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Abstract

The reliable prediction of the electrical conductivity from first-principles is im-
portant for computationally guided discovery of novel materials with desired elec-
trical properties. Recent studies suggest that improving the accuracy of electrical
conductivity calculations in many materials requires accounting for the typically
ignored lattice anharmonicity by higher-order electron-phonon interactions. First-
principles supercell calculations of the electrical conductivity based on a combi-
nation of the Kubo-Greenwood (KG) formula and ab initio molecular dynamics
(aiMD) appear to be a promising approach because they naturally include these
interactions. However, the application of this approach to crystalline materials has
so far received very little attention. This thesis describes the ab initio KG approach,
the difficulties of a numerical implementation for crystalline solids, and it demon-
strates the problems with two very different systems.

The first case study for silicon (Si), which is a very harmonic material, reveals
that the ab initio KG calculations place a high demand on computational resources,
and identifies the considerable numerical difficulties. In particular, the KG calcula-
tion requires a dense k-point sampling, which hinders supercell-size convergence
and makes the calculation only feasible with (semi)local density functional approx-
imations (e.g., LDA and GGA). Besides, the necessary introduction of a broadening
parameter (1) introduces a significant uncertainty in the quantitative determination
of the electrical conductivity. Computationally efficient strategies are discussed in
this thesis to address these problems, including: (i) the "scissor operator" approach
to correct the LDA band-gap problem; (ii) the “optimal-7 scheme" to choose an ap-
propriate value of #; and (iii) the finite-size scaling method to deduce the electrical
conductivity in the limit of an infinitely large supercell. With these strategies, it is
found that while our calculations at the LDA level yield electrical conductivities in
reasonable agreement with experiment, our results do not agree well with those of
previous ab initio calculations using the Boltzmann transport equation (BTE) at the
LDA level. This comparison suggests that the 77 problem and the issue of supercell-
size convergence still require improved concepts.

The second case study for SnSe, which is a highly anharmonic material, shows
very similar numerical difficulties as in the case of Si. For SnSe, it is rather challeng-
ing to address the issue of supercell-size convergence, because of the anisotropic
electrical conductivity and that the supercell size quickly becomes computationally
unfeasible. By choosing appropriate supercell sizes and using the defined strate-
gies, the x and z components of the electrical conductivity in p-doped SnSe at 300
Kand 523 K are computed. It is found that at the GGA-PBEsol level the calculated
results are in reasonable agreement with experiment. However, the large uncer-
tainties due to the # problem and the issue of supercell-size convergence remain.
Comparison with previous ab initio BTE calculations and discussion of the influence
of lattice anharmonicity on the supercell-size convergence are presented.

It is concluded that more expertise needs to be acquired on how to deal with
the # problem and the issue of supercell-size convergence before the ab initio KG
approach can be used to predict the electrical conductivity of crystalline materials.
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Zusammenfassung

Die zuverlissige Vorhersage der elektrischen Leitfahigkeit ausgehend von ersten
Prinzipien ist wichtig fiir die rechnerisch gestiitzte Entdeckung neuer Materialien
mit erwtinschten elektrischen Eigenschaften. Jiingste Studien legen nahe, dass die
Verbesserung der Genauigkeit von Berechnungen der elektrischen Leitfahigkeit in
vielen Materialien die Berticksichtigung der typischerweise ignorierten Gitteran-
harmonizitit durch Elektron-Phonon-Wechselwirkungen hoherer Ordnung erfor-
dert. Superzellenberechnungen der elektrischen Leitfadhigkeit aus ersten Prinzipi-
en, die auf einer Kombination aus der Kubo-Greenwood-Formel (KG) und der ab
initio Molekulardynamik (aiMD) beruhen, scheinen ein vielversprechender Ansatz
zu sein, da sie diese Wechselwirkungen auf natiirliche Weise berticksichtigen. Die
Anwendung dieses Ansatzes auf kristalline Materialien hat jedoch bisher nur sehr
wenig Aufmerksamkeit erhalten. In dieser Arbeit werden der ab initio KG-Ansatz
und die Schwierigkeiten einer numerischen Umsetzung fiir kristalline Festkorper
beschrieben und die Probleme anhand zweier sehr unterschiedlicher Systeme de-
monstriert.

Die erste Fallstudie fiir Silizium (Si), das ein sehr harmonisches Material ist,
zeigt, dass die ab initio KG-Berechnungen eine hohe Anforderung an die Rechenres-
sourcen stellen, und zeigt die erheblichen numerischen Schwierigkeiten auf. Insbe-
sondere erfordert die KG-Berechnung eine dichte k-Punktabtastung, was die Kon-
vergenz in Superzellengrofie behindert und die Berechnung nur mit (halb)lokalen
Dichtefunktionalapproximationen (z.B. LDA und GGA) durchfiihrbar macht. Au-
erdem fiihrt die notwendige Einfithrung eines Verbreiterungsparameters (1) zu
einer erheblichen Unsicherheit bei der quantitativen Bestimmung der elektrischen
Leitfahigkeit. In dieser Arbeit werden rechnerisch effiziente Strategien diskutiert,
um diese Probleme zu l6sen, darunter: (i) der Scherenoperator-Ansatz zur Kor-
rektur des LDA-Bandliickenproblems; (ii) das Optimal-7-Schemafur Wahl eines
geeigneten Wertes fiir #; und (iii) die Finite-Size-Scaling-Methode zur Ableitung
der elektrischen Leitfahigkeit im Grenzfall einer unendlich grofien Superzelle. Mit
diesen Strategien zeigt sich, dass unsere Berechnungen auf LDA-Ebene zwar elek-
trische Leitfahigkeiten in angemessener Ubereinstimmung mit Experimenten erge-
ben, unsere Ergebnisse jedoch nicht gut mit denen fritherer ab initio-Berechnungen
unter Verwendung der Boltzmann-Transportgleichung (BTE) auf LDA-Ebene tiber-
einstimmen. Dieser Vergleich deutet darauf hin, dass das 77-Problem und die Frage
der Konvergenz in SuperzellengrofSe weiter verbesserte Konzepte erfordern.

Die zweite Fallstudie fiir SnSe, ein stark anharmonisches Material, zeigt sehr
dhnliche numerische Schwierigkeiten wie im Fall von Si. Bei SnSe ist die Frage
der Konvergenz der Superzellengrofie aufgrund der anisotropen elektrischen Leit-
fahigkeit und der Tatsache, dass die Grofie der Superzellen schnell rechnerisch
nicht mehr machbar ist, recht schwierig zu 16sen. Durch die Wahl geeigneter Super-
zellengrofien und die Anwendung der definierten Strategien werden die x- und z-
Komponenten der elektrischen Leitfahigkeit in p-dotiertem SnSe bei 300 K und 523
K berechnet. Es zeigt sich, dass die berechneten Ergebnisse auf der GGA-PBEsol-
Ebene in angemessener Ubereinstimmung mit dem Experiment sind. Allerdings



bleiben die grofien Unsicherheiten aufgrund des 5-Problems und das Problem der
Konvergenz in Superzellengrofie bestehen. Vergleich mit fritheren ab initio BTE-
Berechnungen und die Diskussion des Einflusses der Gitteranharmonizitiat auf die
Konvergenz der Superzellengrofie werden vorgestellt.

Man kommt zu dem Schluss, dass mehr Fachwissen tiber den Umgang mit dem
n-Problem und die Frage der Konvergenz der Superzellengrofie erworben werden
muss, bevor der ab initio KG-Ansatz zur Vorhersage der elektrischen Leitfahigkeit
von kristallinen Materialien verwendet werden kann.
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1 Introduction

The electrical conductivity, referred to as ¢ in this thesis, describes the ability of a mate-
rial to conduct charge carriers. According to Ohm’s law J = ¢E, it is the proportionality
between the electric current density J and the applied electric field E. Its value can vary
by more than a factor of 10%° from one material to another [1, 2], leading to the tra-
ditional classification of materials as metals, semiconductors, and insulators. Figure
1.1 shows the electrical conductivities of some common materials at room temperature.
Metals such as Cu are good electrical conductors with high electrical conductivities of
the order of 10* — 10° Q~'em ™! [3]. Intrinsic semiconductors such as pure Si are rather
electrically resistive with electrical conductivities of the order of 1078 — 1072 QO !em ™!
[4]. Depending on doping and temperature, the electrical conductivity of a semicon-
ductor can usually be varied in a wide range. For example, heavily phosphorus (P)-
doped Si can have significantly enhanced electrical conductivity up to the order of
10°> Q~tem~! [5]. Such a wide tunability of the electrical conductivity of semiconduc-
tors is the basis for (opto)electronic applications.

Semiconductors Metals
Si:P
GaAs Si Ge (n++)  pp Cu
GaAs:Te Al

-
1078 10°° 10°* 1072 10° 10° 10* 10°

Electrical conductivity (Q 'cm™)

Figure 1.1: Electrical conductivities (in units of Q~'em™1) of some common materials at
room temperature: high-purity single-crystal semiconductors: GaAs, Si, and
Ge [4]; Te-doped (n-type) GaAs [6]; heavily P-doped (n-type) Si [5]; high-
purity metals: Cu, Al, and Pb [3]. Note that data for semiconductors depend
sensitively on doping and temperature. Adapted from Refs. [1, 2].

Assessing the electrical conductivity of materials is typically done by experimental



1 Introduction

measurements and /or semi-empirical calculations [7]. These approaches are now being
expanded by a new research paradigm: the big-data driven materials science [8, 9]. A
prominent example [10] in this direction is the development of high-performance ther-
moelectric materials — materials in which a temperature difference converts heat into
electricity, in order to help today’s demand for waste heat management and generation
of clean electricity. The electrical conductivity is a factor entering the thermoelectric
figure of merit, zT = 0S?>T/x. Ideally, a high value of zT is realized by a large electrical
conductivity (¢), a large Seebeck coefficient (S), and a small thermal conductivity (x) at
the temperature T. However, these are a set of properties that nature is not likely to pro-
vide in a single material [11]. Fortunately, the periodic table of elements offers immense
possibilities of: (i) discovering novel thermoelectric materials where large o and S and
small ¥ manifest simultaneously, and (ii) defining strategies to optimize the known
thermoelectric materials, such as through doping, alloying, and nano-structuring [10].
For such a huge search space, it is crucial to develop methods that can reliably and
efficiently determine the electrical conductivity of materials.

First-principles calculations have emerged as a powerful approach to address the
above challenge. Over the last decade, predictive non-empirical calculations of electri-
cal conductivities and carrier mobilities using the Boltzmann transport equation (BTE)
became feasible [12, 13], owing to advances in: (i) density-functional theory (DFT)
calculations of total energies, structural properties, and electronic band structures of
solids, (ii) the development of density-functional perturbation theory (DFPT) for lat-
tice dynamics and electron-phonon (e-ph) interactions, and (iii) the rapid growth and
broad availability of supercomputing power for overcoming size and time constraints
as well as numerical complexities. The ab initio BTE approach to the calculation of
electronic transport coefficients has been successfully applied to a variety of materials,
from simple materials (e.g., Si) to complex materials (e.g., metal-halide perovskites) and
two-dimensional materials (e.g., MoS,) [12, 13].

In many ab initio BTE calculations!, the description of electron-phonon scattering by
perturbation theory relies on the harmonic approximation to lattice dynamics [14, 12].
In the harmonic approximation, the potential-energy surface (PES) is expanded to sec-
ond order in the atomic displacements, and the third- and higher-order terms, i.e., lat-
tice anharmonicity, are neglected. Thus, the reliability of the BTE calculations depend
on the validity of the harmonic approximation. This is material dependent, and in gen-
eral materials tend to be anharmonic at high temperature. For instance, Si is a highly
harmonic material even at temperatures well above room temperature [15, 16]; the ther-
moelectric material SnSe and the photovoltaic materials metal-halide perovskites are
anharmonic in nature, and are already highly anharmonic at room temperature (see,
e.g., Ref. [17, 18] for SnSe and Ref. [19, 20] for metal-halide perovskites). In state-of-the-
art ab initio BTE calculations, the role of lattice anharmonicity has largely been ignored

n this thesis, the BTE calculation is only about the calculation of electronic transport coefficients.



[21, 22, 23]. This is mainly because when going beyond the harmonic approximation,
the resulting e-ph coupling formalism is exceedingly complex (let alone computation)
[14]. However, for anharmonic materials, there are growing evidences showing that
inclusion of anharmonic effects on both the phonon dynamics and e-ph coupling is re-
quired to get the correct electronic transport coefficients. The BTE calculation of the
electrical conductivity of SnSe by Caruso et al. [24] showed that a good quantitative
agreement with experiment requires accounting simultaneously for the thermal lattice
expansion (which is an anharmonic effect) and thermal enhancement of the e-ph in-
teraction. Failure of the ab initio BTE approach may occur when calculations of e-ph
coupling matrix elements break down due to the presence of soft phonon modes in the
harmonic approximation (e.g., SrTiO3; [25, 26] and metal-halide perovskites [22]). In
this case, self-consistent phonon calculations [27, 28, 29], which approximately account
for lattice anharmonicity at finite temperature, can be performed to stabilize the soft
phonon modes; if this method works, the e-ph matrix elements and scattering rates are
then computed using the anharmonic phonons [25, 26]. Besides, the e-ph scattering
rates are usually evaluated at the lowest order of perturbation theory, and the inclusion
of higher-order e-ph coupling effects constitutes a pressing challenge [12, 30, 31].

As an alternative, first-principles supercell calculations based on a combination of
the Kubo-Greenwood (KG) formula [32] and ab initio molecular dynamics provide a
non-perturbative, fully-anharmonic approach for calculating the electrical conductiv-
ity of materials. In this approach, 2iMD simulations at finite temperature are used to
generate atomic trajectories on the ab initio PES, naturally accounting for lattice anhar-
monicity to all orders [33, 27]. A sufficiently large number of MD samples (i.e., atomic
configurations) is generated from these trajectories to represent the typical distribution
of the nuclei on the PES at the temperature of interest. The electrical conductivity for
each of the samples collected is determined from a KG calculation, which requires only
a standard DFT calculation and does not involve any perturbative treatment. The fi-
nal electrical conductivity is evaluated as an average over the collected samples. The
calculated results naturally contain information on the dynamics of the system, i.e., on
lattice vibrations and the coupling between electrons and lattice vibrations. While the
ab initio KG approach is clearly promising, to date, its application is largely limited to
warm dense matter and disordered solids and has received very little attention regard-
ing crystalline materials (see Section 3.3.4). Previous studies [34, 35] showed that the
KG calculations on crystalline solids are prone to numerical problems, e.g., the issue of
supercell-size convergence. It is necessary to carry out a thorough test of this approach
and its numerical implementation for crystalline solids.

This thesis is motivated by the quest for a first-principles approach to reliably pre-
dict the electrical conductivity in anharmonic materials, and is devoted to the ab initio
KG approach. Our goals are to (1) describe the ab initio KG approach and the difficul-
ties of a numerical implementation of this approach for crystalline solids; (2) explore a
numerical implementation of the ab initio KG approach for two very different systems
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(the harmonic crystal Si and anharmonic crystal SnSe), demonstrate the problems, and
discuss the solutions; and (3) assess the predictive power of the ab initio KG approach
to the calculation of the electrical conductivity of crystalline materials. We hope that
our work will serve as (i) a useful guide to the application of the ab initio KG approach
to calculate the electrical conductivity of crystalline solids, and (ii) a valuable starting
point towards a reliable numerical implementation of this approach for crystalline ma-
terials. The thesis is structured as follows:

Chapter 2 reviews the relevant concepts and methods in modern electronic-structure
theory of solids. This gives the theoretical foundation of DFT calculations by which ab
initio material parameters required for the KG calculations are provided.

Chapter 3 gives an overview on the theory of electronic transport in solids, from
the Boltzmann transport theory to the Kubo’s theory of linear response. It provides a
detailed introduction of the KG formula, and establishes the connection with electronic-
structure calculations including aiMD simulations of lattice vibrations. Practical aspects
of the ab initio KG approach such as the broadening of the Dirac delta function, the
methods to describe free-carrier doping, and our computer code implementation of the
KG formula are also discussed.

In Chapter 4 we apply the ab initio KG approach to calculate the electrical conductiv-
ity of Si at 300 K. With a focus on intrinsic Si, we provide a detailed convergence study
for the relevant computational parameters, including k-point sampling, broadening
parameter, basis-set size, number of MD samples, and supercell size. Computation-
ally efficient strategies are discussed to deal with the identified problems, including the
choice of broadening parameter, the DFT band-gap problem, and the issue of supercell-
size convergence. We also compute the electrical conductivities of both p- and n-doped
Si at different doping levels, and compare our calculations with experiment and with
previous ab initio calculations using the BTE approach. The latter comparison allows
for assessing the convergence of our calculations.

In Chapter 5 we apply the ab initio KG approach and the strategies defined in Chapter
4 to calculate the anisotropic electrical conductivity of the layered semiconductor SnSe
at 300 K. This case study is partly motivated by the question whether the numerical dif-
ficulties identified in the case of Si is less severe for anharmonic crystals. We consider
the x (i.e., interlayer) and z (i.e., in-plane) components of the electrical conductivity
of SnSe, and present a detailed convergence study for k-point sampling, broadening
parameter, number of aiMD samples, and supercell size. The calculated electrical con-
ductivities are compared with experiment and with previous ab initio BTE calculations.
The calculated results for SnSe 523 K are also reported.

Finally, Chapter 6 summarizes this work, and gives an outlook that may help future
developments of the ab initio KG approach.



2 AD initio electronic-structure theory

The insights of materials ultimately rest on understanding their electronic structure
[36]. This chapter reviews the basic concepts and standard formalism that have enabled
tirst-principles density-functional theory (DFT) calculations of the electronic structure
of crystalline solids. Emphasis is laid on how the material parameters, such as equi-
librium structure, electronic band structure, lattice dynamics, and more, for assessing
the electrical conductivity of real materials at finite temperature can be obtained from
solid-state DFT calculations.

2.1 Many-body Schrodinger equation

Consider a system of interacting particles, which can be either an atom, molecule or
solid, consisting of N electrons and N, nuclei. The coordinates of the electrons are
denoted as {r;} = {ry, 1y, ..., rn} (spin is omitted for simplicity), and the coordinates
of the nuclei are denoted as {R;} = {Ry,Ry,...,Ry,}, which sum up to a total of
3N + 3N, degrees of freedom. To treat this many-body system, the starting point is the
time-independent Schrédinger equation:

HY ({ri}, {Ri}) = E¥Y ({ri}, {R1}). (2.1)

In the absence of external field, the non-relativistic Hamiltonian H of the system com-
prises the following terms:

H=T"+Te+ V04 pee 4 pen (2.2)

with (i) the kinetic energy of the nuclei:

n & hz 2
™ = — L Z—MIVRI, (2.3)
(ii) the kinetic energy of the electrons:
hz N
T = —5 Z V3, (2.4)
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(ii) the Coulomb interactions between the nuclei:

2 No Nn Z]Z]
v — L 2.5)
25 & Rk
(J#I)

, (2.6)

and (v) the Coulomb interactions between the electrons and the nuclei:

N N, 2
n Zie
Ve = — E _ (2.7)
i—11=1 lt; — Ry|

In these equations, m and e are the electron mass and charge, M; and Z; are the mass
and charge of the I-th nucleus, and /i = h /27 the reduced Planck constant.

Equation (2.1) constitutes a complex quantum-mechanical many-body problem, of
which the exact solution is well beyond existing computing and data-storage capacities
(except for a few very simple systems) [37]. This is even more obvious for solids which
consist of ~ 10?® particles per cm®. Thus, reducing the degrees of freedom in Equation
(2.1) is essential to make it numerically solvable, which is achieved by the physical
approximations on the many-body problem, as introduced in the following sections.



2.2 Born-Oppenheimer approximation and potential-energy surface

2.2 Born-Oppenheimer approximation and potential-energy
surface

In order to find an approximate solution of Equation (2.1), one begins by making the
Born-Oppenheimer (BO) approximation [38]. Because the nuclei are much heavier than
the electrons (e.g., for hydrogen, My /m ~ 1836) and the forces on the particles are the
same, the electrons instantaneously and adiabatically follow the motion of the nuclei.
Thus, one can assume that the nuclei are stationary and solves first for the motion of
the electrons, then computes the energy of the system in that nuclear configuration, and
tinally solves for the motion of the nuclei, as outlined below.

For a system of interacting electrons moving in the field of the stationary nuclei, the
electronic Hamiltonian is given by:

He({R;}) =T+ V= + V" ({R}}), (2.8)

which acts on the electronic variables and depends parametrically on the coordinates of
the nuclei {R;}. The time-independent Schréodinger equation for this electronic prob-

lem reads:
H({R;})®y({r:}; {R1}) = EJ({R1 )@y ({r:}; {R1}), (2.9)

where ES({R;}) and @, ({r;}; {R;}) are the energy and wave function of the electronic
system in the v-th eigenstate. Note that in Equations (2.8) and (2.9), the nuclear coordi-
nates {R;} are only parameters that label or classify the H¢, ES, and ®,. Accordingly,
Ve ({R;}) describes the potential energy of the electrons in the so-called external field
of the nuclei.

For a given nuclear configuration {R;}, the eigenfunctions @, ({r; }; {R;}) of the elec-
tronic system form a complete basis. The wave function of the total system as the solu-
tion of Equation (2.1) can be expanded as:

Y({ri} {Ri}) = Y xo({Ri})@u({ri}; {R1}), (2.10)

where x, ({R;}) are the expansion coefficients. Inserting Equation (2.10) into Equation
(2.1) and multiplying @} ({r;}; {R;}) from the left lead to:

[T+ V™ ({Ri}) + EL({R1P)]xu({R1})

& > 2.11)
+ Z; _m[(<q>#‘le‘q}v>)Xv +2(®,|VR,|Pv) (VR Xv)] = Exu({R1}).

The second term on the left-hand side of Equation (2.11) describes the electronic transi-
tion from ®, to ®,, if there exists nuclear motion (the Vg, and V%{I operators), which is
known as the electron-vibrational coupling. This term contributes typically very little
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to the energy of the system compared to Ej;({R;}) [39], and is neglected in the BO ap-
proximation, thus allowing for a separated treatment of the dynamics of the electrons
and nuclei. Equation (2.11) then becomes:

[T+ VP ({Ri}) + EL({RiP)Ixu ({R1}) = Ex({R1}), (2.12)

which describes the motion of the nuclei, and the wave function of the system is:

Fu({ri} ARr}) = xp (R} Dy ({ri}; {R1}). (2.13)
Equation (2.12) defines a so-called BO potential-energy surface (PES) [33]:
Uu({Rr}) = VI ({R}) + Ey({R1}), (2.14)

which is the total energy of the system in the y-th electronic eigenstate, as a function
of nuclear coordinates. Therefore, in the BO approximation, the motion of the nuclei is
on a BO PES which is a solution to the electronic Schrodinger equation. Note that for a
given nuclear configuration {R;}, the V"™ ({R;}) is a constant.

When the nuclei are fixed at positions {R;}, which corresponds to zero temperature
(neglecting nuclear quantum effects), the ground-state wave function is given by:

Fo({R1}) = xo({R1})Po({r:}; {Ri}), (2.15)
and the total energy of the system is:
Eo = Uo({R;}) = V" ({R}) + E§({Ry}). (2.16)

The force acting on the I-th nucleus in the electronic ground state is defined as:

dEo({R1})
F; = TR, (2.17)
The calculation of atomic forces enables one to [38]: (i) relax the system to find the
ground-state equilibrium geometry, {R9}, which corresponds to the global minimum
of the BO PES and at which the atomic forces vanish for all the nuclei; and (ii) perform
ab initio molecular dynamics (aiMD) simulations to sample the BO PES for studying the
equilibrium properties of the system at finite temperature (see Section 2.5.2).

However, the calculation of the electronic ground state for a static nuclear configu-
ration by solving Equation (2.9) remains a complex many-body problem and requires
further simplifications. Since this is purely an electronic problem, from this point on
the parametric dependence of the electronic quantities on the nuclear coordinates will
be suppressed.
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2.3 Density-functional theory

Density-functional theory (DFT) introduced in this section reduces the complexity in
solving for the electronic ground state for a static nuclear configuration, by using the
electron density instead of the many-body wave function as the basic variable. It pro-
vides a computationally practical way to calculate the ground-state properties of a
many-electron system.

2.3.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn (HK) theorems [40], which are the foundation of DFT, state that
the (electron) density n(r) is the basic variable that determines the ground-state prop-
erties of a system of interacting electrons in an external potential. This is a significant
simplification of the many-body electronic problem as one then only needs to deal with
3 instead of 3N degrees of freedom [via r = (x,y, z), spin is omitted for simplicity]. The
HK theorems consist of two theorems:

Theorem 1. The external potential Vi (r) (apart from a trivially additive constant),
and hence the total energy, is a unique functional of the density n(r).

Theorem 2. For a static external potential Ve (r), there exists a universal functional
of n(r), F[n(r)], which is independent of Vex(r), such that the energy functional

E[n(r)] = F[n(r)] + /n(r)Vext(r)dr (2.18)

has as its minimum value the correct ground-state energy associated with Vey(r).

The HK theorems apply to the ground state of any electronic system, irrespective
of the detail of the external potential. Often the external potential is provided by the
stationary nuclei, which is the case here. However, the F[n(r)] is unknown. Further,
additional theory is required to compute the ground-state density in practice. This has
been achieved by Kohn-Sham DFT.

2.3.2 Kohn-Sham DFT

In order to use the variational principle to find the electronic ground state, Kohn and
Sham [41] considered an auxiliary, fictitious system of N non-interacting electrons with
the same density n(r) as that of the real system of N interacting electrons. With this,
the universal functional F[n(r)] for the interacting electrons is cast into the form,

F[n(r)] = Ts[n(r)] + Va[n(r)] + Exc[n(r)]. (2.19)
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In this equation, Ts[n(r)] is the kinetic energy of the non-interacting electrons:

2 N
(o] =~y 3 [ (0P ) .20

where ¢;(r) are auxiliary one-electron orbitals which are orthonormal. Ty is of compa-
rable magnitude to the true kinetic energy and is treated exactly [37]. Eg[n(r)] is the
classical electrostatic energy (Hartree energy) of the electrons:

e? n(r)n(r')
Exc[n(r)] is the exchange-correlation (xc) energy, which by construction includes two
contributions [41]: (i) the difference between T and the true kinetic energy, and (ii) the

non-classical electron-electron interaction energy. The energy functional E[n(r)] of the
real, interacting system then reads:

E[n(r)] = Ts[n(r)] + Eu[n(r)] + Exc[n(r)] + /n(r)Vext(r)dr, (2.22)

which assumes its minimum value at the ground-state density. The Euler-Lagrange
equation for this variational-principle problem is given by [42, 43]:

N
S{E[n(r)] - ;ei / (1) i (r)dr} = 0, (2.23)

where €; are Lagrange multipliers ensuring that the N one-electron orbitals ¢; are or-
thonormal. The minimization:

o . ‘
sy (EIn(n)] = Zei [ 4 ()e)ae) = 0, vi (224
leads to a single-particle Schrodinger equation:
hZ
[—%Vz + Veff(l‘)]l,bi(r) = €,‘l[]l‘<l'), (2.25)

with an effective potential:
Veff(r) = Vext(r) + VH(r) + ch(r)

= Vext(r) + 62/ |:l(_”/r)/| dr’ + OExc[n(1)] (2.26)

on(r)

10
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which yields the exact ground-state density:

N
n(r) = ; | (1)) (2.27)

The ground-state energy of the system is expressed as:

N n(r)n(r
Ey = ;ei — 822 / / ‘(r)_il‘)drdr' + Exe[n(r)] — /n(r)VXC(r)dr. (2.28)

i=1

where the single-particle eigenvalues are labeled such that e; < e, < .... Equation
(2.25)-(2.28) are called Kohn-Sham self-consistent equations, which are the basis of
Kohn-Sham DFT. The solution of the Kohn-Sham equation needs to be self-consistent
because Vgg(r) is a functional of n(r).

Kohn-Sham DFT demonstrates that for a system of N interacting electrons in an ex-
ternal potential, the exact ground-state density and energy can be found by solving self-
consistently the Kohn-Sham equation for N one-electron orbitals ¢;(r), each of which
is a function of only three arguments r = (x,y,z). Such an exact mapping provides a
practical way of computing the ground-state density and energy. Yet, the exact xc en-
ergy Exc[n] and potential Vi (r) = JEy./dén are not known [44]. Therefore, in practical
DFT calculations Ey.[n] must be approximated by some known functionals of n(r), as
introduced in Section 2.3.3.

The meaning of the Kohn-Sham eigenvalues

The eigenvalues of the Kohn-Sham equation (2.25) enter the formalism as Lagrange
multipliers. They cannot be identified with the excitation energies of the interacting
many-electron system. This is evident from that the total energy is not equal to Y | €;.
Rather, the eigenvalues are interpreted according to Janak’s theorem [45] as derivatives
of the total energy with respect to occupation numbers:

e.—iﬁ
Z_afi/

where E is the generalized energy functional:

(2.29)

2
E= —th Z fi / W (1) V2 (1)dr + Ena[n(e)] + Exc[n(r)] + / 1(r) Ve ()dr,  (2.30)

and

n(r) =) filyi(r)%, (2.31)

11
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where f; denotes the occupation number of the one-electron orbital ;. Equation (2.29)
holds for any choice of the {f;}, including fractional occupations (0 < f; < 1 with
Y fi = N) [45]. The E at its minimum is just the ground-state energy Ey that corre-
sponds to the occupation of the N lowest orbitals.

By integration of Equation (2.29) one connects the ground-state energies of the sys-
tems with N and (N — 1) electrons, i.e.,

I(N) = Eo(N —1) — Eo(N) = — /01 ei(f)df. (2.32)

where I(N) is the ionization energy of the N-electron system. Equation (2.32) has a
formal justification only if €; refers to the highest occupied eigenstate in the N-electron
system. However, it has been used with success for calculating the ionization energy of
localized states (e.g., core levels [46]):

L(N) = — /01 ei(f)df ~ —eilfi = %). (2.33)

This approach is called the Slater’s transition-state method [47] (earlier than Janak’s
theorem and DFT). When the eigenvalue ¢; is approximately constant as a function of
fi, then —e; predicts well the ionization energy of this level of the real system. This is
the analog of Koopmans’ theorem! of Hartree-Fock theory.

Extension to finite temperatures

For a system of interacting electrons in thermal equilibrium in contact with a heat bath
at temperature T, the state of the system should be described by a statistical ensemb]e.
Within the framework of DFT, this can be done using the Mermin free-energy functional
or Mermin-Kohn-Sham self-consistent equation [48, 49], which is formally similar to the
Kohn-Sham equation (the zero-T case). In this case, the density is given by:

n(r) = Zfi\¢i(r)|2, (2.34)

where f; is a Fermi-Dirac distribution:

€ — 1
fi=f(— Fy = i (2.35)
1+e*s!

In the Hartree-Fock theory, the Koopmans’ theorem states that the change in total energy due to the
removal of an electron from an unrelaxed orbital lpiHF is simply related to the eigenvalue of this orbital,

ie, E(N—1;f; = 0) — Eg(N) = —eliF [43]. This theorem requires that all the orbitals do not relax
when the occupancy f; is reduced.

12
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where y is the chemical potential (or Fermi level) of the electrons, and kp the Boltzmann
constant. For a canonical ensemble, the y is determined by:

YfEEER =N (2.36)

The finite-temperature extension of Kohn-Sham DFT is useful for studying systems at
finite temperature.

2.3.3 Exchange-correlation approximations

Kohn-Sham DFT provides a practical way to determine the ground state of an inter-
acting many-electron system by self-consistent solution of the Kohn-Sham equation.
The only problem is that in practice the xc energy Ex.[n(r)] has to be approximated
by some known functionals of n(r). In the same work of Kohn-Sham DFT [41], the
Exc[n(r)] is approximated with the local-density approximation (LDA). Following the
LDA, many density functional approximations (DFAs) have been developed or are un-
der development [50]. Each of them can be assigned to a certain rung in Perdew’s
"Jacob’s ladder" of DFAs [51], with increasing complexity and numerical accuracy as
well as computational cost from lower to higher rungs. The LDA is at the lowest rung,
and the generalized gradient approximations (GGAs), which introduce also the density
gradient, are at the next higher rung of the ladder. The numerical accuracy of a DFT
calculation depends to a large extent on the chosen DFA, and there is no universally
good approximation. In practice, one may need to find a compromise between accu-
racy and computational cost, especially when performing solid-state calculations with
simulation cells containing more than a few hundred atoms [52].

In this subsection, we review the most widely used DFAs, including LDA, GGAs
(PBE and PBEsol as examples), and hybrid functionals (HSE06 as an example), together
with a discussion of their performance in solid-state calculations.

Local-density approximation

In the LDA [41], it is assumed that the Ey.[n(r)] is entirely local, and that the xc energy
per electron at point r is equal to the xc energy per electron of a homogeneous electron
gas (HEG) at this point with the same density; i.e.,

Exc[n(r)] = E2%[n(r)] = / n(r)exe < [n(r)]dr. (2.37)

The €!IFS[n(r)] is commonly decomposed into exchange and correlation terms:

exc o n(1)] = &FCn(r)] + e ln(r)]. (2.38)

13
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The €!EC is known analytically:

33

HEC [ (r)] = —3 (=

W3n(r)1/3. (2.39)
For €1FS, analytic expressions are known only in the high- and low-density limits. For
several intermediate values of 7(r), numerical results for e/'E¢ have been calculated
from nearly accurate Quantum Monte Carlo (QMC) simulations [53]. Several approx-
imate analytic forms for €!EG exist; they are parametrized using the QMC data and

meanwhile reproduce the known limiting behavior, and yield very similar results [38].
In our later study of Si, we will use the analytic form given by Perdew and Wang [54],

1

HEG
ec Cn(r)] = —2A(1 + aqrs) In[1 +
‘ ’ 2A(P1rY/? + Bors + Bard/? + Barl ™)

], (2.40)

3
4rn(r
value of the parameters i(n)Equation (2.40) can be found in Ref. [54].

In principle the LDA is only valid for systems with uniform or slowly-varying den-
sity. However, this approximation has turned out to work surprisingly well in predict-
ing the ground-state properties of atoms, molecules, and solids, in which the electron
density is far from homogeneous [37]. For weakly correlated solids, such as simple
metals and semiconductors, the LDA reliably describes structural and vibrational prop-
erties [33]. The success of this approximation has been partly attributed to the fact that
it gives the correct sum rule for the xc hole? [55]. The LDA also has some well-known
deficiencies: (i) It tends to overestimate the binding energies of solids and hence often
underestimates the lattice constants [56, 57]; (ii) It systematically underestimates the
band gaps of semiconductors and insulators (by about 40 — 50%) [58]. The band-gap
problem will be discussed later.

where r; = 15(r) = | ]1/3 is the dimensionless Wigner-Seitz radius. The detailed

Generalized Gradient Approximations

In order to account for density inhomogeneity, GGAs extend LDA by introducing an
additional dependence on the gradients of the density [59]; i.e.,

Ex[n(r)] = ESCGA[n(r)] = /n(r)eXHCEG[n(r)]FXC[n(r),Vn(r)]dr. (2.41)

The Fi.[n, Vn] is the xc-enhancement factor, a dimensionless parameter that describes

the deviation from €!¥C[n] (inherited from the LDA). Due to the density gradient V7,

GGAs are semilocal functionals. Since there is no unique recipe for Fy., various GGA

2The xc hole describes the depletion of electron density in the vicinity of each electron due to the exchange
and Coulomb interactions. The sum rule states that this hole should contain only one charge unit [55].

14
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functionals are available; they are different in which and how many exact physical
constraints (limits, bounds, asymptotics, etc.) for E,. are satisfied [60].

The PBE functional, developed by Perdew, Burke, and Ernzerhof [61], is the most
widely used GGA in the physics community. It is nonempirical; that is, the numerical
parameters in this functional are set solely by imposing several exact physical con-
straints on the energy functional. The PBE exchange is expressed as:

EPBE[y] = / 11(x)HEG [11] PP () dr, (2.42)

where the FLPE(s) takes a simple analytic form:

1

EPE(s) = 14 xk(1 — = pppg7-),
1+ utbEs? /x

(2.43)
where: (i) s = |Vn|/(2kgn(r)) is the reduced density-gradient, a dimensionless param-
eter measuring the local density inhomogeneity over a Fermi wavelength A = 271 /kg
with kg = [3712n(r)]'/3; (ii) x = 0.804 is set to the maximum value allowed by the
Lieb-Oxford bound (a lower bound on Ey.) [62]; (iii) #"BF = 0.21951 is set to reproduce
the slowly varying limit (s — 0), in which the gradient correction for exchange cancels
that for correlation. The correlation component of PBE has a relatively complex ana-
lytic expression and is not detailed here. As a minor modification of PBE, PBEsol [63]
is specifically parameterized to the physical constraints that are relevant to solids, and
it differs from PBE only in two parameters.

When used in solid-state calculations, the PBE functional provides a good balance be-
tween numerical accuracy and computational cost. While PBE reduces the overbinding
of the LDA, it often overestimates the lattice constants [56, 57]. This deficiency is gener-
ally improved by PBEsol [63, 56, 57]. For the band gaps, all GGAs show no significant
improvement over LDA [64].

Hybrid functionals

Hybrid functionals [65], which are at the fourth rung of Perdew’s "Jacob’s ladder" of
DFAs, replace a fraction of GGA exchange with that of Hartree-Fock:

hybrld

Ex[n] =~ E wEF 4 (1 — ) ESSA[n] 4 ESCAn], (2.44)

where EIF is the exact (Hartree-Fock) exchange, and & ~ 1/4. The exact exchange has
an explicit dependence on the occupied one-electron orbitals:

2 N
EHF[ (] = _iz / / $F (1)} (12) ’¢](r1)¢l(r2)dr1dr2, (2.45)
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which is a nonlocal functional. The one-electron orbitals are now solutions of the gen-
eralized Kohn-Sham equation [66, 67]:

2
[_thvz + Vioe (1) 9i (1) + / VEE(r, ) p; () dY = e;wi(r), (2.46)

where Vi, (r) is the usual GGA potential, and a fraction « of the GGA exchange po-
tential is replaced with the Hartree-Fock exchange potential (V/F). Due to the nonlocal
nature of the Hartree-Fock exchange potential, the numerical solution of Equation (2.46)
is computationally costly.

Considering that the electron-electron Coulomb interaction is screened in solids, Heyd-
Scuseria-Ernzerhof (HSE) screened hybrid functional [68] introduces an additional screen-
ing for the exact exchange, by partitioning the Coulomb operator 1/r = 1/|r; — r,| into
short-range (SR) and long-range (LR) components:

1 _ erfe(wr) n erf(wr)
p

. P (2.47)
N——— N——

SR LR
where w is an adjustable parameter. With such a treatment, the decay of the exact ex-
change interaction in real space is accelerated [68], enabling a substantial lowering of
the computational cost (though still much more costly than LDA and GGAs). Further-
more, the HSE functional considers only a screened short-range exchange, i.e.,

EFSE — wEHESR(()) 4 (1 — &) EPBESR () + EFBELR () 4 EPBE, (2.48)

The HSE06 [69] with the parameters v = 0.11 bohr ' and & = 0.25 has proven to
be very successful in reasonably predicting the band gaps of many semiconductors.
However, it does not provide general solutions [64].

DFT-LDA/GGA band-gap problem

As mentioned above, LDA and GGAs systematically and severely underestimate the
band gaps of semiconductors and insulators. This problem has long been discussed
since the 1980s [58, 70, 71, 43], and there is still ongoing effort to elucidate it [72, 42].
These works are reviewed as follows, and our focus is on the relation between the
fundamental band gap (Eg) and the gap of Kohn-Sham band structure (E;) for both the
exact Kohn-Sham DFT and the (semi)local approximations.

For a neutral solid of N electrons, the fundamental gap E is defined as the difference
between the electron ionization energy I(N), which is the energy required to remove an
electron from the neutral solid, and electron affinity A(N), which is the energy gained

16



2.3 Density-functional theory

by adding an electron:

Ec = I(N) — A(N),
(2.49)
= [Eo(N = 1) = Eo(N)] — [Eo(N) — Eo(N +1)],
where Ey(N) is the ground-state energy of the N-electron system.
Consider first Kohn-Sham DFT with the exact functional and its extension to frac-
tional electron numbers. It has been shown that the ground-state energy as a function
of electron number is a set of straight-line segments connecting the total energies for
consecutive integer electron numbers [44]:

J x I(N)
3 x A(N)

(N —6) — Eop(N),

(N) — Eo(N +3), (20

Eg
Eo

where 0 < § < 1. Based on this linear behavior, Eg can be expressed in terms of a
difference of derivatives at N [70]:

J9E,

Jim (5N ves — 3N In-s 251

where the first (second) derivative is carried out from the right (left). According to
Janak’s theorem, Equation (2.51) leads to [70]:

Eg = }L%}r{eLUMO(N +6) —enomo(N —9)}
= li N-—-§ C—- N-—-§
(SLI&{€LUMO( )+ eromo ( )} 2.52)
= erumo(N) — eromo(N) +C
—E,+C,

where E, is a nonzero gap® separating the highest occupied orbital (HOMO) and the
lowest unoccupied orbital (LUMO) of Kohn-Sham band structure, and C is the deriva-
tive discontinuity of the xc energy:

C = lim {aE oF

XC XC
5—0t " ON ’N+5_ oN s} (2.53)

The understanding of Equation (2.51)-(2.53) is as follows [58, 42, 73]: First, it is worth
noting that when the electron number is increased from N to N + 6 and decreased from
N to N — 4, the HOMO and LUMO is "probed", respectively (this holds for the ground
state). The HOMO and LUMO, which are separated by the Eg, correspond to distinct
parts of the Kohn-Sham band structure. The gap E; implies no orbital relaxations when

3Semiconductors and insulators.
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an electron is lifted in energy from the HOMO to LUMO, i.e., both the density and
Exc are fixed to those of the N-electron ground state. This means that the E; of the
exact Kohn-Sham DFT is contributed solely by a derivative discontinuity in the kinetic
energy Ts[n] of the Kohn-Sham electrons, while the difference between E and E, stems
from the xc discontinuity as the LUMO begins to fill. Equation (2.52) suggests that even
the band gap for the exact functional underestimates the fundamental band gap.

For LDA and GGAs to DFT, the xc discontinuity is absent [58, 42]. As a result, the
fundamental gap equals the gap of Kohn-Sham band structure:

EIéDA /GGA _ E;;DA/GGA. (2.54)

Equations (2.52)-(2.54) have explained the deficiency of (semi)local functionals in pre-
dicting the band gaps.

The band-gap problem can be traced back to the self-interaction error [43, 74] (or lo-
calization and delocalization errors [72]) in the (semi)local functionals, as briefed as fol-
lows. The electronic self-interaction describes the unphysical interaction of an electron
with the Coulomb potential generated by its own charge. There is no self-interaction
error in the exact Kohn-Sham DFT, where the xc energy of a single, fully occupied
Kohn-Sham orbital cancels exactly its self-direct Coulomb energy. Such an exact can-
cellation no longer holds in the LDA and GGA functionals which are (semi)local, lead-
ing to underestimation of the band gap of semiconductors and insulators. Since the
Hartree-Fock theory is self-interaction-free, hybrids of GGA with exact exchange can
largely reduce the self-interaction error and give substantial improvement over LDA
and GGAs for the band gaps.

To partially overcome the band-gap problem, one usually resorts to the HSE06 func-
tional or, in particular, GW methods (introduced in Section 3.3.2). In this thesis, it is not
possible to use these advanced methods for electrical conductivity calculations, due to
the high computational cost. Thus, as in many state-of-the-art studies of real materials
[75], in the present work we have to address the DFT band-gap problem with compu-
tationally less expensive alternatives.
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2.4 DFT calculations with the FHI-aims code

The numerical solution of the Kohn-Sham equation is found by expanding the Kohn-
Sham eigenfunctions in a basis set [38]:

Np
Pu(r) = ) Cinepi(r), (2.55)
i=1

i.e., each unknown ¢,,(r) is expressed into a linear combination of N}, predefined func-
tions ¢;(r) with coefficients C;,, associated with 1,,. The basis functions specify the
potential field of the nuclei. Further, with Equation (2.55), the Kohn-Sham equation re-
duces to a matrix equation of the coefficients C;,,, and the resultant algebraic eigenvalue
problem is routinely solved using standard iterative matrix diagonalization technique
on a supercomputer. For having good flexibility in the self-consistent procedure, N,
should be reasonably larger than the number of ¢, to be computed.

Kohn-Sham DFT has been implemented in various DFT computer codes which en-
able practical electronic-structure calculations. A key difference between these DFT
codes is that they employ different types of basis functions. Common choices of basis
functions include plane waves [38, 76], Gaussians [77], numeric atom-centered orbitals
[78, 79], and their combinations as well [80, 81].

Numeric atom-centered orbitals as basis set in FHI-aims

Here we introduce the FHI-aims code, according to Refs. [78, 82]. FHI-aims uses nu-
meric atom-centered orbitals (NAOs) as the basis functions. The NAQO basis functions
take the form:

(1) = “iir)Yzm(Q), (2.56)

where u;(r) is a radial function specifying the radial shape and Y},,,(Q) is a spherical
harmonic. The NAO basis functions in the FHI-aims code have the following impor-
tant features. (i) First, they are real-valued by construction. This is enabled by mak-
ing Y, (Q)) comprise both the real parts (m = 0,1,...,]) and imaginary parts (m =
—1,...,—1) of the complex spherical harmonics (I and m are implicit functions of the
basis index 7). (ii) Second, the u;(r) are taken to be numerical solutions of Schrodinger-
like radial equations:

[_ldi I(1+1)
2 dr? 72

+ 0i(7) + veut (1) ui(r) = €u;(r). (2.57)

The shape of u;(r) is mainly defined by the potential v;(r), but when r is far away from
the (atomic) center, the steeply rising (yet smooth) confining potential v..(r) ensures
that each u;(r) decays smoothly to zero for r > rqyr. Owing to this, basis functions from
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well separated spatial regions of a large system do not overlap with each other. This is
essential to form sparse matrices and to enable Kohn-Sham DFT implementation with
near-O(N) [instead of O(N?)] scaling for all integrals (see below; N denotes system
size). (iii) Third, each chemical element has a minimal basis set comprising the radial
functions of occupied free-atom orbitals of this element. This is achieved by simply set-
ting the v;(r) in Equation (2.57) to the self-consistent free-atom radial potential vffe¢ (7).
This feature significantly improves both the numerical accuracy and convergence of
all-electron full-potential calculations, as it naturally accounts for wave-function oscil-

lations near the nucleus (the deep nuclear potential Z /7).

With the NAO basis functions entering Equation (2.55), one obtains a generalized
eigenvalue problem:

Y (hij — €x5ij)Cju = 0,

]
hij = <(pi|fzKS|¢j> = /go,'(r)fzKSqoj(r)dr, (2.58)

sij = (9il¢j) = /Gﬂi(r)qﬂj(r)dr,

where };; and s;; are the Hamiltonian and overlap matrix elements, respectively. Note
that the FHI-aims NAO basis functions are nonorthogonal, which renders the overlap
matrix. These real-space integrals are computed numerically using Lebedev grids [83,
84] which are overlapping atomic-centered grid points distributed in a set of radial
shells for each atomic center. The basis functions are numerically tabulated with respect
to both the basis index i and integration point. This allows for matrix operations in
performing the real-space integration.

Equation (2.58) is solved using iterative matrix diagonalization algorithms in the
standard self-consistent field (SCF) method [85]. The SCF cycle begins with an initial
guess for the density. A trial h;; is then constructed and used to solve Equation (2.58).
The resulted coefficients C;, update the density and thus h;;, and so forth. The conver-
gence of the SCF iterations is monitored by keeping a track of the changes in density
and total energy as well as other quantities between two consecutive SCF steps. Once
these changes become smaller than the given thresholds, the numerical convergence
is reached, and the SCF cycle is then finished. Note that the overlap matrix elements
sij are computed only once and do not change during a SCF cycle (during which the
nuclear positions are kept fixed). This is the reason why a SCF cycle is usually referred
to as a static DFT calculation.

The numerical accuracy and computational cost of FHI-aims calculations depend
critically on basis-set settings: (i) basis-set size (Np), (ii) cutoff radius r., and (iii)
density of integration points. For each chemical element, besides the aforementioned
free-atom minimal basis, there is a list of additional basis functions to be included in
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2.4 DFT calculations with the FHI-aims code

FHI-aims calculations. In this list, the ordering of basis functions is exactly the output
sequence of the basis-function construction process, and the additional basis functions
are grouped into different tiers, e.g., for Si, spdf (tier 1)-spdg (tier 2)-... (Each tier in-
cludes the basis functions of lower tiers). There are three predefined default basis-set
settings: "light", "tight", and "really_tight". As their names suggest, N}, rcut, and the
density of integration points are all increased from "light" to "tight" and to "really_tight"
settings. When it comes to total-energy calculations, the "light" settings usually provide
a satisfactory convergence of total-energy differences, while the "tight" settings usually
provide a satisfactory convergence of total energies [86]. Recently, a simple analytic
model was proposed to estimate the numerical error associated with basis-set settings
[87]. The "tight" settings are recommended for production calculations. However, when
dealing with large-scale periodic systems using the "tight" settings, the computational
effort can be enormous [88]. In this case, the cheaper "light" settings are usually used,
but careful basis-set convergence test is necessary. In this thesis, our electrical conduc-
tivity calculations will be carried out using the "light" basis sets, and we will provide
test calculations using the “tight" basis sets.
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2 Ab initio electronic-structure theory

2.5 DFT in the solid state

From now on our discussion will be focused on crystalline solids which are infinitely
extended systems. This section describes the electronic structure, lattice vibrations, and
their interactions in crystalline solids.

2.5.1 Periodic boundary conditions
In a crystalline solid, any nucleus can be found by the position vector in the form:
TKP - Rp + Tk, (2.59)

where: (i) R, = }_;n;a; is the lattice vector identifying the p-th primitive cell which is
the smallest structural unit spanned by the primitive lattice vectors a; with i = 1,2,3;
(ii) 7« is the position vector of the x-th nucleus in the primitive cell.

The simulation of crystalline solids, in which an infinite number of electrons moving
in the field of infinite number of nuclei, relies on using the Born-von Karman (BvK)
supercell [14]: a cell compromises N; X N, x N3 primitive cells and is imposed with
periodic boundary conditions (PBCs). The p-th primitive cell in the BvK supercell is
identified by the lattice vector R, = Y ;m;a; (n; = 0,1,...,N; — 1) which is restricted
in the BvK supercell. Starting from any point in the BvK supercell and translating
Y.ili(N;a;) (I; are arbitrary integers) will trivially find the same point. Although still
periodic, the BvK supercell no longer extends into the space outside itself.

For the BvK supercell, the Kohn-Sham Hamiltonian is given by hxs = —%Vz +
Vet (1; {Tip}). The effective potential Vig(r; {Txp}) takes the same form as Equation
(2.26), but is now a periodic potential. According to Bloch’s theorem, the Kohn-Sham
eigenfunctions are Bloch functions [89]:

1
N, cell

el

Puic(r) = KT (1), (2.60)

where 1,1 (r) = up(r+ R,) is a lattice-periodic function. By definition, ¢, and
are normalized to one in the BvK supercell and primitive cell, respectively. The eigen-
functions ¢, (r) and eigenvalues €, are now labeled by two quantum numbers: band
index n and wave vector k. The k points allowed by the BvK supercell are:

3 )
kp:_zﬂbi, n=0,1,...,Nj— 1. 2.61)

This relation indicates that a Ni x N> x N3 BvK supercell corresponds to a regularly
spaced grid of N; x N, x N3 points in the BZ of the primitive cell and vice versa. The
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2.5 DFT in the solid state

electron density is now computed with an additional sum of k points:

N
= ; Y- (), (2.62)
n=1

where N is the number of electrons in the primitive cell (instead of the BvK supercell).

Equation (2.62) indicates that by using a BvK supercell, the problem of calculating an
infinite number of one-electron orbitals in an infinitely extended solid is changed to the
one of calculating a finite number of one-electron orbitals at a finite number of k points.
This mapping becomes exact when the number of k points is infinite, corresponding
to an infinitely large BvK supercell. In practical calculations, fully converged electron
density and total energy can be obtained by using a finite, yet sufficiently large number
of k points, due to the fact that the electronic wave functions are almost identical for
k points that are very close to each other [38]. The k-point sampling is usually gen-
erated using the Monkhorst-Pack scheme [90], which leads to a regularly spaced grid
of Ni x N, X Nj points in the BZ of the primitive cell*. In principle, the magnitude of
any numerical error in the total energy due to incompletely converged k-point sam-
pling can always be reduced by using a denser set of k points [38], provided that the
computational resources allow.

Solid-state calculations with FHI-aims

In FHI-aims, the PBCs are implemented by defining the Bloch-like generalized basis
functions [78, 91]:

! Zeik'RP pi(r— Tt —Ry), (2.63)

(1) =
Xlk( ) Ncell R,

where ¢;(r — 7, — R) denotes the i-th basis function which is centered at the x-th atom
belonging to the p-th primitive cell within the BvK supercell. It is easy to verify that
xi(t + R,) = e®Rrx; (r). The Kohn-Sham eigenfunctions ,(r) are then expressed
as a linear combination of x;i(r):

lpnk Z Cln Xlk
(2.64)

\/7 chn ) Rzeik.qu)Z‘(r - TK - RP)/
cell p

which are Bloch functions by construction.

4In practical DFT calculations, one provides a "simulation cell", which is the structural model, as the
input. In FHI-aims calculations, the “simulation cell" is specified in the "geometry.in" file. Any “simu-
lation cell” is treated as a primitive cell by solid-state DFT codes.
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Figure 2.1: Schematic illustration of the central unit cell (orange area), the DFT super-
cluster (grey and orange area), and the implicit BvK supercell (all the blocks).
The dots denote atomic centers, and ¢;( denotes the most extended basis
function from the central unit cell. Adapted from Refs. [91, 92].

In FHI-aims, the so-called “supercluster” instead of the BvK supercell is actually used
in solid-state calculations [91, 92]. As shown schematically in Figure 2.1, a central unit
cell is defined, and has the lattice vector R, = (0,0,0). The basis functions from the
central unit cell extend into other unit cells (the so-called image unit cells), but since
the basis functions are strictly localized within a certain range, they can only touch the
nearby unit cells. Equivalently speaking, only those unit cells whose basis functions
can touch the central unit cell can have nonzero basis functions in the central unit cell
and contribute to the real-space integrals (which are carried out in the central unit cell).
These unit cells, including the central unit cell, forms the supercluster. The supercluster
can be viewed as the BvK supercell excluding the unit cells whose basis functions can-
not touch the central unit cell (see Figure 2.1). It is of fixed size, regardless of the k-point
sampling. The use of supercluster enables limiting the computational cost when using
a dense k-point sampling and/or a large simulation cell [78], and it is the key to enable
near-O(N) scaling in FHI-aims calculations.

The matrix elements of electron momentum operator, i.e., (x| p| k), are one of the
main quantities needed in electrical conductivity calculations. In the semi-classical the-
ory, the diagonal elements of momentum matrix are called the electron group velocities,
ie., Vo = (Yuk|p|¥nk) /m [7]. The non-diagonal elements (m # n) represent electronic
inter-band transitions. In FHI-aims, the computation of (i,,x|p|¥uxk) is straightforward
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2.5 DFT in the solid state

by using the definition of the electron momentum operator p = —ifiV, i.e,,

(Pl PI9n) = =i 1 Chu(K)Can(10) [ 25 (6) Ve (1)
L]

= —ih ZCfm(k)Cin(k)
ij
1 ‘ (2.65)
X —— Zelk'(RP’R‘l) /q)j(r — T« — Ry)Voi(r — 7, — Rp)dr
Ncell P4
. * 1 k- —
= —ih ;ij(k)cm(k) Ne pz,q:el Ry =Re) (95, Ry |V |9is Rp),

where the basis gradient elements (¢;; Ry|V|¢;; R;,) can be conveniently computed in
the spherical coordinates. Detailed derivation of the atomic-sphere contribution to
(9;;Ry|V|@i;Rp) can be found in the work of Draxl et al. [93]. The computation of
the momentum-matrix elements is a post-SCF calculation.

2.5.2 Interactions between electrons and lattice vibrations

Having outlined the key elements in DFT calculations of the electronic structure of
crystalline solids with static nuclei, we now proceed to describe lattice vibrations and
coupling between electrons and lattice vibrations in crystalline solids at finite temper-
ature. Two established methods are introduced and compared: the first (also de facto
standard) is based on approximate models; the second is based on aiMD simulations.

Supercell calculations

Lattice vibrations in crystalline solids are characterized by collective atomic displace-
ments. For this long-range behavior, the theoretical description can use a large simula-
tion cell with PBCs. The allowed lattice-vibrational modes are determined by the size of
the simulation cell, which can be understood as follows. Consider a simulation cell con-
sisting of N1 X Ny x N3 primitive cells. The BZ of the simulation cell can be obtained by
folding (towards the zone center) the BZ of the primitive cell N; times along the b; (the
reciprocal-space lattice vector of the primitive cell) for the i-th direction. Let’s sample
the BZ of the simulation cell by a single I point. Due to the periodicity of the reciprocal
lattice, the I point can be mapped to its periodic images by the lattice vector }; b;/ Nj.
This is equivalent to sampling the BZ of the primitive cell with a Ny x N, x N3 q-point
grid®, and the set of q points is given by Equation (2.61). Such an 