
medium operation wavelength (λ4 -thickness). This causes destructive interference in the material
[60].

The main purpose of the DBRs used here is to act as a mirror for the lasing cavity filled with
the Alq3:DCM organic molecules. Hence, the thicknesses are designed such, that the photonic
stop band lies around the λem = 640 nm emission wavelength of the dye. The DBR setup is not
only investigated with the frequency-domain FMM (see Chapter 4) but also the DGTD method
(see Chapter 5). Therefore, we use a Lorentz model (see Section 3.1) to describe the dispersive
TiO2 material, i.e.,

εTiO2(ω) = εbg + ∆Lω
2
L

ω2
L − ω2 − iγLω

, (8.1)

where we take the model parameters

(SI) εbg = 3.32 , ∆L = 3.18 , ωL = 6.2× 1015 rad s−1 and γL = 1.98× 1014 rad s−1 , (8.2)

which have been used and fitted in [80, K10]. On contrary, the SiO2 is modeled as a non-dispersive
dielectric with εSiO2 = 2.165 [206, 207] as its permittivity is nearly constant for the operation
wavelengths λ ∈ [350 nm, 850 nm] . Consequently, the thicknesses of the DBR constituting layers
are set to

(SI) dTiO2 = 57.4 nm and dSiO2 = 108.3 nm , (8.3)

to center the DBR stop band around the operation wavelength λ ≈ 640 nm. Given the setup
parameters, we can compute the scattering spectra of the DBR with the scattering matrix (S-
matrix) algorithm presented in Section 4.3.

In Fig. 8.3 we show the resulting transmittance, reflectance, and absorbance spectra of a DBR for
an increasing number of DBR unit cells, i.e., pairs of TiO2 / SiO2 layers. Both in the experiment
and the computations, an odd number of layers is used. For each DBR the first and last layer
is made out of SiO2. We observe, that with the increasing number of unit cells the reflectance
nearly approaches unity in the first DBR stop band frequency window, which acts as a mirror
for the microcavity. The stopband is formed for wavelengths between λsb,min ≈ 540 nm and
λsb,max ≈ 780 nm and becomes more and more pronounced with an increasing number of DBR
layers, as can be seen in Fig. 8.3 (a) to (d). In this wavelength interval, the transmittance drops
to almost zero. As the TiO2 is modeled with a spectrally broad single Lorentz pole in Eq. (8.1),
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Figure 8.3: DBR reflectance R, transmittance T , and absorbance A spectra for different
numbers of TiO2 and SiO2 layers: (a) 5 layers, (b) 9 layers, (c) 17 layers, and (d) 21 layers.

a slight over-estimation of the absorption leads to a non-zero absorbance within the stopband.
This results in a reflectance slightly lower than one. Below the minimal wavelength λsb,min of the
first DBR stop band reflection minima and maxima are observed, the number of which increases
proportionally with the number of layers used to set up the DBR [60]. Due to the increased
absorption in the TiO2 material model also the overall absorbance spectra significantly increase
for wavelength λ . 450 nm. This behavior is qualitatively independent of the number of DBR
layers.

8.2 Introduction of an active material

Given the DBR design, which ensures reflectivity in the photoluminescence window of the
Alq3:DCM dye, the next step is to characterize the entire lasing cavity. We, therefore, model the
active material by a 4LS using the material model introduced in Section 3.5. Here, we present
all material parameters of the 4LS used in the final DGTD lasing threshold computations.

8.2.1 Material parameters

The material parameters of the 4LS modeling the Alq3:DCM are obtained from different ex-
perimental observations. From the absorption spectra [58, 59, 208] we can obtain the central
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absorption wavelength

(SI) λ03 = 470 nm . (8.4)

To determine the dephasing constant γ03 as well as coupling constant ζ03 of the 0–3-transition
of the 4LS we can use the Lorentzian susceptibility, which we obtain from the Fourier transform
Eq. (2.33) of Eq. (3.65) in the limit of a weak excitation, i.e., N0 ≈ 1 and N3 ≈ 0:

(−iω)2 p03(ω)− iωγ03p03(ω) + ω2
03p03(ω) = (N0 −N3)︸ ︷︷ ︸

≈1

ζ03E(ω) . (8.5)

With

D(ω) (3.63)= εbgE(ω) +Ndyep03(ω) != εbgE(ω) + χ03(ω)E(ω) , (8.6)

we recover the Lorentz model susceptibility

χ03(ω) = NdyeN0ζ03
ω2

03 − iωγ03 − ω2
(3.7)≡ ∆εω

2
L

ω2
L − iγLω − ω2 . (8.7)

While the molecule concentration can be estimated as

(SI) Ndye ≈ 2.5× 1020 cm−3 = 0.25 nm−3 (8.8)

from the experimental sample preparation [K4], the remaining parameters of the susceptibility
can be fitted to a complex-valued index of refraction obtained, by e.g., ellipsometry [209], for a
single molecule layer [K4, 210]. This delivers the material parameters

(SI) ω03 ≈ 4.01× 1015 rad s−1 , γ03 ≈ 4.8× 1015 rad s−1 , ∆03 ≈ 0.1 and εbg ≈ 2.8 , (8.9)

for the absorption transition of the Alq3:DCM material. Thus, also the level coupling constant
for the 0–3-transition is determined as

(SI) ζ03 = ∆03ω2
03

Ndye
≈ 3.63× 10−7 A m2 V−1 s . (8.10)

Similarly, the parameters for the 1–2-transition are obtained from the photoluminescence spectra
[58]. The main emission peak lies at

(SI) λ12 = 640 nm . (8.11)

Although the photoluminescence spectrum is normally broadened by vibrational transitions [113],
here, it is only modeled by a single broadened Lorentz peak, which leads to a dephasing rate
of

(SI) γ12 ≈ 4.8× 1014 rad s−1 . (8.12)

Even if the radiative contribution of the spontaneous emission to the electromagnetic field is
neglected in the 4LS material model, we use the spontaneous emission time τ̃12 = 4 ns [211] to
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determine the coupling constant defined in Eq. (3.68) as

(SI) ζ12 = 6πεbgε0c2
0

ω2
12τ̃12

= 5.68× 10−8 A m2 V−1 s−1 . (8.13)

Here, we use the transition frequency

(SI) ω12 ≈ 2.94× 1015 rad s−1 . (8.14)

Finally, we set the non-radiative decay times τij between the different levels of the 4LS. These
can be accessed experimentally by, e.g., pump-probe experiments [118] and typically lie on the
picosecond time scale. They are orders of magnitudes smaller than the spontaneous emissions
times of the dipole transitions, which enables lasing in the first place. Any occupation of the third
level must be transferred sufficiently fast into the second level in order to achieve a population
inversion ∆N12 = N2 −N1 > 0 for the emission transition. For the actual computations of the
lasing thresholds, it is only important, that these decay times are sufficiently larger than the
field time periods τij � Tij = 2π

ωij
, which reside in the single femtosecond scale. We thus set

(SI) τ01 = 50 fs and τ23 = 100 fs . (8.15)

The non-radiative decay times of the dipole transitions are assumed to be much larger τ03, τ12 �
τ01, τ23. Consequently, we only allow a radiative coupling on the dipole transitions by setting

τ03, τ12 →∞ . (8.16)

With all the parameters set for the 4LS model, we can now compute the properties of both the
lasing cavities for both weak and strong pump fields. We first start with the cold, i.e., weakly
excited cavity without silver grating, for which we only need the Lorentz model Eq. (8.7) of the
0–3-transition.

8.2.2 Lasing cavity

In the preceding Section 8.1, we have seen, that the given DBR has a photonic stop band at
the emission frequency of the Alq3:DCM dye. To obtain a lasing cavity we use two DBRs as
mirrors and introduce an active material layer in between. Here the layer thickness is chosen to
be (approximately) half the in-material emission wavelength, i.e.,

(SI) dAlq3:DCM = 190 nm . (8.17)

Introducing this material layer leads to the formation of a defect resonance within the DBR
cavity. Fig. 8.4 shows the resulting peak in the reflectance spectrum. Here, we again vary
the number of layers for each of the DBRs constituting the cavity. The spectra are computed
under plane wave excitation with the S-matrix algorithm presented in Chapter 4. Increasing the
number of DBR layers leads to an increase of the quality factor of the defect resonance. This can
also be well observed by the relative field enhancement shown in Fig. 8.5. It shows the E-field
distribution in the same cavities as in Fig. 8.4 for a resonantly tuned plane wave excitation at
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Figure 8.4: Reflectance spectra R for a microcavity with two DBRs including a 190 nm
Alq3:DCM material layer. Each DBR consist of (a) 5, (b) 9 or 17 (c) SiO2 /TiO2 layers,
respectively.

the cavity wavelength λcav = 642 nm. Furthermore, it is well visible that within the DBR two
adjacent SiO2 /TiO2 layers have a λ

2 -length, as the nodal points of the field occur at every second
interface.

This simple cavity with its single resonance can already act as a microlaser. However, before
we investigate the behavior upon strong field focused beam excitation, we also study the cold
cavities including the whole silver grating used in the experimental realization [K4]. The cold
cavity mode structure is essential to explain the different laser thresholds onset observed in the
experiment (cf. Fig. 8.1).

8.2.3 Introduction of the metal grating into the cavity

In Fig. 8.2 (b,c) the metal stripe grating is sketched. These silver stripes, which experimentally
are produced with a photolithographic lift-off process [K4], have a thickness of

(SI) dAg = 25 nm . (8.18)

While in the experiment also different grating periods with lateral unit cell lengths of p = 6 µm
and p = 7 µm have been investigated, we here focus on the smallest and numerically least
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Figure 8.5: Electric field distribution and field strength in the bare cavity upon excitation
with a plane wave impinging from the left half-space resonantly tuned to the cavity mode at
λcav = 642 nm. Panels (a) - (c) show fields for different numbers of DBR layers (cf. Fig. 8.4).

demanding, yet computationally still very challenging silver grating with a period of

(SI) p = 5 µm . (8.19)

Within that single grating unit cell, the stripes and gaps have the widths

(SI) wstripe = 3.1 µm and wgap = 1.9 µm . (8.20)

To model the relative permittivity of the silver stripes we use the Drude model presented in
Section 3.2, i.e.,

εAg = εbg −
ω2
pl,Ag

ω(ω + iγAg)
. (8.21)

Here, we use the fit to permittivity data by Johnson and Christy [166], which sets

(SI) εbg = 1 , ωpl,Ag = 13.89× 1015 rad s−1 and γAg = 3.23× 1013 rad s−1 , (8.22)

as the silver material parameters.

For this quasi-two-dimensional system, we compute the reflectance spectra for cavities with
different numbers of DBR layers. Fig. 8.6 shows the spectra for 5, 9, and 17 layers, respectively.
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Figure 8.6: Reflectance spectra R for a microcavity with two DBRs including a 190 nm
Alq3:DCM material layer and a patterned silver grating with period p = 5 µm. Each setup
with 5 (a), 9 (b), and 17 (c) layer DBRs shows two resonance peaks at λmet = 632 nm and
λgap = 640 nm marked by solid lines.

Compared to the bare cavity spectra from Fig. 8.4, these spectra now contain two instead of one
peak (cf. Fig. 8.4) in the DBR stop band wavelength window. Thus, adding a silver stripe not
only introduces a small spectral shift λcav → λgap = 640 nm but also creates a second distinct
mode in the system.

To further characterize the resonances, we compute the E-field distributions of the grating for
a plane wave excitation using the FMM as described in Section 4.3. Here, we use a plane wave
with straight incidence, i.e., k||ez, which excites a superposition of the modes supported for
each unit cell. The E-field distributions for the specific excitation frequencies and DBR layer
numbers are shown in Fig. 8.7. The first mode at λmet = 632 nm has field maxima on the single
silver metal stripes (see Fig. 8.7 (a,c,e)). On the contrary, the second mode at λgap = 640 nm
shows a field confinement in the gaps of the silver grating (see Fig. 8.7 (b,d,f)). The gap mode
is more symmetric in DBR stacking direction than the metal mode and it has a significantly
higher field contribution in the transmission channel. Thus, the silver stripes essentially work as
small mirroring layers. This also explains the slight blue shift of the metal mode as the essential
cavity size is reduced compared to the gap mode. Additionally, we observe an increase in the
effective field enhancement of both cavity modes with an increasing number of DBR layers, which
indicates a systematic increase in the quality factor.
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Figure 8.7: Electric field distributions of the DBR cavities including the silver grating in the
d = 190 nm thick Alq3:DCM layer for different plane wave excitation resonance wavelengths
as seen in Fig 8.6 and number of constituting DBR layers, i.e., (a,b) 5, (c,d) 9 and (e,f) 17
layers per DBR.
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8.3 Lasing thresholds

After the characterization of the passive DBR microcavity, i.e., excitation below the lasing thresh-
old, we discuss the computation of the lasing thresholds using the fully nonlinear 4LS material
model (cf. Section 3.5) to describe the Alq3:DCM material model. In contrast to the plane wave
excitation used in the previous section, we here use a focused beam excitation as sketched in
Figure 8.2. The excitation with a focused pump beam enables a direct addressability of the
different modes supported by the DBR microcavity including the grating. Before we compare
the different excitation modes for the metal grating DBR cavities, we step by step present how to
compute the lasing thresholds for the bare cavity, i.e., the DBR cavity without silver grating.

8.3.1 Lasing threshold computation for the bare cavity

To compute the lasing threshold of the DBR microcavity without silver grating as sketched in
Figure 8.2 (a) we use the DGTD method. Although, the structure without silver grating is
an effectively one-dimensional setup the excitation with a focused Gaussian beam breaks the
symmetry in lateral direction. This in principle suggests a fully three-dimensional computation.
However, we restrict the computational setup to an essentially two-dimensional one, which suffices
for a qualitative explanation of the experimentally observed lasing thresholds from Fig. 8.1.
We thus assume a two-dimensional Gaussian-shaped pump beam as presented in Appendix B,
which is assumed to have a homogeneous field in y-direction. Additionally, we assume periodic
boundary conditions in lateral x-direction. For the exemplary computations presented here, we
use an overall setup period of P = 20 µm. The DBRs used in the example consist of only five
layers each, as an increase in the number of DBR layers significantly increases the computational
run time, as also the number of elements in the DGTD method increases. Hence, a smaller
system is better suited for in-depth investigations.

To launch the focused Gaussian pump beam Eq. (B.8) into the computational domain, we use
a total field / scattered field (Tf/Sf) setup for the DGTD method as explained in Section 5.4.1.
We, therefore, introduce a Tf/Sf contour 2 µm above the DBR microcavity (cf. Figure 8.9 (a)).
Above this Tf/Sf contour another 2 µm air layer (εr ≈ 1) is introduced. Below the DBR cavity,
this setup is mirrored with two air layers, containing another contour to compute the trans-
mission signal below the cavity. The computational domain is terminated with Silver Müller
boundary conditions (SMBCs) (cf. Section 5.3.4), which prevents any transmitted, reflected, and
emitted radiation to be reflected at the boundary, as the outermost boundaries are sufficiently
far away. We do not use perfectly matched layers (PMLs) here, due to a stability problem for
long simulation times, emerging from spurious guided modes in the DBR system, which leads
to slowly diverging fields in the implementation used. The computational domain is tessellated
using gmsh [140] with element sizes down to the hmin ≈ dAg = 22 nm. The element size here is
chosen such, that there are at least four elements per in-medium wavelengths. Furthermore, we
use a third-order Lagrange polynomial basis (cf. Section 5.2.1).

The pump beam is focused on the center of the Alq3:DCM layer, i.e., at

r0 =
(
x0, z0

)T = 0 . (8.23)
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The beam half-width is set to σx = 3 µm comparable to the experimental circular focus with
a full width half maximum (FWHM) of approximately 7 µm [K4]. The pump pulse propagates
in negative z-direction, i.e., n = −ez. We use a time-modulated focused excitation to comply
with the zero-field initial condition for the DGTD method, ensuring that Maxwell’s divergence
equations (2.1a) and (2.1b) are fulfilled for all times up to numerical accuracy. Instead of a
Gaussian modulated time dependence Eq. (B.20), we use a polynomial ramped continuous-wave
time dependence (see Appendix B.2.2, Eq. (B.23)) for the pump pulse. This ensures a short
overall pulse duration Tpulse to obtain a high pulse energy Ein for given maximal field amplitude
|E0| and thus saves some computation time. The beam carrier frequency

(SI) ωexc = 2πc0
λexc

(8.24)

is set according to the vacuum carrier wavelength

(SI) λexc = 532 nm , (8.25)

to resonantly drive the 0–3 transition of the 4LS modeling the Alq3:DCM. The entire excitation
pulse lasts Tpulse ≈ 4 ps, which contains a ramp-up of tup = 0.33 ps and ramp-down time of
tdown = 0.67 ps. The variation of the focused beam amplitude |E0| sets the incident beam
energy. It can be recorded from the incident beam power flux on the Tf/Sf contour. To compute
this input energy we numerically integrate both over the entire Tf/Sf contour length (area) as
well as over the recorded frequency window in the computation according to Eq. (2.95). The
initial 4LS occupations are prepared in the ground state, i.e.,

N0(t = 0) = 1 and N1,2,3(t = 0) = 0 , (8.26)

as the system operates at room temperature. Given an input field amplitude and the initial
conditions, we can then compute the entire system dynamics. As an example, we present a
computation for which the excitation field strength lies above the lasing threshold.

In Figure 8.8 (a), we show the electric field strength along the centerline x = x0 = 0 of the DBR
cavity. Due to the above threshold excitation, we not only observe the field on the excitation
time-period of the pump beam (t ≤ Tpulse = 4 ps) but also field emission at later times. During
the excitation time with the pump pulse, we observe out-going wavefronts both above the Tf/Sf
contour and below the DBR cavity. These correspond to the reflected and transmitted pump
field respectively. The reflection of the pump beam also leads to the interference pattern between
to upper boundary of the top DBR and the Tf/Sf contour, as this region is part of the total
field (Tf) domain. After a partial absorption of the pump pulse, there are several field emission
bursts for t > Tpulse = 4 ps. These pulses originate from the stimulated emission of the excited
Alq3:DCM.

In Figure 8.8 (b), we show the spatially averaged occupation numbers of the 4LS. Here, we
average the occupation numbers over the thickness of the Alq3:DCM layer, i.e.,

〈Ni〉z(x, t) = 1
dAlq3:DCM

∫ dAlq3:DCM

0
dz Ni(x, z, t) . (8.27)
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Figure 8.8: (a) Electric field strength for a grating-free DBR cavity upon a focused beam
excitation above lasing threshold. The field is shown along the focus line x = 0 µm. The full
spatial field patterns at times texc during excitation and tem during the second emission pulse
are shown in Fig. 8.9. (b) Time dependence of the thickness-averaged occupation densities
〈Ni〉z defined in Eq. (8.27) as well as population inversion ∆N12 = N2 −N1 along the focus
line.

During the excitation with the pump beam, we observe how the occupation N2 of the second
level systematically increases. At the same time, the occupation N3 of the third level remains
at a small nearly constant value, as the non-radiative decay to the second level empties the
third level relatively fast. Although we neglect the non-radiative coupling between the first and
second level, we also observe an increase in the occupation N1 of the first level. As the emission
transition is modeled with a broad Lorentzian line shape, this increase can be explained by the
off-resonant interaction with the pump-beam itself. However, we observe a clear increase in the
population inversion ∆N12 = N2 − N1, which is responsible for the lasing. In contrast to the
continuous-wave operation of a laser with ∆N12 ≥ 0 [93], we here require to exceed a positive
finite population inversion threshold, due to the finite excitation duration and finite quality factor
of the cavity mode. For the pump energy and thus excitation field strength chosen here, the first
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stimulated emission pulse occurs at the end of the pump beam excitation at t ≈ 3.9 ps. This is
accompanied by symmetrically emitted fields (Figure 8.8 (a)) as well as a drop in the population
inversion (Figure 8.8 (b)). While the occupation of the second level remains nearly constant, the
occupation of the first level increases during the emission and then decays non-radiatively into
the ground state. Hence, the population inversion increases over the threshold for the stimulated
emission and a second emission pulse occurs at t = tem ≈ 6.4 ps. With increasing time, this
pattern repeats with an increase in the time between the emission pulses and a simultaneous
decrease in the emission pulse field strength and thus also energy. Consequently, the population
inversion reaches a finite, non-zero value in the simulation. While this transient emission behavior
is well known in the switch-off process [211], the finite population inversion actually decays due
to spontaneous emission, which we here neglected. However, the numerical method is still well
suited, as the emission pattern occurs on a picosecond time scale, while the spontaneous emission
of the Alq3:DCM lies at τ̃ ≈ 4 ns [211].
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Figure 8.9: Electric field strength distributions of a DBR microcavity upon above threshold
excitation during the time-modulated pumping (a) as well as the second emission peak (b).
Panel (c) shows the population inversion ∆N12 of the emission transition after the cavity
excitation.

Besides the emission dynamics also the field distributions in the entire DBR microcavity are
important for a complete characterization. In Figure 8.9 (a,b) we show the electric field distri-
bution in the entire simulation unit cell both during the pump beam excitation t = texc ≈ 1.7 ps
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and the second emission pulse at t = tem ≈ 6.4 ps. In Figure 8.9 (a), we observe the transversal
Gaussian fall-off of the excitation pulse in the upper half-space, as well as the superposition of the
reflected and incident field in the Tf domain between the top DBR and the Tf/Sf contour. Below
the cavity, we see an order of magnitudes smaller transmitted field. Most of the electric field is
absorbed by the Alq3:DCM. The emission pulses also resemble a Gaussian beam as depicted in
Figure 8.9 (b). For these bare DBR cavities, the emission is also symmetric into the upper and
lower half-space. Further, the increase in the emission wavelength compared to that of the pump
pulse can be seen. This change in wavelength also explains the spatial distribution shape of the
population inversion ∆N12 build-up during the excitation, which is depicted in Figure 8.9 (c).
The distribution is governed by the Gaussian shape and the wavelength of the excitation beam.
We, therefore, find a nodal line in the active material, as the cavity is designed at half of the
longer emission (in-medium) wavelength. Although the spatial overlap with the electric field
distribution of the lasing mode is not ideal, it is sufficiently strong to enable a good coupling.
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Figure 8.10: Wavelength-resolved scattered power of the bare cavity in dependence of the
focused pump beam input energy Ein. The dashed line marks the input energy used for the
computation results of Fig. 8.8 and Fig. 8.9.

For a comparison with the experimentally determined lasing thresholds, we need to compute the
energy balance of the microcavities. For this, we compute the frequency-resolved power flux both
on the Tf/Sf contour above and transmission contour below the DBR cavity. With a variation
of the pump beam field amplitude |E0|, we can directly set the input energy of the pump pulse,
which is also computed on the Tf/Sf contour according to Eq. (2.95). However, we numerically
integrate here only over the recorded frequency window with λ ∈ [500 nm, 700 nm] instead of all
frequencies. Figure 8.10 shows the power balance of the scattered, i.e., reflected, transmitted and
emitted radiation in dependence of the pump pulse input energy for the wavelengths recorded.
The peak line at the pump pulse carrier wavelength λ0 = 532 nm originates from the reflected
and transmitted field. This peak also systematically increases with increasing pump pulse input
energy. Furthermore, we observe the lasing threshold at the cavity resonance wavelength λcav =
640 nm. The onset of the threshold lies at a pump pulse input energy of Ein ≈ 130 pJ µm−1.
Upon the lasing threshold and also at higher input energy, e.g., Ein ≈ 200 pJ µm−1, we observe a
spectral broadening of the output power signal. This broadening is due to the windowing [169]
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in the on-the-fly Fourier transform used to compute the frequency-dependent Poynting vector
on the respective contours. This occurs due to the finite simulation time as the emission pulses
observed in Figure 8.8 move non-linearly into the finite simulation window from infinite times
with increasing pump input energy Ein. However, this poses a minor problem as the emission
pulses are not only delayed with decreasing input energy but also significantly fade in strength.
Thus, it is sufficient to set a finite simulation time to obtain a finite accuracy level within the
computations.

Influence of the unit cell period

While the spectrally resolved energy balance clearly indicates the lasing threshold already, we
can also compute the input pulse energy by frequency integration as well as the emitted energy.
Hence, we obtain a single lasing threshold that can be compared to the experiment. We compute
the output energy similar to Eq. (2.95), i.e.,

Eout = − 2
π

∫ ω2

ω1

dω Pout(ω)

= − 2
π

∫ ω2

ω1

dω
∫ P/2

−P/2
dx
[
〈Sz〉τ

(
x, zTf/Sf, ω

)
− 〈Sz〉τ

(
x, ztrans, ω

)]
. (8.28)

Here, the boundary frequencies ω1/2 = 2πc0
λ1/2

for the numerical integration are set by choosing
the wavelength window λ ∈ [λ1, λ2] = [630 nm, 650 nm] around the main emission peak. The
time-averaged Poynting vector component for the output power computation is evaluated both
on the Tf/Sf-contour position zTf/Sf above the cavity and on the transmission contour position
ztrans below the cavity. As the output power Pout depends on the computational domain period
P , it has to be ensured that this period is sufficiently large. In Figure 8.9 (b) we have seen that
the emitted beam slowly diverges with increasing distance to the cavity. Hence, the width P of
the computational domain must ensure a sufficient fall-off of the lateral field and Poynting vector
on the integration contours in Eq. (8.28). The same criterion also applies to the incident pump
beam.
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Figure 8.11: Lasing thresholds of the bare cavity with 5 layer DBRs for different overall
computational domain periods P .
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Consequently, we compute the lasing thresholds for different fixed domain widths P to find a
lower bound value for numerically reliable thresholds, which can also be used in the supercell
computations used for the cavities including the silver grating. Fig. 8.11 shows these thresholds.
The overall lasing threshold shape is independent of the computational domain widths P . This
indicates that already the P = 10 µm domain suffices to accommodate the emission pulse width.
However, the thresholds shift to lower input energies with increasing widths P . The main
reason for this shift lies in the width of the incident beam, which is systematically wider than
the emission beam (cf. Fig. 8.9 (a) vs. (b)). For small widths P , the incident pump beam is
artificially cut in lateral direction, thus it requires a higher field strength and input energy to
achieve the same excitation level in the active material. From Fig. 8.11 we conclude, that for
the given input beam width σx = 3 µm the computational domains should at least have a width
of P = 20 µm, as the lasing threshold on-set hardly changes for larger widths.

8.3.2 Lasing threshold comparison for the different grating realizations

We finally investigate the lasing of the cavities filled with the silver stripe grating. Here, we
distinguish three excitation modes as sketched in Fig. 8.2 (b,c,d). For the regular grating,
the focus of the pump beam is either located in a gap x0 = 0 µm or on a single silver stripe
xOSE = −2.5 µm in OSE. For the defect setup, a single gap in the grating is increased to a width
of wdefect = 4 µm. Upon defect excitation, the focus is centered on this defect at x0 = 0 µm. We
can compute both the lasing thresholds as well as the field distributions for a scan of different
pump beam input energies

Similar to the bare cavity investigation of the previous Section 8.3.1 we first consider the field dis-
tributions for the different excitation modes, for which the pump beam energies lie just above the
lasing threshold. Here, we investigate cavities with DBRs with 17 SiO2 /TiO2 layers. Fig. 8.12
shows the time dependence of the electric field distributions at the focus position for each exci-
tation mode. For all three excitation modes, the pump beam has the same field strength. The
focused beam duration is the same as for the bare cavity case, namely Tpulse ≈ 4 ps. As the
excitation pulse energy is set just above the lasing threshold, we only observe a single emission
burst for the OSE at tOSE ≈ 5.3 ps and defect excitation at tdef ≈ 5.8 ps in Fig. 8.12 (a,c). For
the gap excitation in Fig 8.12 (b), we observe two emission peaks at different times tgap,1 ≈ 5.8 ps
and tgap,2 ≈ 8 ps. In between, the pulses interfere and show a beating pattern, which indicates
different emission wavelengths. In all three cases, the remaining emitted field is guided inside
the DBR cavity and dissipates due to the silver grating after the main emission into the lower
and upper half-space.

Figure 8.13 shows the full two-dimensional emission field patterns corresponding to the emission
times presented in Fig. 8.12. For the OSE and the second gap excitation emission pulse the
field distributions in Fig. 8.13 (a,c) are mainly determined by the metal modes observed in the
cold cavity characterization from Section 8.2.3. In contrast, the first gap excitation emission
pulse, as well as the emission upon defect excitation are supported by the gap mode. The latter
modes have a Gaussian emission shape and symmetrically emit fields into the upper and lower
half-space. The metal modes on the contrary show a directional emission into the upper-half
space and also show several maxima in lateral direction, which indicate emission into several
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Figure 8.12: Time dependence of the electric field strength at the centerline of the focused
beam excitation for three different grating excitation modes according to Fig. 8.2 (b) - (d).

diffraction orders. As both the gap as well as metal mode are excited upon gap excitation with
the focused pump beam, this indeed explains the beating pattern observed in Fig. 8.12 (b) due
to the small spectral separation of these two modes (see Fig. 8.6 (c)).

The excitation of both modes clearly depends on the focal position as well as the width of the
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Figure 8.13: Distribution of the electric field strength at the emission times from Fig. 8.2 for
the three different excitation modes for the DBR microcavities including the silver grating.

pump beam relative to the gap sizes inside the grating. For the OSE the field distribution
is largest upon the stripe focused by the pump beam as well as its two adjacent stripes. For
the gap excitation, the pump beam with the focal width σx = 3 µm is much wider than the
actual gap width of wgap = 1.9 µm. Thus, it nearly equally supports the lasing of both modes.
The metal mode is excited for the two adjacent stripes to the gap. The gap mode is highly
confined and shows a large beam divergence of the emitted fields. The overall field confinement
is even larger than in the defect case, as the defect width wdefect = 4 µm leads to predominant
coupling to the corresponding defect mode only. Additionally, these findings are supported by
the population inversion distributions ∆N12 presented in Fig. 8.14. For the OSE the population
inversion Fig. 8.14 (a) is highest on the stripes and also shows the Gaussian shape of the pump
beam as before. Yet the nodal lines are shifted according to the reflective silver patterning.
For the defect excitation in Fig. 8.14 (b) it is highest in the defect gap of the silver grating.
The oscillations in both population inversion distributions originate from the emission into fields
guided in the DBR microcavity. These guided fields are also visible in all the field distributions
in Fig. 8.13. While most of these field contributions dissipate due to the silver’s absorption,
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Figure 8.14: Spatial distribution of the population inversion ∆N12 both for the OSE (a)
as well as the defect excitation (b). The distributions are shown for the times of emission
according to Fig. 8.12 (a) and (c).

the sufficiently large supercell width P ≥ 20 µm ensures a minute contribution to the lasing
thresholds from the guided field scattered from the silver grating.

Understanding the basic contributions of the lasing modes, we next investigate the energy balance
of the cavity. It is shown in Fig. 8.15 for all four excitation modes and microcavities with 17 layer
DBRs. For all excitation modes the reflection and transmission peak at the driving wavelength
λexc = 532 nm is equally pronounced. However, the lasing threshold onsets strongly depend on
the focal position of the excitation beam. As already indicated in the field distribution discussion,
the position allows for a laser mode switching. For the bare cavity, the system is lasing at the
cavity mode wavelength λcav = 642 nm. For the OSE only the metal mode at λmet = 632 nm
starts lasing for the scanned input energies. For the excitation of the regular-sized gap, both the
metal and gap mode with λgap = 640 nm start lasing nearly at the same input energy. Widening
the gap to the defect leads to a suppression of the metal mode lasing and the corresponding
defect mode shows the strongest signal.

For comparison to the experimental lasing thresholds, we integrate the output power Pout ac-
cording to Eq. (8.28) for wavelengths λ ∈ [630 nm, 650 nm]. Additionally, we also investigate
the dependence on the number of DBR layers, which are set lower than the 21 layers used in
the experiment for the lasing threshold DGTD computations. The main reason is, that includ-
ing a higher number of layers requires more elements to discretize the computational domain.
Hence, also the computational effort increases nearly linearly with the number of DBR layers. To
achieve comparability between the setups with a different number of DBR layers, we normalize
the lasing thresholds to the onset energy of the OSE lasing threshold for each DBR realization.
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Figure 8.15: Wavelength-resolved scattered power of the DBR cavities in dependence of
the focused pump beam input energy Ein. The excitation modes for the different panels
correspond to those of Fig. 8.2. The input energy is normalized to the lasing threshold onset
of the OSE.

The number directly influences the coupling of the pump beam into the cavity, as the spectral
position of the transmittance minima near the stopband strongly depends on the layer number
(cf. Fig. 8.3).

The lasing thresholds computed for all four excitation modes and an increasing number of DBR
layers used for the microcavities are shown in Fig 8.16. In contrast to the experimental observa-
tion (see Fig. 8.1), the lasing threshold for the OSE lies significantly lower for small numbers of
DBR layers used. This however changes with an increasing number of DBR layers used in the
microcavity, such that already for the 17 SiO2 /TiO2 DBR layers, the lasing threshold for OSE
nearly coincides with the lasing threshold of the bare cavity in Fig. 8.16 (c). The OSE lasing
threshold shows a relative shift to higher and higher energies, as the cavity quality factor be-
comes more and more reliant on the DBR mirroring properties instead of the silver grating. The
overall cavity quality factor shifts with an increasing number of DBR layers and the variation in
the number of DBR layers shows the trend towards the 21 layers experimental configuration. In
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(c) 17 layer DBR
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Figure 8.16: Lasing thresholds computed for four different excitation modes with an in-
creasing number of DBR layers used for the microcavities sketched in Fig. 8.2 including a
silver grating. The focused beam input energies are normalized to the OSE lasing thresh-
old onset for better comparability of the (a) 5, (b) 9, and 17 (c) layer DBRs used for the
microcavities.

all three cases, we notice that the defect excitation threshold always lies below that of the bare
cavity, which agrees well with the experiment. This is due to the additional field confinement
and plasmonic enhancement of the defect lasing mode. The gap excitation lasing thresholds
always lie in between the OSE and the defect lasing thresholds. Here the main reason is that the
pump beam width is significantly wider than the gap width itself. Hence, both the metal and
gap modes are excited.

In summary, we qualitatively explained the experimentally obtained lasing threshold. The im-
plementation of the 4LS material model into the DGTD method allows for a wide variety of
applications with different geometries. However, the main challenges remain in the long simu-
lation run times required to cover the full non-linear dynamics as well as the determination of
all the involved material parameters. Uncertainties in the material parameters normally restrict
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the method to qualitative predictions, which still can be very useful for finding a new device
design.
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CHAPTER 9

Conclusion and outlook

In this thesis, we provided an extension of the discontinuous Galerkin time-domain (DGTD)
method for different material models to investigate different nanophotonic setups. We summarize
and discuss the results and point out the implications for future works and open challenges.

The investigated systems include a periodically perforated gold film, which supports extraordi-
nary optical transmission (EOT). We provided numerical computations of the transmittance as
well as electron energy loss probability (EELP) spectra to characterize the surface plasmon po-
lariton (SPP) modes of the system. These spectra show a good agreement with the ones obtained
in the experiment [K7]. This, in principle, allows an in-depth study of the geometry parameters
of the gold film to tailor the response and SPPs supported even before manufacturing the actual
physical samples.

On the technical level, these electron energy loss spectroscopy (EELS) computations require the
implementation of complex frequency-shifted perfectly matched layers (CFSPMLs) to terminate
the quasi-infinite gold layer within the finite size computational domain. Although the gold film
itself is described with an already implemented Drude and Lorentz model [74], the implementa-
tion of the DGTD method in the research group Theoretical Optics & Photonics (TO&P group)
code required a fix of the CFSPML numerical flux. For this implementation of the split flux
[75, 151], we explicitly have shown that it agrees directly with the upwind flux for the CFSPML
auxiliary differential equations (ADEs) in conjunction with Maxwell’s equations. Furthermore,
we expanded the DGTD implementation to allow for simultaneous use of both, total field /
scattered field (Tf/Sf) and pure scattered field (Sf) sources. This is required as the electron
input field for the EELS computations cannot be directly evaluated as an Sf source within the
CFSPMLs, i.e., in the terminated dispersive material.

For the source term itself, we introduced the fields of relativistically moving finite-size charge
distributions. The EELS computations require reconstructing the scattered field Green’s tensor
entries, which actually rely on point charges as source terms. However, the smoothing enables
controlled approximate computations of the EELP spectra for electron beam trajectories travers-
ing and also penetrating the sample, e.g., the perforated gold film considered here. In previous
studies [163, 212] the smoothing was implicitly mediated by the finite resolution of the Lagrange
polynomial basis used in the DGTD scheme. Here, we performed a full smoothing radius anal-
ysis comparing the DGTD results to Mie calculations [8, 9, 213] of a Drude metal sphere. We
found that the smoothing radius should be set around σ ≈ 2 nm for EELP spectra computations,
which rely on the SPPs modes of metallic nanostructures. This proves to be a good choice for
the gold film setup. We observed that for all the electron trajectories, in particular those passing
through the material, the resulting EELP spectra show a very good qualitative agreement with
the experiment.
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However, it should be remembered, that these results rely on substantial approximations, i.e.,
first-order perturbation in the electron energy as well as the no-recoil approximation (NRA). As
our implementation lacks a full quantum mechanical description of the electron beam as well
as the screening experienced by the electron passing through the material, both approximations
should be assessed in future investigations.

Furthermore, the smoothing length used for the excitation electron suggests using a refined mate-
rial model beyond the simple Drude model. To investigate a potential non-local response as well
as plasmon excitations in the material, an extension to a hydrodynamic Drude model description
[100, 214, 215] of the conduction electrons can be used with the TO&P group implementation
of the DGTD method [216–218].

For the optimization of the magneto-optic (MO) metasurface setup, we implemented the non-
dispersive anisotropic material model [77] into the DGTD method. For this, we not only derived
the full numerical upwind flux but also performed a complete convergence study in comparison to
Mie calculations [78, 79]. Moreover, we implemented a new import function for meshes generated
with the help of gmsh [140]. Similar to previously used Netgen [141] meshing software, the newer
gmsh versions also support constructive solid geometry [140]. Additionally, gmsh offers a wider
variety in shape operations, like edge fillets used for the EELS setup or spline curved surfaces
extruded into volumes, on which the MO metasurface scatterers rely. The gmsh mesher even
enables to generate volumes for surfaces with customized roughness [K11] and can even handle
intricate topologies like metallic nanosponges [219, 220].

With the use of extruded spline curve shapes for the MO metasurface scatterer lattice, we have
been able to outline a shape optimization. It significantly increases the polarization rotation
angle. Within a random search, we achieved a 50% enhancement in Faraday rotation compared
to the best, same height cylindrical scatterer array [44] maintaining a near-unity transmittance.
However, the performed random search should only be understood as the first step of a more
sophisticated optimization scheme. As the Faraday rotation angle shows a relatively strong
dependence on the scatterer surface shape, it also requires a relatively fine mesh resolution
to obtain a decent numerical accuracy. As the stable time-step of the utilized Runge-Kutta
solver is restricted by the smallest element in the mesh [76, 142, 164], this requires relatively
long simulation run-times up to two days per example structure. Therefore, one should use an
optimization algorithm suited for costly objective functions, i.e., figures of merit like the Faraday
rotation here. Possible choices can include genetic algorithms [221] or Bayesian optimization
schemes [194, 222, 223].

Another method to increase the convergence of strongly surface-dependent quantities, like the
Faraday rotation in this specific example, is the use of higher-order, curvilinear elements [185,
186]. However, their implementation is especially cumbersome for non-dispersive anisotropic
materials. As the curved surfaces have spatially dependent normal vectors, the impedance and
admittance matrices required for the numerical flux need to be evaluated at every single Lagrange
interpolation node of the element’s surface instead of only once per element face.

As a second anisotropic material, we considered near-infrared (NIR) hyperbolic metamaterial
(HMM) cavities. Here, we analyzed the cavity mode structure both for the fully layered material
as well as the effective medium approximation (EMA) and compared the results to the experiment
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[K3]. We reproduced the mode structure for the tunable ZnO:Ga HMM cavity, which includes
a mode accumulation point at the HMM type II upper frequency bound. Due to the doped
ZnO:Ga, the cavities cannot only be tailored [K9] with regards to the geometry, i.e., the fill
factor of the stacked layers, but also the effective plasma frequency used in the Drude model
describing the ZnO:Ga [56] can be changed. Furthermore, we indicated the breakdown of the
EMA and showed the persistence of the coupled SPP modes which remain even for subwavelength
sized cavities. We computed the full resonances and their dispersion by analytic continuation
of the scattering matrix (S-matrix) algorithm. This directly allows for a comparison with the
reflectance spectra maxima.

Besides the investigation of differently tuned HMM cavities with different fill factors, layer and
overall cavity sizes [K9], such HMM cavities can also be used to tailor the emission characteristics
of included emitters, e.g., dye molecules or quantum dots. For the numerical characterization and
computation of Purcell factors, future investigations should also focus on the computation of the
corresponding Green’s tensors in stratified media [224], but can also include the application of
the DGTD method both with complete layer stacks [T3] as well as the introduced EMA material
model.

Finally, we discussed and investigated a lasing microcavity consisting of two titanium dioxide
(TiO2) / silicon dioxide (SiO2) distributed Bragg reflectors (DBRs) and guest:host material
with Tris(8-hydroxyquinoline)aluminum (Alq3) as matrix and 4-(dicyanomethylene)-2-methyl-6-
[p-(dimethylamino)-styryl]-4H-pyran (DCM) as emitter (Alq3:DCM) as an active material layer.
We computed the lasing thresholds for this cavity and compared the lasing thresholds to cavities
including a silver grating with and without defect. Here, we qualitatively reproduced the ex-
perimentally measured lasing thresholds and could show how the field confinement of the defect
state leads to a lasing threshold at lower onset energies as in the case of the metal-free bare
cavity [K4]. While the characterization of the cavity modes is obtained from the Fourier modal
method (FMM), the computation of the lasing thresholds is based on two-dimensional DGTD
computations for transverse magnetic (TM) polarization. For these, we implemented a four-level
system (4LS) material model as well as two-dimensional focused beams for the DGTD method.

The evaluation of such focused beams is computationally demanding as it involves two Fourier
transforms, which, especially for strongly focused broad-band beams, contain a lot of Fourier
components to be added. Here, an improvement can be made in the future by eliminating
the frequency-domain Fourier transform exploiting the dispersion relation of the contributing
plane waves. This comes at the cost of losing the frequency-independent focal width of the
beam. While for the two-dimensional beams used here the numerical effort remains comparably
low, it is imperative to exploit the plane wave dispersion for three-dimensional focused beam
implementations. While Ref. [225] concentrates on the derivation for such three-dimensional
focused beams motivated by geometrical optics, we follow the derivation of the two-dimensional
beams in Appendix B, which allows a full characterization of the beam field distribution in the
focal plane. A corresponding three-dimensional Gaussian beam has been implemented into the
DGTD method code of the TO&P group and can be readily used for further application.

One potential example is a recently studied hybrid system of SiO2 and dye-coated silver nanowires
to which small gold nanospheres can be attached [19, 226]. The nanowires experience a directional
excitation of SPPs upon circular polarized focused beam excitation due to the spin-momentum
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locking of light [226, 227]. These systems can act as sensors for chiral, i.e., bi-isotropic materials
[86] disturbing the coupling between the nanowires and gold spheres excited with right circular
polarization (RCP) or left circular polarization (LCP) beams. The same effect can also be
investigated by replacing the gold spheres with MO materials, which would also alter the RCP
and LCP coupling to the nanowires.

Besides the extension of the focused beam excitation, also the 4LS used in the two-dimensional
case here can be directly extended to the full three-dimensional model. However, one should
be careful with the system size and required simulation time. The thin silver grating inside
the lasing cavity contains very small mesh elements. This leads to small integration time-steps
in the Runge-Kutta solver used for the DGTD method. Thus, the simulation run-time for a
single computation takes up to ten days. The same holds for the thin perforated gold layer
in the EELS computations which also require up to seven days of simulation run time. To
remedy this problem, an extension of the DGTD method into separate regions with different
element sizes can be beneficial. It is achieved by a mesh partitioning algorithm and allows for a
different time-integration method [228] which uses different time steps for regions with different
mesh resolutions. However, the potential decrease in run-time comes at the cost of the need to
synchronize the fields at the mesh partition boundaries. Also, the long simulation times of several
ten picoseconds in the nonlinear 4LS setups are inconvenient for three-dimensional systems. A
potential, yet approximate solution is to describe the dynamics with only a few quasinormal
modes (QNMs) [122, 229] and expansion coefficients modeling the full system dynamics.

Overall, we have been able to implement useful material model extensions for the DGTD and
FMM. These have been successfully used to describe and characterize the presented experimental
setups. Additionally, this opens new applications for the computational characterization as well
as optimization of nanophotonic and nanoplasmonic systems.
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APPENDIX A

Electromagnetic field of relativistically moving
smoothed charge distributions

Within this appendix, we provide an in-depth derivation of the electromagnetic fields caused by
an electron with a smooth charge distribution, which moves at relativistic speeds. Therefore, we
make assumptions about the charge distribution in the electron’s rest frame in Section A.1. In
the following Section A.2, we derive the electromagnetic field in the reference frame, as needed
in the EELS computations presented in Chapter 6. These calculated fields act as the incident
field (cf. Section 5.4) for the used DGTD method.

A.1 Charge distributions and fields in the rest frame

Normally the computation of EELP spectra or more precisely the components of the scattered
field Green’s tensor (cf. Section 6.1), requires the electromagnetic field of a constantly mov-
ing point charge (electron) with a fixed velocity v. Although, a closed-form derivation of the
point charge fields is given by evaluation of the Línert-Wichert potentials [81, 167], it is more
challenging to calculate the electromagnetic fields in the reference frame for finite-sized charge
distributions. An easier way is to first calculate the static electric field in the particle’s rest frame
and then apply a relativistic boost into the frame of reference needed for the EELS computations.
Hence, we first introduce three different rest frame charge distributions and then calculate the
corresponding electric fields in the following sections.

As we restrict the charge distributions ρ = ρ(%) to a spherical symmetry, also the electric field
has the same symmetry, i.e.,

E (r − r0) = E%
(
%
)
e% . (A.1)

Here, the center of the charge distribution lies at r0. In the chosen spherical coordinates (%, ϑ, ϕ)
the radius is defined by % = |r − r0| and e% is the corresponding radial unit-vector [230]. To
calculate the field, we use the integral formulation [81] of Gauss’ law Eq. (2.1a), i.e.,

(SI)
∫

V
d3r∇ ·E = 1

ε0

∫

V
d3r ρ

(
%
)

=
∫

∂V
E · df . (A.2)

Here, we consider spherical volumes V centered around r0 together with the spherical symmetry
assumptions

E (r − r0) = E%
(
%
)
e% and df =

(
∂ϑr × ∂ϕr

)
dϑ dϕ = %2 sinϑ e% dϑ dϕ . (A.3)
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Hence, for the spherical test volumes with radius %, it follows that

(SI) %2E%
(
%
)

4π = 4π
ε0

∫ %

0
d%′%′2ρ(%′) . (A.4)

For a given radial charge distribution ρ
(
%
)
, we can compute the electric fieldE(r−r0) = E%(%)e%,

which is determined by the radial component

(SI) E%
(
%
)

= 1
ε0

1
%2

∫ %

0
d%′%′2ρ(%′) . (A.5)

This rest frame radial electric field component is calculated for three different charge distribu-
tions.

A.1.1 Point charge

For completeness, we start with a point charge, i.e.,

ρ (r) = q δ(3) (r − r0) = q

4π%2 δ(%) . (A.6)

Consequently, the radial part of the electric field is given by

(SI) E%
(
%
) (A.5)= q

4πε0
1
%2 . (A.7)

With the radial unit-vector

e% = r − r0
|r − r0|

, (A.8)

the fields in the rest frame take the well-known form (see e.g., [81, 83]):

(SI) E
(
r; r0

)
= E%

(
%
)
e% = q

4πε0
r − r0
|r − r0|3

. (A.9)

As the point charge is at rest the magnetic induction B(r) = 0 vanishes in the rest frame.

A.1.2 Gaussian charge distribution

As the electron beam used in a scanning transmission electron microscope (STEM) is focused
on a finite spot size, we next consider a Gaussian distribution to model the finite expansion of
the electron wave function. Given the characteristic width σe, the charge distribution takes the
form

ρ
(
%
)

= A e−%2/σ2
e with A

(A.12)= q

(
√
πσe)3 . (A.10)
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Charge distributions and fields in the rest frame A.1

Here, the normalization constant A is restricted by the total charge

q =
∫

V
d3r ρ (r) , (A.11)

of the charge distribution and is calculated by

q =
∫ 2π

0
dϕ
∫ 1

−1
d cosϑ

∫ ∞

0
d% %2Ae−%2/σ2

e

= 4πA
∫ ∞

0
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e

= −4πA1
2σe

∂
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e
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2 erf
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e−
%2

σ2
e

]∣∣∣∣∣∣

∞

%=0

= Aσ3
e

√
π3 . (A.12)

To compute the radial electric field component Eq. (A.5), we need to solve the same radial
integral for varying radii %,

∫ %

0
dxx2ρ (x) = A

∫ %

0
dxx2e−x2/σ2

e (A.13)

= Aσe
√
π

4

[
σ2
e erf

(
x

σe

)
− 2σex√

π
e−x

2/σ2
e

]∣∣∣∣∣∣

%

x=0

(A.14)

= q
(√

πσe

)3
σe
√
π

4

[
σ2
e erf

(
%

σe

)
− 2σe%√

π
e−%2/σ2

e

]
(A.15)

= q

[
1

4π erf
(
%

σe

)
− %√

4π3σe
e−%2/σ2

e

]
. (A.16)

Consequently, the radial part of the electric field reads

(SI) E%
(
%
)

= q

4πε0
1
%2

[
erf
(
%

σe

)
− 2√

π

%

σe
e−%2/σ2

e

]
. (A.17)
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A.1.3 Cosine-squared charge distribution

While the Gaussian charge distribution has an infinite fall-off, we also consider a second model,
which goes to zero at a finite smoothing radius σe. This cosine-squared charge distribution takes
the form

ρ
(
%
)

= A cos2
(
π%

2σe

)
Θ
(
a− %

)
with A

(A.25)= 3π
2(π2 − 6)

q

σ3
e

. (A.18)

Both for the normalization of the charge distribution as well as the calculation of the radial part
of the electric field, we need to solve the radial integral

∫ %

0
dxx2ρ (x) = A

∫ %

0
dxx2 cos2

(
πx

2a

)
Θ (a− x) . (A.19)

Due to the Heaviside-Theta-function, we only need to consider
∫

dxx2 cos2
(
πx

2a

)
, (A.20)

which can be integrated by parts twice. Here, we require several integrals of the cos2-function,
such as

∫
cos2 (bx

)
dx = 1

b

∫
cos2 (y

)
dy = 1

2b

[
bx+ cos

(
bx
)

sin
(
bx
)]
, (A.21)

and

1
2b

∫ [
bx+ cos

(
bx
)

sin
(
bx
)]

dx = 1
4x

2 + 1
2b2

∫
cos
(
y
)

sin
(
y
)

dy

= 1
4x

2 − 1
4b2 cos2 (bx

)
, (A.22)

as well as
∫ [1

4x
2 − 1

4b2 cos2 (bx
)]

dx = 1
12x

3 − 1
8b3

[
bx+ cos

(
bx
)

sin
(
bx
)]
, (A.23)

for the integration by parts. As a result, we find with b = π
2σe for the total integral:

∫
dxx2 cos2

(
πx

2σe

)
=x2 1

2b

[
bx+ cos

(
bx
)

sin
(
bx
)]
−
∫

2x 1
2b

[
bx+ cos

(
bx
)

sin
(
bx
)]

dx

=x2 1
2b

[
bx+ cos

(
bx
)

sin
(
bx
)]
− 2x

[
1
4x

2 − 1
4b2 cos2 (bx

)]

+ 2
∫ [1

4x
2 − 1

4b2 cos2 (bx
)]

dx
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=1
6x

3 + 1
2bx

2 cos
(
bx
)

sin
(
bx
)

+ 1
4b2x

[
2 cos2 (bx

)
− 1
]
− 1

4b3 cos
(
bx
)

sin
(
bx
)
. (A.24)

Consequently, the charge distribution normalization is given by

q =
∫ 2π

0
dϕ
∫ 1

−1
d cosϑ

∫ ∞

0
d% %2A cos

(
π%

2a

)
Θ
(
σe − %

)

= 4πA
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%3

6 + %2

2b cos
(
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)
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(
b%
)

+ %

4b2
[
2 cos2 (b%

)
− 1
]
− 1

4b3 cos
(
b%
)

sin
(
b%
)
]∣∣∣∣∣∣

%=σe

%=0,b= π
2σe

= 4πA
(
σ3
e

6 −
σe
4b2

)∣∣∣∣∣∣
b= π

2σe

= 4πAσ3
e

(
1
6 −

1
π2

)
= Aσ3

e

2(π2 − 6)
3π . (A.25)

Correspondingly, the radial electric field takes the form

E%(%) = 3q
8(π2 − 6)ε0σ3

e

1
%2


%

3

6 +
(
%2

2b −
1

4b3

)
cos
(
b%
)

sin
(
b%
)

+ %

4b2
[
2 cos2 (b%

)
− 1
]

Θ

(
σe − %

)

+ q

4πε0%2 Θ
(
%− σe

)
. (A.26)

As expected, the electric field outside the charge distribution’s finite radius resembles that of the
point charge in Eq. (A.7).

A.2 Fields in the frame of reference

In this section, we apply the Lorentz transformation of the electrostatic fields obtained for the
previously discussed charge distributions. For the EELS computations presented in Chapter 6,
the charge distributions move at a relativistic speed (v ≈ 0.77c0). Apart from the NRA, it
is also assumed, that upon interaction with the plasmonic scatterers the shape of the charge
distributions is hardly altered. To change into the reference frame Σ′ of the plasmonic scatterers
we need to consider a boost [81, 167, 168] with the velocity vector v of the electron’s center of
charge motion, i.e.,

Λ̂ (v) = 1̂− γβ ·K + γ − 1
β2

(
β ·K

)2
, (A.27)

203



A Electromagnetic field of relativistically moving smoothed charge distributions

with

(SI) β = v

c0
and γ = 1√

1− β2
and K =

(
K̂x, K̂y, K̂z

)T
(A.28)

where

K̂x =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 and K̂y =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 and K̂z =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 . (A.29)

Both the fields and the coordinates need to be transformed, to obtain the fields of a constantly
moving charge distribution. The boost matrix is equivalent to

Λ̂ (v) =
(

γ −γβT

−γβ 1̂3 + γ−1
β2 β ⊗ β

)
. (A.30)

Accordingly, the Minkowski-space four-vector transforms as

(SI)




c0t′

x′

y′

z′


 = x′µ = Λ̂µ

ν (v)xν =
(

γ −γβT

−γβ 1̂3 + γ−1
β2 β ⊗ β

)
·




c0t
x
y
z


 , (A.31)

such that

(SI) t′ = γ

(
t− β · r

c0

)
, (A.32a)

r′ = γ

(
1
γ
r − vt+ γ − 1

γ

β

β2
(
β · r

)
)
. (A.32b)

Furthermore, we can determine the electric and magnetic field from the transformation behavior
of the field-tensor:

(SI) Fµν =




0 −Ex −Ey −Ez
Ex 0 −c0Bz c0By
Ey c0Bz 0 −c0Bx
Ez −c0By c0Bx 0


 =:

(
0 −ET

E c0B̂
×

)
. (A.33)

The tensor transforms as

F ′µν = ΛµρΛνσF ρσ , (A.34)
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which can also be formulated using matrix notation as the multiplication

F̂′ = Λ̂ · F̂ · Λ̂T
. (A.35)

Using

β2 = 1− 1
γ2 = γ2 − 1

γ2 = (γ + 1)(γ − 1)
γ2 , (A.36)

we calculate the tensor components

F̂′00 =− γ2β ·E + γ2E · β + γ2c0
(
β ×B

)
· β

=0 , (A.37a)

F̂′0i =γ2βT (β ·E
)
− γET − γc0

(
β ×B

)T

− γ γ − 1
β2

(
E · β

)
βT − γ γ − 1

β2 c0
[(
β ×B

)
· β
]
βT

=− γ
[
ET + c0

(
β ×B

)T
]

+ γ2

γ + 1
(
β ·E

)
βT , (A.37b)

F̂′i0 =γE + γ
γ − 1
β2

(
E · β

)
β − γ2β

(
E · β

)
− γc0B × β − γ

γ − 1
β2 c0

[(
β ×B

)
· β
]
β

=γ
[
ET + c0

(
β ×B

)T
]
− γ2

γ + 1
(
β ·E

)
βT , (A.37c)

F̂′ij =− γEβ ⊗ β − γ γ − 1
β2 β ⊗ β

(
β ·E

)
+ γβ ⊗E + c0B̂

× + γ − 1
β2 c0β ⊗

(
β ×B

)

+ γ
γ − 1
β2 β ⊗ β

(
β ·E

)
+ γ − 1

β2 c0
(
B × β

)
⊗ β +

(
γ − 1
β2

)2

c0β ⊗ β
[(
β ×B

)
· β
]

=c0B̂
× + γ

(
β ⊗E −E ⊗ β

)
+ c0

γ2

γ + 1

[
β ⊗

(
β ×B

)
−
(
β ×B

)
⊗ β

]
. (A.37d)

From here, one can directly derive the transformation behavior of the field vectors. It is obvious
that the transformed field tensor is antisymmetric, as is the original field tensor. We next show
how to obtain the transformed B-field components, since they cannot be directly inferred from
the equations. We consider the Bz-component entry of F̂′, which demonstrates how to obtain
all transformed B-field components:

(SI) c0B
′
z = c0Bz + γ

(
βyEx − Eyβx

)
+ c0

γ − 1
β2

[
βy
(
β ×B

)
x
−
(
β ×B

)
y
βx

]

= c0Bz − γ
(
β ×E

)
z

+ c0
γ − 1
β2

[
βy

(
βyBz − βzBy

)
−
(
βzBx − βxBz

)
βx

]

= c0Bz − γ
(
β ×E

)
z

+ c0
γ − 1
β2

[
β2Bz − βz

(
β ·B

)]

= c0γBz − γ
(
β ×E

)
z
− c0βz

γ2

γ + 1
(
β ·B

)
. (A.38)
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Hence, the electromagnetic fields transform as

(SI) E′ = γ
[
E + c0

(
β ×B

)]
− γ2

γ + 1β
(
β ·E

)
, (A.39a)

(SI) B′ = γ

[
B + 1

c0

(
β ×E

)]
− γ2

γ + 1β
(
β ·B

)
. (A.39b)

Both with the field transformation as well as the transformation of space and time Eq. (A.31)
we calculate the field distributions in the reference frame Σ′.

The electric field in the rest frame solely depends on the difference between the position r of field
evaluation and the position of the charge’s center of mass r0. We, therefore, first consider the
transformation of this difference vector associating it with the offset r′0 in the reference frame.
That means we perform a translation, a boost, and a backward translation in the reference frame,
i.e.,

r − r0
(A.32)= r′ − r′0 − γβc0t

′ + γ − 1
β2 β

[
β ·
(
r′ − r′0

)]

= r′−r′0 − βc0t
′

︸ ︷︷ ︸
−R′(t′)

−
(
γ − 1

)
βc0t

′ + γ − 1
β2 β

(
β ·
(
r′ − r′0

))

= r′ −R′(t′) + γ − 1
β2 β

[
β ·
(
r′ − r′ − βc0t

′
)]

= r′ −R′(t′) + γ − 1
β2 β

[
β ·
(
r′ −R′(t′)

)]
,

= ∆R′(t′) + γ − 1
β2 β

[
β ·∆R′(t′)

]
. (A.40)

Here,

(SI) R′(t′) = r′0 + βc0t
′ = r′0 + vt′ (A.41)

is the center of charge motion trajectory of the charge distribution and ∆R′(t′) = r′ − R′(t′)
is the time-dependent position difference vector to the current charge position. As the electric
fields Eq. (A.5) of the charge distribution also depend on the radius %, we also calculate the
transformation of

%2 = (r − r0)2 = ∆R′2(t′) + 2γ − 1
β2

[
β ·∆R′(t′)

]2
+ (γ − 1)2

β4 β2
[
β ·∆R′(t′)

]2

= ∆R′2(t′) + 2γ − 2 + γ2 − 2γ + 1
β2

[
β ·∆R′(t′)

]2

= ∆R′2(t′) + γ2 − 1
β2

[
β ·∆R′(t′)

]2

= ∆R′2(t′) + γ2
[
β ·∆R′(t′)

]2
. (A.42)
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This leaves open the transformation of the electric and magnetic fields into the reference frame.
For this, we consider the rest frame field distributions

E
(
r; r0

)
= E%

(
r; r0

)
e%
(
r; r0

)
and B (r) = 0 . (A.43)

Here, we exploit the radial charge distribution and the therefore centrosymmetric electric field
around r0 in the rest frame. It is

E%
(
r; r0

)
= E%

(
|r0 − r|

)
and e%

(
r; r0

)
= r − r0
|r − r0|

. (A.44)

Consequently, the transformed electric field which still depends on the rest frame coordinates is
given by

E′
(
r; r0

) (A.39)= γ
E%
(
|r − r0|

)

|r − r0|

[
r − r0 −

γ − 1
γβ2 β

(
β · (r − r0)

)
]
, (A.45)

where we used
γ

γ + 1 = γ − 1
γβ2 . (A.46)

Yet, it still requires a change in the reference frame coordinates. The last factor in the trans-
formed electric field is equal to the inverse coordinate transformation of Eq. (A.40) and the re-
maining factors only depend on the radial component transformed in Eq. (A.42). Consequently,
the transformed electric field reads

E′(r′, t′) = γ
E%(%(r′, t′))
%(r′, t′) ∆R′(r′, t′) . (A.47)

The corresponding magnetic induction is directly given by Eq. (A.39) as

(SI) B′(r′, t′) (A.39)= γ

c0
β ×E(r, r0) = γ

c0

E%(%)
%

β × (r − r0)︸ ︷︷ ︸
(A.40)= β×∆R′(t′)

= 1
c0
β ×E′(r′, t′) . (A.48)

The radial fields for the charge distributions considered in the previous Section A.1 suffice to
numerical evaluate the fields as needed in the DGTD method. However, the Sf sources (see
Section 5.4.2) used within the DGTD method also require the time-derivatives of these fields.
For the magnetic induction, the time-derivative is directly related to that of the electric field
by

(SI) ∂t′B
′(r′, t′) = 1

c0
β × ∂t′E′(r′, t′) . (A.49)
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The time-derivative of the electric field simplifies to

∂t′E
′(r′, t′) = γ∂t′

[
Eρ(%)
%

(
r′ −R′(t′)

)]

(A.41)= −γvEρ(%)
%

+ γ
(
r′ −R′(t′)−

)
∂t′% ∂%

Eρ(%)
%

, (A.50)

where

∂t′%(r′, t′) = ∂t′

[
∆R′2(r′, t) + γ2

[
β ·∆R′(r′, t)

]2
]1/2

= −v · ∇∆R′

[∣∣∣∆R′
∣∣∣
2

+ γ2
(
β ·∆R′

)2
]1/2

= −
v ·
[
2∆R′ + 2γ2β

(
β ·∆R′

)]

2
[∣∣∣∆R′

∣∣∣
2

+ γ2
(
β ·∆R′

)2
]1/2

= −γ
2v ·∆R′(r′, t′)

%(r, t) . (A.51)

This means that for any given radial charge distribution in the rest frame also the field

1
%
∂%
E%(%)
%

(A.52)

has to be calculated in order to numerically evaluate the time-derivated electromagnetic fields.

Before we discuss the smooth charge distributions, we provide the fields for the case of a point
charge as presented in Section A.1.1. With the radial part of the electric field in the rest frame
according to Eq. A.7, the electromagnetic fields in the reference frame take the well-known form
[81, 167]:

(SI) E′(r′, t′) = γq

4πε0
r′ − r′0 − vt′[

(r′ − r′0 − vt′)2 + γ2[β · (r′ − r′0 − vt′)]2
] 3

2
, (A.53a)

(SI) B′(r′, t′) = γq

4πε0c0

β × (r′ − r′0 − vt′)[
(r′ − r′0 − vt′)2 + γ2[β · (r′ − r′0 − vt′)]2

] 3
2
. (A.53b)

A.2.1 Numerically stable evaluation of the electromagnetic fields

For any finite-sized, i.e., not point-like, charge distribution the electric field takes finite values
in the center of the distribution. This raises the problem of accurate numerical evaluation of
the electric field formulas derived in the preceding section. Specifically, a problem arises in the
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denominators, if

r′ → R′(t′) and therefore %→ 0 . (A.54)

For this, we consider the examples derived in Section A.1. These are the radial field components
E%(%)/% related to the Gaussian charge distribution, i.e.,

(SI) Eρ,Guass(%)
%

= q

4πε0
1
%3

[
erf
(
%

σe

)
− 2√

π

%

σe
e−%2/σ2

e

]
, (A.55)

and the cosine-squared charge distribution, i.e.,

Eρ,cos2(%)
%

= q

4πε0
1
%3 Θ

(
%− σe

)
+ 3π

8
(
π2 − 6

) q
ε0

1
%3 Θ

(
σe − %

)
· (A.56)


1

6
%3

σ3
e

+
(

1
π

%2

σ2
e

− 2
π3

)
cos
(
π

2
%

σe

)
sin
(
π

2
%

σe

)
+ 1
π2

%

σe

(
2 cos2

(
π

2
%

σe

)
− 1
)
 ,

respectively. The field evaluation close to the charge requires a numerically accurate evaluation
in the limit

lim
%→0

Eρ(%)
%

. (A.57)

A Taylor expansion using Mathematica [156] results in the small distance behavior for the Gaus-
sian charge distribution

Eρ,Guass(%)
%

= q

4πε0
1√
πσ3

e

(
4
3 −

4
5
%2

σ2
e

+ 2
7
%4

σ4
e

− 2
27
%6

σ6
e

+O
(
%8/σ8

e

))
(A.58)

and

Eρ,cos2(%)
%

= q

4πε0
π2

(
π2 − 6

)
σ3
e

(
2− 6

5

(
π

2
%

σe

)2
+ 2

7

(
π

2
%

σe

)4
− 4

135

(
π

2
%

σe

)6
+O

(
%8/σ8

e

))

(A.59)

for the cosine-squared charge distribution. As both field evaluations contain denominators in the
third power of %, the implementation should at least contain the fourth power approximation in
order to maintain a numerical field evaluation down to machine accuracy.

For the time-derivatives of the electromagnetic fields in Eq. (A.50), we furthermore need to
evaluate the field

(SI) 1
%
∂%
Eρ(%)
%

(A.5)= 1
ε0

1
%
∂%

1
%3

∫ %

0
dxx2ρ(x) = 1

ε0

(
ρ(%)
%2 − 3Eρ(%)

%3

)
. (A.60)
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For the Gaussian charge distribution, this is given by

(SI) 1
%
∂%
Eρ,Gauss(%)

%
= q

ε0


 1

(σe
√
π)3

e−%2/σ2
e

%2 − 3
4π

1
%5

[
erf
(
%

σe

)
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π

%

σe
e−%2/σ2

e

]
 , (A.61)

and for %� σe, we find

(SI) 1
%
∂%
Eρ,Gauss(%)

%
= q

ε0

1
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√
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5 + 2
7
%2

σ2
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e
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. (A.62)

Analogously, we find

1
%
∂%
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%
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%
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%
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%
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4πε0

1
%5 Θ(%− σe) (A.63)

for the cosine-squared distribution, which for small %� σe is approximated by

1
%
∂%
Eρ,cos2(%)

%
(A.64)

= q

ε0

3π3

2(π2 − 6)
1
σ5
e

(
− 1

10 + 1
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(
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2
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2
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3465

(
π

2
%

σe

)6
+O

(
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.

The latter also contains the field values

(SI) 1
%
∂%
Eρ(%)
%

= 3q
4πε0

1
%5 (A.65)

to compute the time-derivatives of the electromagnetic fields Eq. (A.50) for a point charge.
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APPENDIX B

2D-focused beams in the DGTD method

In this appendix, we present a short derivation of the two-dimensional focused beam sources, as
used for the computations in the 4LS lasing setup presented in Chapter 8. Moreover, we present
the different time dependencies used either for the focused beam source or the plane wave sources
used in the computations employing the DGTD method.

B.1 Pulse construction with Fourier transforms

While there is an implementation for a three-dimensional focused beam source available in the
TO&P group’s code source of the DGTD method used, it lacks a two-dimensional version.
The three-dimensional version was implemented in the scope of a bachelor’s thesis [231] and is
basically following [225]. This implementation makes use of the Debye-Wolf diffraction integral
[232] and the integration kernel is obtained in a geometrical optics limit in order to avoid one
Fourier transform from the frequency into the time domain. While this reduces the numerical
evaluation effort, it yet poses some restrictions on the choice of (analytically) known combinations
of focal field distributions and the pulse time dependence. For a Gaussian pulse, this, e.g.,
requires the focal width to vary proportionally to the wavelength of the corresponding frequency
component. Therefore, we here perform a complete pulse reconstruction using both one spatial
and one temporal Fourier transform. The fields q =

(
E,H

)T are of the form

q
(
r, t
)

= 1
(2π)3

∫
d2k

∫
dω q

(
k, ω

)
eik·r−iωt . (B.1)

For the derivation of the pulsed source, we assume that the electromagnetic field propagates
in the direction n =

(
nx, 0, nz

)T, in the effectively two-dimensional simulation domain (cf.
Section 2.6.1). As we have seen in Section 2.7 about the field propagation in homogeneous,
isotropic material layers the single plane waves obey the dispersion relation

kn = ±
√
ω2 εµ− k2

t , (B.2)

for both transverse electric (TE) and TM polarization. Here

kn = k · n and kt = k · t (B.3)

are the in-plane components of the k-vector both in respect to the propagation direction n and
the transverse direction t = n × ey =

(
−nz, 0, nx

)T. For a forward propagating focused beam
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pulse, we only take wave contributions traveling into positive n-direction into account and find

Ey,t(r, t) = 1
(2π)2

∫
dkt
∫

dωEy,t
(
kt, ω

)
eikt t·r−ikn(kt,ω)n·(r−r0)−iωt , (B.4)

for TE polarization (Ey field) and TM polarization (Et field), respectively. The other field
components are then fixed by the two-dimensional Maxwell’s equations (2.49). Thus, for TE
polarization with

Hn

(
kt, ω

)
= − kt

ωµ
Ey
(
kt, ω

)
and Ht

(
kt, ω

)
= kn(kt, ω)

ωµ
Ey
(
kt, ω

)
, (B.5)

we have

Hn(r, t) = − 1
(2π)2

∫
dkt
∫

dω kt
ωµ

Ey
(
kt, ω

)
eikt t·r−ikn(kt,ω)n·(r−r0)−iωt , (B.6a)

Ht(r, t) = 1
(2π)2

∫
dkt
∫

dω kn(kt, ω)
ωµ

Ey
(
kt, ω

)
eikt t·r−ikn(kt,ω)n·(r−r0)−iωt . (B.6b)

Analogously, in TM polarization with

En
(
kt, ω

)
= − kt

kn(kt, ω)Et
(
kt, ω

)
and Hy

(
kt, ω

)
= − ωε

kn(kt, ω)Et
(
kt, ω

)
, (B.7)

we find that

En(r, t) = − 1
(2π)2

∫
dkt
∫

dω kt
kn(kt, ω)Et

(
kt, ω

)
eikt t·r−ikn(kt,ω)n·(r−r0)−iωt , (B.8a)

Hy(r, t) = 1
(2π)2

∫
dkt
∫

dω ωε

kn(kt, ω)Et
(
kt, ω

)
eikt t·r−ikn(kt,ω)n·(r−r0)−iωt . (B.8b)

Consequently, the fields are solely determined by the transverse Ey,t-field components of the
respective polarization.

Assuming, we do know the field distribution in the focal plane, in two dimensions it actually is
a line, being

Ey,t

(
r = t̃ t+ ñ0n, t

)
= E0y,0t f(t̃) η(t) , (B.9)

we can already fix the Fourier expansion coefficients in equation (B.4). Here, we defined the
transverse and normal coordinates

t̃ := t · r and ñ := n · r . (B.10)

Moreover, the focus shall lie at

r0 = ñ0n+ t̃0t =
(
x0, 0, z0

)T
. (B.11)

Given the focal plane’s field, the integrals (B.4) decouple and we can determine the Fourier
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Pulse construction with Fourier transforms B.1

coefficients directly by two independent Fourier transforms both for the spatial pulse profile f(t̃)
and the time dependence η(t) of the pulse:

Ey,t
(
kt, ω

)
= E0y,0t

∫
dt̃ f(t̃)e−ikt t̃

︸ ︷︷ ︸
f(kt)

∫
dt η(t)eiωt

︸ ︷︷ ︸
η(ω)

. (B.12)

For the spatial profile, we here want to model a two-dimensional Gaussian pulse, hence

f(t̃) = e−
(t̃−t̃0)2

2σ2 . (B.13)

Here, σ is the pulses’ transverse width around the focus point coordinate t̃0. For the numerical
reconstruction of the field, we also need the Fourier transformed function being

f(k) =
∫ ∞

−∞
dx f(x)eikx

=
∫ ∞

−∞
dx exp

(
− 1

2σ2

(
(x− x0)2 + i2σ2kx

))

= exp
(
−k

2σ2

2 − ikx0

)∫ ∞

−∞
dx exp

(
−(x+ ikσ2 − x0)2

2σ2

)

︸ ︷︷ ︸√
2πσ

=
√

2πσ exp
(
−k

2σ2

2 − ikx0

)
. (B.14)

For the time dependence η(t), we use two different functional dependencies, both using a mod-
ulated carrier with frequency ω0 but different envelope functions. In the following sections, we
present both once a Gaussian modulated pulse (see Section B.2.1) and a polynomial ramped
constant envelope (see Section B.2.2). For both, we also derive the spectrum η(ω) required to
numerically reconstruct the pulse.

For the actual numerical evaluation of the integrals (B.4), (B.6), and (B.8) we approximate both
the kt-space as well as the ω-integral by finite sums, i.e., we perform a discrete Fourier transform.
Both kt and ω are sampled equidistantly. Introducing the transversal spatial repetition length
Lrep and temporal repetition time Trep, the sampling intervals (Nyquist frequencies) can be
determined as

∆kt = π

Lrep
and ∆ω = π

Trep
, (B.15)

using the sampling theorem (see e.g., [130, 131]). Consequently, the fields are computed as

Ey,t(r, t) ≈
Nk∑

i=−Nk

Nω,u∑

j=−Nω,l

∆kt∆ω
(2π)2 Re

[
Ey,t(i∆kt, ω0 + j∆ω)ei(kit·r−kn(ki,ωj)n·(r−r0)−ωjt)

]
.

(B.16)
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Figure B.1: Field distribution of an exemplary Gaussian beam pulse in TE polarization
propagating in positive z-direction for different times t.

Here, we defined

ki = i∆kt and ωj = ω0 + j∆ω , (B.17)

where in k-space we take a symmetric sampling around kt = 0, as the spectrum (B.14) peaks
around that value. For the ω-integration, we sample around the carrier frequency ω0, as all
spectra of the time dependencies in question peak around that value. At the same time, we
only include terms with positive frequencies ω and afterward compute the real part, as the fields
themselves are supposed to be real-valued. Furthermore, we restrict the summation range, i.e.,
integration boundaries, by setting the Nk and Nω values. We use the knowledge of the spectral
widths of the f(k) and η(ω) functions. For the k-space integral we set

Nk =
⌈

fk
σ∆kt

⌉
, (B.18)

214



Pulse time dependencies and spectra B.2

with a default factor fk = 4.5 spectral widths. Analogously, given the (Gaussian) spectral width
σω of the spectrum η(ω), we set

Nω,u =
⌈

fω
σω∆ω

⌉
and Nω,l =





⌈
ω0
∆ω − 1

⌉
if ω0 − fω

σω∆ω <
∆ω
2 ,

⌈
fω

σω∆ω

⌉
else .

(B.19)

For the lower boundary, the additional restriction is applied in order to only sum over positive
values of ω. Again with a default factor of fω = 4.5 spectral widths. These factors have been
chosen empirically in order to restore at least a relative evaluation accuracy of 10−3, which
normally is also the accuracy achieved by the DGTD computations (cf. Section 7.1). Increasing
these factors leads to a higher integration accuracy. The integrals for the Gaussian spectra even
converge exponentially. However, simultaneously the evaluation time of the field values increases,
as more and more k- and ω-components need to be summed up. These fields need to be evaluated
as source terms (cf. Section 5.4) for each and every time step in the DGTD method. Note that
the fields evaluated outside the first repetition length and repetition time are set to zero in order
to achieve a faster evaluation.

In Figure B.1 we present a typical pulse, as it propagates through vacuum. For this example, we
use a Gaussian modulated time dependence width a temporal width of σ = 1.34 as and a carrier
wavelength of λ = 2πc0

ω0
= 0.2 µm. The pulse reaches its field maximum at t0 = 6.67 as in the

focus. This TE-polarized example pulse is focused at r0 =
(
0 µm, 0 µm

)T and has a beamwidth
of σx = 0.15 µm. The exact form of the time dependencies used is presented in the following
section.

B.2 Pulse time dependencies and spectra

Time-domain computations normally start with an overall zero-field initial condition. The
sources relying on the Tf/Sf source (see Section 5.4.1) or scattered field source scheme (see
Section 5.4.2) need also to be zero at the start time of the computation. This is necessary to
avoid immediate field jumps at the computation start with a broad frequency spectrum and high-
frequency components as the main cause for numerical errors. Hence, normally pulsed sources
are used. This includes plane wave sources (see Section 5.4 or e.g., [75]), dipole sources (see
e.g., [117]), or the focused beam source discussed above for the two-dimensional case and in [225,
231] for the three-dimensional case.

In this section, we discuss two time dependencies used in the computations presented in the
thesis. Both time dependencies feature a modulated carrier wave with an angular frequency ω0.
In Section B.2.1 we present a Gaussian modulated time dependence, while in Section B.2.2 we
present a constant envelope pulse, which is ramped up and down with polynomial functions.
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Figure B.2: Gaussian time dependence η(t)) (a) as well as the associated spectrum |η(ω)|
(b) in dependence of the temporal width σ and time-offset t0 for example parameters.

B.2.1 Gaussian modulated pulse

For the Gaussian pulse, we take a Gaussian envelope with width σ and amplitude A. It modulates
the carrier wave with frequency ω0 and constant phase-shift φ0. The entire pulse is shifted to a
center time t0 at which the pulse reaches its maximum:

η (t) = A cos
(
ω0(t− t0) + φ0

)
e−

(t−t0)2

2σ2 . (B.20)

For the reconstruction of the two-dimensional focused beam source, we need the Fourier trans-
form

η (ω) =
∫ ∞

−∞
dt η(t)eiωt . (B.21)

Splitting the cosine function into two exponential functions, the derivation works analogously as
shown in Eq. (B.14), which results in

η (ω) =
√

2
π
Aσeiωt0

(
eiφ0e−

σ2(ω+ω0)2
2 + e−iφ0e−

σ2(ω−ω0)2
2

)
. (B.22)

This spectrum basically consists of two Gaussian functions centered around ±ω0, with a spectral
width of σ−1. Figure B.2 shows both the time dependence η(t) as well as the spectrum |η(ω)|.
Here, the amplitude is set to A = 1, the time offset to t0 = 5, and the temporal width to σ = 1.
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The carrier frequency is set to ω0 = 2π in this example.

B.2.2 Ramped continuous wave

For the continuous wave pulse, we use a constant amplitude A to modulate the carrier wave
with angular frequencies ω0 and phase φ0. For the ramping, we design the envelope function
such, that we use polynomials, which are ramped up and down between zero and one, while its
first and second derivatives are zero both at the start and end times of the ramps. We demand
this behavior, as different kinds of sources also require the evaluation of the first and second
derivatives of the time dependence, which should not abruptly jump in order to be compatible
with the numerical DGTD solver. We define

η (t− t0) = η (τ) = A





(
10x3

1 − 15x4
1 + 6x5

1

)
cos
(
ω0τ − φ0

)
for τ ∈

[
0, t1

]
,

cos
(
ω0τ − φ0

)
for τ ∈

[
t1, t2

]
,(

1− 10x3
2 + 15x4

2 − 6x5
2

)
cos
(
ω0τ − φ0

)
for τ ∈

[
t2, t3

]
,

0 else ,

(B.23)

where

τ = t− t0 , x1 = x(τ, 0, t1) = τ − 0
t1 − 0 and x2 = x(τ, t2, t3) = τ − t2

t3 − t2
. (B.24)

The entire pulse is shifted by the time t0. Furthermore, the times tup = t1−t0 and tdown = t3−t2
are the ramp-up and ramp-down time spans, respectively. The entire pulse duration is Tpulse =
t3 − t0. The prefactors of the ramping polynomial are set by the restrictions on its derivatives
both at start times t0 and t2 as well as end times t1 and t3.

As the computation of the two-dimensional focused beam requires the spectrum of the time
dependence, we calculate the Fourier transform:

η (ω) =
∫ ∞

−∞
dt η (t) eiωt =

∫ ∞

−∞
dτ η (τ) eiω(τ+t0) . (B.25)

For this, we split the integral into three different parts, namely

η (ω) = Aeiωt0
∫ t1

0
dτ
(

10x3
1 − 15x4

1 + 6x5
1

)
cos
(
ω0τ − φ0

)
eiωτ

︸ ︷︷ ︸
I1(ω,0,t1)

+Aeiωt0
∫ t3

t1

dτ cos
(
ω0τ − φ0

)
eiωτ

︸ ︷︷ ︸
I2(ω,t1,t3)
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−Aeiωt0
∫ t3

t2

dτ
(

10x3
2 − 15x4

2 + 6x5
2

)
cos
(
ω0τ − φ0

)
eiωτ

︸ ︷︷ ︸
I1(ω,t2,t3)

. (B.26)

First, we calculate the Fourier transform of the constant envelope part of the pulse, i.e.,

I2
(
ω, t1, t3

)
=
∫ t3

t1

dτ cos
(
ω0τ − φ0

)
eiωτ

= 1
2

∫ t3

t1

dτ
(

ei(ω0τ−φ0) + e−i(ω0τ−φ0)
)

eiωτ ,

= I+
2
(
ω, t1, t3

)
+ I−2

(
ω, t1, t3

)
, (B.27)

where the two split integrals are

I±2
(
ω, t1, t3

)
= 1

2

∫ t3

t1

dτ ei(ω±ω0)τ∓iφ0) ,

= 1
2e∓iφ0





1
i(ω±ω0)

[
ei(ω±ω0)t3 − ei(ω±ω0)t1

]
forω 6= ∓ω0 ,

t3 − t1 forω = ∓ω0 .
(B.28)

As the numerical evaluation of I±2 with the frequency difference in the denominator is prone to
rounding errors for ω ≈ ±ω0, we use the Taylor expansion around this point:

I±2
(
ω = ∓ω0 + δω, t1, t3

)
= 1

2eiδω∓iφ0(t3 − t1)
[
1 + i

2δω(t3 − t1) +O
([
δω(t3 − t1)

]2)
]
. (B.29)

Next, we calculate the Fourier transform of the ramping integrals, i.e.,

I1
(
ω, t1, t2

)
=

∫ t2

t1

dτ̃
[

10
(
τ̃ − t1
t2 − t1

)3
− 15

(
τ̃ − t1
t2 − t1

)4
+ 6

(
τ̃ − t1
t2 − t1

)5
]

cos
(
ω0τ̃ − φ0

)
eiωτ̃ ,

τ=τ̃−t1=
∫ ∆t

0
dτ
[

10
(
τ

∆t

)3
− 15

(
τ

∆t

)4
+ 6

(
τ

∆t

)5
]

cos
(
ω0τ − φ0 + ω0t1

)
eiω(τ+t1),

(B.30)

where ∆t = t2 − t1. Splitting the cosine-term into two exponential terms and omitting the
constant prefactors, we have to solve sub-integrals of the type

I±1,n(ω, ω0,∆t) =
∫ ∆t

0
dτ
(
τ

∆t

)n
ei(ω±ω0)τ . (B.31)

Additionally, we need to consider the special case in which ω = ∓ω0. We then get

I±1,n(ω = ∓ω0, ω0,∆t) = 1
n+ 1

τn+1

∆tn

∣∣∣∣∣

∆t

0

= ∆t
n+ 1 . (B.32)
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In all other cases, the integrals can be solved using the substitution

β = i (ω ± ω0) ∆t , (B.33)

where |β| 6= 0 and replacing τ/∆t→ τ , via

I±1,n(ω, ω0,∆t) = ∆t
∫ 1

0
dτ τneβτ = ∆t ∂

n

∂βn

∫ 1

0
dτ eβτ ,

= ∆t ∂
n

∂βn
1
β

eβτ
∣∣∣
1

0
= ∆t ∂

n

∂βn
1
β

[
eβ − 1

]
. (B.34)

For the calculation of I±1,n, we need these integrals for n = 3, 4, 5. Using induction, we can show
that

∂n

∂βn
1
β

[
eβ − 1

]
= (−1)nn! e

β − 1
βn+1 +

n−1∑

i=0
(−1)i n!

(n− i)!
eβ
βi+1 . (B.35)

The induction base is trivially fulfilled, as the entire sum vanishes for n = 0. The induction step
is

∂

∂β

∂n

∂βn
1
β

[
eβ − 1

] (B.35)= ∂

∂β
(−1)nn! 1

βn+1

[
eβ − 1

]
+ ∂

∂β

n−1∑

i=0
(−1)i n!

(n− i)!
eβ
βi+1 ,

= − (−1)nn!(n+ 1)β−(n+2)
[
eβ − 1

]
+ (−1)nn!eββ−(n+1)

+
n−1∑

i=0
(−1)i n!

(n− i)!e
β
[
[−(i+ 1)]β−(i+2) + β−(i+1)

]
,

i′=i+1= (−1)n+1(n+ 1)!β−(n+2)
[
eβ − 1

]

+ (−1)nn!eββ−(n+1) + (−1)(n−1)n!
1! (−n)eββ−(n+1)

+
n−1∑

i′=1
(−1)i′−1eβ n!

(n− i′ + 1)!(−i
′)β−(i′+1)

+ eββ−1 +
n−1∑

i=1
(−1)i n!

(n− i)!e
ββ−(i+1) ,

= (−1)n+1(n+ 1)!β−(n+2)
[
eβ − 1

]
+ (−1)n(n+ 1)!eββ−(n+1)

+ eββ−1 +
n−1∑

i=1
(−1)i

[
n! i

(n− i+ 1)! + n!
(n− i)!

]

︸ ︷︷ ︸
(n+1)!

(n−i+1)!

eββ−(i+1) ,

= (−1)n+1(n+ 1)!e
β − 1
βn+2 +

n∑

i=0
(−1)i (n+ 1)!

(n+ 1− i)!
eβ
βi+1 . � (B.36)
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Finally, we obtain

I1
(
ω, t1, t2

)
= 1

2ei(ω+ω0)t1−iφ0
(

10I+
1,3(ω, ω0,∆t)− 15I+

1,4(ω, ω0,∆t) + 6I+
1,5(ω, ω0,∆t)

)

− 1
2ei(ω−ω0)t1+iφ0

(
10I−1,3(ω, ω0,∆t)− 15I−1,4(ω, ω0,∆t) + 6I−1,5(ω, ω0,∆t)

)
. (B.37)

When evaluating these integrals associated with the signal ramp-up and -down, the rounding
error for |β| → 0, i.e., ω → ∓ω0, is even further increased by division with a high power of β in
the leading term of Eq. (B.35). Consequently, we calculate the Taylor-expansion of Eq. (B.34)
to achieve a sufficient numerical evaluation accuracy for |β| ≈ 0. We find that

I±1,n(ω ≈ ∓ω0, ω0,∆t) = ∆t
∞∑

k=n+1

1
k

1
(k − (n+ 1))!β

k−(n+1) (B.38)

and can stop the series expansion as required by the requested evaluation accuracy.
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Figure B.3: Example for a continuous wave time dependence (a) η(t) and the corresponding
envelope function. (b) Spectrum |η(ω)| of the same continuous wave example with and
without the polynomial ramping of the envelope.

In Fig. B.3 we present an example of a continuous wave time dependence η(t) and the correspond-
ing spectrum |η(ω)|. The time dependence starts at t0 = 1.0 and is ramped up for tup = 2.7 and
ramped down for tdown = 2.4. The overall duration is set to Tpulse = 18 and the carrier frequency
is chosen as ω0 = 20π

7 . The corresponding spectrum shown in Fig. B.3 (b) peaks at ω = ±ω0.
Besides the spectrum |η(ω)| of the ramped time dependence also the spectrum of the correspond-
ing rectangular pulse is shown, which resembles a superposition of two sinc-functions as derived
in Eq. (B.28). It is well visible, that the ramping of the pulse envelope reduces the bandwidth,
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as frequency components far from the carrier frequency ω0 are suppressed. In consequence, also
fewer frequency components are required to compute the two-dimensional Gaussian beam source
for nearly the same time dependence. This can drastically reduce the computational time, as
the sum in Eq. (B.16) needs to be evaluated at every time step of the DGTD time integration
(cf. Section 5.2).
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