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Abstract
Ensembles of ultra-cold atoms have been proven to be versatile tools for high precision sensing
applications. Here, we present a method for the manipulation of the state of trapped clouds of
ultra-cold bosonic atoms. In particular, we discuss the creation of coherent and squeezed states of
quasiparticles and the coupling of quasiparticle modes through an external cavity field. This
enables operations like state swapping and beam splitting which can be applied to realize a
Mach–Zehnder interferometer (MZI) in frequency space. We present two explicit example
applications in sensing: the measurement of the healing length of the condensate with the MZI
scheme, and the measurement of an oscillating force gradient. Furthermore, we calculate
fundamental limitations based on parameters of state-of-the-art technology.

1. Introduction

The development of atom trapping and cooling technology has led to an explosion of applications in many
areas of physics. One of the most well-known applications of control on the single atom scale is the atomic
clock, which helped define the second in terms of the fundamental constants of nature [1]. Cold atoms are
also used for quantum simulation, studying models from condensed matter [2] as well as artificial gauge
fields [3] and other exotic topological states [4]. Matter-wave interferometry with cold atoms has been
applied to sensing applications such as the measurement of gravitational fields [5–8] and precision tests of
fundamental physics, such as measuring Newton’s gravitational constant [9] and the fine structure constant
[10] and testing the equivalence principle [11, 12], as well as physics beyond the standard model [13].

When a three-dimensional cloud of atoms is cooled to such a degree that a macroscopic fraction of the
atoms fall into the motional ground state, they condense into a Bose–Einstein condensate (BEC). Strictly
speaking, in lower dimensions, Bose–Einstein condensation does not occur. Instead, quasi-condensates
form that do not exhibit the long-range order of a BEC. Unless we explicitly refer to BECs or
quasi-condensates, we will use the term condensate for both in the following. Condensates of ultra-cold
atoms can be used to push the sensitivity of the fundamental physics tests mentioned above even further
[14–19], even to applications in extraterrestrial space [20, 21]. The interaction between the atoms in the
condensate leads to low-energy quasiparticles taking the form of phonons, i.e. quantised sound waves.
Phonons are extensively studied in the field of quantum simulation [22–25], analogue gravity including the
simulation of event horizons [26–28], cosmic inflation [29] and gravitational waves [30, 31]. Collective
oscillations of condensates may also be used for sensing applications as demonstrated by the measurement
of the thermal Casimir–Polder force presented in [32, 33]. Further proposals include force sensing [34],
gravimetry [35, 36], tests of gravitationally induced collapse models [37] and even gravitational wave
detection [38–42].

Collective oscillations in BECs have been already studied in early experiments [43–45] and it has been
demonstrated that highly excited quasi-particle states can be created with light pulses [46] and periodic
modulations of the trap potential [25, 47]. Readout methods for quasiparticle excitations of condensates
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Figure 1. The setup considered in this paper is an ultra-cold atomic ensemble in an elongated trap which is effectively box-like
in the elongated direction. The atomic ensemble is placed inside a Fabry–Pérot cavity to interact with a laser field in the cavity.

include self-interference of the Bose gas after release from the trap denoted as heterodyning [46] or
time-of-flight measurements (e.g. [48]) and in situ phase contrast imaging [45, 49].

An alternative approach for creating, manipulating and reading out quasiparticle states of a condensate
is based on cavity optomechanics. The coupling of optical cavity modes to BECs has already been
experimentally achieved more than a decade ago [50, 51] and many more experiments with ultra-cold
atoms have been performed since (see, e.g. [52], and the recent experiment with a Fermi gas [53]). A
comprehensive review of cavity optomechanics with ultra-cold atoms is given in [54] and the relation of
this field to cavity optomechanics with macroscopic oscillators has been reviewed extensively in [55].

In this article, we discuss the coupling of two modes with interactions that are reminiscent of beam
splitters and mirrors and single- and two-mode squeezing of quasiparticle modes of ensembles of ultra-cold
atoms based on temporally modulated light potentials in optical cavities. Our manuscript is organized as
follows: we introduce the cavity-condensate coupling in section 2, our proposed approach for state
manipulation in section 3, and restrict to the simple case of box-shaped traps in section 4. In section 5, we
present a Mach–Zehnder interferometer (MZI) and two potential applications as examples of how to use
our state manipulation scheme. We discuss damping, example values for parameters and readout
mechanisms in section 6 and conclude our findings in section 7.

2. Dynamics of the composite system

We begin by considering a condensate trapped in an external potential within a Fabry–Pérot type optical
cavity (see figure 1). The cavity is employed for the restriction to standing light wave modes. This is, in
principle, not necessary for the general mechanisms of quasiparticle state manipulation presented. In
principle, the same can be achieved by any temporally modulated tailored potentials. However, the
restriction to cavity fields makes the discussion more concrete and the calculations simpler. The trap is
considered to be elongated and the orientation of the cavity is considered to be aligned with the elongated
axis of the condensate and the z-direction. Then, we restrict our considerations to quasiparticle modes in
the elongated direction of the trap and treat the system in a one-dimensional way considering an effective
cross sectional area A of the condensate. This approximation is valid if the parameters and the geometry of
the setup are chosen such that the coupling of the modes in the elongated direction to those in the
transverse directions is sufficiently suppressed, for example, in the case of very tight transverse confinement
(as considered below in section 6.2).

The time evolution of the total system is described by the Hamiltonian Ĥtotal = Ĥcav + Ĥdisp + Ĥcond,
where Ĥcav is the cavity field Hamiltonian, Ĥdisp is the coupling of light and atomic cloud that we will
introduce below and the Hamiltonian that describes the time-evolution of the atomic cloud is

Ĥcond =

∫
dz ψ̂†

[
− �

2

2ma
∂2

z +
g̃

2
ψ̂†ψ̂ + V0 + δVext

]
ψ̂, (1)

where ma is the atomic mass and g̃ is the atom-atom interaction strength. V0 is the trap potential and δVext

includes all other external potentials that may affect the condensate; for example, an external gravitational
potential. We assume that δVext can be considered to be small in comparison to the trapping potential and
only changes the density distribution of the condensate slightly. Later, we will consider the sensing of δVext

via its effect on the condensate as a specific application.
The one-dimensional description represented by Ĥcond can be directly derived from the

three-dimensional standard description of interacting Bose gases [56]. For example, in the case of a
three-dimensional condensate in a three-dimensional box trap with a box-shaped ground state [57],
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g̃ = g/A where g = 4π�2asc/ma is the 3D coupling constant parameterised by the s-wave scattering length
asc. Another possibility is to assume a strong harmonic transverse trap potential (such that the atoms are
transversely mostly in the trap’s ground state) which leads to a Gaussian shape of the condensate in the
transverse direction and a one-dimensional quasi-condensate implying g̃ = g1D = g/(2πa2

⊥), where
a⊥ =

√
�/(maω⊥) is the transverse oscillator length given by the transverse trapping frequency ω⊥. Then,

the Hamiltonian (3) is an approximation that corresponds to the case of a low one-dimensional density
ρ1D = 〈ψ̂†ψ̂〉 of the condensate such that ρ1Dasc � 1 (see e.g. [24, 58]). For ρ1Dasc � 1, we would need to
replace ψ̂†ψ̂ by more complicated functions of ψ̂†ψ̂ (see e.g. [24, 58]). For the sake of simplicity we refrain
from this here.

Note that asc can, in general, be widely tuned for some atom species that possess Feshbach resonances
(e.g. 23Na [59], 85Rb [60] and 87Rb [61]) by employing strong magnetic fields to modify the s-wave
scattering length. Unfortunately, also the three-body loss rate is strongly enhanced near a Feshbach
resonance (see also [62]), where three-body loss is a significant limitating factor for the maximal
experimental time considered in this paper. Therefore, Feshbach resonances are of little use for our proposal
and will not be considered.

2.1. Light–matter coupling and full potential
We consider a single optical cavity mode with annihilation and creation operators â and â† respectively, and
free evolution with Ĥcav = �ωcâ†â that is coupled to the atomic field operator ψ̂ via the dispersive coupling
Hamiltonian (photon absorption and stimulated re-emission) [55, 63]

Ĥdisp =

∫
dz ψ̂†(z)�

g2
0

ΔA
f 2
cav(z)â†âψ̂(z). (2)

To achieve this form of coupling, the cavity mode frequency is chosen close to an atomic resonance with a
detuning ΔA and the single photon Rabi frequency g0 = d

√
ωc/(2�ε0Vc), where d is the atomic dipole

moment along the cavity mode polarization, Vc = Ac

∫
dz|fcav(z)|2 is the effective cavity mode volume, Ac

is the effective cross sectional area of the cavity mode and fcav(z) is the cavity mode function.
We assume that the cavity mode is driven by a strong laser field with frequency ω = ωc +Δc, and we

move into the corresponding rotating frame. This allows us to treat the cavity field perturbatively by
splitting the mode operators â and â† into their expectation values and fluctuations as â = 〈â〉+ δâ
[64, 65]. Since Ĥdisp is invariant under phase factors â → â eiζ , without loss of generality, we consider 〈â〉 as
real valued and set 〈â〉 =

√
Nph, where Nph is the number of photons in the cavity mode. The photon

number is related to the circulating power in the cavity as Pc = �ωcNphc/(2Lc), where c is the speed of light
and Lc is the length of the cavity. Pc can be varied by modulating the cavity pump power on time scales
much larger than the life time of photons in the cavity mode. This is the basis for the state manipulation of
the quasiparticles that we present in this work, and in the following, we consider Nph as generally
time-dependent.

Introducing the split â = 〈â〉+ δâ into Ĥdisp and neglecting the second order term in δâ, we obtain [64]

Ĥtotal = −�Δcδâ†δâ +

∫
dz ψ̂†

[
− �

2

2ma
∂2

z +
g̃

2
ψ̂†ψ̂ + V (z, t) + �

g2
0

√
Nph(t)

ΔA
f 2
cav(z)

(
δâ† + δâ

)]
ψ̂, (3)

where the full potential acting on the condensate is

V (z, t) = V0 (z) + δVext (z, t) + �
g2

0

ΔA
f 2
cav (z) Nph(t) = V0 (z) + δV (z, t) . (4)

We restrict our considerations to situations where δV oscillates around a mean. We split δV into its
time-average δV and the purely oscillating part Vosc = δV − δV . Later we will assume that Vosc oscillates on
resonance with a quasiparticle excitation or quasiparticle transitions. Therefore, we can already conclude
that δV modifies the stationary condensate ground state and the quasiparticle mode functions, while Vosc

drives the quasiparticle modes. We will discard the last term in (3) in the following as, for the moment, we
are only interested in the effect of the strong light field on the quasiparticle modes. The back-action on the
light field will only become relevant again in appendix D.1, where we discuss a potential scheme for the
readout of the quasiparticle states.

2.2. Condensate ground state and Bogoliubov approximation
We split the field operator into a part describing the atoms in the collective ground state of the atomic
ensemble and a part describing trapped atoms in states above the ground state. In the Heisenberg picture,
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we split the atom field operator into a part describing the macroscopic condensate fraction and a field
operator ϑ̂ that describes the non-condensate atoms in the form

ψ̂(z, t) = (̂c0ψ0(z) + ϑ̂(z, t))e−i(μt+
∫ t

0 dt′ δμosc(t′))/�, (5)

where ĉ0 is the annihilation operator for atoms in the collective ground state ψ0 which is normalized as∫
dz|ψ0|2 = 1 and fulfills the stationary Gross–Pitaevski (GP) equation(

− �
2

2m
∂2

z + V0 + δV + g̃N0|ψ0|2
)
ψ0 = μψ0, (6)

with the chemical potential μ. Furthermore, we have defined δμosc =
∫

dz|ψ0|2Vosc which can be
interpreted as a time-dependent shift of the chemical potential due to the oscillating part of the external
potential (see appendix B).

Assuming that δV perturbs the ground state of the condensate only slightly, we can make the Ansatz
ψ0 = ψ̄0 + δψ0 with ψ̄0 a solution of equation (6) with δV → 0. Expressions for the perturbation δψ0 can
be found as a solution of a linearized version of the GP equation as presented in appendix D. The
perturbation leads to a modification of the quasiparticle modes which, in turn, leads to terms of second
order in δV in the quasiparticle Hamiltonian (see also appendix D) and we will neglect δV in the following
(restricting our considerations to effects of first order in δV).

Since the time evolution of the field operator ψ̂(z, t) is governed by the Heisenberg equation with
respect to the Hamiltonian Ĥtotal, we find that the time evolution of ψ̂′(z, t) := ĉ0ψ0(z) + ϑ̂(z, t) is governed
by the Heisenberg equation with respect to the Hamiltonian

Ĥ′
total := Ĥtotal − (μ+ δμosc)N̂ (7)

(similar to the grand canonical Hamiltonian) where N̂(t) =
∫

dz ψ̂′†(z, t)ψ̂′(z, t) is the number operator of
the atom field.

In the next step, we apply the Bogoliubov approximation to Ĥ ′
total, where the field ϑ̂ is treated as a small

perturbation while the ground state is strongly occupied such that the replacement ĉ0 →
√

N0I can be
performed, where N0 is the number of atoms in the condensate. Then, we obtain the driving Hamiltonian
(see appendix B for the details of the derivation)

Ĥdr =
√

N0

∫
dz(Vosc − δμosc)

(
ψ∗

0 ϑ̂+ ψ0ϑ̂
†
)
+

∫
dz ϑ̂†(Vosc − δμosc)ϑ̂. (8)

2.3. Quasiparticle mode expansion
We expand the field operator in terms of Bogoliubov modes describing the quasiparticle excitations as

ϑ̂ =
∑

n

(
unb̂n + v∗nb̂†n

)
, (9)

where [bn, b†m] = δnm and the normalized mode functions un and vn fulfill the stationary Bogoliubov–de
Gennes (BdG) equations which can be found in appendix B. The expansion of ϑ̂ in the Bogoliubov basis
diagonalizes the free quasiparticle Hamiltonian ĤBdG to second order in ϑ̂ (the BdG Hamiltonian, see
appendix B), which governs the free evolution of the condensate with V(z, t) → V0(z), that is,
ĤBdG =

∑
n�ωnb̂†nb̂n.

Using the mode decomposition above, we find that the driving Hamiltonian in equation (8) assumes the
form

Ĥdr =
∑

n

(
Pnb̂n e−iωnt + P∗

nb̂†n eiωnt
)
+
∑

n

(
Onb̂†nb̂n +

(
Nn

(
b̂†n

)2
e2iωnt + N∗

n b̂2
n e−2iωnt

))

+
∑
n,l<n

(
Mnlb̂

†
nb̂l ei(ωn−ωl)t + M∗

nlb̂
†
l b̂n e−i(ωn−ωl)t

)

+
∑
n,l<n

(
Lnlb̂nb̂l e−i(ωn+ωl)t + L∗

nlb̂
†
nb̂†l ei(ωn+ωl)t

)
, (10)

where the form of each of the time-dependent coefficients is

Pn =
√

N0

∫
dz (Vosc − δμosc)

(
ψ∗

0 un + ψ0vn

)
On =

∫
dz(Vosc − δμosc)

(
|un|2 + |vn|2

)

4
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Nn =

∫
dz(Vosc − δμosc)u∗

nv
∗
n (11)

Mnl =

∫
dz(Vosc − δμosc)

(
u∗

nul + v∗nvl

)
Lnl =

∫
dz(Vosc − δμosc) (unvl + vnul) ,

and we have neglected a vacuum term ∝ |vn|2. The driving Hamiltonian is one of the main results of this
work. The coefficients can be interpreted as the moments of the external potential with respect to the
quasiparticle modes and different processes. The first term with the coefficient Pn corresponds to a linear
displacement of the quasiparticle state by the cavity field or potential perturbation. The second order terms
can be interpreted as various nonlinear processes familiar from optical four-wave mixing; the term with the
coefficient On corresponds to a time-dependent frequency shift of the quasiparticle modes, the terms with
the coefficients Nn and Lnl take the form of one-mode and two-mode squeezing operators, and the term
with the coefficient Mnl has the form of a beam splitting operation.

3. State manipulation by modulated cavity power

In the following, we consider a cavity field which is periodically intensity modulated on resonance with a
particular quasiparticle mode or mixture thereof at frequency ωm. Then, particular processes in Ĥdr are
strongly enhanced while the non-resonant processes are averaged out. In particular, we set
Nph (t) = Nph,0 (1 + η cos (ωmt)) where η � 1 is some constant modulation amplitude. If we assume that
there is no external potential besides the time-independent trapping potential, we find from equation (4)

Vosc − δμosc = �
g2

0

ΔA

(
f 2
cav −

1

2

)
Nph,0η cos (ωmt). (12)

Through the rotating wave approximation (RWA), we discard terms that must oscillate at a non-zero
frequency and cannot be brought into resonance. Then, to first and second order in the quasiparticle mode
operators, we obtain

Ĥdr =
∑

n

(
P̄nb̂n e−i(ωn−ωm)t + P̄∗

nb̂†n ei(ωn−ωm)t
)

+
∑

n

((
N̄nb̂†n

)2
ei(2ωn−ωm)t + N̄∗

nb̂2
n e−i(2ωn−ωm)t

)

+
∑
n,l<n

(
M̄nlb̂

†
nb̂l ei(ωn−ωl−ωm)t + M̄∗

nlb̂
†
l b̂n e−i(ωn−ωl−ωm)t

)

+
∑
n,l<n

(
L̄nlb̂nb̂l e−i(ωn+ωl−ωm)t + L̄∗

nlb̂
†
nb̂†l ei(ωn+ωl−ωm)t

)
, (13)

where the coefficients are given by equation (11) with the replacement Vosc − δμosc →
�g2

0 (f 2
cav − 1/2)Nph,0η/(2ΔA).

From the interaction Hamiltonian (13), we can see that we are able to selectively drive particular
quasiparticle interactions via the choice of the cavity field intensity oscillation frequency ωm. To be able to
apply the RWA, we must ensure that the quasiparticle time scale (given by the inverse of the mode
frequencies involved) and the measurement time are well separated.

3.1. Beam splitting and state swapping
The first type of resonant interaction that we consider here is achieved with the resonance condition
ωm = ωn − ωl, for which the interaction Hamiltonian (13) further reduces with the RWA to
Ĥdr = M̄nlb̂†nb̂l + M̄∗

nlb̂
†
l b̂n, assuming no other resonance conditions are met. The time evolution operator

due to this Hamiltonian is thus

Ûdr = exp
[

i
(
Mnlb̂

†
nb̂l +M∗

nlb̂
†
l b̂n

)]
, (14)

where Mnl = M̄nlt/�. This has the form of a beam splitting or mode mixing operator, where the phase can
be tuned both by the cavity intensity and interaction time. Calculating the evolution of the quasiparticle
modes due to such an operation as b̂′ = Ûdrb̂Û†

dr, we see that the effect can be written as

5
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(
b̂′n
b̂′l

)
=

(
cos

(
|Mnl|

)
−i eiθnl sin

(
|Mnl|

)
−i e−iθnl sin

(
|Mnl|

)
cos

(
|Mnl|

) )(
b̂n

b̂l

)
, (15)

where θnl is the phase of Mnl defined such that Mnl = |Mnl|eiθnl . If |Mnl| = π/4, then we are applying a
symmetrical beam splitting operation, where two different quasiparticle modes are mixed with each other. If
|Mnl| = π/2, then we have a ‘mirror’ or ‘swap’ operation, where the photon occupation of two modes are
swapped. These operations could be used to create novel, currently unfeasible, states. A ‘mirror’ type
operation could directly populate high-order quasiparticle modes in a targeted way, starting from an easily
attainable initial thermal state. A beam splitting operation is particularly interesting for both quantum
metrology and fundamental quantum mechanics applications, as this creates entanglement between two
modes. Examples by constructing a quasiparticle MZI and incorporating it into a measurement scheme will
be given in section 5.

3.2. Displacement and squeezing
The second resonance condition we consider here is ωm = ωn. This resonance results, as above, in a time
evolution of the form

Ûdr = exp
[

i
(
Pnb̂n + P∗

n b̂†n

)]
, (16)

where Pn = P̄nt/�. This is a linear displacement operator, which over the interaction time t creates a single
mode coherent quasiparticle state in the mode labelled by n, with an average quasiparticle population of
|Pn|2.

If instead, we consider ωm = 2ωn, the only resonant term results in a time evolution operator

Ûdr = exp

[
i

2

(
Nn

(
b̂†n

)2
+N∗

n b̂2
n

)]
, (17)

where Nn = 2N̄nt/�, which is a single mode squeezing operator where Nn plays the role of the squeezing
parameter.

Finally, when ωm = ωn + ωl, we have a two mode squeezing operator

Ûdr = exp

[
i

2

(
Lnlb̂nb̂l + L∗

nlb̂
†
nb̂†l

)]
, (18)

where the squeezing parameter is given by Lnl = 2L̄nlt/�.
These operations can in particular be used to generate coherent excitations of quasiparticles that may be

used, for example, for sensing applications. In the next section, we will describe a specific sensing scheme; a
quasiparticle MZI in frequency space.

4. Restriction to box traps

To ease calculations in the application section 5, and to present intuitive results, we consider the trapping
potential V0 (z) in the elongated direction to be a uniform box potential of length L, e.g. as in [24] or [57],
in the following. The mode functions of the quasiparticle excitations in this simple potential have a
particularly simple form giving rise to simple expressions for the interaction terms in equation (11).
Furthermore, we assume that L is much larger than the healing length of the condensate ξ, where
ξ = �/

√
2mag̃ρ0, 1D and ξ = �/

√
4mag̃ρ0, 1D for three-dimensional BECs in transversely box-shaped traps

and one-dimensional quasi-condensates in tight transverse harmonic traps, respectively, where
ρ0,1D = N0/L. This implies that the ground state wave function ψ0 is almost constant over the length of the
trap in the elongated direction besides a small region (on the length scale of ξ) at the boundary of the box
potential where it quickly decays to zero [56] (see figure G1 for an example). It follows from the stationary
GP equation (6) that the chemical potential becomes μ = g̃ρ0, 1D + V0(z0), where z0 is chosen inside the box
and δV is neglected as explained in section 2.

To be able to derive analytical results, we restrict our considerations to two distinct regimes of
quasiparticle modes. On the one hand, we consider modes where the atomic kinetic energy �

2k2
n/2ma is

much smaller than the interaction energy μ0 = g̃ρ0, 1D, which implies that k2
nξ

2 � 1 and therefore, the
wavelength is much larger than the healing length. On the other hand, we consider high-energy modes,
where �

2k2
n/2ma � μ0, which implies that the wavelength is of the same order or much shorter than the

healing length.
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4.1. Low-energy modes
For the low-energy modes, the ground state wave function appears box-like as ψ0 = χBT/

√
L, where χBT is

the characteristic function of the one-dimensional box potential in the z-direction (i.e. χBT = 1 inside and
χBT = 0 outside the box, respectively). The abrupt decay of the density at the condensate’s boundary leads
to a delta-function-like term in the stationary BdG equations that govern the spatial dependence of the
mode functions. This term implies Neumann boundary conditions on the quasiparticle modes.
Furthermore, for the low-energy modes, we can apply the Thomas–Fermi approximation where the kinetic
term in the stationary BdG equations are neglected. Therefore, the quasiparticle modes assume a
particularly simple form

ulow
n (z) = αnψ0(z)ϕc

n (z) , and vlow
n (z) = βnψ0(z)ϕc

n (z) , (19)

where

αn =
(
σ−1

n + σn

)
/2, βn =

(
σ−1

n − σn

)
/2,

σn =

(
1 + 2g̃ρ0, 1D

(
�

2k2
n

2ma

)−1
)1/4

, and ϕc
n (z) =

√
2 cos

(
kn

(
z +

L

2

))
, kn =

nπ

L
, (20)

and we have chosen the boundaries of the trap potential at z = −L/2 and z = L/2. The mode frequencies
become

ωn =
�k2

n

2ma
σ2

n (21)

which simplifies to ωn ≈ cskn where cs =
√

g̃ρ0, 1D/ma is the speed of sound in the low-energy limit.

4.2. High-energy modes
The high-energy modes are defined by having kinetic energies much larger than the atom-atom interaction
energy gρ0, which implies that these modes are dominated by their kinetic energy. Depending on the depth
of the trapping potential, high-energy quasiparticles can be free or bound. In the case of free propagation,
we would recover the mode decomposition chosen in [52, 55, 63]. In that case, quasiparticles would be lost
eventually, represented by atoms leaving the condensate, and the length of the condensate would limit the
time for driving and sensing. In the following, we assume that the trapping potential is deep enough for
atoms with high-energy quasiparticle momenta to be bound states. For the momenta �k of photons in the
optical range, the recoil momentum prec = 2�k corresponds to a kinetic energy p2

rec/(2m) of the order of
2π�× 104 Hz for Rb87-atoms. Trap depths of this order are consistently achieved with harmonic traps and
are achievable in principle for box traps as well.

In practice, the box trap will not have perfectly steep walls on the length scale defined by the wavelength
of high-energy modes, which is also on the same order or below the healing length ξ of the condensate.
Therefore, there are no simple boundary conditions for high-energy modes in contrast to the case of
low-energy modes. The mode functions and energies have to be calculated numerically for explicit
experimental situations. In appendix F, we present a toy model with a trapezoidal well where this is realized.

Assuming that ξ � L, in most parts of the trap the high-energy modes can be approximated as a linear
combination of sine and cosine functions, that is

uhigh
n (z) ≈ 1√

L

(
Ac

nϕ
c
n (z) + As

nϕ
s
n (z)

)
, (22)

where ϕc
n was defined above and

ϕs
n (z) =

√
2 sin

(
kn

(
z +

L

2

))
. (23)

Note that the conventional mode decomposition for uniform condensates would be modes of the form
exp(i�knz) and their complex conjugate. However, since the light mode is confined in a cavity, the
light-atom interaction is symmetric under the exchange of the propagation direction of the quasiparticles
and modes of the form cos(kn(z + L/2)) and sin(kn(z + L/2)) are directly addressed. The explicit coupling
strength will depend on the position of the condensate inside the optical resonator.

For the sake of simplicity and since we are only interested in principle limits of our scheme here, we
assume in the following that the trap potential is optimized such that the contribution As

n is negligible for
all modes that we couple to or address below (see appendix F for an example) and set

uhigh
n (z) ≈ 1√

L
ϕc

n (z) (24)

inside the trap and uhigh
n = 0 outside the trap.

7



New J. Phys. 24 (2022) 043014 B Maaß et al

4.3. The driving Hamiltonian
By choosing the cavity mode appropriately (e.g. by choosing the length of the cavity, positioning of the
cavity mirrors with respect to the atomic cloud), we can achieve that the coupling P̄n is strongly emphasized
for a specific mode. In the following, we choose

fcav(z) = sin

(
kcav

(
z +

L

2

))
(25)

and we assume that kcav = ncavπ/L where ncav ∈ N. Dirichlet boundary conditions are then fulfilled at
zj1 = −(j1 + 1/2)L and zj2 = (j2 + 1/2)L with j1, j2 ∈ N, which implies that the cavity mirrors could be
placed at any of these positions to realize the modes fcav(z). The effective cavity mode volume becomes
Vc = LcAc/2.

Based on the approximation made above for the mode functions, we immediately find

P̄n ≈ −η

2
σ−1

n κ̄
√

2N0δ
2ncav
n where κ̄ = �g2

0 Nph,0/(4ΔA). (26)

If a high-energy mode is involved, we find that all squeezing processes are suppressed and we do not write
the expressions here. For low-energy modes, we obtain

N̄n ≈ −η

8

(
σ−2

n − σ2
n

)
κ̄δncav

n , (27)

while the coefficient for two mode squeezing becomes

L̄nl ≈ −η

4

(
σ−1

n σ−1
l − σnσl

)
κ̄
(
δ2ncav

n−l + δ2ncav
n+l

)
. (28)

The general expression for the coefficient for the beam-splitting operation is

M̄nl ≈ −η

4

(
σ−1

n σ−1
l + σnσl

)
κ̄
(
δ2ncav

n−l + δ2ncav
n+l

)
, (29)

where we took into account that l < n. The above list of coefficients will be the basis for explicit numerical
examples in the next sections.

In the expressions for L̄nl and M̄nl, several options for combinations of momenta of coupled modes
appear. For equidistant energies, each expression contains a momentum combination that, together with
the energy condition of resonant driving, leads to resonant direct driving of a third mode. For example, for
L̄nl, the condition n + l = 2ncav on the momenta and ωn + ωl = ωm would lead to direct driving of the
mode n + l. For M̄nl, the condition n − l = 2ncav on the momenta and ωn − ωl = ωm would lead to direct
driving of the mode n − l. Since the coupling through L̄nl and M̄nl is weaker than the direct driving via P̄n

by a factor 2
√

N0, the direct driving of the additional modes would be significant, in general, even too large
for the system to stay in the Bogoliubov regime. Therefore, the momentum combinations that lead to the
driving of additional modes have to be avoided or at least one of the involved modes has to be a
high-energy mode as the energy grows quadratically with the wave number in the high-energy regime.

5. Example applications

Here, we present two examples of measurements that could, in principle, be performed with the
interactions we propose in this paper. Since we are primarily interested in estimates of the fundamental
limitations of our approach to quasiparticle state manipulation, we assume that the readout of the
quasiparticle state achieves a single particle precision. A discussion of potential measurement schemes is
given in section 6.3. As a preparation for the first example application, we introduce the idea of a
quasiparticle MZI first.

5.1. A quasiparticle Mach–Zehnder interferometer
The operations on the quasiparticle modes that we discussed in the previous section can be combined to
realize quantum protocols with quasiparticles. As a specific example, we will discuss a quasiparticle MZI in
this section. In particular, it can be used for sensing applications as we will explain later in our first example
application; measuring the s-wave scattering length.

An MZI consists of two consecutive beam splitting operations acting on two modes (as displayed in
figure 2), with a period of free evolution between them in which a phase difference Θ is accumulated. With
the second beam splitting operation, the phase difference is imprinted on the individual modes by
constructive or destructive interference, and can in principle be extracted. Here, we realize the beam

8
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Figure 2. Schematic representation of the driving sequence that may be employed for the example applications: a high-energy
mode nhigh and a low-energy mode nlow are coupled through beam splitting/state swapping operations Ûdr as given in
equation (14) and section 4.3 with modulation frequency ωm and mode number of the cavity field ncav.

splitting operations with the driving Hamiltonian as described in section 3.1 with |Mnl| = π/4. With a
vacuum state and a coherent state with the displacement parameter αn as respective input states, it can be
shown that the fundamental precision limit for phase estimation is given by [66]

ΔΘ � 1

|αn|
, (30)

and is reached for Θ = π/2. This corresponds to the standard quantum limit. The creation of the initial
state can be realized in our setup using the displacement part of the driving Hamiltonian. Additional
enhancement can be achieved, for example, with squeezed probe states which can be created with the
squeezing operation discussed above. However, this quantum enhancement is strongly limited due to noise
as we discuss in section 6.1. Therefore, we do not consider quantum enhanced sensing in this article. The
quasiparticle MZI can be employed, in principle, for the measurement of the s-wave scattering length as we
will discuss in the next section.

5.2. Measuring the s-wave scattering length
A change of the s-wave scattering length from asc,1 to some asc,2 will change the frequency of low-energy
modes through the dispersion relation (21), i.e. ωnlow

∝ √
asc. The frequency of high-energy modes can be

approximated as unaffected. Therefore, we can use the quasiparticle MZI scheme for the sensing of the
additional phase shift that accumulates between the two modes due to the change of the scattering length,
that is, ΔΘ = Δωnlow

tint, where Δωnlow
= ωnlow

(asc,1) − ωnlow
(asc,2) is the frequency shift due to the change

of the scattering length and tint is the time during which the s-wave scattering length is modified. By
Gaussian error propagation, we obtain for the fundamental relative precision limit for estimations of any
small change in the scattering length from equation (30) as

Δasc

asc
�

∣∣∣∣dΔωnlow

dasc
tint

∣∣∣∣
−1 1

asc
√

Nhigh
∼ 2

ωnlow
tint

√
Nnhigh

, (31)

where we have assumed that the low-energy mode is initially in the ground state and the high-energy mode
is brought into a coherent probe state with quasiparticle number Nnhigh

.

5.3. Sensing oscillating force gradients
As a second example application, we consider a temporally oscillating force gradient represented by the
potential δV = −z2G0 sin (Ωt). In [35], it has been shown that the effect on quasiparticle modes is stronger
for smaller frequencies and enhanced by resonance. Therefore, we assume that Ω is on resonance with the
low-energy mode nlow. In the Heisenberg picture and to leading order in the quasiparticle field ϑ̂, the
interaction Hamiltonian takes the form (see appendix C)

Ĥint = Πnlow

(
b̂nlow

− b̂†nlow

)
, (32)

where,

Πnlow
= i

√
N0G0

2Lσnlow

∫ L/2

−L/2
dz

(
z2 − L2

12

)
ϕc

nlow
(z) = i

√
2N0G0

σnlow
k2

nlow

≈ iG0

√
2πN0ρ0asc

(
�

maωn

)3/2

, (33)
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for nlow even and Πnlow
= 0 for nlow odd, and through the RWA, we disregard terms that are off resonant.

The effect of the oscillating force is to create quasiparticles through a linear displacement with amplitude
|Πnlow

t/�|.
For the measurement, we first apply a state swapping operation between modes nlow and nhigh, as

detailed in section 3.1. This is advantageous as the low-energy mode has higher thermal occupancy than the
high-energy mode we consider for read-out. In particular, we can assume that the probe state is the vacuum
state and that the time-scale of thermalization is much larger than the time scale of the full sensing
protocol. We then let the quasiparticle modes evolve while the force gradient oscillates, creating a displaced
state in mode nlow. One quasiparticle is created after tint for a force gradient

G0,min =

(
maωnlow

)3/2

tint
√

2π�N0ρ0asc
. (34)

A second state swapping operation is applied to bring the displacement signal back to nhigh, where it can be
read out with an appropriate read-out scheme, for example, the pulsed scheme outlined in appendix D.1.
Figure 2 shows a schematic representation of the driving sequence. If we assume that the readout achieves a
single-quasiparticle precision in a single-shot experiment, G0,min corresponds to the minimal measurable
force gradient.

6. Discussion

6.1. Damping and decoherence
For the above description of the condensate, we have considered the quasiparticle dynamics as lossless and
we have neglected terms of third and fourth order in ϑ̂ in the expansion of Ĥtotal. However, loss is usually
quite significant in these systems: for example, in [67] a Q-factor of 16 for a quasiparticle mode with a
frequency of 500 kHz was experimentally observed in a three-dimensional condensate, which corresponds
to a damping rate of about 105 s−1 and a lifetime of only a few micro-seconds. In particular, terms of third
order in ϑ̂ lead to Beliaev damping [68] and Landau damping [69–71] which are significant loss
mechanisms in condensates. Landau damping is induced by a process where a quasiparticle excitation
scatters inelastically with a thermal quasiparticle excitation. Beliaev damping is the decay of a quasiparticle
excitation (via the scattering with a condensate atom) into two quasiparticle excitations. While Landau
damping can be suppressed by reducing the temperature, Beliaev damping is present also at zero
temperature and scales very strongly with the quasi-particle momentum. For one-dimensional
quasi-condensates, both processes are highly suppressed and fourth order processes become relevant (e.g.
[72]). For example for uniformity in the elongated direction, transverse harmonic trapping and low
temperatures, the scattering-induced damping rate of high-energy quasiparticles becomes (see e.g. Γdamp on
page 7 of [73])

γ1D
sc = 72

√
3(ln 4/3)2ω⊥

(
ρ1Da2

sc

a⊥

)2

. (35)

Another damping process that has to be taken into account is three-body losses, where three atoms interact.
Two atoms form a molecule and the binding energy is transferred to the molecule and the third atom which
are then ejected from the condensate. The corresponding decay constant is γ3B := 3Dρ2

0, where D is the
three-body decay constant. For example, for ρ0 = 1014 cm−3 and a decay constant D ∼ 5.8 × 10−30 cm6 s−1

for rubidium atoms [74], we find γ3B = 3Dρ2
c ∼ 0.2 s−1. Similarly, for an ytterbium BEC with

D ∼ 4 × 10−30 cm6 s−1 [75] and the same density, we obtain γ3B ∼ 0.1 s−1. Three-body loss is also
suppressed for one-dimensional quasi-condensates (see [76–78] and appendix C of [79] for detailed
discussion), so the effect of three-body loss can be limited by increasing the strength of the transverse
confinement of the condensate.

In addition to the resulting loss of quasiparticle excitations, loss mechanisms are always accompanied by
noise which leads to the decay of quantum enhancements in sensing applications [79, 80]. Both effects limit
the time that coherent processes with quasiparticles can be performed in a condensate. To ensure that the
approximations made for the description introduced in the previous section are valid for the examples
below, we assume that all processes are performed on a time-scale much smaller than that of all loss
mechanisms. We do not consider quantum enhancement explicitly in this article.

6.2. Example values for parameters and evaluation of prospects
In this section, we compile a list of example values based on typical parameters of state-of-the-art
experimental systems. We will use these parameter values to give a first coarse estimate for the utility of the
example applications introduced above.
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Figure 3. Schematic representation of the relation between the driving laser modes (red arrows) and the quasiparticle modes
(blue dots): the quasiparticle dispersion relation: driving laser mode 1 with detuning ΔA,1 from the D2-line is used to create
quasiparticles in the mode n = 1020 from the condensate by coherent modulation at the resonance frequency ωm,1 = ωnhigh

.
Driving laser mode 2′ with detuning ΔA,2′ from the D1-line is used to couple the mode n = 50 in the low-energy regime and the
mode n = 1020 in the high-energy regime by coherent modulation at the resonance frequency ωm,2′ = ωnhigh

− ωnlow
. (a)

Quasiparticle dispersion relation over the full involved range. (b) Atomic transitions and laser mode frequencies. (c) Segment of
the quasiparticle dispersion relation in the low-energy regime. (d) Segment of the quasiparticle dispersion relation in the
high-energy regime.

The wavelength of typical lasers is below one micron and very high densities of the condensate would be
necessary to obtain a healing length which is at least one order of magnitude smaller than the wavelength.
This would limit the condensate lifetime and the quasiparticle coherence significantly (see section 6.1).
Therefore, we will consider the first-order coupling (back-action and displacement) only for high-energy
modes, i.e. for modes for which �

2k2
n/(2ma) � g̃ρ0, 1D.

Condensate parameters. We consider a rubidium-87 1D quasi-condensate of N0 = 103 atoms in a
200 μm long box trap at a density of 1014 atoms per cm3, for which the healing length is approximately
ξ = 2.77 × 10−7 m and the effective cross sectional area A whose value is equivalent to that of a circle with
a radius a⊥ ∼ 130 nm which could be created with a harmonic trap in the transverse direction with trap
frequency ∼7 kHz. The scattering length of rubidium-87 is ∼5.18 nm [81] and its atomic mass is
1.44 × 10−25 kg which implies ρ1Dasc ∼ 0.03 � 1 justifying the description of the quasi-condensate based
on Ĥtotal. Furthermore, we find that the decay rate of high-energy quasiparticles is γ1D

sc ∼ 0.5 s−1. In the
following, we will consider measurement durations much shorter than 1/γ1D

sc and neglect the decay of
quasiparticles. We consider the case of a discontinuous box potential for our estimates. A plot comparing
the ground state for this situation to the situation in a continuous box trap is given in appendix G.

Driving laser parameters. Rubidium atoms have two D-lines that can be used for the dispersive
coupling; the D1-line is at νD1 ∼ 377 THz and the D2-line at νD2 ∼ 384 THz with a natural linewidth
Γ ∼ 2π × 6 MHz and dipole moments of d1 ∼ 2.5 × 10−29 Cm and d2 ∼ 3.6 × 10−29 Cm for the D1 and
D2 line, respectively. Assuming a cavity length of Lcav ∼ 10 cm, the free spectral range becomes ∼3 GHz
and it will be easy to find matching cavity modes in the chosen frequency ranges. Furthermore, we assume
an effective cross sectional area of the cavity mode of 1 mm2. This implies single photon Rabi frequencies of
g0,2 ∼ 180 kHz and g0,1 ∼ 130 kHz for the D2-line and D1-line respectively.

We will consider a first laser mode used for the preparation of the probe state through the displacement
term in the driving Hamiltonian and choose a detuning of ΔA,1/2π ∼ +300 GHz from the D2-line. This
implies that a mode with mode number nhigh ∼ 1020 is addressed by direct driving. This mode is at a
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frequency of about 15 kHz for which �
2k2

nhigh
/(2mag1Dρ0, 1D) ∼ 40 and the mode is in the high-energy

regime (figure 3).
To generate, for example, a coherent state of Nnhigh

= 10 quasiparticles in the high-energy mode by
resonant modulation of the intra-cavity power of the first laser mode for a duration of tcr ∼ 30 ms,
an average number of photons in the cavity (compare equation (26) with equation (16)) Nph,0 =

|8ΔA,1
√

Nnhigh
/(ηg2

0,2tcr
√

2N0)| ∼ 103 (corresponding to ∼0.4 μW intra-cavity power) is sufficient given a
modulation amplitude η = 1. Note that we are interested in keeping the photon number sufficiently large to
reduce the potential effects of photon number fluctuations (shot noise). The photon number can be
increased, for example, by increasing the detuning. For sufficiently high photon numbers, the photon
number fluctuations will average out due to the short lifetime of photons in the cavity. The rate of atomic
transitions induced by the driving laser field can be estimated as [55] Γdr ≈ ΓNph,0g2

0,2/Δ
2
A,1. Due to the

strong detuning of the driving laser, we find Γdr ∼ 10−4 s−1 and this process can be completely neglected.
Furthermore, we obtain that the spatial maximum of the corresponding time-averaged light potential is
max(δV) = 8�

√
Nnhigh

/(tcrη
√

2N0) ∼ 0.008μ0, which justifies our treatment of the light potential as a
small perturbation.

The timescale of modulations imposes an upper bound on the finesse of the cavity: for the finesse we
have F ≈ 2πτl/Trt, where τ l is the photon lifetime and Trt = 2L/c is the cavity round trip time. The
photon lifetime should be much smaller than the modulation timescale defined by the period of the
modulation 2π/ωnhigh

to ensure that the cavity field perfectly follows the external driving field, that is, we

need the system to be in the bad cavity regime. This leads to the bound F � 2π2c/(Lωnhigh
) ∼ 108, which is

very high, and therefore, a very loose bound that does not represent a severe restriction in a realistic
situation. In a similar way, we obtain an upper bound on the single photon cooperativity
C0 = 4k2

0,nhigh
τl/γ

1D
sc [64], where k0,nhigh

= −2P̄nhigh
/(�ηNph,0) = g2

0,2

√
N0/(2

√
2ΔA,1) is the optomechanical

single photon coupling strength. For the above parameters, we find k0 ∼ 0.2 s−1 and C0 � 2 × 10−5.
General coupling laser parameters. We consider two options for a laser mode for beam splitting/state

swapping operations that will be specified in the following sections. To exclude all other processes besides
the wanted beam splitting/state swapping operation, we use a modulation of the intensity of the beam
splitting laser mode in the cavity on resonance with the frequency difference between the high-energy and
the low-energy mode and assume that each beam splitting/state swapping operation lasts for
tBS = tMS = 200 ms. Furthermore, we consider 100 ms for the accumulation of the signal between the beam
splitting/state swapping operations which gives a total time of the whole scheme of 500 ms plus the time for
the preparation of the probe state, where we assumed that the read-out happens on a much shorter
time-scale.

6.2.1. Measuring the s-wave scattering length
For our first example, a low-energy quasiparticle mode with high frequency is advantageous. For the above
parameters, the condition �

2k2
n/(2ma) � g̃ρ0, 1D for low-energy modes limits the mode number to

nlow ∼ 50 with a frequency of ∼170 Hz. To couple this mode to the high-energy mode necessitates a
detuning of the beam splitting laser of ΔA,2/2π ∼ −20 THz from the D1-line. This detuning is larger than
the frequency difference between the two lines which implies that both lines contribute to the driving
process. We find a necessary photon number the for beam splitting operation (i.e. M̄nlownhigh

t/� ∼ π/4) at

tBS ∼ 200 ms of Nph,0 � |4π(g2
0,1/ΔA,2 + g2

0,2/(2π(νD1 − νD2) +ΔA,2))−1/(ηαnlow
tBS)| ∼ 105 for the

Bogoliubov coefficients αnlow
∼ 1.3 and a modulation amplitude η = 1. The spatial maximum of the

time-averaged light-potential becomes max(δV) = 4π�/(ηαnlow
tBS) ∼ 0.02μ0. This value is sufficiently low

with respect to the chemical potential to treat the resulting change of the condensate’s ground state as a
small perturbation, justifying our approach. For the resonant atomic transition rate, we find
ΓBS ≈ ΓNph,0(g2

0,1/Δ
2
A,2 + g2

0,2/(2π(νD1 − νD2) +ΔA,2)2) ∼ 10−5 s−1 which is negligible here.
We assume tint = 100 ms for the time between the two beam splitting operations of the MZI. The probe

state contains Nnhigh
= 10 quasiparticles. If we use ωnlow

∼ 2π × 170 Hz for nlow ∼ 50, we find from
equation (31) for the relative precision Δasc/asc � 0.006. This value for the precision limit can be optimized
by considering longer interaction times which is, however, limited by the decay of quasiparticles due to the
damping mechanisms described above. A larger number of quasiparticles in the probe state would also be
advantageous; this is however limited to be much smaller than the number of atoms in the
quasi-condensate, which is limited due to the size of the trap and the necessity to keep the density low to
avoid three-body losses. Based on the above result and taking into account that we calculated the
fundamental precision limit, it seems unlikely that the presented measurement scheme can compete with
standard methods employed for the measurement of the scattering length such as, for example, the one
employed in [81].
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Table 1. This table shows hypothetical values for the system parameters and derived quantities that
we have chosen based on the properties of state-of-the-art experimental systems and the boundaries
set by the damping mechanisms discussed in section 6.1. Furthermore, the parameters are chosen to
give optimal results for the sensitivities in the case of the example applications of sections 5.2 and
5.3.

Parameter/quantity Symbol Value

Condensate density ρ0 1014 cm−3

Number of condensate atoms N0 103

Length of box trap L 200 μm
1D condensate density ρ0,1D 5 μm−1

Transverse oscillator length a⊥ ∼130 nm
Healing length ξ ξ = 2.77 × 10−7 m
Scattering length asc ∼5.18 nm
Atomic mass ma 1.44 × 10−25 kg
Decay rate of high-energy quasiparticles γ1D

sc ∼0.5 s−1

Frequency of D1 line νD1 ∼377 THz
Frequency of D2 line νD2 ∼384 THz
Linewidth of D lines Γ ∼2π × 6 MHz
Dipole moment D1 line d1 ∼2.5 × 10−29 Cm
Dipole moment D2 line d2 ∼3.6 × 10−29 Cm
Cavity length Lcav 10 cm
Effective cross sectional area of cavity mode Acav 1 mm2

Single photon Rabi frequencies of D1 line g0,1 ∼130 kHz
Single photon Rabi frequencies of D2 line g0,2 ∼180 kHz
Detuning of driving laser from D2 line ΔA,1/2π ∼ +300 GHz
Directly driven quasiparticle mode number nhigh 1020
Frequency of directly driven quasiparticle mode ωnhigh

/2π 15 kHz

Duration of direct driving tcr 30 ms
Number of photons in driving laser mode Nph,0,dr 103

Modulation amplitude η 1
Optomechanical single photon coupling strength of driving laser k0,nhigh

∼0.2 s−1

Finesse of optical cavity F � 108

Single photon cooperativity C0 � 2 × 10−5

1st example application: measuring the s-wave scattering length

Detuning of the 1st coupling laser from D1 line ΔA,2/2π ∼ −20 THz
Mode number of 1st coupled low-energy mode nlow 50
Frequency of 1st coupled low-energy mode ωnlow

/2π ∼170 Hz
Duration of coupling operation tBS 200 ms
Number of photons in coupling laser mode Nph,0,c 105

Duration of shift of scattering length tint 100 ms
Relative precision Δasc/asc �0.006

2nd example application: sensing oscillating force gradients

Detuning of the 2nd coupling laser from D1 line ΔA,2′/2π ∼ −300 GHz
Mode number of 2nd coupled low-energy mode n′

low 20
Frequency of 2nd coupled low-energy mode ωn′low

/2π ∼70 Hz

Duration of coupling operation tMS 200 ms
Number of photons in coupling laser mode Nph,0,c′ 4 × 103

Duration of interaction with oscillating force gradient tint 100 ms
Minimal detectable force gradient G0,min ∼10−23 Nm−1

6.2.2. Sensing oscillating force gradients
For our second example application, a low frequency of the low-energy mode is advantageous. The mode
number is already limited from below by the necessity to perform the driving over several periods of the
mode while keeping the total driving time significantly below 1/γ1D

sc . Therefore, we choose a detuning of
ΔA,2′/2π ∼ −300 GHz from the D1-line which implies a mode swapper coupling of the mode nhigh ∼ 1020
to the mode n′

low ∼ 20 with a frequency of ∼70 Hz. We find a necessary photon number for a full state
swapping operation at tMS ∼ 200 ms of Nph,0 � |4πΔA,2′/(ηαn′low

g2
0,1tBS)| ∼ 4 × 103 for the Bogoliubov

coefficient αn′low
∼ 1.8 and a modulation amplitude η = 1. The spatial maximum of the time-averaged

light-potential is again max(δV) = 4π�/(ηαnlow
tBS) ∼ 0.02μ0.

Given the above parameters, one quasiparticle is created after tint = 100 ms for a minimal force gradient
G0,min ∼ 10−23 Nm−1. This value corresponds to the force gradient induced by a harmonic potential with
frequency

√
G0,min/ma/(2π) ∼ 1 Hz acting on the atoms. Repeating the experiment for about a week, that
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is about 104 times, would reduce the minimal force gradient by another 2 orders of magnitude to√
G0,min/ma/(2π) ∼ 10 mHz. This theoretical prediction can be compared with the experiment described

in [32], where a precision for a time-independent Casimir–Polder force gradient slightly below 100 mHz
has been reached by employing the center of mass motion of a BEC. However, one has to take into account
that sources of noise and other systematic errors which play an important role in [32] are not considered
here.

The minimal force gradient can, in principle, be decreased by choosing a lower frequency of the probe
mode. For example, employing n = 2 instead of n = 20 would lead to a decrease of G0,min by a factor ∼30.
However, to ensure that the state swapping only couples to the low-energy mode, the driving time has to be
increased by a factor 10 as well, which increases the total interaction time to the same value as the time scale
of the decay of high-energy quasiparticles 1/γ1D

sc . As above, an increase of the number of atoms seems to be
advantageous as it would increase the driving strength. However, it would also lead to a strong decrease in
condensate lifetime which overcompensates the increase in driving strength.

6.3. Readout
To apply the above-described manipulation methods to tasks in fundamental research and metrology, it
must be possible to read out the state of the condensate. Several different techniques have been developed
for measuring quasiparticle excitations of condensates. Excitations can be measured directly by measuring
phase oscillations through ‘heterodyne detection’ [46] (see also [82]) or density perturbations by
phase-contrast imaging [45, 83]. Quasiparticle momenta can also be mapped onto internal states of atoms
via doubly detuned Raman pulses [84]. Another option is time-of-flight measurements where the
quasiparticle momentum is mapped onto free particle momenta after trap release and the propagation of
the atoms falling in the gravitational field of the earth is measured (e.g. [48]). A particular version of this is
to first split the elongated condensate in two parts that are then later brought into interference [24, 85–88].
Another potential method for readout is pulsed optomechanics presented, for example, in [65, 89]. Details
of the application of this method to quasiparticles in a condensate are given in appendix D.1. We find that
this measurement is not applicable for the parameter values in table 1. Instead, a much larger atom number
(∼105) needs to be employed, which has to be weighed against the loss in lifetime of the quasiparticle state
which an increase of atom density would be accompanied with.

7. Conclusions

We presented a framework to describe the manipulation of quasiparticle states in trapped condensates with
temporally modulated light potentials in optical cavities. The set of possible operations includes
displacement, single-mode squeezing, two-mode squeezing and mode-mixing. In particular, displacement
and mode-mixing can be used to create a quasiparticle MZI in frequency space. We have presented example
applications and considered parameters of state-of-the-art technology to enable estimates of the
fundamental limitations of the scheme for quantum metrology. For example, the measurement scheme for
force gradients that we discussed may be employed to measure the thermal Casimir–Polder force as in [32]
and the quasiparticle MZI may be employed for sensing effects that lead to a differential change of the
frequencies of the quasiparticle modes. However, we found that the fundamental sensitivity bounds for
state-of-the-art parameters are not very promising and significant technological progress would be needed
to overcome the inherent limitations. In this work, we restricted our investigations to analytical estimates
and did not provide full numerical simulations of the sensing and state-manipulation processes. The
analytical results are already sufficient to draw the above conclusions about the utility of the method with
state-of-the-art parameters and we leave the numerical simulation to future work once the strong
limitations have been overcome.

The most severe restrictions arise from noise in the condensate due to quasiparticle–quasiparticle
interactions and atom loss. Such effects limit the lifetime of the condensate, and thus limit the time for
signal accumulation and state manipulation. We conclude that, in practice, displacements can only be
induced in modes with particle-like dispersion due the short wavelengths of lasers which can readily be
confined to cavities. For these high-energy modes, Beliaev damping becomes strongly pronounced in
three-dimensional ultra-cold Bose gases. Therefore, we considered one-dimensional quasi-condensates in
our example applications. It would be interesting to re-assess our example applications if laser-cavity
systems with wavelengths in the range of 10–100 μm were available. In that case, low-energy quasiparticle
modes could be addressed directly and three-dimensional quantum gases could be considered allowing for
much higher numbers of condensate atoms and quasiparticles in the probe states. Another option to access
low-lying quasiparticle modes directly would be to arrange the beam line of the driving laser at a large angle
to the longitudinal axis of the BEC. In this case, momentum transfer to the quasiparticle would couple
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photons out of the cavity mode which implies a different coupling Hamiltonian than the one used in this
article. However, shining the laser under a large angle does not lift the restriction to one-dimensional
condensates, as the mode structure has to be confined to restrict the coupling to longitudinal modes. We
also emphasize that we considered the cavity for the restriction to standing light waves. In this respect, it is
not necessary for the general mechanism of state manipulation and more general shapes of light modes
could be employed in practice.

We estimated the fundamental capabilities of our scheme here without considering experimental
imperfections such as vibrations, trap instability, imperfect boundary conditions and atom losses. As these
would depend on a specific implementation, we leave these calculations to future work, which could assist
in further identifying the technological advancements necessary to implement our scheme.

It would be interesting to investigate similar sensing and mode manipulation schemes with superfluid
helium which is much more stable, enables much higher coherence times and direct driving of modes with
wavelengths in the microwave range (see for example [90]).
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Appendix A. Cavity frequency shift

Due to the proportionality of Ĥdisp in equation (2) to the photon number operator â†â, we can conclude
that Ĥdisp leads to a frequency shift of the cavity frequency proportional to the number of atoms N0 in the

atomic ensemble weighted with the overlap of ψ̂†(z)ψ̂(z) and the cavity mode square. Effectively, this is a
refractive index change due to the presence of the atoms in the cavity. We take the average frequency shift
into account from the start by renormalizing the cavity mode frequency as ωc → ωc − δωc, where

δωc =
g2

0 N0

ΔA

∫
dz χBT(z)fcav(z)2/L, (A.1)

where L its length of the box potential and χBT is the characteristic function of the one-dimensional box
potential in the z-direction (i.e. χBT = 1 inside and χBT = 0 outside the box, respectively). For each single
run of the experiment, the atom number is fixed and does not have quantum properties. Therefore, we can
formally replace N0 with the atom number operator N̂ = A

∫
dz ψ̂†(z)ψ̂(z) in the following.

Then, together with the Hamiltonian governing the dynamics of the atomic ensemble, the total
Hamiltonian of our system is

Ĥtotal = �ωcâ†â +

∫
dz ψ̂†(z)�

g2
0

ΔA
â†â

(
f 2
cav(z) −

∫
dz′ χBT(z′)f 2

cav(z′)/L

)
ψ̂(z)

+

∫
dz ψ̂†(z)

[
− �

2

2m
∂2

z +
g̃

2
ψ̂†(z)ψ̂(z) + V0 (z) + δVext (z, t)

]
ψ̂(z). (A.2)

Appendix B. The interaction Hamiltonian

Starting from the split of the atomic field into the ground state part and excitations as ψ̂ = ĉ0ψ0 + ϕ̂,
neglecting all contributions of the perturbation ϕ̂ and the fluctuations of the light field δâ, we obtain

Ĥtotal =

∫
dz ĉ†0ψ

∗
0

(
− �

2

2m
∂2

z + V +
g̃

2
ĉ†0 ĉ0|ψ0|2

)
ĉ0ψ0.
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With the canonical commutation relations [̂c0, ĉ†0] = 1, the Heisenberg equation of motion for the ground
state leads to

ĉ0(t) = ĉ0(0) exp

(
− i

�

(
μt +

∫ t

0
dt′ δμosc(t′) + g̃t

∫
dz|ψ0|4

(
N̂0 − (N0 + 1)

)))
, (B.1)

where N̂0 = ĉ†0ĉ0 for normalized ψ0, where we defined δμosc(t) =
∫

dz|ψ0|2Vosc(t). If we assume that the
state of condensate is restricted to the particle sector around the particle number N0 � 1 that is much
larger than the particle number fluctuations, we can neglect the last term in the above equation and obtain

ĉ0(t) ≈ ĉ0(0) exp

(
− i

�

(
μt +

∫ t

0
dt′ δμosc(t′)

))
. (B.2)

With this observation, we re-define the splitting of the atomic field operator in the Heisenberg picture as

ψ̂ = (̂c0ψ0 + ϑ̂)e−i(μt+
∫ t

0 dt′ δμosc(t′))/�. (B.3)

Then, we find that the time evolution of ψ̂′ := ĉ0ψ0 + ϑ̂ is governed by the Heisenberg equation with
respect to the Hamiltonian

Ĥ′
total := Ĥtotal − (μ+ δμosc)N̂ (B.4)

(similar to the grand canonical Hamiltonian) where N̂ =
∫

dz ψ̂′†ψ̂′ is the full atom number operator.
μ+ δμosc can be interpreted as a time-dependent chemical potential.

We continue with the Hamiltonian Ĥ′
total and use the Bogoliubov approximation ĉ0 →

√
N0I to find the

expansion up to second order in ϑ̂

Ĥ′
total = −�Δcδâ†δâ + N0

∫
dz ψ∗

0

(
− �

2

2m
∂2

z + V0 + δV +
g̃N0

2
|ψ0|2

)
ψ0

+
√

N0

∫
dz

(
ϑ̂†

(
− �

2

2m
∂2

z + V0 + δV + g̃N0|ψ0|2
)
ψ0 + h.c.

)

+

∫
dz

(
ϑ̂†

(
− �

2

2m
∂2

z + V0 + δV + 2g̃N0|ψ0|2
)
ϑ̂+

g̃N0

2

(
ϑ̂†2ψ2

0 + ψ∗2
0 ϑ̂2

))

+
√

N0

∫
dz g̃

(
ϑ̂†2ϑ̂ψ0 + ψ∗

0 ϑ̂
†ϑ̂2

)
+

∫
dz

g̃

2
ϑ̂†2ϑ̂2

+ �
g2

0

√
Nph

ΔA

(
δâ† + δâ

) ∫
dz f 2

cav

(
N0ψ

∗
0ψ0 +

√
N0

(
ψ∗

0 ϑ̂+ ψ0ϑ̂
†
)
+ ϑ̂†ϑ̂

)

+ N0

∫
dz ψ∗

0 Voscψ0 +
√

N0

∫
dz

(
ψ∗

0 Voscϑ̂+ ϑ̂†Voscψ0

)
+

∫
dz ϑ̂†Voscϑ̂

− N0μ

∫
dz ψ∗

0ψ0 − N0δμosc

∫
dz ψ∗

0ψ0 −
√

N0μ

∫
dz

(
ψ∗

0 ϑ̂+ ϑ̂†ψ0

)

−
√

N0δμosc

∫
dz

(
ψ∗

0 ϑ̂+ ϑ̂†ψ0

)
− μ

∫
dz ϑ̂†ϑ̂− δμosc

∫
dz ϑ̂†ϑ̂. (B.5)

In the last three lines, we see the contribution of the time dependent potential perturbation and
−(μ+ δμosc)N̂. The second term in the second to last line and the first term in the third to last line cancel.

With equation (6), the second term in the first line in equation (B.5) gives the classical energy of the
condensate, and with the first term in the second last line of equation (B.5)

E(0) = − g̃N2
0

2

∫
dz|ψ0|4. (B.6)

Again with the stationary GP equation (6), the second line of equation (B.5) becomes

Ĥ(1) =
√

N0μ

∫
dz

(
ϑ̂†ψ0 + h.c.

)
, (B.7)

which cancels with the last term in the second last line of equation (B.5). The third line of equation (B.5)
gives rise to the Bogoliubov Hamiltonian. We combine the third line and the second term in the last line of
equation (B.5) as

Ĥ(2) :=

∫
dz

(
ϑ̂†

(
− �

2

2m
∂2

z + V0 + δV − μ+ 2g̃N0|ψ0|2
)
ϑ̂+

g̃N0

2

(
ϑ̂†2ψ2

0 + ψ∗2
0 ϑ̂2

))
. (B.8)
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As explained in the main text, we expand the field operator in terms of Bogoliubov modes describing the
quasiparticle excitations as

ϑ̂ =
∑

n

(
unb̂n + v∗nb̂†n

)
, (B.9)

where [bn, b†m] = δnm, the mode functions un and vn fulfill the stationary BdG equations

�ωnun(z) =

(
− �

2

2m
∂2

z + V0 + δV − μ+ 2g̃N0|ψ0|2
)

un(z) + g̃N0ψ
2
0vn(z) (B.10)

−�ωnvn(z) =

(
− �

2

2m
∂2

z + V0 + δV − μ+ 2g̃N0|ψ0|2
)
vn(z) + g̃N0ψ

∗2
0 un(z) (B.11)

and are normalized with respect to the inner product∫
dz

(
u∗

num − v∗nvm

)
= δnm. (B.12)

The expansion of ϑ̂ in the Bogoliubov basis diagonalizes the Bogoliubov Hamiltonian as
ĤBdG = : H(2) :=

∑
n�ωnb̂†nb̂n, where : : denotes the normal ordering with respect to the Bogoliubov mode

operators b†n and b̂n, which leads to the omission of the constant vacuum energy.
The fifth line in equation (B.5) governs the back action on the light field. The first term in brackets

corresponds to a time-independent shift of the cavity field frequency. This is discussed in more details in the
main text and in appendix A and we omit this term. The third term in brackets is of higher order and will
be omitted as well. The second term gives rise to the back action Hamiltonian in equation (D.3).
Furthermore, we combine the remaining terms of equation (B.5) to the driving Hamiltonian in
equation (8) and neglect terms of third and fourth order in ϑ̂ that give rise to quasiparticle–quasiparticle
interactions that are discussed in section 6.1.

Appendix C. Derivation of the driving Hamiltonian due to an external force gradient

Starting from equations (10) and (11), to first order in 1/
√

N0 and with Vosc = −z2G0 sin (Ωt), we obtain
the driving Hamiltonian due to the external force gradient as

Ĥ int := Ĥdr =
∑

n

(
Pnb̂n e−iωnt + P∗

nb̂†n eiωnt
)

,

where

Pn =
√

N0

∫
dz(Vosc − δμosc)

(
ψ∗

0un + ψ0vn

)
. (C.1)

Making the assumptions of section 5 (homogeneous condensate in a box trap etc), assuming the resonance
condition Ω = ωnlow

and applying the RWA, we find the interaction Hamiltonian

Ĥint = Πnlow

(
b̂nlow

− b̂†nlow

)
,

where

Πnlow
= i

G0
√

N0

2
√

L

∫
dz

(
z2 − L2

12

)(
unlow

+ vnlow

)
= i

G0
√

N0

2Lσnlow

∫
dz

(
z2 − L2

12

)
ϕc

nlow
. (C.2)

Appendix D. Ground state and mode function perturbations

In this appendix, we discuss the dependence of the ground state on the time-averaged perturbation of the
external potential δV that is discussed in section 2. We have that δψ0 is a solution of the linearized GP
equation

δVψ̄0 +

(
− �

2

2m
∂2

z + 2g̃N0|ψ̄0|2
)
δψ0 + g̃N0ψ̄

2
0δψ

∗
0 = μδψ0. (D.1)

We apply the Thomas–Fermi approximation and neglect the kinetic term. Then, the linearized GP equation
can be solved as

Re (δψ0) = −δV/(2μV1/2), (D.2)

and Im(δψ0) = 0. In a similar fashion, we can find the modifications of the quasiparticle mode function un

and vn. As all of these modifications are of first order in δV and Ĥdr as well as Ĥba are both of first order in
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the external potential and light field interaction, respectively, their modifications due to δV will be of higher
order and can be neglected for the purposes of this article.

D.1. Pulsed readout
In this appendix, we propose a method for imprinting the displacement of a single quasiparticle mode onto
the cavity field phase, which can be read out with high precision through a homodyne detection scheme on
the light leaving the cavity. The method is based on the approach of pulsed optomechanics presented, for
example, in [65, 89]. To this end, we assume that the dynamics of the quasiparticles is much slower than the
measurement. This requires the measurement to be constructed from pulses shorter than the time scale of
the quasiparticle dynamics. As we will show below, for typical experimental parameters, this requires light
pulses with a length below the microsecond level to access high order quasiparticle modes, which is well
within the capabilities of current technology.

In lowest order in the atom field operators, the back action on the cavity mode fluctuation quadrature is
given via the Hamiltonian

Ĥba = �
√

N0
g2

0

√
Nph

ΔA

(
δâ† + δâ

) ∫
dz f 2

cav

(
ψ∗

0 ϑ̂+ ψ0ϑ̂
†
)
. (D.3)

Here, a term that is proportional to
(
δâ† + δâ

)
and independent of ϑ̂ has been absorbed into a

re-normalization of the cavity mode frequency. This is the effect of the refractive index change due to the
presence of the condensate atoms in the cavity. See also appendix A for how to include this frequency shift
from the start.

Then, taking the quasiparticle mode decomposition and the free time evolution of the creation and
annihilation operators δâ†, δâ, b̂† and b̂ into account, we obtain the back-action Hamiltonian in the
corresponding rotating frames (the interaction picture) as

Ĥba =

(
δâ† e−iΔc t + δâ eiΔct)

∑
n

κn(b̂n e−i(ωnt−θn) + b̂†n ei(ωnt−θn)

)
, (D.4)

where the real quantities κn and θn are defined such that

κn eiθn =
�g2

0

√
N0Nph

ΔA

∫
dz f 2

cav

(
ψ∗

0un + ψ0vn

)
. (D.5)

For the pulsed optomechanics scheme, the external read-out laser is tuned on resonance with the cavity
field such that Δc = 0 and we obtain the sum of driving and back-action Hamiltonian to leading order in
1/
√

N0

Ĥplsd = Ĥdr + Ĥba =
∑

n

κn

(√
Nph + δâ† + δâ

) (
b̂n e−i(ωntm−θn) + b̂†n ei(ωntm−θn)

)
. (D.6)

If we consider the dynamics of the cavity field momentum quadrature perturbation P̂L = i
(
δâ† − δâ

)
, we

find

P̂L (Δt) = exp

[
i

�
ĤplsdΔt

]
P̂L exp

[
− i

�
ĤplsdΔt

]

= P̂L −
∑

n

2κn

�

(
b̂n e−i(ωntm−θn) + b̂†n ei(ωntm−θn)

)
Δt. (D.7)

Thus, we see that P̂L depends on the quasiparticle displacement. Since we assume that the initial probe state
of the light field is prepared such that 〈δâ〉 = 0, 〈â† − â〉 = 0 and 〈â† + â〉 = 2

√
Nph � 1, and the phase φ

of a general coherent state is defined such that 〈â† + â〉 = 2
√

Nph cos φ and i〈â† − â〉 = 2
√

Nph sin φ, for

small 〈P̂L (Δt)〉, we can interpret the shift of P̂L as a small phase shift of the cavity mode state

φba =
〈P̂L (Δt)〉
2
√

Nph
. (D.8)

This change of phase can, in principle, be read out by interfering the light from the cavity with a local phase
reference, e.g. a homodyne measurement with fundamental precision limit given by the standard quantum
limit

Δφba �
1√
Nph

(D.9)
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and signal to noise ratio

SNR =
|φba|
Δφba

� 1

2
|〈P̂L (Δt)〉|. (D.10)

A closer analysis of the measurement precision employing tools of quantum metrology reveals that the
fundamental precision limit for the sensing of displacement of the quasiparticle modes saturates for large
times and large coupling κ2ncav ; the detailed calculations can be found in appendix E. To summarize, the
fundamental precision limit depends on the quantum Fisher information (QFI), which quantifies the
maximal amount of information that can be gained about a parameter encoded in a given state of the
system from a measurement on the system (maximized over all possible measurements). For a coherent
state of the cavity field with amplitude

√
Nph and quasiparticle mode with amplitude Pn, the QFI for the

estimation of Pn is

FρF (Pn) =
16χ2

1 + 4χ2
. (D.11)

From the QFI, we can then calculate the Cramer–Rao bound for the fundamental precision limit as

(ΔPn)2 � 1

FρF

=
1

4
+

1

16χ2
→ 1

4
for χ→∞, (D.12)

where χ = κ2ncavΔt/�.
Note that, alternatively, the interaction described by Ĥba can be employed for mode cooling and state

preparation by tuning the external driving laser frequency to the quasiparticle side bands in the sideband
resolved regime, that is ωn much larger than the cavity bandwidth. However, this cannot coexist with the
state manipulation via intensity modulation and the pulsed optomechanics scheme which require the
opposite regime, where ωn is much smaller than the cavity bandwidth.

D.1.1. Restriction to box traps
Based on the approximation made above for the mode functions, we find θn = 0 (as defined in
equation (D.5)) and

κn ≈ −
�g2

0

√
N0Nph

2
√

2ΔA
σ−1

2ncav
δ2ncav

n , (D.13)

where δa
b is the Kronecker delta. Then, we obtain that the coupling is only significant for n = 2ncav, that is

kn = 2kcav, which implies that momentum is conserved as in uniform condensates [63]. The back-action
Hamiltonian becomes

Ĥplsd = κ2ncav

(√
Nph + δâ† + δâ

) (
b̂2ncav + b̂†2ncav

)
, (D.14)

where we have assumed that the measurement time tm is chosen such that ω2ncav tm is a multiple of 2π. The
momentum quadrature evolves accordingly as

P̂L (t) = P̂L −
2κ2ncav

�

(
b̂2ncav + b̂†2ncav

)
Δt (D.15)

which implies that the resulting phase shift can be associated with one specific quasiparticle mode.

D.1.2. Evaluation for experimental parameters in table 1
For the pulsed read-out, we consider another laser mode with a much smaller detuning of
ΔA,1′/2π ∼ 1 GHz to increase the coupling strength. This laser couples to the same quasiparticle mode as
the driving laser. This is because the difference in the detuning is small enough such that the photon
momenta do not differ significantly.

With the above parameters, for the pulsed optomechanical read-out scheme, we obtain
single-quasiparticle precision (SNR ∼1 for 〈bnhigh

〉 = 1, compare equation (D.10) with equation (D.15)) if

the accumulated total duration of the measurement is Δt � �/(2|κ2ncav |) =
√

2ΔA,1′/(g2
0,2

√
N0Nph) ∼

800 ns assuming Nph ∼ 108 photons in the cavity mode (corresponding to an intra-cavity power
of ∼40 mW and an intensity of 4 W cm−2 ).

Note that, if we assume that the pulse is Gaussian, the bandwidth is given as Δν = 0.44/Δt, and we
obtain Δν ∼ 500 kHz. This bandwidth corresponds to a angular wave number uncertainty of
k ∼ 0.01 m−1, while, for example, the difference between the wave number coupling to the high-energy
modes n = 1020 and n = 1019, respectively, is Δk ∼ 8000 m−1. Therefore, the pulse can be considered as
monochromatic for the purposes of our article. The pulse duration Δt puts a more stringent upper bound
on the finesse then the one that we obtained above from the period of the driven quasiparticle mode, that is,
F � πcΔt/L ∼ 106.
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This pulse power leads to a resonant transition rate of Γpls ≈ ΓNph,0g2
0,2/Δ

2
A,1′ ∼ 3 × 106 s−1, which

implies that the condensate will be destroyed during the readout. In practice, a significant part of the
information may still be extractable from the light signal. We find for the product of resonant transition
rate and measurement time ΓplsdΔt = 2Γ/(g0,2N2

0Δt) which is bounded from above to be much larger than
Γ/(πg0,2N2

0 )ω2ncav ∼ 0.03 to ensure that the measurement time is much shorter than the period of the
measured quasiparticle mode. The only free parameter in this bound is the number of atoms in the
condensate. We conclude that the pulsed readout scheme is not ideal for the parameter values considered in
section 6.2, and it should ideally be employed in systems with a larger atom number.

Appendix E. Fundamental sensitivity of the pulsed readout

When considering only the resonant targeted quasiparticle mode for the pulsed measurement scheme
described in section appendix D.1, the time-evolution operator has the form

Ûpulse = exp

[
− i

�
κ2ncav

(√
Nph +

(
δâ + δâ†

)) (
b̂2ncav + b̂†2ncav

)
Δt

]
. (E.1)

The measurement sequence comprising two mirror operations and the gravitationally induced displacement
can be described with the time-evolution operator

ÛD =
(
ÛM

n,c

)†
D̂nÛM

n,c, (E.2)

where D̂n = exp
[
−iPn

(
b̂n − b̂†n

)]
, Pn = Πnt/�, and ÛM

n,c is given by (14) for the specific modes labelled n

and c with the interaction time appropriately tuned. For some initial density matrix ρ0, the final state of the
condensate-cavity system is then described as

ρF = ÛpulseÛDρ0Û†
DÛ†

pulse. (E.3)

For notational convenience, we also define χ = κ2ncavΔt/�. We define the operator basis X̂cav = δâ + δâ†

and P̂cav = i
(
δâ† − δâ

)
and the vector x̂ =

(
X̂cav, P̂cav

)
. For an initially thermal quasiparticle state

(negligible initial occupancy in the high order mode c) and a coherent cavity state, the displacement vector
in this basis for the reduced cavity state is given by

d = 〈x̂〉 = (0, 4χPn) , (E.4)

where the expectation values are taken with respect to ρF. The covariance matrix, with elements defined by
Σi,j =

〈
x̂ix̂j + x̂jx̂i

〉
− 〈x̂i〉

〈
x̂j

〉
, is given by

Σ =

(
1 0
0 1 + 4χ2

)
. (E.5)

The QFI Hρ (λ) gives a measure of the amount of information about a parameter λ which can be extracted
from a state ρ optimised over all possible measurements. The QFI can be calculated for Gaussian states
using only the displacement vector and covariance matrix [91]. We find that the QFI for estimating the
displacement Pn of the quasiparticle state is given by

HρF (Pn) =
16χ2

1 + 4χ2
. (E.6)

The quantum Cramer–Rao bound [92] links the possible measurement sensitivity with the QFI, and in our
case it has the form

(ΔPn)2 =
1

Nmeas

(
1

4
+

1

16χ2

)
, (E.7)

where Nmeas is the number of repetitions of the measurement scheme performed.

Appendix F. A toy model for high-energy modes—trapezoidal potential

To show how the coefficients Ac
n and As

n of modes in the high-energy regime are constructed and vary with
the mode number, we consider a toy model. We start by modelling the trap potential as a well with finitely
steep walls, i.e. with a certain inclination, such that

V0(z) = a(−(z + L/2)Θ(−(z + L/2)) + (z − L/2)Θ(z − L/2)). (F.1)
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We want the potential to rise to the kinetic energy of the high-energy move in a fraction of L, i.e.
a = b�2(2kcav)2/(2 mL), where b� 10. For high-energy modes, we can set vn = 0, and for δV = 0, the BdG
equations in (B.10) become the stationary Schrödinger equation for un

0 =

(
− �

2

2m
∂2

z + (Ṽ0(z) − En)

)
un(z) (F.2)

with En = �ωn and the potential Ṽ0(z) = V0 − μ0 + 2g̃N0|ψ0|2. We note that for a small healing length in
comparison to the trap length, we can approximate 2g̃N0|ψ0|2 ≈ 2g̃ρ1D = 2μ0 and the interaction energy
μ0 = g̃ρ1D can be regarded as a small offset of the potential such that

Ṽ0(z) :=V0(z) − g̃ρ1D

≈ a(−(z + L/2 − μ0/a)Θ(−(z + L/2)) + (z − L/2 + μ0/a)Θ(z − L/2))

+ (Θ(z + L/2) −Θ(z − L/2))μ0, (F.3)

and L + 2μ0/a ≈ L. Then, we define three regions I, II and III, where I and III are left of z = −L/2 and
right of z = L/2, respectively, and II lies in between I and III.

In region III, we find the stationary Schrödinger equation

0 =

(
−∂2

z + a
2m

�2
(z − L/2 + μ0/a − En/a)

)
un(z). (F.4)

We redefine the spatial coordinate as z̄ = (2ma/�2)1/3(z − L/2 + μ0/a − En/a) such that

0 =
(
−∂2

z̄ + z̄
)

ūn(z̄). (F.5)

This differential equation is solved by the Airy function Ai(z̄) and we obtain the solution

ũn,I(z̃) = CR,nAi(z̃ − L̃/2 + Ẽn), (F.6)

where we defined z̃ = ã1/3z, L̃ = ã1/3L, Ẽn = ã−2/32m(μ0 − En)/�2 and ã = 2ma/�2 = b(2kcav)2/L. We find
the corresponding solution in region I by reflection at the origin and for the region II, we find the
differential equation

0 =
(
−∂2

z̃ + Ẽn

)
ũn(z̃) (F.7)

which is simply solved by

ũn,II(z̃) =

√
2

L

(
Ac

n cos

(
k̃n

(
z̃ +

L̃

2

))
+ As

n sin

(
k̃n

(
z̃ +

L̃

2

)))
, (F.8)

where k̃n =
√

Ẽn = ã−1/3kn. From imposing the continuity of the wave function and its first derivative at
z = −L/2 and z = L/2, we obtain the following expressions for the coefficients

CR,n = N
(

cos(k̃nL̃) − Ai′(−Ẽn)

k̃nAi(−Ẽn)
sin(k̃nL̃)

)

Ac
n =

√
L

2
NAi(−Ẽn)

As
n = −

√
L

2
N Ai′(−Ẽn)

k̃n

,

(F.9)

and the consistency condition

Ai′(−Ẽn) cos(k̃nL̃) +
ẼnAi(−Ẽn)2 − Ai′(−Ẽn)2

k̃nAi(−Ẽn)
sin(k̃nL̃) = 0 (F.10)

which defines the spectrum of possible Ẽn. The factor N is a normalization constant. Solutions to
equation (F.10) as well as N can be found numerically.

In figure F1, we show the squared magnitude of the cavity mode function and the quasiparticle mode
function with knhigh

∼ 2kcav, a plot of the coefficients Ac
n and As

n as well as the coupling coefficient κn for n
close to nhigh. We plot these for parameters equivalent to those used in section 5, besides the trap length
which is chosen to be 198 microns and b = 108.5 which does not appear in the main text. We find that the
length scale ã−1/3 ∼ 190 nm. We have chosen the values for L and b such that Ac

n/As
n � 1 and knhigh

is very
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Figure F1. Plot of various functions for similar parameters as those considered in section 5 and b = 108.5: (a) a plot of the
spatial dependence of the square of the optical mode f 2

cav multiplied by an arbitrary factor c (orange line) and the quasiparticle
mode unhigh

with nhigh = 1027 (blue line) close to z = −L/2 (marked by the vertical black dashed line). The overlap between
these functions is very large up to a small region left of z = −L/2 where the quasiparticle mode reaches a maximum before it
quickly decays. (b) A plot of the coefficients Ac

n (blue dots) and As
n (orange dots) of the mode in region II. For values n close to

nhigh, the As
n coefficient almost vanishes while Ac

n is close to 1. (c) Coupling coefficient κn for modes close to n = nhigh.

close to 2kcav to optimize the overlap. In particular, we see that the coupling to modes with n �= nhigh is very
small and can be neglected which was assumed in the main text.

Appendix G. Numerical study of the condensate ground state

In figure G1, we show a plot of the absolute value squared of the ground state wave function in a proper box
potential and a more realistic continuous potential approximating a box potential. We see that the change of
the ground state is small and we can consider the case of a discontinuous box potential for our analytical
estimates.

The numerical method used for the calculation of the ground state presented in figure G1 are given in
the following. We restrict our considerations to one-dimensional quasi-condensates and start with the time
dependent GP equation (

− �
2

2m
∂2

z + V0 + g1DN0|ψ̄|2
)
ψ̄ = i�∂tψ̄ (G.1)

for the ground state wave function normalized as
∫

dz|ψ̄|2 = 1. Note that, for ψ̄0 = ψ0 e−iμt , we would have
i�∂tψ̄0 = μ and recover the stationary GP equation (6). We define z̃ = z/ξ, τ = μ0t/�, Ṽ = V/μ0,
ψ̃ =

√
ξψ̄ and μ0 = g1Dρ0,1D, where the one-dimensional density ρ0,1D = N0/L and the healing length

ξ = �/
√

4maμ0 have been already defined in the main text. Then, equation (G.1) can be rewritten in
dimensionless form as (

−2∂2
z̃ + Ṽ + L̃|ψ̃|2

)
ψ̃ = i∂τ ψ̃, (G.2)

where L̃ = L/ξ and
∫

dz̃|ψ̃|2 = 1.
To obtain the ground state, we perform an imaginary time propagation [93], that is, we use imaginary

time steps −i dτ . Furthermore, we solve the differential equation numerically on a spatial grid with a
discrete time split step method (see [93] and appendix A of [94]). More concretely, the wave function is
represented as a one-dimensional array ψ̃ar = {ψ̃j} of complex values of ψ̃ at the points of a one-
dimensional array {z̃j} with J entries of equidistant points from an interval of length Lg of the z̃-axis. In
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Figure G1. (Left plot) Logarithmic plot of the absolute square |ψ0|2 of the ground state of a one-dimensional
quasi-condensate for the parameters given in table 1 for the case of a box potential of depth V0,b = 80μ0 ∼ 2�2k2

nhigh
/(2ma)

(orange curve) and a more realistic continuous potential with finitely steep walls described by the function
V0 = −V0,b(tanh(a(1 − (z/(L̃/2))2)/4) − 1) (blue dashed curve), where a = 200, μ0 = g1Dρ0,1D and
L̃ = L/

√
1 − (4 arctanh(1 − μ0/V0,b)/a (chosen such that V0 = μ0 at z = −L/2). The gradient of the continuous

potential is ∓aV0,b/L at ±L/2 which corresponds to an decrease/increase to half the box depth (the kinetic energy of the
high-energy mode in the example) on a length scale ∼ L/100 ∼ 2 μm. (Right plot) A logarithmic plot of the absolute square of
the difference Δψ0 of the ground state wave functions presented in the left plot. We find that the difference of the two ground
states is on the level of a few percent and only pronounced in a region very close to the boundary of the trap potential. This
justifies the use of the ground state in the box potential for our estimates in section 6.2.

each time step from τ s to τ s+1 = τ s + dτ , first, we perform the operation U1/2
z̃ (τs, dτ) = {exp(−i(Ṽ(z̃j, τs)

+ L̃|ψ̃j(τs)|2)dτ/2)}, on the wave function ψ̃ar(τs), perform a discrete Fourier transform F of U1/2
z̃ (τs, dτ)

ψ̃ar(τs) where Fourier space is represented by another array {k̃j} of wave numbers kj = 2π(j − 1 − J/2)/Lg.

Then, we apply the operation Uk̃(dτ) = exp(−2ik̃2 dτ) on F[U1/2
z̃ (τs, dτ)ψ̃ar(τs)], apply the Fourier

back-transform F−1 and another time U1/2
z̃ (τs, dτ). That is, the full operation can be written as

ψ̃ar(τs+1) = U1/2
z̃,0 (τs,−i dτ)F−1[Uk̃(−i dτ)F[U1/2

z̃,0 (τs,−i dτ)ψ̃ar(τs)]], (G.3)

where U1/2
z̃,0 is equivalent to U1/2

z̃ with Ṽ replaced by the time-independent trap potential Ṽ0 = V0/μ0 and

Uk̃ = U1/2

k̃
U1/2

k̃
. After each time step, ψ̃ar is normalized to one.
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