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Abstract

Maintaining the synchronous motion of dynamical systems interacting on complex networks is often
critical to their functionality. However, real-world networked dynamical systems operating
synchronously are prone to random perturbations driving the system to arbitrary states within the
corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori
unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient
phases before the system returns to synchrony, following a random perturbation to the dynamical
state of any particular node of the network. We address this issue here by proposing the framework of
single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the
transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in
differentiating the particularly slow nodes of the network from the relatively fast nodes, thus
identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the
system before resuming synchronized operation. Further, we reveal explicit relationships between the
SNRT values of a network, and its global relaxation time when starting all the nodes from random
initial conditions. Earlier work on relaxation time generally focused on investigating its dependence
on macroscopic topological properties of the respective network. However, we employ the proposed
concept for deducing microscopic relationships between topological features of nodes and their
respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the
different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks
of Rossler oscillators on paradigmatic topologies and a model of the power grid of the United
Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical
applicability of the proposed concept.

1. Introduction

The abundance of dynamical systems involving large collections of individual entities interacting with each
other on complex networks can hardly be further exaggerated [1-6]. Such networked dynamical systems often
exhibit a multitude of stable states, whereby sustained operation of the system in the desired state is of central
importance. The desired operational state (DOS) in such systems is commonly associated with the synchronized
motion of the dynamical components coupled on their networked architecture [7, 8]. ‘Permissible’ and
‘impermissible’ random perturbations (according to the terminology used by Menck et al [9]) often disrupt the
functionality of coupled dynamical systems operating in the synchronized state, driving them away either to an
arbitrary state still inside the basin of attraction of the synchronized state, or to an altogether different dynamical
regime. The former situation arising on account of ‘permissible’ perturbations, leads to arbitrary durations of
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desynchronized dynamics before the system regains synchronous motion. On the other hand, ‘impermissible’
perturbations permanently forbid the return of the system to the synchronized state, unless again affected by an
appropriate external perturbation.

The stability of the synchronized state against the aforementioned perturbations is critical in the operation of
many real-world networked dynamical systems such as ecosystems, power grids, the human brain, etc [10].
Subsequently, the influence of topological features on network synchronizability and the stability of the
synchronized state has been well-investigated [7, 11]. In this context, significant developments constitute the
master stability function (MSF) [12], basin stability (BS) [9] and its extensions to single-node BS [8], multiple-
node BS [10], and survivability [13]. On the contrary, the issue of recovery time (RT) of complex dynamical
networks following a random perturbation, which is a measure of how quickly the network relaxes back to the
DOS (e.g., a synchronized state) after being perturbed from the same, has received considerably less attention
and is currently under active investigation [ 14-25]. However, this is an important problem concerning
dynamical robustness of complex networks, i.e., the ability of a network to restore its dynamical activity to the
DOS when its components are subject to random perturbations. For example, the loss of synchrony in
engineered systems such as power grids can lead to large-scale power blackouts [8]. In biological systems such as
the human brain, it can impede cognitive functions such as information transfer [26] and memory [27]. Thus,
quickly restoring synchrony following desynchronizing perturbations is crucial in such coupled dynamical
systems. Consequently, it is highly desirable to have an estimate of the RT of the system to the desired stable
regime, following a perturbation to a particular node of the network (otherwise operating in the DOS). This
creates the possibility of identifying (and safeguarding) specific nodes which when perturbed lead to a
particularly large RT of the system. In this regard, we propose here the framework of single-node recovery time
(SNRT) addressing the aforementioned issue. We reserve a formal definition of SNRT to section 2.3.

SNRT of a node under investigation relates to the time taken by the system operating in the DOS (e.g., a
synchronized state) to return to the same, following a random perturbation to the dynamical state of the
respective node. The framework of SNRT provides information on the different relative time scales underlying
the transient dynamics of the respective nodes of the network during its restoration to the DOS. This can be
utilized in revealing the particularly slow nodes of the network in contrast to the relatively fast ones, leading to the
identification of the vulnerable nodes which when perturbed significantly elevate the RT of the whole system.
Further, this can provide an insight into the global relaxation time (GRT) of the network to the DOS, when
starting all its nodes from arbitrary initial conditions. We provide a formal definition of GRT in section 2.4. The
GRT is referred to as the global synchronization time when the synchronized state is the DOS of the network.

Previously, the dependence of synchronization time on various macroscopic topological properties of the
corresponding networks has been investigated. For example, Grabow et al [22] have shown that, largely
insensitive to the type of oscillators (phase, multi-dimensional, neural), their intrinsic dynamics (periodic,
chaotic) and their coupling schemes (phase-difference, diffusive, pulse-like), networks with a fixed average path
length consistently synchronize slowest in the small-world regime. This is a rather unexpected phenomenon
given that small-world topology has been suggested to facilitate network synchronization at weaker coupling
strengths (than for analogous, appropriately normalized globally coupled systems) [28—30] as well as being more
robust to random perturbations [9]. Also, the MSF approach [12] has been extended by Grabow et al [23] to
provide analytical predictions for the asymptotic synchronization times, which is, however, locally restrictive to
small perturbations. Further, the dependence of synchronization time on various macroscopic topological
features such as the average path length, global clustering coefficient, etc has been systematically studied. In this
context, the framework of SNRT introduced in this work is capable of providing a microscopic view on the
response to arbitrary perturbations of individual nodes as well as exploring relationships between various
topological features of the nodes and their respective SNRT values.

Finally, we advance on the framework of SNRT for quantifying the resilience of networked dynamical systems
[31]. Resilience of a given dynamical system has been defined in at least two different ways, namely, engineering
resilience and ecological resilience [32]. Engineering resilience (according to Pimm [33]) of a dynamical system
characterizes its resistance to disturbance and speed of return to its equilibrium, following a perturbation
[32, 34, 35]. It implicitly assumes global stability, i.e., the existence of only one equilibrium state, or, if other
operating states exist, they should be avoided by applying safeguards [32, 34, 35]. On the other hand, ecological
resilience [36] presumes the existence of multiple stable states and the tolerance of the system to disturbances that
facilitate transitions among the stable states [32, 34, 35]. In this case, resilience of the system is measured by its
capacity to remain in the same basin of attraction in the face of random perturbations [32, 34, 35].

Ecological resilience of the multiple stable states of a system relates to the volume and geometry of their
respective basins of attraction [9, 35]. In this context, Mitra et al [35] recently reconsidered the concept of ecological
resilience and its three crucial aspects of ‘latitude’ (L), ‘resistance’ (R) and ‘precariousness’ (Pr) [36]. They redefined
L, R and Prin a rigorous dynamical systems context and utilized this as a foundation for characterizing multistability
and proposing the quantifier of integral stability [35]. Besides its extension to quantifying multistability, the
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framework of ecological resilience has generated widespread interest (see [37] and references therein). On the other
hand, the facet of engineering resilience, perhaps on account of its restrictive scope to globally stable systems has
received considerably less attention. However, it is equally crucial to know how long does a system operating in its
desired stable state take to retain functionality in the respective dynamical state, following a random perturbation. As
mentioned earlier, networked dynamical systems often exhibit multiple stable states, such as the coexistence of
synchronized and desynchronized dynamical regimes, which is a notable example of bistable behaviour [10]. Thus,
we extend here the traditional scope of engineering resilience to quantifying the resilience of the DOS (e.g., the
synchronized state) in such multistable coupled dynamical systems. More precisely, we relate the engineering
resilience of each node of a networked dynamical system (for the DOS) to the SNRT of the corresponding node such
that a node with alower value of SNRT is considered more resilient and vice versa. Thus, the proposed architecture
of engineering resilience complements the existing framework of ecological resilience in characterizing the overall
resilience of networked dynamical systems.

This paper is further organized as follows: in section 2, we outline the general methodology for calculating
SNRT values for a given networked dynamical system. In section 3, we illustrate applications of SNRT to
networks of Rossler oscillators and a model of the power grid of the United Kingdom with second-order
Kuramoto-type nodal dynamics. Finally, we present the conclusions of our work in section 4.

2. Methods

2.1.Preliminaries
Consider a network of N oscillators (nodes) where the intrinsic dynamics of the ith oscillator (represented by the
d-dimensional state vector x;(t) = (x}, x7, ..., xid)T) is described by x; = F(x;), where
x; € R F: RY —RY F = (B (x), FF(x)), ..., Ed x;)';i=1,2, ..., N.The dynamical equations of the
networked system read
N
% = Fi(x) + ) AjH;(x), x)), )
j=1
where € is the overall coupling strength, A is the adjacency matrix which captures the interactions between the
nodes such that A;; = 0 ifnodejinfluencesnodeiand H; : R? x R — R?isanarbitrary coupling function
from nodes j to i. For the illustrations in this paper (section 3), we consider identical nodal dynamics
(F; = F V1), symmetric adjacency matrices (A;j = Aj;; = lifnodesiand;jare connectedand A;; = A;; = 0
otherwise) and identical coupling functions (H; = H Vi, j).
We assume that the DOS is an attractor of the system that we denote by .4 with the corresponding basin of
attraction B(.A). We usually denote a trajectory on .4 by x(¢).

2.2.Regularized reaching time
For a trajectory initiated from x(0) = (x;(0), x3(0), ..., xxy(0)F € B(A), the attractor is usually reached
asymptotically. This implies that the associated reaching time is not finite, thus posing a problem in its measurement. A
way to address this problem is regularization of the time variable [25]. We now discuss the framework of regularized
reaching time proposed by Kittel et al [25] and then resort to the same in dealing with the above issue.

The distance of a state at time f on a trajectory initiated from x(0), to the desired attractor is given by,

dx(t, x(0)), A) = inf {||x(#, x(0)) — x’||: x" € A},

where x(¢, x(0)) represents the state of the system after a time t has elapsed. The last-entry time for the
corresponding trajectory to enter a 9-neighbourhood around the desired attractor A is given by

. (x(0), §) = inf {T : d(x(t, x(0)), A) < 8§, Vt > T},

where 6 — 0 leads to the aforementioned divergence.

Kittel et al [25] argued that even though the actual reaching times diverge for the respective trajectories, their
differences actually converge. Subsequently, they proposed the regularized reaching time Tyg (x(0)) for any
trajectory (starting from x(0)) as the difference between the last-entry times along the respective trajectory and a
reference trajectory (starting from X.¢), foragiven 6 > 0. This can be interpreted as the additional time the
trajectory starting from x(0) needs to arrive in the vicinity of the desired attractor, after the reference trajectory
starting from X,r has reached it. Thus,

Trr (x(0)) = (lsin(l)(tL(X(O)’ 6) — t(Xret> 0)). ©))

A positive or negative value of Ty (x(0)) indicates that the considered trajectory arrives by this value later or
earlier than the reference trajectory, respectively. This allows the distinction between slower and faster trajectories
of the system during their return to the desired attractor (see Kittel et al [25] for further details on Tgy).
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2.3. Single-node recovery time (SNRT)

In the following, we outline the general methodology for calculating SNRT values for all nodes of any networked
dynamical system. We assume that the networked dynamical system of equation (1) is in its DOS X(t). Now,
consider a ‘permissible’ random perturbation Ax; to the dynamical state of the ith oscillator of the network. The
system (otherwise functioning in its DOS) is pushed to a perturbed state xp; = (%X, %, ..., X; + AX;, ..., Zx)'
The perturbed state (on account of the perturbation being ‘permissible’) remains in the basin of attraction B(.A)
of the DOS because we chose x; to be permissible, thus ensuring the system’s return to the same. We then
define the SNRT of the ith oscillator as,

pi(xai) Trr (xa7) dAX;
pi(xai)dAX;

‘j;)i(B(A))

(TR()) = 3)

fPi (B(A))

where P;is the projector into the subspace of the ith oscillator, i.e., Pi(x) = x;. p;(xa;) is the density of
‘permissible’ perturbed states in state space that the ith oscillator may be pushed to even via large perturbations
with f p;(xa))dAx; = 1, where this integral is performed over the subspace of the ith oscillator. The integrals in
the numerator and denominator of equation (3) are performed over the basin of attraction of the DOS

(i.e., xp; € B(A)). Thus, the SNRT of the ith oscillator ( Ty (i)) corresponds to the mean regularized reaching
time of the system to the DOS, after arandom ‘permissible’ perturbation hits the respective oscillator.

Equation (2) demands the choice of a reference initial condition x,.r € B(.A) that needs to be kept fixed for
all single-node perturbations to allow comparability between SNRT values of the different nodes of the network.
However, different choices of X,f (as long as we do not choose it on .A) simply lead to a shift of all (T} (i)) values
by a constant only [25]. Although not posing a serious problem, this methodology of choosing x,.¢ leaves an
element of arbitrariness. As we seek to utilize the (T}) values in estimating the duration by which a particular
node of the network returns faster or slower than another, this naturally leads to the condition demanding the
lowest (T (i)) value to be 0,

m}n(<T£(i)>) = (Th)min = 0. (4

Using this equation, we can fix x.¢ implicitly instead of explicitly specifying it. We denote the node (or one
representative if there might be more) with (T} (i)) = 0 by i,er. The resulting values of ( T}) now represent
differences in time by which nodes of the network return slower than the reference node i... As opposed to
arbitrarily choosing x.f, thereby resulting in negative Tyy values (which is counter-intuitive when measuring
time), the above choice of X, ensures non-negativity of ( T (i)) values, besides eliminating the arbitrariness
associated with the choice of x,.. Further details on the choice of the reference trajectory are provided in
appendix A.

We now present an algorithm for estimating the SNRT of the ith oscillator /node of a network (modelled
using equation (1)):

(i) Identify the DOS of the network. This state often corresponds to the synchronized dynamics of the
oscillators coupled on the network.

(if) When the attractor corresponding to the DOS A is not a fixed point, choose P (> 1) different points on the
attractor. Otherwise, choose P = 1.

(iii) For a particular value of p (p = 1, 2, ..., P), initiate the system from the DOS corresponding to the pth
point on A. Then, perturb the ith oscillator by drawing I randomly distributed (according to p;(xa:)
initial conditions x‘ii( j=1,2, ..., Ic) frominside the basin of attraction of the DOS. For the results
described in this paper, we assume a uniform distribution of p;(xa;).

(iv) For a fixed value of § > 0, calculate the last-entry time £ (x},(j), §) of the system for the jth initial
condition.

(v) Estimate the SNRT of the ith oscillator (Tx (i, p)) for the pth point on the attractor as,

8GR, 6)
TrGiy p) = 2t IA’ : )
C

and then average over p to obtain,

P
(Tr()) = Z v (> D). (6)

"UI»—‘
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(vi) Finally, we identify the node i with the minimum ({T) value (as computed above for all nodes) ( Tg)mi, and
subtract this value from the (T} (i)) of the ith oscillator computed above, thus yielding the SNRT value of the
respective oscillator.

The parameters P, Icand ¢ of the above algorithm have to be selected prior to its implementation. The actual
values should be chosen according to the specifics of the system under investigation, as also illustrated with the
different applications presented in this paper (section 3). Itis conclusive however, that higher values of Pand I
yield better estimates of { Ty (i)).

As mentioned earlier, this concept of SNRT can be utilized in identifying the slow and fast nodes/sub-
components of networked dynamical systems. Also, the proposed machinery can be used in revealing systematic
relationships between SNRT values of different nodes and their respective topological features. Further, it can be
extended to a measure of (engineering) resilience of the different nodes of a networked dynamical system (see
section 2.6) and thereby utilized in identifying the particularly vulnerable nodes of the network as well as the
more resilient ones. Subsequently, this framework of SNRT can be potentially relevant in selecting specific nodes
to be safeguarded from external perturbations. We now define the GRT of a network, which relates to the overall
time scale of the dynamics of a network during its relaxation to the DOS.

2.4. Global relaxation time (GRT)

Starting all nodes of a networked dynamical system from random initial conditions inside the basin of attraction
of the desired attractor involves a transient time before the system reaches the associated attractor. We refer to
the duration of this transient regime as the relaxation time of the system for the respective initial state. We
estimate the GRT (Tj) of a network as follows:

(i) Draw I random initial conditions from inside the basin of attraction of the DOS. The jth initial condition
canbe writtenas x(j) = (x}, x4 ..., x¥) where j = 1, 2, ..., Ic. Note, that the value of I chosen for
computing the GRT can be different from the one chosen for calculating SNRT above (section 2.3).

(ii) For the jthinitial condition, calculate the last-entry time # (x(j), 0) of the system with the same value of ¢ as
chosen for computing SNRT (section 2.3).

(iii) Calculate the GRT of the network as,

Ic
(Te) = =5 0.x(j), 6). %

IC j=1

(iv) Finally, subtract the value of (T})min (obtained in section 2.3) from the (Ti) computed above in obtaining
the GRT of the network.

When the DOS of the network is a synchronized state, its GRT is referred to as the global synchronization time of
the system.

The GRT of a network is useful for quantifying the expected transient time to reach the DOS, when starting
the system from a random initial condition. In section 3, we will illustrate the relationship between SNRT values
and the GRT of a network for different systems.

In order to avoid terminological confusion, we explicitly distinguish between the usage of recovery, reaching and
relaxation time. We use the term recovery with reference to the time taken by the system to recover from a
perturbation and resume operation in the DOS. On the other hand, when initiating all the nodes of the system from
arbitrary conditions, the term relaxation is used with reference to the time before the system relaxes to the DOS. It is
the difference between the relaxation times of a trajectory starting from a particular initial condition and that of a
reference trajectory, which is termed as the regularized reaching time for the respective initial condition.

It should be noted that the situation following a perturbation may also be viewed as the system starting from
a particular initial condition (corresponding to the perturbed state) and subsequently, relaxing to the respective
attractor. However, we want to specifically distinguish between relaxation following a perturbation as a process
of recovery, and the traditional formalism of relaxation of the system when starting the entire network from
random initial conditions. Subsequently, we seek to utilize the above terminology in order to maintain this
distinction during the course of this work.

2.5. Single-node basin stability (SNBS)
The BS of a particular attractor relates the volume of its basin of attraction to the likelihood of returning to the
same attractor in the face of random perturbations [8—10]. More precisely, the BS of a particular attractor is
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defined as the fraction of the volume of the state space belonging to the basin of attraction of the respective
attractor [8—10]. In practice, BS of any particular attractor is estimated using a numerical Monte Carlo
procedure by drawing random initial states from a chosen subset of the entire state space, simulating the
associated trajectories, and calculating the fraction of trajectories that approach the respective attractor [8—10].
As mentioned earlier, the ecological resilience of a stable state is (among other properties) determined by the size
and shape of its basin of attraction, and is therefore closely related to its BS.

BS has been further extended to the framework of SNBS [8, 10]. SNBS (S;) of a node under investigation
corresponds to the probability of the network (operating in the DOS) to return to the DOS, after that particular
node has been hit by a non-infinitesimal perturbation [8, 10]. We refer to Mitra et al [ 10] for the general
methodology used throughout this paper for estimating SNBS values for any networked dynamical system.

2.6. Engineering resilience

SNBS is a measure related to the ecological resilience of a node subjected to a random perturbation (when the
entire network was functioning in the DOS prior to the disturbance). The time elapsed before the network
returns to its DOS, following a ‘permissible’ random perturbation to a particular node determines the
engineering resilience of the respective node. We recommend incorporating the engineering resilience of a node
(besides its ecological resilience as characterized by its SNBS value) quantified as being inversely related to its
SNRT value, in measuring the overall resilience of the respective node. For example, it may be possible that two
nodes of a networked dynamical system have very similar values of SNBS. However, the SNRT values of the
respective nodes may differ significantly (as we shall illustrate using examples in section 3). In such a situation,
the new framework of SNRT should complement that of SNBS in appropriately assessing the resilience of the
respective nodes of a network.

3. Examples

We shall now illustrate applications of SNRT to various networked dynamical systems. Here, we specifically
apply the framework to networks of oscillators with continuous time dynamics (equation (1)) exhibiting
bistability on account of coexisting synchronized and desynchronized regimes, where the former is considered
as the DOS of the system. However, the framework is generally applicable to (continuous or discrete time)
networked dynamical systems with multiple coexisting states as well. It should be noted that the values of the
measures for the different networks/examples studied in this work are not directly comparable. Also, the
algorithmic parameters for each application have been chosen according to the specific system under
investigation.

3.1. Deterministic scale-free (DSF) network of Rossler oscillators

We first consider a network of N identical Rossler oscillators [38], with diffusive coupling in the x*-variable
between two coupled nodes such that the full dynamical equations of node 7 (in analogy with equation (1)) read
1 2 3

J'Ci =—X; — X,

N
%7 =x! + ax? + EZ Aij(sz — x7),
j=1
J.C? = b + xis(xil — C). (8)

We use the parameter valuesof a = b = 0.2 and ¢ = 7.0 for which the intrinsic dynamics of each uncoupled
Rossler oscillator is chaotic.

As a specific network topology, we use an undirected DSF network [39]. For the simulations carried out in
this section, we specifically generate a DSF network developed over three generations and hence, comprising
N = 81 nodes (figure 1). We refer the reader to appendix B for further details on the DSF network model.

We consider the completely synchronized state as the DOS of the network, which corresponds to all
oscillators following the same trajectory. Further, we choose ¢ = 0.8 for which the completely synchronized
state in Rossler oscillators diffusively coupled via the x*-variable is stable (see [40] for further details on the
calculation of the stability interval) and set § = 10~* " for estimating the SNRT ({Ty)) values, using the
procedure described in section 2.3.

*We suggest choosing a value of ¢ depending upon the system of interest. This choice should be made to ensure that the system comes
sufficiently close to the desired attractor A as well as being computationally efficient. For example, we choose a value of § = 10~ for the
deterministic scale-free network, whereas § = 107 for the random scale-free network. This is because in the former case, the system
generally takes a longer time to enter the 6-environment around A. For a further discussion on the estimation of Trg, we refer the reader
to[25].
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Generation 1

Generation 2

Generation 3

Figure 1. Network topology of the undirected deterministic scale-free network of N = 81 identical Rossler oscillators. The size of each
node is proportional to its degree and the colour indicates the (T}) value of the respective node.
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Figure 2. (2) SNRT (T) (on log, , scale) of the nodes of the three generations of the undirected DSF network of Nidentical Rossler
oscillators (equation (8)). The first nine nodes comprise the 1st generation, the next 18 nodes the 2nd generation and the final 54 nodes
the 3rd generation. Node 4 having the minimum SNRT value (Tx(4)) = 0 of the network (implying divergence of log,,({ Th(4)))) has
not been shown in the plot. Note that the (T}) values of the nine nodes comprising the 1st generation are actually between 0 and 17.
However, as the (T5) values are presented on a log, , scale, they appear to be much more dispersed than the log, ,( (T})) values of the
nodes in the other two generations. However, the { Ty) values of the nodes in all the three generations actually have similar variations.
(b) Histogram of log, 0(<T11Q>) of the nodes. (c), (d) Relationship of (T) with (c) degree (k) and (d) betweenness centrality (bc) of the
nodes.

We calculate and present the individual ( Tj) (on log, , scale) values of the nodes in figure 2(a). Interestingly,
the three generations of nodes split into three classes in terms of their (T}) values such that the lower the
generation in the hierarchy, the higher is the SNRT of the individual nodes comprising it (as evident from the
histogram in figure 2(b)).

We next compare these findings with two key topological features of the DSF network. The connectivity of a
nodei(fori =1, 2, ..., 81)is described by its degree k; = 3°; A;; (where A is again the adjacency matrix of the
respective network [6]). The betweenness centrality (bc;) of a node i is related to the fraction of shortest paths
between all pairs of nodes that pass through node i [6]. For an N-node network, the bc of each node may further

be normalized by dividing by the number of node pairs (i.e > (I;]) ), obtaining a value between 0 and 1. Thus,
be; = mz - k#% where o;  is the total number of shortest paths from nodes j to k and 03, ¢ is the number
of such shortest paths which pass through node i [6].

Figures 2(c), (d) shows the relationship of the log, ,((T)) values with the topological features of degree k and
be of the nodes, respectively. The (T) values do not exhibit any marked relationship with these two
characteristics. This is further illustrated by the correlation coefficient of —0.040 (—0.085) between (T}) and
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k (bc). We summarize our results in figure 1, which displays the network topology where the size of each node is
proportional to the degree and the colour corresponds to the (Ty) value of the respective node.

The nodes in the 3rd generation of the DSF network comprise its slow nodes. It is expected that the overall
time scale of synchronization of a network should be governed by the node with the highest SNRT, i.e., the
‘slowest’ node of the system. The ‘slowest’ node of the DSF network has (T3) ~ 749.8. We also computed the
GRT (Ty) of the DSF network using the methodology described in section 2.4. We find () ~ 750.04 being very
close to the maximum (T}) value of the network. Thus, we conclude that the ‘slowest’ nodes of the DSF network
indeed govern its overall time scale of synchronization. However, this result cannot be generalized to any
arbitrary topology, as we will demonstrate in the following.

3.2.Random scale-free networks of Rossler oscillators

Next, we consider an ensemble of 100 random scale-free networks (generated using the classical Barabasi—Albert
(BA) model of growth and preferential attachment [41]) of N = 81 Rdssler oscillators each, with the same
parameter values as for the DSF network. We refer the reader to appendix C for further details on the BA
network model. While the DSF network of N = 81 Rossler oscillators studied in section 3.1 had 130 edges,

equivalently, an edge density of 1:10 ~ 0.04, the random scale-free networks generated using the classical BA

model have edge densities of 0.0429, i.e., 158 edges in each realization. This means that the BA random scale-free
networks have 22.5% more edges than the DSF network considered earlier in section 3.1. Therefore, the results
obtained for both topologies are not directly comparable quantitatively.

The distribution of SNBS (S}) values of the N = 81 nodes of the considered ensemble is presented in
figure 3(a). Surprisingly, all nodes have similar and very high (S3) values. Similar results have been observed in a
recent study on SNBS values in the DSF network of Rossler oscillators [10]. Figures 2 and 3 in [ 10] present the
distribution of the (S}) values of the N = 81 nodes of the DSF network, considered in section 3.1 of this paper.
Clearly, the (S}) values of all the nodes are very high (~0.95) as well as very similar. Likewise, figure 3(a) here
illustrates the distribution of the (S}) values of all the nodes of the considered ensemble of BA random scale-free
networks, which are again equally high (~0.95) and also quite similar for all nodes of the ensemble. These
observations lead to two important conclusions. Firstly, the similar and rather high (Sg) values indicate that the
synchronized state in scale-free networks is generally very robust to perturbations affecting a single node of the
system. Secondly, we observe that the presence or lack of a specific macroscopic (hierarchical) structure (as in the
DSF network but not in its random counterpart) in the respective scale-free network does not affect the
distribution of its (S}) values markedly. In contrast to the latter finding, we have already observed an influence of
the hierarchical structure on (Tj) for the DSF network (figure 2(a)). On this note, we shall further unfold
dependences of ( Tj) values on different topological features of random scale-free networks.

The corresponding distribution of (T}) (for § = 1076 (see footnote 4)) of all nodes of the considered
ensemble of random scale-free networks is shown in figure 3(b). As in the case of the DSF network, we next
consider the mutual dependence between SNRT and the local topological characteristics of the network. For
this purpose, we study the distribution of (Tj) values of all nodes of the ensemble with respect to their degree
and be. We collect all nodes of the ensemble having a particular degree k and calculate the mean over the (T)
values of all these nodes which corresponds to the conditional mean {{ T3) |k). Similarly, we bin the bc values
of all nodes of the ensemble and calculate the conditional mean (Tj) |bc) over the (T) values of all nodes
belonging to the respective bin. Interestingly, the conditional mean values exhibit a stronglinear dependency
with respect to k and be as illustrated in figures 3(c), (d). This is further underlined by correlation coefficients
0f0.987 (0.991) of the conditional means with k (bc). Thus, nodes with high k and bc, namely the hubs in the
random scale-free network, can be classified as its slow nodes. Perturbations to a more central node of a scale-
free network (operating in the synchronized state) can easily spread to other nodes of the network driving
them further away from the synchronized state. As aresult, a scale-free network operating in synchrony may
take longer to resynchronize when its more central nodes are perturbed as opposed to less central ones. This
observation is supported by the positive correlation between the conditional mean {(Tg) |bc) and be. Further,
given the strong linear relationship of the conditional mean SNRT with bc, a similar dependence for kis to be
expected (and vice versa) since random scale-free networks generally exhibit a strong correlation between k
and bc of their nodes [42]. However, the relationship of the conditional mean SNRT with k and bcbeing
specifically linear is surprising and revealing the underlying reason requires further investigation. We
emphasize that the observed relations are not specific to the relatively small network size. For example, we
have obtained similar results (not shown) in an ensemble of 100 random BA scale-free networks, each
comprising 243 Rossler oscillators constituting the nodal dynamics (with similar parameter values as above
but for ¢ = 1.3).
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Figure 3. (a) Histogram of SNBS (S}) of all nodes of the considered ensemble of random scale-free networks. The relative frequencies
(%) correspond to the percentage of nodes with (S}) values lying within the respective bin of the histogram. (b) Same for the (T})
values. (c), (d) Conditional means (blue circles) of ( Ty) with respect to (c) degree ({ Tx) |k)) and (d) betweenness centrality ({ Tg) |bc))
of the nodes. The red lines indicate linear fits to the conditional means.

We now calculate and present the GRT (Ty) of all members of the considered ensemble of random scale-free
networks (figure 4(a), black circles). Interestingly, we observe that unlike for the DSF network, the overall time
scale of synchronization in the different network realizations of its random counterpart differs markedly from
the maximum SNRT (red crosses) of the respective realization. To further study this finding, for each network
realization we compute the average of the (Ty) values of all its N = 81 nodes and denote it by { T . Notably, the
(Tg) value of every network realization appears closely related to { T ) (blue crosses) as illustrated in figure 4(a).
This is also corroborated by a correlation coefficient of 0.991 between (Ty) and { T} )).

Figure 4(b) shows the maximum bc,,,,, of all nodes of each network realization and its relationship with the
GRT (Ty) of the respective realization. As mentioned earlier, perturbing the node with bc,,,,, in a scale-free
network (operating in the synchronized state) may lead to a particularly large relaxation time to the
synchronized state. Thus, the higher the maximum bc of a scale-free network, the higher is the GRT of the
system, which is underlined by the positive correlation coefficient of 0.882 between (1) and bc.x in figure 4(b).

The average path length £ of a network is defined as the mean value of the shortest path length between all
possible pairs of vertices [6]. Thus, £ = mz i jz,” (i, j) where £ (i, j) is the length of the shortest path
between nodes i and j of the N-node network [6]. The dependence of the GRT (Ty) of each network realization
on its average path length (£) is presented in figure 4(c). We observe that (Tx) exhibits a negative correlation
coefficient of —0.658 with respect to £, i.e., random scale-free networks with shorter characteristic path lengths
synchronize slower. This result is compatible with the fact that random scale-free networks with longer
characteristic path lengths have been previously shown to promote synchronizability [28]. The underlying
heuristic picture is that a small £ in such networks corresponds to a large amount of traffic passing through the
few ‘central’ nodes connected to each other which facilitate communication between the much larger
population of the other oscillators. This may lead to destructive interference of the different signals passing
through such nodes. Subsequently, there may not be significant overall communication between the different
oscillators of the network, thereby culminating in its reduced synchronizability [28].

3.3. Power grid of the United Kingdom
As a final more realistic example, we consider a conceptual model of the power transmission grid of the United
Kingdom with second-order Kuramoto-type nodal dynamics [43]. The network consists of N = 120 nodes and
165 transmission lines (as illustrated in figure 5) with topological properties much different from those of a
scale-free network. The dynamical equations of the system (in analogy with equation (1)) read [10]

91' = Wi

N
w;=—aw; + P; + 62 Aij sin(9j - 0), 9)
=1
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Figure 4. (2) Global RT (Tg) (black circles), maximum SNRT (Tg)max (red crosses) and average SNRT ( T5 ) (blue crosses) of all
network realizations from the considered ensemble of random scale-free networks. (b) Relationship between (Tx) (blue circles) and
the maximum betweenness centrality (bcmay) of all nodes of the respective network realization. (c) As in (b) for (Tk) and average path
length (L) of the respective network realization. The red lines in (b), (¢) indicate linear fits.

where 6;, w;, a« and P; denote the phase, frequency, electromechanical damping constant and net power input of
the ith oscillator, respectively. Furthermore, we randomly choose % net generators and = net consumers with
P. = +Pyand P, = — P, respectively [8]. We use the parameter values of & = 0.1, P, = 1.0 and ¢ = 9.0 for
obtaining the results described below.

We again consider the synchronized state, which corresponds to all oscillators having constant phases 6 and
frequencies w' = 0,as the DOS of the grid. We select I = 1000 trials for calculating the SNRT values of the
network. The (T3) values (for § = 10~*) ofall the N = 120 nodes are shown in figures 6(a) and (b) displays a
histogram of all <T11Q> values. Interestingly, we observe from figures 6(a), (b) that 113 nodes have low values of
SNRT ((T3) < 200), which are shown in black in figure 6. However, we also observe seven slow nodes that
exhibit substantially higher values ((Tz) > 200), which are marked in red in figure 6. Therefore, (individually or
collectively) perturbing any of these seven nodes of the network will result in dysfunction of the grid and a
significantly longer time until the system retaliates to the synchronized state. In turn, it is recommended to
control or safeguard these seven specific nodes of the network to avoid a long waiting time for the system to
return to the synchronized state in the face of random perturbations. The choice of the boundary at (T) = 200
for distinguishing between the fast and slow nodes is motivated by the fact that we observe a first substantial gap
in the histogram in figure 6(b) around the aforementioned value. We also find similar results from a cluster
analysis of the { T}) values of the network. These seven nodes are not found to exhibit any specific topological
features leading to their relatively higher respective (T3) values. Further investigations analysing these results
may provide potentially important insights in this regard.

We emphasize that Erd§s—Rényi random networks [6] of Rossler oscillators are found to exhibit similar
distributions of { T}) values as above; the corresponding results are described in appendix D. Figures 6(c), (d)
illustrates the values of ( Ty) in comparison with k and bc, respectively. The correlation coefficients of { T}) with k
and bcare 0.102 and 0.061, respectively, ruling out the existence of a systematic dependence between (T}) and k
or be. Figure 5 displays the network topology together with the individual (T}) values in analogy with figure 2 for
the DSF network of Rossler oscillators.

4. Conclusions

Complex systems modelled as networks of interacting dynamical units are ubiquitous and often exhibit multiple
stable states. Maintaining operation of such systems in the desired stable state (which often concurs with the
synchronized state of the network) is vital to their functionality. Subsequently, this has generated a lot of
attention in studying stability of the DOS in such coupled dynamical systems. However, given that the DOS is
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blue diamonds comprise the slow nodes of the grid in our simplified model.

(a) (b)
1400
1200
1000

<T7>

400 | S

(o] 20 40 60 80 100 120 (o] 200 400 600 800 1000 1200 1400

Node - T1 -
() R
1400
1200
1000
800
600
400
200

<T1>

4 d " p SBce S O
5 6 7 (0] 0.05 0.1 0.15 0.2 0.25 0.3 0.35

k bc

Figure 6. (2) SNRT (T) of all the N = 120 nodes of the power grid of the United Kingdom with second-order Kuramoto-type nodal
dynamics. (b) Histogram of (Tx) of all the N = 120 nodes. (c), (d) Dependence of (T}) on (c) degree (k) and (d) betweenness centrality
(be) of the nodes. The fast nodes of the grid with (T) < 200 are shown in black while the slow nodes having (Tj) > 200 are marked in
red.

stable in principle, it is equally important that the system relaxes back to the same as quickly as possible,
following a random perturbation to a particular node of the network. We have addressed this issue here by
proposing the general framework of SNRT which relates to the time taken by the system operating in the DOS to
return to the same, following a non-infinitesimal perturbation to the dynamical state of the respective node. It is
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important to note that we did not address the problem of driving the perturbed system to the DOS. Instead, we
aimed at unveiling the different relative time scales underlying the transient dynamics of individual nodes of the
network during its relaxation to the DOS, in order to identify specific nodes which when perturbed lead to
significantly enlarged RT. We thus recommend taking precautionary measures of safeguarding primarily these
nodes of the network from external perturbations.

Importantly, the proposed machinery can be utilized in revealing relationships between topological features
of nodes and their respective SNRT values and in turn, the GRT of the overall network. Further, we have
suggested the association of SNRT with the concept of engineering resilience in quantifying the resilience of such
networked dynamical systems. Finally, we have applied the framework of SNRT to deterministic and random
scale-free networks of Rgssler oscillators and a conceptual model of the power grid of the United Kingdom with
second-order Kuramoto-type nodal dynamics.

We have presented here the framework of SNRT (and associated illustrations) in the special context of
networks of identical oscillators with continuous time dynamics (equation (1)) exhibiting bistability on account
of coexisting synchronized and desynchronized regimes. However, the framework is generally applicable to any
networked (continuous or discrete time) dynamical system with non-identical nodes and multiple coexisting
states. Thus, future work on SNRT could comprise its extension and application to networks of non-identical
nodes and/or exhibiting more complex patterns of multistability. Further development on SNRT could
comprise its generalization to a framework of multiple-node recovery time, similar to recent work in the context
of BS[10].

Regarding a potential field of application, we emphasize that time-delays arise frequently in the inherent
dynamics of individual oscillators and in their interactions on complex networks [44]. Therefore, another
interesting endeavour could constitute incorporating time-delays in networked dynamical systems and
investigating their influence on SNRT and GRT of the network. Finally, complex systems comprising oscillators
coupled on prototypical network types such as Watts—Strogatz, multilayer, interdependent, etc are open to
applications of SNRT. These ventures could further unravel interesting relationships between SNRT and
topological features of the aforementioned networks.
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Appendix A. On the choice of the reference trajectory

We elaborate here on the existence of a reference state such that the condition in equation (4) is fulfilled. For any
arbitrary x,. we have the corresponding Ty function, and hence (Tj (7)) as well. Now, we can take a new

Xlos = ©(—t, Xper) Where @ (—t, -) is the time-evolution operator shifting a state for the time ¢ backwards along
the flowand t = (Tx)min. Using X.; we have a corresponding Tyy function and (Tllz/ (i)). In particular,

(Tg )min = 0holds by construction. So, taking x/. as the reference state fulfils equation (4).

Appendix B. DSF network

The DSF network was proposed by Barabdsi et al [39] as a simple model to generate scale-free topologies in a
deterministic fashion with hierarchical assembly. It was later analytically studied by Iguchi and Yamada [45] in
greater detail. Such networks characterized by their fractal growth are categorized into the general class of
hierarchical networks [46].

The construction of the network follows an iterative rule which starts with a single vertex labelled as the root
node of the network. Subsequently, two nodes labelled as bottom nodes are added and connected to the root,
thus completing the 1st step of the construction process. Then, two identical copies of the resulting graph are
created and each of the bottom nodes of these two units are connected to the root in the 2nd step. Thus, the root
gains four more edges and the resulting network now contains nine nodes. In the 3rd step, two copies of the
resulting graph are created, and the eight bottom nodes of each of these 2 units are connected to the root.
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Generalizing the aforementioned steps to the nth iteration would involve adding two units of 3* — 1nodes
created in the (n — 1)th step and then connecting the 2" bottom nodes of each unit to the root node. We refer to
each step of the algorithm as a generation. The topology developed over three generations of the DSF network is
illustrated in figure 1.

The degree distribution of the network can be exactly solved for and follows P (k) ~ k=2 [39]. Also, the

average path length of such a network developed over g generations can be analytically obtained to be
8g3¢2
L=
scales logarithmically with the number of nodes for large DSF networks [39].
The local clustering coefficient C: is a measure of the probability of the existence of a link between two
randomly selected neighbours of node i [6]. Cr is defined as the ratio between the number of links between
vertices within the neighbourhood of node i and the number of links that could possibly exist between them [6].

Thus, C- = > (ki 1)N,»A where N7 is the total number of closed triangles including node i (with degree k;), which

is bounded by the maximum possible value of w [6]. The average local clustering coefficient C* of the

,which in the limit of N — o0 is approximated by ﬁ log N [47]. Thus, the average path length

network is then given by the arithmetic mean of the local clustering coefficient of all nodes of the network; i.e.,
Ct = %ZN | CF. The DSF network model does not involve creation of triangles of nodes, thereby resulting in no

i=

clustering, i.e, an average clustering coefficient of C* = 0[39].

Appendix C. BA model of random scale-free networks

Many real-world complex networks have been reported to exhibit scale-free behaviour characterized by the
probability P (k) thata randomly selected node has exactly k links decaying as a power law, P (k) ~ k=7, where
2 < 7 < 3hasbeen typically observed for the scaling exponent y[41]. This leads to a heterogeneous degree
distribution in such scale-free networks with mostly low degree nodes coexisting with a few very high degree
nodes (also called hubs) [41].

In the above context, the BA model [41] has been suggested for realizing random scale-free networks with
growth and preferential attachment, where an incoming node is more likely to get randomly linked to an
existing node with higher connectivity. While generating the random scale-free networks using the BA
model, the growing character of the network is incorporated by starting with a small number of connected
nodes Ny with uniform degree. Thereafter, at every time step a new node is introduced and linked to m nodes
already present in the system (until the network comprises Nnodes). Weset Ny = 3and m = 2 for
generating the ensemble of random scale-free networks considered in this paper (section 3.2). Preferential

attachment is incorporated by assuming that the probability II; that a new node will be connected to an
ki
Zj kj ’
high degree nodes to continuously further increase their respective degrees, as new nodes added to the
network prefer attachment with such hubs. The degree distribution in such a network indeed follows a

power-law with -y = 3 while the average path length and average local clustering coefficient scale with
logN
log log N
generated using the BA model generally exhibit shorter average path lengths as well as higher values of
clustering coefficients. However, the BA model fails to capture high levels of clustering exhibited by many

real-world complex networks.

existing node i depends on the degree k; of node 7, such that IT; =

This naturally creates the possibility of

2
and C ~ (IOgTN), respectively[2, 48]. Such random scale-free networks

network size as £ ~

Appendix D. Erdds—Rényi random networks of Rossler oscillators

We consider an ensemble of 100 Erd§s—Rényi random networks [6] of N = 81 Rossler oscillators each, again
with the same parameter values as for the DSF network (section 3.1). We consider a probability p = 0.04 of a
connection between any pair of vertices of a network, resulting in a total of 130 edges in each realization. For

§ = 107°, we calculate and present the distribution of ( Tj) (on log, , scale) values of all nodes of the considered
ensemble of Erd§s—Rényi random networks in figure D1. It is evident from the distribution that most nodes have
rather low values of (T}Q) (£100), which comprise the fast nodes of the respective network. However, we also
observe the existence of very few slow nodes which exhibit much higher (Tg) (>100) values. The (T}) values
again do not exhibit any strong linear relationship with k (b¢), (not shown) as demonstrated by the correlation
coefficient of 0.743 (0.36).
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Figure D1. Distribution of SNRT (T§) (on log, , scale) of all nodes of the considered ensemble of Erd6s—Rényi random networks. The
relative frequencies (%) correspond to the percentage of nodes with log, ,((Tk)) values lying within the respective bin. The fast nodes
of the ensemble with (T}) < 100 are shown in black while the slow nodes having (T}) > 100 are marked in red.
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