
����������
�������

Citation: Suleimen, Y.M.; Jose, R.A.;

Suleimen, R.N.; Arenz, C.;

Ishmuratova, M.; Toppet, S.; Dehaen,

W.; Alsfouk, A.A.; Elkaeed, E.B.;

Eissa, I.H.; et al. Isolation and In

Silico Anti-SARS-CoV-2 Papain-Like

Protease Potentialities of Two Rare

2-Phenoxychromone Derivatives

from Artemisia spp. Molecules 2022,

27, 1216. https://doi.org/10.3390/

molecules27041216

Academic Editor: Chia Ming Chang

Received: 5 January 2022

Accepted: 6 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Isolation and In Silico Anti-SARS-CoV-2 Papain-Like Protease
Potentialities of Two Rare 2-Phenoxychromone Derivatives
from Artemisia spp.
Yerlan M. Suleimen 1,2 , Rani A. Jose 3, Raigul N. Suleimen 4,*, Christoph Arenz 5 , Margarita Ishmuratova 6 ,
Suzanne Toppet 3, Wim Dehaen 3 , Aisha A. Alsfouk 7 , Eslam B. Elkaeed 8 , Ibrahim H. Eissa 9

and Ahmed M. Metwaly 10,11,*

1 The International Centre for Interdisciplinary Solutions on Antibiotics and Secondary Metabolites,
Republican Collection of Microorganisms, Nur-Sultan 010000, Kazakhstan; syerlan75@yandex.kz

2 The Laboratory of Engineering Profile of NMR Spectroscopy, Sh. Ualikhanov Kokshetau University,
Kokshetau 020000, Kazakhstan

3 Molecular Design & Synthesis, Department of Chemistry, Catholic University of Leuven,
B-3001 Heverlee, Belgium; alphmanie@gmail.com (R.A.J.); tsuzanne@kuleuven.be (S.T.);
wim.dehaen@kuleuven.be (W.D.)

4 Department of Natural Science, Faculty of Technical Physics, L.N. Gumilyov Eurasian National University,
Nur-Sultan 010010, Kazakhstan

5 Institut für Chemie der Humboldt, Universität zu Berlin, D-12489 Berlin, Germany; arenzchr@hu-berlin.de
6 Department of Botany, E.A. Buketov Karaganda University, Karaganda 100024, Kazakhstan;

margarita.ishmur@mail.ru
7 Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia; aaalsfouk@pnu.edu.sa
8 Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah,

Riyadh 13713, Saudi Arabia; ikaeed@mcst.edu.sa
9 Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys),

Al-Azhar University, Cairo 11884, Egypt; ibrahimeissa@azhar.edu.eg
10 Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University,

Cairo 11884, Egypt
11 Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research

Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
* Correspondence: kasim_rai@mail.ru (R.N.S.); ametwaly@azhar.edu.eg (A.M.M.);

Tel.: +7-702-209-1866 (R.N.S.)

Abstract: Two rare 2-phenoxychromone derivatives, 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin
C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the
first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was
investigated using multistage in silico techniques. At first, molecular similarity and fingerprint
studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19
enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized
ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking
studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active
site exhibiting binding energies of −18.86 and −18.37 Kcal/mol, respectively. Further, in silico
ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general
safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate
the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1
and PLP.

Keywords: Artemisia commutate; 2-phenoxychromones; SARS-CoV-2; COVID-19 Papain-Like Protease;
molecular docking; molecular fingerprints; ADMET; MD simulations
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1. Introduction

Natural products have been utilized in different folklores to treat many illnesses since
ancient times [1–3]. The research in the field of natural product chemistry identified various
bioactive metabolites that are engaged with the bioactivities such as diterpenes [4], pheno-
lics [5], sesquiterpenes [6,7], steroids [8], flavonoids [9,10], alkaloids [11], saponins [12–14],
isochromenes [15], benzofuran glucosides [16], and α-pyrones [17,18].

The chemical composition as well as the biological activities of plants that belong
to the genus Artemisia L. (family Asteraceae) drew the attention of scientists to explore
and investigate. For example, anhydroaustricin, epiashantin, and matricarin are biolog-
ically active compounds that were isolated from A. albida [19], A. sieversiana [20], and
A. austriaca [21], respectively. Besides, cirsineol is an active lactone that was reported in
A. umbrosa [22]. Also, the presence of sesquiterpene lactones and flavonoids were reported
in A. tschernieviana [23], A. albida [24], and A. santolinifolia [25], respectively. On the other
hand, the bioactivities and phyto analysis of essential oils were studied for A. kasakorum [26],
A. lercheana and A. sieversiana [27], A. umbrosa [28], A. gurganica [29], A. proceriformis [30],
A. terrae-albae [31], A. keiskeana [32], A. littoricola, A. mandshurica [33], A. commutata [34], in
addition to five plants belonging to the Artemisia species [35].

A. commutata [36] and A. glauca [37] are perennial herbs that are cultivated in northern
and eastern Kazakhstan [38]. The lack of scientific records about the phytochemistry and
the biological effects of these two species encouraged us to examine their phytochemical
properties aiming at the isolation of promising secondary metabolites.

The WHO declared on December 28, 2021, that the confirmed cases of COVID-19
infections on a global base are 280,119,931. Sadly, 5,403,662 of them are dead [39]. In regard
to these bad numbers, massive work is demanded from scientists all over the world to find
a cure.

The field of computer-aided/based (in silico or computational) drug design and
discovery is a fast-growing approach that has shown several successes and advancements
during the last decade [40]. The structural informatics explosion allowed the identification
of the exact chemical and physical properties of molecules. Consequently, the ability
to compare different structures and predict a specific biological activity became much
easier [41]. Also, the huge advancement in the field of proteomic enabled scientists to
expect the biding and hence the activity of a molecule and target enzyme [42]. Our
teamwork reported the utilization of the in silico methods to suggest a treatment that could
be effective against COVID-19 in many reports [43–47].

We here in this manuscript, report the isolation and structure elucidation of two
rare 2-phenoxychromone derivatives, 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin
C (2) from the areal parts of A. commutata and A. glauca, respectively, for the first time.
Because of the lack of research on the isolated compounds and the severe need to find a
cure against COVID-19, the potential inhibitory effects of 1 and 2 against COVID-19 were
investigated depending on a multiphase in silico screening method. The potentialities of
1 and 2 against COVID-19 Papain-Like Protease were confirmed according to molecular
similarity, structure fingerprint, molecular docking, and molecular dynamics simulations
studies. Additionally, ADMET and toxicity properties of 1 and 2 were studied to predict
their likeness to be used as drugs.

2. Results
2.1. Isolation of Compounds

The areal parts of A. commutata, (940 g) and A. glauca (1.02 kg) were collected from the
western part of the Altai Mountains. The dried plants were extracted with chloroform. The
chloroform extract of A. commutata was subjected to chromatographic purifications steps
to afford the amorphous powder of 1. Compound 1 was identified to be 6-demethoxy-
4‘-O-capillarsine (Figure 1). Identification of 1 was done depending on 1H and 13C NMR
(Table S1, in the Supplementary Materials), comparing the published data. Compound
1 was previously isolated from the leaves of Mimosa tenuiflora [48], A. capillaris [49], and



Molecules 2022, 27, 1216 3 of 18

A. rupestris [50]. The chloroform extract of A. glauca was subjected to chromatographic
purification steps to give the amorphous powder of 2. Compound 2 was identified to be
5,7,4′-trihydroxy, 3′-methoxy-2-phenoxychromone (Figure 1). Compound 2 was identified
depending on 1H and 13C NMR (Table S2, in the Supplementary Materials) compared to
the published data. Compound 2 was previously isolated from Mimosa tenuiflora [48].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 20 
 

 

previously isolated from the leaves of Mimosa tenuiflora [48], A. capillaris [49], and A. 
rupestris [50]. The chloroform extract of A. glauca was subjected to chromatographic puri-
fication steps to give the amorphous powder of 2. Compound 2 was identified to be 5,7,4′-
trihydroxy, 3′-methoxy-2-phenoxychromone (Figure 1). Compound 2 was identified de-
pending on 1H and 13C NMR (Table S2, in the supporting data) compared to the published 
data. Compound 2 was previously isolated from Mimosa tenuiflora [48]. 

. 

Figure 1. The chemical structures 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2). 

2.2. Molecular Similarity Studies 
To understand the principle of molecular similarity, we have to understand that the 

bioactivity of any compound is a result of some well-known interactions with a specific 
protein target. These protein–ligand interactions depend on specific physical and chemi-
cal interactions such as hydrogen bonding and hydrophobic interactions. Consequently, 
the similarity in the chemical structures of two compounds will give a similarity in the 
number and position of hydrogen bond donors, acceptors, and hydrophobic centers in 
addition to the steric configuration. This similarity could cause a noticeable similarity in 
the bioactivity too [51]. 

To evaluate the expected anti-COVID-19 potentialities of compounds 1 and 2, the 
chemical structures of them were compared with the chemical structures of eight different 
co-crystallized ligands of eight crucial COVID-19 proteins (Figure 2) in a structural simi-
larity experiment. Utilizing Discovery Studio software, the following molecular proper-
ties were measured to 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2) as well as 
the eight ligands; partition coefficient (ALog p) [52], molecular weight (M. W) [53], H- 
bond donors (HBD) [54] and acceptors (HBA) [55], rotatable bonds [56], aromatic rings 
[57], heterocyclic rings [58], along with the molecular fractional polar surface area 
(MFPSA) [59]. The results revealed the great similarity between compounds 1 and 2 and 
the co-crystallized ligands (TTT) of SARS-CoV-PLP (PDB ID: 3E9S) (Table 1, Figure 3A,B). 
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2.2. Molecular Similarity Studies

To understand the principle of molecular similarity, we have to understand that the
bioactivity of any compound is a result of some well-known interactions with a specific
protein target. These protein–ligand interactions depend on specific physical and chemical
interactions such as hydrogen bonding and hydrophobic interactions. Consequently, the
similarity in the chemical structures of two compounds will give a similarity in the number
and position of hydrogen bond donors, acceptors, and hydrophobic centers in addition to
the steric configuration. This similarity could cause a noticeable similarity in the bioactivity
too [51].

To evaluate the expected anti-COVID-19 potentialities of compounds 1 and 2, the
chemical structures of them were compared with the chemical structures of eight different
co-crystallized ligands of eight crucial COVID-19 proteins (Figure 2) in a structural similar-
ity experiment. Utilizing Discovery Studio software, the following molecular properties
were measured to 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin C (2) as well as the eight
ligands; partition coefficient (ALog p) [52], molecular weight (M. W) [53], H- bond donors
(HBD) [54] and acceptors (HBA) [55], rotatable bonds [56], aromatic rings [57], heterocyclic
rings [58], along with the molecular fractional polar surface area (MFPSA) [59]. The results
revealed the great similarity between compounds 1 and 2 and the co-crystallized ligands
(TTT) of SARS-CoV-PLP (PDB ID: 3E9S) (Table 1, Figure 3A,B).

Table 1. Structural properties of compounds 1, 2 and TTT.

Compound ALog p M. W HBA HBD Rotatable
Bonds Rings Aromatic

Rings MFPSA Minimum
Distance

1 3.129 300.263 6 2 3 3 2 0.302 0

2 2.887 316.262 7 3 3 3 2 0.359 0

TTT 3.647 304.386 2 2 3 3 3 0.171 0.723
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2.3. Fingerprints Studies

The molecular fingerprint is an in silico method that analyzes the similarities of
two molecules or more. Molecular fingerprint explores the property profiles of a certain
compound, the technique computes these properties in the forms of bits vectors examining
the existence, absence, and frequencies it in the reference and target compounds.

The fingerprint approach examined the existence or absence of the these parameters:
charge [60], hybridization [61], H-bond acceptor and donor [62], negative and positive
ionizables [63], halogen [64], aromatic [65], and ALogP [66]. The experiment was achieved
depending on Discovery Studio. The results verified the similarity of 6-demethoxy-4‘-O-
capillarsine (1), tenuflorin C (2), and TTT (Table 2).

Table 2. Fingerprint similarity between compounds 1, 2 and TTT.

Compound Similarity SA SB SC

1 1 299 0 0

2 1 289 0 0

TTT 0.579 276 178 23
SA: The number bits present in both the isolated 2-phenoxychromone derivative and TTT. SB: The number of bits
in the isolated 2-phenoxychromone derivative but not TTT. SC: The number of bits in TTT but not the isolated
2-phenoxychromone derivative.

2.4. Pharmacophoric Features and Flexible Alignment Studies

The reported main pharmacophoric features of SARS-CoV-2 Papain-Like protease
inhibitors (PLPIs) are two hydrophobic systems separated be a linker [67]. As shown in
Figure 4, the co-crystallized ligand (TTT) has naphthyl and phenyl groups as hydrophobic
centers. The two hydrophobic groups are separated by hydrophilic linker (amide group).
In addition, the terminal phenyl group is substituted by amino group as a hydrogen
bonding group.

Similarly, compounds 1 and 2 have coumarin moiety as the first hydrophobic center
in addition to phenyl group as the second hydrophobic moiety. In each compound, the
two hydrophobic centers were separated by oxygen atom as a hydrophilic linker. This
linker facilitates these compounds to have the same configuration of TTT. Additionally,
the two phenyl rings were substituted by hydrophilic groups as which can form hydrogen
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bonds with the target receptors as TTT. From medicinal chemistry point of view, this
investigation revealed that there is a great similarity between the two tested molecules and
the co-crystallized ligand (TTT).
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3D- Flexible alignment of the compounds 1 and 2 with TTT was presented in Figure 5.
From the figure, it is possible to observe that, in general, the structure of compounds 1
and 2 have a good overlap with the reference molecule (TTT). In addition, the two tested
compounds showed the same spatial orientation of TTT due to the presence of the flexible
linker at the center of these compounds.
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2.5. Docking Studies

To examine the obtained results from structural similarity and fingerprint studies,
molecular docking experiments were achieved for 6-demethoxy-4‘-O-capillarsine (1) and
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tenuflorin C (2) against PLP (PDB ID: 3E9S) using TTT, the co-crystallized ligand, as a
reference. We considered the binding free energies (∆G) besides the binding modes as the
bases of evaluation.

Firstly, a validation process has proceeded via the re-docking of TTT against PLP. The
obtained RMSD value between the two poses was 2.1 ◦A confirming the validity of the
docking method (Figure 6).
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The binding mode of TTT showed a free energy of −20.32 kcal/mol. The p-toluidine
part occupied the first pocket of PLP forming one H- bond with the amino acid, Leu163.
The same moiety was engaged hydrophobically in two interactions with the amino acids
Asp165 and Tyr269. In addition, the amide linker formed two H- bonds with the amino
acids Asp165 and Gln270. The naphthalene moiety was buried in the second pocket making
five hydrophobic interactions with Pro249, Pro248, and Tyr269 (Figure 7A–C).
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The binding mode of 6-demethoxy-4‘-O-capillarsine (1) exhibited a binding free energy
of -18.86 kcal/mol. The anisole moiety was directed into the first pocket of PLP forming
one H- bond with the amino acid, Gln270, in addition to two hydrophobic interactions with
the amino acids, Tyr269 and Asp165. The 5,7-dihydroxy-4H-chromen-4-one part occupied
the second pocket of PLP forming a H- bond with the amino acid Pro249 besides two
hydrophobic bonds with the amino acids Pro248 and Pro249 (Figure 8A–C).

Tenuflorin C (2) bonded to PLP exhibiting a binding energy of −18.37 kcal/mol.
The 2-methoxyphenol part was directed into the first pocket of PLP with two H-bonds
with the amino acids Gln270 and Leu163. Additionally, the same moiety was engaged
hydrophobically in two interactions with the amino acids Tyr269 and Asp165. Further, the
5,7-dihydroxy-4H-chromen-4-one part occupied the second pocket of PLP forming two H-
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bonds with Tyr274 and Ala247. Finally, it was incorporated hydrophobically in three bonds
with the amino acids Pro248, Asp165 and Met209 (Figure 9A–C).
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2.6. In Silico ADMET Study

There is always a need to examine the ADMET properties of new molecules espe-
cially in the stage of designing to decrease the possibility of late-stage attrition. Also, the
identification of ADMET properties provides good information regarding the amount and
frequency of dosing as well as the toxicity [68].

The in silico ADMET parameters were determined for 6-demethoxy-4‘-O-capillarsine
(1) and tenuflorin C (2) using Discovery Studio software and utilizing Remdesivir as a
reference. The results were illustrated in Figure 10 and Table 3.
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Table 3. Binding free energies (∆G in Kcal/mol) of the 6-demethoxy-4‘-O-capillarsine (1), tenuflorin
C (2) and TTT against PLP.

Compound ∆G [Kcal/mol]

1 −18.86

2 −18.37

TTT −20.32

The results revealed that 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin C (2) have
low and very low chance to penetrate BBB, respectively. Further, 6-demethoxy-4‘-O-
capillarsine (1) and tenuflorin C (2) exhibited good aqueous solubility and intestinal ab-
sorption. Finally, 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin C (2) were predicted
to be a CYP2D6 non-inhibitor and to be able to bind plasma protein by a ratio of more
than 90%.

2.7. In Silico Toxicity Studies

The predicted toxicity levels of 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin C (2)
were investigated in silico using Discovery Studio software against seven toxicity models.
Remdesivir was used as a reference. As shown in Table 4, 6-demethoxy-4‘-O-capillarsine
(1) and tenuflorin C (2) were predicted to be non-carcinogenic and have high TD50 values
of 144.939 and 113.277 mg/kg/day, respectively. The values were more than 12-fold that of
remdesivir (9.2458 mg/kg/day). Further, 6-demethoxy-4‘-O-capillarsine (1) and tenuflorin
C (2) showed high rat maximum tolerated dose (MTD) values of 0.289735 and 0.44318 g/kg,
respectively, compared to remdesivir (0.234965 g/kg). The rat oral LD50 values for 1 and
2 were 0.363122 and 0.549081 g/kg, respectively, and regarding the rat chronic LOAEL
model, their values were 0.0221904 and 0.0362493, respectively. Finally, 6-demethoxy-4‘-
O-capillarsine (1) and tenuflorin C (2) were predicted to have mild ocular irritancy and to
have no irritancy against the skin model.

Table 4. Toxicity properties of compounds.

Compound FDA Rodent
Carcinogenicity

Carcinogenicity
TD50

a Rat MTD b Rat Oral
LD50

b LOAEL b Ocular
Irritancy c

Skin
Irritancy c

1 Not a
carcinogen 144.939 0.289735 0.363122 0.0221904 + -

2 Not a
carcinogen 113.277 0.44318 0.549081 0.0362493 + -

remdesivir Not a
carcinogen 9.2458 0.234965 0.308859 0.0037911 + +

a Unit: mg·kg−1·day−1., b Unit: g·kg−1., c - = nonirritant, + = mild.

2.8. Molecular Dynamics (MD) Simulation Studies

The main advantage of molecular dynamics (MD) simulation is its ability to recognize
the flexibility of the protein–ligand complex. This advantage enables the MD studies to
estimate accurately the thermodynamics and kinetics that take place during the drug–
enzyme binding [69].

MD simulations can explore the dynamic structural information of the protein–ligand
complex and provide plentiful information on the energetic changes that resulted from the
interactions between protein and ligand. Such information could be very useful to under-
stand the structure–function relationship of the protein–ligand complex interactions [70].
In order to authenticate the binding and to investigate the thermodynamic characters of
the isolated compounds, molecular dynamics (MD) simulation studies were conducted to
6-demethoxy-4‘-O-capillarsine, 1, as it showed a bitter binding energy, against PLP.
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The atomical dynamic movements and conformational variations of backbone atoms
of the 6-demethoxy-4‘-O-capillarsine -PLP complex were calculated by RMSD to detect
their stability upon ligand bonded and apo states. It was observed that the protein and
ligand exhibit lower RMSD with no major fluctuations indicating their greater stability. The
6-demethoxy-4‘-O-capillarsine -PLP complex was slightly fluctuating till 70 ns~ and stabled
later (Figure 11A). The flexibility of PLP was evaluated in terms of RMSF (Figure 11B) to get
more information about the protein regions that had been fluctuating during the simulation.
It can be understood that the binding of 6-demethoxy-4‘-O-capillarsine does not make PLP
very flexible. The compactness of the 6-demethoxy-4‘-O-capillarsine -PLP complex was
evaluated through the examination of the radius of gyration (Rg) (Figure 11C). Decreasing
fluctuation during the simulation study is an indication of the higher compactness of the
system. The Rg of the 6-demethoxy-4‘-O-capillarsine -PLP complex was found to be similar
throughout the simulation period. Interaction between 6-demethoxy-4‘-O-capillarsine -PLP
complexes and solvents was evaluated through the calculation of solvent accessible surface
area (SASA) over the simulation period. So, SASA of the 6-demethoxy-4‘-O-capillarsine
-PLP complex was calculated to analyze the extent of the conformational changes that
occurred during the interaction. Interestingly, PLP featured a reduction of the surface area
showing a relatively lower SASA value than the starting period (Figure 11D). Hydrogen
bonding in the 6-demethoxy-4‘-O-capillarsine -PLP complex is essential to stabilize the
structure. It was noticed that the highest number of conformations of the PLP formed up to
three H- bonds with the 6-demethoxy-4‘-O-capillarsine (Figure 11E).
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3. Experimental
3.1. Isolation and Structure Elucidation of Compounds

A total of 0.94 kg of Artemisia commutata and 1.04 kg of Artemisia glauca areal parts were
extracted with chloroform. Successive chromatographic methods led to the isolation of
compounds (1 and 2). Detailed description in the method part in Supplementary Materials.

3.2. Molecular Similarity

Molecular Similarity of 6-demethoxy-4‘-O-capillarsine (1), tenuflorin C (2) against the
co-crystallized ligands of SARS-CoV-2 was carried out calculated using Discovery Studio
4.0 (See the method part in Supplementary Materials).

3.3. Fingerprint Study

A fingerprint study of 6-demethoxy-4‘-O-capillarsine (1), tenuflorin C (2) against the
eight co-crystallized ligands of SARS-CoV-2 was carried out calculated using Discovery
Studio 4.0. (See Supplementary Materials)

3.4. DFT

The DFT parameters were calculated for 6-demethoxy-4‘-O-capillarsine (1), tenuflorin C
(2) using Discovery Studio software [71]. (See the method part in Supplementary Materials).

3.5. Docking Studies

The docking investigation was carried out for 6-demethoxy-4‘-O-capillarsine (1), ten-
uflorin C (2) using MOE2014 software and Discovery Studio 4.0 [72–74] (See the method
part in Supplementary Materials).

3.6. ADMET

ADMET descriptors of 6-demethoxy-4‘-O-capillarsine (1), tenuflorin C (2) were deter-
mined using Discovery Studio 4.0. [75,76] (See the method part in Supplementary Materials).

3.7. Toxicity Studies

Seven toxicity parameters of 6-demethoxy-4‘-O-capillarsine (1), tenuflorin C (2) were cal-
culated using Discovery Studio 4.0 [77–79] (See the method part in Supplementary Materials).

3.8. Molecular Dynamics Simulations

The system was prepared using the web-based CHARMM-GUI [80–82] interface
utilizing CHARMM36 force field [83] and NAMD 2.13 [84] package. The TIP3P explicit
solvation model was used (See the method part in Supplementary Materials).
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