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Abstract
Maintaining the synchronousmotion of dynamical systems interacting on complex networks is often
critical to their functionality. However, real-world networked dynamical systems operating
synchronously are prone to randomperturbations driving the system to arbitrary states within the
corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori
unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient
phases before the system returns to synchrony, following a randomperturbation to the dynamical
state of any particular node of the network.We address this issue here by proposing the framework of
single-node recovery time (SNRT)which provides an estimate of the relative time scales underlying the
transient dynamics of the nodes of a network during its restoration to synchrony.We utilize this in
differentiating the particularly slow nodes of the network from the relatively fast nodes, thus
identifying the critical nodes whichwhen perturbed lead to significantly enlarged recovery time of the
systembefore resuming synchronized operation. Further, we reveal explicit relationships between the
SNRT values of a network, and its global relaxation timewhen starting all the nodes from random
initial conditions. Earlier work on relaxation time generally focused on investigating its dependence
onmacroscopic topological properties of the respective network.However, we employ the proposed
concept for deducingmicroscopic relationships between topological features of nodes and their
respective SNRT values. The framework of SNRT is further extended to ameasure of resilience of the
different nodes of a networked dynamical system.We demonstrate the potential of SNRT in networks
of Rössler oscillators on paradigmatic topologies and amodel of the power grid of theUnited
Kingdomwith second-order Kuramoto-type nodal dynamics illustrating the conceivable practical
applicability of the proposed concept.

1. Introduction

The abundance of dynamical systems involving large collections of individual entities interactingwith each
other on complex networks can hardly be further exaggerated [1–6]. Such networked dynamical systems often
exhibit amultitude of stable states, whereby sustained operation of the system in the desired state is of central
importance. The desired operational state (DOS) in such systems is commonly associatedwith the synchronized
motion of the dynamical components coupled on their networked architecture [7, 8]. ‘Permissible’ and
‘impermissible’ randomperturbations (according to the terminology used byMenck et al [9]) often disrupt the
functionality of coupled dynamical systems operating in the synchronized state, driving them away either to an
arbitrary state still inside the basin of attraction of the synchronized state, or to an altogether different dynamical
regime. The former situation arising on account of ‘permissible’ perturbations, leads to arbitrary durations of
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desynchronized dynamics before the system regains synchronousmotion.On the other hand, ‘impermissible’
perturbations permanently forbid the return of the system to the synchronized state, unless again affected by an
appropriate external perturbation.

The stability of the synchronized state against the aforementioned perturbations is critical in the operation of
many real-world networked dynamical systems such as ecosystems, power grids, the human brain, etc [10].
Subsequently, the influence of topological features on network synchronizability and the stability of the
synchronized state has beenwell-investigated [7, 11]. In this context, significant developments constitute the
master stability function (MSF) [12], basin stability (BS) [9] and its extensions to single-node BS [8], multiple-
node BS [10], and survivability [13]. On the contrary, the issue of recovery time (RT) of complex dynamical
networks following a randomperturbation, which is ameasure of howquickly the network relaxes back to the
DOS (e.g., a synchronized state) after being perturbed from the same, has received considerably less attention
and is currently under active investigation [14–25]. However, this is an important problem concerning
dynamical robustness of complex networks, i.e., the ability of a network to restore its dynamical activity to the
DOSwhen its components are subject to randomperturbations. For example, the loss of synchrony in
engineered systems such as power grids can lead to large-scale power blackouts [8]. In biological systems such as
the human brain, it can impede cognitive functions such as information transfer [26] andmemory [27]. Thus,
quickly restoring synchrony following desynchronizing perturbations is crucial in such coupled dynamical
systems. Consequently, it is highly desirable to have an estimate of the RTof the system to the desired stable
regime, following a perturbation to a particular node of the network (otherwise operating in theDOS). This
creates the possibility of identifying (and safeguarding) specific nodes whichwhen perturbed lead to a
particularly large RTof the system. In this regard, we propose here the framework of single-node recovery time
(SNRT) addressing the aforementioned issue.We reserve a formal definition of SNRT to section 2.3.

SNRTof a node under investigation relates to the time taken by the systemoperating in theDOS (e.g., a
synchronized state) to return to the same, following a randomperturbation to the dynamical state of the
respective node. The framework of SNRTprovides information on the different relative time scales underlying
the transient dynamics of the respective nodes of the network during its restoration to theDOS. This can be
utilized in revealing the particularly slownodes of the network in contrast to the relatively fast ones, leading to the
identification of the vulnerable nodes whichwhen perturbed significantly elevate the RTof thewhole system.
Further, this can provide an insight into the global relaxation time (GRT) of the network to theDOS, when
starting all its nodes from arbitrary initial conditions.We provide a formal definition ofGRT in section 2.4. The
GRT is referred to as the global synchronization timewhen the synchronized state is theDOS of the network.

Previously, the dependence of synchronization time on variousmacroscopic topological properties of the
corresponding networks has been investigated. For example, Grabow et al [22]have shown that, largely
insensitive to the type of oscillators (phase,multi-dimensional, neural), their intrinsic dynamics (periodic,
chaotic) and their coupling schemes (phase-difference, diffusive, pulse-like), networks with afixed average path
length consistently synchronize slowest in the small-world regime. This is a rather unexpected phenomenon
given that small-world topology has been suggested to facilitate network synchronization at weaker coupling
strengths (than for analogous, appropriately normalized globally coupled systems) [28–30] as well as beingmore
robust to randomperturbations [9]. Also, theMSF approach [12] has been extended byGrabow et al [23] to
provide analytical predictions for the asymptotic synchronization times, which is, however, locally restrictive to
small perturbations. Further, the dependence of synchronization time on variousmacroscopic topological
features such as the average path length, global clustering coefficient, etc has been systematically studied. In this
context, the framework of SNRT introduced in this work is capable of providing amicroscopic view on the
response to arbitrary perturbations of individual nodes aswell as exploring relationships between various
topological features of the nodes and their respective SNRT values.

Finally, we advance on the framework of SNRT for quantifying the resilience of networkeddynamical systems
[31]. Resilience of a givendynamical systemhas beendefined in at least twodifferentways, namely, engineering
resilience and ecological resilience [32]. Engineering resilience (according to Pimm [33])of a dynamical system
characterizes its resistance to disturbance and speedof return to its equilibrium, following a perturbation
[32, 34, 35]. It implicitly assumes global stability, i.e., the existence of only one equilibriumstate, or, if other
operating states exist, they should be avoidedby applying safeguards [32, 34, 35].On the other hand, ecological
resilience [36]presumes the existence ofmultiple stable states and the tolerance of the system todisturbances that
facilitate transitions among the stable states [32, 34, 35]. In this case, resilience of the system ismeasuredby its
capacity to remain in the samebasin of attraction in the face of randomperturbations [32, 34, 35].

Ecological resilience of themultiple stable states of a system relates to the volume and geometry of their
respective basins of attraction [9, 35]. In this context,Mitra et al [35] recently reconsidered the concept of ecological
resilience and its three crucial aspects of ‘latitude’ (L), ‘resistance’ (R) and ‘precariousness’ (Pr) [36]. They redefined
L,R andPr in a rigorousdynamical systems context andutilized this as a foundation for characterizingmultistability
andproposing the quantifier of integral stability [35]. Besides its extension to quantifyingmultistability, the
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frameworkof ecological resilience has generatedwidespread interest (see [37] and references therein).On theother
hand, the facet of engineering resilience, perhaps on account of its restrictive scope to globally stable systemshas
received considerably less attention.However, it is equally crucial to knowhow longdoes a systemoperating in its
desired stable state take to retain functionality in the respective dynamical state, following a randomperturbation.As
mentioned earlier, networkeddynamical systemsoften exhibitmultiple stable states, such as the coexistence of
synchronized anddesynchronizeddynamical regimes,which is a notable exampleof bistable behaviour [10]. Thus,
we extendhere the traditional scope of engineering resilience to quantifying the resilience of theDOS (e.g., the
synchronized state) in suchmultistable coupleddynamical systems.More precisely, we relate the engineering
resilience of eachnode of anetworkeddynamical system (for theDOS) to the SNRTof the correspondingnode such
that a nodewith a lower value of SNRT is consideredmore resilient and vice versa. Thus, the proposed architecture
of engineering resilience complements the existing framework of ecological resilience in characterizing the overall
resilience of networkeddynamical systems.

This paper is further organized as follows: in section 2, we outline the generalmethodology for calculating
SNRT values for a given networked dynamical system. In section 3, we illustrate applications of SNRT to
networks of Rössler oscillators and amodel of the power grid of theUnitedKingdomwith second-order
Kuramoto-type nodal dynamics. Finally, we present the conclusions of ourwork in section 4.

2.Methods

2.1. Preliminaries
Consider a network ofN oscillators (nodes)where the intrinsic dynamics of the ith oscillator (represented by the
d-dimensional state vector = ¼( ) ( )t x x xx , , ,i i i i

d1 2 T) is described by =˙ ( )x F xi i i , where
 Îx F; :i

d
i

d  F,d
i = ¼( ( ) ( ) ( ))F F Fx x x, , , ;i i i i i

d
i

1 2 T = ¼i N1, 2, , . The dynamical equations of the
networked system read

å= +
=

˙ ( ) ( ) ( )Ax F x H x x, , 1i i i
j

N

ij ij i j
1

where  is the overall coupling strength, A is the adjacencymatrix which captures the interactions between the
nodes such that ¹A 0ij if node j influences node i and   ´ H :ij

d d d is an arbitrary coupling function
fromnodes j to i. For the illustrations in this paper (section 3), we consider identical nodal dynamics

= "( )iF Fi , symmetric adjacencymatrices ( = =A A 1ij ji if nodes i and j are connected and = =A A 0ij ji

otherwise) and identical coupling functions ( = " i jH H ,ij ).
We assume that theDOS is an attractor of the system thatwe denote by with the corresponding basin of

attraction  ( ).We usually denote a trajectory on by ˜( )tx .

2.2. Regularized reaching time
For a trajectory initiated from  = ¼ Î( ) ( ( ) ( ) ( )) ( )x x x x0 0 , 0 , , 0N1 2

T , the attractor is usually reached
asymptotically. This implies that the associated reaching time isnotfinite, thusposing aproblem in itsmeasurement.A
way to address this problem is regularizationof the timevariable [25].Wenowdiscuss the frameworkof regularized
reaching timeproposedbyKittel et al [25] and then resort to the same indealingwith the above issue.

The distance of a state at time t on a trajectory initiated from ( )x 0 , to the desired attractor is given by,

 = - ¢ ¢ Î ( ( ( )) ) { ( ( )) }d t tx x x x x x, 0 , inf , 0 : ,

where ( ( ))tx x, 0 represents the state of the system after a time thas elapsed. The last-entry time for the
corresponding trajectory to enter a δ-neighbourhood around the desired attractor is given by

 d d= < "( ( ) ) { ( ( ( )) ) }t T d t t Tx x x0 , inf : , 0 , , ,L

where d  0 leads to the aforementioned divergence.
Kittel et al [25] argued that even though the actual reaching times diverge for the respective trajectories, their

differences actually converge. Subsequently, they proposed the regularized reaching time ( ( ))T x 0RR for any
trajectory (starting from ( )x 0 ) as the difference between the last-entry times along the respective trajectory and a
reference trajectory (starting from xref ), for a given d > 0. This can be interpreted as the additional time the
trajectory starting from ( )x 0 needs to arrive in the vicinity of the desired attractor, after the reference trajectory
starting from xref has reached it. Thus,

d d= -
d

( ( )) ( ( ( ) ) ( )) ( )T t tx x x0 lim 0 , , . 2RR
0

L L ref

Apositive or negative value of ( ( ))T x 0RR indicates that the considered trajectory arrives by this value later or
earlier than the reference trajectory, respectively. This allows the distinction between slower and faster trajectories
of the systemduring their return to the desired attractor (see Kittel et al [25] for further details onTRR).
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2.3. Single-node recovery time (SNRT)
In the following, we outline the generalmethodology for calculating SNRT values for all nodes of any networked
dynamical system.We assume that the networked dynamical systemof equation (1) is in its DOS ˜( )tx . Now,
consider a ‘permissible’ randomperturbationDx i to the dynamical state of the ith oscillator of the network. The
system (otherwise functioning in its DOS) is pushed to a perturbed state = ¼ + D ¼D (˜ ˜ ˜ ˜ )x x x x x x, , , , ,i i i N1 2

T.
The perturbed state (on account of the perturbation being ‘permissible’) remains in the basin of attraction  ( )
of theDOSbecausewe chose Dx i to be permissible, thus ensuring the system’s return to the same.We then
define the SNRTof the ith oscillator as,

 

 

ò

ò

r

r
á ñ =

D

D

D D

D
( )

( ) ( )

( )
( )( ( ))

( ( ))

T i
Tx x x

x x

d

d
, 3R

P i i i i

P i i i

1
RR

i

i

where Pi is the projector into the subspace of the ith oscillator, i.e., =( )P x xi i. r D( )xi i is the density of
‘permissible’ perturbed states in state space that the ith oscillatormay be pushed to even via large perturbations
with ò r D =D( )x xd 1i i i , where this integral is performed over the subspace of the ith oscillator. The integrals in
the numerator and denominator of equation (3) are performed over the basin of attraction of theDOS

 ÎD( ( ))xi.e ., i . Thus, the SNRTof the ith oscillator á ñ( )T iR
1 corresponds to themean regularized reaching

time of the system to theDOS, after a random ‘permissible’ perturbation hits the respective oscillator.
Equation (2) demands the choice of a reference initial condition  Î ( )xref that needs to be keptfixed for

all single-node perturbations to allow comparability between SNRT values of the different nodes of the network.
However, different choices of xref (as long as we do not choose it on) simply lead to a shift of all á ñ( )T iR

1 values
by a constant only [25]. Although not posing a serious problem, thismethodology of choosing xref leaves an
element of arbitrariness. Aswe seek to utilize the á ñTR

1 values in estimating the duration bywhich a particular
node of the network returns faster or slower than another, this naturally leads to the condition demanding the
lowest á ñ( )T iR

1 value to be 0,

á ñ = á ñ =( ( ) ) ( )T i Tmin 0. 4
i

R R
1 1

min

Using this equation, we can fix xref implicitly instead of explicitly specifying it.We denote the node (or one
representative if theremight bemore)with á ñ =( )T i 0R

1 by iref. The resulting values of á ñTR
1 now represent

differences in time bywhich nodes of the network return slower than the reference node iref. As opposed to
arbitrarily choosing xref , thereby resulting in negativeTRR values (which is counter-intuitive whenmeasuring
time), the above choice of xref ensures non-negativity of á ñ( )T iR

1 values, besides eliminating the arbitrariness
associatedwith the choice of xref . Further details on the choice of the reference trajectory are provided in
appendix A.

Wenowpresent an algorithm for estimating the SNRTof the ith oscillator/node of a network (modelled
using equation (1)):

(i) Identify the DOS of the network. This state often corresponds to the synchronized dynamics of the
oscillators coupled on the network.

(ii) When the attractor corresponding to the DOS  is not a fixed point, choose >( )P 1 different points on the
attractor. Otherwise, chooseP=1.

(iii) For a particular value of = ¼( )p p P1, 2, , , initiate the system from the DOS corresponding to the pth
point on. Then, perturb the ith oscillator by drawing IC randomly distributed r D( ( ))xaccording to i i

initial conditions = ¼D ( )j Ix 1, 2, ,i
p

C from inside the basin of attraction of theDOS. For the results
described in this paper, we assume a uniformdistribution of r D( )xi i .

(iv) For a fixed value of d > 0, calculate the last-entry time dD( ( ) )t jx ,i
p

L of the system for the jth initial
condition.

(v) Estimate the SNRTof the ith oscillator ( ( ))T i p,R
1 for the pth point on the attractor as,

å d
= = Dˆ ( )

( ( ) )
( )T i p

t j

I

x
,

,
, 5R

j

I
i

p

C

1 1 L
C

and then average over p to obtain,

åá ñ =
=

( ) ˆ ( ) ( )T i
P

T i p
1

, . 6R
p

P

R
1

1

1
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(vi) Finally, we identify the node iref with theminimum á ñTR
1 value (as computed above for all nodes) á ñTR

1
min and

subtract this value from the á ñ( )T iR
1 of the ith oscillator computed above, thus yielding the SNRT value of the

respective oscillator.

The parameters P, IC and δ of the above algorithmhave to be selected prior to its implementation. The actual
values should be chosen according to the specifics of the systemunder investigation, as also illustratedwith the
different applications presented in this paper (section 3). It is conclusive however, that higher values of P and IC
yield better estimates of á ñ( )T iR

1 .
Asmentioned earlier, this concept of SNRT can be utilized in identifying the slow and fast nodes/sub-

components of networked dynamical systems. Also, the proposedmachinery can be used in revealing systematic
relationships between SNRT values of different nodes and their respective topological features. Further, it can be
extended to ameasure of (engineering) resilience of the different nodes of a networked dynamical system (see
section 2.6) and thereby utilized in identifying the particularly vulnerable nodes of the network as well as the
more resilient ones. Subsequently, this framework of SNRT can be potentially relevant in selecting specific nodes
to be safeguarded from external perturbations.We nowdefine theGRTof a network, which relates to the overall
time scale of the dynamics of a network during its relaxation to theDOS.

2.4. Global relaxation time (GRT)
Starting all nodes of a networked dynamical system from random initial conditions inside the basin of attraction
of the desired attractor involves a transient time before the system reaches the associated attractor.We refer to
the duration of this transient regime as the relaxation time of the system for the respective initial state.We
estimate theGRT á ñTR of a network as follows:

(i) Draw IC random initial conditions from inside the basin of attraction of the DOS. The jth initial condition
can bewritten as = ¼( ) ( )jx x x x, , , N1 2 T where = ¼j I1, 2, , C . Note, that the value of IC chosen for
computing theGRT can be different from the one chosen for calculating SNRT above (section 2.3).

(ii) For the jth initial condition, calculate the last-entry time d( ( ) )t jx ,L of the systemwith the same value of δ as
chosen for computing SNRT (section 2.3).

(iii) Calculate theGRTof the network as,

å dá ñ =
=

( ( ) ) ( )T
I

t jx
1

, . 7R
C j

I

1
L

C

(iv) Finally, subtract the value of á ñTR
1

min (obtained in section 2.3) from the á ñTR computed above in obtaining
theGRTof the network.

When theDOS of the network is a synchronized state, its GRT is referred to as the global synchronization time of
the system.

TheGRTof a network is useful for quantifying the expected transient time to reach theDOS, when starting
the system from a random initial condition. In section 3, wewill illustrate the relationship between SNRT values
and theGRTof a network for different systems.

In order to avoid terminological confusion,weexplicitly distinguish between the usage of recovery, reaching and
relaxation time.Weuse the term recoverywith reference to the time takenby the system to recover froma
perturbation and resumeoperation in theDOS.On the other hand,when initiating all the nodes of the system from
arbitrary conditions, the term relaxation is usedwith reference to the timebefore the system relaxes to theDOS. It is
the difference between the relaxation times of a trajectory starting fromaparticular initial condition and that of a
reference trajectory,which is termed as the regularized reaching time for the respective initial condition.

It should be noted that the situation following a perturbationmay also be viewed as the system starting from
a particular initial condition (corresponding to the perturbed state) and subsequently, relaxing to the respective
attractor.However, wewant to specifically distinguish between relaxation following a perturbation as a process
of recovery, and the traditional formalismof relaxation of the systemwhen starting the entire network from
random initial conditions. Subsequently, we seek to utilize the above terminology in order tomaintain this
distinction during the course of this work.

2.5. Single-node basin stability (SNBS)
The BS of a particular attractor relates the volume of its basin of attraction to the likelihood of returning to the
same attractor in the face of randomperturbations [8–10].More precisely, the BS of a particular attractor is
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defined as the fraction of the volume of the state space belonging to the basin of attraction of the respective
attractor [8–10]. In practice, BS of any particular attractor is estimated using a numericalMonte Carlo
procedure by drawing random initial states from a chosen subset of the entire state space, simulating the
associated trajectories, and calculating the fraction of trajectories that approach the respective attractor [8–10].
Asmentioned earlier, the ecological resilience of a stable state is (among other properties) determined by the size
and shape of its basin of attraction, and is therefore closely related to its BS.

BS has been further extended to the framework of SNBS [8, 10]. SNBS á ñSB
1 of a node under investigation

corresponds to the probability of the network (operating in theDOS) to return to theDOS, after that particular
node has been hit by a non-infinitesimal perturbation [8, 10].We refer toMitra et al [10] for the general
methodology used throughout this paper for estimating SNBS values for any networked dynamical system.

2.6. Engineering resilience
SNBS is ameasure related to the ecological resilience of a node subjected to a randomperturbation (when the
entire networkwas functioning in theDOSprior to the disturbance). The time elapsed before the network
returns to its DOS, following a ‘permissible’ randomperturbation to a particular node determines the
engineering resilience of the respective node.We recommend incorporating the engineering resilience of a node
(besides its ecological resilience as characterized by its SNBS value) quantified as being inversely related to its
SNRT value, inmeasuring the overall resilience of the respective node. For example, itmay be possible that two
nodes of a networked dynamical systemhave very similar values of SNBS.However, the SNRT values of the
respective nodesmay differ significantly (aswe shall illustrate using examples in section 3). In such a situation,
the new framework of SNRT should complement that of SNBS in appropriately assessing the resilience of the
respective nodes of a network.

3. Examples

We shall now illustrate applications of SNRT to various networked dynamical systems.Here, we specifically
apply the framework to networks of oscillators with continuous time dynamics (equation (1)) exhibiting
bistability on account of coexisting synchronized and desynchronized regimes, where the former is considered
as theDOS of the system.However, the framework is generally applicable to (continuous or discrete time)
networked dynamical systemswithmultiple coexisting states as well. It should be noted that the values of the
measures for the different networks/examples studied in this work are not directly comparable. Also, the
algorithmic parameters for each application have been chosen according to the specific systemunder
investigation.

3.1.Deterministic scale-free (DSF)network of Rössler oscillators
Wefirst consider a network ofN identical Rössler oscillators [38], with diffusive coupling in the x2-variable
between two coupled nodes such that the full dynamical equations of node i (in analogywith equation (1)) read

å

=- -

= + + -

= + -
=

˙

˙ ( )

˙ ( ) ( )

x x x

x x ax A x x

x b x x c

,

,

. 8

i i i

i i i
j

N

ij j i

i i i

1 2 3

2 2 2

1

2 2

3 3 1

Weuse the parameter values of = =a b 0.2 and c=7.0 for which the intrinsic dynamics of each uncoupled
Rössler oscillator is chaotic.

As a specific network topology, we use an undirectedDSF network [39]. For the simulations carried out in
this section, we specifically generate aDSF network developed over three generations and hence, comprising
N=81 nodes (figure 1).We refer the reader to appendix B for further details on theDSF networkmodel.

We consider the completely synchronized state as theDOS of the network, which corresponds to all
oscillators following the same trajectory. Further, we choose  = 0.8 for which the completely synchronized
state in Rössler oscillators diffusively coupled via the x2-variable is stable (see [40] for further details on the
calculation of the stability interval) and set d = -10 4 4 for estimating the SNRT á ñ( )TR

1 values, using the
procedure described in section 2.3.

4
We suggest choosing a value of δ depending upon the system of interest. This choice should bemade to ensure that the system comes

sufficiently close to the desired attractor  aswell as being computationally efficient. For example, we choose a value of d = -10 4 for the
deterministic scale-free network, whereas d = -10 6 for the random scale-free network. This is because in the former case, the system
generally takes a longer time to enter the δ-environment around . For a further discussion on the estimation ofTRR, we refer the reader
to [25].
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Wecalculate and present the individual á ñTR
1 (on log10 scale) values of the nodes infigure 2(a). Interestingly,

the three generations of nodes split into three classes in terms of their á ñTR
1 values such that the lower the

generation in the hierarchy, the higher is the SNRTof the individual nodes comprising it (as evident from the
histogram infigure 2(b)).

We next compare thesefindings with two key topological features of theDSF network. The connectivity of a
node i (for = ¼i 1, 2, , 81) is described by its degree = åk Ai j ij (where A is again the adjacencymatrix of the

respective network [6]). The betweenness centrality (bci) of a node i is related to the fraction of shortest paths
between all pairs of nodes that pass through node i [6]. For anN-node network, the bc of each nodemay further

be normalized by dividing by the number of node pairs ( )( )i.e ., N

2
, obtaining a value between 0 and 1. Thus,

= å
s

s- ¹ ¹( )
bci N N j k i

2

1

j k
i

j k

,

,
where sj k, is the total number of shortest paths fromnodes j to k and s j k

i
, is the number

of such shortest paths which pass through node i [6].
Figures 2(c), (d) shows the relationship of the á ñ( )Tlog R10

1 values with the topological features of degree k and

bc of the nodes, respectively. The á ñTR
1 values do not exhibit anymarked relationshipwith these two

characteristics. This is further illustrated by the correlation coefficient of−0.040 (−0.085) between á ñTR
1 and

Figure 1.Network topology of the undirected deterministic scale-free network ofN=81 identical Rössler oscillators. The size of each
node is proportional to its degree and the colour indicates the á ñTR

1 value of the respective node.

Figure 2. (a) SNRT á ñTR
1 (on log10 scale) of the nodes of the three generations of the undirectedDSF network ofN identical Rössler

oscillators (equation (8)). The first nine nodes comprise the 1st generation, the next 18 nodes the 2nd generation and thefinal 54 nodes
the 3rd generation. Node 4 having theminimumSNRT value á ñ =( )T 4 0R

1 of the network (implying divergence of á ñ( ( ) )Tlog 4R10
1 ) has

not been shown in the plot. Note that the á ñTR
1 values of the nine nodes comprising the 1st generation are actually between 0 and 17.

However, as the á ñTR
1 values are presented on a log10 scale, they appear to bemuchmore dispersed than the á ñ( )Tlog R10

1 values of the
nodes in the other two generations. However, the á ñTR

1 values of the nodes in all the three generations actually have similar variations.
(b)Histogramof á ñ( )Tlog R10

1 of the nodes. (c), (d)Relationship of á ñTR
1 with (c) degree (k) and (d) betweenness centrality (bc) of the

nodes.
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( )k bc .We summarize our results infigure 1, which displays the network topologywhere the size of each node is
proportional to the degree and the colour corresponds to the á ñTR

1 value of the respective node.
The nodes in the 3rd generation of theDSF network comprise its slownodes. It is expected that the overall

time scale of synchronization of a network should be governed by the nodewith the highest SNRT, i.e., the
‘slowest’node of the system. The ‘slowest’node of theDSF network has á ñ »T 749.8R

1 .We also computed the
GRT á ñTR of theDSF network using themethodology described in section 2.4.Wefind á ñ »T 750.04R being very
close to themaximum á ñTR

1 value of the network. Thus, we conclude that the ‘slowest’nodes of theDSF network
indeed govern its overall time scale of synchronization.However, this result cannot be generalized to any
arbitrary topology, as wewill demonstrate in the following.

3.2. Random scale-free networks of Rössler oscillators
Next, we consider an ensemble of 100 random scale-free networks (generated using the classical Barabási–Albert
(BA)model of growth and preferential attachment [41]) ofN=81Rössler oscillators each, with the same
parameter values as for theDSF network.We refer the reader to appendix C for further details on the BA
networkmodel.While theDSF network ofN=81Rössler oscillators studied in section 3.1 had 130 edges,
equivalently, an edge density of »( ) 0.04130

81

2

, the random scale-free networks generated using the classical BA

model have edge densities of 0.049, i.e., 158 edges in each realization. Thismeans that the BA random scale-free
networks have 22.5%more edges than theDSF network considered earlier in section 3.1. Therefore, the results
obtained for both topologies are not directly comparable quantitatively.

The distribution of SNBS á ñSB
1 values of theN=81 nodes of the considered ensemble is presented in

figure 3(a). Surprisingly, all nodes have similar and very high á ñSB
1 values. Similar results have been observed in a

recent study on SNBS values in theDSF network of Rössler oscillators [10]. Figures 2 and 3 in [10] present the
distribution of the á ñSB

1 values of theN=81 nodes of theDSF network, considered in section 3.1 of this paper.
Clearly, the á ñSB

1 values of all the nodes are very high (∼0.95) aswell as very similar. Likewise, figure 3(a) here
illustrates the distribution of the á ñSB

1 values of all the nodes of the considered ensemble of BA random scale-free
networks, which are again equally high (∼0.95) and also quite similar for all nodes of the ensemble. These
observations lead to two important conclusions. Firstly, the similar and rather high á ñSB

1 values indicate that the
synchronized state in scale-free networks is generally very robust to perturbations affecting a single node of the
system. Secondly, we observe that the presence or lack of a specificmacroscopic (hierarchical) structure (as in the
DSF network but not in its random counterpart) in the respective scale-free network does not affect the
distribution of its á ñSB

1 valuesmarkedly. In contrast to the latter finding, we have already observed an influence of
the hierarchical structure on á ñTR

1 for theDSF network (figure 2(a)). On this note, we shall further unfold
dependences of á ñTR

1 values on different topological features of random scale-free networks.
The corresponding distribution of á ñTR

1 (for d = -10 6 (see footnote 4)) of all nodes of the considered
ensemble of random scale-free networks is shown in figure 3(b). As in the case of the DSF network, we next
consider themutual dependence between SNRT and the local topological characteristics of the network. For
this purpose, we study the distribution of á ñTR

1 values of all nodes of the ensemble with respect to their degree
and bc.We collect all nodes of the ensemble having a particular degree k and calculate themean over the á ñTR

1

values of all these nodes which corresponds to the conditional mean ñ ñ⟪ ∣T kR
1 . Similarly, we bin the bc values

of all nodes of the ensemble and calculate the conditionalmean ñ ñ⟪ ∣T bcR
1 over the á ñTR

1 values of all nodes
belonging to the respective bin. Interestingly, the conditional mean values exhibit a strong linear dependency
with respect to k and bc as illustrated in figures 3(c), (d). This is further underlined by correlation coefficients
of 0.987 (0.991) of the conditionalmeans with ( )k bc . Thus, nodes with high k and bc, namely the hubs in the
random scale-free network, can be classified as its slow nodes. Perturbations to amore central node of a scale-
free network (operating in the synchronized state) can easily spread to other nodes of the network driving
them further away from the synchronized state. As a result, a scale-free network operating in synchronymay
take longer to resynchronize when itsmore central nodes are perturbed as opposed to less central ones. This
observation is supported by the positive correlation between the conditional mean ñ ñ⟪ ∣T bcR

1 and bc. Further,
given the strong linear relationship of the conditionalmean SNRTwith bc, a similar dependence for k is to be
expected (and vice versa) since random scale-free networks generally exhibit a strong correlation between k
and bc of their nodes [42]. However, the relationship of the conditionalmean SNRTwith k and bc being
specifically linear is surprising and revealing the underlying reason requires further investigation.We
emphasize that the observed relations are not specific to the relatively small network size. For example, we
have obtained similar results (not shown) in an ensemble of 100 randomBA scale-free networks, each
comprising 243 Rössler oscillators constituting the nodal dynamics (with similar parameter values as above
but for  = 1.3).
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Wenow calculate and present theGRT á ñTR of allmembers of the considered ensemble of random scale-free
networks (figure 4(a), black circles). Interestingly, we observe that unlike for theDSF network, the overall time
scale of synchronization in the different network realizations of its random counterpart differsmarkedly from
themaximumSNRT (red crosses) of the respective realization. To further study this finding, for each network
realizationwe compute the average of the á ñTR

1 values of all itsN=81 nodes and denote it by ⟪ ⟫TR
1 . Notably, the

á ñTR value of every network realization appears closely related to ⟪ ⟫TR
1 (blue crosses) as illustrated infigure 4(a).

This is also corroborated by a correlation coefficient of 0.991 between á ñTR and ⟪ ⟫TR
1 .

Figure 4(b) shows themaximum bcmax of all nodes of each network realization and its relationshipwith the
GRT á ñTR of the respective realization. Asmentioned earlier, perturbing the nodewith bcmax in a scale-free
network (operating in the synchronized state)may lead to a particularly large relaxation time to the
synchronized state. Thus, the higher themaximum bc of a scale-free network, the higher is theGRTof the
system,which is underlined by the positive correlation coefficient of 0.882 between á ñTR and bcmax infigure 4(b).

The average path length  of a network is defined as themean value of the shortest path length between all
possible pairs of vertices [6]. Thus,  = å- ¹ ℓ ( )

( )
i j,

N N i j
1

1
where ℓ ( )i j, is the length of the shortest path

between nodes i and j of theN-node network [6]. The dependence of theGRT á ñTR of each network realization
on its average path length ( ) is presented infigure 4(c).We observe that á ñTR exhibits a negative correlation
coefficient of−0.658with respect to , i.e., random scale-free networks with shorter characteristic path lengths
synchronize slower. This result is compatible with the fact that random scale-free networks with longer
characteristic path lengths have been previously shown to promote synchronizability [28]. The underlying
heuristic picture is that a small  in such networks corresponds to a large amount of traffic passing through the
few ‘central’nodes connected to each otherwhich facilitate communication between themuch larger
population of the other oscillators. Thismay lead to destructive interference of the different signals passing
through such nodes. Subsequently, theremay not be significant overall communication between the different
oscillators of the network, thereby culminating in its reduced synchronizability [28].

3.3. Power grid of theUnitedKingdom
As afinalmore realistic example, we consider a conceptualmodel of the power transmission grid of theUnited
Kingdomwith second-order Kuramoto-type nodal dynamics [43]. The network consists ofN=120 nodes and
165 transmission lines (as illustrated infigure 5)with topological propertiesmuch different from those of a
scale-free network. The dynamical equations of the system (in analogywith equation (1)) read [10]

å

q w

w aw q q

=

=- + + -
=

˙

˙ ( ) ( )P A

,

sin , 9

i i

i i i
j

N

ij j i
1

Figure 3. (a)Histogramof SNBS á ñSB
1 of all nodes of the considered ensemble of random scale-free networks. The relative frequencies

(%) correspond to the percentage of nodes with á ñSB
1 values lyingwithin the respective bin of the histogram. (b) Same for the á ñTR

1

values. (c), (d)Conditionalmeans (blue circles) of á ñTR
1 with respect to (c) degree ñ ñ(⟪ ∣ )T kR

1 and (d) betweenness centrality ñ ñ(⟪ ∣ )T bcR
1

of the nodes. The red lines indicate linear fits to the conditionalmeans.
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where qi, wi,α andPi denote the phase, frequency, electromechanical damping constant and net power input of
the ith oscillator, respectively. Furthermore, we randomly choose N

2
net generators and N

2
net consumers with

= +P Pi 0 and = -P Pi 0, respectively [8].We use the parameter values of a = 0.1, =P 1.00 and  = 9.0 for
obtaining the results described below.

We again consider the synchronized state, which corresponds to all oscillators having constant phases q̃i and

frequencies w =˜ 0i , as theDOS of the grid.We select =I 1000C trials for calculating the SNRT values of the
network. The á ñTR

1 values (for d = -10 4) of all theN=120 nodes are shown infigures 6(a) and (b) displays a
histogramof all á ñTR

1 values. Interestingly, we observe from figures 6(a), (b) that 113 nodes have low values of
SNRT ( á ñT 200R

1 ), which are shown in black infigure 6.However, we also observe seven slownodes that
exhibit substantially higher values (á ñ >T 200R

1 ), which aremarked in red infigure 6. Therefore, (individually or
collectively)perturbing any of these seven nodes of the networkwill result in dysfunction of the grid and a
significantly longer time until the system retaliates to the synchronized state. In turn, it is recommended to
control or safeguard these seven specific nodes of the network to avoid a longwaiting time for the system to
return to the synchronized state in the face of randomperturbations. The choice of the boundary at á ñ =T 200R

1

for distinguishing between the fast and slow nodes ismotivated by the fact that we observe afirst substantial gap
in the histogram infigure 6(b) around the aforementioned value.We alsofind similar results from a cluster
analysis of the á ñTR

1 values of the network. These seven nodes are not found to exhibit any specific topological
features leading to their relatively higher respective á ñTR

1 values. Further investigations analysing these results
may provide potentially important insights in this regard.

We emphasize that Erdős–Rényi randomnetworks [6] of Rössler oscillators are found to exhibit similar
distributions of á ñTR

1 values as above; the corresponding results are described in appendixD. Figures 6(c), (d)
illustrates the values of á ñTR

1 in comparisonwith k and bc, respectively. The correlation coefficients of á ñTR
1 with k

and bc are 0.102 and 0.061, respectively, ruling out the existence of a systematic dependence between á ñTR
1 and k

or bc. Figure 5 displays the network topology together with the individual á ñTR
1 values in analogywithfigure 2 for

theDSF network of Rössler oscillators.

4. Conclusions

Complex systemsmodelled as networks of interacting dynamical units are ubiquitous and often exhibitmultiple
stable states.Maintaining operation of such systems in the desired stable state (which often concurs with the
synchronized state of the network) is vital to their functionality. Subsequently, this has generated a lot of
attention in studying stability of theDOS in such coupled dynamical systems.However, given that theDOS is

Figure 4. (a)Global RT á ñTR (black circles), maximumSNRT á ñTR
1

max (red crosses) and average SNRT ⟪ ⟫TR
1 (blue crosses) of all

network realizations from the considered ensemble of random scale-free networks. (b)Relationship between á ñTR (blue circles) and
themaximumbetweenness centrality ( )bcmax of all nodes of the respective network realization. (c)As in (b) for á ñTR and average path
length ( ) of the respective network realization. The red lines in (b), (c) indicate linear fits.
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stable in principle, it is equally important that the system relaxes back to the same as quickly as possible,
following a randomperturbation to a particular node of the network.We have addressed this issue here by
proposing the general framework of SNRTwhich relates to the time taken by the systemoperating in theDOS to
return to the same, following a non-infinitesimal perturbation to the dynamical state of the respective node. It is

Figure 5.Network topology of the power transmission grid of theUnitedKingdom (comprisingN=120 nodes)with second-order
Kuramoto-type nodal dynamics. Circular nodes denote net generators while square nodes are net consumers. The size of each symbol
is proportional to the degree, and its colour corresponds to the á ñTR

1 value of the respective node. The seven nodes further encircled by
blue diamonds comprise the slow nodes of the grid in our simplifiedmodel.

Figure 6. (a) SNRT á ñTR
1 of all theN=120 nodes of the power grid of theUnited Kingdomwith second-order Kuramoto-type nodal

dynamics. (b)Histogramof á ñTR
1 of all theN=120 nodes. (c), (d)Dependence of á ñTR

1 on (c) degree (k) and (d) betweenness centrality
(bc) of the nodes. The fast nodes of the gridwith á ñT 200R

1 are shown in blackwhile the slownodes having á ñ >T 200R
1 aremarked in

red.
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important to note that we did not address the problemof driving the perturbed system to theDOS. Instead, we
aimed at unveiling the different relative time scales underlying the transient dynamics of individual nodes of the
network during its relaxation to theDOS, in order to identify specific nodes whichwhen perturbed lead to
significantly enlarged RT.We thus recommend taking precautionarymeasures of safeguarding primarily these
nodes of the network from external perturbations.

Importantly, the proposedmachinery can be utilized in revealing relationships between topological features
of nodes and their respective SNRT values and in turn, theGRTof the overall network. Further, we have
suggested the association of SNRTwith the concept of engineering resilience in quantifying the resilience of such
networked dynamical systems. Finally, we have applied the framework of SNRT to deterministic and random
scale-free networks of Rössler oscillators and a conceptualmodel of the power grid of theUnitedKingdomwith
second-order Kuramoto-type nodal dynamics.

We have presented here the framework of SNRT (and associated illustrations) in the special context of
networks of identical oscillators with continuous time dynamics (equation (1)) exhibiting bistability on account
of coexisting synchronized and desynchronized regimes. However, the framework is generally applicable to any
networked (continuous or discrete time)dynamical systemwith non-identical nodes andmultiple coexisting
states. Thus, future work on SNRT could comprise its extension and application to networks of non-identical
nodes and/or exhibitingmore complex patterns ofmultistability. Further development on SNRT could
comprise its generalization to a framework ofmultiple-node recovery time, similar to recent work in the context
of BS [10].

Regarding a potential field of application, we emphasize that time-delays arise frequently in the inherent
dynamics of individual oscillators and in their interactions on complex networks [44]. Therefore, another
interesting endeavour could constitute incorporating time-delays in networked dynamical systems and
investigating their influence on SNRT andGRTof the network. Finally, complex systems comprising oscillators
coupled on prototypical network types such asWatts–Strogatz,multilayer, interdependent, etc are open to
applications of SNRT. These ventures could further unravel interesting relationships between SNRT and
topological features of the aforementioned networks.
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AppendixA.On the choice of the reference trajectory

Weelaborate here on the existence of a reference state such that the condition in equation (4) is fulfilled. For any
arbitrary xref wehave the correspondingTRR function, and hence á ñ( )T iR

1 as well. Now,we can take a new
j¢ = -( )tx x,ref ref wherej -( ·)t , is the time-evolution operator shifting a state for the time t backwards along

theflow and = á ñt TR
1

min. Using ¢x ref wehave a corresponding ¢TRR function and á ñ¢( )T iR
1 . In particular,

á ñ =¢T 0R
1

min holds by construction. So, taking ¢x ref as the reference state fulfils equation (4).

Appendix B.DSFnetwork

TheDSFnetworkwas proposed by Barabási et al [39] as a simplemodel to generate scale-free topologies in a
deterministic fashionwith hierarchical assembly. It was later analytically studied by Iguchi andYamada [45] in
greater detail. Such networks characterized by their fractal growth are categorized into the general class of
hierarchical networks [46].

The construction of the network follows an iterative rulewhich starts with a single vertex labelled as the root
node of the network. Subsequently, two nodes labelled as bottom nodes are added and connected to the root,
thus completing the 1st step of the construction process. Then, two identical copies of the resulting graph are
created and each of the bottomnodes of these two units are connected to the root in the 2nd step. Thus, the root
gains fourmore edges and the resulting network now contains nine nodes. In the 3rd step, two copies of the
resulting graph are created, and the eight bottomnodes of each of these 2 units are connected to the root.
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Generalizing the aforementioned steps to the nth iterationwould involve adding two units of -3 1n nodes
created in the -( )n 1 th step and then connecting the 2n bottomnodes of each unit to the root node.We refer to
each step of the algorithm as a generation. The topology developed over three generations of theDSF network is
illustrated infigure 1.

The degree distribution of the network can be exactly solved for and follows ~ -( )P k k
3
2 [39]. Also, the

average path length of such a network developed over g generations can be analytically obtained to be

 =
-

-g8 3

3 1

g

g

2

, which in the limit of  ¥N is approximated by Nlog8

9 log 3
[47]. Thus, the average path length

scales logarithmically with the number of nodes for largeDSF networks [39].
The local clustering coefficient i

L is ameasure of the probability of the existence of a link between two

randomly selected neighbours of node i [6]. i
L is defined as the ratio between the number of links between

vertices within the neighbourhood of node i and the number of links that could possibly exist between them [6].
Thus,  =

-
D

( )
Ni k k i

L 2

1i i
where DNi is the total number of closed triangles including node i (with degree ki), which

is bounded by themaximumpossible value of -( )k k 1

2
i i [6]. The average local clustering coefficient L of the

network is then given by the arithmeticmean of the local clustering coefficient of all nodes of the network, i.e.,

 = å =N i
N

i
L 1

1
L. TheDSF networkmodel does not involve creation of triangles of nodes, thereby resulting in no

clustering, i.e, an average clustering coefficient of  = 0L [39].

AppendixC. BAmodel of random scale-free networks

Many real-world complex networks have been reported to exhibit scale-free behaviour characterized by the
probability ( )P k that a randomly selected node has exactly k links decaying as a power law, ~ g-( )P k k , where

g< <2 3has been typically observed for the scaling exponent γ [41]. This leads to a heterogeneous degree
distribution in such scale-free networks withmostly lowdegree nodes coexisting with a few very high degree
nodes (also called hubs) [41].

In the above context, the BAmodel [41] has been suggested for realizing random scale-free networks with
growth and preferential attachment, where an incoming node ismore likely to get randomly linked to an
existing node with higher connectivity.While generating the random scale-free networks using the BA
model, the growing character of the network is incorporated by starting with a small number of connected
nodesN0 with uniform degree. Thereafter, at every time step a new node is introduced and linked tom nodes
already present in the system (until the network comprisesN nodes).We set =N 30 andm=2 for
generating the ensemble of random scale-free networks considered in this paper (section 3.2). Preferential
attachment is incorporated by assuming that the probability Pi that a new node will be connected to an

existing node i depends on the degree ki of node i, such that P =
åi

k

k
i

j j
. This naturally creates the possibility of

high degree nodes to continuously further increase their respective degrees, as new nodes added to the
network prefer attachment with such hubs. The degree distribution in such a network indeed follows a
power-lawwith g = 3while the average path length and average local clustering coefficient scale with

network size as  ~ N

N

log

log log
and  ~ ( )N

N
L log 2

, respectively [2, 48]. Such random scale-free networks

generated using the BAmodel generally exhibit shorter average path lengths as well as higher values of
clustering coefficients. However, the BAmodel fails to capture high levels of clustering exhibited bymany
real-world complex networks.

AppendixD. Erdős–Rényi randomnetworks of Rössler oscillators

Weconsider an ensemble of 100 Erdős–Rényi randomnetworks [6] ofN=81Rössler oscillators each, again
with the same parameter values as for theDSF network (section 3.1).We consider a probability p= 0.04 of a
connection between any pair of vertices of a network, resulting in a total of 130 edges in each realization. For
d = -10 6, we calculate and present the distribution of á ñTR

1 (on log10 scale) values of all nodes of the considered
ensemble of Erdős–Rényi randomnetworks infigureD1. It is evident from the distribution thatmost nodes have
rather low values of á ñTR

1 (100), which comprise the fastnodes of the respective network.However, we also

observe the existence of very few slownodeswhich exhibitmuch higher á ñTR
1 (>100) values. The á ñTR

1 values
again do not exhibit any strong linear relationshipwith k (bc), (not shown) as demonstrated by the correlation
coefficient of 0.743 (0.36).
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