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Abstract

This thesis presents results from genomic breeding value estimation for six economically
important traits in the honey bee, and evaluates several strategies to optimize the genetic gain

using genomic selection.

Genomic selection is a routine practice for several important livestock species but not yet in
honey bees, due to the peculiarities of this species. Chapter 1 introduces the basic concepts of
genomic selection and the best linear unbiased prediction method to calculate pedigree-based
breeding values honey bees. The model uses the pedigree information via the numerator
relationship matrix. For honey bees, a specialized genetic relationship matrix is required, since
their mating biology involves uncertain paternity, diploid queens, and haploid drones. Chapter
2 presents a novel algorithm for the efficient computation of the inverse of the numerator
relationship matrix and the coefficients of inbreeding on large data sets. In Chapter 3, the
method to calculate the inverse numerator relationship matrix was included into methods to
estimate genomic and pedigree-based breeding values. The accuracy and bias of the estimated
breeding values were evaluated in a simulation study where various sizes of the reference
population were considered. Subsequently, the genetic gain in the initial cycle of breeding
programs was evaluated for several breeding schemes employing genomic or pedigree-based
selection. A considerably higher genetic gain than with pedigree-based selection was achieved
with genomic preselection, for which queens were genotyped early in life, and only the

candidates of high genomic breeding value were admitted for mating or phenotyping.

In Chapter 4, pedigree-based and genomic breeding values were predicted on a data set of about
3000 genotyped queens for six economically relevant traits. Three traits showed significantly
higher prediction accuracy with genomic compared to pedigree-based methods, and the
differences between all the six traits could be explained mainly from their genetic parameters
and the limited size of the reference population. The results show that genomic selection can be
applied in honey bees, and the thesis provides appropriate breeding schemes and mathematical

methods for its implementation.

Chapters 2, 3, and 4 have previously been published in, or submitted to peer-reviewed journals;

the articles are referenced at the beginning of the respective chapters. In comparison with the



published or submitted versions, the layouts were adjusted to achieve a uniform appearance.
This includes the formula notation and the display and numbering of tables and figures. The

few cases where content was changed are clearly marked with explaining footnotes.



Zusammenfassung

Diese Arbeit préisentiert Ergebnisse der genomischen Zuchtwertschitzung fiir sechs
wirtschaftlich bedeutende Merkmale bei der Honigbiene und untersucht verschiedene

Strategien, um den optimalen Zuchtfortschritt durch genomische Selektion zu erreichen.

Genomische Selektion ist ein Routine-Verfahren bei verschiedenen Nutztierarten, aber noch
nicht bei der Honigbiene wegen der Besonderheiten dieser Spezies. Kapitel 1 erldutert
grundlegende Begriffe der genomischen Selektion und die Methode der besten, linearen,
unverzerrten Vorhersage der Stammbaum-basierten Zuchtwerte bei der Honigbiene. Das
Modell verwendet Stammbauminformationen in Form der genetischen Verwandtschaftsmatrix.
Fiir die Honigbiene ist eine spezielle genetische Verwandtschaftsmatrix erforderlich, da die
Paarungsbiologie dieser Spezies ungesicherte Vaterschaft, diploide Koniginnen und haploide
Drohnen umfasst. Kapitel 2 présentiert einen neu-entwickelten Algorithmus zur effizienten
Berechnung der Inversen der genetischen Verwandtschaftsmatrix und der Inzuchtkoeffizienten
auf groBen Datensitzen. In Kapitel 3 wird die Methode zur Berechnung der Inversen der
genetischen Verwandtschaftsmatrix in Methoden zur Voraussage von genomischen und
Stammbaum-basierten Zuchtwerten integriert. Die Genauigkeit und die Verzerrung der
geschitzten Zuchtwerte wurden ausgewertet in einer Simulationsstudie, bei der verschiedene
Grofen der Referenzpopulation beriicksichtigt werden. AnschlieBend wurde der
Zuchtfortschritt im ersten Durchlauf von Zuchtprogrammen ausgewertet, die Zuchtschemata
mit genomischer oder Stammbaum-basierter Selektion nutzten. Ein erheblich groferer
Zuchtfortschritt als bei Stammbaum-basierter Selektion wurde mit genomischer Vorselektion
erzielt, fiir die junge Koniginnen genotypisiert wurden, und nur die Kandidaten mit den

hochsten genomischen Zuchtwerten zur Anpaarung oder Leistungspriifung zugelassen wurden.

In Kapitel 4 wurden Stammbaum-basierte und genomische Zuchtwerte fiir einen Datensatz von
ungefdhr 3000 genotypisierten Koniginnen fiir sechs wirtschaftlich bedeutende Merkmale
vorhergesagt. Drei Merkmale zeigten eine signifikant hohere Vorhersagegenauigkeit bei
genomischer Zuchtwertschitzung gegeniiber Stammbaum-basierten Verfahren und die
Unterschiede zwischen allen sechs Merkmalen konnten im Wesentlichen aus den genetischen
Parametern der Merkmale und der begrenzten Grofle der Referenzpopulation erklirt werden.

Die Ergebnisse zeigen, dass sich die genomische Selektion fiir die Honigbiene eignet, und die



Arbeit stellt angemessene Zuchtschemata und mathematische Methoden zu ihrer Umsetzung

VOr.

Kapitel 2, 3, und 4 sind bereits in referierten Fachzeitschriften veréffentlicht bzw. eingereicht
worden. Die entsprechenden Literaturangaben finden sich am Anfang des jeweiligen Kapitels.
Das Layout wurde gegeniiber der verdffentlichen bzw. eingereichten Versionen angepasst, um
ein einheitliches Erscheinungsbild zu gewéhrleisten. Angepasst wurden die Notation in
Formeln und die Darstellung und Nummerierung von Abbildungen und Tabellen. Die wenigen
Stellen, an denen inhaltliche Anderungen durchgefiihrt wurden, sind mit erliuternden FuBnoten

gekennzeichnet.
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1 Introduction
1.1 Genomic selection

Traditionally, breeders record phenotypes, collect genetic data in the form of pedigrees, and
select the parents of future generations accordingly to achieve genetic gain. This thesis focusses
on quantitative traits, which include production traits such as honey yield in the honey bee, and
the size, weight or predisposition to disease of breeding stock in general. The genetic loci
influencing these traits, so-called quantitative trait loci (QTLs), can be genes or other loci of
biological function. To genotype animals for QTLs efficiently, genetic markers are used which
are inherited together with the QTLs, due to linkage disequilibrium. Genetic markers are
mutations, and can be void of biological functions. From 1990 onward, advances in molecular
genetics promised that genomic marker data could be integrated into breeding value estimations
to achieve higher genetic gain (Fernando and Grossman 1989). Single-nucleotide
polymorphisms (SNPs) proved to be useful as genetic markers, because they are abundantly
present in the genome and can be automatically and cost-efficiently detected using SNP chips.
After Meuwissen et al. (2001) described how to include genome-wide dense SNP data into
breeding value estimation, genomic selection was implemented for several species, e.g. dairy
cattle (Boichard et al. 2016), pigs (Samore and Fontanesi 2016), Atlantic salmon and rainbow

trout (Boudry et al. 2021).

1.1.1 Breeding schemes

The strategies for genomic selection vary across different species. In dairy cattle, pedigree-
based selection relied on progeny-proven bulls but with genomic selection, young bulls could
be selected based on their genotype. Using genomic breeding values shortened the generation
interval and increased genetic gain sufficiently to outweigh the higher costs for genotyping
(Doublet et al. 2019; Garcia-Ruiz et al. 2016). By contrast, in pigs (Lillehammer et al. 2011),
sheep (Lillehammer et al. 2020), or Atlantic salmon (Verbyla et al. 2018) the generation
intervals could not be shortened significantly, instead the higher accuracy of genomic compared

to pedigree-based selection convinced breeders to implement genomic selection.

1.1.2 Reference population
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To guarantee a high accuracy of genomic breeding values, a large reference population is
required, i.e. animals which are genotyped and phenotyped. With this data, the SNP chip can
be calibrated by training the model with SNP genotypes and corresponding phenotypes. The
effect of a SNP on a trait depends on the QTLs which are inherited together with the SNP, due
to linkage disequilibrium. Over several generations of breeding, the linkage between SNPs and
QTLs changes due to recombination events. Therefore, reference populations must be regularly

updated to include relatives of the current selection candidates (Habier et al. 2007).

1.2 Mathematical models for breeding value estimation

Breeding value estimation provides a basis for breeding decisions by ranking the candidate
animals according to their genetic quality. A plausible model for breeding value estimation
should be based on phenotypes but account for the fact that even animals of high genetic value
cannot achieve top performances in unfavourable environments. The model should rely on
genetic data, e.g., the pedigree or genomic marker data, to provide mostly similar breeding
values for relatives, but leave room for extreme differences even between breeding values of
close relatives in exceptional circumstances. Such exceptional circumstances include, but are
not limited to extreme differences in the phenotype which cannot be explained from different
environments. The animal model (Mrode 2005) fulfils these conditions by decomposing the

phenotype of animal i as

yi=b;+a;+e;

where y; and a; are the phenotype and the breeding value of animal i, respectively, while b; is
an estimation of the effect of the herd, the year and the season of i on the phenotype of i, and
e; is the residual difference between the estimated effects and the phenotype. The pedigree
information enters the model in the form of the numerator relationship matrix, A, which is used
to calculate the covariance matrix of the breeding values. Pedigree-based best linear unbiased

prediction (PBLUP) is a mathematical method to estimate the breeding values according to the

animal model (Henderson 1975; 1988a).

1.2.1 Calculation of the numerator relationship matrix

The coefficient of inbreeding, F;, of animal i is a number between 0 and 1, which is closely

connected to the pedigree-based relationship, Ag,, between the parents of i, denoted by s and
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d, via F; = 0.5 Agq4 (Mrode 2005). This reflects the fact that closely related parents lead to
inbred offspring. The diagonal entry, A;;, of animal i is calculated as A;; = 1 + F;. Under the
provision that animal j is no offspring of animal i, their pedigree-based relationship, A4;;, is
calculated from the relationships of j to s and j to d, the sire and dam of i, respectively, via
A;j =05 (Ajs + Ajd). The formula for A;; reflects the fact that offspring inherit about half of
their genome from each parent. E. g., if i and j are siblings with the same non-inbred and

unrelated combination of sire and dam, then their relationship equals A;; = 0.5, since the

relationships of j to s and d are equal to 0.5.

1.2.2 Genomic estimation of breeding values

The mathematical method genomic BLUP (GBLUP) uses a genomic relationship matrix in the
place of the pedigree-based relationship matrix to estimate breeding values for the genotyped
animals (VanRaden 2008). In early versions of GBLUP, phenotypes of non-genotyped animals
could not be used, and practical applications required specific adaptations. E.g., in early
genomic selection of dairy cattle, only bulls were genotyped and only cows were phenotyped
(VanRaden et al. 2009). Therefore, the estimation of breeding values required additional steps
to equip bulls with pseudo-phenotypes. The combination of calculating pseudo-phenotypes and
applying GBLUP has retrospectively been called “multi-step procedure”, because it was
succeeded by the method single-step GBLUP (ssGBLUP) (Christensen and Lund 2010;
Legarra et al. 2009). The method ssGBLUP combines pedigree and genomic information in a
combined numerator relationship matrix, performs better than the multi-step procedure, and has
become standard methodology for breeding value estimation in several species (Legarra et al.

2014b).

1.3 The honey bee
1.3.1 Quantitative traits

Traditionally, beekeepers generate profit from the production of honey, beeswax, pollen,
propolis or royal jelly. Other traditional aims of breeding are calmness during inspection,
reduced stinging towards the beekeeper, and reduced swarming drive which refers to a
behaviour of bees, where half of the colony relocates its nest (Petersen et al. 2020; Ruttner
1988; Uzunov et al. 2017). Over the last few decades, breeding against the parasitic mite Varroa

destructor has become a priority, because the parasite contributes to high colony losses
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(Genersch et al. 2010; Guichard et al. 2020a; Traynor et al. 2016). Furthermore, climate change
has become a threat especially to honey bees, because their hives must be located in the open
air to allow foraging (Flores et al. 2019; Le Conte and Navajas 2008; Vercelli et al. 2021).
Genomic selection could be an effective tool to increase disease resistance and face climate

change without sacrificing genetic progress in traditional aims of breeding.

1.3.2 Genome

The honey bee genome poses mixed conditions for genomic selection. On the one hand, at about
250 Mbp (mega base pairs) (Wallberg et al. 2019) the honey bee genome is short compared to
most other livestock species (see Stapley et al. 2017) for a review on genome size and
recombination rate across a wide range of species). Therefore, a rather small number of SNPs
can densely cover the genome. On the other hand, the recombination rate is extremely high with
estimates ranging from 19 cM/Mbp (centi-Morgan per mega base pairs) (Beye et al. 2006) to
37 cM/Mbp (Liu et al. 2015). Therefore, a SNP is unlikely to be linked to many QTLs, and the
effects of SNPs on quantitative traits can change quickly from generation to generation due to
recombination events. This suggests that large number of SNPs and a large reference population

are required to guarantee a high accuracy of genomic breeding values.

1.3.3 Social behaviour

A fully developed hive consists of a single queen and several thousand workers (Koeniger et al.
2015). The main role of the queen is egg-laying which influences the number of workers, but
she also uses pheromones to influence worker behaviour. All non-reproductive tasks in the hive,
including cleaning, foraging and nursing offspring are performed by worker bees. During
summer, the hive additionally contains a few thousand drones whose only function is
reproduction. A virgin queen undertakes nuptial flights to mate with several drones. She collects
the sperm in her spermatheca and uses it later to lay diploid eggs, which develop into workers

or queens, depending on nutrition. She can also lay haploid eggs from which drones develop.

1.4 Breeding value estimation adapted to the honey bee

PBLUP has led to considerable genetic improvement in honey bees (Bienefeld et al. 2008;

Hoppe et al. 2020) which was only possible after two main problems were solved.
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1.4.1 First obstacle: mating biology

To achieve lasting genetic gain, the genetic quality of the drones mating a queen must be
controlled (Plate et al. 2019b). This is usually realised by selecting a single queen of high
breeding value and raising a number of her daughter-queens. These daughters are then mated
and later placed as drone producing queens (DPQs) on mating stations, often in islands or
valleys, where other mated queens are not permitted to produce drones. Virgin queens, which
are designated for breeding, are brought to these mating stations to mate with drones of high
genetic quality. Since drones cannot be tracked, the exact number of drones a queen mated, and
which DPQ the drones originate from, are unknown. Specialized methods have been developed
to account for the mating biology of honey bees and the specialized mating system to correctly
calculate the numerator relationship matrix A (Bienefeld et al. 2007; Brascamp and Bijma

2014).

1.4.2 Second obstacle: modelling a hive

For economically important traits in honey bees, a single phenotype is attributed to the hive
which comprises various individuals, and the contributions of the queen and the workers must
be distinguished. In honey yield for example, workers forage but the queen must lay new eggs
to maintain a high number of workers. This situation is similar to maternally affected traits in
other species, e.g., weaning weight in pigs, where the dam is tasked with nurturing her piglets
which are phenotyped for weight gain. For the breeding value estimation, a direct genetic effect
is modelled for each piglet, and a maternal effect for the sow. In honey bees, the phenotype of
a colony c is attributed to a maternal genetic effect of the queen g, and a single direct effect for

all workers in the colony comprised into a so-called worker group w according to
Ye = b, +a, +mg +e,

where y, is the phenotype of the colony, b, is an estimation of the effect of the colony’s apiary
and year, a,, is the direct effect of the worker group, m, is the maternal effect of the queen, and

e, 1s the residual.

1.5 State of the art and objectives
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This thesis aimed to optimize the use of genome-wide dense marker (i.e. SNP) data for the
breeding value estimation for large populations of honey bees. A simulation study previously
showed that ssGBLUP is applicable to honey bees (Gupta et al. 2013), but recently the
underlying model of genetic relationships in honey bees was revised, and especially the
calculation of the numerator relationship matrix became more complex (Brascamp and Bijma
2014). The thesis developed new methods to combine ssGBLUP with the most recent numerator
relationship matrix and enable the computation of pedigree-based and genomic breeding values
in large populations of honey bees. The accuracy and the quality of the resulting genomic
breeding values were evaluated by comparing them to pedigree-based breeding values. During
the time of this thesis, simulation software, which considers the peculiarities of the honey bee,
was developed with my participation, especially in the efficient computation of breeding values
(Plate et al. 2019a). The simulation software was used for the initial validation of the methods
developed in this thesis. Breeding schemes for genomic selection in honey bees were suggested
in a small-scale simulation study (Brascamp et al. 2018). The thesis analysed the breeding
schemes with different sizes of the reference population to determine the optimal use of
genomic data for increased genetic gain. During the time of this thesis, a 100k-SNP-chip was
developed and about 3000 queens were genotyped and phenotyped with my participation
especially in the curation and analysis of the data (Jones et al. 2020). The reference population
was gathered to enable the genomic selection of honey bees, and was used in this thesis to
validate genomic prediction in the honey bee. This thesis aims to initiate genomic selection in

the honey bee.
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2 Computing inbreeding coefficients and the inverse
numerator relationship matrix in large populations of
honey bees

This is the accepted version of the following article:

Bernstein R, Plate M, Hoppe A, Bienefeld K. 2018. Computing inbreeding coefficients and the
inverse numerator relationship matrix in large populations of honey bees. Journal of
Animal Breeding and Genetics. 135:323-332. DOI: 10.1111/jbg.12347.

, which has been published in final form at |
https://onlinelibrary.wiley.com/doi/abs/10.1111/jbg.12347

]. This article may be used for non-commercial purposes in accordance with the Wiley Self-

Archiving Policy [

https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-

access/open-access/self-archiving.html

The publication included four appendices which are included in this thesis as:

e Appendix A: Variance of Mendelian sampling terms
e Appendix B: Correction of two formulas in Brascamp and Bijma (2014)
e Appendix C: Inversion of D

e Appendix D: Storage and calculation of D

© 2018 Blackwell Verlag GmbH
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ABSTRACT

The inbreeding coefficients are considered in breeding decisions and the inverse numerator
relationship matrix A™1, is a prerequisite for breeding value estimation. Polyandry and haploid
males are among the specifics of relationships between honey bees. Brascamp and Bijma (2014)
averaged out the manifold possible relationships among honey bees that appear to have the
same parents in a pedigree and assigned a single entry in A to animals that behave as a unit, e.g.
the workers of a hive. Their methods of calculation connected full-sibs in the variance matrix
of the Mendelian sampling terms D, via nonzero off-diagonal elements. This impedes the
inversion of A and the closely connected calculation of inbreeding coefficients, because
efficient algorithms for this task take D to be a diagonal matrix. Memory limitations necessitate
their use for large data sets. We adapted the quickest of them to the block diagonal matrix D,
that is postulated for the honey bee. To our knowledge, the presented algorithm is the first one
that facilitates the method of Brascamp and Bijma (2014) on large data sets.
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2.1 INTRODUCTION

The peculiarities of the honey bee require a special approach in the calculation of relationships
and inbreeding coefficients. While the maternal side is in accordance with diploid farm animals,
the paternal side contains systematic unknown parenthood and haploid males. In the most
frequently used form of mating the resulting relationship between siblings is on average smaller
than in diploid species. Therefore, Bienefeld et al. (2007) employed a reduced relationship of
daughters to their sire, i.e. a reduced paternal path coefficient, in their calculation of the
numerator relationship matrix, A. This method yielded the correct relationship between sisters,
but underestimated the relationship to the sire and consequently the inbreeding. Brascamp and
Bijma (2014) presented a new approach referred to here as method BB, which avoids these
shortcomings. Both matrices were compared for their performance in the BLUP breeding value

estimation by Brascamp and Bijma (2014), and method BB performed slightly better.

2.1.1 Literature on the inversion of 4

Until now, method BB has not been applied to large data sets, because methods to invert A
efficiently have not been developed yet. Henderson (1976) presented an efficient way to do this

for diploid species via the following decomposition
A =TDT (2.1)

where T follows directly from the pedigree, and D is a diagonal matrix. The ith diagonal entry
of D is the variance of the Mendlian sampling term of individual i. Inbreeding of the parents of
i reduces this variance, and matrix D can be calculated from the coefficients of inbreeding.
Conversely, the diagonal entries of A minus 1 equal the coefficients of inbreeding, so the

inbreeding coefficients can in turn be calculated from D via (2.1).

Quaas (1976) proposed a way of calculating A, which used this interrelationship to reduce
the required memory. Golden et al. (1991) improved the algorithm of Quaas (1976) to make it
more efficient on large data sets by using a branching stack. Meuwissen and Luo (1992)
developed the algorithm of Quaas (1976) in a different direction and outperformed Golden et
al. (1991). Sargolzaei et al. (2005) presented an algorithm based on one by Colleau (2002),
which minimized the computation time as well as memory requirements more than Meuwissen

and Luo (1992). While Sargolzaei et al. (2005) aimed at calculating inbreeding coefficients,
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their use of D makes it easy to obtain A~ as well. We will refer to their method as method

SIC.

The aim of this paper is to present a method for the rapid inversion of the relationship matrix

of BB that also computes inbreeding coefficients in large populations of honey bees.

2.1.2 Special versions of A inbreeding diploid animals

Inverses of the numerator relationship matrix that account for unknown parenthood only or
haplodiploidy only have already been presented. Henderson (1988b) proposed an average
numerator relationship matrix to account for multiple sires in a herd. Bayesian approaches can
be found in Famula (1992), where the formulas from Henderson (1988b) have been inserted

into an algorithm for the calculation of A~ from D.

Haplodiploidy can be dealt with by a gametic relationship matrix, which relates gametes rather
than animals. This matrix was first described by Smith and Allaire (1985) who remarked that
the methods of Henderson (1976) can be used for inversion. Schaeffer et al. (1989) gave a
detailed account of this calculation and highlighted its uses for modeling X-chromosomal
inheritance. Fernando and Grossman (1990) showed how to construct and invert a relationship

matrix that relates animals, and can be used under haplodiploid inheritance.

2.1.3 Diagonality of D

In honey bees, the paternal descent can only be ascribed to a mixture of gametes from related
sires. Therefore, D is a block diagonal matrix (Bienefeld et al. 1989). Bienefeld et al. (2007)
reduced D to a diagonal matrix for reasons of efficiency, and were able to readily apply methods
like SIC. In contrast, method BB includes off-diagonal elements between daughters of the same
queen. This contrasts with the averaged relationship matrix of Henderson (1988b) as well as
the relationship matrices accounting for haploidy (Fernando and Grossman 1990; Schaeffer et
al. 1989). However, off-diagonal elements were used by Oikawa and Yasuda (2009), who when
modeling the genome of cloned cattle, supposed partial genetic identity among animals. The
main reason for the off-diagonal elements in honey bees is the omission of drones from the

pedigree.
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2.1.4 Reproduction of the honey bee

A honey bee queen mates only once in her life, before laying her first egg. Hence, all daughters
and sons of a queen have the same possible sires. While she mates with 12 drones on average
with differences across subspecies (Tarpy and Nielsen 2002), the precise number also depends
on the mating location (Neumann et al. 1999a). Because a drone dies after mating, it can only
mate with one queen. In contrast to the diploid queens and workers, drones are haploid.
Daughters of the same drone share all of their paternal DNA, which makes them very closely
related with an additive relationship of 0.75 without prior inbreeding, and are called

supersisters.

In the most common form of controlled mating in Germany, virgin queens are brought to mating
stations, where drones of several drone-producing queens (DPQs) are present. To prevent
foreign drones from intervening, mating stations are located in remote areas such as islands or
valleys. The DPQs have a common dam, thus, there are three possible ways how the daughters
of a queen can be related: they may be daughters of the same drone (supersisters, relationship
0.75), of different drones that share a common dam (full-sibs in the usual sense, 0.5), or of

drones from different dams (half-sibs in the usual sense, 0.25, if the dams were unrelated).

2.2 MATERIALS AND METHODS
2.2.1 Method BB

Three types of individuals appear in the numerator relationship matrix, these are: (i) dams, (ii)
sires, and (ii1) worker groups. We will only refer to the queens that are not DPQs as dams. All
DPQs at a mating station are a single sire (compare Figure 2.1), and all workers in a colony
make up a single worker group. We will call the individuals of type (i-iii) breeding units to

distinguish them from single bees.
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Figure 2.1 The diagram shows two full-sibs and their parents. Solid symbols (m) represent
individuals that are listed in the pedigree and the numerator relationship matrix, while hollow
symbols (0) represent those that are not listed. Squares represent queens, while triangles
represent drones, which are not listed. Multiple drone producing queens (DPQs) are recorded
as a single sire in the pedigree and a single entry in the relationship matrix, therefore they are

drawn into a solid rectangle.

Method BB calculates A~ using Henderson’s decomposition (Henderson 1976) via
Al =(T"Y'D™T 1, (2.2)

where T~ “is a lower triangular matrix with all 1’s in the diagonal, and with the only nonzero
elements to the left of the diagonal of the ith row being -.5 for columns corresponding to known
parents” (Henderson, 1976, p. 74). While matrix D is a diagonal matrix under diploid
inheritance. The elements of D are the within family segregation variances, also known as the

variances of the Mendelian sampling terms.

Matrix D is a block diagonal matrix in honey bees, two breeding units of the relationship matrix
belong to the same block in D if, and only if they have the same dam. We will call the breeding

units in a block a full-sib group as a technical term in the following text. Within a full-sib group
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g, there are up to three types of diagonal elements corresponding to queens, sires, and the
worker group, whereas the off-diagonal elements are mutually equal. The diagonal elements of

D for a queen are given by

(2.3)
(BB 10)
where the superscript Q denotes queens. We link our equations to those in (Brascamp and Bijma
2014) by providing their equation number below ours with the prefix BB. The off-diagonal

elements of D are equal to

Dij = D;S, (24)
(BB 20)
if the corresponding breeding units belong to the same full-sib group, g, and zero otherwise.
The superscript FS denotes full-sibs. This is the covariance of the Mendelian sampling term
between two bees that derive from the same dam and sire combination. A sire contains multiple

bees, therefore, its diagonal entry in D is given by

—1p0 n71nFs 2.5

Dy ==D? + =—DFS, (2.5)
R (BB 17)

where the sire contains n DPQs, and belongs to full-sib group g. In the diagonal entry D for a

worker group, the variance of the Mendelian sampling term for a single bee vanishes, because

there is a large number of workers in a hive (during summer between 30,000 and 50,000). The

diagonal entry of D for a worker group belonging to full-sib group g is equal to

Dii = DFS. (26)
(BB 19)

The values of Dg and Dg S for a full-sib group, g, can be obtained as follows: if the parents are

known, then the variance term for a single bee is given by

DQ:1_1+Fd_11+Fs_ns—1FSFS 2.7)
9 4 ng 4 ng 2 (BB 13)

where F; is the inbreeding coefficient of the full-sib group’s dam, F; that of the group’s sire, ng

the sire’s number of DPQs, and F the coefficient of coancestry between two of these DPQs,
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which is half of their additive genetic relationship, called ags by Brascamp and Bijma (2014).

The covariance term between two bees is equal to

FS
D§5=p11_FS+( 1>1+Fs_2Fs (2.8)

4 L. 4 ' (BB 21)

where p; denotes the probability that two bees belonging to g descend from the same drone,
and p,the probability that they descend from the same DPQ (including the case where they
descend from the same drone, so p, = p;). Brascamp and Bijma (2014) assumed that the
number of offspring per drone and the number of drones per DPQ follow a Poisson distribution.

They arrived at

1 1 1
P1 = Tl_s (BB 223) and P2 = E + Tl_s (BB 238), (29)

where np, ist the number of drones with which the dam of g mated, and ng the number of DPQs
belonging to the sire of g. For cases where one or both parents are unknown, see Appendix A.
Appendix B provides proofs for two formulas of Appendix A. The other formulas have already

been proven by Brascamp and Bijma (2014).

We will obtain the coefficients of inbreeding and coancestry via SIC except for the coefficients

of coancestry between the DPQs of a sire. The latter are given by

1+F,
2

1+F, 1 1
Ff* = +—Fi+1[p1+(pz—p1)

i - . +(1_p2)FSFs]' (2.10)

(BB 24)

where F; is the inbreeding coefficient of the sire, F; and F, those of its parents, and FS the
coefficient of coancestry of the sire in the former generation. The term in square brackets relates
to the older sire, and is split into three addends: the first addend relates to the case where the
DPQs descend from the same drone, the second to the one where they descend from different
drones but the same DPQ, and the third relates to the case where they descend from different

DPQs.

2.2.2 Method SIC

Method SIC determines the order in which the elements of D are calculated (Sargolzaei et al.

2005). It passes through all the sires, and calculates each sire’s relationship to its mates. Let us
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consider a particular sire s, and two different submatrices of A. Submatrix AD involves s and
his ancestors while A®®) involves the mates of s and their ancestors, in addition to the breeding
units in A, The two sets were introduced to better handle overlapping generations and are

used for different tasks. We have

ADxD =y (2.11)
ADx@ = y@) (2.12)

where x and x®contain 1 at the position of s and 0 otherwise. Vectors y» and y® contain
the relationships of s to the breeding units involved in A® and A® respectively. We aim to
calculate y® as it contains the relationships between s and its mates, from which the inbreeding
coefficients of the direct offspring of s can be calculated. These inbreeding coefficients are

needed to calculate D.

In analogy to (2.1), the matrices A® and A® can be decomposed into D™, TM, and D@,
T The idea behind SIC is to separate the multiplication of A®) in (2.12) into three simple
multiplications by (T®)’, D@ and T®), respectively. We start with the multiplication by

(T@)', consider two vectors z™) and z) defined by

z® = (TWY D, (2.13)
2@ = (T x®, (2.14)

It can be shown that the vectors z(P and z(® have the same values for s and its ancestors, and
that all the other entries are zero. Thus, the result of the multiplication by (T(®))’ can even be

obtained from a multiplication by (T(®)’ which is easier. We obtain z) by solving
((Tcl))r)‘lzcl) = x@ (2.15)

which is feasible because ((T(l))')_1 1s upper triangular, via tracing back the pedigree. This is

done by calculating zgl) from the younger breeding units up to the older breeding units

according to

1
Zgl) _ xE” +3 Z Z]gl), (2.16)
jeo(d)
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where for every breeding unit i the set O (i) includes all breeding units, that are direct offspring
of i. This leaves us with the multiplications of D® and T® to z®. Vector D@23 can be

derived from DWz®  We solve
(T@)-1y@ = p@5@) 2.17)

by tracing forth the pedigree, which is feasible because (T®)~! is lower triangular, and obtain

y®@ from which the inbreeding coefficients for the direct offspring of s are calculated.

Before we work our way through the pedigree sire by sire, we need to order the breeding units

according to their sires. Method SIC has the following steps:

1. order the breeding units according to descendence;

2. reduce the pedigree by cutting out breeding units with no progeny;

3. sort the breeding units according to the number of their sire, putting breeding units with an
unknown father at the start;

4. let i go through the breeding units
4.1. put F; = 0, if the sire of i is unknown;
4.2. calculate the elements of D up to and including the sire of i, otherwise;

4.3. obtain F for the progeny of the current sire.

2.2.3 Adaptation of SIC to the honey bee

Our aim is to use method SIC to calculate the inbreeding coefficients. The formulas from the
previous subsection are valid for method BB. However, the new structure of the matrix of

Mendelian sampling terms, D, modifies how the pedigree is traced forth.

Consider a particular sire, s, whose relationships to his mates we want to calculate. Let zM be
the vector resulting from tracing back the ancestors of s via (2.16). Add zeros to z(") - so that

it matches the length of the result of tracing back the ancestors of s and its mates. This gives us

z?),

Let A® be the numerator relationship matrix involving s, the mates of s and their ancestors.

We aim to calculate the row in A® that relates to s, and call it y®. We calculate the entry
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relating to the breeding unit i from entries in y(®, z(?) and D relating to breeding units that are

older than or full-sibs of s by

1
v 2 = Dyz® + ZDFS 2P 42 yf) +5 57, (2.13)
Jj€g
where DF S is the off-diagonal element of D for the full-sib group that i belongs to, y( ) and

yf ) are the elements of y®@ for the parents of i. Equation (2.18) is the key result of this paper.

2.2.4 Combined algorithm

We use method BB to calculate matrix D inside of method SIC. To have D in the convenient
shape of a block diagonal matrix, the breeding units are sorted in such a way that full-sibs follow
each other directly. See Appendix D for details on storing D. The inverse of the numerator

relationship matrix is calculated according to the following steps:

1. carry out the steps 1.- 4. From subsection 2.2.2, “method SIC”;
calculate the remaining elements of D;

invert D

> » DN

calculate A~ 1.

The previous subsection implies, that the combined algorithm yields the correct result. The
algorithm was implemented by modifying the code provided in the appendix of (Sargolzaei et
al. 2005). The sizes of the blocks to be inverted in step 3 are limited by the number of daughter
queens a queen can produce (max. 224 in the BeeBreed data set). Therefore, numerical methods
can be used. See Appendix C for an analytical approach using a result of Sherman and Morrison

(1950).

2.2.5 Simulation studies

To evaluate the algorithm’s running time, artificial pedigrees were created. The program
simulated populations over 10, 20, and 40 years, in each year there were either 3000 dams and
100 sires, or 2950 dams and 200 sires. A worker group was included for each queen that was
not a DPQ. The number of dams in a single full-sib group was fixed at either 4 or 8§ per year. In

one scenario, a maximum of 2 dams could be selected from a full-sib group, in the other scenario
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all could be selected. A single trait model was simulated, and breeding values were estimated
as suggested by Brascamp and Bijma (2014). The additive genetic variances were set to 1 for

the maternal effects, to 2 for the direct effects, and to -0.5 for their covariance.

The average generation numbers of the animals in the last year were calculated as described by
Meuwissen and Luo (1992). Computations were carried out on a 17-4790 Intel, 3.6 gigahertz

processor under Ubuntu 16.04 LTS, 64 bit (15.6 gigabyte RAM).

2.3 RESULTS AND DISCUSSION

2.3.1 Properties of the implementation

Table 2.1 presents the computing properties of the combined algorithm. The time required to
calculate the inbreeding coefficients was measured. The memory required was nearly the same
for both the calculation of the inbreeding coefficients and the inversion of A. It increased

linearly with the size of the input data.

The computation of the inbreeding coefficients took longer when more sires per generation
were involved, as the pedigree had to be traced twice for each sire. This was also true for the

algorithm of Sargolzaei et al. (2005).

The time required to compute A~1 was almost exclusively influenced by the size of the data
set. This method was tested with 240,000 breeding units on a desktop computer, which was
completed in several seconds. As the computation time increased by a factor of 4 when the
number of breeding units was doubled, a data set consisting of a million breeding units would
be finished within 45 minutes. The program is easily transferrable to a server environment,

which enables even faster computation.

When the full-sib groups were larger, the computation of the inbreeding coefficients took
longer. The reason might, be that the tracing forth of the pedigree picked up more breeding units
because selected dams had more offspring. The time required for tracing back the pedigree was

not altered.
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Table 2.1 Time and memory (in Megabyte) required to calculate the coefficients of inbreeding
were measured to compare the algorithms of Sargolzaei et al. (2005) (ISa) and Meuwissen and
Luo (1992) (IMe). Time and memory required for the inversion of the numerator relationship

matrix were only measured for the algorithm of Sargolzaei et al. (2005) (AiSa). Avg. stands for

average.
Eligible  Family Years No. of Avg. no. of Avg. In- Computing time (s) Memory requirements
full-sibs’ size evaluated  breeding  generations’  breeding (MB)

units® ISa IMe AiSa ISa IMe AiSa

100 sires per year and 3000 dams per year

2 4 10 60,800 33 0.0013 0.6 1.4 73 16.3 15.2 16.3
2 4 20 121,800 7.7 0.0040 1.7 6.8 30.2 30.5 28.5 30.7
2 4 40 243,800 14.9 0.0103 59 1224 140.8 59.0 55.1 59.4
2 8 10 60,800 3.1 0.0012 0.7 1.4 72 16.2 15.2 16.2
2 8 20 121,800 6.7 0.0036 1.9 6.6 29.8 306 283 30.5
2 8 40 243,800 13.9 0.0084 8.2 973 144.4 59.1 55.2 59.0
4 4 10 60,800 3.4 0.0017 0.6 1.4 72 16.4 15.2 16.4
4 4 20 121,800 73 0.0039 1.5 6.8 30.2 306 285 30.5
4 4 40 243,800 15.2 0.0104 5.7 128.0 149.3 594 552 59.0
8 8 10 60,800 3.4 0.002 0.7 1.4 73 16.3 15.2 16.2
8 8 20 121,800 7.3 0.0042 2.1 6.8 29.6 30.5 28.2 30.5
8 8 40 243,800 15.1 0.0114 73 112.2 144.8 59.2 54.9 59.2

200 sires per year and 2950 dams per year

2 4 10 60,600 33 0.0008 1.0 1.4 7.6 16.4 15.1 16.3
2 4 20 121,600 7.1 0.0023 3.1 6.5 31.8 30.6 284 30.7
2 4 40 243,600 14.7 0.0064 12.0 200.1 153.0 59.1 55.2 59.1
2 8 10 60,600 3.1 0.0010 1.1 1.4 7.8 16.3 15.1 16.2
2 8 20 121,600 6.6 0.0022 43 6.6 31.9 306 283 30.6
2 8 40 243,600 13.8 0.0058 15.8 143.2 160.0 59.2 54.9 59.2
4 4 10 60,600 3.4 0.0090 0.9 1.4 7.6 16.2 15.0 16.2
4 4 20 121,600 7.3 0.0029 29 6.6 32.0 30.7 285 30.6
4 4 40 243,600 15.1 0.0066 12.0 2149 158.6 59.1 55.3 59.1
8 8 10 60,600 3.4 0.0013 1.1 1.4 7.7 16.2 153 16.2
8 8 20 121,600 7.3 0.0029 4.0 6.6 31.6 30.6 284 30.5
8 8 40 243,600 15.1 0.0079 15.0 173.4 152.7 59.0 55.0 59.0
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The maximum number of members of the same full-sib group that were used as dams is shown
under “max. siblings in breeding,” and did not have a significant impact on computation time

Or memory.

An adaptation of the approach of Meuwissen and Luo (1992) to the honey bee was also
implemented, but the time required to compute the inbreeding coefficients on pedigrees with
more than 240,000 breeding units ranged between 100 and 200 seconds. This is in accordance
with the findings of Sargolzaei et al. (2005), therefore, we did not investigate this method any
further.

Comparison to Bienefeld et al. (2007)

The BeeBreed data set was used to compare method BB to the method of Bienefeld et al. (2007)
which we will abbreviate by method BER. The pedigree contains 202,602 dams. Only the
inbreeding coefficients of queens were evaluated. The full-sib group size was 9.25 on average

with a maximum of 224.

BER yields in some short pedigrees higher inbreeding coefficients because the relationship of
a breeding unit to its sire without prior inbreeding is higher in BER (0.367) than in BB (0.204).
However, BB tends to yield higher values especially on long pedigrees. The results of BB are
more plausible, because the reduced paternal path coefficient reduces not only the relationship

of a breeding unit to its sire but to all the ancestors of the sire too.

E.g., the relationship of a queen to its paternal granddam is 0.25 in BB without prior inbreeding,
which is plausible because the granddam passes a quarter of its genome on to the queen. The

same relationship is put to 0.184 in BER to achieve a plausible relationship among full-sibs.
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Figure 2.2 Inbreeding coefficients were calculated according to BB and BER. The colours code
how often a combination occurred. The highest inbreeding coefficient was 0.593 by method BB
and 0.367 according to BER. The average inbreeding in 2016 was 0.0419 according to BB and
0.023 according to BER.
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Figure 2.3 The inbreeding coefficients calculated by BER were subtracted from those
calculated by BB for animals that did have a positive inbreeding coefficient. Inbreeding
coefficients according to BB were at maximum 0.365 higher than those of BER, while the results
of BER were at maximum 0.096 higher than those of BB.
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2.3.2 Other kinds of mating

Various mating situations demand further development of method BB. On most mating stations
the presence of foreign drones is possible, although it is usually tested before use (Jensen et al.
2005; Neumann et al. 1999b). Foreign drones reduce the relationship of a sire to its putative
daughters, and so does the paternal path coefficient in BER. Thus, BER might fit these insecure
mating stations. In BB, a ratio of foreign drones could be taken into account by the introduction

of a correction term.

Artificial insemination can already be accounted for by BB, if the drones are taken from DPQs
whose performance is not recorded. This excludes single drone insemination suggested by
Harbo and Harris (1999) for furthering hygienic behavior in workers, but this situation is less
complex than when DPQs are present. When mixed semen from multiple recorded queens is

used, as Spivak and Reuter (2001) did, formulas need further adaptation.

On Varroa tolerance mating stations (Biichler et al. 2010), the situation is more complex than it
is sketched in Figure 2.1 because the DPQs have various possible dams. To account for this,
new terms would have to be added to the formulas presented here. Furthermore, the reliability
of the estimated relationships would be considerably reduced as more possibilities become

involved.

2.4 CONCLUSION

Method BB promised more accurate relationships, and consequently more precise breeding
values and improved selection. Therefore, we faced a challenge to develop a memory efficient
algorithm. To our knowledge, the presented algorithm is the first one that facilitates method BB
on large data sets. Method SIC from Sargolzaei et al. (2005) was adapted to the peculiarities of
the honey bee. Now the off-diagonal elements of D are taken into account when the pedigree is
traced forth. The running time was influenced by the proportional number of sires but not the
size of memory required. Theoretical advantages of method BB can now be verified in large

simulations, or breeding programs.
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3 Simulation studies to optimize genomic selection in honey
bees

This paper has originally been published as:

Bernstein R, Du M, Hoppe A, Bienefeld K. 2021. Simulation studies to optimize genomic
selection in honey bees. Genetics Selection Evolution. 53:64.

DOI: 10.1186/s12711-021-00654-x
The publication included eight appendices which are included in this thesis as:

e Appendix E: Merging DPQs for ssGBLUPppq+BQ
e Appendix F: Accuracy for replacement queens

e Appendix G: Comparison of simulated and estimated genetic gain (Rrp) from year 8 to

year 9 in the simulated breeding population relying on PBLUP

e Appendix H: Accuracies of breeding values when all BQs from years 4 to 9 were

genotyped

e Appendix I: Genetic gain, Rgs, in the initial selection cycle of different breeding schemes

applying CBS and GPS; including the additional file “Appendix_I.xIsx”
e Appendix J: Standard deviations of true breeding values

e Appendix K: Regression coefficients of true on estimated breeding values, b;, when all

queens from years 4-9 were genotyped

e Appendix L: Genetic in the first generation of a genomic breeding program applying a

shorter generation interval
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ABSTRACT

With the completion of a single nucleotide polymorphism (SNP) chip for honey bees, the
technical basis of genomic selection is laid. However, for its application in practice, methods to
estimate genomic breeding values need to be adapted to the specificities of the genetics and
breeding infrastructure of this species. Drone-producing queens (DPQ) are used for mating
control, and usually, they head non-phenotyped colonies that will be placed on mating stations.
Breeding queens (BQ) head colonies that are intended to be phenotyped and used to produce
new queens. Our aim was to evaluate different breeding program designs for the initiation of

genomic selection in honey bees.

Stochastic simulations were conducted to evaluate the quality of the estimated breeding values.
We developed a variation of the genomic relationship matrix to include genotypes of DPQ and
tested different sizes of the reference population. The results were used to estimate genetic gain
in the initial selection cycle of a genomic breeding program. This program was run over six
years, and different numbers of genotyped queens per year were considered. Resources could
be allocated to increase the reference population, or to perform genomic preselection of BQ

and/or DPQ.

Including the genotypes of 5000 phenotyped BQ increased the accuracy of predictions of
breeding values by up to 173%, depending on the size of the reference population and the trait
considered. To initiate a breeding program, genotyping a minimum number of 1000 queens per
year is required. In this case, genetic gain was highest when genomic preselection of DPQ was
coupled with the genotyping of 10 to 20% of the phenotyped BQ. For maximum genetic gain
per used genotype, more than 2500 genotyped queens per year and preselection of all BQ and
DPQ are required.

This study shows that the first priority in a breeding program is to genotype phenotyped BQ to
obtain a sufficiently large reference population, which allows successful genomic preselection
of queens. To maximize genetic gain, DPQ should be preselected, and their genotypes included
in the genomic relationship matrix. We suggest, that the developed methods for genomic

prediction are suitable for implementation in genomic honey bee breeding programs.
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3.1 BACKGROUND

Currently, genomic selection is applied in various livestock species (Fulton 2012; Samor¢ and
Fontanesi 2016; Wiggans et al. 2017) but not in honey bees. Although honey bees contribute to
agriculture as a key pollinator (Gallai et al. 2009), adaptation of modern breeding methods to
apiculture is comparatively slow. Systematic collection of performance and pedigree data on
honey bees in Germany started in the 1950s (Bienefeld and Pirchner 1990) and the estimation
of best linear unbiased prediction (BLUP) breeding values began in 1994 (Bienefeld et al. 2007;
Hoppe et al. 2020), but to date honey bee breeding programs do not use genomic marker data
(Uzunov et al. 2017). Recently, cost-efficient methods for the collection of genomic data in
honey bees have become available in the form of a high-density 100K single nucleotide

polymorphisms (SNP) chip (Jones et al. 2020).

Progress in other livestock is faster than in honey bees, which is due to the specific reproduction
characteristics of honey bees. Queens can only mate during the first weeks of their life, and at
this time, the unfertilized queens undertake nuptial flights during which they mate with several
drones (Tarpy and Nielsen 2002), and store the drones’ sperm in their spermatheca for
subsequent use to fertilize eggs. Under normal circumstances, workers do not reproduce
(Koeniger et al. 2015). Queens and workers hatch from fertilized eggs, while drones hatch from
unfertilized eggs. The consequence of the honey bee’s reproductive biology is uncertain
paternity. To alleviate the resulting practical problems, controlled mating is applied in various
honey bee populations (Brascamp et al. 2016; Guichard et al. 2020b; Hoppe et al. 2020), where
unfertilized queens are brought to mating stations to mate with drones. Mating stations are
located in isolated areas, which in practice are often islands or valleys, where only drones from
selected colonies headed by drone-producing queens (DPQ) are available. Typically, all DPQ
on a mating station share a single dam, which restricts their genetic diversity. We refer to a
group of DPQ on a mating station as a pseudo-father (Bienefeld et al. 1989). In practice (Hoppe
et al. 2020), DPQ are at least one year old when they are deployed on mating stations.

Performance testing for relevant traits, such as honey yield, gentleness, or disease resistance, is
only possible when the colony is fully developed. A colony contains up to 50,000 workers
during spring, which are usually all offspring of the same queen and considered as a single
worker group. The workers perform a wide range of tasks, such as foraging, cleaning, and

feeding the queen, drones, and larvae. Collecting data on all the relevant traits is usually
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completed in the year after the queen hatches. All queens that were or will be performance-
tested, and queens which are or were candidates for a preselection step before phenotyping, are
referred to as breeding queens (BQ). We call the selection of phenotyped queens ‘colony-based
selection’ (CBS), since phenotyping requires a colony. Figure 3.1 shows the set-up of classic
CBS, demonstrating that DPQ and unfertilized BQ are promising candidates for genomic
selection. For BQ, genomic selection could be efficient before fertilization, which would save
the costs of phenotyping. We call this step ‘genomic preselection’ (GPS) because it is applied
before mating during the life of a BQ, and before deployment on mating stations for DPQ. In
schemes with controlled mating, DPQ are usually not performance-tested, and only BQ can be
selected as dams of BQ or as dams of DPQ. Although some populations are built without
controlled mating (Andonov et al. 2019; Maucourt et al. 2020), in our work, we considered only

populations with controlled mating, because it increases genetic gain (Plate et al. 2019b).

The use of genomic selection in honey bee breeding programs is expected to enhance genetic
gain. Gupta et al. (2013) reported considerably improved prediction accuracies using a single-
step approach (Christensen and Lund 2010; Legarra et al. 2009) and a genetic model that was
honey-bee-specific, but the underlying theory was considerably improved in a later study
(Brascamp and Bijma 2014). E.g., because the queen and her worker group contribute to the
phenotype of a colony, both the direct effect of the worker group and the maternal effect of the
queen should be linked to the phenotype. In (Gupta et al. 2013), phenotypes were linked to the
genetic effects of the queens, but not of the worker groups. To address this issue and provide
realistic estimates of the accuracies of maternal and direct effects, we used recently published

software that accommodates these effects (Plate et al. 2019a).

To estimate genomic breeding values in honey bees (Gupta et al. 2013), the genotypes of
phenotyped BQ are required. Each DPQ has a large number of offspring but is not performance-
tested in the scenarios under consideration, a situation which is similar to that of sires in
mammalian species, for which it is usually more useful to genotype the males than the females
(Howard et al. 2018). Therefore, we examined whether the genotypes of DPQ can be used
together with the genotypes of BQ to increase the prediction accuracy for DPQ and BQ.
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Figure 3.1 Population structure of a honey bee population under controlled mating. The
parent generation consists of phenotyped colonies headed by fertilized queens (highlighted in
beige). Each fertilized queen mates with several drones and produces a worker group. Dams of
breeding queens (BQ) and drone producing queens (DPQ) are selected from the phenotyped
colonies. With genomic selection, a larger number of queens is reared per dam, and the
daughters with the highest genomic estimated breeding value are kept. No preselection among
queens is applied in the pedigree-based breeding scheme. Sister DPQ are deployed together on
a mating station and form a pseudo-father (highlighted in yellow). BQ are brought to mating
stations to mate drones. This enables the fertilized BQ to produce a worker group and the colony

is later phenotyped.

A sufficiently large reference population must be gathered and maintained to ensure accurate
genomic prediction of breeding values (Sonesson and Meuwissen 2009). Brascamp et al. (2018)
addressed the design of breeding programs in honey bees, and their results suggested that
genomic selection applied sequentially to several generations of virgin queens results, by far,
in the highest genetic gain. However, the authors did not investigate what size of the reference
population was most appropriate Brascamp et al. (2018). In our study, we assumed that only a
limited number of queens could be genotyped and we analyzed the trade-off between primarily
genotyping queens with a phenotype to enlarge the reference population, or investing in
preselection of BQ and/or DPQ. The optimum values in this trade-off depend on the costs of

genotyping the queens and the profit from the greater genetic gain from genomic selection. It
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is difficult to assess the monetary value of some traits that are under selection in honey bees,
such as gentleness or disease resistance. Therefore, we did not attempt an economic calculation,

but focused on response to selection.

The aim of our simulation study was to provide insights into the optimization of genomic
selection for honey bee breeding programs by using stochastic simulations to generate a
breeding population. Genomic breeding values were estimated for the population using either
the genotypes of BQ only, or the genotypes of both DPQ and BQ. The obtained accuracies of
genomic predictions allowed us to compare the quality of the different analyses. Genetic gain
was predicted by using a deterministic model for breeding schemes. We implemented GPS of
BQ and/or DPQ with different selection intensities. Furthermore, the breeding schemes under
consideration covered different budgets for genotyping queens, and different sizes of the

reference population.

3.2 METHODS

Our study can be divided into two steps, each using very different methods. In the first step,
honey bee populations were stochastically simulated using the program BeeSim (Plate et al.
2019a). The breeding value estimation for the last generation was subsequently repeated with
pedigree-based and genomic methods to evaluate the quality of resulting the breeding values.
In the second step, we used the accuracies obtained from the stochastic simulation as input to
predict genetic gain, for which we used a deterministic model, since the BeeSim program does

not accommodate a preselection step.

3.2.1 Model and selection criteria

The phenotypes of economically-relevant traits of a honey bee colony are influenced by the
queen and her workers. While all non-reproductive tasks are performed by the workers, the egg-
laying rate of the queen is one example of her essential qualities, since it is crucial for the
number of workers. Therefore, in honey bees, the genetic model for most traits includes direct
effects due to the contribution of the workers and maternal effects due to the contribution of the

queen and the phenotype, y, of a colony, C, is modeled as follows:
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where @y, is the average of the direct effects of the workers in C, and m, the maternal effect of

the queen in C, and e is a non-heritable residual.

For a queen, @, the selection criterion in CBS is equal to the sum of the estimated breeding
values (EBV) of the maternal and direct effects of Qs worker group, and in GPS it is equal to
the sum of the EBV for the direct and maternal effects of Q. This choice is motivated by the
reproductive biology of honey bees. The maternal and direct effects of Q@ do not account for the
quality of the drones she mated with. By contrast, the maternal and direct effects of Q’s worker
group reflect the genetic quality of Q and of the drones with which she mated. Therefore, the
selection criterion for fertilized BQ is equal to the sum of the EBV for the direct and maternal
effects of their worker groups (see (Brascamp and Bijma 2014; Brascamp et al. 2016) for more
details justifying the selection criterion in CBS). In GPS, the sum of the EBV for the direct and
maternal effects of a BQ serves as the selection criterion for unfertilized BQ. In GPS and CBS,
the selection criterion for DPQ is equal to the sum of the EBV for the maternal and direct effects

of the DPQ, because DPQ are selected for their drones that hatch from unfertilized eggs.

3.2.2 Scenarios for breeding schemes

The number of BQ per year was set to 1000. BQ were mated in the year they were born and
tested in the next year, when their colonies were fully developed. At the age of one year, DPQ
were deployed on mating stations. At each mating station, 8 daughters of a single dam were
placed. Figure 3.2 (a) illustrates the classic CBS, in which the top 200 of the 2-year-old BQ
were selected as dams of BQ (selection intensity lggs = 1.40) and the top 50 were selected as
dams of DPQ (selection intensity 533 = 2.06). For GPS, specific dams of BQ or dams of DPQ
were assumed to produce more offspring than required in the classic CBS to allow genomic
preselection. The candidate BQ and candidate DPQ were genotyped, and 5 BQ and 8 DPQ were
kept for each dam of BQ and dam of DPQ), respectively.

The initial selection cycle in a genomic breeding program using GPS, as illustrated in Figure
3.2 (b), was examined for different numbers of genotyped queens per year, ng,,,, ranging from

0to 4000 in steps of 500. In the first step of the genomic breeding program, phenotyped colonies

were selected based on genomic EBV using phenotypic information, as appropriate, and a
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relationship matrix based on genomic and pedigree relationships. In the second step,

unfertilized queens or DPQ were preselected based on their genomic estimated breeding value.
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Figure 3.2 Pathway-model of pedigree-based selection (a) and genomic preselection of queens (b) in year 9 as an example.

(a) In year 8, the top 50 of the 2-year-old breeding queens (BQ) were selected as dams of drone-producing queens (DPQ; selection intensity

llc)?;% = 2.06). 400 DPQ were reared in year 8 and deployed on 50 mating stations in year 9. In the same year, the top 200 of the 2-year-old BQ

were selected as dams of BQ (selection intensity lggs = 1.40), and 1000 BQ were reared from them. The new BQ were mated on the 50 mating

stations. (b) From the 50 dams of DPQ, N DGII;g = 30 were chosen for preselection based on genomic estimated breeding values (EBV, pppo=
0.6), and each produced ng% = 16 candidate DPQ. The 240 candidate DPQ with the highest genomic EBV were selected as DPQ. Each group of
eight DPQ was deployed on a separate mating station. From the 20 dams of DPQ not chosen for preselection, 160 DPQ were reared and groups
of 8 sister DPQ were deployed on mating stations. From the 200 dams of BQO, N 365 S= 50 were chosen for preselection based on genomic EBV and

G

each produced nBZS = 10 daughters. The 250 candidate BQ with the highest genomic EBV were selected to be mated and later phenotyped. This

left Nyest= 20 open slots to genotype more phenotyped BQ. Consequently, the proportion of BQ in the reference population per year was pror=

0.27.
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Among the 50 selected dams of DPQ, Ng,fg (ranging from 0 to 50 in steps of 1) dams were
chosen for GPS. From a dam of DPQ chosen for GPS, ng% (ranging from 9 to 64 in steps of
1) daughter queens were reared and genotyped. The top 8N3}§5 of all candidate DPQ were
deployed on a mating station (with a selection intensity iggg that ranged from 0.21 to 1.65).
The proportion of DPQ selected by GPS compared to all DPQ deployed on mating stations

(Pppo) is given by pppg = 8NSH; /400, which ranged from 0 to 1 in steps of 0.02. Of the 200

selected dams of BQ, NBGSS (ranging from 0 to 200 in steps of 1) dams were chosen for GPS.

From a dam of BQ chosen for preselection, nggs (ranging from 6 to 32 in steps of 1) daughter

NGPS

queens were reared and genotyped. The top 5Ng,° candidate BQ were kept for phenotyping

(with a selection intensity ify° that ranged from 0.30 to 1.53). The proportion of BQ selected

by GPS compared to all phenotyped BQ (ppg) is given by pge = SNg§® /1000, which ranged
from O to 1 in steps of 0.005.

With a total genotyping capacity of 1000, the number of remaining animals to genotype is
Nyest = 1000 — ngo° NG —nfEoNSEs. We assumed that these Nyege genotypes were
allocated to phenotyped BQ and that this was also the case in previous years. To obtain the
proportion of BQ in the reference population per year, p,.r, the BQ selected by GPS were

added, thus prer = (Nyest + SNggs) /1000. Combinations of parameter values with ng,, <

nggs N, gg S+ ng‘;‘z NS 55 were not evaluated.
In total, 14 million scenarios were evaluated. The parameters of the evaluated breeding schemes

are shown in Table 3.1.

3.2.3 Scenarios for breeding value estimation

To evaluate the quality of the EBV and estimate genetic gain, a breeding population under
classic CBS was simulated over 10 years (Fig.2a). BQ were randomly assigned to mating
stations, but BQ that shared a common dam were assigned to the same mating station. Each BQ
was mated with 12 drones. The dam of each drone was randomly sampled from the 8 DPQ
deployed on the mating station. Pedigree was recorded for BQ. In the first years, BQ were too

young to be selected. The DPQ on mating stations in years 0 to 2 were unrelated and not
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recorded in the pedigree. Dams of BQ were selected from year 2 onwards and dams of DPQ

were selected from year 3 onwards.

Table 3.1 Parameters evaluated for breeding schemes with genomic preselection (GPS).

Number of genotyped queens per year (ng,,,) 0 to 4000 in steps of 500
Number of dams of drone producing queens (DPQ) chosen for GPS (N§F5) 0 to 50 in steps of 1
Number of dams of breeding queens (BQ) chosen for GPS (N§5° 0 to 200 in steps of 1
Number of candidate DPQ per dam for GPS (n§37) 9 to 64 in steps of 1
Number of candidate BQ per dam for GPS (nf5° 6 to 32 in steps of 1

Proportion of DPQ selected by GPS compared to all DPQ deployed on 0 to 1 in steps of 0.02
mating stations (pppg)

Proportion of BQ selected by GPS compared to all phenotyped BQ (pgq) 0 to I in steps of 0.005
Selection intensity of GPS on DPQ (i§53) 0.21 to 1.65
Selection intensity of GPS on BQ (ig5°) 0.30 to 1.53

To build the simulated population, breeding values were estimated via pedigree-based BLUP
(PBLUB), i.e. BLUP without marker data. When the simulation of the population over 10 years
was complete, breeding values were estimated with PBLUP and single-step genomic BLUP.
Two versions of the genomic relationship matrix, Ggo and Gppg+pq, Were used, leading to two
analyses, i.e. ssGBLUPgq and ssGBLUPppq+Bq, respectively. Matrix Gg, included only the

genotypes of BQ and Gppg.pq included the genotypes of DPQ and BQ.

The final pedigree contained 10,000 BQ, with 10,000 worker groups, and 2800 DPQ on 350
mating stations, since we did not include mating stations from years 0 to 2 in the pedigree.
Worker groups from year 8 represented phenotyped colonies. BQ from year 9 represented
unphenotyped queens, but had worker groups. Since unphenotyped worker groups do not affect
the EBV of the other individuals, the accuracies of the EBV of queens from year 9 represented
those of unfertilized queens. Older BQ were included in the reference population to increase

the accuracy of genomic EBV.
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Proportions (p,¢f) of 5, 10, 20, 30, 50 and 100% of BQ from years 4 to 7 were randomly chosen
for genotyping. Separately, pr.r of the queens from years 8 and 9 were randomly sampled for
genotyping. Consequently, the data set contained 300, 600, 1200, 1800, 3000, or 6000,
respectively, genotyped BQ. The reference population included 250, 500, 1000, 1500, 2500, or
5000, respectively, phenotyped BQ from years 4 to 8. For Gppg4pg. all 2400 DPQ from years

4 to 9 were included.

3.2.4 Genetic parameters

Two quantitative traits that were affected by direct (worker group) and maternal (queen) genetic
effects were simulated, with parameters as specified in Table 3.2. For the first trait (MOD), a
moderate negative correlation between direct and maternal effects was assumed. The second
trait had a higher negative genetic correlation (HGC). The chosen genetic parameters roughly
represented the estimates for economically important traits such as honey yield or gentleness
(Bienefeld and Pirchner 1991; Brascamp et al. 2016; Hoppe et al. 2020). Table 3.2 summarises

all genetic parameters.

The genetic variances and heritabilities of the direct and maternal effects take the specificities
of the honey bee into account. The phenotypic variance was calculated (formula (2) in

Brascamp and Bijma 2019) as:

aﬁh = A;;02 + 02 + 04y + 02, (3.2)

where 62 and g2 are the additive genetic variances of the direct and maternal effects, g2, is
the covariance between direct and maternal effects, 2 is the residual variance, and A;; is the
average relationship between two workers of the same colony. We used A4;; = 0.32, which was
calculated under the assumption that the queen is not inbred and is mated to unrelated DPQ.
The heritabilities of the direct and maternal effects, h2 and h2, were calculated according to
formulas (6b) and (6¢) in (Brascamp and Bijma 2019), respectively. The genetic variance for

queens, 0§, is given by:
0§ =Var(ag +mg ) = 02 + 04 + 204m, (3.3)

where a, and m, are the direct and maternal effects of queens, respectively.
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The heritability of the sum of the queens’ maternal and direct effects, which was the selection
objective for queens in GPS, hpg, was calculated according to formula (7a) in (Brascamp and
Bijma 2019). The genetic variance of the worker groups’ direct and maternal effects, o2, is

given by:
o5 = Var(ay + my ), (3.4)

where ay, and my, are the direct and maternal effects of single workers from the same worker
group, respectively. The genetic effects a, and my, have variances 62 and 2, respectively,

. . . . 2
and covariance 0,,,. Because the number workers within a worker group, ny,, is very large, oy,
is given by:

1+ny Ay
o = %05 = A;05. (3.5)

The genetic variance in worker groups equals the variance of the selection criterion in CBS.
Therefore, the heritability of the selection criterion in CBS (called accessible heritability in
Hoppe et al. 2020) is equal to:
hps = 2L (36)
oZn

Table 3.2 Simulated variance and covariance components and genetic parameters derived from
these (co)variances. We simulated settings with a moderate negative genetic correlation
(MOD), or a high negative genetic correlation (HGC). The last 11 columns show the additive
genetic variances of the direct (62) and maternal effects (c2), their covariance (04y), the
residual variance (c2), the heritabilities of the direct effects (h2), maternal effects (hZ,), the
genetic correlation (rg), the genetic variance of the worker groups (o3,), the genetic variance
of the queens (05 ), and the heritabilities of the sum of the maternal and direct effects of the

worker groups (hgs) and queens (h2pg), respectively.

. Z
Trait 42 02, Oum 02 hZ h, rg oty 99 hips hips
MOD 2 1 -05 1 0.299 0.467 -0.354 0.64 2 0.299 0.935
HGC 2 1 -1 1 0.390 0.610 -0.707 032 1 0.195 0.610
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3.2.5 Simulation of the breeding population

We simulated a genome of 16 chromosomes with a recombination rate of 19 cM/Mb (Beye et
al. 2006), with lengths based on the reference genome Amel 4.5 (INSDC assembly
GCA _000002195.1) used by Jones et al. (2020). The level of linkage disequilibrium (LD)
aimed for in the simulated genome was based on the genotypes for Supplementary table 2 of
(Jones et al. 2020), with 44,113 SNPs remaining after quality control, for which the average LD

between neighbouring loci was 2= 0.215.

To achieve this, a historical population of 50 queens per year was simulated, spanning 20,000
years, with a mutation rate of 0.0005 per locus (see (Gupta et al. 2012) for more details on the
impact of the parameters). All loci were bi-allelic. There were no mating stations and queens
mated with 12 drones. The dam of each drone was randomly sampled from all queens in the
population. The allele frequencies in the final generation followed a U-shaped distribution. Loci
with an allele frequency lower than 0.05 were discarded, which decreased the number of SNPs
from an initial 100,000 to 48,419, with an average LD of 72 = 0.217 between neighbouring loci.
After creation of the LD, the population size was increased to 2400 queens per year and random

mating was continued for six years.

A breeding population was simulated from years 0 to 9 after the historical generations, using
the BeeSim program (Plate et al. 2019a), as shown in Figure 3.2 (a). The mutation rate was set
to 0. Among the remaining 48,419 loci, 1000 were randomly chosen as QTL. Each QTL was
assigned direct and maternal additive allele effects. Preliminary allele effects were drawn from

the following distribution, as used by (Esfandyari et al. 2017; Plate et al. 2019a):

o? aam> (3.7)

0.95 - L(0,V,) + 0.05 - N(0,V,) with V, = ( "
O-am O-m

where L and N denote 2-dimensional Laplace and normal distributions, respectively, and V, is
the additive genetic covariance matrix of the direct and maternal effects, as specified in Table
3.2. The preliminary allele effects were adjusted as described by (Plate et al. 2019a) to ensure
that the average true breeding values (TBV) and the additive genetic variance in the base
population were equal to 0 and V,, respectively. See (Plate et al. 2019a) for a detailed
description of the modelling of the worker groups, phenotypes, and TBV.
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After the breeding population was simulated, breeding values were estimated using PBLUP,
ssGBLUPgq, and ssGBLUPppq+Bo. One hundred replicates were simulated, starting from the
same historical base population. For each replicate, new QTL were randomly chosen from the

available SNPs.

3.2.6 Estimation of breeding values

For PBLUP, the following mixed linear model was used:
y=Xb+Z,a+Z,m+e, (3.8)

where y is a vector of observations; b is a vector of the fixed effects (year); a is a vector of the
direct effects of animals or groups; m is a vector of the maternal effects of animals or groups;
e is a vector of residuals; and X, Z,, and Z,,, are known incidence matrices for b, a, and m,
respectively. The expected values of a, m, and e were assumed to be equal to 0, with the

following variances:

a 02A o,,A 0
Var <m> =|oumA oiA 0 |
e 0 0 o2l

(3.9)

where A is the honey bee specific numerator relationship matrix derived from pedigree
(Bernstein et al. 2018), I is an identity matrix, and 62, 62, 04y, and o2 are the additive genetic

variances of direct and maternal effects, their covariance and the residual variance, respectively.

In the ssGBLUPgq analysis, pedigree information and genomic information were combined.
The number of bi-allelic loci and the number of genotyped BQ are denoted m, and ng,
respectively. The model and the variances were the same as for PBLUP, except that the
numerator relationship matrix A was replaced by H, which was constructed from A and the

genomic relationship matrix, Ggg, following (Aguilar et al. 2010; Christensen and Lund 2010).

The genomic relationship matrix, (VanRaden 2008, method 1) was constructed as:

zz" (3.10)

Gpo = 2Yipi(A-p)’
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where the ng X my matrix Z is given by Z = M — P, where matrix M contains the marker
information of all genotyped BQ given as 0, 1, 2, and column j of matrix P is defined by P;; =
2p;, where p; is the allele frequency at locus i. Matrix Ggo was adjusted to A by adjusting the
means of diagonal and off-diagonal entries, as described by (Christensen et al. 2012). To obtain
an invertible genomic relationship matrix, a weighted genomic relationship matrix, Ggg ., Was

constructed as follows:
Ggow = 0.95Gg, + O.OSABQ’g, (3.11)

where Apgg 4 is the submatrix of A relating to the genotyped animals. Finally, the inverse of

Hpy was computed following (Aguilar et al. 2010; Christensen and Lund 2010) as:

Hph =A™ + (g GBQ'W_P_ Azé,g)' (3-12)
For ssGBLUPppq+Bq, the ssGBLUPgq analysis was supplied with genotypes of DPQ. The
honey bee specific pedigree relationship matrix (Bernstein et al. 2018; Brascamp and Bijma
2014) does not consider individual DPQ. Instead, they are merged into pseudo-fathers. To have
an equal structure in A and Gggppg, We merged entries as described below, such that every
pseudo-father is represented by a single element that combines the genotypes of the DPQ which
comprise it. In the pedigree-based relationship matrix (formula (17) in Brascamp and Bijma

2014 and Equation (2.5) here), the diagonal entry of a pseudo-father is calculated as:

_ 1 ns_l ~
App = 7= (1 +Fa) + == Aap, (3.13)
where A, represents the diagonal entry of pseudo-father p, comprising ng DPQ, F; represents

the coefficient of inbreeding of p, and Ay, represents the additive genetic relationship of two
DPQ contained in p. In the pedigree-based relationship matrix, all DPQ of p have the same
coefficients of relationship. Let A be a honey-bee specific relationship matrix, where all pseudo-

fathers are replaced by the groups of DPQ they represent. Then, we have:

1 ~ 1 e
App = n—SZZd Aaa + 3 YapbAap (3.14)
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where A, represents the diagonal entry of a DPQ of p, and A, represents the off-diagonal

entry of two DPQ, d and b, of p.

The genomic relationship matrix with entries for individual DPQ, (T‘.DPQ+BQ, was calculated

according to Equation (3.10) by including the genotypes of individual DPQ. The following

conversion of Equation (3.14) to the genomic relationship matrix was used:

1 ~ 1 ~
GDPQ+BQ,pp = n_SZZd GDPQ+BQ,dd + n_52 Zd,b GDPQ+BQ,dba (315)

where Gppo+pg,pp represents the diagonal entry of p, Gp PQ+BQ,dd Tepresents the diagonal entry
ofaDPQ of p, and G, pQ+BQ,ap represents the off-diagonal entry of two DPQ of p. The genomic
relationships of p to all other animals were calculated as the mean of the relationships of the
DPQ of p to these animals. Exchanging GDPQ+BQ for Gppg+pg in sSGBLUPbpq+aq does not
change the EBV of BQ or worker groups [see Appendix E]. Matrix Gppg4+p Was then adjusted
to the submatrix of A that contains the same animals, analogous to Equation (3.11). Finally,

H5,%Q+ o Was obtained analogous to Equation (3.12).

Programs from the BLUPfY0 family (Aguilar et al. 2014; Misztal et al. 2002) were used to
calculate the genomic relationship matrix and to perform estimation of breeding values, using
the variance components in Table 3.2. Equations (3.11), (3.12), and (3.15), and adjustment of
the genomic relationship matrix to the pedigree relationship matrix were implemented in R (R
Development Core Team 2020). The pedigree relationship matrix and its submatrix relating to

genotyped animals were calculated in a C-program according to (Bernstein et al. 2018).

3.2.7 Evaluation of the breeding value estimates

EBV were evaluated for prediction accuracy and bias. The accuracy was calculated as the
correlation coefficient between (simulated) TBV and EBV. Bias was evaluated based on

deviations of the regression coefficient of TBV on EBV, b,, from 1.

The accuracies for phenotyped colonies, Pow and unfertilized queens, Pyq» Were represented

by the accuracy for worker groups from year 8 and queens from year 9, respectively. The

accuracies for ssGBLUPgq and ssGBLUPppq+Bq were calculated for the genotyped BQ. The
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variance of TBV for phenotyped colonies, o4

»w» was calculated as the variance of the TBV of

worker groups in year 8. The variance of the TBV of the BQ that head phenotyped colonies,
Opq»> Was calculated as the variance of the TBV of the BQ in year 8. The variance of the TBV
of the unfertilized queens or DPQ, ofLQ, was calculated as the variance of the TBV of the BQ

in year 9.

Accuracies for queens and worker groups cannot be directly compared, since different genetic

variances must be used to estimate genetic gain from them. Therefore, we rescaled Py to an
accuracy of queens, Pyr (R for replacement queen) as:

_ Gpw (3.16)
Por opg PV

This can interpreted as an accuracy of fictional queens. If a daughter was reared from each of
the colonies in year 8, then the correlation between the daughters’ EBV and the daughters’ TBV

would be p,_ .. Equation (3.16) was derived from formulas of Brascamp and Bijma (2019) and
PR

[see Appendix F].

3.2.8 Genetic gain in different breeding schemes

Table 3.3 shows the notation used in the equations to estimate genetic gain in the sum of direct
and maternal effects (SDME), based on the following basic formula for expected genetic gain

(Falconer and Mackay 1996):
R =ipo, (3.17)

where R is response to selection in SDME, i is intensity of selection, p is the accuracy of
selection, i.e. the correlation between the true and estimated value of the SDME for selection
candidates, and o is the standard deviation of the TBV for SDME among selection candidates.
The generation interval was not considered in the calculations since it was two years for BQ

and three years for DPQ for all breeding schemes.

The average TBV of a generation of colonies is given by the average TBV of the selected BQ

and DPQ in the parental generation. The average TBV of a queen reared from a colony is equal
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to the breeding value of the colony’s worker group (Brascamp and Bijma 2014). Consequently,

the response to CBS, R.ps, is given by:

iCBS l-CBS 3 ) 1 8
Rcps = %Ppw Opw + %ppwﬁpw (3-18)
Alternatively, R.ps can be calculated from Equation (3.18) by replacing Pow and o,y by Pyr
and oyq, respectively. Accuracies for ssGBLUP are chosen according to the size of the
reference population given by 5000 p,..¢. Table 3.3 shows the notation used in the formulas for

to calculate genetic gain.

Based on the average TBV of colonies when BQ and DPQ were preselected and the dams of
BQ and dams of DPQ have a TBV of 0, response to GPS, Rpg, was predicted as:

GPS GPS
_ ipPQPDPQ o PBQ (3.19)
Reps = —5— PuoOue + =5 Py %uc:

Table 3.3 Notation key for symbols in the estimation of genetic gain.

Ngpy Number of genotyped queens per year

igf;é, iggs Selection intensity for dams of drone producing queens (DPQ), and dams of
breeding queens (BQ), respectively

iggz, iggs Selection intensity for DPQ, and BQ, respectively

Dppo Proportion of preselected DPQ compared to all DPQ deployed on mating
stations

PBo Proportion of preselected BQ compared to all phenotyped BQ

Dref Proportion of BQ in the reference population

0w, Opg» Opw Standard deviation of the true breeding values for the sum of maternal and
direct effects of unfertilized queens (BQ from year 9), queens heading
phenotyped colonies (BQ from year §), and phenotyped colonies (worker
groups from year 8), respectively

Puo’ Pow Por Prediction accuracy for the sum of maternal and direct effects of unfertilized
queens (queens from year 9), phenotyped colonies (worker groups from year
8), and replacement queens from phenotyped colonies, respectively

Rpp Response to selection in a single generation in classical (pedigree-based)
selection program

Rgs Response to selection in the initial selection cycle of a genomic selection

program
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Response to selection in a genomic breeding program with CBS and GPS is given by R;s =

Rcps + Rgps, and was predicted as:

ig% iggs ig%pnpq iggSPBQ (3.20)
Repssaps = = P Opw + = Pow Opw + =5 PuoOue + — 5 PypOuo-

Response to pedigree-based selection, Rpg (PB for pedigree-based) was predicted based on
Equation (3.18), which correctly predicted the average genetic gain in the stochastically
simulated breeding population [see Appendix G]. Equations (3.18), (3.19) , and (3.20) were

used to predict R in the scenarios described in Table 3.1. For Puo and o0y, we used values
obtained for the BQ from year 9 in the simulated breeding population. For Pow and oy, we

used values obtained for the worker groups from year 8 in the simulated breeding population.

However, for this analysis, Py Was calculated by including worker groups of non-genotyped
queens. The values of the accuracies Pug and Py Were chosen for each scenario according to

Dres- For values of p,..r that were not explicitly simulated, the accuracy was obtained by linear
interpolation. For p;..r = 0 and p,.; > 0, the accuracies of PBLUP and ssGBLUP were used,

respectively. When all DPQ were preselected, the formulas were also evaluated using the

accuracy of ssGBLUPppq+B0.

To evaluate the impact of increasing the annual budget for genotyping queens, ng,,, we
calculated the increase in genetic gain (IGG) by adding genotypes on 500 queens. For a budget

Ngpy = X, the increase in genetic gain by adding 500 genotypes, IGG(x), was defined as:

IGG(x) = Rgs(x + 500) — Rss(x), (3.21)

where the values of R;5(x) and R;g(x + 500) were taken from the scenarios with the highest
genetic gain for budgets ng,,,, = x and ngp,,, = x + 500, respectively. We will focus on budgets
Ngpy = x which satisfy IGG(x) < IGG(x — 500). Such points x provide potential values of the
minimal budget required to initiate a breeding program, because using ng,, = x + 500
genotypes instead of ng,, = x might add too little genetic gain to justify the investment. Note

that these measures do not the monetary value of genetic gain into account.

52



3.3 RESULTS

3.3.1 Prediction accuracy for the sum of direct and maternal effects

Accuracy was measured as the correlation between EBV and TBV. The results obtained with
ssGBLUP and PBLUP are shown in Figure 3.3, and those obtained with 5000 BQ in the
reference population are in Appendix H. The largest improvements over PBLUP were observed

for unfertilized queens, which is desirable for GPS.

We focused on ssGBLUPppq+Bq, since the accuracy with ssGBLUPgq was just slighlty lower
with 5000 BQ in the reference population. The accuracies for unfertilized queens with
ssGBLUPppq+Bq were higher than those with PBLUP by 160.1 (MOD) and 126.2% (HGC).
The accuracies for replacement queens from phenotyped colonies with ssGBLUPppq+Bq were

higher than those with PBLUP by 9.9 (MOD) and 12.5% (HGC).
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Figure 3.3 Accuracies of genomic estimated breeding values. Accuracies of estimated breeding
values of unfertilized queens (from year 9) and of replacement queens from phenotyped colonies
(from year 8), and the standard deviations of these accuracies in 100 replicates. The standard
deviations of the true breeding values used to calculate the accuracy for replacement queens

opw (worker groups from year 8) and 0, (queens from year 8) are shown in Appendix J.



The differences in the accuracies of ssGBLUPppg+sq and ssGBLUPgq were larger when fewer
BQ were included in the reference population. We focused on the accuracies for unfertilized
queens. For a reference population size of 250 BQ, accuracies obtained with ssGBLUPgq
differed from those obtained with PBLUP by -2.1 (MOD) and 6.9% (HGC). Addition of the
genotypes of all 2800 DPQ increased the accuracy considerably. With 250 BQ in the reference
population, accuracies obtained with ssGBLUPppq+Bg were higher than those obtained with
PBLUP by 47.9 (MOD) and 54.4% (HGC). However, genotyping phenotyped BQ instead of
DPQ yields more accurate genomic EBV for a smaller number of genotypes. E.g., with a
reference population of 1500 BQ, accuracies obtained with ssGBLUPgq were higher cthan
those with PBLUP by 91.7 (MOD) and 63.2% (HGC).

3.3.2 Prediction accuracy of maternal and direct effects

The results for the accuracies for estimates of direct and maternal effects with ssGBLUP and
PBLUP are shown in Figure 3.3. We focused on unfertilized queens and on a reference
population size of 5000 BQ. Increases in the accuracies of estimates of maternal effects were
larger than those of direct effects. The accuracies for maternal effects with ssGBLUPgpq were
73.6 (MOD) and 53.8% (HGC) higher than those with PBLUP, while the accuracies for direct
effects with ssGBLUPgq were 41.4 (MOD) and 28.6% (HGC) higher than with PBLUP. With
ssGBLUPbpq+BQ, the accuracies for direct effects were higher than those with ssGBLUPgq. For
maternal effects, the accuracy with ssGBLUPppq+Bq Was almost equal to that with ssGBLUPgq.

3.3.3 Genetic gain

Figure 3.4 shows the genetic gain, R, for different breeding schemes and different numbers
of genotyped queens per year, ng,,. The configurations of these scenarios are shown in
Appendix I. The standard deviations of the TBV used to calculate R are shown in Appendix

J. We focused on the optimal breeding schemes with the configurations shown in Table 3.4.

Up to ngpy, = 500, increases in Rgg were small since the accuracy of EBV based on ssGBLUP
was still low (Table 3.4). Genetic gain, Rgs, increased strongly as ng,, increased from 500 to
1000. The increase in genetic gain (IGG) diminished slightly from ng,, = 1000, onwards.
Therefore, we suggest that ng,, = 1000 is the minimal budget required to initiate a breeding

program.
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Figure 3.4 Predicted genetic gain for different breeding schemes (a) and increase in genetic
gain by adding genotypes of 500 queens (b).
(a) Genetic gain, Rgs, was calculated according to Equation
(3.20). For strategies without preselection of BQ, or without preselection of DPQ, the scheme
with the highest genetic gain is shown. The value for zero genotyped queens represents the gain
with pedigree-based selection, Rpg, predicted according to Equation (3.18).
(b) The increase in genetic gain by adding 500
genotypes of queens (IGG) is shown for the optimal breeding scheme in (a). Genetic gain and

1IGG are given in the units of the selection criterion.
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Table 3.4 Genetic gain, R;s, in the initial selection cycle of different breeding schemes with colony-based (CBS) and genomic preselection

(GPS). Breeding queens and drone producing queens are referred to as BQ and DPQ, respectively, Settings with a moderate negative genetic

correlation (MOD), or a high negative genetic correlation (HGC) were simulated,; Pedigree-based BLUP and Single-Step-genomic-BLUP are
referred to as PBLUP and ssGBLUP, respectively. The relationship matrix for ssGBLUP contained either exclusively BQ (ssGBLUPgp) or BO

and DPQ (ssGBLUPppo+pg); Genetic gain is given in the units of the selection criterion; The standard deviations of the true breeding values o,y

(worker groups from year 8) and o, (queens from year 9) are in Appendix J. Genetic gain, Rgg, was calculated according to Equations (3.18),

(3.19) , and (3.20).

Number of Proportion of DPQ Selection Proportion of BQ Selection Number of BQ Proportion of BQ Breeding value Genetic gain R;g
genotyped selected by GPS compared intensity of selected by GPS intensity of in the reference in the reference estimation

queens per year to all DPQ deployed on GPS on compared to all GPS on BQ population (5  population (p,.s) method MOD HGC
(ngyy) mating stations (Pppq) DPQ (igf,sq) phenotyped BQ (ppq) (iggs years in total)

0 0 0 0 0 0 0 PBLUP 0.8751  0.5286
500 0.4 0.7979 0.15 0.2998 750 0.15 ssGBLUPgq 0.9497  0.5715
500 0.46 0.7979 0.11 0.2998 550 0.11 ssGBLUPgq 0.9492  0.5725
1000 1 0.7454 0.205 0.2998 1045 0.209 ssGBLUPppq-+Bo 1.0909  0.6559
1000 1 0.8454 0.125 0.2998 625 0.125 ssGBLUPppq-+Bo 1.0878  0.6567
1500 1 0.8454 0.46 0.4759 2330 0.466 ssGBLUPppq-+Bo 1.2169  0.7344
1500 1 0.8889 0.5 0.2998 2500 0.5 ssGBLUPppq-+Bo 1.2167  0.7353
2000 1 0.8889 0.785 0.4759 3930 0.786 ssGBLUPppq-+Bo 1.3403  0.8091
2500 1 1.0324 1 0.4759 5000 1 ssGBLUPppq+q 1.4668  0.8831
3000 1 1.0908 1 0.7111 5000 1 ssGBLUPppq+q 1.5652  0.9391
3500 1 1.2322 1 0.7979 5000 1 ssGBLUPppq-+Bo 1.6416  0.9828
4000 1 1.3401 1 0.872 5000 1 ssGBLUPppq+q 1.7026  1.0175
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At ngpy, = 1000, the optimum scenarios for MOD and HGC increased genetic gain by around
24% compared to pedigree-based selection (Table 3.4). For both these scenarios, BQ were
preselected at the lowest possible non-zero selection intensity, and scenarios without
preselection of BQ achieved very similar results [see Appendix I]. These increases were only
possible with ssGBLUPppq+Bq, as the optimal scenarios with ssGBLUPgq increased genetic
gain by 18.7 to 20.8% compared to pedigree-based selection [see Appendix I]. The optimum
scenarios and the optimal scenarios without preselection of BQ were those for which 10 to 20%

of the phenotyped BQ were genotyped per year and around 50% of DPQ were preselected.

The 1GG remained high up to ng,, = 2500 (Figure 3.4). Between ng,, = 1000 and ngy,, =
2500, BQ were increasingly preselected (Table 3.4). At ng,, = 2500, all BQ and DPQ of a
given year were selected by GPS, with a higher selection intensity for DPQ. This increased
genetic gain by around 67.5% compared to pedigree-based selection for both MOD and HGC.

For ng,,, larger than 2500, pppq and pgq were at their maximum value in the optimal scenarios,

and only the selection intensities iggz and iggs could increase. Consequently, IGG diminished

strongly, which implies that ng,,, much larger than 2500 yield little additional genetic gain per
genotype. Since IGG were constantly high between ng,, = 1000 and ng,, = 2500, an ngy,,,

of 2500 or larger is required to maximize the total amount of genetic gain with genomic over

pedigree-based selection divided by the total number of genotypes used.

3.3.4 Bias of the estimated breeding values

Results for the coefficient of regression of TBV on EBV for PBLUP and ssGBLUP are shown
in Figure 3.5 and Appendix K. Pedigree-based methods showed very little bias (b; = 0.97 to
1.02) for both maternal and direct effects, and the SDME and across all groups of animals
considered. Worker groups from year 8 showed nearly no bias. Non-phenotyped queens showed
a maximum bias of b; = 1.11 for ssGBLUPgq and ssGBLUPppq+sq (HGC). Worker groups in
years 4 to 7 showed a greater bias than b; = 1.15 with ssGBLUP for HGC. This might be due
to the mating stations using unrelated DPQ in years 0 to 2. We did not investigate the cause of
this bias in more detail since the bias of GEBV of the candidates in years 8 and 9 was within

the acceptable range.
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Figure 3.5 Regression coefficients of true on estimated breeding values. Regression coefficients
of true on estimated breeding values for unphenotyped queens (from year 9) and for phenotyped
worker groups (from year 8) with a reference population of 5000 BQ. The sum of maternal and

direct effects was considered as the selection criterion.

The bias for estimates was often smaller for maternal effects (b; = 0.98 to 1.00 for non-
phenotyped queens) than for direct effects (b; = 1.01 to 1.07 for non-phenotyped queens),
while the largest bias was found for the SDME (b; = 1.02 to 1.11 for non-phenotyped queens).

3.4 DISCUSSION

We used a honey bee specific relationship matrix to perform genetic evaluations with PBLUP,
ssGBLUPgq, and ssGBLUPppq+Bq and investigated the prediction accuracy and bias of overall,
direct, and maternal EBV for queens and worker groups, as well as their change with the number
of genotyped queens. We used these statistics to estimate genetic gain in different breeding

programs.

3.4.1 Estimation of breeding values

We compared the quality of the EBV for different reference population sizes by genotyping
different proportions of phenotyped BQ (see Figure 3.3). Rather high increases in prediction
accuracy in honey bees could be expected, since controlled mating in honey bees leaves
uncertain relationships, and simulations in other species (Tonussi et al. 2017) show that
uncertain relationships reduce the accuracy of PBLUP EBV more than that of ssGBLUP EBV.
Our accuracies for the SDME, i.e. 0.18 and 0.2 for PBLUP and 0.39 and 0.52 for ssGBLUPgg,

are similar to results for young bulls with 25% unknown sires in beef cattle (Tonussi et al.
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2017). For the two traits considered in that study, the accuracies of PBLUP were 0.14 and 0.16
and those of ssGBLUP were 0.41 and 0.65, respectively. In real datasets, pedigree errors can be

corrected from genomic data, which may yield higher improvements.

We found a bias of up to by = 1.11 for the EBV of non-phenotyped queens with ssGBLUP
(Figure 3.5 and Appendix K, which is low, since values between 0.85 and 1.15 appear to be
acceptable in practice (Tsuruta et al. 2011). Uncertain relationships can explain our deviations
of b; from 1, as even higher deviations were reported by (Tonussi et al. 2017) for young males
with 25% unknown sires. The controlled mating used in our study probably reduced the bias of

EBV.

3.4.2 Accuracy with genotyped DPQ

We examined the effect of including the genotypes of DPQ into the genomic relationship
matrix. This proved useful, when a small number of phenotyped BQ and a large number of DPQ
were genotyped. This situation is likely to occur in practice when genomic preselection is
applied to DPQ (see Table 3.4). However, a considerable increase in prediction accuracy was
only possible when the number of genotyped DPQ was much larger than the number of

genotyped BQ (see Figure 3.3).

Genotyping sires increases the prediction accuracies of their offspring, because a genotyped
sire adjusts its offspring's relationships in ssGBLUP (Christensen and Lund 2010). However,
genotyping all DPQ and using these data, as described here, proved not as effective as adding
more BQ to the reference population. E.g., genotyping 2800 DPQ and 250 phenotyped BQ,
yielded a lower prediction accuracy than genotyping 1500 phenotyped BQ.

Specificities of the honey bee can explain our results for prediction accuracy. When pseudo-
fathers are modelled as groups of DPQ, the relationship of a daughter with its pseudo-father is
lower (= 0.203 with the parameters in this study) than with its dam (= 0.5), regardless of whether
it is a queen or worker group. The reason is that the daughter is related by 0.5 to exactly one of
the DPQ which are daughters of the pseudo-father, but it is uncertain which DPQ from the
mating station it is. The relationship of a daughter to its pseudo-father is its average relationship

to all DPQ from the mating station.
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For ssGBLUPppq+g with non-phenotyped DPQ, separating pseudo-fathers into individual
DPQ in the relationship matrix and identifying sires from genomic data does not increase the
accuracy of genomic EBV of BQ and their worker groups [see Appendix E]. This is
corroborated by results from Maiorano et al. (2019), who simulated a pig population in which
mixed semen was used and showed that using the genomic relationship matrix in single-step

genomic BLUP obviated the need for identifying the sires from genomic relationships.

However, for phenotyped DPQ, splitting pseudo-fathers into individual DPQ in the relationship
matrix looks more promising. The main reason why DPQ contributed less to prediction
accuracy than BQ is probably due to the fact that DPQ were not phenotyped, although they
sometimes are in practice. In this case, their genotypes are more important than those of the
BQ, since they have a strong impact on genetic gain. Individual DPQ should then be
incorporated into the genomic relationship matrix and the algorithm of Bernstein et al. (2018)

to estimate their breeding values.

3.4.3 Optimal breeding scheme

We compared genetic gain from different breeding schemes that use GPS for several numbers
of genotyped queens per year (Table 3.4). Our deterministic model correctly predicted genetic
gain for an initial CBS-step followed by a GPS-step. Our model would, however, overestimate
the genetic gain for a CBS-step following a GPS-step, since GPS reduces the genetic variance
in ways that are rather specific to honey bees. Deterministic models of genomic preselection
(Pryce et al. 2010; Shumbusho et al. 2013) are usually models of 2-stage selection of the same
animals (Saxton 1983). However, in honey bees, the candidates of GPS are DPQ and/or
unfertilized BQ. Subsequently, the drone offspring of the DPQ mate with the BQ, which results
in fertilized BQ that are the candidates for CBS. Separating the genetic variance contributed by
the new generation of drones from the genetic variance of the BQ was beyond the scope of our
study (see Du et al. 2021a for the situation in CBS). However, we expect that would not change

the main conclusions.

We suggest that a budget to genotype 1000 queens per year should be the minimal target to
initiate a genomic selection breeding program, since the IGG decreased slightly from there on.
The optimal configuration for the use of this budget involves GPS of all DPQ at a proportion
of 1:2 and genotyping between 10 and 20% of the phenotyped BQ. Smaller reference
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populations should be avoided, since the optimal breeding schemes for ng,, = 500 also relied
on genotyping more than 10% of the phenotyped queens. However, pure GPS of DPQ can be
suboptimal when the number of DPQ is greater and the number of BQ is smaller than we

assumed.

The IGG decreased strongly for ngy,,, larger than 2500, when all BQ and DPQ were preselected
based on genomic EBV. This suggests that an ngy,,, of 2500 or larger optimizes genetic gain per

used genotype. The economic optimum depends on the costs of genotyping and the monetary

benefit of increased genetic gain.

Extra genetic gain from genomic selection compared to pedigree-based selection resulted from
an increase in prediction accuracy for non-phenotyped queens and a larger number of
candidates. Similar results were found for maternal traits in sheep (Lillehammer et al. 2020),
pigs (Lillehammer et al. 2011), and Atlantic salmon (Verbyla et al. 2018). However, genomic
selection is often most efficient when young animals are selected based on genomic EBV and

the generation interval is shortened (Goddard and Hayes 2007).

We considered a generation interval of two years for BQ and three years for DPQ. However,
queens can be reared from very young queens shortly after mating and a colony headed by a
one-year old queen produces a sufficient number of drones to fertilize hundreds of queens.
Therefore, the generation interval could be shortened by at least one year. We consider such a
scheme in Appendix L and showed that it can improve genetic gain considerably. Brascamp et
al. (2018) considered an even more refined scheme in which several generations of queens are
reared during a single summer. Besides possible issues with its practical implementation,
further simulation studies are required before such a scheme can be recommended. Phenotyping
would lag behind, as phenotyping is done in the second summer of a colony’s life, which leads
to a lower accuracy of GEBV (Habier et al. 2007). Furthermore, the intensity of selection should
be carefully considered. Shortening the generation interval also requires changes to the structure
of a breeding program, which can substantially increase the rate of inbreeding per generation
(de Roos et al. 2011; Doublet et al. 2019; Lillehammer et al. 2020). We suggested GPS as an

additional selection step, which is unlikely to alter the rate of inbreeding significantly.

62



In our simulations, the queens to be genotyped were randomly chosen. However, genotyping a
small proportion of all selection candidates can yield most of the benefits from genomic
selection, especially when animals to be genotyped are preselected (Granleese et al. 2019;
Henryon et al. 2012; Howard et al. 2018). In honey bees, the dams of DPQ and dams of BQ
that produce candidates for GPS could be selected based on pedigree-based EBV (Henryon et
al. 2012). However, genotyping queens with contrasting phenotypes should be considered to

maintain prediction accuracy (Chu et al. 2020; Gowane et al. 2019).

We considered only the beginning of genomic selection in the breeding schemes investigated.
Genetic gain may increase in future generations because the reference population grows yearly.
However, the early animals will become less useful over time, since their relationship to the
selection candidates will decrease (Habier et al. 2007). In addition, the Bulmer effect will

decrease response to selection (Van Grevenhof et al. 2012).

3.4.4 Maternal and direct effects

A previous study (Gupta et al. 2013) showed that prediction accuracy for non-phenotyped
queens is considerably higher with genomic methods than with pedigree-based methods. We
found considerably higher gains in accuracies for estimates of maternal effects than for
estimates of direct effects with ssGBLUP compared to PBLUP (see Figure 3.3 and Appendix
H). To the best of our knowledge, this result stands out among those of other simulation studies

in the literature (Gupta et al. 2013; Lourenco et al. 2013; Maiorano et al. 2019).

For honey bees, Gupta et al. (2013) reported gains in accuracy of estimates of maternal effects
with ssGBLUP over PBLUP that were similar to the gains in accuracy for estimates of direct
effects, which is due to the fact that phenotypes were directly associated with the genetic effects
of queens, as mentioned previously. Several other studies have reported simulated accuracies
of estimates of maternal and direct effects in other species. For example, Lourenco et al. (2013)
compared estimates of breeding values in beef cattle based on ssGBLUP and Bayesian methods.
However, the authors used PBLUP as a reference and reported a higher increase in accuracy by
switching from PBLUP to ssGBLUP for direct than for maternal effects. In another study,
Maiorano et al. (2019) investigated how the use of pooled semen in pigs affected the accuracies
of EBV from ssGBLUP and reported considerably higher gains in accuracies for estimates of

direct effects than for maternal effects. This can be explained by major species-specific

63



differences. For almost all agricultural species, the maternal effect of a dam is expressed in
multiple phenotypic records, one for each offspring. In contrast, the maternal effect of a honey
bee queen is only expressed in the single phenotypic record of her worker group. Thus, the
maternal effect of a dam in other agricultural species is expressed in more phenotypes than the
maternal effect of a honey bee queen. Consequently, the impact of using genotyping data on

maternal effects is greater for honey bee queens than it is for other agricultural species.

In our study, the increase in accuracy by switching from PBLUP to ssGBLUP was higher for
MOD than for HGC in unphenotyped queens, which is explained by the high negative genetic
correlation, 1, for HGC, which is the only difference between MOD and HGC. However, the
relative increase in accuracy of EBV from PBLUP to ssGBLUP was smaller for MOD than for
HGC in phenotyped queens. A study in beef cattle found no significant difference in the increase
in accuracy of EBV from PBLUP compared to ssGBLUP with r; = 0 and r; = —.3 (Lourenco
et al. 2013). The higher negative values of 1; that we considered, probably amplified the
differences in the increase in accuracy of EBV from PBLUP compared to ssGBLUP between
the maternal and direct effects. However, parameter estimates in honey bees can yield even
lower values for 1; than we assumed in our study (Brascamp et al. 2016). The high negative
value for r; in HGC reduced genetic gain compared to MOD, but the optimal breeding schemes

for MOD and HGC were very similar, for each ng,,, (see Table 3.4).

3.5 CONCLUSIONS

We used a honey bee specific relationship matrix in simulation studies to evaluate methods of
breeding value prediction and the design of genomic breeding programs for honey bees and we
found that ssGBLUP outperformed PBLUP. Adding the genotypes of DPQ was found to
increase the accuracy considerably if the reference population is small. Prediction accuracies
of EBV and standard deviations of TBV were used in a deterministic model to predict genetic
gain from one round of selection. The model correctly predicted genetic gain for an initial CBS-
step followed by a GPS-step. To initiate a breeding program, genotyping a minimum number
of 1000 queens per year is required. With 1000 genotypes, genotyping phenotyped BQ and
preselection of DPQ based on GEBV achieved the highest genetic gain. Genotyping at least
2500 queens per year and applying GPS to all BQ and all DPQ is required to maximize genetic

gain per used genotype. However, economic aspects, e.g., the costs of genotyping, and the
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monetary benefits from increased genetic gain should be included in such considerations. We
suggest that the methods ssGBLUPgq and ssGBLUPppq+Bq are suitable for implementation in

a genomic honey bee breeding program.
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4 First large-scale genomic prediction in the honey bee

This paper has been submitted to Heredity as:

Bernstein R, Du M, Du ZG, Strauss AS, Hoppe A, Bienefeld K. First large-scale genomic
prediction in the honey bee. Submitted.

The preprint is archived on ArXiv at:
http://arxiv.org/abs/2206.07397

The genotypes used for this study are available in (Jones et al. 2020). The phenotype data of

this study belongs to several breeding associations and is unavailable due to legal reasons.

DOI of the genotype data: 10.5061/dryad.gxd2547gp
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ABSTRACT

Genomic selection has increased genetic gain in several livestock species, but due to the
complicated genetics and reproduction biology not yet in honey bees. Recently, 2970 queens
were genotyped to gather a reference population. For the application of genomic selection in
honey bees, this study analyses the predictive ability and bias of pedigree-based and genomic
breeding values for honey yield, three workability traits and two traits for resistance against the
parasite Varroa destructor. For breeding value estimation, we use a honey bee-specific model
with maternal and direct effects, to account for the contributions of the workers and the queen
of'a colony to the phenotypes. We conducted a validation for the last generation and a five-fold
cross-validation. In the validation for the last generation, the predictive ability of pedigree-
based estimated breeding values was 0.06 for honey yield, and ranged from 0.2 to 0.41 for the
workability traits. The inclusion of genomic marker data improved these predictive abilities to
0.11 for honey yield, and a range from 0.22 to 0.44 for the workability traits. The inclusion of
genomic data did not improve the predictive ability for the disease related traits. Traits with
high heritability for maternal effects compared to the heritability for direct effects showed the
most promising results. Across all traits, the bias with genomic methods was close to the bias
with pedigree-based BLUP. The results show that genomic selection can successfully be applied

to honey bees.
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4.1 INTRODUCTION

Genomic selection (Meuwissen et al. 2001) incorporates genome-wide marker data into
breeding value estimation. Compared to pedigree-based breeding values, the use of genomic
data can increase the predictive ability of estimated breeding values, or enable the selection of
animals before they are phenotyped. Both strategies have been realised to increase the genetic
gain in several livestock species (Doublet et al. 2019; Fulton 2012; Samor¢ and Fontanesi
2016). Honey bee breeders, by contrast, employ phenotypic selection (De la Mora et al. 2020;
Maucourt et al. 2020) or pedigree-based breeding value estimation (Bienefeld et al. 2007;
Brascamp et al. 2016; Hoppe et al. 2020). Recently, a high density SNP chip was developed
and genotypes of phenotyped queens are now available to validate genomic prediction (Jones

et al. 2020).

Pedigree-based best linear unbiased prediction (PBLUP) of breeding values began in 1994 for
the population registered on Beebreed. The estimated breeding values enabled hundreds of
mostly Central European bee breeders to improve the quality of their stock (Hoppe et al. 2020).
To ensure the quality of the estimated breeding values, the program relies on a specialized
infrastructure for mating control and an adapted genetic model to account for the peculiarities

of the honey bee (Bienefeld et al. 2007; Brascamp and Bijma 2014).

While the up to 50,000 workers in a hive do not reproduce under normal circumstances, they
perform all other tasks in the hive, such as foraging, brood care, and cleaning (Koeniger et al.
2015). A queen mates with six to twenty drones during flight (Tarpy and Nielsen 2002).
Therefore, the daughters of the queen will belong to various patrilines, and uncertain paternity
is a challenge for the breeding value estimation. However, lasting breeding success in honey
bees requires adequate measures for mating control (Plate et al. 2019b). Therefore, mating
stations are maintained with several drone producing queens (DPQ), which are usually

unselected daughters of s single dam of high genetic quality.

The phenotypes of honey bee colonies for economically relevant traits result from the
collaboration of worker groups and queens. In honey yield for example, the workers of a colony
perform foraging and storing, but the queen affects the number of workers via her egg-laying

rate, and influences the behavior of the workers via pheromones. Therefore, the genetic model
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for the traits includes direct and maternal effects for the contribution of workers and queens,

respectively.

In commercial honey bee breeding programs, the demands of beekeepers lead to selection traits
which differ significantly in terms of methodology and effort for recording and mathematical
modelling. Typical aims include increased honey yield, better workability for the beekeeper,
and more disease resistance (Petersen et al. 2020; Uzunov et al. 2017). Especially resistance
against Varroa destructor is targeted, since this parasitic mite contributes to severe colony losses

in numerous countries (Genersch et al. 2010; Guichard et al. 2020a; Traynor et al. 2016).

Genomic breeding value estimation in honey bees has been tried in simulation studies, and
single step genomic BLUP (ssGBLUP) appeared as an efficient solution (Bernstein et al. 2021;
Gupta et al. 2013) to combine pedigree information with genomic information. The simulations
showed that ssGBLUP can increase the accuracy of genomic breeding values considerably and
enables high genetic gains, if the infrastructure is appropriately adapted. Augmenting ssGBLUP
with trait-specific weights leads to weighted ssGBLUP (WssGBLUP) (Wang et al. 2012),
which can increase the prediction accuracy further, as results from other species have shown

(Lourenco et al. 2014; Teissier et al. 2019; Vallejo et al. 2019).

To our knowledge, only simulated results on genomic estimated breeding values in honey bees
have been published until now. In this study, we firstly report the predictive abilities and the

bias of PBLUP, ssGBLUP, and WssGBLUP for a number of key traits of economic importance

in a large breeding population of honey bees.

4.2 MATERIALS AND METHODS
4.2.1 Data

Pedigree and performance data from the Apis mellifera carnica population were used, since the
genotyped queens belonged to this subspecies, which is native and widespread in Central
Europe (Lodesani and Costa 2003; Ruttner 1988; Wallberg et al. 2014). The data was
downloaded from BeeBreed on the 14th of February 2021, totalling 201,304 valid performance
tests and pedigree data of 234,519 queens. The dataset was reduced and refined to the queens
and performance tests relevant to compare classical and genomic selection, as follows.

Performance tested queens on apiaries from test year 2010 on formed the set of potential
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phenotypes. Queens with a valid phenotype whose genotypes passed the quality control (see
below) defined the seed. In an iterative process, phenotypes were added by (1) the completion
of testing apiaries, (2) the completion of sister groups, and (3) the closing of pedigree gaps,
until no further phenotypes could be added. Finally, the full ancestry of all resulting queens was
added without phenotype. The final enriched dataset contained 36,509 phenotypes in a pedigree
of 44,183 queens and 4512 sires composed of DPQ. Table 4.1 lists the countries of origin for

all colonies.

Table 4.1 Number of phenotyped and genotyped queens included in the data set by country.

Country Phenotyped Genotyped
queens queens after
quality control

Germany 24,019 1982

Austria 9618 372
Italy 796 1
Switzerland 619 17
Ukraine 467 0
Belgium 368 4
Netherlands 275 11
Sweden 133 0
France 117 0
Croatia 91 2

The phenotypes covered honey yield, gentleness, calmness, swarming drive, hygienic behavior,
and Varroa infestation development (VID). Honey yield was measured in kg, and the values
were corrected for outliers as described in (Hoppe et al. 2020). Gentleness, calmness, and
swarming tendency were recorded as marks from 1 to 4 where 4 is best. Records for these traits
were discarded if all colonies on an apiary received the same mark. For hygienic behavior,
larvae were artificially killed with a pin and the percentage of cleared cells was recorded

(Biichler et al. 2013). VID indicates the resistance of a colony against Varroa, based on the
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change of the level of Varroa infestation from early spring to late summer (see Hoppe et al.
2020 for the calculation of VID). For a measurement of Varroa infestation, a bee sample is
taken from the hive, and the number of mites per 10g bees is determined (Biichler et al. 2013).

Table 4.2 shows the descriptive statistics of the phenotypes available for each trait.

Table 4.2 Descriptive statistics for honey yield, gentleness, calmness, swarming drive, hygienic
behavior, and Varroa infestation development (VID). Honey yield is given in kg. Marks from 1
to 4 were recorded for gentleness, calmness, and swarming drive. Hygiene is given as the
percentage of cleared cells. VID is a Varroa resistance score and higher values indicate more

resistance.

Trait Number Number of Average sizeof Mean SD  Min. Max.

of genotyped apiaries with a
records queens with genotyped queen
record (SD)

Honey 35,888 2,046 13.62 (8.33) 40.71 22.84 0 199.8

yield
Gentleness 35,187 2,013 13.80 (8.48) 3.52 048 1 4
Calmness 34,652 2,016 13.76 (8.50) 349 048 1 4
Swarming 26,937 1,549 14.57 (8.88) 3.55 0.76 1 4

drive
Hygienic 23,924 1,781 13.36 (7.86) 62.26 23.13 0 100
behavior

VID 24,650 1,787 13.48 (7.85) -1.55 238 -77.12 693

The 100-K-SNP chip (Jones et al. 2020) was used to genotype 2970 queens which were
registered on BeeBreed and born between 2009 and 2017. Markers which were called in less
than 90% of the samples, had minor allele frequency below 1%, or showed significant
deviations from Hardy-Weinberg-equilibrium after Bonferroni-correction (chi-square p-value

< 0.05 X 10~°) were removed. This left 63,240 markers for further analysis. 312 queens were
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removed because less than 90% of all the valid markers were called in their samples. After
comparisons of daughter and parent based on the number of opposing homozygotes, 207 queens
were removed. Subsequently, 62 samples were removed based on comparison of genomic and
classic relationship matrix (Calus et al. 2011). This left 2389 genotyped queens for further

analysis.

4.2.2 Model and genetic parameters

The complex collaboration between the workers and the queen of a colony must be reflected in
the model, and carefully analyzed in the calculation of genetic parameters (Brascamp and Bijma

2019). The phenotype, y, of a colony is modeled as
y=ay+mgy+te, 4.1)

where ayy is the direct effect of the worker group in the colony, and m, the maternal effect of

the queen in the colony, while e is a non-heritable residual.

The phenotypic variance was calculated according to formula (2) in (Brascamp and Bijma

2019) as

O-zgh = Abaseo-c% + O-rzn + Ogm + Ueza 4.2)

where o2 and 02 are the additive genetic variances of direct and maternal effects, g, is the
covariance between direct and maternal effects, 02 is the residual variance, and A, is the
average relationship between two workers of the same colony in the base population. The
variance components were estimated via AIREML with the complete phenotypic information,
using the model for PBLUP (see below). We used 445, = 0.40 (Brascamp and Bijma 2019),
because even the oldest queens in our pedigree came from populations with established mating
control (Armbruster 1919). The heritabilities of direct and maternal effects, and the total
heritability, h2, h2,, and h% were calculated according to formulas (6b), (6c), and (7c) in

(Brascamp and Bijma 2019) , respectively, as

2 2
2 _ 2 /.2 2 _ 2 /.2 2 _ 9atom+20am 43
ha—Abaseaa/aph,hm —O'm/O'ph and h =T (4.3)

P
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However, because the Beebreed dataset relies on colony based selection (CBS), we calculate
the heritability of the corresponding selection criterion, hZgs (derived as formula (6) in

Bernstein et al. 2021; called accessible heritability in Hoppe et al. 2020), as

thS = Apase h%‘ . (4.4)

4.2.3 Breeding value estimation

The following mixed linear model was used for PBLUP.
y=Xb+Z,a+Z,m+e, 4.5)

where y is a vector of observations on colonies; b a vector of fixed effects (year and apiary); a
a vector of direct effects of queens, worker groups or sires; m a vector of maternal effects of
queens, worker groups or sires; e a vector of residuals; and X, Z,, and Z,,, are known incidence
matrices for b, a, and m, respectively. The expected values of a, m, and e were assumed to

equal 0, with the following variances:

a 02A o,,A 0
Var <m> =|oumA oiA 0 |
e 0 0 o2l

(4.6)

where A is the honey bee specific numerator relationship matrix derived from pedigree
(Brascamp and Bijma 2014), I is an identity matrix, and 62, 62, 04y, and o2 are the additive
genetic variance of worker and queen effects, their covariance and the residual variance,

respectively.

The model equation and variances for ssGBLUP were the same as for PBLUP, except for the
fact that matrix H replaced matrix A. Matrix H was constructed from the numerator relationship
matrix A which is calculated from pedigree information, and the marker information in the
following steps (Aguilar et al. 2010; Christensen and Lund 2010). The genomic relationship

matrix , G, (VanRaden 2008, method 1) was constructed by the following equation.
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7Z7 4.7)

G = )
2Yipi(1—pp)

where p; is the allele frequency of the SNP at locus i; Z = M — P with M containing the marker
information of all genotyped queens given as 0, 1, 2, and matrix P defined column-wise by
P;j = 2p; for all j. Matrix G was adjusted to A by adjusting the means of diagonal and off-
diagonal elements as described by (Christensen et al. 2012). To have an invertible genomic
relationship matrix, we used the weighted genomic relationship matrix, G,,, given by the

following equation.
G,, = 0.95G + 0.05A,, (4.8)

where A is the submatrix of A relating to the genotyped animals. Finally, the inverse of H was

computed according to the following formula.

0 0 ) (4.9)

H‘1=A‘1+( 1 _ A
0 G, '-Aj

The model equation and variances for WssGBLUP were the same as for ssGBLUP, except for
the fact that matrix G* replaced matrix G. Matrix G* was constructed from the vectors of direct
and maternal additive genetic effects, a and m, and the genomic relationship matrix G,,, which
were obtained from ssGBLUP. The vectors of the direct and maternal SNP effects, u and v,
were estimated by:

— Tc—1
u=AM"G, a, (4.10)

v=AMTG;'m,

with A = where p; and M have the same value as in ssGBLUP. SNP weights d were

1
2%pi(1-py)’
calculated using the average of the direct and maternal SNP effects, deviating from the original

algorithm which considered only single-trait models (Wang et al. 2012) as follows.

(4.11)

u; + v\ 2
di=( 12 l) 2p;(1—py).

Diagonal matrix D was defined by D;; = d;/ d , where d is the average of d. The trait-specific

matrix G* was calculated by the following formula.
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ZDZT (4.12)

G = ,
22ipi(1—p;)

where Z is the same matrix as in ssGBLUP.

Programs from the BLUP90 software (Misztal et al. 2002) were used to estimate the genetic
parameters, predict breeding values and calculate relationship matrices G and G*. To account
for the specifics of honey bees, PInCo (Bernstein et al. 2018) was used to calculate the pedigree-

based relationship matrices. Equations (4.8) to (4.11) were implemented in R (R Development

Core Team 2020).

4.2.4 Validation

We performed two types of cross-validation. In the generation validation, estimated breeding
values (EBV) were predicted using PBLUP, ssGBLUP and WssGBLUP (1) without the
phenotypes of all queens born in 2017 or later, and (2) without the phenotypes of queens born
in 2016 or later. The EBV of the 265 genotyped queens born in 2017 from scenario 1 were
pooled with EBV of the 994 genotyped queens born in 2016 from scenario 2.

In the five-fold cross-validation, only apiaries with at least five performance tested queens were
included to ensure reliable estimates of fixed effects. This left 1281 genotyped queens for the
validation. The 1281 queens were split into five partitions, where apiaries were evenly
distributed onto the partitions. For each partition, EBV were estimated using PBLUP, ssGBLUP
and WssGBLUP without the phenotypes of the animals on this partition, and the results from

all partitions were pooled. The procedure was repeated six times.

To assess the predictive ability of PBLUP, ssGBLUP and WssGBLUP, predicted phenotypes
were correlated to phenotypes corrected for fixed effects, where the predicted phenotype of a
colony is the sum of the direct effect of its worker group and the maternal effect of its queen.
For each method to predict EBV, the phenotypes corrected for fixed effects were calculated
using fixed effects from the same method. In the generation-validation, PBLUP, ssGBLUP and

WssGBLUP were run on the complete data set to obtain appropriate fixed effects. In the five-
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fold cross-validation, the fixed effects for the correction of the phenotypes were taken from the

same run of the same partition as the predicted phenotypes.

A bootstrap procedure was used to test whether the predictive abilities of WssGBLUP and
ssGLUP were significantly higher than the predictive ability of PBLUP. 10,000 bootstrap
sample vectors were constructed by sampling validation queens with replacement, and the
predictive ability with PBLUP, ssGLUP, and WssGBLUP was calculated for each vector. Two
methods were considered significantly different, if the same method had higher predictive
ability in 97.5% of all sample vectors (p-value of 0.05 in a two-sided test). Similar bootstrapping

methods were used in other studies (Iversen et al. 2019; Legarra et al. 2008).

The regression coefficient of realized total EBV of queens on predicted total EBV of queens, b4,
was used as a measure of bias. Values of b; < 1 and b; > 1 indicate inflation and deflation of
the predicted breeding values compared to the realized total EBYV, respectively. For both the
generation validation and the five-fold cross-validation, the realized total EBV of a queen and
its predicted total EBV were the sum of its direct and maternal effect calculated using the
complete data set, and restricted data, respectively. The predicted total EBV of PBLUP,
ssGBLUP, and WssGBLUP were compared to realised total EBV from the same method.

4.3 RESULTS

4.3.1 Genetics parameters

Estimates of the genetic parameters are shown in Table 4.3. The total heritability was very high
for gentleness and calmness, medium for hygienic behavior, honey yield and swarming drive,
low for VID. All traits showed considerable negative genetic correlations between maternal and
direct effects. The heritability for direct effects was considerably larger than the heritability for
maternal effects in gentleness, calmness, and hygienic behavior, but equal to or smaller than the

heritability for maternal effects for all other traits.
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Table 4.3 Estimated variance and covariance components, genetic parameters derived from
these (co)variances. The approximate standard deviations are given in brackets. VID, Varroa
infestation development, the last nine columns show the additive genetic variances of direct
(62) and maternal effects (c7), their covariance (0gy), the residual variance (cZ), the
heritabilities of direct effects (h2), maternal effects (h2,), the genetic correlation (rg), the total

heritability (h%), and the heritability for the selection criterion in colony based selection (h:gs).

Trait o’ a2 Oam o? h? hZ, T h? h%g¢
Honey 27.235 13.841 -6.124 61.549 0.136 0.173 -0.315 0.360 0.144
vield  (5406)  (3.015) (3372) (1.476)  (0.027)  (0.037)  (0.142)  (0.047)  (0.019)
Gentleness  0.134 0.027 -0.020 0.062 0.435 0.221 -0.325 0.991 0.396
(0.016)  (0.006)  (0.008)  (0.003)  (0.053)  (0.049)  (0.096)  (0.083)  (0.033)

Calmness 0.103 0.019 -0.013 0.059 0.387 0.181 -0.289 0.907 0.363
(0.013)  (0.005)  (0.006)  (0.003)  (0.048)  (0.043)  (0.105)  (0.076)  (0.03)

Swarming 0.143 0.054 -0.008 0.356 0.124 0.117 -0.087 0.394 0.158
drive  (0.033)  (0.017)  (0.019)  (0.010)  (0.029)  (0.037)  (0.249)  (0.056)  (0.022)
Hygienic 111.61 25.571 -5.454 174.73 0.186 0.107 -0.102 0.527 0.211
behavior  (22.027)  (8.508)  (10.688) (5.688)  (0.037)  (0.035)  (1.645)  (0.064)  (0.026)
VID 0.159 0.068 -0.028 0.619 0.088 0.095 -0.270 0.236 0.095
(0.045)  (0.024)  (0.027)  (0.014)  (0.025)  (0.033)  (0.275)  (0.044)  (0.018)

4.3.2 Accuracy of breeding values

The predictive abilities of the methods under investigation in the generation validation are
shown in Figure 4.1. Compared to PBLUP, the predictive ability was improved with
WssGBLUP for honey yield (94%), swarming drive (7%), gentleness (6%), calmness (5%), and
VID (20%), and with ssGBLUP, improvements were observed for honey yield (48%), VID
(41%), and gentleness (6%). The improvement with WssGBLUP over PBLUP for honey yield
was statistically significant. No improvement was observed for hygienic behavior, and

ssGBLUP did not yield a higher accuracy than PBLUP for calmness and swarming drive.
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Figure 4.1 Predictive abilities of pedigree-based BLUP (PBLUP), single step genomic BLUP
(ssGBLUP) and weighted ssGBLUP (WssGBLUP) in the generation validation.

The accuracies of the methods under investigation in the five-fold cross-validation are shown
in Figure 4.2. Improvements over PBLUP were achieved for swarming drive (20%), honey
yield (15%), calmness (2%), and gentleness (3%) with WssGBLUP. Improvement over PBLUP
with ssGBLUP were achieved for honey yield (10%), and swarming drive (3%). The
improvements with WssGBLUP over PBLUP were statistically significant for calmness and

swarming drive. No improvement was observed for hygienic behavior and VID.
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Figure 4.2 Mean Predictive abilities of pedigree-based BLUP (PBLUP), single step genomic
BLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) in the five-fold cross-validation,

calculated across the six repetitions. The standard deviations over the six repetitions are not

shown, as they were smaller than 0.007.
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Overall, both validations showed similar results, although the predictive ability was higher in
the five-fold cross-validation, and the increases in predictive ability with ssGBLUP and

WssGBLUP over PBLUP were higher in the generation validation.

4.3.3 Bias of breeding values

Bias was calculated as the regression coefficient b; of total realised EBV on total predicted
EBV. The results for EBV from PBLUP, ssGBLUP and WssGBLUP in the generation validation
are shown in Figure 4.3. The regression coefficient b; deviated the most from 1 for honey yield
and VID with -0.33, and -0.28, respectively, for PBLUP. The results for WssGBLUP, and
ssGBLUP are rather similar to each other, and more stable across the traits than with PBLUP.

With WssGBLUP, the regression coefficient b; deviated from 1 by a number between -0.13 and

-0.26 across all traits. The results for all three methods show inflated EBV estimates.
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Figure 4.3 Regression coefficient by of pedigree-based BLUP (PBLUP), single step genomic
BLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) in the generation validation.

The results for EBV from PBLUP, ssGBLUP and WssGBLUP in the five-fold cross-validation
are shown in Figure 4.4. For PBLUP, the regression coefficient b; deviated from 1 by a number
between -0.20 and -0.36. The deviations of b; from 1 for ssGBLUP were slightly higher, and
WssGBLUP showed the highest bias for all traits. All three methods showed inflated EBV

estimates.
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Figure 4.4 Mean Regression coefficient by of pedigree-based BLUP (PBLUP), single step
genomic BLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) in the five-fold cross-
validation, calculated across the six repetitions. The standard deviations over the six repetitions

are not shown, as they were smaller than 0.004.

4.4 DISCUSSION

4.4.1 Genetic parameters and predictive ability

The estimated genetic parameters (Table 4.3) are in line with the results for the multiple trait
models of the complete Beebreed data set (Hoppe et al. 2020). The results on the predictive
abilities in the generation validation (Figure 4.1) and in the five-fold cross-validation (Figure
4.2) show improvements with WssGBLUP over PBLUP for honey yield, gentleness, calmness
and swarming drive. These results were within the range reported for data sets of similar size
in dairy goats (Legarra et al. 2014a), or for traits affected by maternal effects in beef cattle

(Lourenco et al. 2015) or pigs (Putz et al. 2018).

The results on the difference in predictive ability between WssGBLUP and PBLUP can be
explained with the results on the heritabilities (Table 4.3). Because simulation studies in honey
bees showed greater increases in predictive ability with ssGBLUP over PBLUP for maternal
effects than for direct effects (Bernstein et al. 2021), traits with a higher heritability for maternal
effects than for direct effects can be expected to show higher increases than other traits in

predictive ability with WssGBLUP and ssGBLUP over PBLUP. Honey yield and swarming
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drive showed the highest improvements in predictive ability with WssGBLUP over PBLUP,
and the heritability for maternal effects is equal to or greater than the heritability for direct
effects in both traits. Although the heritability for maternal effects is also equal to the heritability
for direct effects in VID, the results for this trait are rather ambiguous. This is due to the low
total heritability for this trait, because simulation studies in honey bees and other species show
that traits with low heritability also have low accuracy of pedigree-based and genomic EBV
(Gowane et al. 2019; Gupta et al. 2013). This result stands out from other species where
maternal effects are modelled, as in beef cattle (Lourenco et al. 2018) and simulation studies
for beef cattle and pigs (Lourenco et al. 2013; Putz et al. 2018), the predictive ability for direct
effects showed higher increases in predictive ability with ssGBLUP over PBLUP than the

predictive ability for maternal effects.

An analogy between direct effects in honey bees and traits in other species can explain, why
traits with a higher heritability for direct effects than for maternal effects (e.g. hygienic
behavior) showed less increase in predictive ability from PBLUP to WssGBLUP than other
traits of similar total heritability (e.g. swarming drive). For our study, only queens were
genotyped, since they are the candidates of selection. The primary selection candidates in dairy
cattle or pigs are males. For traits for which only females are phenotyped, simulations showed
that male selection candidates should be genotyped to achieve high genetic gain, but including
additional genotypes of females increases the accuracy of prediction considerably (Buch et al.
2012; Lillehammer et al. 2011; Plieschke et al. 2016). The situation of the direct effects of
queens and workers in our study is similar to the situation of males and females in dairy cattle
and specific traits in pigs, respectively, since direct effects quantify the impact of workers on
the phenotypes of colonies. The results on dairy cattle and pigs suggest that genotyping queens
has the highest priority, but including genotypes of workers might increase the accuracy of
genomic prediction, especially for direct effects. To our knowledge, there are no studies in
honey bees on this subject. However, since the workers of a hive belong to different patrilines,
the price for genotyping enough workers to represent the workers as a whole is probably too

high in practice.

The results for the Varroa resistance related traits were also by problems in gathering data. The
number of genotyped queens with phenotype for both traits was about 200 queens lower than

for honey yield, gentleness, and calmness. Furthermore, the number of phenotyped queens on

81



apiaries with a genotyped queen (Table 4.2) was low for the Varroa related traits, which might
have led to less accurate fixed effects. However, Varroa specific hygienic behavior is the subject
of ongoing research (Conlon et al. 2019; Farajzadeh et al. ; Mondet et al. 2020). The discovery
of new quantitative trait loci (QTL) which are then covered by causative SNPs on a new chip

can increase predictive ability for the Varroa related traits considerably.

The predictive ability of ssGBLUP was slightly lower than the predictive ability of WssGBLUP
for most traits. This result is common in studies for several other agricultural species using
WssGBLUP (e.g. Lu et al. 2020; Teissier et al. 2019; Wang et al. 2014). In simulation studies
(Lourenco et al. 2017; Wang et al. 2012), WssGBLUP had higher predictive ability than
ssGBLUP when the trait was controlled by few QTL, and both methods showed equal predictive
ability when the trait was polygenic. As the predictive ability for VID was higher with
ssGBLUP than with WssGBLUP in both validations, the genetic architecture of the trait appears
to be highly polygenic. However, this is a preliminary conclusion, as VID has the lowest
heritability of the traits we considered, due to the many factors that affect it (see Guichard et al.

2020a for a review).

The predictive abilities in the five-fold cross-validation were for the majority of the traits higher
than in the generation validation. This is due to the fact that in the five-fold cross-validation,
sibling groups are evenly distributed across the partitions, while the phenotypes of whole sibling
groups might be removed for the calculation of EBVs in the generation-validation. Therefore,
the five-fold cross-validation is a validation within sibling groups, while the generation
validation is similar to a validation across sibling groups. Studies in other species found that
validations within sibling groups show higher predictive abilities than validations across
siblings groups (Gao et al. 2019; Kjetsa et al. 2020; Legarra et al. 2008). The standard deviations
of the predictive abilities in the five-fold cross-validation were extremely small in our study,

but the predictive abilities for individual partitions showed large differences.

According to a simulation study in honey bees (Bernstein et al. 2021), the size of the reference
population in our study is close to the minimal size which should be available to initiate a
breeding program. We expect the reference population to grow in the future, when breeders

start to apply genomic selection.
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The larger reference population is likely to obviate the need to run WssGBLUP instead of
ssGBLUP, since a simulation study showed that WssGBLUP and ssGBLUP yield the same
results for large reference sets (Lourenco et al. 2017). The larger reference population will also
result in an increase of the predictive ability of genomic methods, as results from other species
demonstrate (Daetwyler et al. 2012; Lourenco et al. 2015; Mehrban et al. 2017; Moser et al.
2009).

4.4.2 Bias of the estimated breeding values

The regression coefficients, b; of realised total EBV of queens on predicted total breeding
values of queens are shown in Figure 4.3 for the generation validation. The results for
WssGBLUP deviate slightly further than -0.15 from 1 for honey yield, gentleness, and
calmness. As 0.15 is seen as the maximum deviation from 1 for acceptable EBV (Tsuruta et al.
2011), our results for these traits are biased. The results of the five-fold cross-validation (Figure
4.4) confirm that the estimates show high inflation. The difference between the validations is
due to the different ways of accounting for fixed effects. In the generation validation, the same
value of the fixed effect was modelled for all colonies on the same apiary in a single year, while
in the five-fold cross-validation different values of the fixed effect for colonies on the same
apiary in a single year were used, depending on the partition. This difference was exacerbated
by the small apiaries in honey bees, which lead to a higher variance of the predicted EBV in the
five-fold cross-validation than in the generation validation, and consequently lower regression
coefficients. Results from routine evaluations are expected to be closer to the generation
validation, where the bias was acceptable for swarming drive, hygienic behavior, and VID, and

close to acceptable for the remaining traits.

The bias with genomic methods can be reduced by e.g. increasing the share of the classic

relationship matrix A, in Equation (4.8) (McMillan and Swan 2017; Misztal et al. 2017).

However, considerable bias was neither observed in simulations for honey bees (Bernstein et
al. 2021) for PBLUB and ssGBLUP, nor the Austrian data set (Brascamp et al. 2016) with
PBLUP. Since, our data set is a small outtake of a very large population, we expect that PBLUP

and genomic breeding values will show less bias as the data set increases.

4.4.3 Practical application of genomic selection in the honey bee
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Gathering genomic data from honey bees for genomic selection requires special considerations,
due to their small body size, and their genetic diversity within a hive. Non-lethal ways to
genotype queens are available for genomic selection (Jones et al. 2020). The exuviae which
queens leave behind after hatching offer a non-lethal option to genotype virgin queens, but just
one exuvia is available for each queen, and exuviae showed low DNA quality in several cases.
Alternatively, drones can be gathered from a hive to genotype the queen, since drones are
haploid offspring. This method is a viable option to genotype queens before the colony is

phenotyped.

The availability of genomic breeding values offers new possibilities in breeding schemes for
honey bees. Queens can be genomically preselected by genotyping candidate queens, and
keeping only the ones with the highest genomic breeding value for phenotyping or deployment
as DPQ on mating stations. A simulation study suggests that genomic preselection can increase
the genetic gain per year considerably, if a budget to genotype at least 1000 queens per year is
available' (Bernstein et al. 2021). Another simulation study suggests, that if the structure of the
breeding program is changed so that several generations of queens are genomically preselected
in a single summer, the generation interval will at least be halved, enabling even higher genetic

gains (Brascamp et al. 2018).

The routine evaluations of queens on a SNP chip can also benefit beekeepers by checking the
subspecies of the queens and monitoring the genetic diversity within the population.
Conservation efforts have been initiated for several subspecies in Europe (De la Rua et al. 2009;
Janczyk et al. 2021; Pinto et al. 2014), at least in part because locally adapted ecotypes have a
higher survivability (Biichler et al. 2014). While microsatellites offer a cheap and widely used
way to monitor genetic diversity in honey bees (Meixner et al. 2013), a sufficiently high number

of SNPs is more accurate when the SNPs are properly validated (Mufoz et al. 2017).

4.5 CONCLUSIONS

WssGBLUP offers significantly greater predictive ability than PBLUP for honey yield,

calmness, and swarming drive. For gentleness, the predictive ability of WssGBLUP was greater

! The submitted version of the manuscript inaccurately stated that all 1000 genotyped queens had to be
phenotyped.

84



than the predictive ability of PBLUP to a similar degree as for calmness, but the difference
remained below the threshold for significance. Across all traits, the bias with WssGBLUP and
ssGBLUP was close to the bias with PBLUP. However, ssGBLUP offers too little improvement
over PBLUP to be recommended based on the current data set for Varroa resistance traits, which
is likely due to the size of the reference population. A larger reference population or the
discovery of new causative SNPs for Varroa resistance are required to increase the predictive
ability of genomic methods for hygienic behavior and VID. The results suggest that genomic

selection can be successfully applied to honey bees.
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5 Conclusion and outlook

This thesis realised the first genomic prediction on a large population of honey bees, and
analysed the genomic breeding values in simulations to compare several strategies to optimally
use genomic selection in the honey bee. To ensure the highest possible quality for the estimated
pedigree-based and genomic breeding values, this thesis presented a fast, memory-efficient
algorithm to facilitate the calculation of the honey bee-specific inverse numerator relationship
matrix on a large data set, according to the most recent model (Brascamp and Bijma 2014). The
algorithm proved to be useful for this thesis (Sections 3.2.6 and 4.2.3), as well as in simulation
studies (Du et al. 2021a; 2021b; Plate et al. 2019a), and routine breeding value estimations for

European beekeepers (Hoppe et al. 2020).

For the estimation of genomic breeding values, method ssGBLUP was used in this thesis in a
simulation study as well as on a real data set, where WssGBLUP was additionally implemented.
Both studies validate that the algorithms for genomic prediction offer breeding values of higher
quality than pedigree-based prediction. For some traits in the real data set, however, PBLUP
had a higher predictive ability than ssGBLUP and WssGBLUP (Section 4.3.2), which is largely
due to the limited reference population size, as the simulated data shows (Sections 4.4.1 and
3.3.2). The simulations predict that expanding the proportion of genotyped queens heading
phenotyped colonies would yield considerably more accurate genomic breeding values in the
real data set. However, differences between the traits must be expected due to their different
genetic parameters. Traits which are more affected by the direct effects of the workers than by
the maternal effects of the queens, especially the Varroa traits, require larger reference
populations than traits which are more affected by maternal effects than by direct effects, such

as honey yield or swarming drive.

After a reference population has been established, genotyping a minimum number of 1000
queens per year is required at the start of a genomic breeding program in honey bees (Chapter
3). While only breeding queens were genotyped in the real data set, ssGBLUP was adjusted to
include the genotypes of DPQs for the simulation study. The genetic gain with several breeding
schemes was estimated and compared to the required budget for genotyping queens. Genomic

preselection offered significantly higher genetic gain than pedigree-based selection, and can
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already be realised since reliable methods for non-lethal genotyping of queens are available

(Jones et al. 2020).

To summarise, this thesis provides new insights into the efficient calculation of breeding values
in large populations of honey bees which enables complex simulation studies for researchers,
and more accurate selection decisions for breeders. The use of genomic data will accelerate
genetic gain in economically important traits in honey bees. The thesis described methods for
genomic prediction comprehensively, expanded them, and analysed realistic breeding schemes
for genomic selection. The results provide guidelines for bee breeders to achieve optimal

genetic gains with genomic selection.

The method for breeding value estimation used in this thesis is open to further improvements.
To allow more accurate breeding decisions for populations with less common types of mating,
e.g. single drone insemination, the software for the calculation of the inverse numerator
relationship matrix and coefficients of inbreeding requires further adaptation. Subsequently,
simulation studies for genomic selection could optimise nucleus breeding schemes employing
single drone insemination along with traditional mating control. Because single drone
insemination offers very precise control over the genetic quality of the offspring, breeders can

aim for higher genetic gain.

The changes of genetic variance due to genomic selection, and the cost-efficient maintenance
of the reference populations over several generations are important concerns for breeders. The
software for simulating breeding populations requires further adjustment to investigate these
questions, and develop breeding schemes employing shorter generation intervals in honey bees.
Such breeding schemes promise even higher genetic gain than GPS, but could also lead to

considerable loss of genetic diversity (Appendix L).

Worldwide, there are several subspecies of the honey bee (Apis mellifera) and they should be
maintained, since native subspecies are usually better adapted to the local environment in a
particular area than imported subspecies (Biichler et al. 2014). However, beekeepers often
consider outbred subspecies, e.g. Apis m. carnica or Apis m. ligustica, as economically more
viable and the import of foreign queens threatens to hybridize or replace native subspecies (De
la Ruaa et al. 2009; Theisen-Jones and Bienefeld 2016). While some native populations, e.g.

Apis m. ruttneri on Malta, are too small for directed selection (Plate et al. 2020), genomic
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selection can contribute to the adaptation of native populations of appropriate size to the
requirements of beekeepers. Chapter 4 focused on a data set from the Central European Carnica
population, and the simulated level of linkage disequilibrium in Chapter 3 was taken from the
real data set. The level of linkage disequilibrium in the Carnica population is rather high
compared to other subspecies, although different values have been reported (Supplementary
Figures 4 and 1 in Wallberg et al. 2014 and Parejo et al. 2016, respectively). Therefore, genomic

selection in other subspecies, is expected to require larger reference populations.

To discover the secrets of honey bee social behaviour and biology and to improve health,
production and workability, a better understanding of the honey bee genome is required.
Genome-wide association studies establish links between differences in these traits and genetic
mutations to broaden our knowledge of QTLs. The genotyped queens used for the genomic

prediction in a real data set in this thesis provide promising material for association studies.
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Appendix A: Variance of Mendelian sampling terms

In this Appendix, we state the formulas for the variances of the Mendelian sampling terms for
single queens, DiQ, or between full-sibs, D5 in the cases where at least one parent is unknown.

Note that both terms are needed to calculate the diagonal entry of sire in D.

Consider a breeding unit i. Let F; and F,; be the inbreeding coefficients belonging to the sire
and the dam of i, respectively. The coefficient of coancestry between two DPQs in s is Ff>.
Their number is given by ng. The probability that two full-sibs descend from the same drone is

p1- Their chance of descending from the same DPQ, including p;, is p,.

1. Ifthe dam of i is known, but not the sire, then

3—F,
Q d
Di - 4 ) (Al)
Fs _ 1 p2—D1
DFS == [p, + 2222 (A.2)
2. [If the sire of i is known, but not the dam, then
1 1+F —1FFS
pl=1-— s _Is s (A.3)
t ng 4 ng 2
Fs _ 1 1 FS
DFS =2 [ 14+ =B+ (p - —) (14 B — 265, (A4)
S
3. If the parents of i are unknown, then
Q _
D=1, (A.S5)
1 ng—1
DFS = — 1 , A.
e [1+p1+p2] (A.6a)

where we assumed that the full-sibs or DPQs have a common dam. However, when they

are unrelated, the following should be used

DFs =o. (A.6b)

l
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Appendix B: Correction of two formulas in Brascamp and Bijma
(2014)

Here, we derive the formulas (A.4) and (A.2) for the variance of the Mendelian sampling terms
in two special cases. Brascamp and Bijma (2014) provided proofs of the remaining formulas.

We will use the formula

1 1
aizzad+§a5+6i, (B.1)
which relates the breeding value, a;, of animal i to the breeding values, a; and a,, of its dam,
d, and its sire, s, leaving the Mendelian sampling term, §;, as a residual. We also require the
coefficient of coancestry, Fj, of a breeding unit, i, to its sire, s. It is given by
1111+4+E ng—1

F.o=— FFS+F ], B.2
is 2115 2 + ng S + ds ( )

where ng the number of DPQs in s. We will use A;; and D;; to denote entries in A and D,

respectively.

1. A Sire with an Unknown Dam.

Let i be a sire, let s be its sire, and let its dam be unknown. Equation (B.1) takes the form

1
a; = Eas + 61’- (B3)
We take the variance, divide by 7, and assume that §; is independent from a.

Dj; = Ay — — Ags. (B.4)

We replace the relationships by inbreeding and coefficients of coancestry. Let s contain ng

DPQs.
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1 ng—1 11+F 1ng—1
Dy=—+——2FFS _—__S5__5

ng ng 4 ng 2 ng

K (B.5)

We can use (B.2). The coefficient of coancestry between the DPQs in i, whose dam is unknown

follows from (2.10). From this we get

1 11+E 1ng—1

ng 4 ng 2 ng

ii Ffs
B.6
1ng—1 (B.6)

o [142p; + (p; —p)(A+ E) + (1 — py)2F5] .
S

We split the terms into D9, which is given by (A.3), and D/ according to (2.5). We have
ps _ 1 1 FS
D =2t4p =B+ (p-—)A+E-2E)] (a9
S

This contradicts the result in case 5 in Appendix 1 of Brascamp and Bijma (2014).
2. Full-sibs with an Unknown Sire.

Let i and j be full-sibs, d their dam, and suppose we do not know their sire. We leave the term
relating to the sire out in (B.1), and consider the covariance of their breeding values, a; and a;.
We treat the Mendelian samplings as independent from the breeding values. After rearranging,

we have
1
Dij = AU - ZAdd . (B7)

We replace the relationships by coefficients of inbreeding and coancestry, arriving at
1

The relationship between full-sibs with unknown father is given by

1 1 P2 —P1

We replace F;g4, and arrive at

102



Dy = [p + 211, (A2)

This contradicts the result in case 6 in Appendix 1 of Brascamp and Bijma (2014).
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Appendix C: Inversion of D

The blocks of D are the full-sib groups in the population. Here, we consider a full-sib group
and its corresponding submatrix, K. Matrix D is a block diagonal matrix. Therefore, every block
can be inverted separately. The value of the ith diagonal entry in K is determined by the type
breeding unit that i has, and the number of bees contained in i, if i is a sire. For a queen, the

diagonal entry is given by
Kii = K. (C.1)
The diagonal entry of a sire containing s bees is given by
Kii = Kng(s) - (C.2)
The diagonal entry of a worker group is given by
K = Ky . (C3)
The off-diagonal entries of K are all equal to Ky, .

K~ is a symmetric matrix. The value of entry Ki;l in K~ 'depends on the types of the breeding
units i and j. Let ng, be the number of (breeding) queens in K excluding all DPQs. Different
sires may contain different numbers of DPQs. For every non-negative integer r, let mg, be
the number of sires in K that contain exactly r bees. If there is a worker group in K, then the

solutions are given by the following equations. Let i be a queen, then

Kt = — C.4
Let i be a sire containing r DPQs, then
Kt = (C.5)
! Knsiry — Kw . ’

Let i be a worker group, then
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1 nBQ ms(r)
ki 2.
A2 KW KQ + Kns(r) (C.6)

There can only be one worker in a full-sib group. Let i be this worker group, and j a queen,

then
K;? ! C.7
Let i again be the worker, and j a sire, then
K ! (C.8)
U Kw - Knsiry '
In the remaining cases, it holds that
K;'=0. (C.9)

To check these formulas, multiply an arbitrary row of K to an arbitrary row of K~ 1.

If no worker group is present, the formulas change. They can be proven via the Sherman

Morrison formula (Sherman and Morrison 1950):

Let W be an invertible n X n - matrix, u and v column vectors of length n. If 1 + vTWu # 0
is satisfied, then
W luvTw?
wT V-1 — -1 — . C.10
W™+ uv) 1+ vTWu (€10
Let K contain n breeding units. The oft-diagonal entry is still denoted by Kj,. Putting all

together gives

1 Ky

(1 + X 1%) (K — K)?

(C.11)

and for i # j we have
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Kw

-1 _
Kij = -

Kw

' C.12
(1 + Xicq m) (Kii — Kw) (Kjj — Kw) (12
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Appendix D: Storage and calculation of D

In this Appendix, we discuss how the algorithm creates and handles the matrix of Mendelian
samplings, D. It is a sparse matrix. The non-zero elements are the off-diagonal that connect full-

sibs and the diagonal elements.

The diagonal entries of D are stored in a vector, where D;; is stored at the ith position. The off-
diagonal entries of D are stored in a separate vector. For every full-sib group, K, just one off-
diagonal entry, DES, is stored, because all off-diagonal entries between full-sibs of the same

group have the same value.

When the breeding units are ordered so that full-sibs follow each other directly, then D is a
block diagonal matrix. The following matrix is an example of 8 breeding units, where 3 to 5

belong to full-sib group 1 while 7 and 8 belong to group 2.

0 0 0 0
0 0 0 0

Ds; DS D DfS
D{*® D4 D* Df*
Df* Df* Dss D{*
Di* Df® Df® Dg 0
0 0 0 0 D,, DI
0 0 0 0 DI Dgg

o O O © O
S O O © OO

OOOOOOO»—\b
[
o

oS O O O O O N O
N

In the calculation, it is useful to calculate all entries for a full-sib group, K, when its first member

is reached. The values of D,g and DES are computed after a case distinction based on which
parents are known. This gives us the off-diagonal entry directly, which is also the entry of a

worker, and the entry for queens, while the diagonal entries of sires are obtained via (2.5).
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Appendix E: Merging DPQs for ssGBLUPppq+BQ

In this appendix, we show that merging DPQs of a pseudo-father for ssGBLUP leaves the
breeding values of all other animals unchanged. DPQs are not phenotyped. Therefore, it is
enough to show, that the relationships among the other animals do not change. To do this, we

show:
Hppo+po = BﬁDPQ+BQ B” (E.1)

where ﬁDPQ+BQ (n X n) is the relationship matrix for ssGBLUP. We drop the subscript

DPQ+BQ for this Appendix. H was calculated from the g X g matrix G, and B is a n X n matrix
that merges the rows and columns of a group of DPQs on a mating station. If one PF can be

merged, then all PFs can be merged. We consider a single pseudo-father, p, in the top left corner.

bT 0 _
B = < 1x(n 8)) (EZ)

O(n—1)><8 In—8

where vector b has only é as entry with 8 being the size of the block to merge. Note that G =

BGB”. Christensen and Lund (2010) define H by H = 0.95H"* + 0.05A. where H* is defined
by (4) in (Christensen and Lund 2010).

G GA71lA
H* = ( . . 9 114212 . ) (E3)
Az1AT1G A1A71GATTA 1, + Ay — AATIA

where Aq1, A12, A1, and A,, are the submatrices of A for the genotyped animals, relating the
genotyped animals to the non-genotyped animals, relating the non-genotyped animals to the
genotyped animals, and for the non-genotyped animals, respectively. The analogon holds for
H* with G and A. We have BHBT = 0.95BH*B” + 0.05BAB”. Obviously, BAB” = A holds

true. We need to show
A,,A7IG = A,,A71GB” (E.4)
and

A;1A7{GATIA; = Ay AT{GATIA,, (E.5)
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and
A21A71G = BGA 1A, (E.0)

The proofs are very similar, so we only show (E.4). We define submatrices of A.

d y' xT
A=y x 17T (E.7)
X Z AZZ

where d is diagonal entry of p, y are the relationships of the other genotyped animals to p, and
x are the relationships of the non-genotyped animals to p, matrix X holds the relationship of the
other genotyped animals, and Z the relationships of the other genotyped animals to the non-

genotyped animals. Matrix A has similar submatrices as A.

D 1y’ 1xT
A=|y1tT x 77 (E.8)
XlT Z AZZ

where D is the relationship matrix of the DPQs within p. As all DPQs have the same pedigree
relationships to all other animals, the corresponding submatrices can be written using vectors
of ones, called 1. Note that d = b"Db holds. To prove (E.4), we focus on the following

submatrices of A.

Ay = (d YT) and Ay = (x  Z) (E.9)
y X
Matrix G has similar submatrices as Aq.
- _ ~
Gz(“ bW)andGz(U W) (E.10)
Wb V W vV

where u = bTUb and U relate to p. We use block-wise inversion to calculate A7:. Putting k =

d — y"X 'y, we arrive at:

k—l _k—lyTX—l
A7l = E.11
1 (—X‘1yk‘1 X1 4 X lyk-lyTx ! 11
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To obtain A71, we put K = D — 1y"X'y17 which yields:

~ K1 —K11yTx1
Ajl = “1,4Tg-1 y-1 -1 Ty—1 Ty-1 (E.12)
—-X"'y1'K X7 +X 'y1'K "1y’ X

As all DPQs in p have the same pedigree inbreeding and pedigree relationship to each other, all
diagonal entries of D have the same value, I;, and all off-diagonal entries have the same value,

[,. The Sherman-Morrison formula shows that there are scalars, x and y, such that K = xI +

x"2y11T

T -1 _ ,-1
y11" and K™ = x771 =T

hold true. k = %x + y is the average of K, and the average of

x 2y
1+x~18y

1.1 1, .
K 1is SX 1 =—k 1.1 e., the sum of the entries in K is given by:

1TK 11 =1 (E.13)

Due to the simple structure of K we also have:

1
17K = gk‘llT (E.14)

We consider A,;A71G in two parts. Vector [A,;A71G]; is the column relating p to the non-

genotyped animals.

[A;;ATIG], = (x — ZX " Yy)k~tu + (—xk~1yTX 1 4+ ZX 1 E15)
+ZX yk~1yTX"1)Wb '
The first column of A,;A71GBT is given by:

[A2:A7{GB"];
= (x—ZX 'y)1TK1Ub + (—x1TK11y’X 1 (E.16)
+ZX 1+ zX"ly1TK11y"X"1)Wb

The matrices in (E.15) and (E.16) are equal, because of (E.13) and the following which is
implied by (E.14).

1 _ _
1TK-10b = §k—11TUb =k~ 1bTUb = k~1u (E.17)
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The second part of A,;A71G is matrix [A,;A71G], which relates the other genotyped animals

to the non-genotyped animals.

[A;;A71G], = (x — ZX 1Y)k~ 1bTW + (—xk~1yTX "1 + ZX ™1

(E.18)
+ ZX lyk~tyTX" 1)V

The corresponding submatrix of A,;A71GBT is given by:

= (x—ZX y)1’K~wb + (—x1TK 11y’Xx"1 (E.19)
+ZX 1+ zX"ly1TK11y"X"HV

The matrices in (E.18) and (E.19) are equal, because of (E.13) and the following which is
implied by (E.14).

1TK-1wb = kbW (E.20)
as W is symmetric.

QED
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Appendix F: Accuracy for replacement queens

In this appendix, we derive our formula (3.16) for the accuracy of the replacement queens in

year 8.

O-pW

Por = 5o Pow (3.16)

This is close to the accuracy of replacement queens developed by Brascamp and Bijma (2019).

Formula (10) in (Brascamp and Bijma 2019) states

where A;; is the diagonal entry of the numerator relationship matrix for a particular worker

group. An unnumbered formula before formula (10) in (Brascamp and Bijma 2019)

Spwv Aii = Opw (F.2)

where g,y is the standard deviation of the true breeding value of a single worker from year 8,

which equals
O:;W = O-pR (F3)

where oy, 1s the standard deviation of the true breeding value of the corresponding replacement

queen. Because these queens were not simulated, we approximate:
Opr = Opg (F.4)

This is reasonable, because the replacement queens are the unselected offspring of queens from

year 8. In summary we have

JpW
VAi = P (E.5)

PQ
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Appendix G: Comparison of simulated and estimated genetic gain (Kpp) from year 8 to year 9 in the
simulated breeding population relying on PBLUP

Parameter setting

Average TBV of

Average TBV of

Difference between

abbreviated Estimated Rpg worker groups in worker groups in Simulated Rpp estimated and
Ppw with PBLUP Opw per year year 8 year 9 per year simulated Rpp

MOD 0.6501 (0.035) 0.7777 (0.0335) 0.3506 (0.0315) 2.5768 (0.1422) 2.9352 (0.1433) 0.3584 (0.1048) -0.0078 (0.1103)

HGC 0.5376 (0.0448) 0.5679 (0.0244) 0.2118 (0.0240) 1.4705 (0.1134) 1.6901 (0.1152) 0.2196 (0.0871) -0.0077 (0.0892)

Genetic gain is given in the units of the selection criterion. The simulated values show the difference of the average breeding values between worker

groups of years 9 and worker groups of year 8. For the estimated values, we used formula (3.18), and divided the result by 2.5 to account for the

generation interval. The accuracy for phenotyped worker groups with PBLUB, Pow and the standard deviation of the TBV, o, were taken from

the worker groups in year 8. The difference between the estimated and simulated genetic gain was calculated for each replicate and the average

and the standard deviation among all replicates is given. The difference is small on average and the standard deviation of the difference is slightly

greater than the standard deviation of the simulated genetic gain. Accuracies of breeding values when all BQ from years 4-9 were genotyped
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Appendix H: Accuracies of breeding values when all BQs from years 4 to 9 were genotyped

parameter year 9 year 8 years 4 to 7
setting effect method queens workers queens workers queens workers
maternal PBLUP 0.291 (0.068) 0.386 (0.08) 0.551 (0.039) 0.519 (0.061) 0.572 (0.023) 0.577 (0.033)
ssGBLUPgq 0.506 (0.044) 0.522 (0.057) 0.626 (0.038) 0.592 (0.056) 0.643 (0.024) 0.637 (0.031)
MOD direct PBLUP 0.252 (0.006) 0.274 (0.078) 0.311 (0.044) 0.522 (0.056) 0.4 (0.036) 0.608 (0.034)
ssGBLUPgq 0.357 (0.053) 0.354 (0.074) 0.38 (0.046) 0.553 (0.055) 0.447 (0.037) 0.631 (0.032)
sum of dir. PBLUP 0.202 (0.053) 0.26 (0.061) 0.588 (0.028) 0.65 (0.035) 0.657 (0.018) 0.765 (0.018)
and mat. eff. ssGBLUPgq 0.518 (0.035) 0.486 (0.043) 0.677 (0.025) 0.699 (0.032) 0.716 (0.016) 0.793 (0.016)
PBLUP 0.314 (0.079) 0.394 (0.074) 0.491 (0.049) 0.511 (0.064) 0.502 (0.027) 0.536 (0.035)
materal ssGBLUPgq 0.483 (0.051) 0.504 (0.056) 0.581 (0.043) 0.59 (0.052) 0.59 (0.0206) 0.608 (0.031)
direct PBLUP 0.262 (0.073) 0.293 (0.082) 0.275 (0.062) 0.489 (0.054) 0.355 (0.042) 0.566 (0.042)
Hoe ssGBLUPgq 0.337 (0.064) 0.352 (0.074) 0.344 (0.061) 0.526 (0.051) 0.399 (0.045) 0.591 (0.04)
sum of dir. PBLUP 0.182 (0.064) 0.233 (0.073) 0.413 (0.032) 0.538 (0.045) 0.503 (0.024) 0.664 (0.028)
and mat. eff. s GBLUPg, 0.398 (0.044) 0.386 (0.059) 0.509 (0.039) 0.589 (0.044) 0.546 (0.025) 0.685 (0.025)

Queens from year 9 were not phenotyped; queens from year 8 were phenotyped, but none of them were dams of queens.
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Appendix I: Genetic gain, Rgs, in the initial selection cycle of
different breeding schemes applying CBS and GPS

The table in the additional file “Appendix I.xIsx presents the configuration of the breeding
schemes shown in Figure 3.4, as well as 9 reruns of the optimal breeding scheme with
ssGBLUPgq, and 1765 other runs chosen at even spacing to represent the remaining schemes.
Equations (3.18), (3.19) , and (3.20) were used to calculate R.;s in the scenarios described in
Table 3.1 for different ratios of preselected BQ and DPQ, with the prediction accuracy adjusted
to the proportion on preselected BQ in all scenarios. Genetic gain is given in the units of the
selection criterion. The parameter setting MOD was used. The standard deviations of the true
breeding values o,y (worker groups from year 8) and 0y, (queens from year 9) are shown in
Appendix J. The 1765 remaining schemes were picked by the numbers of dams of DPQ chosen
for GPS, (Ng,’;g), dams of BQ chosen for GPS (Nggs), candidate DPQ per dam for GPS (ng%),

and candidate BQ per dam for GPS (ngq°) with the step widths 10, 20, 8, and 8, respectively.
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Appendix J: Standard deviations of true breeding values

year 9 year 8 years 4 to 7
parameter setting  effect queens workers queens workers queens workers
maternal 0.977 (0.041) 0.613 (0.032) 0.963 (0.038) 0.602 (0.034) 0.987 (0.022) 0.619 (0.019)
MOD direct 1.346 (0.05) 0.831 (0.042) 1.342 (0.042) 0.833 (0.035) 1.402 (0.031) 0.901 (0.03)
sum of dir. and
1.277 (0.044) 0.773 (0.032) 1.274 (0.039) 0.778 (0.033) 1.376 (0.034) 0.907 (0.031)
mat. eff.
maternal 0.991 (0.042) 0.618 (0.029) 0.983 (0.041) 0.612 (0.03) 0.997 (0.026) 0.621 (0.02)
HGE direct 1.368 (0.059) 0.847 (0.039) 1.364 (0.053) 0.844 (0.038) 1.421 (0.037) 0.907 (0.034)
sum of dir. and
0.926 (0.035) 0.567 (0.025) 0.925 (0.035) 0.568 (0.024) 0.985 (0.025) 0.642 (0.023)

mat. eff.

Queens from year 9 were not phenotyped; queens from year 8 were phenotyped, but none of them were dams of queens.
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Appendix K: Regression coefficients of true on estimated breeding values, b1, when all queens from

years 4-9 were genotyped

year 9 year 8 years 4 to 7
parameter setting Effect method queens workers queens workers queens workers
maternal PBLUP 0.995 (0.213) 1.009 (0.208) 0.978 (0.073) 0.977 (0.119) 1.001 (0.043) 0.996 (0.054)
ssGBLUPgq 0.994 (0.09) 1(0.118) 0.98 (0.068) 0.976 (0.098) 1.012 (0.039) 1.005 (0.05)
MOD direct PBLUP 1.009 (0.223) 0.985 (0.283) 0.988 (0.149) 0.998 (0.098) 0.995 (0.079) 0.996 (0.059)
ssGBLUPgq 1.07 (0.152) 1.031 (0.221) 1.013 (0.131) 1.003 (0.092) 1.118 (0.076) 1.079 (0.056)
sum of dir. and PBLUP 1.019 (0.257) 0.988 (0.252) 1.009 (0.053) 1.006 (0.069) 1.007 (0.037) 1.005 (0.041)
mat. eff. ssGBLUPgq 1.106 (0.089) 1.087 (0.118) 1.04 (0.05) 1.027 (0.064) 1.136 (0.033) 1.143 (0.04)
maternal PBLUP 0.998 (0.24) 0.997 (0.179) 0.983 (0.093) 0.983 (0.121) 1.004 (0.052) 1.006 (0.057)
ssGBLUPgq 0.982 (0.098) 0.976 (0.117) 0.984 (0.08) 0.975 (0.086) 0.99 (0.0406) 0.979 (0.044)
PBLUP 1.008 (0.268) 1.014 (0.275) 1.014 (0.209) 1.007 (0.114) 1.004 (0.082) 1.007 (0.066)
HGC Direct
ssGBLUPgq 1.047 (0.184) 1.037 (0.212) 1.022 (0.16) 1.003 (0.092) 1.069 (0.09) 1.078 (0.062)
sum of dir. and PBLUP 1.021 (0.334) 1.016 (0.32) 1.002 (0.091) 1 (0.086) 0.996 (0.048) 0.996 (0.053)
mat. eff. ssGBLUPzq 1.109 (0.128) 1.101 (0.18) 1.053 (0.094) 1.034 (0.079) 1.151 (0.053) 1.185 (0.057)

Queens from year 9 were not phenotyped; queens from year 8 were phenotyped, but none of them were dams of queens.
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Appendix L: Genetic in the first generation of a genomic breeding
program applying a shorter generation interval

In this appendix, we estimate genetic gain in for a breeding scheme with a shorter generation
interval. We assume a parent generation of 1000 BQs per year in the population, with

unphenotyped parents. Furthermore, a budget for 1000 genotyped queens per year is assumed.
Furthermore, we assume the lag of phenotyping reduces the accuracy to % of the calculated values.

This is based on results from (Habier et al. 2007), where the predicted accuracy due to LD was

estimated. An additional study would be required to determine this value in honey bees.

The 1000 parent BQs are genotyped as they hatch. The top 5% and 20% are selected as dam of
DPQs (if2y = 2.06) and as dams of BQs (igg° = 1.40), respectively, as we assumed for CBS.
DPQs are reared in the same year as the BQs hatch. A year later, the daughter BQs are reared. To
calculate the genetic gain with a shorter generation interval, R5¢!| we modify Equation (3.19) to
selection of unfertilized queens.

s (5o T i85\ (3 (L.1)
B =727 )\3Pue) e

where o, = 1.28 is the standard deviation of TBV as for Table 3.4; and Pug is the accuracy for
unfertilized queens. We consider the trait MOD. We use Pug = 0.52, which is the accuracy of

ssGBLUPgq with 5000 BQs in the reference population (Figure 3.3). This yields RS¢! = 0.86. The
gain in the optimal scheme of Table 3.4 was R;s = 1.09 for 1000 genotyped queens per year. The
generation interval for RS/ is 1 year, while the generation interval for Rsg is 2.5 years. The
expected yearly gain with R;g 1s 0.44. The expected gain with a shortened generation interval is
therefore 95% higher compared to the optimal scheme for 1000 genotyped queens per year in Table
3.4.
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