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Abstract

Abstract

In recent years the influence of group behaviour, the so-called peer effect, on individuals has been

of interest. Therefore, a new form of peer effect which is of compositional character is considered.

Using a composition as peer effects would offer a possibility to consider how the distribution of the

peers educational achievements based on their test scores influences an individual of the cohort

while they attend school. To analyse the effect of compositional peer effects, the methods of com-

positional data analysis are used. These methods are applied on the data set of Project STAR

containing information about students throughout their whole school career. The compositional term

is based on the distribution of test scores at the beginning of the project, when the students were

in kindergarten, within each student’s class. To analyse the influence of such terms, zero imputa-

tion methods and ilr-transformation are used to apply classical statistical models. In the first step,

the impact of the used zero imputation methods and interval selection of the continuous variable

are studied. Then the influence of the compositional peer effect, containing the information of the

distribution of the students inside the same class, is analysed. These analyses show that there are

indeed significant impacts on an individual’s subsequent test scores based on the distribution of test

scores in their class. The higher the ratio of students with higher scores was in kindergarten, the

more the individual test score in the following years decreased and vice versa. However, using the

distribution of the students in the first, second or third grade as covariate changes this effect. In this

case, the higher the ratio of students scoring high is, the more the individual score increased in the

subsequent years.
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Motivation

1 Motivation

In recent years, social scientists have raised the question how the composition of groups can affect

the individual and overall performance. To understand the determinants of a groups performance is

important in a lot of modern work contexts. This can include interactions while working on complex

tasks as a group or the interaction of students studying within the same class. How social interac-

tions influence the performance of individuals is the subject of various theories which are not just

considering group performance to be the average individual performance, but rather are considering

the median or geometric mean instead for the average performance of an individual. The essential

problem is that the group performance is a endogenous effect and the data contains a non-observed

selection bias which is challenging in studies containing group behaviour.

The analysis of the impact of group compositions was mainly focused on the educational sector, due

to the general setting that students are put into classes (cohorts) and stayed within these as long as

they attend the same school. The understanding if and how students learn from each other within

the group is needed to understand how the individual and overall performance can be changed

though class reorganization. The social interactions between students throughout their education

are the so-called ”peer effects” and the students which are part of the same group at some point in

time are called ”peers”.

The analysis of peer effects is complicated, because of endogenous group formations and selection

bias. However, experiments where students and teachers were randomly assigned into different

classes and are followed through their educational careers exist and avoid the problem of endoge-

nous variables. The general model used for an estimation of the impact of peer effects on an

individuals performance, assuming random assignment into groups, is expressed by

Yict = α+ β1Y
−t
−i +X ′icδ + εict, (1.1)

where Yict is the outcome of individual i at time t belonging to the group c. Y −t−i is the peer variable

which is the average test score of all other individuals (except i) of the group and based on a test

score of time −t, time −t being a point in time before the formation of group c. Xic denotes the

matrix of individual or group-level variables affecting the outcome. Lastly εict is the error term which

is assumed to be random. For a group structure, i.e. the separation of individuals into cohorts,

a within-group correlation can be assumed, so that only the across-group variation is used for the

estimation of standard errors in the estimators α, β1 and δ.

Using the previous setting expressed in equation 1.1, it is possible to utilize outcome variables of

the individual which are in the future, while the affiliation to a groups is based on a past group of the

individual. For example, considering middle or high school scores of a nationally comparable exam

while the group structure is based on classes in elementary school. If the data on both points in

time are known for a set of students, the data sets can be related and analysed based on the group

structure.

In the case of equation 1.1 the estimation is giving the influence of average peer performance on

the individual outcomes. This kind of analysis can be extended to estimate these effects based on

ability grouping to get an understanding whether high an low performing peers are affected in the
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Motivation

same way by the average peer abilities.

The literature covered a big range of treatment variables, e.g. the share of nationally very good and

bad peers (Lavy et al., 2012) or the rank of a student in the ability distribution (Murphy and Weinhardt,

2020). The share of females, racial composition (Whitmore, 2005) and peer personalities (Golsteyn

et al., 2017) have also been considered as non-cognitive measures.

In this thesis the grouped structure of a data set is used to analyse the impact of a compositional

peer effect. Therefore, the peer effect is considered to be compositional, e.g. percentages or pro-

portions, and the influence of each composition on the individual outcome is analysed. The analysis

requires the techniques of the compositional data analysis which will be introduced in section 2 and

the limitation and problems in the application are discussed. Then the analysis is performed on a

data set from the project called student-teacher-achievement-ratio (STAR) which is well-known and

was studied a lot due to its random assignment of students and teachers to classrooms of small and

regular size. Project STAR has been used in several studies on peer effects controlling for the class

size (Whitmore and Krueger, 2001) and non-cognitive skills (Bietenbeck, 2019). Other studies con-

sidered peer effects on girls achievements (Whitmore, 2005) and long-term effects on the earnings

(Chetty et al., 2011). The data set and execution of the project STAR is going to be elaborated in

section 3.

A more flexible regression technique such as compositional data analysis to this data set from

Project STAR can be applied for several reasons. As peers do only occur in groups, it is of ad-

vantage to consider a distribution of peer abilities instead of measures as the mean or standard

deviation. Further, the peer effects can be different depending on the cognitive and non-cognitive

skills, gender and race of the individuals belonging to a group. All these variables were covered

during the long time span of the project and are available for estimation. Therefore, a large number

of variables are available as dependent and independent variables leaving room for multiple possible

approaches based on compositional data analysis. The applied model utilizing compositional peer

effects is introduced in section 4 and the results are presented in section 5.

To measure the sensitivity of the model a simulation is performed in section 6 and section 7 is

summarising the results collected in the previous sections and gives the concluding remarks.
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Compositional Data Analysis

2 Compositional Data Analysis

This section is discussing the definition of composition data and the related geometrical properties

and principles of compositional data which have to be abided by are introduced. Afterwards, the

fitting vector space satisfying the principles of compositional data as well as basic operations for this

vector space are defined. On the basis of the vector space, the so-called Aitchison geometry, a set

of representations of coordinates based on log-ratios and the transformations of compositional data

into the Euclidean space are introduced. Furthermore, the density functions used in the context of

compositional data as well as their application to linear models using compositional covariates are

discussed.

2.1 Introduction to Compositional Data

Compositional data are multivariate observations which contain relative instead of absolute infor-

mation. They are strictly positive and, in general, sum up to a constant. Typical examples are

percentages and proportions. The difference between using absolute and relative information of

the data, is that any rescaling of the data from the given units can affect the information carried for

absolute data. However, relative data is not affected by any rescaling, since the ratios between the

different components stay the same. It should be considered beforehand what the goal of the anal-

ysis is. If the interest is lying in absolute information, a non-compositional regression is favourable

to a compositional regression (Filzmoser et al., 2018, pp. 1–2). The components of the composi-

tional vector x = [x1, x2, · · · , xD] are called parts, due to their compositional characteristics and x

is called D-part composition.

Definition: A vector, x = [x1, x2, · · · , xD], is a D-part composition when all its components are

strictly positive real numbers and carry only relative information.

As explained above, the relative information lies in the ratio between the different components of the

composition. In general, the information belongs to a whole, so that all parts are summing up to a

constant κ. In this case the data is called closed. A typical example of closed data are percentages

which sum up to κ = 100 (Pawlowsky-Glahn et al., 2015, pp. 8–9).

Nevertheless, it is also possible that a data set contains compositions for which only a part of the

whole composition is known. This applies for example when parts per million or units like molarities,

were no constant sum is feasible, are used. Even in this case it is possible to get proportions by

considering only a subcomposition (Pawlowsky-Glahn et al., 2015, p. 11) and using transformation,

introduced in section 2.3.2, thus the operations of compositional data can be applied. Due to this

characteristic of compositions, Pawlowsky-Glahn et al. (2015) defined them as equivalence classes

of proportional vectors. This leads to the possibility to select the constant sum vector as a repre-

sentative of a composition using a fitting scaling factor on the proportions. The operation to assign

a constant sum representative is called closure and results in a rescaled vector of the initial vector

so that the sum over all components is κ (Pawlowsky-Glahn et al., 2015, pp. 8–9).
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Definition: For any vector x of D strictly positive real components

x = [x1, x2, · · · , xD] ∈ RD+ , xi > 0, ∀i = 1, 2, ..., D,

the closure of x to κ > 0 is defined as

C(x) =

(
κx1∑D
i=1 xi

,
κx2∑D
i=1 xi

, · · · , κxD∑D
i=1 xi

)
.

Using the definition of closure, the two vectors x and y can be called compositionally equivalent

for any constant κ, if C(x) = C(y). This can be pictured by a ray through the origin on which

all compositionally equivalent vectors are located (Filzmoser et al., 2018, p. 39). If only some

parts of the composition are of interest, a composition does not have to be closed. In this case,

there is the possibility to consider subcompositions, vectors containing only some parts of the whole

composition, as defined in Pawlowsky-Glahn et al. (2015, p. 10).

Definition: Given a composition x and a selection of indices S = i1, ..., is, a subcomposition xs
with s parts, is obtained by applying the closure operation to the subvector [xi1 , xi2 , ..., xis ] of x. The

set of subscripts S indicate which parts are selected in the subcomposition, not necessarily the first

s ones.

2.2 Principles of Compositional Data

Since compositional data contain relative information and the standard statistical methods were im-

plemented for absolute information in the Euclidean geometry, it can lead to problems or misleading

results, if they are applied without considering the difference of the data format. To keep the proper-

ties of the data when applying methods, three main principles were formally introduced by Aitchison

(1994). Any operation for compositions has to adhere these principles to not destroy the properties

and information carried by the data.

Definition (Scale Invariance): The information carried by compositions is independent of their

units. Even if there is no information about the total, the analysis should yield the same results

for compositionally equivalent vectors or precisely, the composition should be invariant under any

change of scale.

Definition (Permutation Invariance): Any change of order within the composition does not alter

the information conveyed by the vector of the composition.

Definition (Subcompositional Coherence): Subcompositional coherence can be summarized as

subcompositional dominance and ratio preserving. This means the results yielded by a composition

should not be contradicted by the results of a subcomposition. The subcompositional dominance

is restricting the distances between parts of a subcomposition to always be smaller or equal to the

distances between the parts of the composition. Ratio preserving means that the ratio between

any parts of the subcomposition should be the same as the analogue ratio in the composition.
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While principles like permutation invariance and subcompositional dominance should apply to any

statistical method, scale invariance is directly derived from the definition of compositional data, as

the information conveyed by relative data stays the same, even if it is rescaled (Pawlowsky-Glahn

et al., 2015, pp. 13–16 and Filzmoser et al., 2018, pp. 11–12). For example the vectors x1 = [1, 5, 2]

and x2 = [1000, 5000, 2000] are the same composition, just using different scales and any statistical

method applied to both separately has to lead to the same result, since the ratio between the parts

is the same.

2.3 Geometrical Properties

Taking the standard methodologies of the Euclidean geometry to analyse a set of compositional

data can yield misleading results. Due to this fact, a set of functions and techniques analogous to

the ones in the Euclidean space are needed, including scalar product, Euclidean norm, Euclidean

distance and an application of the basic mathematical operations in the Euclidean space. For this

reason, Aitchison (1986) proposed the logarithm of a ratio (log-ratio) methodology, those idea is that

compositional data are defined in another geometry in their sample space. This geometry was later

on named after him and called Aitchison geometry.

2.3.1 Aitchison Geometry

For compositional data the sample space, called simplex, is characterised by a set of closed com-

positions, for which the defined sum constraint is not relevant in further considerations, due to the

scale invariance (Filzmoser et al., 2018, pp. 37–38).

Definition: The sample space of compositional data is the simplex,

SD =

{
x = [x1, x2, · · · , xD] ∈ RD

∣∣∣∣∣xi > 0, i = 1, 2, ..., D;

D∑
i=1

xi = κ

}
, (2.1)

where κ is any arbitrary positive real number.

As already mentioned the methods applied to compositions and thus also the simplex, have to follow

the three principles of compositional data. The Euclidean space does not fulfil these constraints in

general. So that an appropriate set of methods and techniques using the log-ratio approach have

been proposed by Aitchison (1982), helping to define a vector space for the simplex, known as

Aitchison geometry, shown independently by Pawlowsky-Glahn and Egozcue (2001) and Billheimer

et al. (1997, 2001).

Analogously to the operations of addition of two vectors and multiplying a vector by a constant in

the Euclidean space, the operation perturbation and powering are defined on the simplex. Both

operations fulfil the described requirements of section 2.2, the principles of compositional data and

the requirements for operations of a vector space (Egozcue and Pawlowsky-Glahn, 2011, p. 17).
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Definition: Perturbation of the compositions x, y ∈ SD is defined as composition

x⊕ y = C(x1y1, x2y2, ..., xDyD). (2.2)

Definition: Powering of a composition x ∈ SD by a real number α is defined as the composition

α� x = C(xα1 , xα2 , ..., xαD). (2.3)

Combining both operations one can also define a difference perturbation in the following way.

Definition: Difference Perturbation of two compositions x, y ∈ SD is defined as the composition

x	 y = x⊕ [(−1)� y] =

(
x1
y1
,
x2
y2
, ...,

xD
yD

)
. (2.4)

It can be easily shown that the neutral element n of perturbation is the composition containing all

equal parts, i.e. in a D-part composition the neutral element is n = ( 1
D , · · · ,

1
D ). Then if the

difference perturbation is applied to the element itself, it yields the neutral element. Up to this point

the basic operations needed to obtain a vector space structure on the simplex have been defined. It

is further possible to obtain an Euclidean vector space structure, if definitions for the inner product,

norm and distance are defined in an Aitchison sense (Pawlowsky-Glahn et al., 2015, p. 24).

Definition: Aitchison inner product of two compositions x = (x1, x2, ..., xD)′ ∈ SD and y =

(y1, y2, ..., yD)′ ∈ SD is defined as

〈x, y〉A =
1

2D

D∑
i=1

D∑
j=1

ln

(
xi
xj

)
ln

(
yi
yj

)
. (2.5)

Definition: Aitchison norm of a composition x = (x1, x2, ..., xD)′ ∈ SD is defined as

‖x‖A =
√
〈x, x〉A =

√√√√ 1

2D

D∑
i=1

D∑
j=1

ln

(
xi
xj

)2

. (2.6)

Definition: Aitchison distance between two compositions x = (x1, x2, ..., xD)′ ∈ SD and y =

(y1, y2, ..., yD)′ ∈ SD is defined as

dA(x, y) =

√√√√ 1

2D

D∑
i=1

D∑
j=1

[
ln

(
xi
xj

)
− ln

(
yi
yj

)]2
. (2.7)

The new Euclidean vector space structure on the simplex is called the Aitchison geometry. The

name was chosen in regards to John Aitchison who pioneered in the analysis of compositional

data. As mentioned above, all definitions are based on the log-ratio approach proposed by Aitchison

(1982). For the log-ratios a total of D(D− 1) non-zero combinations exist for a D-part composition.

However, as it was shown by Filzmoser et al. (2018) the total number is reduced to D(D − 1)/2,
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due to the symmetry of the log-ratios, since it holds that ln xi
xj

= − ln xi
xj

. It can further be shown,

that with D − 1 log-ratios it is possible to construct any other log-ratio with a linear combination of

these log-ratios. This leads to the conclusion that a D-part composition can be represented by a

(D − 1)-dimensional subspace and will not lose any of the information (Filzmoser et al., 2018, pp.

41–43). Based on this idea coordinate representations are defined which help to express the D-part

composition by (D − 1)-dimensional coordinates in a Euclidean real space.

2.3.2 Coordinate Representations

As mentioned in the previous section, log-ratios can be a very convenient transformation for compo-

sitional data, since they have beneficial properties and are easy to handle - for instance, the inverse

log-ratio produces the same results with the opposite sign and the results will lie in the positive real

space as it is needed for compositions. If a log-ratio is also scale invariant, it is called logcontrast

(Aitchison, 1986).

Definition: Consider a composition x = (x1, x2, ..., xD) ∈ SD and some coefficients αi ∈ R, ∀i =

1, 2, ..., D. A logcontrast is a function

f(x) =

D∑
i=1

αi lnxi,

D∑
i=1

αi = 0. (2.8)

Functions of logcontrasts build the basis to define different types of transformations. In a practical

sense to analyse compositional data, a transformation to the Euclidean vector space will be applied

to them and then standard statistical methods are employed over the transformed data. Transforma-

tions can be viewed as an expression of the original compositions onto the Euclidean geometry in

the real space, while keeping the principles of compositional data (Filzmoser et al., 2018, pp. 43–44).

This point of view can help to overcome the obstacle of interpreting the results of a compositional

analysis.

The first transformations based on the log-ratio approach introduced by Aitchison (1986) were the

additive log-ratio transformation (alr) and the centered log-ratio transformation (clr). Histor-

ically the alr transformation was the first transformation used for modelling a classical statistical

model with compositional data. The transformation is mapping the data from the D-dimensional

simplex SD to the D − 1-dimensional real space RD−1.

Definition: For x a composition in the D-part simplex, the alr transformation is calculated by

applying the natural logarithm componentwise

alr(x) = ln

(
x1
xD

,
x2
xD

, ...,
xD−1
xD

)
. (2.9)

The advantages of the alr transformation are that it is easy to invert the transformation and that

operation like perturbation and powering can be reduced to simple operations in the real space. The

downside of the alr transformation is that it is not invariant under permutation of components. Due to

this fact, applying standard statistical methods can lead to problems or could not even be applicable
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(Egozcue and Pawlowsky-Glahn, 2011, p. 20). Another disadvantage lies in the subjectivity of the

choice of ratio-variable xD and that the underlying coordinate system will be non-orthogonal. Addi-

tionally, operations like Aitchison inner product, norm and distance are in general not corresponding

to the operations in the Euclidean space, unlike the perturbation and powering operations (Filzmoser

et al., 2018, p. 45). Therefore, the alr transformation is only an isomorphism between SD and RD−1

and not an isometry. Due to the multiple disadvantages the alr transformation is generally not used

anymore.

In response to the problems of the alr transformation, Aitchison (1986) introduced the centred log-

ratio transformation (clr). Instead of using a specific component in the denominator, like the alr

transformation, it uses the geometric mean and avoids the subjectivity of the choice.

Definition: For x a composition in the D-part simplex, the clr transformation is calculated by

x∗ = clr(x) = ln

(
x1

gm(x)
,

x2
gm(x)

, ...,
xD−1
gm(x)

)
, gm(x) = D

√√√√ D∏
i=1

xi . (2.10)

Exactly like the alr transformation, the operation perturbation and powering correspond to the sum

and product in the real space of the Euclidean geometry and the inverse transformation can be

easily calculated by

x = clr−1(x∗) = C(exp(x∗)). (2.11)

In contrast to the alr transformation, the clr transformation maps the data from SD to theD-dimensional

real space RD and the components of the clr transformation always sum up to zero. However, this

means our composition has D parts, but only D− 1 parts were needed to build a orthonormal basis

in the Aitchison geometry as mentioned in the section 2.2. In this case our composition x∗ can be

seen as coefficients with respect to a generating system. A huge advantage of clr to alr is that it can

be used to define a metric structure in the simplex. This means we can show that the operations

of the Aitchison geometry hold (Filzmoser et al., 2018, p. 46 and Egozcue and Pawlowsky-Glahn,

2011, pp. 20–21).

Consider two compositions x ∈ SD and y ∈ SD, then it holds that

〈x, y〉A = 〈clr(x), clr(y)〉, ‖x‖A = ‖clr(x)‖, dA(x, y) = d(clr(x), clr(y)). (2.12)

Thereby, the clr coefficients are representing an isometry. This means all concepts of the simplex

are maintained after mapping it to the real space using clr transformation (Filzmoser et al., 2018, p.

48). This led to a new idea, with the goal to build an orthogonal basis and represent the composition

by this form.

To take the step from clr, were the composition x from SD was mapped to a (D−1)-dimensional hy-

perplane in RD, the orthonormal basis and corresponding coordinates should be build to transform

the composition onto the (D−1)-dimensional real space. This approach of constructing orthonormal

coordinates was introduced by Egozcue et al. (2003) and is called isometric log-ratio transforma-

tion (ilr), due to the fact that these coordinates are logcontrasts and are an isometry. More precisely,

8
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a transformation in the way of irl(~ei) = ei, ∀ i = 1, 2, ..., D − 1 has to be constructed, with ~ei being

the i-th vector of the canonical basis in the (D− 1)-dimensional real space (Egozcue et al., 2003, p.

294).

Definition: For any composition x ∈ SD, the ilr transformation associated to an Aitchison-

orthonormal basis in SD, ei, i = 1, 2, ..., D − 1, is the transformation from SD to RD−1 given by

x∗ = ilr(x) = (〈x, e1〉A, 〈x, e2〉A, ..., 〈x, eD−1〉A) , 〈ei, ej〉A = 0, i 6= j, ‖ei‖A = 1. (2.13)

This formula shows that the ilr coordinates can be identified with the coordinates of x ∈ SD with

respect to either the orthonormal basis e1, e2, ..., eD−1 or the canonical basis in RD−1, leading to

ilr(x) =
∑
〈x, ei〉A~ei (Egozcue et al., 2003, p. 295). The inverse expression then corrensponds to

the following expression

x = ilr−1(x∗) =
D−1⊕
i=1

(〈x∗, ~ei〉 � ei) =
D−1⊕
j=1

x∗j � ej . (2.14)

2.3.3 Relationship between Coordinates

For later computations it can be of advantage to consider the relationship between the transforma-

tions, especially the relationship between the clr and ilr transformations. The ilr coordinates are, as

mentioned above, constructed via an orthonormal basis. The corresponding orthonormal basis of ilr

coordinates generally are of the form

ui =

√
i

i+ 1

 1

i
, ...,

1

i︸ ︷︷ ︸
i elements

,−1, 0, ..., 0

 , ui ∈ RD, i = 1, 2, ..., D − 1, (2.15)

as it was shown by Egozcue et al. (2003) and it holds that clr(ei) = ui, as a results of expressing

the Aitchison orthonormal basis ei ∈ SD as

ei = C(exp(ui)) = C

[
exp

(√
1

i(i+ 1)
, ...,

√
1

i(i+ 1)
,−
√

i

i+ 1
, 0, ..., 0

)]
, i = 1, .., D − 1,

(2.16)

which is orthonormal with respect to the Aitchison inner product. Another property shown by Aitchi-

son (1986) is, that for any x1, x2 ∈ SD and α1, α2 ∈ R it holds that

clr ((α1 � x1)⊕ (α2 � x2)) = α1clr(x1) + α2clr(x2).

9
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Considering the composition ilr(x) = (y1, y2, ..., yD−1) and using the inverse transformation (Eq.

2.14), the clr transformation of x can be rewritten as

clr(x) = clr

D−1⊕
j=1

yj � ej

 =
D−1∑
j=1

yjclr(ej) =
D−1∑
j=1

yjuj = ilr(x)U, (2.17)

where U is the (D − 1)×D matrix of the orthonormal basis vectors clr(ej) = uj as rows (Egozcue

et al., 2003, pp. 296–297). The equation (2.17) shows how ilr coordinates can be rewritten as clr

coordinates. The inverse relationship as shown by Egozcue et al. (2003, p. 290) is obtained by

ilr(x) = [〈x, e1〉A, 〈x, e2〉A, ..., 〈x, eD−1〉A]
(1)
=

1

D
clr(x)MU ′ = clr(x)U ′, (2.18)

where the step at (1) the Aitchison inner product expressed in the clr-transformed space is used and

M is an D ×D matrix having D − 1 as diagonal values and −1 everywhere else. Thereby, having

one transformation the compositions can be directly reexpressed in another transformation.

Egozcue et al. (2003) also presented the relationship between the alr transformation and ilr and clr

transformation respectively, but as the alr transformation is not used widely anymore, the details are

not further elaborated here.

2.4 Handling of Zeros and Missing Values

Since the log-ratio methodology is used in the context of compositional data, the parts of these

compositions are required to be non-zero to get feasible results. Because it is possible for zeros to

occur in the compositions, procedures are necessary to deal with them. Before a certain method

is used, it has to be considered what kind of zeros or missing values are present. The literature

distinguishes three types of zeros (Martı́n-Fernández et al., 2011):

Rounded Zeros are values which lie below a certain detection limit and thus are rounded to zero.

They often appear in continuous variables and their true value is not zero and unknown, but the

information about a possible maximum value - the detection limit - is known.

Count Zeros are values that occur due to the closure of a vector of counts. They appear in

categorical variables and can occur in the case that the vector of counts may not be scale invariant

or due to the limited size of a sample.

Structural Zeros are values which were actually recorded as zero and were not influenced by the

experimental settings, e.g. a detection limit or imprecise measurements.

To analyse compositional data containing zero values, different methodologies to impute zeros are

available. Imputation in this case means to replace the zero value by a small quantity. Most of the

time, the classification of methods dealing with missing values can be applied to the techniques

dealing with zero values, because the concepts are strongly connected to another.

Missing data was classified into three types by Little and Rubin (2002): Missing Completely At

Random (MCAR), Missing At Random (MAR) and Not Missing At Random (NMAR). MCAR is the
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case were the missing values are independent of all other parameters and variables, MAR are

missing values depending on observed variables and independent on unobserved information and

NMAR are the missing values depending on the observed and unobserved information. If the three

types of zeros are then classified in the sense of missing data, they generally are a case of NMAR,

however sometimes rounded and count zeros are assumed to be a case of MAR for some methods.

Similarly to the principle of missing values where the treatment is different depending on the type,

the different natures of zeros have to be considered to decide on their treatment.

2.4.1 Non-parametric Imputation

For rounded zeros the techniques most often applied are parameteric and non-parametric impu-

tation. Using non-parametric imputation the values causing problems are taken and replaced by

a non-problematic value. Typical examples include replacing the value by a fraction of the detec-

tion limit itself (Palarea-Albaladejo and Martı́n-Fernández, 2008) or an estimated mean, e.g. the

arithmetic or geometric mean, of the observed values (Martı́n-Fernández et al., 2003a). As a non-

parametric measure Aitchison (1986, p. 269) proposed the additive replacement. This method had

the issue of distorting the covariance structure, due to the fact that the additive replacement is not

subcompositionally coherent which was shown by Fry et al. (2000). This was resolved by the method

given by Martı́n-Fernández et al. (2003a), the multiplicative replacement.

The multiplicative method from Martı́n-Fernández et al. (2003a) replaces every rounded zero by a

small value δij , large enough for computation, and afterwards modifies the other non-zero values

of the data set accordingly to keep the closure. The modification is based on the sum-constraint of

compositional data and thus the data is changed in a multiplicative way, but still fulfils the constraint

laid upon the composition. Considering the composition xi and the sum-constraint ci, the j-th row

of the replaced vector ri is computed by

rij =


δij if xij = 0

xij

(
1−

∑
k|xik=0 δik

ci

)
if xij > 0

. (2.19)

After imputation the multivariate analysis can be performed and the results can be interpreted with

regard to some sensitivity to the replacement of the zero values. However, this non-parametric

replacement strategy might not be sufficient as it could introduce artificial correlation, because it

imputes exactly the same value for all compositions (Hijazi, 2011, p. 2) and thus if the proportion

of zeros is high, especially if it is above 10% of the data, it can lead to an underestimation of the

compositional variability (Filzmoser et al., 2018, p. 255). It is recommended to use parametric

approaches with multivariate imputation in the case of high proportions of zeros.

Further imputation strategies include the random imputation (Boogaart and Tolosana-Delgado, 2013,

pp. 216–218) which uses the conditional distribution of the zero values. It computes a random real-

ization of the distribution and replaces the zero value by it. Parametric approaches using multivariate

imputation can be used as well, more details follow in section 2.4.4 and section 2.4.5.
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2.4.2 Projection

Structural zeros cannot be replaced, as it matters that they were actually recorded as zero. In

general, there is no standard methodology defined to be used in this context. However, a technique

considering only the subcompositions might be a solution depending on the underlying problem.

One possibility is to use the projection approach developed by Boogaart et al. (2006). This approach

uses the fact that no information about any ratio with a part containing zeros is known. Thus only

information of a subcomposition is known and is used to project the clr-transformed subcomposition

into the null space of the vectors containing zeros. In other words the information of a composition

with zeros is represented by the projected values and the projection mapping.

Therefore, Boogaart et al. (2006) proposed a way to compute the projected values PMclr(x). The

hyperplane of the clr-coordinates is spanned by non-orthogonal and non-basis vectors wi = ei− 1
D1

for i = 1, ...D and then the subcomposition of xi of the non-zero values, denoted as xMC , is

represented by the projection PM of the clr-transformed vector clr(x) onto the null space {wi|i ∈M}
and M is the set of indices of the zero values. Boogaart et al. (2006) showed that the projection can

be calculated by

(PMclr(x))i =

clr(xMC )i , if i ∈MC

0 , if i ∈M
(2.20)

where MC is the complement of M and thus the set of indices of the non-zero values and xMC

is the subcomposition of the composition x. The projected clr vector can then be used for further

analyses.

2.4.3 Indicator of Subcomponents

An alternative approach to handle zero values, particularly structural zeros, in continuous or discrete

data is to use an indicator for every occurring zero pattern and use the associated subcomponents

to each pattern (Martı́n-Fernández et al., 2011, p. 53–54). In this case observations containing a

zero at the same component are grouped together and compared to compositions with a positive

value at the component. If M is the set of indices of zero values in the composition x andM is the

set of all possible zero patterns of M , then M c denotes the complementary set of each zero pattern

M ∈M. Then dM is a indicator variable to show, if the zero pattern M is present in composition x

dM (x) =

1 if the structural zero pattern of x is equal to M,

0 otherwise

and bM is the effect for each zero pattern in the compositional predictor ηcomp of the form

ηcomp =
∑
M∈M

dM (x)〈bMc , xMc〉A =
∑
M∈M

dM (x)〈ilr(bMc), ilr(xMc)〉. (2.21)

To compute the predictor, it is required to fit for each subcomposition of non-zero components

ilr(xMc) the compositional coefficient separately for each zero pattern. In the case of only one
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non-zero component in the composition the Aitchison inner product is zero and no contribution to

the predictor is given (Verbelen et al., 2018, p. 1291). This setting is thus only successful, if simple

zero structures are present which is rarely the case. Since zero structures are usually more complex

and lead to a larger set of subgroups, due to the D-part composition consisting of over 2D−1 possi-

ble zero patterns, the data set would be split into smaller data sets for each group and consequently

lead to an insufficient sample size as the result (Filzmoser et al., 2018, p. 266).

2.4.4 Parametric Imputation with EM Algorithms

As an alternative to simple imputation a series of Expectation-Maximisation(EM)-based algorithms

were developed to overcome the issue of zero values in compositional data. These methods take

the covariance structure into account and consequently lead to different imputed values across the

rows. The design of these methods in the context of compositional data is to keep the imputation

below a certain detection limit. In general, the EM-based methods were designed for the treatment

of rounded zeros.

Hron et al. (2010) first approached the implementation of methods not designed for detection limit

problems. The designed algorithms are using a k-nearest neighbour imputation and an EM-based

regression imputation which uses pivot coordinates to handle the zero or missing value problem

within compositional data. These approaches were taking the multivariate data information into

account for the imputation, whereas the earlier non-parametric approaches, for example by Martı́n-

Fernández et al. (2003a) did not consider the multivariate structure of the data.

Following these ideas, algorithms considering the detection limits in compositional data were devel-

oped. Recently Martı́n-Fernández et al. (2012) introduced an new approach by combining the idea

of the modified EM algorithm using alr coordinates by Palarea-Albaladejo et al. (2007) and Palarea-

Albaladejo and Martı́n-Fernández (2008) and the ilr-based technique for compositional data by Hron

et al. (2010). The resulting approach is estimating the rounded zeros using an iterative regression

and ensures that the estimated values lie below the detection limit using censored regression, follow-

ing the approach by Palarea-Albaladejo and Martı́n-Fernández (2008). For high-dimensional data

Templ et al. (2016) implemented an EM-based algorithm to impute rounded zeros in all variables

sequentially using partial least squares regressions to deal with the high-dimensional covariates.

The main idea throughout all zero treatment methods using EM-based algorithms is to use an multi-

ple regression analysis for compositional data on the covariates to retrieve data without zero values.

Therefore, a censored regression (Palarea-Albaladejo and Martı́n-Fernández, 2008) is used as the

main focus lies on rounded zeros. The algorithm is also considering the threshold in log-ratio co-

ordinates which are corresponding to the log-ratio coordinates applied to the composition. The

transformation and inverse transformation needs to be applied in every step leading to a complex

algorithm.

The detection limits are in general not the same for each part of the composition and can even differ

among the observation, e.g. if the measurements were taken in different laboratories. It can be

expressed by dik, i = 1, ..., n, k = 1, ..., D with dik ≡ d
(k)
i1 representing the detection limit for the

k-th part of the composition X = (x1, ..., xD). The ilr-coordinates Z(k) of the zeros, which occur

when x
(k)
i1 < d

(k)
i1 , are unknown with the restriction z

(k)
i1 < ψ

(k)
i1 where ψ

(k)
i1 is the ilr-transformed
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threshold

ψ
(k)
i1 =

√
D − 1

D
ln

 d
(k)
i1

D−1

√∏D
j=2 x

(k)
ij

 . (2.22)

The steps of the algorithm of Martı́n-Fernández et al. (2012) are then as follows:

1. Initialisation of rounded zeros: Imputation by 65% of the detection limit or any other univariate

method (see section 2.4.1).

2. Sorting parts of the composition decreasingly by the number of zero values.

3. For each part of the composition k = 1, ..., D repeat steps 4 to 8:

4. Express the compositional part x(k) in ilr-coordinates using Eq. 2.13.

5. Express the threshold d(k) in ilr-coordinates using Eq. 2.22.

6. DenoteMk ⊂ {1, ..., n} as the set of indices of the zero values in part x(k) of the compo-

sition andMC
k as the complementary set of non-zero indices. Then zMk

1 and z
MC

k
1 denote

the first coordinate and matrices ZMk
−1 and Z

MC
k

−1 contain the remaining columns without

the first coordinate and add as the first column a vector consisting of only ones. Based on

these specifications the following regression model with an intercept is estimated

z
MC

k
1 = Z

MC
k

−1 b+ e, (2.23)

and the regression coefficients b and the error term e are unknown.

7. Estimate the coefficients of Eq. 2.23, denoted as b̂(k). Then denote the i-th row of ZMk
−1 as

zMk
i,−1 and replace each unknown value by the conditional expected value

ẑMk
i1 = (zMk

i,−1)
′b̂(k) − σ̂(k)

φ
(
s
(k)
i

)
Φ
(
s
(k)
i

) , s
(k)
i =

ψ
(k)
i1 − (zMk

i,−1)
′b̂(k)

σ̂(k)
, ∀i ∈Mk, (2.24)

where φ and Φ are the density and distribution function of the standard normal distribution

and σ̂(k) is the estimated conditional standard deviation of zMk
1 .

8. Express the updated values in the original space using the inverse ilr-transformation (Eq.

2.14). The non-zero values are changed as well while keeping the ratios between them.

9. If the Frobenius norm of the difference between the covariance matrices of the present and

previous iteration are below a certain boundary, stop the iteration which started in step 3.

10. Rearrange parts in the original order.

In the case of high-dimensional data this algorithm cannot be used, due to the regression in Eq.

2.24 where the classical or robust regressions cannot deal with high-dimensional data. Therefore,

a partial least squares regression is required. The algorithm of Templ et al. (2016) is then based

on bootstrapping to replace the zero values. In this case n samples are bootstrapped and split into

pairs, to each pair a PLS regression is applied and using a tenfold cross-validation the predicted error
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sum of squares (PRESS) is computed. Based on the PRESS a PLS model with a smaller amount

of components is selected. For a detailed description check Filzmoser et al. (2018, p. 260–262) or

Templ et al. (2016).

Additionally, to the above EM-Algorithms to impute rounded zeros, Hijazi (2011) proposes an al-

gorithm which can be applied, if the compositional data arise from a Dirichlet distribution. In the

algorithm of Palarea-Albaladejo et al. (2007) and Palarea-Albaladejo and Martı́n-Fernández (2008)

this case of compositional data was not covered, as their algorithm assume compositional data of a

normal distribution. However, in this thesis only the case of data arising from a Normal distribution

will be covered.

2.4.5 Further Methods and Missing Data

In the last years new imputation approaches using deep learning methods were introduced and

developed in the context of rounded and count zeros which are available in the software R. These

imputation methods include, besides the mentioned EM algorithms, algorithms based on k-nearest

neighbours methods, Kaplan-Meier smoothing splines (Lubbe et al., 2021, p. 2, Templ, 2021, p.

166) and Bayesian posterior estimates (Martı́n-Fernández et al., 2015) to impute rounded zeros

and are included into the R packages robCompositions (Templ et al., 2011, version 2.3.0) and

zCompositions (Palarea-Albaladejo and Martı́n-Fernández, 2015, version 1.3.4). Templ (2021, p.

166) gives a detailed overview.

As discussed in the previous section, EM algorithm were developed to treat rounded zeros. However,

the most recent idea in the context to treat rounded zeros is based on artificial neural networks and

was introduced by Templ (2021). To impute the zeros one artificial network is used per variable to

be imputed and an EM-based algorithm is applied.

In the case of count zeros in compositional data Martı́n-Fernández et al. (2015) developed a bayesian-

multiplicative method which was based on the general idea of the multiplicative replacement by

Martı́n-Fernández et al. (2011) and replacing a zero value by an expected value using the posterior

Bayesian estimate. This approach unfortunately does not fully account for the scale invariance. As

a consequence, model-based replacement algorithms, as described in section 2.4.4 can be utilized

in the context of count data as well, considering 1 as the detection limit (Martı́n-Fernández et al.,

2015, p. 154–155).

Missing data in the context of compositional data can not be treated as in the classical multivariate

case, because of the data differences and the theoretical complexity. The k-nearest neighbour

approach and the iterative model-based imputation by Hron et al. (2010) were developed to tend to

this problem of missing data within compositional data sets. For missing data the same approaches

as for zeros apply, as their concepts are very similar in the context of compositional data. Therefore,

to treat missing values one can also use the introduced imputation methods of section 2.4.1 or the

projection approach in section 2.4.2 as well as the approaches mentioned in this section.
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2.5 Descriptive Statistics for Compositional Data

Since the data is compositional and as mentioned standard methods cannot be applied, a composi-

tional alternative has to be considered for functions of descriptive statistics applied to the data. Thus

the standard descriptive functions including arithmetic mean, variance and covariance should not be

used. New methods in the framework of the Aitchison geometry are used.

2.5.1 Center

The arithmetic mean of the Euclidean geometry is replaced by the sample center (Aitchison, 1997)

with respect to the Aitchison geometry. It can be represented by the component-wise geometric

mean. Like the name suggests it characterises the center of the sample data.

Definition: A value of central tendency of a compositional sample is the closed geometric mean.

It is called center. For a n×D compositional data matrix X, it is defined as

cen(X) = ĝ = C (ĝ1, ĝ2, ..., ĝD) , ĝj =

(
n∏
i=1

xij

)1/n

, j = 1, 2, ..., D. (2.25)

The center does satisfy the principles of compositional data and respects the Aitchison geometry.

Additionally, it can be shown that the center of centered data is the neutral element n and con-

sequently the effect of a relative scale can be suppressed. This characteristic is often used for

graphical purposes like tenary diagrams (Filzmoser et al., 2018, p. 70).

2.5.2 Variation Matrix and Total Variance

As a compositional alternative to the variance and standard deviation, the variation matrix and total

variance defined by Aitchison (1986) can be used.

Definition: Considering a D-part composition x. Dispersion in a compositional data set can be

described either by the variation matrix, defined as

T =


t11 t12 · · · t1D

t21 t22 · · · t2D
...

...
. . .

...

tD1 tD2 · · · tDD

 , tij = var

(
ln
xi
xj

)
, (2.26)

or by the normalized variation matrix defined as

T ∗ =


t∗11 t∗12 · · · t∗1D
t∗21 t∗22 · · · t∗2D
...

...
. . .

...

t∗D1 t∗D2 · · · t∗DD

 , t∗ij = var

(
1√
2

ln
xi
xj

)
. (2.27)
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The so-called variation matrix is constructed by the variances of the pairwise log-ratios. This means,

the usual variance is applied to the log-ratio of the parts i and j and then the matrix of all variances

of pairwise log-ratios is build. If each pairwise log-ratios is multiplied by the factor 1√
2
, they are

called balances and the normalized variation matrix is constructed by taking the variances over all

balances (Pawlowsky-Glahn et al., 2015, pp. 66–67). Both matrices are symmetric and the diagonal

elements contain only zeros by definition. The variances can not be directly calculated in praxis, but

can be estimated via unbiased maximum likelihood estimators.

Definition: Consider a n × D compositional data matrix X. A measure of global dispersion of a

compositional data set is the total variance, defined by

totvar(X) =
1

2D

D∑
i=1

D∑
j=1

var

(
ln
xi
xj

)
=

1

2D

D∑
i=1

D∑
j=1

tij =
1

n

n∑
k=1

d2A(xk, ĝ). (2.28)

As in Eq. 2.28, the total variance as it was defined first by Aitchison (1997) summarizes the variation

matrix into one quantity. It does make sense to calculate a total variance, since all parts of the

composition share common scale (Pawlowsky-Glahn et al., 2015, p. 68). Furthermore, it can be

shown with the last expression, that the total variance is equivalent to the metric variance defined by

Pawlowsky-Glahn and Egozcue (2001).

2.5.3 Centering and Scaling of Data

Centering and scaling of compositional data has a particular role in applications for visualization

purposes. Using centering makes it possible to improve the data representation in an easy way.

Analogously to moving real data in the real space towards the origin, the compositional data is

moved to the barycenter of the underlying simplex which is represented by the neutral element n.

The general strategy introduced by Pawlowsky-Glahn et al. (2015, pp. 68–69) to center the data is

row-wise perturbing of the compositional data matrix X by the inverse center cen(X)−1.

As an compositional alternative to scaling using the classical approach in the real space, i.e. dividing

a centered variable by the standard deviation, the centered composition data can be scaled with the

factor totvar(X)−1/2 which preserves the relative contribution of each log-ratio in the variation. The

important difference in the compositional scaling to standardization in the real space is that it can

not be applied part-by-part, but to the data set as a whole (Pawlowsky-Glahn et al., 2015, p. 69). For

a standardized composition the center is the neutral element and the total variance is 1 (Pawlowsky-

Glahn et al., 2015, p. 112).

2.6 Normal Distribution on the Simplex

To take the next step to statistical inference of the data a probability model has to be constructed.

Therefore, a probability distribution on the simplex is needed. There are two distributions mainly

used in the context of compositional data, the additive logistic-normal distribution introduced by

Aitchison and Shen (1980) which is called the normal on the simplex, due the definition introduced

by Mateu-Figueras et al. (2013). The other mainly used distribution is the Dirichlet distribution
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(Narayanan, 1991).

Definition: Given a random composition X with the sample space SD. Then it is said to have

a normal on the simplex, with parameters µ and Σ and random orthonormal coordinates of X,

x∗ = h(x), if its density is

fSX(x∗) =
1

(2π)(D−1)/2 |Σ|1/2
exp

(
−1

2
(x∗ − µ)′Σ−1(x∗ − µ)

)
. (2.29)

If X follows a normal on the simplex the notation X ∼ ND
S (µ,Σ, α) is used, indicating a model on

the simplex with the subscript S and a D-part composition with the superscript D (Mateu-Figueras

et al., 2013, pp. 11–12). The function h(·) to generate orthonormal coordinates of X, can be either

one of the introduced coordinate representations, i.e. alr, clr or ilr. Through this definition it is shown

if X follows a normal distribution on the simplex, then X∗ has to be multivariate normal distributed

on RD−1 (Pawlowsky-Glahn et al., 2015, p. 114).

Mateu-Figueras et al. (2013) showed that the normal on the simplex is closed under perturbation

and powering and is invariant under perturbation. This is providing some good tools for handling

compositional data. It was further shown that the family of normal on the simplex is closed under

permutation and subcompositions (Mateu-Figueras et al., 2013, p. 12).

Pawlowsky-Glahn et al. (2015) defined equivalently to the Lebesgue measure in the RD space an

Aitchison measure on the SD. The Aitchison measure is constructed from the Lebesgue measure on

the space of coordinates. In this case the ilr coordinates are used. The probability density function

(pdf) (Eq. 2.29) in the definition of the normal on the simplex of Mateu-Figueras et al. (2013) is

defined with respect to the Aitchison measure on the SD.

Based on the definition of the pdf of the normal on the simplex and the Aitchison measure it is shown

in Pawlowsky-Glahn et al. (2015, pp.115–119) that many characteristics and theorems based on the

normal distribution in the real space can be transferred onto the normal on the simplex in SD. In

particular, the central limit theorem can be defined in the simplex analogously to the central limit

theorem in real space.

The second distribution is the Dirichlet distribution which can be obtained as a closure over inde-

pendent, equally scaled, gamma-distributed and positive random variables (Aitchison, 1986, p. 58

recited in Pawlowsky-Glahn et al., 2015, p. 121). This distribution was mainly used before the

log-ratio approach was formally introduced (Filzmoser et al., 2018, p. 85).

Definition: Given a random composition X with the sample space SD and the positive parameters

α = (α1, α2, ..., αD)′.Then X is said to follow a Dirichlet distribution, if its density is

f(x;α1, α2, ..., αD) =
Γ(α1 + ...+ αD)

Γ(α1) · ... · Γ(αD)
xα1−1
1 xα2−1

2 ...xαD−1
D , (2.30)

where Γ(·) denotes the Euler Gamma function.

The Dirichlet distribution has many advantageous characteristics and is widely applied in the Bayesian

statistics, but the approach is not scale invariant. This problem can also not be overcome by redefin-

ing the distribution with respect to the Aitchison measure like in the case of the normal distribution
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(Filzmoser et al., 2018, pp. 85–86; Pawlowsky-Glahn et al., 2015, pp. 121–124). So that the focus

will be on the normal on the simplex in the following chapters.

2.7 Regression Models

As mentioned before, it was possible to define the compositional version of a normal distribution. In

the same manner, it is possible to use the standard regression methods in the compositional context,

if the compositional data are mapped into the Euclidean space.

As linear models relate response variables to covariates there are multiple cases to consider for

compositional data. The cases can be divided into the three main groups: linear models with com-

positions as response, linear models with compositions as covariates and linear models with compo-

sitions as responses and covariates. In the latter part of this thesis a regression using compositional

data as covariates is performed, so that only this case is discussed in detail in the following section.

2.7.1 Linear Model with Compositional Covariates

The aim of the regression is to relate a D-part composition xi = (x1, x2, ...xD)′ of the n×D matrix

X to the real response y = (y1, y2, ..., yn) ∈ RD. This leads to the follwing expression of the model

Y = β0 + 〈b,X〉A, b ∈ SD, β0 ∈ RD. (2.31)

Pawlowsky-Glahn et al. (2015) suggests that the linear regression is fit to the response y using a

linear function of ilr(x), so that the classical least squares criterion (SSE) is applied to the target

function,

SSE =

n∑
i=1

(yi − β0 − 〈ilr(b), ilri(x)〉)2 =

n∑
i=1

(yi − β0 − 〈β, zi〉)2 . (2.32)

The regression then yields the coefficients β = ilr(b) of y with respect to the transformed coordinates

zi = ilri(x) and these can be computed into the actual b values using the function ilr−1 as it was

defined in Eq. 2.14. Therefore, the regression can be done without further changes after the data

was transformed into the ilr coordinates and no more methods are needed. The clr coordinates

could also be a possible choice of transformation, but due to numerical reasons Pawlowsky-Glahn

et al. (2015, p. 158) recommends to avoid them.

On the regression coefficients the standard tests can be used as usual and for the ilr coordinate

coefficients it has to be kept in mind that they are related to a basis and if the model is being

reduced this basis can also change (Pawlowsky-Glahn et al., 2015, p. 158).

2.7.2 Interpretation of predictors

Using compositions only the the ratios between the parts and thus their relative information is con-

sidered as covariate, therefore the information given by the estimates are also based on the relative

information. So that the main issues of using compositional data within a regression is the diffi-
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culty of interpretation. To include compositional data in a classic regression within the Euclidean

space they need to be transferred into the Euclidean space using transformations, e.g. by isometric

log-ratio (ilr) transformation and then they can be included in the regression model as explanatory

variables. Therefore, a compositional predictor term of the composition x ∈ SD is included into the

model for β ∈ RD−1 and z = ilr(x) ∈ RD−1 in the following way

η = β1z1 + β2z2 + ...+ βD−1zD−1 =
D−1∑
i=1

βizi. (2.33)

After the model fit, the estimated non-compositional coefficients can be interpreted as usual. How-

ever, for compositional terms only the first coefficient corresponding to x1, the first part of the compo-

sition, has a comprehensible interpretation. Since z1, the ilr-transformed first part of the composition,

explains the relevant information for x1, but every other transformed model parameter includes in-

formation of multiple parts of the composition and thus can not be interpreted in a straightforward

fashion. A general approach for interpretation could be to refit the model for every part of the com-

position. If a composition has more than two parts, this could already be computational intensive.

Hence, some method for interpretation without having to refit the model is needed.

Verbelen et al. (2018) have developed a new idea for this problem. This approach fits the model

once and then uses transformations and inverse transformations to get interpretable values for the

model parameters. First, the inverse ilr-transformation is applied to the model coefficients β as it

was proposed by Boogaart and Tolosana-Delgado (2013) and Pawlowsky-Glahn et al. (2015), i.e.

setting b = ilr−1(β) ∈ SD and rewrite the compositional predictor into the following expression

η =
D−1∑
i=1

βizi =
D−1∑
i=1

ilr(b)iilr(x)i = 〈b, x〉A. (2.34)

For the new interpretation approach Verbelen et al. (2018, pp. 1289–1290) is using the facts that

the composition b ∈ SD can be interpreted as simplicial gradient with respect to x (Barceló-Vidal

et al., 2011) and it is the compositional direction along which the predictor is increasing the fastest.

So that with a fitting perturbation a new interpretation for the effects of the composition parts is

possible. They proposed a perturbation of the composition in the direction of each component. For

this the composition x was perturbed by the closure C(α, 1, ..., 1)′, i.e. x̃ = x ⊕ C(α, 1..., 1)′ =

C(αx1, x2, ..., xD)′, using α > 0, α ∈ R as first element and holding the remaining parts constant,

to get the relative ratio change of α in the first part. In this sense α < 1 would signify a decrease

and α > 1 an increase in the relative ratio. The same can be achieved for the relative ratio change

in the other parts, if α is placed at another position. The change of the predictor is then given by

〈b, C(α, 1, ..., 1)〉A = 〈b, (α(D − 1 + α)−1, (D − 1 + α)−1, ..., (D − 1 + α)−1)〉A

=
1

D
ln(α)

D∑
j=1

ln

(
b1
bj

)
= ln(α)

ln(b1)−
1

D

D∑
j=1

ln(bj)

 = ln(α)clr(b)1

(2.35)

where the relationship derived in equation 2.18 is used in the last step of the equation, as it can

20



Compositional Data Analysis

Figure 2.1: Process to Calculate Interpretable Regression Parameters via representation in the ilr-,
simplex and clr-space based on Verbelen et al. (2018, p. 1301)

be shown that UU ′ = ID − 1
D1D1′D. Using this relationship Verbelen et al. (2018) showed that the

clr-transformation of b is the best way to understand the effect of a ratio change.

Using a linear model the effect of the ratio change in part i = 1, ..., D of the composition on the

response would be interpreted as: When the ratio in part i changes by α the response y changes

by ln(α)clr(b)i.

This leads to the interpretation, if the clr transformation is applied, that a positive and negative

effect of each part is indicated by the sign of the clr-transformed coefficients. Moreover, a direct

interpretation of the compositional term is given. For example, if the ratio in the first term doubles,

i.e. α = 2, and if the estimated coefficients in the simplex are b = (0.25, 0.35, 0.4). Then the

clr-transformed estimate in the first part is clr(b)1 = −0.2688 and the impact on the response is

a decrease of ln(2)clr(b)1 = −0.186. In comparison, if the ratio in the third part doubles, then

the clr-transformed estimate is clr(b)3 = 0.2012 and thus the impact on the response increases

by ln(2)clr(b)3 = 0.139. If the ratio α decreases then the impact on the response reverses and a

negative estimate leads to a positive impact and vice versa.

2.7.3 Variable Selection

Variable selection is important to find the subset of covariates which best represent the response.

The aim is to construct a simple model to explain the response, in other words the smallest model

that fits the data and at the same time does not add any noise in the model, because unnecessary

covariates were considered. Other effects would be collinearity between covariates and the cost for

prediction. Thus a good model selection method has to be employed (Filzmoser et al., 2018, pp.

192–193).

A common approach for model selection is the stepwise variable selection using the Akaike Informa-

tion Criterion (AIC). In this approach either the Backward Stepwise or Forward Stepwise procedures

are used. The Backward Stepwise algorithm starts with a model considering many covariates, e.g.

a full model, and then removes a covariate in each step until the AIC is not decreasing any more

or the smallest model, e.g. the model only considering a constant, is reached. The Forward Step-

wise algorithm starts with the smallest possible model, e.g. model with only a constant, and adds

a covariate in each step as long as the AIC is decreasing. In each step the variable leading to the

lowest AIC value is added. This is repeated until the AIC is no longer decreasing or the full model is

reached. The AIC value itself will be explained in the subsequent chapter.
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Due to the fact that the AIC is rotation-invariant, any selection of orthonormal coordinates for the

compositions will lead to the same results and therefore the AIC can be applied in stepwise proce-

dures handling compositions. But in the context of compositional data, the covariates being removed

in the backward stepwise procedures can contain the coordinates of the composition. By removing

one of the coordinates the left coordinates will form a subcomposition to represent the composition

(Filzmoser et al., 2018, p. 193). In the case of forward stepwise procedures for D-part compositions

a lot of computational effort is needed, especially if D is large. Thus Filzmoser et al. (2018) did not

recommend the Forward Stepwise procedure for the cases including compositional covariates.

2.7.4 Robustness

In section 2.7.1 the common least squares criterion - SSE - was minimized to find the optimal

estimator for the covariates. The results of this minimization can be heavily influenced by outliers,

because they can yield large residuals and thus dominate the value of the SSE.

Two types of outliers are of importance, the outliers in the response and the outliers in the ex-

planatory variables. To achieve a robust regression the procedure needs to handle both types in

order to achieve the best estimators. The first approach replaced the least squares criterion by the

M-estimator which is expressed by

b̂M = argmin
b

n∑
I=1

ρ

(
ri(b)

σ̂(b)

)
, (2.36)

where ρ(·) is a function which can be squared around zero, but is bounded for large values, σ̂(b)

is the estimated residual scale dependent on the unknown regression coefficient. This leads to the

challenge that the estimation of the residual scale is dependent on the regression coefficients and

vice versa. A resolution to this regression task leads to the MM-estimator which is using an iterative

algorithm and some tuning parameters and provides robust estimation and is efficient (Filzmoser

et al., 2018, pp. 194–195). Further approaches with least trimmed sum-of-squares and robust

bootstrap where developed as well and implemented into the R package robustbase.

2.8 Application in R

To handle compositional data in applications, different methods were developed. One of those

methods within R is the package compositions developed by Boogaart et al. (2020). This package

with the addition of packages including standard multivariate analysis tools are making it possible

to apply the theory presented in this section to the actual data sets. Another very useful package

to handle compositional data with robust methods is the package robCompositions developed by

Templ et al. (2011).

Before starting the analysis in the later sections both packages and their dependent packages,

e.g. tensorA, colorspace and robustbase, are installed on a local machine. Throughout all

applications presented, the methods included in these packages are used.
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3 Project STAR

The data set of this project is an open source collected by Achilles et al. (2008). In this section the

focus will be on the setting of data collection as well as the descriptives of the data set.

3.1 Data Setting and Experiment Execution

The Tennessee Student Teacher Achievement Ratio (STAR) project was a large scale randomized

experiment conducted in the time span of 1985-1989 in the state Tennessee. It covered the first four

years of school, from kindergarten until the third grade, of students from the participating schools.

A total of 79 public schools within Tennessee took part in the project which lead to a total of 11,600

students. The schools of rural, urban, suburban and inner city area were all included due to a

specification of the legislative, so that the schools were not clustered, but spread across the state.

The goal of this study was to investigate the effect of the class size on the students achievements.

For this purpose all students entering a participating school in 1985 were randomly assigned to a

classroom of one of the following three types: a small class consisting of 13-17 student, a regular

class having 22-25 students or a regular-sized class with an additional teacher aide. The teachers

were as well randomly assigned to their classrooms. In the case that a student entered one of the

cohorts of the participating schools in one of the later years, they were added to the experiment and

as well randomly assigned to a class type. All randomizations were done within each school. Other

than the class size no major changes, e.g. in process and organization were undertaken.

This includes the fact that there were no teacher trainings offered for the experiment excluding 15

schools which were offered a three-day training before the third and fourth year of the experiment.

The training was offered independently from the class type. However, in the STAR technical report

of Word et al. (1990, pp. 116–127) it is shown that the teacher training had no significant influence

on the performance of a teacher compared to teachers without the training.

Whether the randomization was really maintained in the execution of the experiment was discussed

in multiple studies (Whitmore Schanzenbach, 2006/2007 and Sojourner, 2013). There it was ex-

tensively checked, if the class assignment was not done in a compensatory manner and that the

class assignment of new participants was random. No systematic differences could be found and

evidence supporting the randomization could be provided.

So that a school could participate in the project some constraints were set which limited the sample.

One important figure which was required from each school was the minimum cohort size. The

participating schools needed a cohort of at least 57 students, to have all three classroom types with

class size within the defined range available. As a result, the schools in the project were in general

larger than non-participating schools and because of geological consideration in the selection of

project school, also the demographics of the students were influenced and do differ from the state

average. One specific difference to the state-wide schools was the higher proportion of inner-city

schools participating in the project, as there were more schools satisfying the restraints of the project

within the inner-city regions. This had a direct impact on the project as Word et al. (1990, pp.

7–8) showed that on average the projects schools scored lower than state average and than the

comparison schools. The differences were mostly between the inner-city and suburban areas and
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Table 3.1: Description of variables within the student data set of project STAR

Variable Description

Student Demographics
stdntid Unique student id which is assigned to every student
schid School id of the school which the student attended
gender Students sex (male, female)
race Students race or ethnicity (white, black, asian, hispanic, native american,

other )
birthyear, birthmonth,

birthday

Students date of birth

Grade Dependent Information
g<n>classtype The class type which a student was randomly assigned to in grade<n>∈

{k, 1, 2, 3} (small class, regular class, regular + aide class)
g<n>freelunch Students free-lunch status as indicator for the socio-economic status in

grade <n>∈ {k, 1, 2, 3} (free lunch, non-free lunch)
g<n>tmathss Students SAT total math score of grade <n>∈ {k, 1, 2, 3}
g<n>treadss Students SAT total reading score of grade <n>∈ {k, 1, 2, 3}
g<n>tmathss Students CTBS total math score of grade <n>∈ {4, 5, 6, 7, 8}
g<n>treadss Students CTBS total reading score of grade <n>∈ {4, 5, 6, 7, 8}

Note: This table represents only a fraction of the variables included in the data set. In brackets are the categories available
for the categorical variables. The whole data set covers 379 different variables, including all test results from kindergarten
to 8th grade as well as the non-cognitive skills documented in 4th grade and 8th grade and the selected courses in high-
school, their GPA and graduation status. Furthermore, it was documented whether a student took the ACT or SAT in the
year of graduation.

less among suburban, rural and urban area.

Furthermore, it should be taken into account that a relatively large fraction of students exited the

experiment within the four years. This could happen due to school moves or grade skipping for

example. This was one of the sources of deviation from the perfect setting possible which would

have been that all students remain in the same class type throughout the whole experiment.

As the project started the students each got an individual identification number and information about

their demographics, including their race or ethnicity, sex and age, as well as whether they received

a free or reduced prize lunch and their test scores were collected. The attended class type of each

students was recorded as well. In Table 3.1 an overview of the variables of interest is presented. The

teacher demographics, education levels and experience and information about the schools, among

others average daily attendance, school enrolment and percentage of students receiving free lunch,

were also collected as these might have affected the experiment results, but won’t be included in

later analysis, due to the focus being the direct peer effects.

The recorded test scores within the four years of the execution of the project all belonged to the

Stanford Achievement Test (SAT). These tests are norm-referenced and were administered to the

appropriate level of the students for each grade. The subjects on which the students were tested in

each grade included math, reading, spelling and listening and all their respective test scores were

included into the data set.

From the fourth grade on the students were put back into regular-sized classes. However, due to

follow up studies to measure middle and long-term impacts, the participating students were followed

up until high school and additional information of the following years were recorded as well. So that
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the data of the test scores between kindergarten and third grade, while the students were part of

the project, are available as well as the test scores from fourth to eighth grade. When the students

entered their fourth grade the Tennessee Comprehensive Assessment Program (TCAP) was started,

so that starting then up to eighth grade the scores were determined using the Comprehensive Tests

of Basic Skills (CTBS) instead of the SAT and later collected and added to the data set for the

students participating in the project STAR.

Furthermore, while students were in fourth and eighth grade a random subset of the students were

part of a test for non-cognitive skills based on the Student Participation Questionnaire (Finn et al.,

1991). The high school courses taken, the graduation status and whether a student took the ACT

or SAT college-admission test and the scores of these are collected to each participating students

as well. The college-admission scores were linked to the STAR information in cooperation with the

ATC Inc., the College Board and the Educational Testing Service (ETS) by Whitmore and Krueger

(2001).

Thus a complex set of data of the project execution, the middle school test scores, two non-cognitive

tests on a subset of students executed in fourth and eighth grade and high school scores and grad-

uation as well as college admission was collected for each student and linked together by Achilles

et al. (2008).

3.2 Sample Selection and Descriptive Statistics

The kindergarten sample includes a total of 6325 students of 79 schools and divided into 325 class-

rooms. I exclude 26 students with missing demographic characteristics. Then the data set is sep-

arated into two parts, one for the math scores and one for the reading scores as both scores are

available throughout kindergarten to eighth grade and thus are suitable for regression analysis based

on test scores. The first analysis is studying the impact of peer effects from the time the cohorts were

formed in kindergarten on the students right after the project ended. Therefore, in each of those two

data sets the students who are missing test scores in the respective subject in either kindergarten

or grade four are dropped. Not every student which was recorded in kindergarten, while the project

was going on, also has information of them in fourth grade documented, so that this condition is

reducing both data sets to 3250 students for the math test score and 3217 students for the reading

test score. Table 3.3 reports descriptive statistics for the students demographic characteristics and

kindergarten and fourth grade scores.

Overall 6299 students were recorded in kindergarten without missing demographics. For those

students slightly more students were male than female and almost half of the students received

Table 3.2: Percentages of participation in the project per grade over all students recorded

Grade Yes, participated No, did not participate

kindergarten 54.5 45.5
grade 1 58.9 41.1
grade 2 59.0 41.0
grade 3 58.6 41.4

Note: Percentages taken over all 11.601 available student data sets.
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Table 3.3: Descriptive statistics over all relevant variables in the sample of Project STAR

N Min Mean Max SD

Overvall Demographics Kindergarten 6299

female 0 0.5140 1 0.4998
non free lunch 0 0.4844 1 0.4998
small class 0 0.3004 1 0.4585
race 1 - 6 -

Test Scores

kindergarten math score 5852 288 485.4 626 47.7335
kindergarten reading score 5770 315 436.7 627 31.7341
4th-grade math score* 2385 492 715.5 840 42.3032
4th-grade reading score* 3011 517 624.3 775 37.5038

Math Data Set 2259

female 0 0.512174 1 0.49996
non free lunch 0 0.698097 1 0.45919
small class 0 0.306773 1 0.46126
race 1 - 6 -
kindergarten math score 375 500.0 626 44.4350
4th-grade math score 492 715.5 840 42.6251

Reading Data Set 2822

female 0 0.512403 1 0.49993
non free lunch 0 0.620482 1 0.48535
small class 0 0.310064 1 0.46260
race 1 - 6 -
kindergarten reading score 358 444.8 627 31.8621
4th-grade reading score 517 624.4 775 37.5309

Note: This table reports the descriptive statistics separately for the overall demographics of students entering in kinder-
garten, the students considered in the math score data set and the reading score data set. In the latter two, is was
required that the scores of the student in kindergarten and fourth grade are available. Gender is measured by an indicator
taking the value 1 if the student is male and 0 otherwise. Free lunch takes the value 1, if a student is receiving a free or
reduced-price lunch and 0 otherwise, small class takes the value 1, if the student was assigned to a small-sized class and
0 otherwise and race is a factor variable with 6 levels and thus the mean and standard deviation are not reported as they
do not carry any meaningful information. The marked test scores (*) are only considering scores of students who took
part in the experiment while in kindergarten.

a free or reduced-price lunch. Around 30% of the students were assigned to a small-sized class.

Over 95% of the students were either black or white leaving only a minority of students having other

ethnicities or race.

For the participation in the experiment it can be shown that a larger fraction of students entered in

grade 1. Table 3.2 shows the distribution of all participating students at some time in the study per

grade. The results show that in first grade the rate of participating students were 5% higher than in

the kindergarten and thus implying that a larger group must have entered at that time, which then

stayed almost constant until third grade.

For the students which entered the experiment in kindergarten 5852 data sets were collected for the

math test scores and 5770 for the reading test scores without any missing values for the student

demographics. For these students around half of them also had their fourth grade CTBS score

collected, further reducing the data set as mentioned above. A main challenge is that different test
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scores were used in different grades, SAT in kindergarten and the CTBS in fourth grade, thus the

scores cannot be compared directly.

In the data set for the math test score and reading test score the student demographics differ slightly.

In both sets more females than males and up to 40% of students receiving a free lunch in kinder-

garten are present. The assignment to a small class in kindergarten still are 30% of the students

which corresponds with the overall value. Furthermore, is the mean for math scores in the reduced

set higher for the kindergarten and fourth grade scores as well as the mean for the reading scores.

More students scoring in the lower range seem to not have been recorded in the higher grade and

thus increasing the mean. A possible reason could be that they repeated a year and thus the scores

of the higher grade could not be collected, when the data sets were connected to the other data sets

of the TCAP in the year they would have been, considering the students were on pace.

As the data of project STAR was collected by various research teams during and after the ex-

periment, the following section is giving a brief overview of the main independent and dependent

variables of the following empirical analysis.

Students Demographics. Within project STAR information of the student containing their gender,

race, date of birth and status for free or reduced-price lunch per grade were collected. The variable

gender was separated in male and female, the lunch status was either yes (they received a free

lunch) or no and race had six variables: White, Black, Asian, Native American, Hispanic and others.

Because the students generally entered the school at the same age, the variable ’age’ does not

convey a lot of information and is not included. Due to the fact that minorities were only represented

by a small part of the data, their estimates will be sensitive to outliers and therefore are aggregated.

Thus the variable ’race’ is transformed into an indicator variable having the value 1, if a student is

white and 0 otherwise.

Class Size. The classes were separated into the three types: small class, regular class and regular

+ aide class and the data recorded per student was indication which class type was visited in which

grade of the experiment. For the empirical analysis this variable is only considered as impact of the

class size. Hence, it is converted to an indicator variable whether a student visited a small class.

This variable has the value 1, if the student was part of a small class and 0 otherwise.

Grade K to Grade 3 Test Scores. The test scores were recorded at the end of each grade with

an grade-appropriate version of the SAT. The test scores recorded in kindergarten are part of the

independent variables of the empirical analysis.

Outcomes. All attendees of public schools took the CTBS in the spring of the grades 4 to 8.

The same as the SAT, the CTBS test is a standardized multiple-choice exam which is used to test

students in the subjects mathematics, reading, language studies and sciences in each grade. The

influence of the distribution of the student performance in elementary school on the later test scores

are studied in the empirical analysis.

Class Score Distribution in Grade K. In the next step a data extension of converting the scores

of the students into intervals and computing the percentage of students within a class, scoring in the
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interval for each class, is performed. This new variable is adding relative information of the class

score distribution of the class in which each student was part of to the existing data. Hence, the

influence of the relative distribution on the outcome can be studied.

3.3 Data Extension

Peer effects within this data set were already researched in multiple studies (Boozer and Cacciola,

2001 and Krueger, 1999), however compositional peer effects were not a part of any study up to

now. Since the data offers the possibility to consider some variables as composition, if they are

transformed using the given information, I am analysing the impact by these compositions and will

later compare them to the known results of the typical used peer effects.

As an extension a variable considering the composition of grades within each classroom is added to

each student. This classroom test score composition contains the distribution of a class’ test score

in a certain subject in kindergarten. For this fitting intervals for the distribution of the scores in the

subject and grade are selected, considering the scores over all students and minimizing the zeros

produced in each interval. Then the percentage of students scoring within each interval is calculated

for each class recorded during the project in kindergarten. The respective class distribution is added

to the information of each student in the class.

The main challenge to select fitting intervals is to look for good borders, so that as few zeros as

possible are introduced to the data set, as they will have to be imputed later on and could lead to an

significant change in the model estimation. Keeping this in mind the intervals presented in Table 3.4

were chosen.

Due to the relative information added to the data set a compositional approach is needed in the

empirical study. For a first analysis of the model a set of four equidistant intervals was selected.

Table 3.4 is reporting the descriptive statistics of these compositional variables. It is clearly visible

in the minimum column that this selection of intervals leads to a lot of zeros for whom a fitting

approach for their handling will be needed, if a regression with an coordinate transformation of

compositional terms is supposed to be used. The exact number of zeros produced across each

interval are presented in Table 3.5. The high number of zeros in each interval show how widely the

distribution of SAT score in the subjects can differ across different classes and schools. For example

Table 3.4: Descriptive Statistics of the Compositional Terms computed in both Data Sets

Math Reading

Intervals Center Min Max Intervals Center Min Max

<450 0.2129 0 95.7 <425 0.3362 0 100.0
450–480 0.2564 0 71.4 425–445 0.2839 0 78.6
480–510 0.2409 0 53.8 445–465 0.2055 0 68.8
>510 0.2898 0 86.7 >465 0.1744 0 100.0

Total Variance 1.3224 Total Variance 1.7779

Note: The formula for the center and total variance are as they were defined in section 2.5. The test scores are those of
the kindergarten and only for the students for whom the kindergarten test score and the 8th grade test score is available.
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Table 3.5: Number of zero produced across each interval in the math and reading data set

Math Reading

Intervals Number Zeros Intervals Number Zeros

<450 330 <425 197
450–480 77 425–445 52
480–510 67 445–465 233
>510 130 >465 692

Total 604 Total 1174

the score distribution variables within some classes are only non-zero in the highest two intervals

and other classes only had scores within the lower ranges. Another issue which could lead to this

amount of observed zeros is that the classes of small size have between 13 to 17 students, so that

for this low number of students the scores maybe are not spread completely across all four intervals.

Therefore, a number different from zero could most probably be observed in those intervals, if the

sample set, in this case the classroom, had a larger amount of students. Hence, the zeros in the

added class composition variables are categorized as count zeros, as defined in section 2.4.

Table 3.4 further presents the center values of each composition which add up to one and show

where on average the higher or lower ratios of the composition are. The ratio of students within a

classroom in kindergarten for the math score is on average the highest in the range over 510 and

for the reading score below 425, so that most of the students of a classroom score in these ranges

for the respective subjects.

In a later part of this thesis, in section 5.2, it will be checked, if the width of the selected composition

intervals does affect the regression results and lead to different results or if they only change the

accuracy of the regression. However, in the next step the fitting zero imputation method is selected.
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4 Model Building and Zero Handling

4.1 Methodology GAM

The fourth grade scores are modeled using Normal regression models. Therefore, the fourth grade

score is denoted by Yi for student i and the model is denoted by Yi ∼ N (µi, σi) with µi = E(Yi)

representing the expected score in grade four by the student i and σi is the variance for student i.

An identity relation is used as the link between the mean and the predictor ηi, i.e. it is set to µi = ηi.

Due to the normal model, the probability density function for the response is assumed to be

P (Yi = yi) =
1

σi
√

2π
exp

(
−1

2

(
yi − µi
σi

))
(4.1)

Then the predictor including continuous, categorical and compositional data can generally be ex-

pressed by

ηi = β0 + ηcategoricali + ηcontinuousi + ηcomposition
i + ηrei , (4.2)

where β0 represents the intercept, all categorical covariates are represented by ηcategoricali , the con-

tinuous covariates are contained in ηcontinuousi , the term ηcomposition
i represents the compositional

predictor and the classroom random effects are specified in ηrei .

As introduced in section 2.7.1 the compositional covariates are ilr-transformed before any method

is applied and are then included into the compositional predictor. For the class score distribution

variables denoted by xim ∈ SD for student i and in the intervals m = 1, ..., n, selected in the data

extension described in section 3.3, the predictor term has the form

ηcomposition
i =

n−1∑
m=1

βcomp
m ilr(x)im =

n−1∑
m=1

βcomp
m zim. (4.3)

As the identity link function is used, the interpretation of the compositional data based on the results

of section 2.7.2 is: The relative ratio change of α in component m = 1, ..., n, affects the response

scale by the factor ln(α)clr(b)m with b = ilr−1(βcomp).

The model framework of choice is the generalized additive model (GAM), which has first been intro-

duced by Hastie and Tibshirani (1986). This flexible statistical method supports the incorporation of

non-linearities as the regression effects are often non-linear. Therefore, the continuous covariates,

in our data set, the test scores from kindergarten, are expressed in the following way

ηcontinuousi =
J∑
j=1

fj(uji) (4.4)

where uji are the continuous explanatory variables and fj represents a smooth function for the j-

th continuous explanatory variable. As Hastie et al. (2009, pp. 295–296) explains, these smooth

- alternatively called nonparametric - functions are fit by a scatterplot smoother. Typical examples

of these smoothers are the cubic smoothing spline, kernel smoother or P-splines. For fitting an

algorithm estimating all J functions simultaneously is needed. The first algorithm to do this was
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proposed by Hastie and Tibshirani (1986) and it is the basis of the application methods for GAMs until

this day. As these models keep the additive form as it is known from the classical linear regression

models, the interpretation does also not change and can be kept the same as before.

A link function is used to link the response to the predictor. Depending on the exponential family and

character of the response variable, different sets of link functions are available. As described above,

the response is fitted using a normal model with an identity link. The general form of the GAMs is

similar to the generalized linear models (GLM) and due to this, one can easily find an additive model

for every GLM model by changing the linear term to the smoothing function (Hastie et al., 2009, p.

296).

The application of GAM models in R is supported by the package mgcv (Wood, 2017), which provides

automatic smoothing parameter selection for multiple penalized spline components. In addition, a

set of different smoothing functions and exponential families with multiple link functions is provided.

The approach of the GLM is employed to include categorical and compositional terms into the model.

So that the terms are added linearly, i.e. the predictor has the form

ηcategoricali + ηcomposition
i = Viβ

cat + Ziβ
comp (4.5)

where Vi is the row vector of the matrix of only categorical covariates, which contains all categorical

covariates for student i in each row, βcat represents the parameter vector corresponding to these

covariates and Zi is the i-th row vector of the matrix of the ilr-transformed compositional covariates

and βcomp the corresponding parameter vector of the compositional terms. The linear terms are then

linked to the response via the same link function used for the continuous covariates while putting

them in the GLM model setting. The mixed model using linear and non-linear effects can also be

fitted by the function gam of the R package mgcv.

In the last step, the predictor of the random effect ηre is added to the model. The resulting random

effects are assumed to be independently and identically distributed (i.i.d.) normal with an unknown

variance which is estimated. Due to this assumption, the random effects can be treated like a smooth

term where the coefficients can be subject to a ridge penalty, i.e. an identity matrix as a penalty, as

it is of full rank and no further centering constraints are required (Wood, 2008).

To apply the forward or backward stepwise variable selection to a fitted model, the AIC has to be

computed for the estimated model parameters. If GAM is used for the model fit, the AIC formula

changes to the following expression

AIC = −2ˆ̀+ 2EDF (4.6)

where ˆ̀ is the log-likelihood evaluated on the model parameter estimated by penalized maximum

likelihood and EDF denotes the effective degrees of freedom. The effective degrees of freedom are

a transformation of the smoothing parameter λ since it does not represent a meaningful measure-

ment due to its’ dependency on the units of the data and thus to obtain a scale-free measure of

complexity (Harezlak et al., 2018, p. 28). The exact calculation of the EDF is described by Wood

et al. (2016, p. 1556) and was applied to the AIC function in the R package mgcv (version 1.8-33).

After applying the adapted AIC for GAM, the variable selection methods can be performed in the
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same way as explained in section 2.7.3.

4.2 Dealing with Zeros in Compositions

Previously, in section 2.4, the possible methods for handling zeros in compositional data were intro-

duced. However, in the data of project STAR, the class composition depends on the intervals which

were chosen and this selection of intervals introduces zeros to the composition, as it was shown in

section 3.3.

To treat these zeros, deciding which of the introduced methods fits the current data is crucial. The

first instinct would be to say that it is a case of structural zeros, because no students scored within

the specified interval in a particular classroom. However, the nature of the project was to assign

students to classrooms of different sizes and research the effect on their educational achievements.

Due to this, around a third of the classes participating in the project consisted of only 13 to 17

students. Therefore, it can be argued, see section 3.3, that the zeros can be assumed to be count

zeros.

This distinction of the zeros is essential, because the process to impute zeros values would be

different in both cases and there are limitations on which methods can be used for each type of

zero. The most advances in zero handling approaches were made for rounded zeros in the last two

decades. Several EM-based algorithms were developed and are now considered efficient methods

to make a broader range of possible functions available. The research in the area of count zeros did

also take some steps forward and even showed that the methods found in the area of rounded zeros

can be applied as well (Martı́n-Fernández et al., 2015). However, there is still no general method

for structural zeros (Martı́n-Fernández et al., 2011, p. 53–54). Different approaches, including

conditioning by zero patterns, projection or imputation by constants, were previously discussed in

section 2.4 and all included certain disadvantages. For example, the conditioning approach is only

feasible on a data set, if the composition does not contain many different parts. This problem arises

because for every zero pattern a data subset is used to compute the regressor per indicator and the

number of required indicator variables is increasing exponentially with each part (Filzmoser et al.,

2018). On the other hand, imputation of the zeros by a constant would not take into account that

the true value of the part is zero and replace it by a small value, as this goes against the nature of

a structural zero this approach is in general not supported (Boogaart and Tolosana-Delgado, 2013,

Filzmoser et al., 2018).

Since the nature of the zeros is assumed to be count zeros, the methods for rounded zeros like the

multiplicative replacement, implemented within the R package compositions as well as the EM-

based methods by Martı́n-Fernández et al. (2012) and Templ et al. (2016) are applied and compared

to the projection approach also used for structural zeros and the k-nearest neighbour approach by

Hron et al. (2010) developed for missing values. Even though the last approach using the k-nearest

neighbours was generally developed for the imputation of missing data in compositions, due to the

similar concepts of zeros and missing values in compositional data analysis, it is included in the first

analysis to compare the approaches on the data. This method has the limitation of not considering

a detection limit and thus, the imputed values are not limited by a threshold and possibly contain

larger values.
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Other limitations for the approaches of imputation by a constant and projection, which corresponds

to an imputation by the mean, include the fact that they are not taking the properties of the data set

below them into consideration. This results in them being inflexible and can introduce an artificial

correlation. Furthermore, none of the developed imputations include a multiple imputation approach

to keep the risk of underestimation low. The multiple imputation approach was first looked at by

Martı́n-Fernández et al. (2003b), however, in the most recent application methods, it was not imple-

mented and most approaches use an EM-based method. Moreover, currently, none of the EM-based

methods include the knowledge of the response into their imputation approach and thus can only

use the information of the compositional data, even though a more efficient estimation of imputed

values could be achieved using the complete information at hand.

Therefore, new methods were continuously developed in the context of zero imputation of composi-

tional data sets, but there are still many challenges surrounding this topic. Especially for count and

structural zeros, a fitting approach that can be applied to any data set is still missing.

4.3 Comparison of the Zero Handling Methods

In the first analysis the impact of the chosen zero imputation method on the coefficient estimates of

the composition is observed. These results serve as a decision basis on which imputation method is

selected later on. Therefore, the data of the compositions will first be imputed by each method men-

tioned above: multiplicative replacement, EM-based methods by Martı́n-Fernández et al. (2012)

(impRZilr) and Templ et al. (2016) (imputeBDLs), projection and k-nearest-neighbours (KNN)

method by Hron et al. (2010). Afterwards the compositions are ilr-transformed, ilr(xcomp
is ) = zcomp

is ,

and then included into the specified GAM model of the expression

ηis =β0 + 〈βcomp, zcomp
is 〉A +

J∑
j=1

fj

(
xscore k
jis

)
+ β1x

sex
i

+ β2x
race
i + β3x

clsize
i + β4x

freelunch
i + β5x

schid
i + δclid,

(4.7)

with the covariates, comp as the class composition in the subject s in kindergarten, for which the

mathematics and reading scores are used and score k is the individual score in the subject s in

kindergarten. Further covariates include sex as the students gender, race the students ethnicity

and race, clsize the class size the student belonged to in kindergarten, which is either a small class

or a regular class and freelunch the free lunch status in kindergarten. The school id denoted as schid

is added as school-fixed-effect and the class id denoted as clid is added for the class-random-effect

of the students in kindergarten.

The observed results for both the model with the math test scores and the model with the reading

scores show similar behaviours based on the zero imputations used. Therefore, only the results for

the model using math scores are included in Figure 4.1 and the results using the reading score are

included in the appendix. The multiplicative imputation is called imputation by a constant in Figure

4.1, as it is an imputation by a constant to which then a closure is applied.

Except for the compositional terms, which show more diverse parameter estimations, all other non-

compositional terms, including the intercept, are in a close range between the model estimations as
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Figure 4.1: clr-transformed compositional estimates and their confidence bounds in the math score
model for the composition of the kindergarten math scores (devided into scores below 450, 450 to
479, 480 to 509 and above 510)

expected since the underlying model and data are the same. Moreover, the tests regarding model

assumptions of homoscedasticity and normality correspond in all models of both data sets. This

includes that all models support the homoscedasticity assumption and that across the reading mod-

els, the normality assumption holds, but in all math models, the same kind of normality issues show.

Thus the zero imputation method does mainly affect the compositional estimates. So that for the

evaluation of which method is appropriate, the focus will only be on the results of the compositional

model parameters.

For the imputation by a constant value, zeros are replaced by two-thirds of 10−6, which was set

as the detection limit. For the algorithm imputeBDLs a robust linear regression model is used and

the predictors with the lowest variation are not chosen in every step. In the case of the impRZilr

algorithm, a robust regression using an MM estimator is solved and for the k-nearest-neighbours

function, the approach using the mean is applied.

In Figure 4.1 the points represent the estimated coefficients for the composition after they got trans-

formed into the Aitchison geometry using the inverse ilr transformation and then clr-transformation

to get an interpretable result, as explained in section 2.7.2. The red line shows the zero point as a

reference which means the compositional part does not impact the response if it lies on the line. The

positive and negative impacts on the response can directly be understood by the sign of the coeffi-

cient. Since β can be rewritten as β = ilr(b) = UT clr(b), as shown in section 2.3.3, and it holds that

UUT = ID − 1
D1D1TD, the clr transformed coefficients can be reexpressed as clr(b) = Uβ. Using

this knowledge, the covariance matrix for the clr transformed covariates is computed by U Σ̂UT with

the estimated covariance matrix Σ̂ of the coefficient β. Based on this, in addition to the coefficients,

their clr-transformed 95% confidence intervals are visualized in Figure 4.1.
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The differences in the compositional estimates of the model are highly significant for choosing a

method later on, as the data set introduces a high amount of zeros in the compositional terms. The

most noticeable result in Figure 4.1 is that the imputation by a small constant leads to coefficients

very close to the neutral element, which is the composition of all zeros after a clr-transformation.

Thus the impact in the interpretation is large and in general, no impact on the response is observed.

As this estimation does not coincide with the estimators of other imputation results, the interpretation

of these coefficients can be misleading due to the imputation.

The EM-based algorithm imputeBDLs is also resulting in coefficients closer to the neutral element,

but is not as strongly affecting the estimators as the imputation by a constant. Even though the

interpretation is possible using this imputation method, each part of the composition will be similar.

Moreover, depending on the choice of intervals, this function does not always lead to feasible results

in this context. Therefore, it may not be the best fitting method for the data set at hand.

The other approaches, including projection, impRZilr algorithm and k-nearest-neighbour algorithm,

are producing very similar estimates and only have some minor differences, which are mainly in

the two inner intervals. The outer borders of the intervals, which were selected, show only minor

differences as well in the estimation of the three approaches. In both inner intervals, the estimates

across the three approaches show a consistent positive and negative impact on the response, but

the actual estimate is shifting its value. The two approaches that were not explicitly designed for

rounded zeros, the projection and KNN, are similar because the projection can be interpreted as

the geometrical mean of the clr-hyperplane and in the KNN method, the mean approach was used.

Therefore, both methods are based on a mean value of the composition. Since the results of the

two approaches do not differ a lot from the impRZilr algorithm by Martı́n-Fernández et al. (2012)

using a robust regression, the usage of these methods seems to fit the current data set as well and

would not skew the results.

In contrast to the results of the coefficients, the confidence intervals of the imputation by a constant

and imputeBDLs algorithm are a lot smaller than the relatively large confidence intervals of the other

approaches. This observation leaves a higher degree of uncertainty in the approaches with large

confidence intervals and a less accurate predictor.

All in all, due to the large effect of the constant imputation and imputeBDLs algorithm on the esti-

mated coefficients and the hardly interpretable results, as well as feasibility issues, they are not the

best choice for the underlying data. Therefore, the imputation method of choice should be either

projection, impRZilr or k-nearest-neighbour algorithm as they all show estimation results that are

close together with no more considerable differences and which are also interpretable.

Using the AIC value to measure the goodness-of-fit for all models shows that in both subjects, the

best model is the one using the impRZilr algorithm. It is closely followed by imputeBDLs in the

math model. In the reading model, it is leading in front of the k-nearest-neighbour and projection

approach.

So that the impRZilr algorithm was chosen for the zero imputation throughout all further models

because it offers the possibility the get meaningful estimates which are interpretable. Furthermore,

it belongs to the three methods with the least impact on the estimated parameters. Moreover, an

advantage to the other methods is that this approach offers a robust imputation method where the
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Table 4.1: AIC value of the model of each zero imputation method

Projection constant
Imp.

imputeBDLs impRZilr KNN

Math Model 22461.58 22457.29 22454.64 22454.29 22458.81
Reading Model 27162.62 27173.45 27172.3 27156.96 27162.37

MM estimator is used in the regression so that this imputation is less sensitive to outliers and is

performing the best prediction based on the AIC. The imputeBDLs algorithm has a robust regression

as well, but it showed more computation issues depending on the selected intervals chosen and thus

was not selected. Furthermore, was the impRZilr algorithm developed for rounded zeros and is

thus imputing the zeros by values below a threshold which is also needed for the assumption of

count zeros.

However, if computational very demanding calculations are performed, it can be considered to use

the mean-based approaches like projection and KNN, since they are computationally faster than the

EM-based method and lead to estimations almost the same as in the impRZilr.
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5 Regression Analysis

After the differences in the zero imputation approaches are analysed and a suitable method is se-

lected, another consideration in this context has to be: How do the selected intervals influence the

estimation? Since the variable which is transformed into a compositional variable was originally con-

tinuous and not categorical, the parts of the composition are not fixed. Thus, the parts are chosen as

intervals over the continuous variable and therefore, histograms over the covariate are considered

as dependent variables. Hence, the next step is to refit the estimation for multiple sets of inter-

vals to investigate the influence of the selection. Furthermore, the impact on the response will be

estimated separately for the two class sizes to analyse whether the influence of the compositional

variable changes. Finally, as the last step of the analysis, the long-term impact of the compositional

covariate on the response is estimated until the students reach grade eight.

5.1 Baseline-Model without Composition

Before discussing the impacts of compositional group distribution, the impact of the standard peer

effects as introduced in equation 1.1 are estimated. Each classroom is considered a peer group, so

that the sample mean in each group, net of the individuals outcome, is the variable of interest. This

quantity is also often referred to as the ’leave-out mean’ denoted as ȳ−i,cs for individual i in subject

s and in class c which has a total of N students with

ȳ−i,cs =
1

N − 1
(Nȳcs − yics), (5.1)

where ȳcs is the mean across each class and yics is the individual score. In observational data sets,

sometimes the inclusive mean, the mean including the score of individual i, is used because only

a fraction of peers of a cohort are available and thus, the inclusive mean is more representative of

the cohort. As all individuals belonging to a cohort are known in Project STAR, there is no need

to use an inclusive mean to study the impact on the response. Comparable studies of peer effects

in the same setting have been studied (Boozer and Cacciola, 2001) and pointed out further group

problems, including that each group is not an exogenous variable and even if the groups are formed

in an exogenous way, the individual and group outcomes were simultaneously collected, the so-

called ’reflection problem’ by Manski (1993).

The concern regarding endogenous variables will be ignored in this context, as it was shown in

previous studies that the assignment to each class is indeed random (Whitmore Schanzenbach,

2006/2007 and Sojourner, 2013). As expressed in equation 4.7 variables of interest are then given by

the students demographics, including gender (sex), race (race) and free lunch status (freelunch)

and their assignment to a class size, either small or regular class (clsize). This way the effect of

the treatment of class size assignment on the subsequent test scores is captured as well. Addition-

ally, the between-school effect is included to estimate the fixed effects across each school (schid),

because the randomization in project STAR was executed within each school. As the last variable a

class-random-effect δclid is added for the effect across each class. Then the predictor is expressed
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Table 5.1: Regression estimates in the non-compositional peer effect model using the average class
score

Math Fourth Grade Reading Fourth Grade

Intercept 657.99∗∗∗ (24.788) 493.10∗∗∗ (28.477)
Peers’ Mean Test Score 0.048 (0.051) 0.269∗∗∗ (0.067)
Female 6.989∗∗∗ (1.662) 6.737∗∗∗ (1.308)
White 7.270 (3.800) 10.139∗∗∗ (3.071)
Non Free Lunch 17.438∗∗∗ (2.077) 13.404∗∗∗ (1.650)
Small Class 3.221 (1.887) 4.598∗∗ (1.562)
Class Random Effects Yes Yes
School Fixed Effects Yes Yes

AIC 23034.41 28043.93
R2 0.1653 0.1747

Note: The standard errors are added in parenthesis. The stars show the significance based on the p-value from very
significant ’***’ with values below 0.001 to ’**’ with values below 0.01 and ’*’ with a p-value below 0.05.

for individual i in class c and subject s by

ηis =β0 + β1ȳ−i,cs + β2x
sex
i + β3x

race
i + β4x

clsize
ic + β5x

freelunch
i + β6x

schid
ic + δclid. (5.2)

A normal regression using GAM is estimating the variables of interest and is presented in Table 5.1.

Because almost all variables are categorical, the GAM corresponds to a general linear model (GLM)

to which the class-random-effect was added. Summarising the results presented in Table 5.1, the

peer effect in the model using the math test scores is small with a value of 0.05 and thus, the group

behaviour had a considerably small impact on the test scores after the individual reached the fourth

grade. However, considering the reading test scores, the peer effect is capturing a higher impact on

the response with 0.27, so that for this subject, the peers had a long-lasting positive influence on the

individual’s performance, which could be captured. The estimates are generally in accordance with

the previous papers by Boozer and Cacciola (2001) and Krueger (1999). The estimates for small

classes are significant and higher than the regular classes by 3.2 points in the math scores and 4.6

points higher in the reading scores.

Furthermore, a large discrepancy between different socio-economic classes can be shown by the

estimates of the free lunch variable. The students who are not receiving a free lunch have 17.4

points more in math and 13.3 points more in reading than those who receive a free lunch. So that

there seems to be a big gap between students of better-earning families and students from low-

income families. In accordance with other studies, it can be observed that girls and students who

are white generally scored higher than the other groups.

After applying the backward stepwise algorithm to select the best model, the math score model

without the class-random-effect is the best fit based on the AIC. For the model considering the

reading score based on the AIC, the model without any school-fixed-effect and class-random-effect

is the best fit. For the math score, the peer effect is not only small and has almost no impact

on the fourth grade score, it is also not significant. Whereas in the reading model, peers have a

significant effect and an impact on the fourth grade score of the individual. If the average peer score
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in kindergarten increased by a unit, the individual score in the fourth grade increased by 0.2 points.

In the case of using the peer group mean to study the influence on the performance of an individual,

the interpretation is straightforward. Suppose the mean increases, the individual’s score later in time

increases as well. However, if the class composition is used, the results are not as straightforwardly

interpretable. It cannot be said that if the peer group scores higher, the individual scores higher

as well. The correct interpretation would be: If the relative ratio within a peer group increases in a

specific score range, the estimate shows how the individual’s score is influenced. Thus, not only a

general estimate of the cohort is used to see the influence, but the whole distribution of the variable

is considered. It is shown how the combination of students in a cohort changes the individual scores.

5.2 Influence of Interval Selection

As a starting point to analyse the influence of the size of the selected intervals on the regression

results, a set of three intervals is chosen for each of the kindergarten test scores in the two data

sets. For selecting the first intervals, a set minimizing the amount of zeros and thus the potential

effect of the zero imputation is searched and selected. After the first three intervals are set, sets

of finer ranges dividing the initial interval ranges in half of the previous size while keeping the outer

intervals constant are used. This separation leads to the selection of a set of three, four, six and ten

equidistant intervals as specified in Table 5.2.

This separation of intervals keeps them comparable since the borders are related. The intervals

were not split any further as some classes contain only 13 students. A set of 10 intervals is already

bound to introduce zeros into the data set and even more intervals with certainty will introduce more

zeros which can lead to skewed results through the imputation process.

For each set of intervals, the compositional term based on the kindergarten scores is computed as

a proportion of students in each class who scored within those ranges. The zeros are imputed by

the method impRZilr afterwards. For the imputation, a robust regression method with the MM-

estimator is used so that the impact of outliers does not skew the estimation results in any other

Table 5.2: Overview of the selected intervals for the kindergarten scores per data set

Math Reading

3 Intv. 4 Intv. 6 Intv. 10 Intv. 3 Intv. 4 Intv. 6 Intv. 10 Intv.

<450 <450 <450 <450 <425 <425 <425 <425
450–510 450–480 450–465 450–458 425–465 425–445 425–435 425–430
>510 480–510 465–480 458–465 >465 445–465 435–445 430–435

>510 480–495 465–473 >465 445–455 435–440
495–510 473–480 455–465 440–445
>510 480–488 >465 445–450

488–495 450–455
495–503 455–460
503–510 460–465
>510 >465

Total Number of Zeros

468 604 1702 6983 911 1176 3025 9708
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Figure 5.1: clr-transformed compositional coefficients with their confidence bounds for each interval
selection of the math score model

direction.

In the previous model, it was unnecessary to include the individual’s score into the peer group

mean because enough observations were available to represent each cohort well. However, if the

compositional terms are used as a group distribution, the individual’s score is included to have

enough observations to represent the group. A problem arising in this context is that students who

scored in a specific interval are counted. Due to this, some intervals have a low number of students

more often. Excluding each individual increases the number of zeros, although it is a problematic

value in the log-ratio methods needed for the estimation.

The model stays constant while the compositional terms are replaced in each model fit. Hence, the

model is refitted for each set of intervals in the composition. The results are shown in Figure 5.1

as the clr-transformed estimates and their transformed 95% confidence intervals, as it was done in

section 4.2 considering the zero imputation methods. The direction of the estimators should not be

contradicting in the corresponding intervals; otherwise, the regression is not robust to the selection

of intervals for continuous variables. Therefore, it needs to be considered how the estimation can be

adjusted to be robust to the selection.

The compositional estimates of the model using math scores and the one using reading scores

show analogous results. Hence, only the estimators of the math score are visualized in Figure 5.1.

The estimation results of the reading scores are added to the appendix. The coefficients of the

outer intervals are generally constant throughout the models and correspond to the general trend

of the parameters: The interval on the lower scores has a positive impact while the interval of the

higher scores has a negative impact. In detail, this means, if the ratio of students within a class in

kindergarten having higher scores increased, the score in fourth grade of an individual decreased.
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On the other hand, if the ratio of students within a class in kindergarten scoring in the lower range

increased, the individual score in fourth grade increased as well. This result is counter-intuitive; one

would assume that an individual’s score would increase if more of their peers performed better, as it

was in the baseline model of the previous section.

For the other intervals between the outer ranges, it can be observed that the more intervals are

added, the more their model parameters are close to the zero line. This means the parameter of

each interval has a smaller impact on the response if the ratio within their class in this compositional

part increases. This effect can even lead to the result that some parts of the composition have no

impact on the response anymore, e.g. because none of the students have scored in this interval or

only very few, which did not have a large enough influence on their peers.

Especially the clr-transformed estimates for ten intervals seem to be getting closer to the neutral

element as more compositional parts are included. The main factor contributing to this observation

is most probably the increasing number of zeros occurring in the model with the increasing number

of intervals. Depending on the imputation method, this can have multiple effects. For example,

in the applied EM algorithm to impute the zeros by a very small value below a detection limit, the

general ratio of the composition is kept. However, the zeros occur so often because the number of

intervals is too big for this data set that the actual data points cannot show their influence after the

computation. Therefore, the results are normalized closer to the neutral element.

In detail, it can be observed in Figure 5.1 that for the intervals of the upper half, the response would

decrease or not change if the ratio in these intervals increases. The predictors estimated for six

intervals show that the fourth grade math test score decreases if a higher ratio of students scored

in the highest interval, above 510 points, in their kindergarten classroom. No influence is shown on

the fourth grade scores if a higher relative ratio of students with kindergarten scores in the intervals

480 to 494 and 495 to 509 is present in a class. If a higher relative ratio of students in the intervals

below 479 is present in a class, the score in fourth grade increases. The interpretation for the other

interval widths corresponds to this finding.

Quantitatively the estimates of the model using three intervals for the math test score lead to the

interpretation that if the ratio of the highest interval doubles while keeping all others constant, the

response decreases by ln(α)clr(b1) = ln(2) ∗ (−4.329) = −3.001 points. On the other hand, if the

ratio in the lowest interval doubles while the others are constant, the score in fourth grade increased

by ln(2) ∗ 2.210 = 1.532 points and if the ratio in the third intervals doubles, the response increases

by ln(2) ∗ 2.119 = 1.469 points.

Considering the reading score, the direction of the coefficient corresponds to the observation of the

math test scores. In that setting, a higher relative ratio of students scoring low in the kindergarten

class increases the score in the fourth grade and a larger relative ratio of students scoring high de-

creases the fourth grade score. In the case of three, four and ten intervals, the results are coinciding

as well.

This effect could be explained by teachers responding to the class level so that their way of teaching

is adapting to whether more students are getting higher scores and can follow the class faster or

more students have problems following the class contents. If a higher ratio of students is in a

classroom, it could be that more of the students scoring low are left behind. In contrast, if more
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students in a class are scoring low, then the teacher is trying more to teach in a way that everyone

can follow more quickly and thus, the scores, later on, can also be influenced positively.

Since the minimum class in the data set is 13 students, the maximum of intervals should not exceed

13 as well, but to get interpretable results, it should be smaller, e.g. six intervals maximum. This

way, there are enough students distributed over these intervals to receive meaningful results.

The other variables, including females, white students, receiving a non-free lunch and assignment

to a small class correspond to the previous estimates in section 5.1. Table 5.3 shows that females

score across all interval selections in the model with the reading scores around 4.9 to 5 points

higher, white students scored 5.4 to 5.5 points higher and students with non-free lunches have 4.3

to 4.5 points more. The influence of a small class on the individual’s performance is also across

all models using the reading score constant around 4.5 to 4.8 points. Considering the models with

math test scores, females scored on average 6 points higher and students with non-free lunch had

10.7 points higher. Non-significant variables are the class size variable indicating small classes for

which students received from -1.0 points less to 0.4 more and the variable indicating white students

which scored on average 2.2 points less.

In Table 5.3 the AIC value shows that with an increasing amount of intervals, the value of the AIC

is increasing as well. Thus the models’ predictive performance is decreasing. Using the math

scores, the model with three intervals has the best fit based on the AIC. Whereas in the model

including the reading score, four intervals lead to the best AIC value. Based on the model, it can

be observed that if the number of intervals is too small, an underestimation of the predictor can

happen. If too many intervals are separated, the model overestimates the predictor. Thus using the

AIC as a measure, the best prediction based on the choice of intervals can be selected for each

model. Using the adjusted R2, one can then further measure how well the model explains the data.

Comparing these values with the results retrieved in Table 5.1 shows an increase of the adjusted R2

value in the models of each subject. Hence the data is explained more by the models considering a

compositional term.

Table 5.4: Variables included in each model after variable selection using the AIC values

Math Intervals Reading Intervals
3 4 6 10 3 4 6 10

Intercept X X X X X X X X
Female X X X X X X X X
White X X X X
Non Free Lunch X X X X X X X X
Small Class X X X X
Class Random Eff. X X X X
School Fixed Effects X X X X X X X X

Applying the backward stepwise variable selection with the AIC value on all models in both subjects

leads to the variable selection displayed in Table 5.4. Considering the math test scores, the variables

class composition, gender, free lunch status, individual score and school-fixed-effects are significant.

In the case of the reading score, no variables get omitted from the model because the AIC value

does not improve with any omitted variable. This shows that the significant variables do not change
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with the change of the selected intervals. Nevertheless, more variables are omitted from the model

compared to the baseline model for the math scores. The peer effect, which is non-significant in the

baseline model, is significant as the compositional peer effect.

5.3 Influence of Interval Selection per Class Size

As discussed previously, some classes can have only 13 to 17 students and are considered small

classes. Other classes in the data set contain 22 to 27 students and are considered regular-sized.

Therefore, it is possible that a different distribution of test scores is present, based on the class

size or that the impact of the covariates changes based on the size of the class an individual at-

tended. The compositional term is computed in different intervals for each class size to cover these

cases. Then one model per subject is fitted to analyse the impact of the covariates on the response

separately for each class size.

Figure 5.2: Distribution of kindergarten test scores for math and reading separated by class size
which was either small or regular over all students participating in project STAR while in kindergarten

Therefore, the two data sets, based on the two subjects, math and reading, are further separated

for the two class sizes. For the math test score and small classes, the remaining set consists of 693

students and for regular classes of 1566 students. In the data set of the reading score, 875 students

attended a small-sized class and 1947 students a regular class. The distribution of the kindergarten

test score in each of the described data sets is shown in Figure 5.2.

If the random assignment to the classes was carried out as planned, the student demographics in
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Table 5.5: Overview of student demographics per class size in the math and reading data set

Math Data Set Reading Data Set
N Mean SD N Mean SD

Small Classes 693 1566
female 0.5007 0.5004 0.5086 0.5002
non free lunch 0.6768 0.4680 0.6068 0.4887
white 0.8398 0.3670 0.7326 0.4429

Regular Classes 875 1947
female 0.5172 0.4999 0.5141 0.4999
not free lunch 0.7075 0.4550 0.6266 0.4838
white 0.8563 0.3509 0.7442 0.4364

Note: This table reports the descriptive statistics separately for the class size of the students considered in the math
score data set and in the reading score data set. Gender is measured by an indicator taking the value 1 if the student is
female and 0 otherwise. Non free lunch takes the value 1, if a student is not receiving a free or reduced-price lunch and 0
otherwise. Race takes the value 1, if the student is white and 0 otherwise.

small and regular classes should be the same as well as they should correspond to the distribu-

tion across the whole data set. Table 5.5 reports the mean and standard deviation of the student’s

gender, race and free lunch status. Across each data set belonging to either the math or read-

ing data, the proportion of females, white students and the students who are not receiving a free

meal in kindergarten are not showing big differences. Furthermore, the proportion of the students

corresponds to the distribution of the whole data set, which is shown in Table 3.3. Considering

these observations and the results found for tests of the randomization by Whitmore Schanzenbach

(2006/2007) and Chetty et al. (2011), it can be assumed that the random assignment across the

class types was executed correctly. Therefore, the regression results are not influenced by changes

in the student’s demographics in the class.

The previous section showed that it does not make sense to separate the composition into too many

intervals due to the limited amount of students a class can have. To compare the two groups of

small-sized and regular-sized classes, four sets of intervals are selected and compared similarly to

the previous models. A set of three, four, five and six intervals is formed for each subject and class

size. The selected intervals are chosen in a manner that the amount of occurring zeros is minimized.

The selection is presented in Table 5.6.

Due to the separation into the class size, the general distribution of scores is different in both groups.

In Figure 5.2 it is shown that the general distribution is similar between the two groups of each

subject. Nevertheless, since the total number of observations is different, the counted students

across each score are lower in the group of students in a small class. Thus the curve is flatter

than the curve of regular-sized classes and the borders of the intervals are selected differently.

Otherwise, it would lead to a higher amount of zeros within the data set of the small classes. Across

both subjects, the main proportion of regular-sized classes is a little higher around the median of the

score than in the smaller classes. Thus the range of intervals on the lower test scores is selected up

to a higher value than the regular class intervals. The intervals in the upper range are also selected

lower than the intervals of the regular classes. All remaining intervals are selected equidistant to

each other.

Figure 5.2 above shows how the scores are distributed in the four cases. The math score distribution
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Table 5.6: Overview of selected intervals for kindergarten scores per class size used to calculate the
compositional terms

Math Regular Class Math Small Class

3 Intv. 4 Intv. 5 Intv. 6 Intv. 3 Intv. 4 Intv. 5 Intv. 6 Intv.

<460 <460 <460 <460 <470 <470 <470 <470
460–509 460–484 460–476 460–471 470–509 470–489 470–482 470–479
≥ 510 485–509 477–493 472–484 ≥ 510 490–509 483–495 480–489

≥ 510 494–509 485–496 ≥ 510 496–509 490–499
≥ 510 497–509 ≥ 510 500–509

≥ 510 ≥ 510

Zeros Zeros

90 263 634 1098 181 253 489 995

Reading Regular Class Reading Small Class

3 Intv. 4 Intv. 5 Intv. 6 Intv. 3 Intv. 4 Intv. 5 Intv. 6 Intv.

<425 <425 <425 <425 <435 <435 <435 <435
425–439 425–431 425–429 425–428 435–454 435–444 435–441 435–439
≥ 440 432–439 430–434 429–431 ≥ 455 445–454 442–448 440–444

≥ 440 435–439 432–435 ≥ 455 449–454 445–449
≥ 440 436–439 ≥ 455 450–454

≥ 440 ≥ 455

Zeros Zeros

187 515 1105 1754 239 665 1571 2851

in the subsets does not show the expected normal distribution, while the reading score shows a

normally distributed variable. Thus the model, including the math score, can lead to issues with the

normality, which will be discussed later.

After the computation and imputation of the new compositional terms the model of equation 4.7,

exchanging the compositional terms only and using the separated data sets, is fitted. As before the

compositional variables are included in their ilr-transformed form, ilr(xcomp
is ) = zcomp

is ,

ηis =β0 + 〈βcomp, zcomp
is 〉A +

J∑
j=1

fj

(
xscore k
jis

)
+ β1x

sex
i

+ β2x
race
i + β3x

freelunch
i + β4x

schid
i + δclid.

(5.3)

The terms for variable clsize are omitted from the model because the data was separated based on

this variable and it is a constant in the models. All other variables for scores, gender, race and free

lunch, as well as school-fixed-effects and class-random-effects, are kept in the models.

Table 5.7 reports the estimates of the regressions relating the mid-term educational attainments of

the students to their class composition separately for the class size. Panel A and Panel B separate

the results for the small-sized class and regular-sized class, respectively. The separation of the data

set leads to similar results in the two subsets, which resemble the model considering the whole data

set. Due to the small subset of small-sized classes, the estimators do not all show significance.

The significant variables in both models correspond in the direction of the estimates but have minor
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differences between both models. For example, in the model using math test scores, the intercept

with a value from 724 down to 694 for small classes is higher than the intercept for regular-sized

classes with a value around 683. The same holds for the students not receiving a free lunch in small

classes. They have around 11.7 points more in the fourth grade, while they score around 9.6 points

higher in regular classes. The other demographics show differences depending on the class size as

well. The females have 4.4 points more in fourth grade if they attended a small class and 6.4 points

more if they were assigned to a regular-sized class. The biggest difference is that white students

assigned to a small class scored over 8 points less than the other students, but if they were assigned

to a regular class, they scored only 0.1 points less than the other students. Therefore, the ethnicity

and race of a student in regular classes did not impact the later score, but in the small classes, they

did impact the scores.

In the case of the reading score, the intercept is similar for both class sizes. The small classes have

a value of around 630 and regular classes of 620. However, except for the non-free lunch status

covariate, which is 4.0 points in small classes and 4.9 points in regular classes, all other variables

show some differences. This can be shown, for example, with the estimator for the coefficient if the

student is white. In a small-sized class, white students score 0.5 points lower than the rest in the

fourth grade, but white students get 7.1 points more than the other students in regular-sized classes.

Thus, in this subject, the effect of ethnicity and race of students seems to have the opposite effect as

in math. On the other hand, the influence on females corresponds to the results in the math score.

In smaller classes, females have higher scores in fourth grade, around 2.7 points, but if they were in

regular classes, they score even higher in fourth grade with around 5.9 points.

After the variable selection using the AIC as a measure on the best models, the model with three

intervals of the reading score was selected in both class sizes. For the math models, the model

with five intervals for the small classes and the model with three intervals for regular-sized classes

are the best fit. All models are reduced to their significant variables. In the model with the reading

score in small classes, the variables of the class composition, free lunch status and the school-fixed

and class-random-effects are contained, while in regular classes, the full model without the class-

random-effect is selected. Using the math scores, the models for both class sizes yield the best fit

for the full model without the race and class-random-effect.

Thus, considering math scores, the significance of the variables does not change with respect to the

class sizes. Nevertheless, the influence of each variable on the response changes depending on

the class size. If the reading score is used, the significance in the variables with respect to the class

size is changing. Hence, leading to different variables affecting the response. However, the variables

contained in both class sizes for the reading score also have a similar impact on the response.

The compositional predictors, which are shown in Figure 5.3, separate the effects of the intervals

belonging to the compositional peer effect on the individual scores. This allows to qualitatively

interpret and visualize the effect of each interval section on the fourth grade score. Because the

results for all sets of intervals in both subjects are showing the same behaviour, only a subset of

figures is included in Figure 5.3 and the other results are added in the appendix.

The clr-transformed predictors of the math score show in Figure 5.3 that the students in classes with

relatively more students who scored high in kindergarten have a lower score in the fourth grade. On

the other hand, if students attended a class with relatively more students scoring in the lower part of
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Small Classes of the Math Model

Regular Classes of the Math Model

Figure 5.3: clr-transformed coefficients with their confidence bounds per class size for math test
scores using three, four or five intervals as compositional terms

the distribution in kindergarten, they have a higher score in fourth grade. This result corresponds to

the previous observations of the whole data set. The math model shows a linear behavior across all

models over the intervals except for the finer range of the intervals of regular classes. In that case,

some of the intervals, including higher scores, show a positive but relatively close to zero impact

on the fourth grade scores. The previous observation of section 5.2, the finer the intervals get, the

more they get closer to the neutral element, can be observed again in the subset of the small classes

using the math data. Starting with five intervals, the compositional terms are leaning more towards

the neutral element. In this case, already five intervals are introducing too many zero values in total

across the whole distribution and cancel out the influence of all other occurring values. All in all, the

results in the compositional terms between the two class sizes do not show considerable differences

in the visualization.

In the case of reading scores, the clr-transformed predictors of regular-sized classes show as well

that students in classes with a relatively higher share of students scoring in the highest section have

a lower score in fourth grade. Conversely, students with a relatively higher share of classmates

scoring in a lower interval have a higher score in fourth grade, see Figure 5.4. The predictors of the

small classes head in the same direction except for some of the lower-mid intervals. Some intervals

also negatively impact the fourth grade score, while in the regular classes, these intervals are close

to zero. Even though the number of zeros increases in these subsets, if the amount of intervals

increases, the impact of compositional terms stays the same as in the lower number of intervals.

Thus the increase in zeros in this subset with compositions up to six intervals does not affect the
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Small Classes of the Reading Model

Regular Classes of the Reading Model

Figure 5.4: clr-transformed coefficients with their confidence bounds per class size for reading test
scores using three, four or five intervals as compositional terms

regression results.

Considering these observations, there are differences between the groups depending on the class

size. The main change lies in the variables of the student’s demographics, as their impact on the

response changes. The compositional terms have a similar influence on the response if the relative

ratio in the composition changes, no matter which class size is assigned to a student.

5.4 Long-Term Impacts on Education Achievements

The previous analyses focused on the post-project score recorded in the fourth grade. To study the

long-term impacts of the compositional peer effect, the influence of the peer effect on the grades up

to eighth grade test scores is computed. Thus the CBTS test score of grades four to eight is used

as a response, as it was in the previous analysis, while in first to third grade, the SAT test scores

are the response. The version of the test in each grade is fitted for the level of the students in the

associated grade. Therefore, the range of the score is not the same over all the grades.

This way, the impact of the compositional peer effect of the kindergarten classroom can be tracked

throughout the students’ entire school career. The four interval compositional terms of the students’

math and reading scores at each grade level up to eighth grade are estimated. Since this separation

of the class distribution showed constantly good model properties and interpretable results in the

previous analyses. In this interval selection, the amount of zeros is reduced and thus does not affect

the compositional estimates.
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Panel A: Math Test Scores

Panel B: Reading Test Scores

Figure 5.5: clr-transformed estimate (solid line) and their confidence bounds (dashed line) for the
kindergarten class composition over each grade on the respective math and reading test scores

51



Regression Analysis

Figure 5.5 reports the estimates and confidence bounds of all models. Panel A contains the devel-

opment of the impact of the four parts of the composition with kindergarten math scores and Panel

B the development of the estimators using the reading scores for all later grades. The included

estimators are computed by the full model of the form presented in equation 4.7 exchanging the re-

sponse to each grades’ respective test score. The clr-transformed estimator and the corresponding

error bounds are computed, as explained in section 4.3 and plotted for each part, i.e. interval, of

the composition separately in Figure 5.5. The straight line shows the impact of the clr-transformed

composition estimates on later test scores over the students’ school career from first grade to eighth

grade. The dashed lines are the 95% confidence bounds computed separately for each estimate,

respectively.

The direction of influence on the response is constant in each composition, except for the third part

of the math composition. This part represents the proportion of students who scored in the upper

half but were not under the top students overall schools while attending kindergarten. The impact

on the response for the change of the relative ratio of students in this part stays close to zero, which

means that there is no effect on the response by this part. At the same time, the estimates are

changing signs, even if the impact increases in some of the years. Hence, this variable can be

assumed not to have any considerable impact on the response.

In some of the components, a so-called wash-out effect of the impact can be observed. The general

trend in each compositional part is toward the neutral element. This can be observed well in the first

and fourth part of the composition for the math test scores and the second part up to the sixth class.

For the second part containing the proportion of students in a class which scored between 450 and

479, the estimates suddenly increased, but a simple procedure can not find the direct reason. In the

reading model, the wash-out effect can be observed as well in the first part, containing the proportion

of kindergarten test scores below 425, and the fourth part of the composition, ratio of kindergarten

test scores higher than 465. In the other two compositions, the estimates are not decreasing in such

a linear manner; instead, they stay relatively constant overall grades.

The observed wash-out effect quantitatively means that if the relative ratio of students within a class

increases in this part of the composition, the impact on the response, in both directions, decreases

towards the neutral element and, in some cases, disappears completely. Thus, the spill-overs of the

compositional peer effects in a class while the students visited the kindergarten are stronger in the

short-term and lose their impact on an individual’s performance in the long term. However, even

though the impact is getting weaker in the long term, the actual direction the response is affected by

the composition stays generally the same.

5.5 Post-Kindergarten Compositions and their Long-Term Impacts

Up until now, all models considered the end of kindergarten test scores which were recorded at

the beginning of the project as the compositional term. Since the class structure in all four grades,

recorded while Project STAR was ongoing, is known, a subsequent analysis on the compositional

impacts of the other grades of the project can be performed.

To start the regression analyses on all grades, the interval selection has to be adapted for each

of the three compositional terms. As mentioned above, the SAT test was changing across each
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Panel A: Compositional Term based on the First Grade Scores

Panel B: Compositional Term based on the Second Grade Scores

Panel C: Compositional Term based on the Third Grade Scores

Figure 5.6: clr-transformed estimate and the confidence bounds for the class composition based on
grades 1 to 3 in the models with the reading test scores of all following grades as response
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grade as well as the range of the score. Since the range across the grades does not coincide,

the intervals are chosen separately for each grade and the corresponding compositional term. The

chosen interval borders for each grade are written in brackets in the title of each compositional part

in the associated plot in Figure 5.6.

The models over all grades are fitted for each compositional term and the estimators belonging to the

four parts of the composition are reported in Figure 5.6. In Panel A, the clr-transformed estimates

and their confidence bounds for the composition of the test scores in grade 1 are shown. Panel

B contains the corresponding figures for the second grade composition and Panel C for the third

grade composition. Due to the properties of the models using the reading test scores, they are more

suited for the purpose of analytical exploration and shown in Figure 5.6. The figure of the math

scores shows corresponding results and is included in the appendix.

The class composition of the first grade shows opposing results compared to the composition of

the kindergarten scores in the previous section. The first, second and third part of the composition,

which cover the lower intervals, are negatively affecting the responses if the relative ratio of a class

would increase in those parts. On the other hand, the fourth component containing the highest

interval influences the responses positively if the ratio in this part increases.

Previously, the impact on the score was the opposite using the kindergarten test scores. The first

and second parts had a positive and the third and fourth part had a negative impact on the response.

Starting with the first grade, the compositional peer effect changed.

This observation continues in the other Panels as well. In Panel B of Figure 5.6, the third part has

almost no impact on the responses anymore. The estimates in the other parts coincide with Panel

A. Lastly, in Panel C, the influence of the third part has now turned positive. The other parts are still

showing the same behaviour as in Panel A. Using the math test scores leads to similar findings and

the same result: The third and fourth part of the composition, containing the intervals of the higher

test scores, lead to an increase in the response if the ratio in a class scoring in those intervals of the

associated grade increases. The first and second part of the composition, containing the lower test

scores’ intervals, lead to a decrease of the response if the ratio increases in those intervals. These

are the expected results based on previous observations using peer effects based on peer means

and similar values. To sum it up, the higher the ratio of students receiving higher scores is within a

class, the more the individual score increases.
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6 Simulation

6.1 Student Sample Specifications

In this section, subsequent to the previous estimation, the results are applied to a set of simulated

data to assess the performance of the estimated model. Therefore, the data set is created assuming

the response and kindergarten test scores are normally distributed. To keep the data structure

according to the structure in Project STAR for the simulation, N = 80 schools are generated. For all

schools, a random vector containing either a 1 or 2 is generated for each class type, i.e. small-sized

class, regular-sized class and regular-sized class with a teacher aide. This vector initializes the

number of classes of each type in the school, as there were schools with more than three classes

included in the project. The vectors are generated with a probability of 0.2 for twos and 0.8 for ones

corresponding to the distribution of the actual data set, which can be expressed as follows

c1 ∼ B(N, 0.2, 2), c2 ∼ B(N, 0.2, 2), c3 ∼ B(N, 0.2, 2), (6.1)

where c1 corresponds to the number of classrooms of small size, c2 is the number of regular-sized

classes and c3 the number of regular-sized with teacher aide classes per school.

Similar to the number of classrooms per class type, the class size is randomly generated. The small

classes are based on a uniform distribution across the numbers from 13 to 17 and the regular-sized

classes are based on a uniform distribution across the numbers from 22 to 27. As the class size is

a discrete number, the randomly generated numbers are rounded to the next whole number. If two

classrooms of a class type are generated, then for simplicity reasons, the same class size is used

for both classes.

nsmall ∼ U([13, 17]), nregular ∼ U([22, 27]) (6.2)

Each class data gets a random assignment of kindergarten scores based on the distribution of the

kindergarten scores in the actual data set. Since the math score of the actual data has a mean of

µ = 485 and variance of σ2 = 2275, the sample is drawn from the distribution N (485, 2275) for the

math score. The reading score had the characteristics µ = 437 and σ2 = 1005, thus the distribution

N (437, 1005) is used for the reading score.

The student demographics are then randomly assigned across all generated students. To simulate

the gender, the uniform distribution U([1, 2]) is used, as there are only two possibilities, male and

female, considered. Since in the actual data set, around 50% of the students were female, this is

assumed in the simulated data as well. Therefore, the values are drawn from a uniform distribution

and the values are rounded to the next whole number because a discrete case is considered.

For the free or reduced-price meal, the random variable is generated with a probability of 0.3 that a

student received a free or reduced-price meal and 0.7 that they did not get a free lunch, i.e. a distri-

bution of B(NTot, 0.3, 2) with the total number of students NTot. The same applies to the students’

race; the distribution of white and non-white students had a ratio of 80:20 on average. Therefore,

this is assumed in the simulation and the data is drawn from the distribution B(NTot, 0.8, 2). These

variables are as well generated across all students and not based on their class.

55



Simulation

This leads to a total number ofNTot students, which varies over each simulation based on the gener-

ated number of classes and their size. Lastly, for all students, the fourth grade scores are computed

by the generated data of the demographics and classes as defined above and the estimated model

coefficients of section 5.2. Additionally, an error term is randomly added to the fourth grade scores,

which was drawn from the distribution N (0, 2162) for the math term and N (0, 1490) in the reading

score. The variance of the error term is based on the variance which was observed in section 5.2

for the scores in fourth grade for each subject, respectively.

6.2 Descriptive Statistics of Simulation Data

The simulation of the data set is repeated 100 times and to compare the structure generated by

the random draw in the simulation and the actual data set of Project STAR, an overview of the

descriptives statistics for the average of all variables across all simulated data sets are included in

Table 6.1. The average, minimum, maximum and standard deviation of the average value computed

in each data set are presented in each column. For computational reasons, the data sets for the

math and reading score models were generated separately, both 100 times, respectively. Thus the

Table 6.1: Descriptive Statistics of the Simulated Data

Min Mean Max SD

Math Data Set
Demographics

female 0.4832 0.5004 0.5184 0.0073
non free lunch 0.6845 0.7004 0.7152 0.0060
small class 0.2249 0.2418 0.2689 0.0084
white 0.7907 0.8005 0.8175 0.0044

Test Scores

kindergarten math score 483.257 484.947 486.762 0.6501
4th-grade math score based on 3 intervals 703.835 705.798 708.403 0.8630
4th-grade math score based on 4 intervals 703.023 705.678 707.478 0.8396
4th-grade math score based on 6 intervals 703.870 705.801 708.384 0.8205

Reading Data Set
Demographics

female 0.4844 0.5008 0.5216 0.0066
non free lunch 0.6847 0.7001 0.7109 0.0055
small class 0.2211 0.2394 0.2702 0.0081
white 0.7924 0.8006 0.8151 0.0046

Test Scores

kindergarten reading score 435.943 436.993 438.010 0.3886
4th-grade reading score based on 3 intervals 618.048 619.238 620.779 0.5599
4th-grade reading score based on 4 intervals 617.343 619.031 620.966 0.6044
4th-grade reading score based on 6 intervals 617.467 618.795 620.341 0.6195

Note: This table reports the descriptive statistics for the averages of the simulated data in each variable and their prop-
erties. Gender is measured by an indicator taking the value 1 if the student is male and 0 otherwise. Free lunch takes
the value 1, if a student is receiving a free or reduced-price lunch and 0 otherwise and small class takes the value 1, if
the student was assigned to a small-sized class and 0 otherwise. White has the value 1, if the student is white and 0
otherwise.
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student demographics of the simulated data are occurring twice in Table 6.1.

The student demographics of the math and the reading score model are almost the same since the

identical distributions and generation process was used. The simulation generated an average of

50% female students across all data sets, 30% of students receiving a free or reduced-price meal

and 80% of students who were white. Within the math data sets as well as the reading data set, an

average of 24% small classes occurred, which was generally lower than in the actual data set due

to the generation of doubled classes.

The scores were drawn from different distributions. Hence they do not have common values. The

kindergarten math scores had a mean value of 485 points and the reading scores had a mean of 437

points. The minimum and maximum values, as well as the standard deviation, show that the mean

scores did not deviate across the 100 generated data sets. The fourth grade score was simulated

using the estimates of the regression in section 5.2, for the three interval sets with three, four and six

intervals, and an additional error term which was randomly assigned. Therefore, three values were

computed for the fourth grade scores, leading to similar values due to the same assumption.

Comparing the descriptive values of the averages over all simulated data sets with the actual data

set, see Table 3.3, shows that the demographics have the same distribution in the data sets as in

the data set of Project STAR. The mean values of the scores in kindergarten and fourth grade of the

simulation correspond to the actual data set. The math scores in kindergarten had the mean 485

overall students and 500 if the math data set is considered. The simulation was executed assuming

the mean overall students as the expected value; therefore, the simulation’s mean lies around 485.

The same applies to the reading scores in the actual data set. The mean in the reading data set is

with 445 higher than the mean overall students, which is 437. In the simulation, an expected value

using the latter one of both values was assumed and thus, the mean has a value of 437.

There were no such deviations between the overall data set and the subsets for the math and reading

scores in fourth grade. The mean was for math in both data sets 715 and for reading 624. In the

simulation, the means of these values are a little lower. In this case, the mean of the fourth grade

math score is around 701 and the mean for the reading score is around 617.

6.3 Regression on Simulation Data

After the data generation of the compositional peer effect of interval sets of three, four and six

equidistant intervals, as they were used in section 5.2, are computed. Afterwards, they are imputed

using the algorithm impRZilr. Then one model for each interval set and each subject is fitted. This

leads to a total of six models, which are fitted 100 times respectively. The average estimates of all

regressions in each model are shown in Table 6.2.

The estimates in each iteration are stored and the compositional estimates are back-transformed

into the original space and clr-transformed and stored as well in each iteration. Figure 6.1 shows

the mean value of these compositional estimates, b = ilr−1(β), after the clr transformation, i.e.

b̄clri = E(clr(b)) for i = 1, ..., n and n is the number of intervals. Additionally, their 95% confidence

intervals are shown, which were computed by

b̄clri ± z0.975σ(bi), (6.3)
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where z0.975 is the 97.5 quantile of the standard normal distribution and σ(bi) is the standard devia-

tion yielded by the estimates across the whole simulation.

The distribution of these compositional terms shows the same behaviour as observed in section 5.2.

The compositional reading terms are again relatively linear and the higher intervals lead to a de-

crease in the fourth grade score if the ratio of students increases in these intervals, while it increases

if the ratio in the lower intervals is higher. In the math model, only the highest interval shows a neg-

ative influence on the response if the ratio in that interval increases, the other intervals have, as in

the previous estimation, no influence or a positive influence on the response.

Therefore, it can be assumed that the regressions results found in section 5.2 were not sensitive to

outliers. If that would have been the case, the average results observed in the simulation should

differ greatly from the observed results of the actual data set. However, the simulation confirmed the

previous findings.
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Table 6.2: Average estimates of the non-compositional terms over each model

Math Fourth Grade Reading Fourth Grade
3 Intv. 4 Intv. 6 Intv. 3 Intv. 4 Intv. 6 Intv.

Intercept 685.13 686.78 689.33 606.29 609.86 608.95
Female 6.1044 5.9041 5.7918 4.8892 4.9391 5.0937
White -2.2537 -2.1463 -2.3939 5.3503 5.1942 5.5119
Non Free Lunch 10.6668 10.7670 10.7000 4.4355 4.2834 4.3829
Small Class 0.558 0.5853 0.1427 4.5758 4.6466 4.8545
Class RE Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes

AIC 56326.06 56345.43 56351.01 58196.46 58192.27 58209.88
R2 0.3460 0.3436 0.3454 0.3551 0.3554 0.3549

Note: The standard errors are added in parenthesis. The stars show the significance based on the p-value from very
significant ’***’ with values below 0.001 to ’**’ with values below 0.01 and ’*’ with a p-value below 0.05. The R2 value is
the adjusted R2 for the model. RE = Random Effects, FE = Fixed Effects

Figure 6.1: clr-transformed average estimate for the class composition with the 95% confidence
interval using the standard deviation over the estimates
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7 Conclusion

Considering a compositional peer effect offers new possibilities to analyse a class structure and the

possible influence on an individual’s score in the later school career. For compositional peer effects

the ratio of students in a specific test scores is considered and the results are giving the impact of

the relative distribution of the class on subsequent test scores of an individual. These estimates

could be used as a guide for the future assignment of students into classrooms.

In the data set of Project STAR using a non-compositional peer effect like the mean net the individ-

ual’s score is showing positive relation as it was also shown in previous studies by Krueger (1999)

and Boozer and Cacciola (2001).

The composition based on the kindergarten test score shows a somewhat surprising result that the

individual’s test score in the later grade improves with a higher ratio of students scoring in the lower

test scores and the scores of the individual decline if a higher ratio of high-scoring students is inside

their class. In comparison to the non-compositional peer effect using the kindergarten scores, this

is rather contradicting.

Using compositions for the peer effects based on a continuous variable showed that the selection

does not change the results completely. Depending on the underlying data set, the choice of the

intervals of the compositional variable can lead to an under- or overestimation. Therefore, the se-

lection has to be carefully chosen to select the best fitting choice for the data. As a measure to find

the best selection, the AIC or similar criteria can be used. Furthermore, it was observed in this data

set that the model assessment for different choices of intervals, in general, does lead to the same

variable selection of the best model.

The analysis of the dependency of covariates on the response for each class size respectively

showed no large differences to the findings of the whole data set together. However, the terms

of the non-compositional covariates had some deviations based on the class size, leading to the

result that certain kinds of students were differently affected by the class size. The composition itself

changed as well. However, it behaved accordingly to the previous whole model.

Applying the model checks provided by the mgcv package onto the model fits showed that there are

issues with normality present in the math data set while there are no issues in the reading data set.

The issues could not be solved with standardization of the scores and therefore, the results of the

math data sets are violating the model assumptions. This means it does not fit itself well for the

analysis of peer effects.

Taking a look at the impact of the kindergarten class distribution as composition on the entire school

career up to eighth grade shows some spill-overs in each part and it is staying constant with a slight

decline towards the higher grades, which is a wash-out effect. Thus, the kindergarten composition

is leading to an increase of an individual’s score in the consecutive year, if a higher ratio of lower-

scoring students were in the same kindergarten classrooms and vice versa.

Comparing these long-term results for a composition of each year in Project STAR on the consecu-

tive school years shows that after the first grade, this impact on the response is changed. If a higher

ratio of good students is present within a class, then the individual scores higher in the tests of the

following years. On the other hand, if a higher ratio of low-scoring students is contained in a class,
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the individual’s score decreases in the following years. This observation does correspond to the

findings from our non-compositional peer effects. Hence, an essential change of the interpretation

of the problem at hand occurred. It seems that the students were influenced positively by a higher

ratio of peers who were high performing starting from the first grade. As this impact stayed constant

for the subsequent compositions, a change could have occurred after the students started with their

first grade, which also changed their interaction with peers and how this influenced their individual

scores. Because no information regarding this is known from the experiment, it is impossible to find

the change’s actual cause.

Checking the sensitivity of the model estimation using a simulation showed that the results are close

to the observations of the fit on the actual data and no essential effects which could be tracked

back to outliers could be detected. Therefore, the simulation confirmed the previous analyses. Then

the influence of the individual’s classmates’ performance in kindergarten positively influenced the

subsequent test scores if a higher ratio of low-performing students were in their class. This could

be because the students themselves were scoring low in the test and their scores improved much

more than students in classes with a higher ratio of higher-performing students. However, in first

class, the spill-over effect of the peers started to positively influence the peers if a higher ratio of

high-performing peers were in the class.

To sum it up, it made sense to use the context of compositional data analysis to look into the effect of

peers’ performance based on the distribution of their score relatively across the class. This leads to

the possibility to analyse the impact of the relative information on an individual’s performance. This

means it was possible to observe how a higher ratio of students having high or low scores affected

an individual’s score. In the next step, the information obtained by a compositional peer effect could

be used to make predictions on the score of students in the future based on the current scores of

the students and their class.

Further analyses of interest beyond this thesis could include zero-handling methods, which use

the known data of the covariates and response together in an algorithm to impute the zero values.

Furthermore, more imputation algorithms in the area of count and structural zeros are still needed to

find a general approach for their imputation. In case of more methods being available in the future,

an extension of the comparison of the impact of the zero handling methods presented in this thesis

could be performed.

Analysing interaction in the above settings did not lead to any relevant results, so that regression

results were not included. However, if a different setting and data set are considered and composi-

tional peer effects are analysed, the interaction of compositional and non-compositional terms could

be of interest. Moreover, an interpretation of such a mixed variable showing the interaction between

relative and absolute information could be of interest.
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Appendix

Appendix

Figure 7.1: clr-transformed compositional estimates and their confidence bounds in the math score
model for the composition of the kindergarten reading scores (divided into scores below 425, 425 to
444, 445 to 464 and above 465)

Figure 7.2: clr-transformed compositional coefficients with their confidence bounds for each interval
selection of the reading score model
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Math Model

Figure 7.3: clr-transformed coefficients with their confidence bounds per class size for math test
scores using six intervals as compositional terms

Reading Model

Figure 7.4: clr-transformed coefficients with their confidence bounds per class size for reading test
scores using six intervals as compositional terms
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Panel A: Compositional Term based on the First Grade Scores

Panel B: Compositional Term based on the Second Grade Scores

Panel C: Compositional Term based on the Third Grade Scores

Figure 7.5: clr-transformed estimate and the confidence bounds for the class composition based on
grades 1 to 3 data over all following grades on the math test scores
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