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Abstract
Single- and multi-layer complex networks have been proven as a powerful tool to study the
dynamics within social, technological, or natural systems. An often observed common goal is to
optimize these systems for specific purposes by minimizing certain costs while maximizing a
desired output. Acknowledging that especially real-world systems from the coupled
socio-ecological realm are highly intertwined this work exemplifies that in such systems the
optimization of a certain subsystem, e.g. to increase the resilience against external pressure in an
ecological network, may unexpectedly diminish the stability of the whole coupled system. For this
purpose we utilize an adaptation of a previously proposed conceptual bi-layer network model
composed of an ecological network of diffusively coupled resources co-evolving with a social
network of interacting agents that harvest these resources and learn each other’s strategies
depending on individual success. We derive an optimal coupling strength that prevents collapse in
as many resources as possible if one assumes that the agents’ strategies remain constant over time.
We then show that if agents socially learn and adapt strategies according to their neighbors’
success, this optimal coupling strength is revealed to be a critical parameter above which the
probability for a global collapse in terms of irreversibly depleted resources is high—an effect that
we denote the tragedy of the optimizer. We thus find that measures which stabilize the dynamics
within a certain part of a larger co-evolutionary system may unexpectedly cause the emergence of
novel undesired globally stable states. Our results therefore underline the importance of holistic
approaches for managing socio-ecological systems because stabilizing effects which focus on single
subsystems may be counter-beneficial for the system as a whole.

1. Introduction

Complex networks have been proven as a powerful framework to study the structure and dynamics in a
broad range of real-world systems, ranging from social networks [1–4] to complex adaptive systems in
socio-ecology [5] and multilayer hierarchical structures in infrastructure [6], economy [7] or even the
climate system [8, 9]. As such they are particularly useful to study meso- and macroscopic emergent
phenomena arising from the microscopic interaction between dynamics at individual nodes, such as the
stability of power grids [10, 11], survival and co-existence in resource networks or food-webs [12–14], or
the synchronization in networks of coupled oscillators [15–18]. Specifically, complex networks have also
been utilized to analyze a broad range of social dynamics [19] and spreading processes [20] that fostered the
development of associated conceptual models with foci on complex contagion [21, 22], opinion dynamics
[23–25] or epidemic spreading [26–28].
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Through a combination of techniques from social and ecological network models [10, 29–31] complex
networks have recently been proven as a promising approach to bridge theoretical physics and efforts to
understand future trajectories of the Earth system in the Anthropocene [32–34], where human social
dynamics have become a dominant geological process [35, 36]. These so-called World-Earth models
[33, 37, 38] have for example been used to study emergent characteristics of interactions between social
networks of resource harvesting agents [29–31], impacts of multi-agent social learning and market
dynamics on deforestation rates in rain forests [39], or the emergence of sudden regime shifts in
socio-ecological systems driven by specific network characteristics [40, 41].

One commonly observed goal in managing such socio-ecological systems is their optimization for a
specific purpose by minimizing certain costs and maximizing a desired output [42, 43] even though such
strategies may not necessarily yield desired long-term stable states [44]. Such optimization schemes include
for example quota managements in cross-national fisheries [45] control programs to slow down or prevent
the spread of harmful species [46] or the most cost-effective choice of biodiversity conservation hotspots
[47]. However, such strategies often focus primarily on understanding the underlying ecological system and
its natural dynamics for establishing an optimal management while the dynamics in the social system and
human behavior that interacts with these systems is neglected or assumed static, thus, posing a key
uncertainty in assessing the effectiveness of such measures [42, 48].

Here we exemplify on this potential drawback and show that in a coupled socio-ecological system the
optimization of the natural component alone may unexpectedly diminish the stability of the system as a
whole and may even cause the existence of undesired stable fixed points corresponding to a global collapse.
For this purpose we utilize a recently proposed conceptual socio-ecological bi-layer network model
consisting of a social layer and an ecological layer [29–31]. The ecological layer is comprised of a set of
nodes that represent an abstract stock of a renewable resource [49]. Each node in the social layer interacts
with exactly one of the stocks through different exploitation strategies. These strategies either yield high
short-term gain at the cost of depletion or lower short-term gain for the sake of sustained long-term harvest
as the stock approaches a positive stable fixed point [29]. Nodes within the social network interact with each
other by learning different strategies depending on the differences in their immediate harvesting payoffs. In
a substantial addition to previous implementations of this model, we specifically acknowledge that
resources do not evolve in isolation, but are often interacting via diffusive coupling, such as in migratory
patterns of different mammals [50], insects [51, 52] or fish [53, 54]. Hence, we treat stocks in the ecological
system as connected in a complex network and investigate the effect of diffusion strengths between nodes
on the overall stability of the system, as such processes can give rise to rich dynamics ranging from
increased synchronizability [55] to the emergence of chaos [56].

Along the aforementioned lines of optimal resource management, we first derive an optimal coupling
strength such that a minimum number of stocks reaches an undesired stable fixed point of almost or full
depletion. We therefore assume that no interaction and learning in the social layer takes place, thus
emulating the neglection of human behavior in determining an optimal management strategy [42, 48]. We
then show that under myopic social learning dynamics, where nodes aim to optimize their short term yield,
this optimal coupling strength corresponds to a critical value above which a collapse of the entire
socio-ecological system becomes likely, an effect that we denote here as the tragedy of the optimizer. Our
findings imply that approaches for managing socio-ecological systems that focus on enhancing the stability
in single subsystem may at the same time be counter-beneficial for the system as a whole. This calls for a
further investigation of human behavior and decision making in shaping trajectories and stability of
coupled socio-ecological systems and, thus, conceptually underlines the importance of holistic approaches
for determining appropriate management strategies.

The remainder of this paper is organized as follows. Section 2 presents the specifics of the model that is
used in this work. We then present the corresponding results in section 3. Specifically, we first derive in
section 3.1 an optimal coupling strength for the ecological network if no social interactions take place.
Section 3.2 studies the stability of our coupled socio-ecological model if there are social interactions and
assesses the influence of interaction rates and diffusive coupling strength on the existence of desired and
undesired equilibria. Ultimately, section 3.3 demonstrates that the derived optimal coupling strength
directly corresponds to a critical coupling strength above which the entire system is likely to collapse. We
conclude our work in section 4 with a summary of the results and an outlook to future work.

2. Model description

We model the interaction of a stylized social system with diffusely coupled individual resources by means of
a bi-layer network G. G consists of a resource layer GR(VR, LR) with N nodes VR = {vR

1 , vR
2 , . . . , vR

N} and
MR = |LR| edges and a social layer GS(VS, LS) with N nodes VS = {vS

1, vS
2 , . . . , vS

N} and MS = |LS| edges.
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Nodes vS
i represent agents i that interact with their own (stylized) renewable resource stocks si at the

corresponding nodes vR
i .

2.1. Node dynamics and diffusion
We first describe the node dynamics in the resource layer GR. Here, each node vR

i represents a
time-dependent renewable stock si(t) whose dynamics are modeled by a logistic growth function with linear
extraction, [57]:

dsi(t)

dt
= aisi(t)(1 − si(t)/κi) − si(t)Ei. (1)

Here, ai is the growth rate, κi the capacity and Ei the extraction or harvesting strategy. Equation (1) is
commonly used to describe various real-world resource systems [49] and has been applied previously in the
context of investigating an adaptive social network co-evolving with dynamic node states [29], a multi-layer
network setup describing a resource-user system with a governance layer [31] and the effects of
heterogeneous resource distributions [30]. Specifically, we assume the harvest of each node, given in the last
term of equation (1) by hi(t) = si(t)Ei, to be linearly dependent on the available stock, a common
assumption in the context of resource economics [49] or socio-ecological systems modeling [58, 59]. In
contrast to the assumption of a constant harvest, this functional form accounts for the requirement that if
si(t) = 0 the corresponding harvest vanishes as well, hi(t) = Eisi(t) = 0. It has additionally been shown that
such linear extraction is the optimal harvesting strategy for resources with logistic growth [60] and
explicitly incorporates that success in harvesting is typically positively correlated with the amount of
available resource [61]. We set the growth rate ai = a = 1 and the capacity κi = κ = 1 for all stocks
i = 1, . . . , N so that time and stocks are measured in dimensionless quantities. An individual effort
Ei ∈ {E+, E−} is assigned to each node and, for the chosen parameters a and κ, leads to two possible
equilibrium states. For a high effort E+ > 1, all stocks converge to an empty state s+0 = 0, implying
depletion of the resource, whereas for a low effort 0 < E− < 1 all stocks converge to s−0 = 1 − E−,
preserving the resource while initially providing less harvest. We choose to set the high effort to E+ = 1.5
and the low effort to E− = 0.5 so that E− maximizes the sustainable equilibrium harvest
h−

0 = E− · (1 − E−) and both efforts are distributed symmetrically around E = 1.
As most entities in real-world ecological systems do not evolve in isolation, the individual renewable

stocks si(t) are coupled through Laplacian diffusion along the links LR of the network. Hence, by using the
Laplacian operator L̂ [62] and diffusion rates α, the dynamics given by equation (1) change to:

dsi(t)

dt
= si(t)(1 − si(t)) − Eisi(t) − α

N∑

j=1

Lijsj. (2)

Here, α can be understood as the rate at which the stock si is transferred into the neighboring stocks sj. Lij

are the elements of the Laplacian L̂, given by L̂ = D̂ − Â, where D̂ is the degree matrix and Â is the
adjacency matrix of stock network.

The introduction of diffusive coupling along the network alters the previously mentioned equilibrium
stable states of si (see above), an effect that we investigate in detail below in section 3.1.

2.2. Social learning of exploitation strategies
We now describe the dynamics within the social network layer GS(VS, LS) where each node vS

i represents an
agent i exploiting its individual resource stock on the corresponding node vR

i in the resource layer
GR(VR, LR) (see above). The edges LS represent social ties between the nodes/agents, such as friendships or
business partnerships.

In real-world social systems and economies, exploitation strategies rarely remain constant, but may be
subject to either rational economic optimization [57] or, for instance, social learning depending on one’s
own and other’s success [29, 30, 63]. Here, we follow upon previous studies in modeling socio-ecological
networks [29–31] and describe the temporal evolution of individual exploitation efforts Ei through
individual activation and social learning.

At first, each agent i becomes active after an individual waiting time τ i, drawn independently, with its
probability density corresponding to an exponential distribution given by

p(τi) = ΔT−1 exp(−τi/ΔT). (3)

This typical choice of waiting times in social systems [64] leads the average waiting time between two social
updates of the same agent to be 〈τi〉i = ΔT.

From there, the dynamics in the social system are calculated as follows:
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Figure 1. Schematic visualization of the bi-layer network model that is studied in this work. The upper layer (gray shaded area)
represents the social network GS(VS, LS), whose nodes vS are interpreted as agents, such as individuals or communities, and links
lS indicate social relationships such as friendships or business partnerships between them. Different node colors indicate the two
possible effort choices, i.e. high E+ and low E− effort. Within this social layer, imitation of exploitation behavior takes place
through social learning. The bottom layer is the stock network GR(VR, LR), where individual nodes vR represent a resource stock.
The links lR represent diffusion pathways between the stocks. Both layers are connected since agents in the social network exploit
their respective stocks with efforts Ei that are chosen according to their individual success in obtaining harvest hi.

(a) The system is integrated forward in time according to equation (2) until the minimum of all waiting
times τ i is reached.

(b) The corresponding agent i with the effort Ei randomly selects an agent j with the effort Ej from its
neighborhood and compares the respective efforts.

(c) If Ei �= Ej the harvest difference Δhij = hj − hi is computed, corresponding to a comparison between
the immediate success of the two employed exploitation efforts Ei and Ej. Agent i then adopts the
exploitation effort of agent j with a probability given by the logistic function
p(Ei → Ej) = 0.5 tanh(Δhij + 1), a functional form that has been derived from experimental results
[63] and has been successfully employed in previous modeling implementations [29, 30] that are
similar to the one studied here.

(d) A new waiting time τ i is drawn for agent i and the model returns to step (a) above.

Once all agents employ the same exploitation effort, the model reaches a steady state at a time tf , at
which no further changes to individual efforts are possible, thereby ending the iterations.

Note that, in contrast to aforementioned preceding works [29, 31], the social network studied here is
static and does not include any form of adaptive rewiring. As identified previously, the social update time
ΔT is an important parameter for the outcome of the system because it sets the relative time scale between
the dynamics of the stocks si(t) and the social dynamics [29]. In implementations without diffusive
coupling the model converges to a state where all agents chose the high effort E+, at shorter social updates
times, leading to a depletion of all stocks. In contrast, for longer social update times the model converges to
a state where all agents chose the low effort E−, with the stocks converging to s−0 = 1 − E− = 0.5. In fact,
highly exploited stocks are depleted by the corresponding agents before their next social update. Thus the
agents are not able to anticipate the consequences of their effort choices. A schematic representation and
summary of the model dynamics and related variables is shown in figure 1. One network layer corresponds
to the social network GS and the other to the stock network GR. Both networks have an identical set of
nodes as each agent in the social network harvests a single stock in the resource network while the edges
differ.

Over the course of this work, both networks are generated as Watts–Strogatz random networks [65]
with N = 400 nodes which is consistent with previous works [29–31]. It has been checked that different
network sizes do not qualitatively change the results of the model as long as N is of appropriate size, i.e.
N � 100 (not shown). This observation also aligns with previous results from an analytical mean-field
approximation of a similar model setup which showed that the model dynamics are expected to be
independent of N [29]. For the stock network layer, we test the influence of both, average degree K and the
rewiring probability p, on the expected outcome of the model. The social network layer is consistently set
up with an average degree of K = 20 and a rewiring probability of p = 1. All stocks start out at full capacity,
so that si(t = 0) = 1.
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3. Results and discussion

We now investigate numerical simulations of the network dynamics described in the previous section. We
therefore first study the case of an infinite social update time, meaning that no interactions take place
between nodes in the social network regardless of their state and harvest. This allows us to gain an
understanding of how the diffusive coupling of stocks in the resource layer affects its overall stability and
fixed points. From there, we lower the social updates time to finite numbers in a range that has been studied
in previous works [29–31]. We ultimately show that the choice of a coupling strength that is optimal for the
resource network without social updates leads to a critical transition in the whole coupled socio-ecological
system once social interactions between agents in the social layer are explicitly accounted for.

3.1. Optimization of resource resilience with infinite social update time
Our first goal is to understand the effects of diffusive coupling on the stock network’s equilibrium states for
a fixed number n− of stocks which are exploited with a low effort. We therefore set ΔT = ∞, so that no
social updates occur. Numerical simulations are performed for different combinations of the coupling
strength α and the fraction of nodes n− exploited with low effort. The n− nodes that hold the effort E− are
randomly selected at each initialization of the simulation. Figure 2(a) shows the mean equilibrium stock
〈s0〉i,n averaged over an ensemble of n = 200 simulations per set of parameters α and n− as well as all
N = 400 nodes. An increase in the coupling strength until α = 0.2 leads to a lower mean equilibrium stock,
(figure 2(a)). From there, a further increase in the α seems to have only minor effects, (figure 2(a)). What
we observe is the transition between two separate regimes: in the first regime, for α 	 0.2, the evolution of
resource stocks is mostly dominated by its intrinsic growth and harvest dynamics. With increasing coupling
interactions between resources become stronger until for α 
 0.2 the resources are sufficiently mixed. They
then exhibit dynamics similar to what one would expect from a single global stock simultaneously available
to all nodes. As such, the second limiting regime can be interpreted as a common pool resource which is a
popular model of shared resources in socio-ecological systems [66, 67]. The exact value of α (here α ≈ 0.2)
at which this transition occurs (see figure 2(a)) most likely depends on the various parameters of our
model, such as the average degree K, the levels of exploitation efforts Ei as well as the underlying network
topology. Since for the purpose of this work we mainly focus on the qualitative differences between the two
observed regimes, a further in-depth quantitative analysis of the transition point remains as a subject of
future research.

We also observe that the introduction of diffusive coupling substantially reduces the standard deviation
of the equilibrium stock for increasing α (figure 2(b)). Hence, we conclude that diffusively coupling the
resource network generally leads to a lower mean stock combined with a more homogeneous equilibrium
stock distribution, facilitated by the flow of stock from nodes being exploited with low effort E− to nodes
being exploited with high effort E+.

In other words, diffusively coupling the renewable stocks thus seems to be detrimental for the network
as a whole. However, as described in Section 2.1, the stocks exploited with a high effort E+ approach an
empty state s+0 = 0 in an uncoupled network. They take a very long time to recover from that state even if
the exploiting agent changes their exploitation strategy back to the low level E−. Through diffusive
coupling, stocks from neighboring nodes exploited with low effort levels E− flow to highly exploited nodes
(with effort level E+) potentially saving them from depletion. In order to investigate such an effect, we
define two categories of stocks according to their equilibrium value compared to the sustainable
equilibrium stock value of s−0 = 0.5. A stock is defined as irreversibly depleted if its equilibrium value s0,i is
lower than 20% of the sustainable equilibrium stock, meaning s0,i � 0.2 · 0.5 = 0.1. Analogously, an
equilibrium stock is defined as being in a healthy state if s0,i is higher than 80% of the sustainable
equilibrium stock, meaning s0,i � 0.8 · 0.5 = 0.4. Additionally studying different percentages from
10%–30% (70%–90%) for defining depleted (healthy) equilibrium stocks yielded no significant changes in
the results (not shown).

Following the above definition, the fraction of depleted (nd) and healthy stocks (nh) is computed for
varying choices of α and n−. We find that nh continuously decreases with increasing α, since any form of
coupling leads to the outflow of stock towards nodes with lower stock levels (figure 2(d)). Generally, we
uncover that coupling slightly increases nd with increasing α (figure 2(c)). However for parameter choices
in the region 0.4 < n− < 0.6 and 0.01 < α < 0.2 (black box in figure 2(c)), we find a decrease in the
number of depleted stocks which indicates that there seems to exist an optimal coupling coefficient αopt that
minimizes the fraction of depleted stocks nd, while only slightly decreasing the fraction of healthy stocks nh.

In order to estimate αopt, we now compute the average fraction of depleted stocks 〈nd(α)〉n− over all
fractions n− of nodes exploited with low effort. We find that 〈nd(α)〉n− shows a distinct minimum
(figure 3(a)) and we define the optimal coupling coefficient αopt to be the value of α where 〈nd(α)〉n− is
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Figure 2. (a) Mean 〈s0〉i,n and (b) standard deviation σ(s0)i,n of the equilibrium resource stocks computed over an ensemble of
n = 200 simulations for different choices of α and n−. (c) Fraction of depleted resource stocks nd, i.e. the fraction of all stocks si

whose equilibrium value si,0 is lower than 0.1. The black box indicates the area where diffusive coupling appears to reduce the
number of depleted stocks compared to the case where no diffusion (α = 0) takes place. (d) The corresponding fraction of
healthy resource stocks nh, i.e. the fraction of all stocks si whose equilibrium values si,0 exceed 0.4.

minimal. Computing αopt for different choices of rewiring probability p and average degree KR reveals that
only KR substantially affects the numerical value of αopt (results for p are therefore not shown). The specific
numerically obtained dependence between KR and αopt shows that αopt monotonically decreases with
increasing KR, figure 3(b).

Thus, for the coupled stock network, there seems to be an optimal flow αopt preserving the maximum
possible number of stocks from depletion and αopt appears to be inversely proportional to the average
network degree KR. As the diffusive flow between the stocks determined by KR (giving the number of
available diffusion pathways) and α (giving the width of these pathways), there seems to be a universal
optimal diffusive flow characteristic for the system given by a properly rescaled product of KR and αopt. This
relationship should be further investigated in future work, possibly including varying network topologies.
As will be discussed in the next section, the here obtained αopt is a critical parameter in understanding the
behavior of the coupled socio-ecological system.

3.2. Effect of the diffusive flow with social learning
We now describe the behavior of the coupled socio-ecological network for varying social update times ΔT
and coupling strengths α. The fraction n− of nodes with low effort is initially set as n−(t = 0) = 0.5 and
changes over time since agents adapt their effort level through social learning. The n−(t = 0) = 0.5 nodes in
the social network that hold the low (and consequently also the high) effort are randomly selected at the
beginning of each simulation. The system is integrated forward until consensus is reached at a time tf , i.e.
all agents employ one of the two efforts and therefore no further social updates take place. For each set of
parameters we evaluate ensembles of n = 50 numerical simulations, while we keep the network parameters
p = 1 and KS = KR = 20 fixed for both the social and ecological network.

Without diffusive coupling (α = 0), a transition from all agents choosing a high effort 〈n−(tf )〉 = 0 to
all agents choosing a low effort 〈n−(tf )〉 = 1 appears around a critical update time ΔTcrit ≈ 1 (figure 4(a)),
consistent with results from previous works [29]. With increasing α the critical update time ΔTcrit increases
until at a numerically estimated critical value of αcrit ≈ 0.02 all agents choose a high effort independently of
the social update time (figure 4(a)). Note that αcrit is close to the previously described optimal coupling
strength αopt, (cf. figures 3(a) and 4(a)). An intuitive explanation for the existence of this critical coupling
strength αcrit is the following: stronger diffusive coupling leads to a more homogeneous stock distribution
(see again figures 2(a) and (b)), effectively protecting highly exploited stocks from complete depletion. As a
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Figure 3. (a) Average fraction of depleted stocks 〈nd〉n− as a function of the coupling coefficient α for a resource degree of
KR = 50 (dots) and KR = 20 (crosses). The distinct minimum for 〈nd〉n− indicates the optimal coupling coefficient αopt. (b) αopt

as a function of KR. The error indicates one half of the full-width-half-minimum of the corresponding curve.

consequence, all nodes carry similar amounts of stock whether exploited with low or high effort. Because
the harvest hi(t) = Eisi(t) depends on both, current effort level and stock, this leads to a higher harvest for
agents employing the high effort E+ when compared to the harvest of agents using the low effort E−. This
counteracts the effect of larger social update times which usually gives advantage to agents with low effort as
their stocks would in the long run approach larger values than those exploited with high effort if no
coupling were to exist. This effect can already be observed at lower α < αcrit through the increase of the
critical social update time ΔTcrit above which the system approaches a long-term sustainable state, in which
all nodes employ the low effort (lower right corner in figure 4(a)). However, for α > αcrit the corresponding
ΔTcrit vanishes (or moves to values outside the considered parameter regime, i.e. ΔTcrit > 2.5) and, hence,
causing the high effort to be established along the entire network for all choices of ΔT (figure 4(a)). This
nonlinear behavior related to the optimal coupling strength αopt will be further investigated below in
section 3.3. For α < αcrit, an increase in the corresponding standard deviation σ(n−(tf )) is observed around
ΔTcrit (figure 4(b)), as is to be expected for systems close to a phase transition [68]. Interestingly, for higher
values of α > 0.06 the standard deviation increases again, whereas the agents continue to preferentially
choose a high effort (figure 4(b)). This effect can be explained from the fact that the probability for an agent
to choose either effort depends on the difference Δhij between its own and neighboring agents harvest,
p(Ei → Ej) = 0.5 tanh(Δhij + 1) (see section 2.2). For larger α, the values of highly exploited stocks tend to
increase while those of stocks exploited with low effort tend to decrease when compared to α = 0. This
effect reduces the expected differences in harvest between agents employing high and low efforts with the
high exploitation effort providing a slightly higher harvest. The probability for an agent with low effort to
choose the high effort when comparing both harvests will thus almost, but not completely, be random
P(E− → E+) � 0.5 and the system therefore shows a tendency to approach a state with all nodes employing
the high effort (n−(tf ) → 0), but with increasing variance, i.e. increasing σ(n−(tf ))

It has been checked that a variation of the rewiring probability p in the stock network does not have a
substantial influence on the system’s behavior (not shown). In contrast, the average degree in the resource
network KR alters the numerically estimated value of the critical coupling strength αcrit, an effect that we
study in detail in the next section.

3.3. Optimized diffusive flow for the ecological subsystem leads to globally undesirable state
We ultimately study how the critical coupling strength αcrit above which all agents choose a high effort for
all considered social update times is related to the optimal coupling strength αopt that we identified in
Section 3.1. Particularly, we previously found that for KR = 20 the critical coupling strength reads
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Figure 4. (a) Fraction of agents with low effort at consensus n−(tf ). Darker shades correspond to more agents choosing a low
effort. (b) The corresponding standard deviation σ(n−(tf )) at consensus. Again, darker shades correspond to a higher standard
deviation. The results are computed from an ensemble of n = 50 simulations for different choices of ΔT and α. The dashed line
marks numerically estimated values of α = αcrit, above which the agents likely choose a high exploitation effort E+.

Figure 5. Fraction of agents with low effort at consensus n−(tf ) computed from an ensemble of n = 50 network simulations for
different choices of ΔT and α. The average degree KR used for each computation is specified in each panel. Darker shades
correspond to more agents choosing a low effort. The dashed line marks numerically estimated values of α = αcrit, above which
the agents likely choose an unsustainable exploitation effort E+.

αcrit(KR = 20) ≈ 0.0225 (figure 4(a)), while the optimal coupling strength has been estimated at
αopt(KR = 20) ≈ 0.025 (figure 3), thus appearing to be comparatively close to αcrit(KR = 20).

To further investigate the relationship between αopt and αcrit we vary α, social update time ΔT and stock
network average degree KR and compute again the fraction of agents employing a low effort at consensus
〈n−(tf )〉 over ensembles of n = 50 simulations per set of parameters (figure 5). For each choice of the
average degree KR, a different αcrit is numerically identified (horizontal lines figure 5) and it appears that
αcrit decreases with increasing stock network degree KR (figure 5). We have additioanlly performed similar
calculations for varying rewiring probabilities pR (not shown) and found that only the average degree has a
significant influence on the critical coupling strength αcrit. We have made similar observations with respect
to the sensitivity of the results on KR and p when estimating αopt (see above).

In particular, we find that αcrit and αopt display a linear dependency with αcrit ≈ αopt for varying values
of KR (figure 6). As shown in section 3.1 above, αopt corresponds to a value at which the stocks exploited
with high effort are best protected against depletion, thus optimizing the stocks’ resilience against
over-exploitation. However, this αopt coincides with αcrit at or above which all agents in the social network
layer choose a high effort. This leads to a critical state for the coupled socio-ecological system as a whole by
causing all stocks to ultimately collapse and approach their undesired fixed point s0 = 0, an effect that we
denote here as the tragedy of the optimizer.

This observed paradox or tragedy, i.e. a coupling strength that is optimal for the resource network leads
to a likely collapse of the entire coupled socio-ecological system, has an intuitive explanation. Recall again
that the optimal coupling coefficient αopt was chosen to provide the largest possible protection against
depletion of stocks which are exploited with high effort E+ through a diffusive inflow of stocks which are
exploited with low effort E−. This implies an advantage for agents employing E+, since their
over-exploitation of stocks is compensated by the inflow of stocks from nodes harvested with E−. Further
increasing α > αopt amplifies this advantage and causes stocks that are exploited with E− and E+ to become
more similar. At the same time the harvests of nodes with E+ are therefore expected to exceed those of
nodes with E−. Hence, for all values of α � αopt the system is expected to converge to a state where all
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Figure 6. Optimal coupling coefficient αopt as a function of the critical coupling coefficient αcrit. The diagonal line indicates an
approximate linear relationship.

agents hold E+ once consensus is reached regardless the choice of the social update time ΔT (figures 4(a)
and 5). This then also implies that this previously detected αopt corresponds to the αcrit identified in the
previous section.

4. Conclusion and outlook

Following up on previous studies of co-evolving socio-ecological networks with dynamic node states
[29–31] we have introduced here a bi-layer network model that describes the interplay between a network
of diffusively coupled resource stocks and a social network of agents updating their exploitation behaviors
according to differences in harvest or payoff.

We have first studied an implementation of the model with infinite social update time and from there it
has been possible to define and explain the existence of an optimal coupling coefficient αopt. At this
coupling coefficient the diffusive flow between the individual stocks in the network is optimized so that
highly exploited stocks are best protected against complete depletion through the inflow from moderately
exploited stocks.

From there, we have studied the cases of finite social update times, meaning that interactions do not
only take place along diffusive pathways in the resource network, but also along social ties in the
corresponding network of interacting agents. We have observed that for lower coupling coefficients α the
system undergoes a transition from a state where most agents choose a high exploitation effort to one where
most agents prefer a low exploitation effort. The precise location of that transition varies with increasing
social update times, a finding that is also in accordance with previous modeling results [29]. We have
additionally estimated a critical coupling coefficient αcrit above which all agents prefer a high exploitation
effort independently of the social update time. Ultimately we have found a second phase transition for
comparatively large coupling coefficients at which the second moment of the system’s equilibrium state
shows a sudden increase. This transition is explained from the fact that agents choose either a high or a low
effort at similar probabilities with only a slight preference for the high exploitation effort.

The comparison between αopt and αcrit has revealed that they are very similar across various choices of
the average degree in the resource network, thus leading to what we denote a tragedy of the optimizer. This
tragedy implies that a coupling coefficient which appears to be optimal for the stock network on its own
leads to a critical, hence undesired, transition in the coupled socio-ecological system as a whole. This effect
shows that a measure which can stabilize the dynamics within a certain part of a larger co-evolutionary
system may unexpectedly cause the emergence of new undesired globally stable states. This observation
conceptually underlines the importance of a comprehensive approach for managing socio-ecological
systems, since stabilizing effects that focus on a single sub-system may be detrimental for the system as a
whole.

The proposed model can be cautiously applied to a broader real-world context. In that sense, the here
studied stock network could be considered to represent diffusively linked renewable natural resources, such
as fish in a network of lakes and rivers. Agents with a high exploitation effort represent unsustainably acting
individuals or communities, while agents with a low exploitation effort represent sustainable actors that
preserve their natural resources in the long run. Natural resources can be more resilient against
over-exploitation when they are connected to [69, 70] and thus protected by healthy ecosystems around
them, as is shown by the existence of an optimal coupling strength. The unsustainable harvesting of a
natural resource at one location may then not be immediately experienced by other individuals that are
managing this resource because surrounding ecological systems can to some degree compensate effects of
over-exploitation through additional inflow. Unsustainable harvesting thus appears more attractive to
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shortsighted agents exploiting highly connected systems of ecological resources, which in its most extreme
form of a common pool resource can lead to a tragedy of the commons [71, 72]. As a consequence, agents
will tend to adopt harvesting strategies that (in the long run) cannot be compensated by the increased
resilience of the natural resource which ultimately increases the likelihood to overstretch planetary
boundaries [73] through over-exploitation.

The described tragedy of the optimizer raises challenging questions for future research. It should be
investigated whether such a tragedy can also be observed in other types of coupled socio-ecological systems,
such as those with more than two network layers, including, e.g. a governance layer [31] that incorporates
some form of external management. In addition the analysis should be broadened to also include other
network topologies, such as scale-free or small-world networks or even real-world ecological networks, like
river or lake ecosystems. Such an analysis could elucidate different types of potential management strategies
in such socio-ecological system, e.g. the creation of new connections between nodes in the resource
networks, as is already done in other areas of study, such as power grid networks [74]. Another approach
for expanding the model would be to allow the harvesting agents to move from one resource to another,
which has been shown to be a promising candidate to improve cooperation and, hence, potentially the
convergence into a sustainable state [75].

Future work should also aim to cautiously compare the obtained model results to data from real-world
phenomena where human intervention aiming to optimize the resilience of a natural resource failed and
possibly led to adverse effects that could be linked to short-sighted optimization [76].
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