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Abstract

This thesis focuses on different aspects of the union of modern econometrics and machine
learning. Chapter 2 considers a new estimator of the regression parameters in a panel
data model with unobservable interactive fixed effects. A distinctive feature of the
proposed approach is to model the factor loadings as a nonparametric function. We show
that our estimator is

√
NT -consistent and asymptotically normal, as well that it reaches

the semiparametric efficiency bound under the assumption of i.i.d. errors. Chapter 3
is concerned with the recursive estimation of quantiles using the stochastic gradient
descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a
computationally and memory efficient alternative to the usual empirical estimator. Our
focus is on studying the nonasymptotic behavior by providing exponentially decreasing
tail probability bounds under minimal assumptions. In Chapter 4 we propose a novel
approach to calibrate the conditional value-at-risk (CoVaR) of financial institutions
based on neural network quantile regression. We model systemic risk spillover effects
in a network context across banks by considering the marginal effects of the quantile
regression procedure. An out-of-sample analysis shows great performance compared
to a linear baseline specification, signifying the importance that nonlinearity plays
for modelling systemic risk. A comparison to existing network-based risk measures
reveals that our approach offers a new perspective on systemic risk. In Chapter 5 we
aim to model the joint dynamics of cryptocurrencies in a nonstationary setting. In
particular, we analyze the role of cointegration relationships within a large system of
cryptocurrencies in a vector error correction model (VECM) framework. To enable
analysis in a dynamic setting, we propose the COINtensity VECM, a nonlinear VECM
specification accounting for a varying system-wide cointegration exposure.

Keywords: modern econometrics, machine learning, nonparametric statistics, quantile
regression.
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Zusammenfassung

Diese Dissertation behandelt verschiedene Aspekte moderner Ökonometrie und Machine
Learnings. Kapitel 2 stellt einen neuen Schätzer für die Regressionsparameter in einem
Paneldatenmodell mit interaktiven festen Effekten vor. Eine Besonderheit unserer
Methode ist die Modellierung der factor loadings durch nichtparametrische Funktionen.
Wir zeigen die

√
NT -Konvergenz sowie die asymptotische Normalverteilung unseres

Schätzers. Kapitel 3 betrachtet die rekursive Schätzung von Quantilen mit Hilfe des
stochastic gradient descent (SGD) Algorithmus mit Polyak-Ruppert Mittelwertbildung.
Der Algorithmus ist rechnerisch und Speicher-effizient verglichen mit herkömmlichen
Schätzmethoden. Unser Fokus ist die Untersuchung des nichtasymptotischen Verhal-
tens, indem wir eine exponentielle Wahrscheinlichkeitsungleichung zeigen. In Kapitel
4 stellen wir eine neue Methode zur Kalibrierung von conditional Value-at-Risk (Co-
VaR) basierend auf Quantilregression mittels Neural Networks vor. Wir modellieren
systemische Spillovereffekte in einem Netzwerk von systemrelevanten Finanzinstituten.
Eine Out-of-Sample Analyse zeigt eine klare Verbesserung im Vergleich zu einer lin-
earen Grundspezifikation. Im Vergleich mit bestehenden Risikomaßen eröffnet unsere
Methode eine neue Perspektive auf systemisches Risiko. In Kapitel 5 modellieren wir
die gemeinsame Dynamik von Kryptowährungen in einem nicht-stationären Kontext.
Um eine Analyse in einem dynamischen Rahmen zu ermöglichen, stellen wir eine neue
vector error correction model (VECM) Spezifikation vor, die wir COINtensity VECM
nennen.

Schlagworte: moderne Ökonometrie, Machine Learning, nichtparametrische Statistik,
Quantilregression.
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Chapter 1

Introduction

There is an ongoing discussion about the relation between traditional statistical and
econometric tools and the recent development of machine learning methods. Breiman
et al. (2001) argued about the existence of a clear dichotomy between a “data modeling
culture” on the one hand and an “algorithmic modeling culture” on the other hand. The
former relies on an explicit assumption of a stochastic model while the latter takes a
black box approach. In recent years, the boundaries between these two paradigms seem
to have vanished. It has proved to be useful to analyze machine learning methods from
a statistical and econometric perspective. Barron (1993) and Chen and White (1999)
studied the rate of convergence of single-layer neural networks under the nonparametric
framework of nonlinear sieve estimation (see Chen, 2007). Similarly, Scornet et al.
(2015) and Scornet (2016) showed that random forests can be viewed as a special case of
kernel regression with an adaptive bandwidth. Furthermore, machine learning methods
have been applied successfully to the semiparametric estimation of treatment effects
(Athey et al., 2019; Chernozhukov et al., 2018). This dissertation is written in the
same spirit, namely that econometrics and machine learning methods can be viewed as
two sides of the same coin. The remainder of the thesis consists of four chapters that
focus on various aspects of the union of modern econometrics and machine learning.
The contributions are both of a theoretical and applied nature.

The second Chapter considers a new estimator of the regression parameters in a
panel data model with unobservable interactive fixed effects, which are allowed to be
correlated with the regressors. A distinctive feature of the proposed approach is the
projection of the (smoothed) data matrix onto the orthogonal linear sieve space spanned
by the covariates, instead of projecting on the orthogonal spaces of factors. Therefore,
the new estimator adopts the well-known form of partial least squares estimation.
Further, this approach facilitates us to have a direct estimator for regression parameters
without the need of estimating factors. In addition, we show that our estimator is
√
NT -consistent and asymptotically normal, as well that it reaches the semiparametric

efficiency bound under the assumption of i.i.d. errors. A Monte Carlo study indicates
a great performance in terms of mean squared error. We apply our methodology to
analyze the determinants of growth rates in OECD countries.

1



2 CHAPTER 1. INTRODUCTION

Chapter 3 is concerned with the recursive estimation of quantiles using the stochastic
gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers
a computationally and memory efficient alternative to the usual empirical estimator.
Our focus is on studying the nonasymptotic behavior by providing exponentially
decreasing tail probability bounds under minimal assumptions. This novel result is
based on a bound of the moment generating function of the SGD estimate. We apply
our result to the problem of best arm identification in a multi-armed stochastic bandit
setting under quantile preferences.

In Chapter 4 we propose a novel approach to calibrate the conditional value-at-risk
(CoVaR) of financial institutions based on neural network quantile regression. Building
on the estimation results, we model systemic risk spillover effects in a network context
across banks by considering the marginal effects of the quantile regression procedure.
An out-of-sample analysis shows great performance compared to a linear baseline
specification, signifying the importance that nonlinearity plays for modelling systemic
risk. We then propose three network-based measures from our fitted results. First, we
use the Systemic Network Risk Index (SNRI) as a measure for total systemic risk. A
comparison to existing network-based risk measures reveals that our approach offers a
new perspective on systemic risk due to the focus on the lower tail and to the allowance
for nonlinear effects. We also introduce the Systemic Fragility Index (SFI) and the
Systemic Hazard Index (SHI) as firm-specific measures, which allow us to identify
systemically relevant firms during the financial crisis.

In Chapter 5 we aim to model the joint dynamics of cryptocurrencies in a nonstationary
setting. In particular, we analyze the role of cointegration relationships within a large
system of cryptocurrencies in a vector error correction model (VECM) framework. To
enable analysis in a dynamic setting, we propose the COINtensity VECM, a nonlinear
VECM specification accounting for a varying system-wide cointegration exposure. Our
results show that cryptocurrencies are indeed cointegrated with a cointegration rank
of four. We also find that all currencies are affected by these long term equilibrium
relations. The nonlinearity in the error adjustment turned out to be stronger during
the height of the cryptocurrency bubble. A simple statistical arbitrage trading strategy
is proposed showing a great in-sample performance, whereas an out-of-sample analysis
gives reason to treat the strategy with caution.

All codes of this dissertation are available on quantlet.de.

http://www.quantlet.de
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Chapter 2

A Projection-Based Approach to
Interactive Fixed Effects

2.1 Introduction

Panel data models have proved to be useful tools for the estimation of regression
parameters under the presence of unobserved heterogeneity in the data (see Arellano
(2003) for an overview). A large proportion of the literature focused on the special case
of additive individual effects. However, in many empirical applications this assumption
of a single time-invariant component might be excessively restrictive. Instead, a more
realistic setting should allow for multiple effects which can change over time. For
instance, in the analysis of worker’s wages different unobserved talents and skills might
be evaluated differently across time. As standard econometric tools such as the fixed
effects estimator are not suitable in this situation, recent studies have been devoted
to the analysis of interactive effects models, where the unobserved heterogeneity is
modelled via a latent factor structure. Factor models have been studied extensively in
the literature with applications in asset pricing, macroeconomics and empirical labor
economics (Bai, 2003; Bai & Ng, 2013; Stock & Watson, 2002). In the seminal works of
Connor and Linton (2007) and Connor et al. (2012), the authors model the individual-
specific factor loadings as a nonparametric function of time-invariant regressors. Fan
et al. (2016) extended this framework and proposed an projected principal component
algorithm. The estimation of regression parameters in the interactive fixed effects model
is studied in Ahn et al. (2013), who extended the quasi-differencing method of Holtz-
Eakin et al. (1988) to the case of multiple factors. Another estimator, which is based
on filtering out individual regressors by taking cross-sectional averages, was proposed
by Pesaran (2006). Bai (2009) proposed a principal component-based algorithm to
estimate the regression parameters in a model with multiplicative fixed effects. Moon
and Weidner (2015) proposed a bias-corrected least squares estimator and discussed
inference-related issues.

In this paper, we propose a new projection-based estimator for the regression parameters
in the interactive fixed effects model. A distinctive feature of the approach is the

4



2.1. INTRODUCTION 5

projection of the data matrix onto the orthogonal linear subspace spanned by the
covariates, instead of projecting on the orthogonal spaces of factors. We extend the
framework of Fan et al. (2016) to the regression case and to the case of time-varying
covariates. In particular, we assume that the individual-specific factor loadings are
smooth functions of the time-averages of covariates, perturbed by an error term that is
independent of the regressors. The regression model takes the form of a partial linear
model (see e.g. Härdle et al., 2012). Therefore, the new estimator adopts the well-known
form of partial least squares estimation. An advantage of our method is that we do not
need to require knowledge about the number of factors. We show the

√
NT -consistency

and asymptotic normality of our estimator. In the i.i.d. situation, and if the loadings
can be explained completely by the nonparametric functions, our estimator reaches the
semiparametric efficiency bound. While the main focus of the paper is the estimation
of the regression parameters, we also obtain consistent estimators for the latent factors
and corresponding factor loadings.

We validate the theoretical results in a simulation study. In the case, where the time
averages of regressors have a non-vanishing explaining power on the factor loadings,
our estimator outperforms alternative estimators which do not account for the relation.
We apply our method to the identification of the determinants of economic growth.
We obtain growth rates and country-specific variables from the Penn World Table and
from the World Bank Development Indicators. Lu and Su (2016) argued that the
GDP growth rates per capita might not only be determined by observed factors, but
might also be influenced by latent factors or shocks. Our projection-based interacted
fixed effects estimator is well suited for such a setting. Indeed, our empirical findings
suggest an important role of these latent effects. Especially, when only concentrating
on the subset of OECD countries, the factor loadings can be well explained by the time
averages of regressors.

The main contribution of this paper lies in the synthesis of the projection-based principal
components approach proposed by Fan et al. (2016) and the regression framework with
interactive effects of Pesaran (2006) and Bai (2009). Another key contribution is the
extension of Fan et al. (2016) to the case of time-varying regressors. Our estimator
takes the very simple and intuitive structure of a partial least squares estimator. An
important advantage of the estimator is that it is unaffected by and thus does not
require knowledge on the number of factors.

The paper is organized as follows. In Section 2.2, we present the model setup and
derive our projection-based interactive fixed effects estimator. Section 2.3 provides
our assumptions and studies the asymptotic properties. In Section 2.4, we examine
the performance of our estimator in a Monte Carlo study. We apply our method to
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analyze the determinants of economic growth in Section 2.5. Section 2.6 discusses
future research directions and concludes.

All codes of this paper are available on quantlet.de.

2.2 Model and Estimation Procedure

2.2.1 Panel Data with Interactive Fixed Effects

We consider the following panel data model with interactive fixed effects, see Bai (2009),

yit = x
⊺
itβ + εit,

εit = λ
⊺
i ft + uit

i = 1, . . . ,N ; t = 1, . . . , T, (2.1)

where yit denotes the response variable of the individual i in the period t, xit is the
Q-dimensional covariate vector and β is the Q-dimensional vector of parameters to
be estimated. The relationship between xit and yit described in (2.1) contains K
unobserved common factors, ft = (ft1, . . . , ftK)⊺, and the corresponding factor loadings
for individual i, λ⊺i = (λi1, . . . , λiK). Further, these quantities are perturbed by the
idiosyncratic error term, uit. Throughout the paper, λi, ft, and uit are all unobserved.
In addition, it is assumed that uit is uncorrelated with λi and fs for all i, t and s.

A key feature of this regression model is that the explanatory variables xit are allowed
to be dependent on the interactive effect components. Consequently, this model is
more realistic and can be applied in a great variety of economic studies and other social
sciences in which some of the regressors are decision variables that can be influenced
by unobserved individual heterogeneities, see Bai and Li (2014). In labor economics,
for example, yit can be the wage of individual i at period t, xit is a vector of observed
covariates such as education, experience, gender or marital status, λi is a vector of
unmeasured features of the individuals such as ability, perseverance, motivation, and
dedication, ft is the vector of prices for the unobserved skills, and uit captures the
idiosyncratic variation in the wages. In macroeconomic studies, the interactive effects
represent unobserved common shocks and their heterogeneous impacts on the cross
section. Thus, yit can be the output growth rate for country i in year t, xit is the
vector that contains the production inputs (i.e., labor and capital), ft are the common
shocks such as technological shocks or financial crises, and uit is the country-specific
error term of the output growth rate. In finance, yit can be the return of the stock i
in period t, xit is the vector of observed covariates such as dividend yields, dividend
payout ratio, and consumption gap, ft represents unobserved common factors such as
systematic risks, λi is the exposure to the risks, and uit is the idiosyncratic part of

http://www.quantlet.de
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returns.

Our interest is centered on the estimation of the slope coefficient β. As it is well
known in the literature, any attempt to estimate β directly through standard panel
data estimation techniques will lead to inconsistent estimators since E(λik∣xit) ≠

0. Alternatively, standard panel data transformation techniques, like the within
transformation, are used to remove the heterogeneity term from the statistical model of
interest. However, in this case such transformations fail as a result of the multiplicative
form of the fixed effects and the resulting estimators are inconsistent.

2.2.2 Semiparametric Interactive Fixed Effects Model

In order to overcome this situation, we propose to incorporate these unknown rela-
tionships into the model of interest in order to obtain a consistent estimator for β.
Specifically, as suggested in Bai (2009), the correlated random effects framework of
Mundlak (1978) can be extended to the case of interactive effects. A natural way of
expressing these relationships is projecting λi over x̄i⋅, where x̄i⋅ is the time average of
xit. Thus, the factor loadings can be expressed as

λi = θx̄i⋅ + γi, (2.2)

where θ is a K ×Q matrix of unknown parameters and γi is a K × 1 component of the
loading coefficients that cannot be explained by the covariates x̄i⋅. We assume that γi
has zero mean and is independent of x̄i⋅ and uit.

Note that the above relationship enables us to consider much more general situations
than those in Fan et al. (2016). Specifically, instead of focusing only on observed time-
invariant covariates, we also consider those regressors that vary across the individuals
and across time. However, this linear specification can be rather restrictive in many
cases, therefore we instead follow a nonparametric approach,

λi = g(x̄i⋅) + γi, (2.3)

where g(⋅) is a K × 1 vector of unknown smooth functions.

Then, plugging (2.3) into (2.1) and rearranging terms we get

yit = x
⊺
itβ + g(x̄i⋅)

⊺ft + γ
⊺
i ft + uit, (2.4)

which reduces to model (2.1) when g(⋅) = 0 and to the model analyzed in Connor and
Linton (2007) and Connor et al. (2012) when γi = 0.
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The above regression model still has a factor error structure. However, assuming that ft
is uncorrelated with the explanatory variables xit, it is possible to define the following
composed error term,

vit
def
=

K

∑
k=1

γkifkt + uit.

Given that vit is uncorrelated with xit, consistent estimators for β in (2.4) can be
obtained by using standard estimation techniques for panel data models.

Let yt and vt be N × 1 vectors of yit and vit, respectively, Xt be the N ×Q matrix of
regressors, β be the Q × 1 unknown vector to be estimated, ft be the K × 1 vector of
ftk, and G(X̄) be the N ×K matrix of nonparametric functions, gk(x̄i⋅). Then, the
model (2.4) can be written in matrix form as

yt =Xtβ +G(X̄)ft + vt, t = 1, . . . , T. (2.5)

In this situation, instead of projecting on the space of factors ft, one can consider a
sieve estimation for G(X̄) to estimate β and project on the space expanded by the
sieve basis. Before introducing the estimation procedure that we propose in this paper,
we recall simply the polynomial spline function.

Let X be an interval with end points ζ0 < ζM+1. A polynomial spline of degree d ≥ 0 on
X with knot sequence ζ0 < ζ1 < . . . < ζM+1 is a function that is a polynomial of degree d
on each interval [ζ0, ζ1), . . . , [ζM−1, ζM), [ζM , ζM+1), and globally has continuous d − 1
derivatives for d ≥ 1. The collection of spline functions of a particular degree and knot
sequence form a linear space. Specifically, a piecewise constant function, linear spline,
quadratic spline, and cubic spline corresponds to d = 0, 1, 2, 3, respectively. We refer to
de Boor (1978) and Schumaker (1980) as a good overview for spline functions.

Given that x̄i. is Q-variate, in order to avoid the curse of dimensionality in the
nonparametric estimation of gk(⋅), we will assume that for each k, gk(⋅) is an additive
function, that is,

gk (x̄i.) =
Q

∑
q=1

gkq (x̄i.,q) . (2.6)

Suppose that, for each k and q, the function gkq(⋅) can be approximated by some spline



2.2. MODEL AND ESTIMATION PROCEDURE 9

function, that is,

gkq(x̄i⋅,q) =
Jg

∑
ℓ=1

bℓ,kqϕℓ(x̄i⋅,q) +Rkq(x̄i⋅,q), k = 1, . . . ,K, q = 1, . . . ,Q. (2.7)

where ϕℓ(⋅)’s are the spline basis functions. For l = 1, . . . , Jg, bℓ,kq’s are the sieve
coefficients of the qth additive component of gk(x̄i⋅) corresponding to the kth factor
loading, and Rkq is a “remainder function” that represents the approximation error.
Also, Jg denotes the number of sieve terms which grows slowly as N → ∞. As it is
well-known in the literature, the basic assumption for sieve approximation is that the
approximation error approaches zero, supx ∣Rkq(x̄i.,q)∣→ 0, as Jg →∞.

For the sake of simplicity, we take the same basis functions in (2.7). For each k ≤K,
q ≤ Q and i ≤ N , let us define

b⊺k = (b1,k1, . . . , bJg ,k1, . . . , b1,kQ, . . . , bJg ,KQ) ∈ RJgQ,

ϕ(x̄i⋅)
⊺ = (ϕ1(x̄i⋅,1), . . . , ϕJ(x̄i⋅,1), . . . , ϕ1(x̄i⋅,Q), . . . , ϕJ(x̄i⋅,Q)) ∈ RJgQ.

Thus, the above equation can be rewritten as

gk(x̄i⋅) = ϕ(x̄i⋅)
⊺bk +

Q

∑
q=1

Rkq(x̄i⋅,q). (2.8)

By considering (2.8) in matrix form we obtain

G(X̄) = Φ(X̄)B +R(X̄), (2.9)

where Φ(X̄) = (ϕ(x̄1⋅), . . . , ϕ(x̄N ⋅))⊺ is a N × JgQ matrix of basis functions, B =
(b1, . . . , bK) is a JgQ×K matrix of sieve coefficients, and R(X̄) is a N ×K matrix with
the (i, k)th element ∑Q

q=1Rkq(x̄i⋅,q).

Then, substituting (2.9) into (2.5) leads to

yt =Xtβ +Φ(X̄)Bft +R(X̄)ft + vt, t = 1, . . . , T. (2.10)

We want to point out that the residual term of this regression model consists of two
parts, the sieve approximation error R(X̄)ft and the idiosyncratic error vt that is of
the form vt = Γft + ut, where Γ is a N ×K matrix of unknown loading coefficients.

With the aim of estimating β and taking as benchmark the idea in Fan et al. (2016),



10 CHAPTER 2. PROJECTED IFE ESTIMATOR

we define PΦ as the projection matrix onto X , where X is the sieve spaced spanned by
the basis functions of X̄. More precisely, PΦ is the N ×N projection matrix of the form

PΦ(X̄) = Φ(X̄) {Φ(X̄)
⊺Φ(X̄)}

−1
Φ(X̄)⊺. (2.11)

Therefore, one can obtain the estimator of β by partialling out the effect of factors ft,
i.e.

β̂ = [
T

∑
t=1

X⊺t {IN − PΦ(X̄)}Xt]

−1 T

∑
t=1

X⊺t {IN − PΦ(X̄)} yt, (2.12)

where X⊺t {IN − PΦ(X̄)}Xt is assumed to be asymptotically nonsingular.

As the reader can remark, the resulting estimator of β appears as the solution of
a partially linear model (see Härdle et al. (2012) for a comprehensive review of the
literature), where the nonparametric part is “partialled out”. Although the asymptotic
properties of this estimator have been already studied under many alternative sets of
assumptions, it is worthwhile to establish these conditions in our context and obtain
its asymptotic distribution.

2.2.3 Estimation of Interactive Fixed Effects Components

The latent factors and corresponding factor loadings can be estimated from the regres-
sion residuals,

ỹt = yt −Xtβ̂, (2.13)

and let Ỹ = (ỹ1, . . . , ỹT ). We can estimate the matrix of factors, F = (f1, . . . , fT )⊺, by
following the approach of Fan et al. (2016). In particular, we can estimate

√
T F̂ by

the eigenvectors associated with the largest K eigenvalues of the matrix Ỹ ⊺PΦ(X̄)Ỹ .
Using the estimated matrix of factors, we estimate the corresponding matrix of factor
loadings by

Λ̂ = Ỹ F̂ /T. (2.14)

The part of the factor loadings that can be explained by X̄ and the idiosyncratic part
can be estimated by Ĝ(X̄) = 1

T PΦ(X̄)Ỹ F̂ and Γ̂ = 1
T {IN −PΦ(X̄)}Ỹ F̂ , respectively. In

order to estimate the functions gk, we can obtain an estimator for the sieve coefficients
by least squares,

B̂ = (̂b1, . . . , b̂K) =
1

T
{Φ(X̄)⊺Φ(X̄)}

−1
Φ(X̄)⊺Ỹ F̂. (2.15)
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Finally, we can construct an estimator for the nonparametric functions,

ĝk(x) = ϕ(x)
⊺b̂k, k = 1, . . . ,K. (2.16)

In practice, the number of latent factors, K, is unknown and needs to be estimated.
We follow the approach of Fan et al. (2016) to select K̂ according to the largest ratio
of eigenvalues of the matrix Ỹ ⊺PΦ(X̄)Ỹ ,

K̂ = arg max
0<k<JgQ/2

λk {Ỹ ⊺PΦ(X̄)Ỹ }

λk+1 {Ỹ ⊺PΦ(X̄)Ỹ }
. (2.17)

The condition that the true dimension of the factors is smaller than JgQ/2 is fulfilled
naturally since the sieve dimension Jg grows slowly with the sample size. Interestingly,
our estimator for the regression parameters β̂ does not require any knowledge of K.
However, the number of factors is crucial to the estimation of the factor components
as well as to the estimation of standard errors for the regression parameters.

2.3 Asymptotic Properties

In this section we analyze the main asymptotic properties of β̂. With this aim, the
following assumptions are considered. Also, some additional notation is necessary.
For a real matrix A, let ∥A∥F = {tr(A⊺A)}1/2 denote its Frobenius norm and ∥A∥2 =
{λmax(A⊺A)}1/2 denotes its spectral norm where λmax(⋅) is the largest eigenvalue of “ ⋅”.

2.3.1 Assumptions

We start by introducing some assumptions related to the data generating process in
(2.5). Specifically, about the vector of explanatory variables xit, we assume that, as
common in the partially linear regression models, xit and x̄i. are related.

Assumption 2.3.1.

xitq =∑
q′
hqq′ (x̄i.,q′) + πitq, i = 1, . . . ,N ; t = 1, . . . , T ; q = 1, . . . ,Q,

where the hqq′ (⋅)’s are unknown functions and the πitq’s are random variables with zero
mean.

We also need to characterize the asymptotic behavior of x̄i.. We will assume that,

Assumption 2.3.2.

1

T
∑
t

xitq = µiq +Op (T
−1/2) , i = 1, . . . ,N ; q = 1, . . . ,Q,
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as T tends to infinity. Furthermore, the deterministic sequence of design points, µiq,
has bounded support M and is generated by a design density f (µ) that is bounded
below and above in M.

On the nonparametric functions hqq′ (⋅) and gkq (⋅) we impose the following smoothness
assumption.

Assumption 2.3.3.

(i) For all k = 1, . . . ,K and q, q′ = 1, . . . ,Q, the functions hqq′ (⋅) and gkq (⋅) belong to
a Hölder class G with Hölder coefficient 0 < α ≤ 1,

G = {g ∶ ∣g(r)(s) − g(r)(t)∣ ≤ L∣s − t∣α}

for some L > 0.

(ii) For the sieve approximation error we assume, for κ = 2(r + α) ≥ 4,

ρg,N = sup
µ∈M
∣gkq −

Jg

∑
ℓ=1

bℓ,kqϕl(µi,q)∣

2

= O (J−κg )

ρh,N = sup
µ∈M
∣hqq′ −

Jh

∑
ℓ=1

cℓ,qq′ϕl(µi,q′)∣

2

= O (J−κh ) .

(iii) maxl,k,q b2l,kq <∞ and maxl,q,q′ c2l,qq′ <∞.

As it is remarked in Fan et al. (2016), Assumption 2.3.3 (ii) is satisfied by the use of
common basis functions such as polynomial basis or B-splines. Lorentz (1986) and
Chen (2007) show that (i) implies (ii) in this case. We impose the following assumptions
on the random matrix πt.

Assumption 2.3.4. Let πt = (π1t, . . . , πNt)
⊺, for t = 1, . . . , T , be independent random

matrices with zero mean and E ∥πt∥4F ≤ a0 < ∞, where πit = (πit1, . . . , πitq)
⊺ for i =

1, . . . ,N .

Let F0
−∞ and F∞T denote the σ-algebras generated by {(ft, ut) ∶ t ≤ 0} and {(ft, ut) ∶ t ≥ T}

respectively. Define the mixing coefficient

α(T ) = sup
A∈F0−∞,B∈F∞T

∣P (A)P (B) − P (AB)∣ .
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Assumption 2.3.5.

(i) Let {ut, ft} be a strictly stationary process. In addition, E(uit) = 0 and {ut} is
independent of {πt, ft}.

(ii) There exist α1,C1 > 0 such that

α(T ) < exp (−C1T
α1) .

(iii) There exists C2 > 0, so that

max
j≤N

N

∑
i=1

∣E(uitujt)∣ < C2,

1

NT

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

∣E(uitujs)∣ < C2,

max
i≤N

1

NT

N

∑
k=1

N

∑
m=1

T

∑
t=1

T

∑
s=1

∣Cov (uitukt, uisums)∣ < C2.

(iv) There exists α2, α3 > 0, α−11 + α−12 + α−13 > 1 and b1, b2 > 0, such that for any x > 0,
i ≤ N and k ≤K,

P (∣uit∣ > x) ≤ exp{− (x/b1)
α2} ,

P (∣fkt∣ > x) ≤ exp{− (x/b2)
α3} .

Assumption 2.3.5 is standard in factor analysis (Bai, 2003; Fan et al., 2016; Stock
& Watson, 2002). Part (ii) is a strong mixing condition, whereas (iii) imposes weak
cross-sectional dependence. Finally, (iv) ensures that the tails of uit and fkt are
sub-exponential and thus sufficiently light. Now, let νN be

νN =max
k≤K

1

N
∑
i≤N

Var (γik) .

On the random part of the factor loadings, we impose the following conditions.

Assumption 2.3.6.

(i) E (γik) = 0, νN <∞ and

max
k≤K,j≤N

∑
i≤N

∣Eγikγjk∣ = O (νN) .

(ii) πit is independent of γik, for i = 1, . . . ,N , t = 1, . . . , T and k = 1, . . . ,K.
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For the identification of the factors F and the part of the loadings explained by the
covariates, G (⋅), we need the following assumptions.

Assumption 2.3.7.

(i) Almost surely, T −1F ⊺F = IK and G (µ)
⊺
G (µ) is a K ×K diagonal matrix with

distinct entries.

(ii) There are two constants, cmin and cmax > 0, so that, as N tends to infinity,

cmin < λmin {
1

N
G (µ)

⊺
G (µ)} < λmax {

1

N
G (µ)

⊺
G (µ)} < cmax.

Part (ii) of Assumption 2.3.7 ensures that the covariates have a nonvanishing explanatory
power on the loadings. Finally, for the basis functions, following Fan et al. (2016) we
assume the following.

Assumption 2.3.8.

(i) There are c′min and c′max > 0, as N tends to infinity,

c′min < λmin {
1

N
Φ (µ)

⊺
Φ (µ}) < λmax {

1

N
Φ (µ)

⊺
Φ (µ)} < c′max.

(ii) maxℓ,i,q ϕℓ (µiq) <∞.

2.3.2 Limit Theory

In this section, we present the main theoretical results of this paper. The following
theorem provides the

√
NT -consistency and asymptotic normality of the projection-

based interactive fixed effects estimator β̂.

Theorem 2.3.1. Under assumptions 2.3.1 to 2.3.8 and if Jh ∼ N1/2, Jg ∼ N1/2,
T /N → 0 we have that, as both N and T tend to infinity,

√
NT (β̂ − β)

L
→ N (0, Ṽ ) ,

where

Ṽ = Ṽ −1π (ṼΓ + Ṽu) Ṽ
−1
π , (2.18)
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with

Ṽπ = lim
N,T→∞

1

NT

N

∑
i=1

T

∑
t=1

E (πitπ
⊺
it) ,

ṼΓ = lim
NT→∞

1

NT

T

∑
t=1

E (π⊺t ΓΓ
⊺πt) ,

Ṽu = lim
N,T→∞

1

NT

T

∑
t=1

E (π⊺t utu
⊺
t πt) .

The proof of Theorem 2.3.1 is provided in Appendix 2.A. The key component of
the proof is the Frisch-Waugh idea to partial out the effect of the latent factors and
corresponding loadings. A second key component of the proof is using results from
approximation theory for linear sieves to approximate the nonparametric functions.
The asymptotic covariance matrix of our estimator has the typical sandwich structure.
Note that there are two kinds of error terms entering the inner term of the covariance
sandwich, the idiosyncratic part of the factor loadings, γi, and the idiosyncratic error
term, uit. In the case that both of these terms are i.i.d., with γik ∼ N(0, σ2

γ) and
uit ∼ N(0, σ2

u), the asymptotic covariance matrix simplifies to Ṽ = Ṽ −1π (σ
2
γ + σ

2
u).

If we further assume that the latent factor loadings can be completely explained by the
nonparametric functions, i.e. γ = 0, our estimator reaches the semiparametric efficiency
bound (see Newey (1990) for an overview on semiparametric efficiency bounds). Denote
hq(x̄i⋅) = ∑

Q
q′=1 hqq′(x̄i⋅,q′) and let H(x̄i⋅) = (h1(x̄i⋅,1), . . . , hQ(x̄i⋅,Q))⊺. Then, using the

results of Chamberlain (1992) and Li (2000), the efficiency bound of the regression
model (2.5) is given by

J0 = E{(xit −H(x̄i⋅))Var (uit)
−1
(xit −H(x̄i⋅))

⊺
} . (2.19)

Using Assumption 2.3.1 and under i.i.d. errors the bound simplifies to

J0 =
1

σ2
u

E (πitπ
⊺
it) . (2.20)

Since the inverse of our asymptotic covariance matrix attends this bound, our estimator
β̂ is asymptotically semiparametric efficient in the case of homoscedastic errors.

While the primary focus of this paper is the estimation of the regression parameters, we
can also consistently estimate the interactive fixed effects components. The consistency
result is established in the following theorem, which adapts Theorem 4.1 of Fan et al.
(2016) to our case of time-varying covariates.
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Theorem 2.3.2. Under assumptions 2.3.1 to 2.3.8 and if Jh ∼ N1/2, Jg ∼ N1/2,
T /N → 0 we have that, as both N and T tend to infinity,

1

T
∥F̂ − F ∥2F = Op (

1

N
+

1

Jκ
g

)

1

N
∥Ĝ(X̄) −G(X̄)∥2F = Op (

Jg
N2
+
Jg
NT
+
Jg
Jκ
g

+
JgνN
N
)

max
k=1,...,K

sup
x∈M
∣ĝk(x) − gk(x)∣ = Op

⎛

⎝

Jg
N
+

Jg
√
NT
+

Jg

J
κ/2
g

+ Jg

√
νN
N

⎞

⎠
.

The convergence rates are not affected by the need to estimate β̂. That is, they are
identical to the pure factor model case of Fan et al. (2016). This follows from the

√
NT

rate of β̂.

2.3.3 Consistent Estimation of Standard Errors

To conduct valid inference on the estimated parameters, we present a consistent
estimator for the asymptotic covariance matrix Ṽ . We restrict our attention to the case
of heteroskedasticity, assuming that the error terms are cross-sectionally and serially
independent. An extension to the case of serial dependence could be easily achieved
by following the approach of Newey and West (1986). In order to get a consistent
estimator, V̂ , we are required to have consistent estimators for all components of the
covariance sandwich. To estimate Ṽπ, we define

V̂π =
1

NT

T

∑
t=1

X⊺t {IN − PΦ (X̄)}Xt. (2.21)

Analogously, we define the estimators for ṼΓ and Ṽu as

V̂Γ =
1

NT

T

∑
t=1

X⊺t {IN − PΦ(X̄)} Γ̂Γ̂
⊺ {IN − PΦ(X̄)}Xt, (2.22)

V̂u =
1

NT

T

∑
t=1

X⊺t {IN − PΦ(X̄)}diag {û
2
1t, . . . , û

2
Nt}{IN − PΦ(X̄)}Xt, (2.23)

where ûit = yit −X⊺itβ̂ − λ̂if̂t are the fitted residuals of the projected interactive fixed
effects estimator. Finally, we have the final estimator for the asymptotic covariance
matrix, Ṽ ,

V̂ = V̂ −1π (V̂Γ + V̂u) V̂
−1
π .

The following Proposition shows the consistency of V̂ .



2.4. NUMERICAL STUDIES 17

Proposition 2.3.1. Assume that the conditions of Theorem 2.3.1 hold. Then V̂π
p
→ Ṽπ.

In addition, if uit are serially and cross-sectionally uncorrelated, we have V̂Γ
p
→ ṼΓ and

V̂u
p
→ Ṽu.

The proof is provided in Appendix 2.A.3.

2.4 Numerical Studies

In this section, we evaluate the finite-sample performance of our estimator in a sim-
ulation study. We are interested both in the estimation of the regression parameter,
β, and the interactive fixed effects parameters F and G. Throughout the study, we
fix the number of factors, K = 3, and the dimension of covariates, Q = 3. The true
regression coefficients are set to β = (2, 1,−1)⊺. The covariates are generated by setting
xitq = x̄iq + πitq, where x̄iq ∼ N(1,0.5) and πitq ∼ N(0,0.5). For the factors, we assume
fkt ∼ N(0,1).

The factor loadings are set to λik = gk(x̄i) + γi, where gk(x̄i) = akx̄2i1 + bkx̄i2, with
ak, bk ∼ U[−1,1]. In order to satisfy the identification condition on the interactive
effects components (Assumption 2.3.7 (i)), we further have to transform the factors
and loadings. We set F0 to

√
T times the K eigenvectors of the matrix FG⊺GF ⊺. We

proceed with setting G0 =
1
TGF

⊺F0.

Finally, for the idiosyncratic terms we consider the case of normally distributed errors,
uit ∼ N(0, 1) and γi ∼ N(0, 0.05). As a robustness check, we consider a second setting in
which uit ∼ t10 and γi ∼ t10/20. Our estimator for the regression parameters is obtained
by projecting the data onto the sieve space spanned by the basis functions of x̄i and
using an ordinary least squares estimator on the transformed data. In this numerical
study, we rely on polynomial basis functions and J = 2. For each setting, S = 1000
simulations are conducted.

As a performance measure, we consider the root mean square error (RMSE) and the
bias,

RMSE =

¿
Á
ÁÀ 1

SQ

S

∑
s=1

Q

∑
q=1

(β̂q,s − βq)2

Bias =
1

Q

Q

∑
q=1

∣
S

∑
s=1

β̂q,s − βq∣ .

We compare the performance of our projection based interactive fixed effects (P-
IFE) estimator for β with the pooled OLS (POLS) estimator and with the principal
component-based interactive fixed effects (PC-IFE) estimator of Bai (2009). The
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simulation results under normally distributed disturbances for different values of N
and T are reported in Table 2.1.

The RMSE and the bias of the P-IFE estimator can be effectively reduced with
increasing N and T . In comparison to the alternative estimators, our estimator
achieves the lowest RMSE in all the settings we consider. The efficiency gain relative
to the PC-IFE estimator is the largest in cases with small sample sizes. The advantage
seems to vanish in settings of large N and T . In terms of bias, the P-IFE estimator
performs slightly better in situations where T is small and slightly worse than the
PC-IFE estimator in intermediate sample size. Again, the performance of the estimators
converges if both N and T are large. The simulation results for the t-distributed error
terms are reported in table 2.2. As in the case of normal errors, the P-IFE estimator
performs best in terms of RMSE among all the estimators we consider. The same
holds for the bias, while as before the performance converges with increasing N and T .

RMSE Bias
N T P-IFE POLS PC-IFE P-IFE POLS PC-IFE
20 10 0.1637 0.2214 0.2427 0.0050 0.0038 0.0052
50 10 0.0962 0.2147 0.1317 0.0051 0.0084 0.0057

100 10 0.0659 0.2089 0.0894 0.0012 0.0029 0.0016
20 50 0.0765 0.1099 0.0782 0.0024 0.0024 0.0015
50 50 0.0425 0.0920 0.0436 0.0019 0.0021 0.0016

100 50 0.0289 0.0946 0.0303 0.0013 0.0013 0.0007
100 100 0.0206 0.0686 0.0213 0.0004 0.0017 0.0003
200 100 0.0147 0.0665 0.0150 0.0004 0.0015 0.0004
500 100 0.0090 0.0636 0.0091 0.0001 0.0010 0.0001

Table 2.1: Simulation results for the projection-based IFE estimator, the pooled OLS estimator
and the PC-based IFE estimator under Gaussian error terms.

RMSE Bias
N T P-IFE POLS PC-IFE P-IFE POLS PC-IFE
20 10 0.1886 0.2328 0.2607 0.0031 0.0038 0.0064
50 10 0.1097 0.2189 0.1442 0.0040 0.0082 0.0041

100 10 0.0741 0.2114 0.0987 0.0012 0.0040 0.0013
20 50 0.0851 0.1120 0.0873 0.0008 0.0028 0.0018
50 50 0.0489 0.0964 0.0502 0.0011 0.0018 0.0012

100 50 0.0333 0.0924 0.0345 0.0002 0.0018 0.0006
100 100 0.0229 0.0647 0.0231 0.0002 0.0028 0.0002
200 100 0.0165 0.0661 0.0167 0.0002 0.0020 0.0002
500 100 0.0102 0.0661 0.0104 0.0004 0.0013 0.0004

Table 2.2: Simulation results for the projection-based IFE estimator, the pooled OLS estimator
and the PC-based IFE estimator under t-distributed error terms.
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We also evaluate the estimation performance for the interactive fixed effects components
F and G. Following the simulation design of Fan et al. (2016), we set Γ = 0. Our
estimators are obtained by applying the projected principal component method (PPCA)
on the residuals of our P-IFE estimator. We compare the performance to that of the
standard principal component (PCA) method without projection of the data. For
the performance measure we choose the max norm and the Frobenius norm. The
idiosyncratic error terms are again normally distributed, uit ∼ N(0,1). We consider
the case of T = 10 or 50 with N varying from 25 to 500. Additionally, we consider
the case of N = 200 being fixed and T ranging from 25 to 500. The simulation results
for the factors are reported in Figure 2.1. We also report the results for the factor
loadings in Figure 2.2. In any of our settings, the PPCA method performs better than
the standard PCA method. Also, the estimation error for the factors and the loadings
can be reduced with increasing T .
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Figure 2.1: Average estimation error of factors F , estimated via Projected PCA (solid red
line) and PCA (dashed blue line). Upper two panels: T fixed, N grows, bottom panels: N
fixed, T grows.
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(c) ∥Ĝ −G0∥max, T = 50

100 200 300 400 500

0.
0

0.
5

1.
0

1.
5
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Figure 2.2: Average estimation error of factor loadings G, estimated via Projected PCA (solid
red line) and PCA (dashed blue line). Upper two panels: T fixed, N grows, bottom panels:
N fixed, T grows.
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2.5 Application: Determinants of Economic Growth

2.5.1 Data and Descriptive Statistics

As an empirical application for our interactive fixed effects estimator we study the
determinants of economic growth. We refer to Durlauf et al. (2005) for a comprehensive
review of the growth literature. While many studies focus on a cross-sectional analysis
(see for instance Barro, 1991), there are also numerous studies employing a panel
data approach with country-specific fixed effects (Acemoglu et al., 2019; Islam, 1995).
However, Lu and Su (2016) argued that growth might not be solely determined by
observable regressors, but could also be influenced by latent factors or shocks. Our
projection-based interactive fixed effect estimator is well suited as it is flexible enough
to model such latent factors.

The data on GDP growth rates and the country-specific characteristics are obtained
from Penn World Table (PWT) and from World Bank World Development Indicators
(WDI). Our sample contains 129 countries in a time period from 1991–2019, N = 129
and T = 29. Countries with an incomplete data availability or which did not exist yet
in 1991 are excluded from our analysis. Our dependent variable is the real GDP growth
rate per capita. The set of regressors is identical to Lu and Su (2016). Summary
statistics of all dependent and independent variables can be found in Table 2.3. Figure
2.3 shows the time series of the mean growth rates, averaged over all countries in our
sample. We also visualize the time series of the cross-sectional 5% and 95%-quantiles
of the growth rates in the same figure.

Variable Description Mean Median Min Max Data Sources
Growth Annual GDP growth per capita 2.96 2.54 -67.29 141.63 Penn Table
Young Age dependency ratio 54.13 49.92 14.92 107.40 WDI
Fert Fertility rate 3.23 2.69 1.09 7.7 WDI
Life Life expectancy 68.30 71.21 26.17 84.36 WDI
Pop Population growth 1.70 1.51 -6.54 19.14 Penn Table
Invpri Price level of investment 0.54 0.50 0.01 7.98 Penn Table
Con Consumption share 0.64 0.65 0.09 1.56 Penn Table
Gov Government consumption share 0.17 0.17 0.01 0.75 Penn Table
Inv Investment share 0.22 0.22 0.00 0.92 Penn Table

Table 2.3: Summary statistics and data sources of dependent and independent variables.
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Figure 2.3: Time series of average annual real GDP growth rate per capita (solid line) and
time series of 5% and 95%-quantiles (dashed lines).

2.5.2 Estimation Results

We first fit our projection-based interactive fixed effects model using the complete
sample of N = 129 countries and the complete list of regressors. The estimation results
can be found in Table 2.4. Consumption share, government consumption share and
fertility rate have a significant negative impact on the growth rates, while the age
dependency ratio has a significant positive influence. We also estimate a restricted
model which only considers the significant variables from the full model. The parameter
estimates and standard errors do not change substantially compared to the full model.
Our list of significant variables overlaps with those identified by Lu and Su (2016),
however they also include the investment share but do not include the fertility rate.

Con Gov Inv Invpri Young Fert Life Pop
Estimate -0.0583 -0.0855 0.0194 -0.0008 0.0008 -0.0126 -0.0003 0.1107
t-statistic -4.3501 -3.0777 0.8872 -0.1221 3.2312 -3.4471 -0.8056 0.5996
Estimate -0.0625 -0.0939 - - 0.0008 -0.0114 - -
t-statistic -5.0201 -3.5758 - - 3.6343 -3.0265 - -

Table 2.4: Estimation results for the projected IFE estimator based on the whole sample.

In contrast to standard panel models such as a country-specific fixed effects model,
we are also able to estimate the latent factors and corresponding factor loadings. We
select K = 3 as the number of factors, according to the procedure based on the ratio
of eigenvalues described in equation (2.17). See Figure 2.4 for a visualization of the
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eigenvalues. The three estimated latent factors can be found in Figure 2.6. They can
be interpreted as unobserved macro risk factors and the loadings measure the exposure
of a given country to these risk factors.

We now restrict our analysis to the subset of countries which are members of the
OECD (Organisation for Economic Cooperation and Development). The estimation
results can be found in Table 2.5. The signs of the estimated parameters are consistent
with the previous regression based on the full sample, however the population growth
now has a negative sign. The list of significant variables additionally includes the
investment share, whereas the government consumption share becomes insignificant.
The restricted model, for which we only include the significant variables, again does
not deviate strongly from the full model.

Con Gov Inv Invpri Young Fert Life Pop
Estimate -0.0997 -0.0485 0.1460 -0.0113 0.0018 -0.0262 -0.0015 -0.7994
t-statistic -3.6030 -1.3886 4.2925 -1.1768 3.2114 -2.8924 -2.0314 -2.0876
Estimate -0.0845 - 0.1155 - 0.0028 -0.0515 - -
t-statistic -3.3320 - 3.8613 - 6.0755 -6.3310 - -

Table 2.5: Estimation results for the projected IFE estimator based on the sample OECD
countries.

The number of factors for the OECD sample is K = 4, based on the ratio of eigenvalues
(see Figure 2.5). Figure 2.7 shows the estimated first and second latent factors of
the OECD sample. The first factor clearly represents a risk factor for the overall
market condition. It increases after the bust of the dot-com bubble in 2000 and it has
another sharp peak in the aftermath of the financial crisis in 2009. For all 30 OECD
countries in our sample, the sign of the loading parameters associated with the first
factor is negative. This implies that a positive-valued shock to the first factor leads
to a reduction in the GDP growth rate for all OECD countries. The interpretation of
the second factor requires a little more attention, as the factor loadings have different
signs for different countries. Interestingly, four of the five countries with the largest
estimated loading parameters belong to the list of PIIGS states, which suffered the
most during the Euro crisis. Accordingly, we can observe that the second factor takes
a negative value in the beginning of the Euro crisis in 2010.

The fundamental tenet of our model is that the covariates are assumed to have sufficient
explanatory power on the latent factor loadings. It is thus a crucial task to check
whether this is indeed the case. For this purpose, we take a closer look at the two
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components of the matrix of estimated loadings. Recall the following decomposition,

Λ̂ = Ĝ(X̄) + Γ̂,

where Ĝ(X̄) represents the estimated systematic part of the loadings, i.e. the part
which is explained by the covariates, and Γ represents the estimated random part. In
Table 2.6 we calculate the Frobenius norm and the sup norm for both matrices as
measures of their relative importance. We calculate the norms both for the full sample
and the sample of OECD countries. It is evident that the systematic part dominates
the random part. In the OECD sample, the loadings are almost completely explained
by the G(X̄), i.e. all γik are very close to zero. This provides evidence for the validity
of our projection-based approach to interactive fixed effects.
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Figure 2.4: Eigenvalues of the projected PCA algorithm for the whole sample.
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Figure 2.5: Eigenvalues of the projected PCA algorithm for the subsample of OECD countries.

All countries OECD countries
∥ ⋅ ∥F ∥ ⋅ ∥max ∥ ⋅ ∥F ∥ ⋅ ∥max

Ĝ 0.6686 0.3111 0.1168 0.0461
Γ̂ 0.0650 0.0128 0.0000 0.0000

Table 2.6: Estimation results for the two components of the factor loadings, the systemic part
Ĝ and the random part Γ̂.
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Figure 2.6: Estimated three factors for the whole sample, f1, f2 and f3.
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Figure 2.7: Estimated first (left panel) and second factor (right panel) based on the OECD
subsample.

2.6 Conclusion

We propose a new estimator for the regression parameters in a panel data model with
interactive fixed effects. The key idea of our estimator is the projection of the data onto
the linear sieve space spanned by the covariates. Following the Frisch-Waugh approach,
the estimator takes the form of an partial least squares estimator, which partials out
the effect of the latent factors. We show that our estimator is

√
NT -consistent with

an asymptotic normal distribution. In the special case of heteroskedasticity and if
the loadings can be completely explained by the covariates, our estimator reaches the
semiparametric efficiency bound. An important advantage of our estimator is that it
does not require the estimation of the number of factors in advance.

There are several open topics for further research. First, specification tests for the
different components of the factor loadings could be considered. In particular, one
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could test hypotheses of the form H0 ∶ Γ = 0 vs. H1 ∶ Γ ≠ 0. Alternatively, one could
also consider hypotheses of the form H0 ∶ G(X̄) = 0 vs. H1 ∶ G(X̄) ≠ 0. Such tests can
provide information about the extent to which the factor loadings can be modeled by
the covariates and ultimately, whether our estimator is suitable.

Another possible extension would be to relax the assumption on the additivity of the
nonparametric functions. Instead, one could consider to move to the double/debiased
machine learning framework of Chernozhukov et al. (2018). While in the additive
case, we were able to rely on linear sieves such as splines and polynomials, it might be
beneficial to use machine learning methods such as random forests or neural networks
to partial out the effect of the covariates on the factor loadings.

2.A Proofs for Section 2.3

In order to show Theorem 2.3.1 we first present a Lemma.

Lemma 2.A.1. Let

β̃ = [
T

∑
t=1

X⊺t {IN − PΦ(µ)}Xt]

−1 T

∑
t=1

X⊺t {IN − PΦ(µ)} yt, (2.24)

where

PΦ(µ) = Φ(µ) {Φ(µ)
⊺Φ(µ)}

−1
Φ(µ)⊺,

Φ(µ) = (ϕ(µ1), . . . , ϕ(µN))
⊺,

ϕ(µi)
⊺ = (ϕ1(µi1), . . . , ϕJg(µi1), . . . , ϕ1(µiQ), . . . , ϕJg(µiQ)).

Then, under assumptions 2.3.1 to 2.3.8 and if Jh ∼ N1/2, Jg ∼ N1/2, T /N → 0 we have
that, as both N and T tend to infinity,

√
NT (β̃ − β)

L
→ N (0, Ṽ ) ,

where

Ṽ = Ṽ −1π (ṼΓ + Ṽu) Ṽ
−1
π , (2.25)
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with

Ṽπ = lim
N,T→∞

1

NT

N

∑
i=1

T

∑
t=1

E (πitπ
⊺
it) ,

ṼΓ = lim
NT→∞

1

NT

T

∑
t=1

E (π⊺t ΓΓ
⊺πt) ,

Ṽu = lim
N,T→∞

1

NT

T

∑
t=1

E (π⊺t diag {utu
⊺
t }πt) .

2.A.1 Proof of Lemma 2.A.1

If we substitute (2.5) into (2.24) and we rearrange terms we obtain:

β̃ − β = [
T

∑
t=1

X⊺t {IN − PΦ(µ)}Xt]

−1 T

∑
t=1

X⊺t {IN − PΦ(µ)}G (X̄) ft

+ [
T

∑
t=1

X⊺t {IN − PΦ(µ)}Xt]

−1 T

∑
t=1

X⊺t {IN − PΦ(µ)}Γft

+ [
T

∑
t=1

X⊺t {IN − PΦ(µ)}Xt]

−1 T

∑
t=1

X⊺t {IN − PΦ(µ)}ut.

We first show that

1

NT

T

∑
t=1

X⊺t {IN − PΦ(µ)}Xt =
1

NT
∑
t

π⊺t πt + Op(1). (2.26)

Note that, by Assumption 2.3.1,

Xt =H (X̄) + πt, t = 1, . . . , T, (2.27)

and an element (i, q) of H (X̄) is hq(x̄i.) = ∑q′ hqq′(x̄i.,q′). Now, by Assumption 2.3.3
and a Taylor expansion we have that

Xt =H (µ) + πt +Op (T
−1/2) , t = 1, . . . , T, (2.28)

uniformly in t, being hq(µi) = ∑q′ hqq′(µiq′). Hence, substituting (2.28) into the left
hand side of (2.26) and making MΦ(µ) = IN − PΦ(µ) we obtain that

1

NT

T

∑
t=1

X⊺t MΦ(µ)Xt =
1

N
H (µ)

⊺
MΦ(µ)H (µ) +

1

NT
∑
t

π⊺tMΦ(µ)πt

+2H (µ)
⊺
MΦ(µ)

1

NT
∑
t

πt +Op (N
−1T −1/2) + Op (N

−1T −1/2) . (2.29)
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Using Assumption 2.3.3, hqq′(⋅) can be approximated by some spline function, that is,

hqq′(µiq′) =
Jh

∑
ℓ=1

cℓ,qq′ϕℓ(µiq′) +Rqq′(µiq′), q, q′ = 1, . . . ,Q. (2.30)

where ϕℓ(⋅)’s are the spline basis functions. The cℓ,kq’s are the sieve coefficients of the
q-th additive component of hqq′(⋅), and Rqq′(⋅) is the remainder term that represents
the approximation error. Also, Jh denotes the number of sieve terms which grows
slowly as N →∞.

For the sake of simplicity, we take the same basis functions in (2.7). For each q, q′ ≤ Q

and i ≤ N , let us define

c⊺q = (c1,q1, . . . , cJh,q1, . . . , c1,qQ, . . . , cJh,qQ) ∈ RJhQ,

ϕ(µi)
⊺ = (ϕ1(µi1), . . . , ϕJh(µi1), . . . , ϕ1(µiQ), . . . , ϕJh(µiQ)) ∈ RJhQ.

Thus, equation (2.30) can be rewritten as

hq(µi) = ϕ(µi)
⊺cq +

Q

∑
q′=1

Rqq′(µiq′). (2.31)

By considering (2.31) in matrix form we obtain

H(µ) = Φ(µ)C +R(µ), (2.32)

where Φ(µ) = (ϕ(µ1), . . . , ϕ(µN))
⊺ is a N × JhQ matrix of basis functions, C =

(c1, . . . , cQ) is a JhQ × Q matrix of sieve coefficients, and R(µ) is a N × Q matrix
with the (i, q)-th element ∑Q

q′=1Rqq′(µiq′).

Using (2.32), the first term of the right hand side of (2.29) is then

1

N
H (µ)

⊺
MΦ(µ)H (µ) =

1

N
{H (µ) −Φ(µ)C}

⊺
MΦ(µ) {H (µ) −Φ(µ)C} .

Let H (µ) = (H1, . . . ,HQ). It is easy to see that the q-th element of the right hand side
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of the above term can be written as

1

N
{Hq (µ) −Φ(µ)cq}

⊺
MΦ(µ) {Hq (µ) −Φ(µ)cq}

≤ λmax {MΦ(µ)}
1

N

N

∑
i=1

{hq (µi) − ϕ (µi)
⊺
cq}

2

≤
1

N

N

∑
i=1

{hq (µi) − ϕ (µi)
⊺
cq}

2

≤max
i
{hq (µi) − ϕ (µi)

⊺
cq}

2
= O (ρ2h,N) ,

where ρh,N = supµ∈M ∣hq (µ) − ϕ (µ)
⊺
cq∣. Note that under Assumption 2.3.3 then ρh,N =

O (J−2h ) (see Schumaker (1980), Theorem 6.27) and therefore,

1

N
H (µ)

⊺
MΦ(µ)H (µ) = O (J

−4
h ) .

Furthermore, following the same line as in the proof before and assuming that Jg
N → 0

and TJg →∞ we have that

1

NT
∑
t

π⊺tMΦ(µ)πt =
1

NT
∑
t

π⊺t πt + Op(1). (2.33)

This follows from

1

T

T

∑
t=1

π⊺t PΦ(µ)πt =
1

T

T

∑
t=1

1

N
∑
i=1

π⊺itϕ(µi){
1

N
Φ(µ)⊺Φ(µ)}

−1 1

N

N

∑
i=1

ϕ(µi)
⊺πit

=mathcalOp (
Jh
N
) .

Finally, noting that for the q-th element of the r.h.s. of equation (2.29)

Var [{Hq (µ) −Φ (µ) cq}
⊺
MΦ(µ)

1

NT
∑
t

πt] = O (
1

NT
ρ2h,N) ,

this implies that

H (µ)
⊺
MΦ(µ)

1

NT
∑
t

πt = O (
1
√
NT

ρh,N) . (2.34)

This closes the proof of (2.26). Following the same line we can show that,

1
√
NT

T

∑
t=1

X⊺t {IN − PΦ(µ)}G (X̄) ft = Op(1). (2.35)



2.A. PROOFS FOR SECTION 2.3 31

Note that, by Assumptions 2.3.2 and 2.3.3 and Taylor expansion

1
√
NT

T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft

=
1
√
NT

T

∑
t=1

X⊺t MΦ(µ)G (µ) ft +Op (N
−1T −1/2) + Op (N

−1T −1/2) .

Furthermore, by (2.28) we have that

1
√
NT

T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft

=
1
√
NT

T

∑
t=1

{H (µ) −Φ (µ)C}
⊺
MΦ(µ) {G (µ) −Φ (µ)B} ft

+
1
√
NT

T

∑
t=1

π⊺tMΦ(µ) {G (µ) −Φ (µ)B} ft + Op (1) .

It is easy to show that

1
√
NT

T

∑
t=1

{H (µ) −Φ (µ)C}
⊺
MΦ(µ) {G (µ) −Φ (µ)B} ft = O (ρh,Nρg,N) .

where ρg,N = supM ∣gk (µi) − ϕ (µi)
⊺
bk∣, and

b⊺k = (b1,k1, . . . , bJg ,k1, . . . , b1,kQ, . . . , bJg ,kQ) ∈ R
JgQ,

ϕ(µi)
⊺ = (ϕ1(µi1), . . . , ϕJg(µi1), . . . , ϕ1(µiQ), . . . , ϕJg(µiQ)) ∈ RJgQ.

Furthermore, the q-th element of 1√
NT
∑

T
t=1 π

⊺
tMΦ(µ) {G (µ) −Φ (µ)B} ft is

Var [
1
√
NT

T

∑
t=1

π⊺qtMΦ(µ) {G (µ) −Φ (µ)B} ft] = O (ρ
2
g,N) ,

and therefore,

1
√
NT

T

∑
t=1

π⊺qtMΦ(µ) {G (µ) −Φ (µ)B} ft = O (ρg,N) .

Finally, using (2.32) we show that

1
√
NT
∑
t

X⊺t MΦ (µ)Γft

=
1
√
NT
∑
t

{H (µ) −Φ (µ)C}
⊺
MΦ (µ)Γft

+
1
√
NT
∑
t

π⊺tMΦ (µ)Γft,
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and

1
√
NT
∑
t

X⊺t MΦ (µ)ut

=
1
√
NT
∑
t

{H (µ) −Φ (µ)C}
⊺
MΦ (µ)ut

+
1
√
NT
∑
t

π⊺tMΦ (µ)ut.

Following the same lines as before, by assumptions 2.3.5 and 2.3.6,

1
√
NT
∑
t

{H (µ) −Φ (µ)C}
⊺
MΦ (µ)Γft = O (ρh,NνN) , (2.36)

and

1
√
NT
∑
t

{H (µ) −Φ (µ)C}
⊺
MΦ (µ)ut = O (ρh,N) . (2.37)

Finally,

1
√
NT
∑
t

X⊺t MΦ (µ) {Γft + ut} =
1
√
NT
∑
t

π⊺t {Γft + ut} + Op(1) (2.38)

and applying the central limit theorem of Bradley Jr (1981) we have that

1
√
NT
∑
t

π⊺t {Γft + ut}
L
→ N (0, ṼΓ + Ṽu) ,

where

ṼΓ = lim
N→∞

1

N
E (π⊺t ΓΓ

⊺πt) ,

Ṽu = lim
N,T→∞

1

NT

T

∑
t=1

E (π⊺t utu
⊺
t πt) .
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2.A.2 Proof of Theorem 2.3.1

According to the definitions of β̂ and β̃, together with the equality

a1a2 − b1b2 = (a1 − b1)(a2 − b2) + (a1 − b1)b2 + b1(a2 − b2),

we obtain

β̂ − β = β̃ − β +

⎡
⎢
⎢
⎢
⎢
⎣

(
T

∑
t=1

X⊺t MΦ(X̄)Xt)

−1

− (
T

∑
t=1

X⊺t MΦ(µ)Xt)

−1⎤
⎥
⎥
⎥
⎥
⎦

× [
T

∑
t=1

X⊺t MΦ(X̄)G (X̄) ft −
T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft]

+

⎡
⎢
⎢
⎢
⎢
⎣

(
T

∑
t=1

X⊺t MΦ(X̄)Xt)

−1

− (
T

∑
t=1

X⊺t MΦ(µ)Xt)

−1⎤
⎥
⎥
⎥
⎥
⎦

×
T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft

+(
T

∑
t=1

X⊺t MΦ(µ)Xt)

−1

× [
T

∑
t=1

X⊺t MΦ(X̄)G (X̄) ft −
T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft]

+

⎡
⎢
⎢
⎢
⎢
⎣

(
T

∑
t=1

X⊺t MΦ(X̄)Xt)

−1

− (
T

∑
t=1

X⊺t MΦ(µ)Xt)

−1⎤
⎥
⎥
⎥
⎥
⎦

× [
T

∑
t=1

X⊺t MΦ(X̄) {Γft + ut} −
T

∑
t=1

X⊺t MΦ(µ) {Γft + ut}]

+

⎡
⎢
⎢
⎢
⎢
⎣

(
T

∑
t=1

X⊺t MΦ(X̄)Xt)

−1

− (
T

∑
t=1

X⊺t MΦ(µ)Xt)

−1⎤
⎥
⎥
⎥
⎥
⎦

×
T

∑
t=1

X⊺t MΦ(µ) {Γft + ut}

+(
T

∑
t=1

X⊺t MΦ(µ)Xt)

−1

× [
T

∑
t=1

X⊺t MΦ(X̄) {Γft + ut} −
T

∑
t=1

X⊺t MΦ(µ) {Γft + ut}] .

We will have shown the desired result if we prove that

β̂ − β = β̃ − β + Op (
1
√
NT
) . (2.39)

We already showed in the proof of Lemma 2.A.1,

1

NT
{

T

∑
t=1

X⊺t MΦ(µ)Xt} = Op(1),

1

NT
{

T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft} = Op (1/
√
NT) ,

1

NT
[

T

∑
t=1

X⊺t MΦ(µ) {Γft + ut}] = Op (1/
√
NT) .
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It remains to show the following results.

1

NT
{

T

∑
t=1

X⊺t MΦ(X̄)Xt −
T

∑
t=1

X⊺t MΦ(µ)Xt} = Op (1) ,

1

NT
{

T

∑
t=1

X⊺t MΦ(X̄)G (X̄) ft −
T

∑
t=1

X⊺t MΦ(µ)G (X̄) ft} = Op (1/
√
NT) ,

1

NT
[

T

∑
t=1

X⊺t MΦ(X̄) {Γft + ut} −
T

∑
t=1

X⊺t MΦ(µ) {Γft + ut}] = Op (1/
√
NT) .

The first results follows from Assumption 2.3.2 and the continuous mapping theorem,

1

NT
{

T

∑
t=1

X⊺t MΦ(X̄)Xt −
T

∑
t=1

X⊺t MΦ(µ)Xt} = Op (1/
√
T) .

For the second result it is sufficient to show that

1
√
NT

T

∑
t=1

X⊺t MΦ(X̄)G (X̄) ft = Op (1) .

We can again write,

1
√
NT

T

∑
t=1

X⊺t MΦ(X̄)G (X̄) ft

=
1
√
NT

T

∑
t=1

{H(X̄) −Φ(X̄)C}
⊺
MΦ(X̄) {G(X̄) −Φ(X̄)B} ft

+
1
√
NT

T

∑
t=1

πtMΦ(X̄) {G(X̄ −Φ(X̄)B)} ft.

The first term on the right hand side is of order Op(ρg,Nρh,N), the second term is of
order Op(ρg,N). Finally, for the third result, we have to consider the variance of the
q-th element,

Var [
1
√
NT

T

∑
t=1

πtq {M(X̄) −M(µ)} (Γft + ut)] = Op(1/T ).

By Cauchy-Schwarz the term is of order Op(1/
√
T ).

2.A.3 Proof of Theorem 2.3.2

The proof follows from Theorem 4.1 of Fan et al. (2016) and from the
√
NT -consistency

result of Theorem 2.3.1.
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2.A.4 Proof of Proposition 2.3.1

By proof the Proof of Lemma 2.A.1, and Assumption 2.3.4 we have

V̂π =
1

NT

T

∑
t=1

π⊺t πt + Op(1)
p
→ Ṽp.

Similarly,

V̂u =
1

N

T

∑
t=1

π⊺t diag {û
2
1t, . . . , û

2
Nt}πt + Op(1).

Without loss of generality, assume that Q =K = 1. Then, plugging in ûit,

V̂u =
1

NT

T

∑
t=1

N

∑
i=1

π2
itû

2
it

=
1

NT

T

∑
t=1

N

∑
i=1

π2
itu

2
it + π

4
it(β − β̂)

2 + 2π3
it(β − β̂)uit

+ π2
it(λift − λ̂if̂t) + 2π

3
it(β − β̂)(λift − λ̂if̂t) + 2π

2
it(λift − λ̂if̂t)uit.

By Theorem 2.3.1, β̂
p
→ β, by Theorem 2.3.2, λ̂i

p
→ λi and f̂t

p
→ ft. The desired result

follows from Assumption 2.3.4 and the continuous mapping theorem.

V̂u =
1

NT

T

∑
t=1

N

∑
i=1

π2
itu

2
it + Op(1)

p
→ Ṽu.

Finally, we have

V̂Γ =
1

NT

T

∑
t=1

π⊺t diag {Γ̂Γ̂
⊺}πt + Op(1).

By Theorem 2.3.2 we have Γ̂
p
→ Γ, and by Assumption 2.3.4 we have

1

NT

T

∑
t=1

π⊺t diag {Γ̂Γ̂
⊺ − ΓΓ⊺}πt

p
→ 0.

Therefore V̂Γ
p
→ ṼΓ.
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Chapter 3

Recursive Quantile Estimation:
Non-Asymptotic Confidence Bounds

3.1 Introduction

The emergence of big data has brought serious challenges to traditional deterministic
optimization methods. In many applications, the data arrives sequentially and the
sample size is so large that a storage of the entire dataset is infeasible. In these
situations, the stochastic gradient descent (SGD) algorithm (Kiefer, Wolfowitz, et al.,
1952; Robbins & Monro, 1951) provides a scalable alternative for estimation. The
algorithm updates estimates recursively according to the gradient of the objective
function. This recursive nature of the SGD algorithm makes it computationally and
memory efficient. Thus, SGD is naturally suited for online learning problems. Notable
applications include anomaly detection (Ahmad et al., 2017) and matrix factorization
(Mairal et al., 2010). The large sample properties of SGD are well established. For
an averaged version of the algorithm (Polyak & Juditsky, 1992; Ruppert, 1988), it
can be shown that the estimator converges with the optimal parametric rate to a
Gaussian limit. To conduct inference, Chen et al. (2020) and Zhu et al. (2020) propose
methods to estimate the covariance matrix of the parameter estimates. Fang et al.
(2018) and Fang (2019) propose bootstrap procedures to measure the uncertainty of
SGD estimates.

We consider the recursive estimation of quantiles. This classical problem is of great
importance in a variety of applications ranging from finance (Engle & Manganelli,
2004), health care (Wang et al., 2018) and survival studies (Peng & Huang, 2008). The
large sample properties of the traditional estimator for the quantile, which is based
on order statistics, were studied in Bahadur (1966) and Kiefer (1967). The downside
of the empirical estimator is that it is not memory-efficient in the presence of large
and sequentially arriving datasets. Moreover, asymptotic normality does not provide
any insights on the performance of the estimator in finite samples. The study of the
finite-sample behavior is an important task since in practical problems the sample
size is always finite. Usually, obtaining such results requires more mathematical effort
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than merely obtaining asymptotic results and typically this involves more restrictive
assumptions on the tail behavior and the existence of moments.

The aim of this paper is to study the tail probability of the averaged version of the
SGD algorithm for estimating quantiles in finite samples. As our main result, we derive
an exponential bound on the tail probability, while only imposing weak assumption
on the smoothness of the distribution function. The proof relies on the decomposition
of the gradient in the SGD algorithm into a martingale difference part, a shift part
and a remainder part. Another key component of the proof is a bound on the moment
generating function of the SGD estimate.

The non-asymptotic behavior of the SGD estimate of quantiles with Polyak-Ruppert
averaging was studied in Costa and Gadat (2020). They derived finite sample bounds
for the Lp loss. Another closely related paper is Cardot et al. (2013), who proposed
a SGD estimation procedure for the geometric median (Haldane, 1948), which is a
multi-dimensional generalization of the median. The SGD solution has the same
asymptotic behavior as the empirical estimator of the geometric median. The result
can be easily generalized to the geometric quantiles proposed by Chaudhuri (1996).
In a subsequent paper, Cardot et al. (2017) studied the finite sample performance of
the SGD algorithm. In particular, they derived non-asymptotic confidence balls for
the averaged version of the algorithm. While the geometric median is a generalization
of the classic median, their main result does not apply to this univariate case. One
contribution of our paper is the extension of the result of Cardot et al. (2017) to the
univariate median. It should be noted that this bound is only valid for a sample size
exceeding a certain rank. In contrast, our new non-asymptotic bound is valid for each
finite sample size. The reason is that the bound derived in this paper is based on
a bound of the moment generating function, while previous results only relied on a
finite-sample bound for the L2 risk.

We apply our novel finite sample bound to the problem of best arm identification in
the context of stochastic multi-armed bandit models. We refer to the monograph of
Lattimore and Szepesvári (2020) for an overview on bandit algorithms. While the
majority of the research on multi-armed bandits focused on the mean case, there are
important arguments in favor of looking at the quantiles. First, quantiles are more
robust location parameters compared to the mean and second, depending on the context
of the application, the focus can be on different parts of the distribution. Previously,
the problem of best arm identification in a quantile bandit settings were studied in
Szorenyi et al. (2015), Howard and Ramdas (2019) and in Nikolakakis et al. (2021).
We consider a quantile version of the successive rejects algorithm of Audibert et al.
(2010) and the sequential elimination algorithm of Karnin et al. (2013).
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Figure 3.1: Quantile loss function (left panel) and score function (right panel) for quantile
level τ = 0.5 (black line) and for τ = 0.1 (red line).)

The remainder of the paper is organized as follows. Section 3.2 provides an overview of
the problem and introduces the SGD algorithm and its averaged version. The main
theoretical results are presented in Section 3.3. In Section 3.4, we apply our probability
bound to the problem of best arm identification. Section 3.5 concludes and Section 3.6
provides the proofs.

3.2 Overview of the Problem

In this paper, we are interested in estimating quantiles for high dimensional data. For
a random vector X = (X1,X2, . . . ,Xp)

⊺ ∈ Rp, the τ -th quantile of coordinate Xi is
defined as the minimizer of the pinball loss function (see Figure 3.1),

Qi(τ)
def
= argminx∈RE{(Xi − x) (τ − 1x≥Xi

)} . (3.1)

Denote the distribution function of Xi as Fi(x), under the assumption of Fi being
continuous, we have Fi{Qi(τ)} = τ.

In financial applications, Xi could be the stock return of firm i and Qi(τ) the corre-
sponding value-at-risk (VaR) at confidence level τ .

Let Xi,1, . . . ,Xi,n denote i.i.d. copies of the coordinates Xi, 1 ≤ i ≤ p. Then a natural
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empirical estimator of Qi(τ) takes the form

Q̂i(τ)
def
= argminx∈R

n

∑
k=1

{(Xi,k − x) (τ − 1Xi,k≥x)} . (3.2)

Asymptotic properties of the empirical estimator are extensively studied (Bahadur,
1966; Kiefer, 1967). It is well known that the estimator is strongly consistent and has
an asymptotic normal distribution.

One of the problems of the empirical estimator is that it is not memory efficient in
the case of streaming data, we follow a different estimation procedure. Munro and
Paterson (1980) showed that any algorithm exactly calculating quantiles in p passes
requires Ω(1/p) memory. Recent developments on estimating quantiles in the case of
streaming data are discussed in Luo et al. (2016). Following Robbins and Monro (1951)
we have, starting from a constant initial value Yi,0(τ) = yi, yi ∈ R, and let

Yi,k+1(τ) = Yi,k(τ) + γk {τ1Xi,k+1>Yi,k(τ) − (1 − τ)1Xi,k+1≤Yi,k(τ)} , (3.3)

where the sequence of learning rates, (γk), determines the convergence of the algorithm.
In particular, the following assumptions need to be fulfilled,

∞

∑
k=1

γ2k <∞ and
∞

∑
k=1

γk =∞.

The first condition ensures the convergence to some point in R, while the second
condition ensures the convergence to a unique minimizer Qi(τ). We consider sequences
of step sizes in the form of γk = (k + 1)−β, with 1/2 < β ≤ 1.

Due to favorable asymptotic properties, we consider an averaged version of the algorithm,
which takes the form

Ȳi(τ) =
n

∑
k=1

Yi,k(τ)/n,

where Ȳi,0 = 0. Such an averaging step is known as Polyak-Ruppert averaging (Polyak
& Juditsky, 1992; Ruppert, 1988). Estimators based on the averaged SGD algorithm
converge almost surely to the true parameter and have the same Gaussian limit
distribution as the empirical estimator. For the estimation of quantile, asymptotic
normality of the solution of the averaged algorithm was shown by Bardou et al. (2009).
In particular, it holds

√
n{Ȳi(τ) −Qi(τ)}

L
→ N (0,

τ(1 − τ)

fi {Qi(τ)}
2) .
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However, these asymptotic results do not provide information on how well the estimator
will perform in finite samples. Gadat and Panloup (2017) derived non-asymptotic
bounds on the L2-loss for the recursive quantile estimator based on Polyak-Ruppert
averaging. It is shown that for each n ≥ 1 it holds that, given the optimal choice of β,

E{Ȳi(τ) −Qi(τ)}
2
≤

τ(1 − τ)

fi {Qi(τ)}
2
n
+O (n−5/4) .

Recently, Cardot et al. (2017) analyzed the finite sample tail behavior of the Polyak-
Ruppert algorithm for estimating the geometric median. The geometric median is a
multivariate generalization of the univariate median (Haldane, 1948; Minsker et al.,
2015), which can easily be generalized to geometric quantiles (Chaudhuri, 1996). The
geometric median is defined by

m
def
= argminx∈HE (∥X − x∥ − ∥X∥) ,

where X is a random variable taking values in a separable Hilbert space H with norm
∥ ⋅ ∥. The algorithm and its asymptotic properties are studied in Cardot et al. (2013).
In particular, it was shown that the algorithm is strongly consistent and asymptotically
normal. Cardot et al. (2017) further studied the non-asymptotic properties. Let Z̄n

denote the averaged SGD solution for the geometric median. In the main theorem
of the paper, the authors derived non-asymptotic confidence balls for the averaged
algorithm. Theorem 4.2 states that there exists a rank nδ such that for all n ≥ nδ it
holds that for all δ ∈ (0,1),

P
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∥Z̄n −m∥ ≤
4

λmin (
2
3n +

1√
n
) log (4δ)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≥ 1 − δ, (3.4)

where λmin is the lim inf of the eigenvalues of the Hessian of the loss function. Although
the geometric median generalizes the univariate median, the asymptotic normality
as well as the result on non-asymptotic confidence bounds only hold for the case
of the dimensionality of the data being larger than 2, thus excluding the univariate
median. The reason for this is condition (A3) in Cardot et al. (2017), which requires
the existence of a constant C such that for all x ∈H,

E (∥X − x∥−2) ≤ C.

This condition does not hold for H = Rd with d < 3. As a second drawback of the
tail bound in (3.4) the sample size is required to exceed a certain rank nδ, which
might be prohibitively large. The order of the rank is O(( 1

δlogδ)
6), which increases with
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decreasing confidence level δ.

3.3 Theoretical Results

3.3.1 A Bound on the Moment Generating Function

In this section, we shall derive the main theoretical results of this paper. All proofs are
deferred to Section 3.6. We are interested in the the tail probability

P{max
1≤i≤p
∣Ȳi(τ) −Qi(τ)∣ ≥ x} .

At first, we derive a non-asymptotic probability bound for the averaged SGD solution
for a single coordinate Xi. A simple first result can be obtained by the finite sample
bound on the L2 risk of Gadat and Panloup (2017) and Markov’s inequality. However,
the resulting probability bound is only algebraically decreasing in n and x. In the
following we will derive a sharper bound. The only assumption we impose is the
following smoothness condition on the density of Xi, which is standard in the quantile
literature.

Assumption 3.3.1. Assume the random variable Xi has a differentiable density
function fi(x), with cτ

def
= min1≤i≤p infτ∈[τ0,τ1] fi{Qi(τ)} > 0 and max1≤i≤p ∣f ′i ∣∞ ≤ cf <∞.

This assumption ensures the existence of a unique theoretical quantile. We require
no assumptions on the tail behavior nor on the existence of any moments of Xi. In
order to derive the tail probability bound, we directly bound the moment generating
function of the SGD solution without averaging, Yi(τ), in the following Lemma.

Lemma 3.3.1. Under Assumption 3.3.1, for t ≤ cn(1−β)β and τ0 ≤ τ ≤ τ1, we have

E [et{Yi,n(τ)−Qi(τ)}] ≤ c′nβ,

where c, c′ > 0 are some constants independent of i, n, τ.

A bound on the tail probability of the SGD solution without averaging follows immedi-
ately from the previous Lemma and Markov’s inequality.

Proposition 1. Under Assumption 3.3.1, we have

P{∣Yi,n(τ) −Qi(τ)∣ > x} ≤ c
′nβexp{ − cnβ(1−β)x},

where c, c′ > 0 are some constants independent of i, n, τ.
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3.3.2 Confidence Bounds for the Averaged SGD Algorithm

We now consider the averaged version of the SGD algorithm. The following theorem
gives the non-asymptotic confidence bounds for the SGD algorithm with Polyak-Ruppert
averaging.

Theorem 3.3.1. Under Assumption 3.3.1, we have for n ≥ 1,

P{∣Ȳi(τ) −Qi(τ)∣ > x}

≲n1+βexp{ − cn(1−β
2)x} + n1+βexp{ − c′nβ(1−β)x1/2} + exp{ − c′′nx2}, (3.5)

where the constants in ≲, c, c′, c′′ are all independent of i, τ, n, p.

The proof relies on a decomposition of the SGD algorithm into a martingale difference
part, a shift part and a remainder part. Define a random variable for the gradient,
Zi,k+1(τ)

def
= τ − 1Xi,k+1≤Y(i,k)(τ). Let Fi,k

def
= (Xi,1, . . . ,Xi,k) be a sequence of σ-algebras.

We can rewrite the SGD algorithm introduced in (3.3),

Yi,k+1(τ) = Yi,k(τ) + γk {ξi,k+1 +E (Zi,k+1(τ)∣Fi,k)} ,

where ξi,k+1(τ)
def
= Zi,k+1(τ) − E(Zi,k+1(τ)∣Fi,k). Note that the sequence (ξi,n) is a

martingale difference sequence with respect to Fi,n, with bounded increments, ∣ξi,k∣ ≤ 1.
Define Gi,τ(x)

def
= τ − Fi(x). Then we have that Gi,τ{Yi,k+1(τ)} = E(Zi,k+1(τ)∣Fi,k) and

Gi,τ{Qi(τ)} = 0. We can further decompose the SGD algorithm,

Yi,k+1(τ) = Yi,k(τ) + γk [ξi,k+1 +G
′
i,τ {Qi(τ)}Yi,k(τ) + ρi,k] ,

where ρi,k
def
= Gi,τ{Yi,k(τ)} − G′i,τ{Qi(τ)}Yi,k(τ). Summing up over the n iterations,

using Abel’s summation formula, we obtain

G′i,τ {Qi(τ)} Ȳi,n(τ) =n
−1γ−1n {Yi,n+1(τ) − Yi,1(τ)} − n

−1
n−1

∑
k=1

Yi,k+1(τ)(γ
−1
k+1 − γ

−1
k )

− ξ̄i,n − ρ̄i,n, (3.6)

where ρ̄i,n = n−1∑n
k=1 ρi,k and ξ̄i,n+1 = n−1∑n

k=1 ξi,k+1. The proof relies on this decomposi-
tion of the SGD algorithm, the bound on the moment generating function obtained
in Lemma 3.3.1 and Azuma’s concentration inequality for martingale sequences with
bounded increments.

In the following, we have a closer look at the three terms on the right hand side of the
probability bound in (3.5).
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Remark 1. When x ≥ c1n−1/2 for some constant c1 > 0, then the last term in (3.5) will
be dominated by the second one, that is

P{∣Ȳi(τ) −Qi(τ)∣ > x} ≲ n
1+βexp{ − cn(1−β

2)x} + n1+βexp{ − c′nβ(1−β)x1/2}. (3.7)

In addition, if x≫ n2β−2, then the second term n1+βexp{−c′nβ(1−β)x1/2} would dominate,
otherwise, the first term n1+βexp{−cn(1−β

2)x} would be the leading one.

Building on Theorem 3.3.1 and by the union bound, we also get an exponential
probability bound holding uniformly over all coordinates, i = 1, . . . , p.

Proposition 2. Under Assumption 3.3.1, we have for n ≥ 1,

P{max
1≤i≤p
∣Ȳi(τ) −Qi(τ)∣ > x}

≲px [n1+βexp{ − cn1−β2

x} + n1+βexp{ − c′nβ(1−β)x1/2} + exp{ − c′′nx2}] ,

where the constants in ≲, c, c′, c′′ are independent of n, p.

In the following, we want to compare our novel bound to the one from Cardot et al.
(2017). For this purpose, we extend their Theorem 4.2 to the univariate case. Although
their result is concerned with the geometric median, which is a multi-dimensional
extension of the median, it is not valid in dimension one. The following theorem fills
this gap.

Theorem 3.3.2. Assume Conditions 3.3.1. For all δ ∈ (0,1), there exists a rank nδ

such that for all n ≥ nδ,

P{∣Ȳi(τ) −Qi(τ)∣ ≤ (
8

3n
+

4
√
n
) log (

4

δ
)} ≥ 1 − δ.

The proof of Theorem 3.3.2, similar to the proof of Theorem 3.3.1, relies on the
decomposition of the SGD algorithm defined in (3.6) into three parts. However, instead
of using a bound on the moment generating function of Yi,n(τ), the proof is based
on a finite-sample bound on the L2 error derived by Costa and Gadat (2020). As
a consequence, the non-martingale terms are only negligible for the sample size n

exceeding a certain rank nδ. If we compare the bound obtained in Theorem 3.3.2 to
our new bound obtained in Theorem 3.3.1, we observe that the latter is valid for each
finite sample size n, while the former requires a sufficiently large sample size.
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Analogous to Cardot et al. (2017), we provide a precise expression of the rank nδ,

nδ =max

⎧⎪⎪
⎨
⎪⎪⎩

(
6(C1 +C3)

δlog(4δ )
)

1
1/2−β/2

,(
6C2

δlog(4δ )
)

1
β−1/2

,(
6C4

δlog(4δ )
)

1
2
⎫⎪⎪
⎬
⎪⎪⎭

.

3.4 Application to Best Arm Identification

3.4.1 Stochastic Quantile Bandits

As an application of our novel tail probability bound, we consider the problem of best
arm identification in a multi-armed bandit setting. A p-armed stochastic bandit is a
collection of probability distributions, ν = (Fi ∶ i ∈ [p]). For each round t = 1, . . . , n, the
agent chooses an action At ∈ [p] and observes the reward XtAt drawn independently
from the distribution of the chosen arm, FAt . We refer to the monograph of Lattimore
and Szepesvári (2020) for a comprehensive overview on bandit algorithms. We consider
the setting of pure exploration (Bubeck et al., 2009). The learner is endowed with a
fixed budget n and has to commit to one arm after the exploration phase in period
n+ 1, according to a policy π. The goal is to select in action An+1 the unique arm with
the highest τ -quantile,

i∗ = argmaxi∈[p]Qi(τ).

In the following, we write Qi∗(τ) = Q∗(τ). Most of the literature on best arm iden-
tification is concerned with the selection of arms with the highest expected value.
Focusing instead on quantiles has at least two advantages. First, quantiles are more
robust location parameters than the expected value. Many existing results on best arm
identification in the mean case rely on the assumption of sub-Gaussian distributions.
And second, the agent might be interested in different regions of the distribution of
rewards, depending on her risk attitudes and preferences. Quantile preferences were
first studied by Manski (1988) and formalized as a choice-theoretic model in Rostek
(2010). A recent extension of quantile preferences to the dynamic setting was proposed
by de Castro and Galvao (2019). We define the suboptimality gap of a given arm i

relative to the optimal arm, for a fixed quantile level τ ,

∆τ
i = Q

∗(τ) −Qi(τ).
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The agent’s goal is to minimize the regret Rτ
n, which is defined as the expected difference

in quantiles of her policy in comparison to playing the optimal arm i∗,

Rτ
n(π, ν) = E{Q∗(τ) −QAn+1(τ)} = E (∆τ

An+1) . (3.8)

The expectation is taken with respect to the interaction of the bandit environment ν
and the policy of the learner π. In addition, we define the probability of selecting a
suboptimal arm after the exploration period,

en = P (At+1 ≠ i
∗) . (3.9)

Our goal is to find a policy π which minimizes en and thus Rτ
n. Other accounts on

best arm identification in a quantile bandit settings were discussed in Nikolakakis et al.
(2021), Szorenyi et al. (2015) and in Howard and Ramdas (2019).

3.4.2 Algorithms and Bounds for Regret

A naive policy would be to play each arm uniformly during the exploration phase and
then commit to the arm with the largest estimated quantile. The pseudo code for this
uniform exploration algorithm is provided in Algorithm 1.

Algorithm 1: Uniform Exploration Algorithm
1 for t = 1 to n do
2 Choose At = 1 + t mod (k)
3 end
4 Choose An+1 = argmaxi∈[p]Ȳi,n(τ)

Although there is no trade-off between exploration and exploitation in our best arm
identification setting, we can improve this strategy by allocating more actions to
promising arms. For this we adapt both the successive elimination algorithm of
Audibert et al. (2010) and the sequential halving algorithm of Karnin et al. (2013) to
the quantile case.

The successive elimination algorithm divides the exploration period into p − 1 phases.
After each phase, the arm with the lowest estimated quantile is eliminated. Within
the phase, the arms are played uniformly. The recommended arm An+1 is the single
remaining arm after n rounds. Algorithm 3 provides the pseudo code for the successive
rejects algorithm.

Note that the arm eliminated in the first round is played n1 = ⌈
1

log(p)

n−p
p ⌉ times, the one

eliminated in the second round is played n2 = ⌈
1

log(p)

n−p
p−2 ⌉ times and the two remaining

arms in round p−1 are played np−1 = ⌈
1

log(p)

n−p
2 ⌉ times. It can be easily verified that the
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Algorithm 2: Successive Rejects Algorithm
1 Let S1 = {1, . . . , p}, log(p) = 1

2 +∑
p
i=2

1
i , and

nr = ⌈
1

log(p)

n − p

p + 1 − r
⌉, r = 1, . . . , p − 1

for r = 1 to p − 1 do
2 For each i ∈ Sr, select i for nr − nr−1 rounds
3 Set Sr+1 = Sr/argmini∈Sr+1Ȳi,nr(τ)

4 end
5 Choose An+1 = argmaxi∈Sp−1Ȳi,np−1(τ)

budget constraint is satisfied. In the following, we denote with (i) ∈ {1, . . . , p} the i-th
best arm, which implies ∆τ

(1)
≤∆τ

(2)
≤ . . . ≤∆τ

(p)
. Further, we write the tail probability

bound from Theorem 3.3.1 as a function of the sample size and the suboptimality gap,

B(n,∆) = n1+βexp{ − cn(1−β
2)∆} + n1+βexp{ − c′nβ(1−β)∆1/2} + exp{ − c′′n∆2}.

Let ∆τ
max =maxi∈[p]∆

τ
i . We bound the regret using the policy of the successive rejects

algorithm in the following theorem.

Theorem 3.4.1. Let ν denote a p-armed stochastic bandit with Fi satisfying Assump-
tion 3.3.1 and let π be the policy of the successive rejects algorithm. Then,

Rτ
n(ν, π) ≲ p(p − 1)∆

τ
max max

r∈{1,...,p−1}
B (⌈

1

log(p)

n − p

p + 1 − r
⌉,∆τ

(p+1−r))

Proof. Note that Rτ
n = E(Q∗{τ) −QAt+1(τ)} ≤∆

τ
maxen. In the following, we bound en.

en ≤
p−1

∑
r=1

p

∑
i=p+1−r

P{Ȳi∗,nr(τ) ≤ Ȳ(i),nr(τ)}

=

p−1

∑
r=1

p

∑
i=p+1−r

P{Ȳ(i),nr(τ) −Q(i)(τ) +Q
∗(τ) − Ȳi∗,nr(τ) ≥∆

τ
(i)}

≲

p−1

∑
r=1

p

∑
i=p+1−r

B(nr,∆
τ
(i))

≤

p−1

∑
r=1

rB(nr,∆
τ
(p+1−r))

≤ p(p − 1) max
r∈{1,...,p−1}

B(nr,∆
τ
(p+1−r)).

Plugging in the definition of nr gives the desired result.

An alternative to the successive rejects algorithm is the sequential halving algorithm
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proposed by Karnin et al. (2013). Instead of eliminating only one arm per phase, the
algorithm dismisses half of the arms with the lowest estimated τ -quantile. The number
of rounds is reduced to ⌊log2p⌋ − 1.

Algorithm 3: Sequential Halving Algorithm
1 Let S1 = {1, . . . , p},
2 for r = 1 to ⌈log2p⌉ do
3 For each i ∈ Sr, select i for nr = ⌊

n
∣Sr ∣⌊log2p⌋

⌋ times
4 Let Sr+1 denote the set of ⌊∣Sr∣/2⌋ arms in Sr with the highest value of

Ȳi,nr(τ).
5 end
6 Choose An+1 by selecting the remaining arm in S⌈log2p⌉.

The following theorem bounds the regret of the policy following the sequential elimina-
tion algorithm.

Theorem 3.4.2. Let ν denote a p-armed stochastic bandit with Fi satisfying Assump-
tion 3.3.1 and let π be the policy of the sequential halving algorithm. Then,

Rτ
n(ν, π) ≲ 2log2p∆

τ
max max

r∈{1,...,log2p}
B (

2rn

plog2p
,∆τ
(p/(2r))) .

Proof. WLOG, assume that p is a power of 2. Note that we can bound the probability
that an arbitrary arm i has an higher estimated quantile than the optimal arm in a
given round r,

P{Ȳi∗,nr(τ) < Ȳi,nr(τ)} ≤ B(nr,∆
τ
i ).

If the best arm i∗ is eliminated in round r, at least 1/2∣Sr∣ arms need to have a larger
estimated quantile. Denote by Nr the number of arms with a larger estimated quantile
than the optimal arm. Then we have,

E (Nr) = ∑
i∈Sr

P{Ȳi∗,nr(τ) < Ȳi,nr(τ)}

≤ ∣Sr∣max
i∈Sr

B(nr,∆
τ
i ).

Using Markov’s inequality, we can bound the probability of eliminating the optimal
arm in round r,

P (i∗ /∈ Sr+1) = P(Nr >
1

2
∣Sr∣)

≤
2E (Nr)

∣Sr∣

≲ 2B (nr,∆(p/(2r))) .
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Then we can use the union bound to bound en,

en ≤ 2
log2p

∑
r=1

B(nr,∆
τ
(p/(2r)))

≤ 2log2p max
r∈{1,...,log2p}

B (
2rn

plog2p
,∆τ
(p/(2r)))

For a given bandit instance, ν, the probability of selecting a suboptimal arm, as defined
in equation (3.8), is decreasing exponentially fast in the budget n. As a consequence,
the simple regret in (3.9) is also decreasing exponentially fast in n. While most existing
results on the mean bandit case rely on the assumption of sub-Gaussian distributions,
we only need to impose a smoothness on the distribution.

3.5 Discussion

This paper studies the finite sample behavior of the SGD algorithm with Polyak-
Ruppert averaging for the recursive estimation of quantiles. The main contribution
is a new non-asymptotic tail probability bound which decreases exponentially fast in
both x and n, while only imposing a smoothness assumption on the density. The proof
relies on a decomposition of the averaged algorithm into a martingale difference part, a
shift part and a remainder part, as well as on a new bound on the moment generating
function of the SGD solution.

There are many promising directions for future research. As a first direction, one could
move from the unconditional case to the quantile regression framework of Koenker and
Bassett Jr (1978). Let yt be a dependent variable and Xt a d-dimensional vector of
regressors. Consider the following regression equation,

yt =X
⊺
t β(τ) + εt(τ),

where the conditional τ -quantile of there error satisfies F −1
εt∣Xt
(τ) = 0. An online quantile

regression estimator based on the SGD algorithm could take the form

β̂t+1(τ) = β̂t(τ) + γt (τ − 1yt+1≤X⊺t+1β̂t(τ)
)Xt+1.

Another open research question is the derivation of a Bahadur type representation and
a functional central limit theorem. For this purpose, consider a modified algorithm,
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which guarantees the monotonicity of the SGD solution in the quantile level τ ,

Yk+1(τ) = Yk(τ) + γk {τ − gk (Yk(τ) −Xk+1)} , (3.10)

where

gk(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x ≥ γk/2,

γ−1k (x + γk/2) if − γk/2 ≤ x < γk/2,

0 if x < −γk/2.

This modified algorithm relies on the gradient of the Huber loss function (Huber, 1973).
However, the gradient function is adaptively getting closer to the score function of the
quantile loss, since the learning rate γk decreases with increasing sample size.

Finally, the i.i.d. assumption is often not satisfied in many empirical applications.
It might be interesting to study whether the results of this paper remain true under
certain dependence conditions.

3.6 Proofs for Section 3.3

3.6.1 Proof of Lemma 3.3.1

The key idea is to obtain a recursive equation for Yi,k(τ). More specifically, we shall
show

E{etYi,k+1(τ)} ≤ ak,tE(etYi,k(τ)) + c0,

where ak,t > 0 is some constant. This inequality can be obtained by the SGD generating
scheme and Taylor’s expansion. Then recursively applying above inequality leads to

E{etYi,n(τ)} ≤ c0 [1 +
n

∑
k=kt+1

ρk + ρktE{etYi,kt
(τ)}] and ρk =

n

∏
l=k

al,t,

where kt > 0 is a selected starting point. Some elementary calculation shows that

∑
n
k=kt+1 ρk and the starting term ρktE{etYi,kt

(τ)} is of order nβ when t ≤ nβ(1−β). The
constrain on t is due to the fact that ak,t = 1− c1γk + c2t2γ2k. Thus t cannot be too large
in order to make sure ρk does not explode.

Proof. WLOG, we can assume Qi(τ) = 0. Recall the distribution function of Xi is Fi.
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Then the moment generating function takes the form

E{etYi,k+1(τ)} = E [et(Yi,k(τ)+γkτ)1Xi,k+1>Yi,k(τ) + e
t(Yi,k(τ)−γk(1−τ))1Xi,k+1≤Yi,k(τ)]

= E [etYi,k(τ) {etγkτ(1 − Fi(Yi,k(τ))) + e
−tγk(1−τ)Fi(Yi,k(τ))}] .

Take L = cτ/(2cf t), for any k ≥ t1/β we have that tγk ≤ 1 and

E{etYi,k+1(τ)} ≤ E [etYi,k(τ) {etγkτ(1 − Fi(L)) + e
−tγk(1−τ)Fi(L)}1Yi,k(τ)≥L

+etL(1 + etγkτ)1Yi,k(τ)<L]

≤ E [etYi,k(τ) {etγkτ(1 − Fi(L)) + e
−tγk(1−τ)Fi(L)}] + c0, (3.11)

where c0 = ecτ /(2cf )(1 + e). Since tγkτ ≤ τ1 < 1, by Taylor’s expansion, etγkτ ≤ 1 + tγkτ +
2t2γ2kτ

2. Then

etγkτ {1 − Fi(L)} + e
−tγk(1−τ)Fi(L)

≤(1 + tγkτ + 2t
2γ2k) {1 − Fi(L)} + {1 − tγk(1 − τ) + 2t

2γ2k}Fi(L)

≤1 − tγk {Fi(L) − τ} + 2t
2γ2k

≤1 − tγk {fi(0) − cfL}L + 2t
2γ2k.

Recall that L = cτ/(2cf t), inserting above into (3.11) leads to

E{etYi,k+1(τ)} ≤ E{etYi,k(τ)} (1 − c1γk + 2t
2γ2k) + c0,

where c1 and cl, l > 1, in the rest of the proof are positive constants independent of
i, n, k, t, τ. Recursively applying above inequality, for kt = t1/β,

E{etYi,n(τ)} ≤ c0 [1 +
n

∑
k=kt+1

ρk + ρktE{etYi,kt
(τ)}] and ρk =

n

∏
l=k

(1 − c1γl + 4t
2γ2l ). (3.12)

In the following, we shall bound terms ∑n
k=kt+1 ρk and ρktE(etYi,kt

(τ)) separately. Firstly
for ∑n

k=kt+1 ρk part, note that 1 + x ≤ ex, hence

ρk ≤ exp{ −
n

∑
l=k

(c1γl − 4t
2γ2l )}

≤ exp{ − c1(n
1−β − k1−β)/(1 − β) + 4t2(k−2β+1 − n−2β+1)/(2β − 1)}.

Assume t ≤ n(1−β)β. To calculate ∑n
k=kt ρk, we shall deal with k close to n and far away

from n separately. Firstly for any kt ≤ k ≤ an, some constant 0 < a < 1, and t ≥ t0,
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where t0 > 0 is a sufficiently large constant,

ρk ≤ exp{ − c2n
1−β + c3t

2k−2β+1t } ≤ exp{ − c2n
1−β/2}.

Secondly, when k > an, by the mean value theorem,

ρk ≤ exp{ − c4n
−β(n − k) + c5t

2n−2β(n − k)} = exp{ − c4n
−β(n − k)(1 + o(1))}.

Combining two parts, we obtain that

n

∑
k=kt+1

ρk =
an−1

∑
k=kt+1

ρk +
n−nβ−1

∑
k=an

ρk +
n

∑
k=n−nβ

ρk ≤ c5n
β.

Secondly, for ρktE(etYi,kt
(τ)) part, note that ∣Yi,k(τ)∣ ≤ ∣yi,τ ∣ +∑k

j=1 ∣γj ∣ = O(k
1−β). Hence

ρktE(etYi,kt
(τ)) ≤ exp{ − c2n

1−β/2 + c6tk
1−β
t } ≤ exp{ − c2n

1−β/4}.

Therefore by (3.12), for n ≥ kt and t ≥ t0 we have

E{etYi,n(τ)} ≤ c0 {1 + c5n
β + exp (−c2n

1−β/4)} ≲ nβ.

When t < t0, E{etYi,n(τ)} ≤ [E{etYi,n(τ)t0/t}]
t/t0
≲ nβ, and thus we complete the proof.

3.6.2 Proof of Theorem 3.3.1

The main step is to decompose Yi,k(τ) into a martingale difference part, a shift part
and the remainder. WLOG assume Qi(τ) = 0. Then (3.3) can be rewritten into

Yi,k+1(τ) = Yi,k(τ) + γkZi,k+1(τ), (3.13)

where

Zi,k+1(τ) ∶= τ1Xi,k+1>Yi,k(τ) − (1 − τ)1Xi,k+1≤Yi,k(τ) = τ − 1Xi,k+1≤Yi,k(τ). (3.14)

To obtain the martingale difference part, we need to further decompose the term
Zi,k+1(τ) into ξi,k+1 = Zi,k+1(τ) − E(Zi,k+1(τ)∣Fi,k) and E(Zi,k+1(τ)∣Fi,k), where Fi,k =

(Xi,k,Xi,k−1, . . .). Hence (3.13) can be rewritten into

γ−1k {Yi,k+1(τ) − Yi,k(τ)} = ξi,k+1 +E(Zi,k+1(τ)∣Fi,k).
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Further more, we have E(Zi,k+1(τ)∣Fk) = cYi,k(τ)+ρi,k, here ρi,k represents the remainder
term and c is some constant. Hence we have the desired decomposition

cYi,k(τ) = γ
−1
k {Yi,k+1(τ) − Yi,k(τ)} − ξi,k+1 − ρi,k.

To bound the first and third terms, we can adopt Lemma 3.3.1, and for the martingale
difference part, we shall apply the Azuma’s concentration inequality.

Proof. Firstly, we shall decompose Zi,k+1(τ) into three parts and then deal with them
separately. To this aim, and let Gi,τ(x)

def
= τ − Fi(x). Notice that Gi,τ{Yi,k(τ)} =

E(Zi,k+1(τ)∣Fi,k) and Gi,τ{Qi(τ)} = 0. Hence Zi,k+1(τ) can be written as

Zi,k+1(τ) = ξi,k+1 +G
′
i,τ {Qi(τ)}Yi,k(τ) + ρi,k, (3.15)

where ξi,k+1 is the martingale difference part with respect to the filtration Fi,k and ρi,k
is the reminder with form:

ξi,k+1 = Zi,k+1(τ) −Gi,τ {Yi,k(τ)} , and ρi,k = Gi,τ {Yi,k(τ)} −G
′
i,τ {Qi(τ)}Yi,k(τ).

Then by (3.15), the SGD equation (3.13) can be written as

Yi,k+1(τ) = Yi,k(τ) + γk {ξi,k+1 +G
′
i,τ(0)Yi,k(τ) + ρi,k} . (3.16)

Averaging (3.16) for k from 1 to n leads to

n−1
n

∑
k=1

γ−1k {Yi,k+1(τ) − Yi,k(τ)} = ξ̄i,n +G
′
i,τ(0)Ȳi,n(τ) + ρ̄i,n.

where Ȳi,n(τ) = n−1∑n
k=1 Yi,k(τ), ξ̄i,n = n−1∑

n
k=1 ξi,k+1 and ρ̄i,n = n−1∑

n
k=1 ρi,k. By Abel’s

summation formula, we further obtain

G′i,τ(0)Ȳi,n(τ) =n
−1γ−1n (Yi,n+1(τ) − Yi,1(τ)) − n

−1
n−1

∑
k=1

Yi,k+1(τ)(γ
−1
k+1 − γ

−1
k )

− ξ̄i,n − ρ̄i,n
def
= I1 − I2 − I3 − I4. (3.17)

For I1 part, by Lemma 3.3.1 and Markov’s inequality, we have

P(∣I1∣ > x) ≤ c1nβexp{ − c2n
(1+β)(1−β)x},

where ci here and in the rest of this proof are some positive constants independent
of i, n, p, τ. For I2 part, take ak = cβk−(1+β)(1−β)n−β

2 , where cβ only depends on β such
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that ∑n
k=1 ak ≤ 1. By Lemma 3.3.1 we have

P{∣Yi,k+1(τ)(γ−1k − γ−1k+1)∣ > nakx} ≤ c1kβexp{ − c3nakk(1+β)(1−β)x}

≤ c1n
βexp{ − c4n

1−β2

x}.

Therefore we have

P(∣I2∣ > x) ≲ n1+βexp{ − c4n
1−β2

x}.

For I3 part, since (ξi,k)k are martingale differences with respect to filtration Fi,k, and
∣ξi,k∣ ≤ 1, thus by Azuma’s concentration inequality, we have

P(∣I3∣ > x) ≤ 2exp{ − nx2/2}.

For I4 part, by Assumption 3.3.1, ∣ρi,k∣ ≤ cfY 2
i,k(τ), take bk = cbk−2β(1−β)n−1+2β(1−β),

where cb is some constant only depends on β such that ∑n
k=1 bk ≤ 1. Then by Lemma

3.3.1,

P(∣I4∣ > x) ≤
n

∑
k=1

P(cfY 2
i,k(τ) > nbkx)

≲
n

∑
k=1

kβexp{−c5k
β(1−β)(nbkx)

1/2}

≲ n1+βexp{ − c6n
β(1−β)x1/2}.

Desired result follows by combining all the above.

3.6.3 Proof of Theorem 3.3.2

Proof. WLOG assume that Qi(τ) = 0. Recall the following decomposition.

G′i,τ(0)Ȳi,n(τ) =n
−1γ−1n {Yi,1 − Yi,n} (τ) − n

−1
n−1

∑
k=1

Yi,k+1(τ)(γ
−1
k+1 − γ

−1
k )

− ξ̄i,n − ρ̄i,n
def
= I1 − I2 − I3 − I4.

We again bound each term on the right-hand side. By condition 3.3.1, we can apply
Theorem 2.2 of Costa and Gadat (2020). For each n ≥ 1, there is a constant C > 0 such
that E(∣Yi,n∣2) ≤ C 1

n2−β . For the I1 part, we have

E
⎧⎪⎪
⎨
⎪⎪⎩

∣
Yi,n(τ)

nγn
∣

2⎫⎪⎪
⎬
⎪⎪⎭

≤ n2β−2E{∣Yi,n(τ)∣2} ≤ C
1

n2−β
.
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Applying Cauchy-Schwarz, we have for a constant C1 > 0,

E{∣
Yi,n(τ)

nγn
∣} ≤ C1

1

n1−β/2
.

Further, there is a constant C2 > 0 such that

E{∣
Yi,1(τ)

nγ1
∣} ≤

C2

n
.

For the I2 part, since γ−1k+1 − γ
−1
k ≤ 2βk

β−1, there exists a constant C3 such that

E{∣ 1
n

n−1

∑
k=1

Yi,k+1(τ) (γ
−1
k+1 − γ

−1
k )∣} ≤

2β

n

n−1

∑
k=1

E (∣Yi,k+1(τ)∣)kβ−1

≤
C3

n1−β/2
.

For the I4 part, by Assumption 3.3.1, we have that ∣ρi,n∣ ≤ cfYi,n(τ)2. Consequently, we
have for a constant C4,

E(∣ 1
n

n

∑
k=1

ρi,k∣) ≤
cf
n

n

∑
k=1

E{∣Yi,k(τ)∣2} ≤
cfC

n

n

∑
k=1

k−β ≤ C4
1

nβ
.

Finally, we look at the Martingale term I3. Since supk ∣ξk∣ ≤ 1 and ∑n
k=1E(∣ξk∣2∣Fk−1) ≤ n,

we have by Pinelis-Bernstein’s lemma, for all x > 0,

P
⎛

⎝

∣∑
n
k=1 ξ̄k+1 > x∣

n

⎞

⎠
≤ P( sup

1≤k≤n
∣
k

∑
j=1

ξj+1∣ > xn)

≤ 2exp{−
x2

2( 1n +
x
3n)
} .

By Markov’s inequality, we have

P{∣G′i,τ(0)Ȳi,n(τ)∣ > x}

≤ 2exp{−
x2

2( 1n +
x
3n)
} +

C1 +C3

xn1−β/2
+
C2

xn
+
C4

xnβ

def
= g(x,n).
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We search for values of x satisfying g(x,n) ≤ δ. In particular, the following inequalities
need to hold, for a given confidence level δ,

2exp{−
x2

2( 1n +
x
3n)
} ≤ δ/2

C1 +C3

xn1−β/2
≤ δ/6

C2

xn
≤ δ/6

C4

xnβ
≤ δ/6.

We get the following conditions for x,

x ≥ 4(
1

3n
+

1
√
n
) log (

4

δ
)

x ≥
6(C1 +C3)

δ

1

n1−β/2

x ≥
6C2

δ

1

n

x ≥
6C4

δ

1

nβ
.

Since β ∈ (1/2,1], the last three terms are of small order for large enough n. Finally,
we choose

nδ =max

⎧⎪⎪
⎨
⎪⎪⎩

(
6(C1 +C3)

δlog(4δ )
)

1
1/2−β/2

,(
6C2

δlog(4δ )
)

1
β−1/2

,(
6C4

δlog(4δ )
)

1
2
⎫⎪⎪
⎬
⎪⎪⎭

.
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Chapter 4

Modelling Systemic Risk Using Neural
Network Quantile Regression

Publication
Keilbar, G. and Wang, W. (2021). Modelling Systemic Risk Using Neural Network
Quantile Regression, Empirical Economics.

4.1 Introduction

The issue of systemic risk attracts a lot of attention from academics as well as from
regulators in the aftermath of the financial crisis of 2007-2009. Systemic risk refers to
banks and other economic agents with substantial importance to the financial system
due to their size (too big to fail) or their centrality within the financial network (too
interconnected to fail ). A bankruptcy of a systemically important financial institution
can lead to the malfunctioning of the financial system or central banks and governments
might be under pressure to interfere by bailing out respective firm. Due to these negative
externalities, it is a crucial task for central banks and supervising agencies to identify
systemically relevant firms.

A conventional quantitative risk measure is value-at-risk (VaR), which measures max-
imum losses at a certain confidence level. The Basel II Accord introduced VaR as
a preferred measure for market risk. However, VaR is not capturing systemic risk
adequately, as it is not capable to analyze the interdependency among firms. Given
the subprime mortgage crisis in 2008, the Basel Committee on Banking Supervision
has revised its Accords to focus on strong governance and risk management. Basel
III is thus set up to control the systemic risk of the whole financial system, and it
enforces additional requirements for identifying systemic risk important banks and
generates demands on evaluating the interdependency of risk among banks. Adrian
and Brunnermeier (2016) came up with conditional value-at-risk (CoVaR), a systemic
extension of VaR. However, their original approach is restricted to analyze systemic risk
in a linear and bivariate context. Namely, they focus primarily on the risk contribution

60
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of an individual financial firm to the entire system, controlling for variables indicating
general macroeconomic conditions.

This paper provides a new perspective for estimating CoVaR using neural networks.
Nonlinearity is an important issue for the prediction performance of risk measures
due to the complex dependency channels of financial institutions (Chao et al. (2015)).
Neural networks have proved to be a suitable method for fitting nonlinear functions.
Over the last years, neural networks have become state of the art models for prediction.
They have been applied extensively and successfully to various fields, including image
classification (Simonyan and Zisserman (2014)) as well as speech recognition problems
(Graves et al. (2013)). Gu et al. (2020) and Bianchi et al. (2020) apply neural networks
and other machine learning methods to asset pricing with promising results. We take
the off-shelf neural network methodology and apply it to quantify financial risk. Our
findings show that the quantile neural network-based approach provides a unique angle
compared to the linear model for calibrating the systemic risk due to its flexibility. In
particular, we find better out-of-sample prediction with our fine-tuned nonlinear neural
network relative to the baseline linear quantile model of Koenker and Bassett Jr (1978,
1982).

We briefly summarize the steps of calibrating the systemic risk using a quantile neural
network procedure. In the first step, we estimate the VaR for each global systemically
important financial institution (G-SIB) from the United States by regressing their stock
returns on a set of risk factors using linear quantile regression. Next, we estimate the
CoVaRs of the same firms using neural network quantile regression. To characterize
the interdependency among banks, we regress the return of one asset on the remaining
returns respectively and aggregate the results into a systemic fit. By approximating
the conditional quantile with a neural network we aim for capturing possible nonlinear
effects. To estimate risk spillover effects across banks we calculate the marginal effects
by taking the derivative of the fitted quantile with respect to the other banks’ stock
returns, evaluated at their VaR. By doing so we come up with a network of spillover
effects represented by an adjacency matrix. This adjacency matrix is time-varying, i.e.
we estimate a network for each window in our moving window estimation procedure. In
the final step, we propose three systemic risk measures building on the previous results.
As a first measure, we propose the Systemic Fragility Index, which identifies the most
vulnerable banks in a given financial risk network. The second measure is the Systemic
Hazard Index, which identifies the financial institutions which potentially pose the
largest risk to the financial system. These two measures characterize the firm-specific
aspects of systemic risk. Thus, we propose a third measure which estimates the total
level of systemic risk, the Systemic Network Risk Index.
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Our empirical findings confirm that systemic risk increased sharply during the height
of the financial crisis in 2008. We also observe a high level of systemic risk at the end
of 2011 due to the uncertainty surrounding the European debt crisis. By comparing
our systemic risk measure to existing approaches for network-based interconnectedness,
we find that our method offers a novel perspective due to the focus on the lower tail
of the return distribution and due to the allowance for nonlinear dependencies. An
out-of-sample comparison shows the superiority of our approach over a baseline model
based on linear quantile regression. This leads to the conclusion that nonlinear effects
are crucial for the modelling of systemic risk. Finally, we identify systemically relevant
financial institutions during the financial crisis using our SFI and SHI measures. An
advantage of our approach is the ability to capture the asymmetries of systemic risk,
by differentiating between firms that affect and firms that are affected by the financial
system. We also discover a risk cluster of four banks, which corresponds to the list of
banks that received the largest funding in the course of the bank bailout of 2008.

This paper is an addition to the existing literature on systemic risk. Hautsch et al. (2014)
modified the estimation of CoVaR further to analyze systemic risk in a multiple equation
setup using the LASSO. Härdle et al. (2016) followed up this setup, and extended it to
a nonlinear regression setting. In the meanwhile, there are numerous other methods for
calibrating systemic risk. Acharya et al. (2017) built an economic model of systemic
risk and measured the systemic risk externality of a financial institution by the systemic
expected shortfall. Brownlees and Engle (2017) developed a systemic risk measure
capturing the capital shortage given its degree of leverage and marginal expected
shortfall. Diebold and Yılmaz (2014) analyzed the connectedness of financial firms in
a network context using forecast variance decompositions in a vector autoregressive
framework. Bianchi et al. (2019) proposed a Markov-switching graphical SUR model
to model systematic and systemic risk.

There is a growing literature on econometric analysis using neutral networks. White
(1988) started to investigate the usefulness of adopting a neural network for economic
prediction. Unfortunately, the message is that even with simple neural networks the
prediction performance is not ideal due to the overfitting issues. Kuan and White
(1994) provided a further overview of neural networks with some basic concepts and
theory. White (1992) provided the theoretical foundations of a nonparametric quantile
neural network approach allowing for cases of dependent data. In terms of economic
risk prediction, Taylor (2000) is concerned with predicting conditional volatility by
adopting a quantile neural network approach. Xu et al. (2016) considered a quantile
neural network procedure for evaluating VaR in the stock market. Cannon (2011)
focused on the computational perspective of a quantile neural network.
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The remainder of this paper is organized as follows. Section 4.2 provides a brief
introduction to neural networks in general and neural network quantile regression
in particular. Section 4.3 describes in detail the methodology of this paper. After
establishing the research framework step by step, we present the results in section 4.4.
Section 4.5 discusses the results and concludes.

All codes of this paper are available on quantlet.de.

4.2 Neural Network Quantile Regression

4.2.1 Neural Network Sieve Estimation

Neural networks attract increasing attention due to their success in a variety of
prediction problems. Often described as a black box, single hidden layer neural
networks can be seen as a special case of the nonparametric sieve estimator, see
Grenander (1981) and Chen (2007). With increasing sample size n the complexity of
the estimator of hθ is required to increase appropriately fast. The structure of the
neural network sieve is as follows, with t = 1,2,⋯, n,

Yt = hθ(Xt) + εt

=
Mn

∑
m=1

wo
mψ (

K

∑
k=1

wh
k,mXk,t + b

h
m) + bo + εt

(4.1)

where Yt is the dependent variable, Xt is a K-dimensional vector of independent
variables and εt is an error term. The nonlinear activation function ψ(⋅) is assumed
to be fixed and known. Typical choices are sigmoid functions, e.g. ψ(z) = tanh(z) or
the ReLU (rectifier linear unit) function, ψ(z) = max(z,0). There are two types of
parameters, hidden layer parameters wh

k,m and bhm and output layer parameters wo
m and

bo. The sieve parameter space Θn expands with n. In particular, the number of basis
functions (i.e. the number of hidden nodes) goes to infinity, Mn →∞ as n→∞. Single
layer neural networks have proved to be universal function approximators, as shown
by Cybenko (1989) for sigmoid activation functions and Hornik et al. (1989) for the
general case of bounded, non-constant activation functions. Sonoda and Murata (2017)
extend the universal approximation property to unbounded activation functions, which
includes the popular ReLU function.

The large sample properties of neural networks have been studied extensively in the
literature. Notably, Chen and White (1999) show consistency and asymptotic normality
of the nonparametric neural network sieve estimator under certain regularity conditions.
Given that the number of basis functions grows appropriately with increasing sample

http://www.quantlet.de
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size, the root mean square convergence rate to an unknown (suitably smooth) true
function is of order op(n−1/4). This rate is crucial to obtain root-n asymptotic normality
for plug-in estimators (Chen and Shen (1998)).

All of the above results concern with neural networks with a single hidden layer. The
approximation theory and the asymptotic results of deep neural networks, i.e. neural
networks with more than one hidden layer, is less understood compared to the shallow
neural network case. Johnson (2018) shows that deep neural networks with limited
width are not universal function approximators. Rolnick and Tegmark (2017) prove
that deep neural networks can learn polynomial functions more efficiently (in terms of
number of nodes required) than shallow ones.

4.2.2 Neural Network Sieves and Quantile Regression

Predominantly, neural networks have been applied to classification and mean regression
problems. However, an extension to a quantile regression setting is straightforward.
Consider the linear quantile regression equation for a fixed quantile level τ , as formulated
in Koenker and Bassett Jr (1978, 1982).

Yt =Xtβ + εt, t = 1, . . . , n (4.2)

with Qτ(εt∣Xt) = 0. In this setting the dependent variable Yt is modelled as a linear
function of independent variables Xt. The linear quantile estimator is then the solution
to the following minimization problem:

min
β

n

∑
t=1

ρτ (Yt −Xtβ) (4.3)

where ρτ(z) = ∣z∣ ⋅ ∣τ − I(z < 0)∣ is the quantile loss function. This minimization problem
can be formulated as a linear program and can thus be solved by simplex or interior
point algorithms. Neural network quantile regression is a nonlinear generalization of
this regression framework. Instead of using a linear function, the conditional quantile
is approximated by a neural network sieve estimator as defined in 4.2.1. The resulting
optimization problem is nonconvex and cannot be solved by linear programming
methods:

min
θ

n

∑
t=1

ρτ {Yt − hθ(Xt)} (4.4)

A possible alternative is to use the gradient-based backpropagation algorithm of
Rumelhart et al. (1988). The asymptotic properties of nonparametric neural network
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estimators for the conditional quantile are analyzed in White (1992). Under certain
regularity conditions the estimator is consistent, see Appendix A. This result holds
both for i.i.d. and dependent data.

4.2.3 Regularization Methods

Neural networks are prone to overfitting due to their high capacity. An effective tool to
counteract overfitting lies in the choice of the structure and the hyperparameters of the
neural network. In our single hidden layer setting, the most important hyperparameter
is the number of hidden nodes, Mn. Other relevant parameters are the number of
epochs and the specification of the learning algorithm. Typically, hyperparameters are
selected according to a cross-validation criterion. A different approach is to put an
extra penalty term on the weight parameters, wh

k,m and wo
m. We are considering both

L1 and L2 penalties which we summarize under the term elastic net (Zou and Hastie
(2005)). This penalization method leads to the following optimization problem:

min
hθ

n

∑
t=1

ρτ {Yt − hθ(Xt)} + λ1∥(w
h⊺
k,m,w

o⊺
m )
⊺∥1 + λ2∥(w

h⊺
k,m,w

o⊺
m )
⊺∥22 (4.5)

where ∥ ⋅∥1 is the L1-norm, ∥ ⋅∥2 is the L2-norm. λ1 and λ2 are regularization parameters.
A different method to prevent overfitting is the dropout method, proposed by Hinton
et al. (2012) and Srivastava et al. (2014). In each iteration of the backpropagation
algorithm, a given node is only considered with a probability 1 − p. Consequently,
each node is excluded with a probability p which is defined as the dropout rate.
The motivation for this is to counteract memorization of the data by preventing co-
adaptation of the nodes. Dropout is referred to be an ensemble method, as the final
model is a result of training multiple models with reduced capacity.

4.3 Methodology to Calibrate Systemic Risk

In this section, we explain the details of our systemic risk analysis. Our methodology
involves four steps. The first step is concerned with the estimation of VaR based on
a linear quantile regression using a set of risk factors as explanatory variables. The
results are used in the next step to estimate the CoVaR for each financial institution
using a quantile regression neural network. Next, we calculate marginal effects to model
systemic risk spillover effects, resulting in a time-varying systemic risk network. In the
final step, we propose three systemic risk measures based on this systemic risk network.
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Step 1: Estimation of VaR

VaR is defined as the maximum loss over a fixed time horizon at a certain level of
confidence. The Basel II Accord introduced VaR as the preferred measure for market
risk. The calculation of VaR functions as the basis for capital requirements of financial
institutions. Mathematically, it is the τ -quantile of the return distribution:

P(Xi,t ≤ VaR
τ
i,t) = τ, (4.6)

where Xi,t is the return of a financial firm i at time t and τ ∈ (0,1) is the quantile
level. There exist numerous ways to estimate VaR. We refer to Kuester et al. (2006)
for an extensive overview. One example is to assume a parametric model, and the
most popular formulation involves the estimation of the latent volatility process via the
GARCH model. Other approaches are based on the direct estimation of the conditional
quantiles. Chernozhukov and Umantsev (2001) combine linear quantile regression with
extreme value theory (EVT) to estimate VaR for extreme quantile levels. Chao et al.
(2015) and Härdle et al. (2016) estimate VaR by using linear quantile regression on a
set of macro state variables.

In this study, we compare three different specifications. First, we consider the dynamic
quantile approach of Engle and Manganelli (2004), which is called CAViaR. The VaR
is modelled as a latent process. We consider the symmetric absolute value (SAV)
specification,

VaRSAV,τ
i,t = βi,1 + βi,2VaR

SAV,τ
i,t−1 +βi,3∣Xi,t−1∣. (4.7)

Here the current level of VaR is determined by its lagged value as well as by the
absolute value of the lagged return. Second, we consider the asymmetric slope (AS)
CAViaR specification,

VaRAS,τ
i,t = βi,1 + βi,2VaR

AS,τ
i,t−1 +βi,3(Xi,t−1)

+ + βi,4(Xi,t−1)
−. (4.8)

This specification allows for different responses to negative and positive returns. Finally,
we consider the approach of Härdle et al. (2016). The VaR of each firm i is estimated
by linear quantile regression using a set of macro state variables Mt−1.

Xi,t = αi + γiMt−1 + εi,t, (4.9)

where the conditional quantile of the error term Qτ(εi,t∣Mt−1) = 0. The VaR estimate
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is the fitted value of the quantile regression,

VaRLQR,τ
i,t = α̂i + γ̂iMt−1 (4.10)

VaR is a frequently used measure for understanding the critical risk level for an
individual financial institution. The drawback of VaR is that it cannot account for
dependency in a systemic context. Estimating VaR as an individual risk measure is a
necessary first step to prepare for calibrating conditional risk.

Step 2: Estimation of CoVaR with Neural Network Quantile

Regression

CoVaR was introduced as a systemic extension of standard VaR by Adrian and
Brunnermeier (2016). Similar to VaR, it is a risk measure defined as a conditional
quantile of the return distribution. But deviating from the VaR concept, CoVaR is
contingent on a specific financial distress scenario. The motivation for using CoVaR is
the identification of systemically important banks. For the distress scenario, we assume
that all other firms are at their VaR. By doing this we follow the reasoning of Hautsch
et al. (2014) and Härdle et al. (2016).

P(Xj,t ≤ CoVaR
τ
j,t ∣X−j,t = VaR

τ
−j,t) = τ, (4.11)

where X−j,t is a vector of returns of all firms except j at time t and VaRτ
−j,t is the

corresponding vector of VaRs.

CoVaR can be estimated as a fitted conditional quantile, building on the results for
the VaRs obtained in step 1. Chao et al. (2015) and Härdle et al. (2016) find evidence
for nonlinearity in the dependence between pairs of financial institutions. Hence,
linear quantile regression might not be an appropriate procedure to estimate the risk
spillovers, as the interdependencies are potentially different in a state of worsening
market conditions. The conditional quantile function of one bank on another may react
nonlinearly to the change of critical level of another firm. We therefore propose the use
of neural network quantile regression. The flexibility of the approach allows detecting
possible nonlinear dependencies in the data.

The conditional quantile of bank j’s returns is regressed on the returns of all other



68 CHAPTER 4. NEURAL NETWORKS AND SYSTEMIC RISK

banks and using a neural network as defined in section 4.2.2:

Xj,t = hθ(X−j,t) + εj,t,

=
Mn

∑
m=1

wo
mψ
⎛

⎝

K

∑
k≠j

wh
k,mXk,t + b

h
m

⎞

⎠
+ bo + εj,t,

(4.12)

with the conditional quantile of error term Qτ(εj,t∣X−j,t) = 0. To calculate the CoVaR
of firm j, the fitted neural network has to be evaluated at the distress scenario:

CoVaRτ
j,t = ĥθ(VaR

τ
−j,t), (4.13)

where ĥθ is the estimated neural network. Nonlinearity is introduced by the use of the
nonlinear activation function. CoVaR can be interpreted as the hypothetical τ -quantile
of the loss distribution if we are in a hypothetical distress scenario. In our case, this
distress scenario is all other firms being at their VaR.

Step 3: Calculation of Risk Spillover Effects

Based on the weights estimated by the neural network quantile regression procedure,
it is now possible to obtain risk spillover effects between each directed pair of banks.
We propose to estimate the spillover effects by taking the partial derivative of the
conditional quantile of firm j’s return with respect to the return of firm i.

∂Qτ(Xj,t∣X−j,t)

∂Xi,t

=
∂

∂Xi,t

Mn

∑
m=1

wo
m ψ
⎛

⎝

K

∑
k≠j

wh
k,mXk,t + b

h
m

⎞

⎠
+ bo (4.14)

In the case of a sigmoid tangent activation function we have

∂Qτ(Xj,t∣X−j,t)

∂Xi,t

=
Mn

∑
m=1

wo
mw

h
i,mψ

′
⎛

⎝

K

∑
k≠j

wh
k,mXk,t + b

h
m

⎞

⎠
(4.15)

with

ψ′(z) =
2

(exp−z/2 + expz/2)2
. (4.16)

In the case of a ReLu activation function we have

∂Qτ(Xj,t∣X−j,t)

∂Xi,t

=
Mn

∑
m=1

wo
mw

h
i,mI
⎛

⎝

K

∑
k≠j

wh
k,mXk,t + b

h
m > 0

⎞

⎠
, (4.17)

where I(⋅) is the indicator function. Note that the non-differentiability of the ReLU
function is not an issue in practice since the input of the function is zero with probability
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zero. As we are interested in the lower tail dependence, we consider the marginal effect
evaluated at the distress scenario as defined in the previous subsection:

∂Qτ(Xj,t∣X−j,t)

∂Xi,t

∣
X−j,t=VaRτ

−j,t

=
Mn

∑
m=1

wo
mw

h
i,m ψ′

⎛

⎝

K

∑
k≠j

wh
k,mVaRτ

k,t +b
h
m

⎞

⎠
. (4.18)

Calculating such a marginal effect for each directed pair of firms yields an off-diagonal
adjacency matrix of risk spillover effects at time t:

At =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 a12,t . . . a1K,t

a21,t 0 . . . a2K,t

⋮ . . . ⋱ ⋮

aK1,t aK2,t . . . 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.19)

with elements defined as absolute values of marginal effects:

aji,t =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣
∂Qτ (Xj,t∣X−j,t)

∂Xi,t
∣
X−j,t=VaRτ

−j,t
∣ , if j ≠ i

0, if j = i
. (4.20)

Note that the risk spillover effects are not symmetric in general, thus aji,t ≠ aij,t. This
adjacency matrix specifies a weighted directed graph modelling the systemic risk in
the financial system.

Step 4: Network Analysis of Spillover Effects

To further analyze the systemic relevance of the financial institutions we can calculate
several network measures building on the work of Diebold and Yılmaz (2014). They
measure the connectedness of financial firms in terms of variance decomposition in a
vector autoregressive framework. Their methodology is thus limited to capturing linear
spillover effects.

First, the total directional connectedness to firm j at time t is defined as the sum of
absolute marginal effects of all other firms on j.

Cj←⋅,t =
K

∑
i=1

aji,t (4.21)

Analogously, one can define the total directional connectedness from firm i at time t as
the sum of absolute marginal effects from i to all other firms.

C⋅←i,t =
K

∑
j=1

aji,t (4.22)
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Lastly, Diebold and Yılmaz (2014) define the total connectedness at time t as the sum
of all absolute marginal effects.

Ct =
1

K

K

∑
i=1

K

∑
j=1

aji,t (4.23)

The total connectedness is a measure for the connectedness level of the entire system
without differentiating the roles of individual nodes of the network. Building on this
network analysis, we refine the approach by incorporating VaR and CoVaR in the
measurement of the systemic risk relevance. In particular, we propose the Systemic
Fragility Index (SFI) and the Systemic Hazard Index (SHI) to rank financial institutions
according to their relevance.

SFIj,t =
K

∑
i=1

(1 + ∣VaRτ
i,t ∣) ⋅ aji,t, (4.24)

SHIi,t =
K

∑
j=1

(1 + ∣CoVaRτ
j,t ∣) ⋅ aji,t. (4.25)

The SFI is a measure for the risk exposure of a financial institution j. It increases if
those adjacency weights pointing to j are large and also if the VaRs of firms i (i.e. the
risk factors for j) increase. This implies that the SFI will increase in times of financial
distress. The index can be used by regulators to identify banks which have a high
exposure to the tail risk in the financial system.

The SHI is a measure for the risk contribution of firm i to the whole system. It depends
on the out-going adjacency weights from i weighted by the other firms’ CoVaRs. Thus,
the SHI tend to be large if the other firms are already affected by whole system,
weigted by their CoVaR. The SFI and the SHI are firm-specific. It should be noted
that our approach allows to model asymmetries. For instance, a firm which has a
high tail risk exposure does not need to have a large impact on the whole system and
vice versa. In contrast to the original CoVaR approach of Adrian and Brunnermeier
(2016), our approach of identifying systemically important financial institutions has two
advantages. First, we are able to capture possible nonlinear relationships in the data.
Second, our approach operates in a network context which goes beyond the pairwise
analysis proposed in the original CoVaR methodology.

As a third measure, we propose the Systemic Network Risk Index (SNRI), a measure
for the total systemic risk in the financial system which depends on the marginal effects,
the outgoing VaRs, and the incoming CoVaRs. It is a measure for tail connectedness
focusing a lower quantile level.
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SNRIt =
K

∑
i=1

K

∑
j=1

(1 + ∣VaRτ
i,t ∣) ⋅ (1 + ∣CoVaR

τ
j,t ∣) ⋅ aji,t. (4.26)

Lastly, we define the adjusted adjacency matrix,

Ãt =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ã12,t . . . ã1K,t

ã21,t 0 . . . ã2K,t

⋮ . . . ⋱ ⋮

ãK1,t ãK2,t . . . 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.27)

with elements defined as:

ãji,t =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

aji,t ⋅ (1 + ∣VaR
τ
i,t ∣) ⋅ (1 + ∣CoVaR

τ
j,t ∣), if j ≠ i

0, if j = i
. (4.28)

The adjusted adjacency matrix accounts for the level of outgoing VaRs and incoming
CoVaRs and is an improved representation of risk spillover effects. Systemic spillover
effects are thus determined by the marginal effects of the neural network quantile
regression procedure as well as by the VaRs and CoVaRs of the considered banks.

4.4 Empirical Study: US G-SIBs

4.4.1 Data

For the empirical application of our systemic risk methodology we are focusing on the
global systemically important banks (G-SIBs) from the United States selected by the
Financial Stability Board (FSB), see Table 4.1. These eight banks constitute systemic
risk relevance to the global financial system and are deemed to be too-big-to-fail. We
consider daily log returns in a time period between January 4, 2007 and May 31, 2018.
The data is obtained from Yahoo Finance.

In addition to these stock return data, we consider daily observations of the following
set of macro state variables:

i) Implied Volatility Index (VIX), from Yahoo Finance;

ii) the weekly S&P500 index returns, from Yahoo Finance;

iii) Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury
Constant Maturity from Federal Reserve Bank of St. Louis;
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Financial Institution NYSE symbol
Wells Fargo & Company WFC
JP Morgan Chase & co. JPM
Bank of America Corporation BAC
Citygroup C
The Bank of New York Mellon Corporation BK
State Street Corporation STT
Goldman Sachs Group, Inc. GS
Morgan Stanley MS

Table 4.1: List of G-SIBs in the USA.

iv) 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity
from Federal Reserve Bank of St. Louis.

These macro variables are the common risk factors for the estimation of VaR in the
first step of our systemic risk methodology.

4.4.2 Model Selection and Out-of-Sample Performance

The estimation of CoVaR based on neural network quantile regression involves several
tuning parameters. Most importantly, we have to make a choice about the activation
function and determine the sizes and structure of the neural network. We recalibrate
these tuning parameters at the start of each year in a data-driven way. We propose
the following moving-window model selection and evaluation procedure.

Following the common approach in the literature, e.g. Gu et al. (2020), Bianchi
et al. (2020), we repeatedly divide our sample into three disjoint subsamples. These
subsamples are consequential to maintain the time series structure of the data. The
first sample is called the training set, which is denoted by T1. The training set is used to
estimate the weight and bias parameters of the neural network for each candidate model
specification. The performance is then evaluated using the validation set, denoted by
T2. The tuning parameters are optimized by choosing the model specification which
minimizes the objective function. This division into training and validation sets is
an effective way to counteract overfitting. However, the validation fit is not truly
out-of-sample since it is used to select the tuning parameters. Therefore, we finally
consider the last subsample as the test set, which is denoted by T3. The test set is used
to get an unbiased estimate of the method’s performance.

To evaluate the predictive performance of our method, we calculate the out-of-sample
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average quantile loss, (AQLoos),

AQLoos =
1

∣T3∣
∑
t∈T3

ρτ {Xj,t − Q̂
τ (Xj,t∣X−j,t)} . (4.29)

The tuning parameters include: the number of nodes in the neural network, the L1

and L2 penalty terms on the weight parameters and the dropout probability p. We
recalibrate the tuning parameters for each financial firm at the start of the year. We
choose a sample size of 200 and 50 days for the training and validation datasets
respectively. This corresponds to one year of daily data. We evaluate the performance
on the subsequent 250 days in the test set. By recalibrating the tuning parameters
annually, we end up with ten windows in total. A visualization of the sample splitting
scheme can be found in Figure 4.1. In the following, we summarize the steps of our
model selection and the evaluation procedure.

Step 1: Split the data into training (T1), validation (T2) and test set (T3) for each
window.

Step 2: For each bank j and each window, fit the conditional quantile of Xj contingent
on X−j using T1.

Step 3: Choose the model specification which minimizes the average quantile loss based
on T2 .

Step 4: Calculate AQLoos based on the tuned neural network using T3.

Figure 4.1: Visualization of the rolling window model selection scheme. Training data (blue),
validation data (orange) and test data (red).

Finally, we compare the predictive performance of our neural network quantile regression
procedure to a simple baseline model based on the linear quantile regression,

Xj,t = β0 +
K

∑
i≠j

Xi,tβi + εj,t, (4.30)
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with Qτ(εt∣X−j,t) = 0. The baseline model is estimated on training and validation data
sets T1 and T2. The estimation does not involve any tuning parameters so we can
make use of the combined data set. The out-of-sample forecast performance is then
evaluated using the holdout data T3. We apply the test of Diebold and Mariano (2002)
to compare the forecast performance. The test statistic is based on the quantile loss
differentials between the neural network and the linear baseline model and has an
asymptotic standard normal distribution. We choose a significance level of 1%. The
test results are reported in Table 4.2.

For all of the financial institutions in our sample, the neural network fit performs
better than the linear quantile regression fit. The outperformance of the neural network
forecast is statistically significant for the majority of banks (seven out of eight). Only
for Goldman Sachs the Diebold-Mariano fails to reject the null hypothesis of similar
forecast performance. Overall, the use of a more complex model like a neural network
appears to be recommendable. A plausible explanation for this is that a linear model is
not capable to capture the complex interdependencies of financial firms under distress.

Firm WCF JPM BAC C BK STT GS MS
DM statistic -3.86 -2.44 -3.12 -3.27 -3.31 -2.76 -1.56 -2.88
p-value 0.000 0.008 0.001 0.001 0.001 0.003 0.059 0.002

Table 4.2: The table reports the results of the Diebold-Mariano test comparing the neural
network to the linear baseline model.

For the selection of the VaR approach used in the first step of our systemic risk analysis,
we compare the predictive performance of the three candidate models introduced in
section 3. We consider a sliding window of 250 days, which is used for estimation to
predict the next day’s conditional 5% quantile of the returns. The results are displayed
in Table 4.3. For every bank in our sample, the linear quantile approach performs best.
Results from the Diebold-Mariano test show that the difference is significant at the 1%

confidence level after accounting for the multiple testing issue by using the Bonferroni
correction for critical values. In the following, all VaR calculations are based on the
linear quantile approach.

Firm WCF JPM BAC C BK STT GS MS
CaViaR SAV 2.42 2.47 3.39 3.40 2.48 3.05 2.49 3.26
CaViaR AS 2.63 2.60 3.50 3.46 2.73 3.10 2.58 3.45
LQR 2.16 2.20 2.90 2.89 2.15 2.73 2.10 2.76

Table 4.3: The table reports the out-of-sample average quantile loss of the candidate models
for every financial institution (×103).
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4.4.3 Estimation Results

VaR and CoVaR

2008 2010 2012 2014 2016 2018
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Figure 4.2: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural
network quantile regression (red line) for Wells Fargo.
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Figure 4.3: Fitted quantile regression neural network for Wells Fargo on March 13, 2008. Red
connections indicate negative weights, blue connections indicate positive weights.

As explained in section 5.3, the analysis is carried out in four steps. In the first two steps,
VaR and CoVaR are estimated for each firm, using linear quantile regression and neural
network quantile regression, respectively. To account for potential non-stationarity, we
employ a sliding window estimation framework for both measures. The window size is
chosen to be 250 observations (representing one year of daily stock returns). We choose
a quantile level of τ = 5%, which is the standard in the related literature, see Hautsch
et al. (2014) and Härdle et al. (2016). A lower value for the quantile level leads to less
reliable estimates, due to the inverse relation of the variance and the density of the
error term. As a sensitivity analysis, we also report the results for τ = 1%, see Figure
4.11 and 4.12 in Appendix B. The results are robust with respect to the choice of the
quantile level.
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The estimation results for Wells Fargo are visualized in Figure 4.2. The estimated
VaR and CoVaR follow a similar pattern. In the course of the financial crisis both
risk measures explode, indicating an increase in systemic risk during this period. A
second persistent spike appears in the second half of 2011 caused by the European
debt crisis. In the following, both VaR and CoVaR stabilize with a few non-persistent
spikes. Similar patterns can be found in the estimation results for the other financial
institutions (see Figure 4.13 in Appendix B). An example of a fitted neural network is
visualized in Figure 4.3.
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Figure 4.4: Time average of risk spillover effects across banks for different time periods.

Based on the estimation results of the neural network quantile regression procedure
and on the fitted VaRs and CoVaRs, we calculate the directional spillover effects for
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each pair of banks over our prediction horizon. The result is a time-varying weighted
adjusted adjacency matrix (as defined in equation 4.27). This risk spillover network
provides insights into the cross-section and the time dynamics of systemic risk. Figure
4.4 visualizes the evolution of the network in the course of the financial crisis. The first
half of 2008 shows a moderate level of lower tail connectedness. This setting changes
dramatically in the second half of 2008 with the bankruptcy of Lehman Brothers. As a
consequence, the United States Department of the Treasury was compelled to bail out
financial institutions to avoid a total collapse of the financial system. Also, the Federal
Reserve Bank had to adjust its monetary policy. The time average of the adjacency
matrix for 2009 shows a continuing state of financial distress. However, compared to
the previous periods one can visually identify a risk cluster in the lower left part of the
adjacency matrix. Finally, 2010 shows a decline in systemic risk spillover effects caused
by a regained trust in the financial system. Figure 4.5 restricts the visualization to the
largest edges of the financial risk network. As a first observation, spillover effects across
banks tend to be symmetric. If bank i has a large impact on bank j, the converse is
also very likely. A second observation is the identification of the risk cluster mentioned
above. This cluster includes four financial institutions, Citigroup, Bank of America, JP
Morgan and Wells Fargo. This cluster coincides with the list of the largest beneficiaries
of the bailout program in 2008 and 2009.
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Figure 4.5: Time average of risk spillover effects across banks after thresholding (ãji > 0.4) for
different time periods.
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Figure 4.6: The figure shows the time series of the SNRI.
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Figure 4.7: Plot of SNRI (black line), the Granger causality measure of Billio et al. (2012)
(red line) and total connectedness of Diebold and Yılmaz (2014) (blue line). Dashed vertical
line marks the bailout and acquisition of Bear Stearns by JP Morgan on March 14, 2008, the
dotted vertical line indicates the bankruptcy of Lehman Brothers on September 15, 2008.

In this subsection, we estimate the systemic risk measures using the results from
the previous steps. First, we consider the Systemic Network Risk Index (SNRI),
as a measure for total systemic risk in the financial system. Figure 4.6 shows the
development over time. As expected, we see a sharp increase in systemic risk during
the financial crisis in the second half of 2008. A second peak appears in the second
half of 2011 as a result of the uncertainties associated with the European debt crisis.
After a short period of stabilization, we see another rise in systemic risk from 2014 till
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2016. In contrast to the previous peaks, this increase appears to be more gradual.

We now discuss the systemic risk measure calibration during the financial crisis in
detail. We restrict our focus on the two-year period, i.e. from the start of 2008 to
the end of 2009. We compare our SNRI to the Granger causality measure of Billio
et al. (2012) and the total connectedness measure based on variance decomposition
proposed by Diebold and Yılmaz (2014). Both measures are estimated using the same
set of financial institutions and a rolling window of 250 days. The results are displayed
in Figure 4.7. As reference dates, we have added the bailout of Bear Stearns and the
resulting acquisition by JP Morgan on March 14, 2008, as well as the bankruptcy of
Lehman Brothers on September 15, 2008. A few significant differences in the time
series of the risk measures are apparent. While the Granger causality measure and the
total connectedness increase sharply after the Bear Stearns event, the SNRI decreases
slightly. In contrast to both alternatives, our measure is exclusively concerned with
the lower quantile of the return distribution. We infer that the resulting intervention
had a calming effect on the financial markets and thus prevented an increase in
lower tail dependence. The Bear Stearns shock seemed to have a systematic but not
necessarily a systemic effect. In contrast, we observe a simultaneous sharp increase of
all three measures immediately after the Lehman Brothers bankruptcy. The increase
in connectedness thus affected the mean as well as the lower tail of the distribution.
We deduce that the shock from the Lehman bankruptcy had a truly systemic impact.
In the aftermath of the collapse, the SNRI has its maximal point in March of 2009
and remains at a high level until the second half of the same year. The comparing
measures have an earlier peak in the end of 2008 followed by a fast decrease. We
conclude that the SNRI complements the network-based risk measures proposed by
Billio et al. (2012) and Diebold and Yılmaz (2014) as it is more sensitive to shocks in
the lower tail.
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Figure 4.8: The figure shows the co-movement of the SNRI (black line) and the aggregate
SRISK (brownlees2017SRISK, red line).

We also compare the SNRI to the aggregated SRISK of Brownlees and Engle (2017)
in Figure 4.8. One can identify a co-movement of both indices. In particular, both
the financial crisis and the European debt crisis lead to a sharp increase in both risk
measures. However, we have to acknowledge that the aggregated SRISK already detects
vulnerabilities in the financial system as early as the beginning of 2008. The reason
for this is that the SRISK incorporates additional information on micro-prudential
variables, namely the book value of debt and the quasi value of assets. An advantage
of the SNRI is that it is entirely based on market data. Also, the SRISK requires
assumptions on a number of structural parameters, such as the prudential capital ratio
and the threshold loss, while our approach does not. Finally, another advantage of our
approach is the estimation of spillover effects in a network context.

2008 Q1-Q2 2008 Q3-Q4 2009 2010
Rank Ticker SFI Ticker SFI Ticker SFI Ticker SFI
1 C 2.239 C 2.395 BAC 2.633 WCF 1.689
2 GS 1.962 MS 2.046 BK 2.426 JPM 1.640
3 WFC 1.822 BAC 1.983 MS 2.393 STT 1.541
4 MS 1.748 GS 1.970 JPM 2.222 BAC 1.472
5 BAC 1.709 WCF 1.907 GS 1.900 GS 1.442
6 JPM 1.546 JPM 1.752 WCF 1.847 BK 1.442
7 STT 1.300 STT 1.497 C 1.572 MS 1.260
8 BK 1.100 BK 1.365 STT 1.561 C 1.164

Table 4.4: The table reports the ranking of financial institutions according to their SFI
averaged over different time intervals.
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2008 Q1-Q2 2008 Q3-Q4 2009 2010
Rank Ticker SHI Ticker SHI Ticker SHI Ticker SHI
1 JPM 2.209 JPM 2.203 WCF 2.440 JPM 2.010
2 BAC 2.021 MS 2.149 JPM 2.438 BAC 1.616
3 MS 1.939 BAC 2.138 GS 2.377 STT 1.574
4 C 1.828 GS 1.981 BAC 2.349 WCF 1.555
5 GS 1.568 BK 1.976 BK 2.187 BK 1.488
6 BK 1.530 C 1.881 C 2.162 GS 1.475
7 WCF 1.426 WCF 1.820 MS 2.149 MS 1.254
8 STT 1.316 STT 1.721 STT 2.089 C 0.965

Table 4.5: The table reports the ranking of financial institutions according to their SHI
averaged over different time intervals.

While the SNRI is an index for total systemic risk, we now consider firm-specific
measures. Table 4.4 ranks financial firms according to their Systemic Fragility Index
(SFI). A large SFI indicates high systemic exposure to the financial system. Our
findings suggest that Citigroup is among the most fragile banks during the height of
the financial crisis, being top-ranked in the first and in the second half of 2008. Due
to heavy exposure to troubled mortgages, the US government decided to bail out the
bank in November 2008. In the periods following the bail-out, Citigroup’s SFI rank
dropped sharply. Figure 4.9 shows the time dynamics of the SFI of Citigroup. Another
high-ranked financial institution is Bank of America, which is on position three in the
second half of 2008 and the number one in 2009. In contrast, State Street Corporation
is ranked at the bottom of the table throughout 2008 and 2009. This result is plausible
since State Street was the first major financial institution to pay back its loans to the
US Treasury in July 2009.

We conduct a similar ranking with respect to the Systemic Hazard Index (SHI), which
ranks the financial institutions according to the risk contributed to the financial system.
In each of the time periods we consider, JP Morgan is listed in the top two of the
ranking. Similar, Bank of America is ranked in the top four consistently, being the
second highest ranked bank in the first half of 2008. Figure 4.10 visualizes the time
dynamics of the SHI for Bank of America. In the aftermath of the crisis in 2009, Wells
Fargo also emerges as a systemic risk factor to the financial system. An advantage
of our approach is that we are able to differentiate between firms, which transmit
systemic risk, and firms which are affected by systemic risk. By doing this we capture
the asymmetric nature of the systemic risk. As an example, JP Morgan is ranked high
according to the SHI in 2008 but relatively low in SFI. The opposite can be observed
for Citigroup, which is ranked low in SHI and high in SFI during the same time
periods. However, State Street is at the bottom of both rankings during the height of
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the financial crisis, implying that it is neither a large risk factor nor strongly affected
by the financial system.
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Figure 4.9: Time series of the SFI for Citi-
group.
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Figure 4.10: Time series of the SHI for Bank
of America.

4.5 Conclusion

This paper proposes a novel approach to estimate the conditional value-at-risk (CoVaR)
of financial institutions based on neural network quantile regression. Our methodology
allows for the identification of risk spillover effects across banks in a nonlinear and
multivariate context. We define three network-based measures for systemic risk, the
Systemic Fragility Index and the Systemic Hazard Index as firm-specific measures and
the Systemic Network Risk Index as a measure for the overall risk in the financial system.
These measures quantify the connectedness of the financial system while restricting the
analysis on the lower tail of the distribution. The neural network framework allows us
to model systemic risk in a highly nonlinear setting. A comparison to a linear baseline
model shows the predictive superiority of our neural network approach in terms of the
out-of-sample performance.

We apply our methodology to global systemically important banks (G-SIBs) from the
United States in the period 2007 - 2018. Consistent with previous findings in the
literature, we observe the Systemic Network Risk Index increasing sharply during the
financial crisis and during the European debt crisis. A comparison to the connectedness
measures proposed in Billio et al. (2012) and Diebold and Yılmaz (2014) shows that our
systemic risk measure captures different aspects of connectedness and offers therefore
a new perspective on systemic risk. Furthermore, our approach allows to identify a
risk cluster of banks which corresponds to the list of banks that receive the largest
amount of funding from the US Department of Treasury. By ranking the financial firms
according to their Systemic Fragility Index and their Systemic Hazard Index we are
able to identify those firms which bear significant exposure to the financial system and
those firms which impose the greatest risk to the financial system.
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4.A Consistency of Neural Network Sieve Estimator

for the Conditional Quantile

White (1992) shows the consistency of the neural network quantile regression estimator.

Assumption A.1: The data Zt = (X
⊺
t , Y

⊺
t )
⊺ is generated from a bounded stochastic

process defined on a complete probability space (Ω,F , P ), Xt is a random r × 1 vector,
Yt is a random scalar and

(i) Zt is an i.i.d. process or

(ii) Zt is a stationary ϕ− or α−mixing process with such that the mixing coefficients
ϕ(k) = ϕ0ξk or α(k) = α0ξk,0 < ξk < 1, ϕ0, α0, k > 0.

Without loss of generality, we may assume Zt ∶ Ω→ Ir+1 def
= [0,1]r+1.

Let ψ ∶ R → R be a bounded function and let (Θ, ρ) be a metric space, where ρ

is the L1-metric. For any q ∈ N and ∆ ∈ R+ define T (ψ, q,∆) = {θ ∈ Θ ∶ θ(x) =

β0 + ∑
q
j=1 βjψ(x

⊺γj) for all x in Ir, ∑q
j=0 ∣βj ∣ ≤ ∆, ∑q

j=1∑
r
i=1 ∣γji∣ ≤ q∆}. Further let

Qn(θ) = n−1∑
n
t=1 ∣Yt − θ(Xt)∣∣τ − I(Yt < θ(Xt))∣.

Assumption A.2: Θn(ψ) = T (ψ, qn,∆n), n = 1,2, . . ., where ψ is bounded, satisfies a
Lipschitz condition and is either a cdf or is l-finite. qn and ∆n are such that qn →∞
and ∆n → ∞ as n → ∞. ∆n = o(n1/2) and either (i) qn∆2

nlogqn∆n = o(n) or (ii)
qn∆nlogqn∆n = o(n1/2).

Assumption A.3: For given quantile level τ ∈ (0,1), θτ ∶ Ir → I is a measurable
function such that P{Yt ≤ θτ(Xt)∣Xt} = τ and for every θ ∈ Θ and all ϵ > 0 sufficiently
small E{θ(Xt) − θτ(Xt)} > ϵ implies that for some δϵ > 0,

E [I{(θτ(Xt) + θ(Xt))/2 ≤ Yt < θτ(Xt)} ∣θ(Xt) < θτ(Xt)] > δϵ

and

E [I{θτ(Xt) ≤ Yt < (θτ(Xt) + θ(Xt)) /2} ∣θ(Xt) ≥ θτ(Xt] > δϵ.

Theorem 2.5 White (1992): Given assumptions A.1(i), A.2(i) and A.3 or A.1(ii),
A.2(ii) and A.3, there exists a measurable connectionist sieve estimator θ̂n ∶ Ω→ Θ such
that Qn(θ̂n) ≤ Qn(θ), θ ∈ Θn(ψ), n = 1,2, . . .. Further, ρ(θ̂n, θτ)

p
→ 0.
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4.B Estimation Results
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Figure 4.11: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural
network quantile regression (red line) for Wells Fargo, τ = 1%.
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Figure 4.12: The figure shows the co-movement of the SNRI (black line) and the SRISK
(brownlees2017SRISK, red line), τ = 1%.
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Figure 4.13: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural
network quantile regression (red line), τ = 5%.
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Chapter 5

On Cointegration and Cryptocurrency
Dynamics

Publication
Keilbar, G. and Zhang, Y. (2021). On Cointegration and Cryptocurrency Dynamics,
Digital Finance, 3 (1), 1–23.

5.1 Introduction

Cryptocurrencies have emerged as a new asset class over recent years. As of 2020, the
crypto universe includes almost 5000 currencies with a total market capitalization close
to 200 bn USD (coinmarketcap.com). We refer to Härdle et al. (2020) for a general
overview on cryptocurrencies. While the market is still dominated by Bitcoin (BTC),
the analysis of the interdependence of cryptocurrencies received a lot of attention from
researchers as well as practitioners. For instance, Guo et al. (2018) analyzed latent
communities from a network perspective. A large strand of literature is concerned with
the relation of cryptocurrencies to other more traditional classes of assets (Shahzad et al.
(2019), Corbet et al. (2018)). Yi et al. (2018) and Ji et al. (2019) analyzed directional
volatility spillover effects using the variance decomposition method of Diebold and
Yılmaz (2014). Sovbetov (2018) analyzed the cointegration of a VAR system of four
cryptocurrencies. Leung and Nguyen (2019) proposed and discussed cointegration-based
trading strategies.

While existing research contributions on cointegration restrict their focus to a small
number of currencies, we argue that this only paints an incomplete picture. This paper
aims to model the joint dynamics of cryptocurrencies in a nonstationary and high
dimensional setting. In particular, we investigate the role of potential cointegration
relationships among cryptocurrencies. In our empirical analysis we consider the ten
largest currencies in terms of market capitalization in the period from July 2017 to
February 2020.

Our methodology is based on the vector error correction model (VECM), developed by
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Engle and Granger (1987), which augments the standard vector autoregressive (VAR)
model with an additional role for deviations from long-run equilibria. To analyze the
cointegration of cryptocurrencies in a dynamic setting, we propose a novel nonlinear
VECM model, which we call COINtensity (cointegration intensity) VECM. The use of
nonlinear specifications to model time series has a long tradition, see the monographs of
Granger and Teräsvirta (1993) and Fan and Yao (2008)). Examples for nonlinear time
series models include the smooth transition autoregressive (STAR) model (Luukkonen
et al. (1988) and Teräsvirta (1994)) and neural networks (Kuan and White (1994) and
Lee et al. (1993)). Nonlinear error correction models are discussed in Dijk et al. (2002)
and extended to the vector case by Kristensen and Rahbek (2010). An advantage of
nonlinear time series models is the increased flexibility compared to linear specifications.
Usually, this flexibility comes at the expense of a large number of parameters to estimate.
Our COINtensity VECM specification has the advantage that the number of additional
parameters is equal to the cointegration rank, i.e. it is non increasing in the dimension
of the VAR system. The nonlinear part of the model introduces a time-varying intensity
effect for the error adjustment, which implies that the cyptocurrencies will return to the
long-run equilibrium with varying speed. A crucial task is to select the number of those
equilibria, also referred to as cointegration relations. Johansen (1988, 1991) proposed
a likelihood ratio test, which is now commonly used. However, the testing procedure
suffers from poor finite sample performance in systems of more than three variables
(Johansen (2002) and Liang and Schienle (2019)). We therefore follow Onatski and
Wang (2018), who proposed an alternative test for cointegration that is designed for a
high-dimensional setting.

Our empirical results suggest that cointegration plays a crucial role for cryptocurrencies.
In particular, we find four stationary long-run equilibria. We also find that all currencies
are significantly affected by long-term stochastic trends, rejecting the hypothesis of
weak exogeneity. The results of our dynamic COINtensity VECM show a time-varying
dependence of cryptocurrencies on these stochastic trends. We find that the nonlinearity
of error correction is stronger during the time of the cryptocurrency bubble, compared
to a later time period. Based on our estimated cointegration vectors, we construct a
simple trading rule, following and generalizing the strategy of Leung and Nguyen (2019).
An in-sample analysis of our trading strategy indicates that trading on large deviations
from the long-run equilibria can be profitable, while the out-of-sample analysis is more
cautious. In particular, the success of such a statistical arbitrage strategy is dependent
on the condition that the equilibrium relations will hold in the long-run.

The contributions of this paper are two-fold. First, it is the first attempt to model
a system of cryptocurrencies in a large vector autoregression while accounting for
nonstationary effects. Second, we propose a novel, nonlinear VECM specification which
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increases the flexibility and also has a good interpretability even in large dimensions.

The remainder of the paper is organized as follows. Section 2 describes in detail
the steps of our modelling and estimation procedure. To show the validity of our
approach, we conduct a small simulation study in section 3. In section 4, we apply our
methodology to a system of the largest ten cryptocurrencies. Section 5 introduces a
simple cointegration-based trading strategy and section 6 concludes.

All codes of this paper are available on quantlet.de.

5.2 Modelling Framework

5.2.1 VECM and Testing for Cointegration

As a baseline model we consider the following p-dimensional vector autoregressive
model with error correction term (VECM).

∆Xt = ΠXt−1 +
k

∑
i=1

Γi∆Xt−i +ΦDt + εt, (5.1)

where Dt are deterministic variables and εt are zero-mean, independent error terms.
We assume that each univariate time series is integrated of order one, Xit ∼ I(1), i =

1, . . . , p. Under cointegration, there exists a linear combination which is stationary, i.e.
β⊺Xt ∼ I(0). Thus, we can rewrite (1) in the following way,

∆Xt = αβ
⊺Xt−1 +

k

∑
i=1

Γi∆Xt−i +ΦDt + εt, (5.2)

where β is a p × r matrix of cointegration vectors and α is the p × r loading matrix.
The order of cointegration is characterized by the rank r of β. Γi, i = 1, . . . , k, are p × p
parameter matrices associated with the impact of lagged values of ∆Xt.

Johansen (1988, 1991) developed a sequential likelihood testing procedure to determine
the cointegration rank r. Under the null hypothesis there are at most r cointegration
relationships.

H0 ∶ rank(Π) ≤ r vs H1 ∶ rank(Π) > r (5.3)

In the special case of r = 0, there is no cointegration and we have to proceed with a
stationary VAR model in first differences. On the other hand, if r = p, we can use a
stationary VAR model in levels without any error correction terms. In all other cases,
0 < r < p, the series are cointegrated.

http://www.quantlet.de
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The test statistic LR is based on the squared canonical correlations between the residuals
obtained by regressing ∆Xt and Xt−1 on the lagged differences (∆Xt−1, . . . ,∆Xt−k)

and the deterministic variables Dt, respectively. These correspond to the eigenvalues
λ1 ≥ . . . ≥ λp of the matrix S01S−111S

⊺
01S

−1
00 , with S00 =

1
TR0tR

⊺
0t, S01 =

1
TR0tR

⊺
1t and

S11 =
1
TR1tR

⊺
1t. R0t are the residuals of regressing ∆Xt and R1t are the residuals of

regressing Xt−1 on (∆Xt−1, . . . ,∆Xt−k) and Dt.

LR = −T
p

∑
i=r+1

log(1 − λi). (5.4)

Under the null hypothesis, the test statistic converges in distribution to a function of
Brownian motions. The limiting distribution is different according to the specific form
of Dt, see Proposition 8.2 in Lütkepohl (2005). The critical values of the Johansen test
are obtained by simulations.

The test has been proved to have issues in small samples, in particular if the dimension of
the VAR model, p, becomes large. This issue is addressed in Johansen (2002). Onatski
and Wang (2018) therefore developed a different asymptotic setting. In particular, they
consider the case where T and p go to infinity simultaneously such that p/T → c ∈ (0, 1].
Consider a simplified representation of (1) without lagged differences.

∆Xt = ΠXt−1 +ΦDt + εt (5.5)

Under this asymptotic regime and under the null hypothesis of no cointegration, the
empirical distribution function of the eigenvalues of the matrix S01S−111S

⊺
01S

−1
00 converges

weakly to the Wachter distribution.

Fp(λ)⇒Wc(λ)
def
= W (λ; c/(1 + c),2c/(1 + c)) (5.6)

where Fp(λ) =
1
p ∑

p
i=1 I(λi ≤ λ) and W (λ, γ1, γ2) denotes the Wachter distribution

function with parameters γ1, γ2 ∈ (0,1) and density fW (λ, γ1, γ2) =
1

2πγ1

√
(b+−λ)(λ−b−)

λ(1−λ)

on [b−, b+] with b± = (
√
γ1(1 − γ2) ±

√
γ2(1 − γ1))

2
and atoms of size max(0,1 − γ2/γ1)

at zero and max(0,1 − 1−γ2
γ1
) at unity. The rank of cointegration can be determined

graphically by comparing the empirical quantiles of the calculated eigenvalues with
the theoretical quantiles of the Wachter distribution. Under the null hypothesis of no
cointegration the empirical quantiles of eigenvalues should lie close to the theoretical
quantiles of the Wachter. Onatski and Wang (2018) suggest to select the cointegration
rank by the number of eigenvalues which deviate from the 45 degree line. We show the
validity of this approach in a simulation study in section 3.

If the rank of the matrix of cointegration vectors is known, we can estimate cointegration
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vectors β by reduced rank maximum likelihood estimation, corresponding to the r
largest eigenvalues of the matrix S01S−111S

⊺
01S

−1
00 , which we defined in the previous

subsection. Without normalization, this estimator is not unique. Therefore, we set the
j-th element in the j-th cointegration vector to one Johansen (1995). Then, we can
estimate the remaining parameters α and Γ = (Γ1 ∶ . . . ∶ Γk) with equation-wise OLS
by plugging in the estimator for β, and give their asymptotically normal distribution
using standard arguments for stationary processes.

5.2.2 COINtensity VECM

As an extension to the baseline setting, we consider a nonlinear VECM specification.
Such models originate from Granger and Teräsvirta (1993), who introduced the smooth
transition error correction model (STECM). A vector version was proposed by Dijk
et al. (2002). Kristensen and Rahbek (2010) considered the general setting of likelihood-
based estimation with nonlinear error correction. Corresponding linearity tests and
inference-related issues are discussed in Kristensen and Rahbek (2013). The general
setting can be formulated as follows.

∆Xt = g (β
⊺Xt−1; θ) +

k

∑
i=1

Γi∆Xt−i +ΦDt + εt, (5.7)

where g(⋅) is a parametric error correction function with parameter vector θ. The error
correction function can be nonlinear in the long term stochastic trends as well as in θ.
In the baseline linear setting, g(z; θ) = αz and θ = vec(α). In the vector version of the
STECM we have g(z; θ) = {α + α̃ψ(z;ψ)}, where ψ(z;ϕ) is a fixed function satisfying
∣ψ(z;ϕ)∣ = O(1) as ∥z∥ → ∞, and θ = (vec(α)⊺,vec(α̃)⊺,vec(ϕ)⊺)⊺, where vec is the
vector operator that transforms matrix Am×n into an (mn × 1) vector by stacking the
columns.

The advantage of using nonlinear models is an increased degree of flexibility. However,
often this flexibility comes at the expense of worse interpretability and of overfitting
the data. We therefore introduce a new class of vector error correction models, which
we call COINtensity (cointegration intensity) VECM.

∆Xt = αβ
⊺Xt−1 {1 +G (st;γ)} +

k

∑
i=1

Γi∆Xt−i +ΦDt + εt, (5.8)

where st is a d-dimensional vector of transition variables and G(⋅) ∶ Rd → (−1,1)

is a parametric function with parameter vector γ ∈ Rd. We propose the following
parameterisation, G(st;γ) = tanh(s⊺t γ) and st = β⊺Xt−1, where tanh is the sigmoid
tangent function. We denote G(⋅) as the COINtensity (cointegration intensity) function.



94 CHAPTER 5. CRYPTOCURRENCY DYNAMICS

This function has a universal effect for all cryptocurrencies and measures the intensity
of the impact of cointegration. G(⋅) takes values in (−1, 1). In this model specification,
we still have a loading matrix α which measures currency-specific marginal effects.
Please note that our COINtensity VECM is a generalization of the baseline model, as
model (5.8) reduces to model (5.2) if γ = 0.

Our model specification has two advantages. First, it has only a few additional
parameters compared to the baseline specification. The overfitting problem of nonlinear
error correction models can therefore be contained. Second, the modified model
enables us to analyze cointegration and the exposure of cryptocurrencies to long-term
equilibrium relationships in a dynamic context.

If the cointegration vectors β are estimated a priori, model parameters can be estimated
by quasi maximum likelihood estimation (QMLE). For convenience, we write θ

def
=

(vec(α)⊺,vec(Γ)⊺, γ⊺)⊺. The QMLE, θ̂ of θ, is defined as the minimizer of the following
negative log-likelihood criterion,

LT (θ) =
T

∑
t=1

ε⊺t (θ)εt(θ). (5.9)

We split the parameters into two parts and write θ = (vec(θ1)⊺, θ⊺2)⊺, with θ1 = (α,Γ)⊺

and θ2 = γ. Note that θ1 is a (r + pk) × p parameter matrix. Further, we define

Wt(θ2)
def
= ([β⊺Xt−1 {1 + tanh (θ

⊺
2β
⊺Xt−1)}]

⊺
,∆X⊺t−1, . . . ,∆X

⊺
t−k)

⊺
, (5.10)

where Wt(θ2) ∈ Rr+pk. Now, we can rewrite model (5.8) as follows.

∆Xt = θ
⊺
1Wt(θ2) + εt (5.11)

The profile estimator for θ1(θ2) can be obtained by standard OLS.

θ̂1(θ2) = {
T

∑
t=1

Wt(θ2)W
⊺
t (θ2)}

−1 T

∑
t=1

Wt(θ2)∆X
⊺
t (5.12)

We proceed by obtaining the corresponding vector of residuals.

ε̂t(θ2) =∆Xt−1 − θ̂
⊺
1Wt(θ2) (5.13)

Given the profile estimator, we can estimate θ2 by

θ̂2 = arg min
θ2∈Θ2

LT (θ̂1(θ2), θ2), (5.14)

where Θ2 is the parameter space of θ2. The final estimator for θ1 can be obtained
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by plugging (5.14) into (5.12). The interpretation of the parameters α, β and Γ is
almost completely analogous to the linear VECM. In particular, the cointegration
vector has the same function as before, governing the long run equilibrium relations.
The only difference in the interpretation of parameters is that the loading intensity is
now time-varying. Regarding the selection of the cointegration rank r we cannot make
a definitive statement whether the asymptotics of Onatski and Wang (2018) also hold
in the COINtensity model. However, the procedure seems to work well in practice, as
shown in our simulation study.

5.3 Simulation Study

In the first part of this simulation study, we examine the validity of the procedure of
Onatski and Wang (2018) to test for cointegration. They suggest to determine the
cointegration rank graphically by comparing the empirical quantiles of the eigenvalues
with the theoretical quantiles of the Wachter distribution. The cointegration rank
is chosen according to the number of eigenvalues deviating from the 45 degree line.
Here, we calibrate the numerical example in Liang and Schienle (2019), which is an
8-dimensional VAR(2) process with four unit roots, i.e p = 8, r = 4, k = 1.

∆Xt = αβ
⊺Xt−1 + Γ1∆Xt−1 + εt, (5.15)

with full-rank matrices α, β of dimension p × r and iid-distributed εt generated from
N(0, I8). We consider T = 200, matrices α, β and Γ1 are listed in the appendix (setting
1.1). Figure 5.1 shows that there are exactly four eigenvalues that deviate from the
45 degree line, which also supports the simulation result of Onatski and Wang (2018),
while the Johansen test rejects the null hypothesis of a cointegration rank smaller than
or equal to four at 5% significance level, implying five cointegration relationship.

As a second setting, we consider the COINtensity VECM as our data generating
process,

∆Xt = αβ
⊺Xt−1 {1 + tanh (γ

⊺β⊺Xt−1)} + εt. (5.16)

We consider the high dimensional case of p = 15 and r = 3. The error term is iid and
generated from N(0,0.05 ⋅ I15). We choose a sample size of T = 200. The parameter
matrices are listed in the appendix (setting 1.2). Figure 5.2 shows exactly three
eigenvalues deviating from the 45 degree line. The testing procedure seems to also
work well in the high dimensional and nonlinear setting. So, we apply the Wachter
Q-Q plot to decide the number of cointegration in our large dimensional model.
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Figure 5.1: The Wachter Q-Q plot for the linear data generating process. The plot shows that
the number of eigenvalues deviating from the 45 degree line is equal to the true cointegration
rank, r = 4.

In the second part of the simulation study, we investigate the finite-sample properties
of our estimator for the COINtensity VECM. We follow the study design of Kristensen
and Rahbek (2010), focusing on the case where p = 2 and the number of cointegration
relation is r = 1. Further, the number of lagged differences entering our model is k = 1.
We consider four different sample sizes, T ∈ {250,500,1000,2000}. The cointegration
vector is assumed to be estimated in advance, β = (1,−1)⊺. The loading parameters
are set to α1 = 0.5 and α2 = −0.5. The elements matrix of parameters associated with
the lagged first differences are set to Γjk = 0.05 for j, k = 1,2. Finally, we set γ = 0.2.
For each sample size, we simulate 1000 sample paths of our VECM specification. We
evaluate the performance of the estimator by the root mean square error (RMSE). The
simulation results can be found in Table 5.1.

T = 250 T = 500 T = 1000 T = 2000
α1 0.1136 0.0910 0.0736 0.0581
α2 0.0448 0.0322 0.0246 0.0187
γ 0.3584 0.2887 0.2218 0.1696

Table 5.1: RMSE for QMLE of individual parameters in our COINtensity VECM.
CryptoDynamics_Simulation

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Simulation
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Figure 5.2: The Wachter Q-Q plot for the nonlinear data generating process. The plot
shows that the number of eigenvalues deviating from the 45 degree line is equal to the true
cointegration rank, r = 3.

For the individual-specific parameters, α1 and α2, we can observe a good estimation
accuracy already in small and moderate samples. As expected, the estimates become
more precise with increasing sample size T . This is also the case for γ, which governs
the intensity by which the individual series are affected by deviations from the long-
term equilibrium. However, the estimates for γ are not as precise as for the former
parameters.

We consider a second setting for the evaluation of our estimation procedure. In this
setting we have the relative large dimensional case of p = 8 and r = 3. The true values
for α, β and γ are again listed in the appendix (setting 2.2). The simulation results,
based on 1000 Monte Carlo iterations, can be found in Table 5.2. We report the average
Frobenius error of estimating the loading matrix α, ∥α̂ − α∥F , as well as the RMSE of
γ1,γ2 and γ3. The result confirm that the estimation error can be effectively reduced
with increasing sample size, even if the dimensionality is comparably high.
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T = 250 T = 500 T = 1000 T = 2000
α 0.3965 0.3440 0.2948 0.2669
γ1 0.0634 0.0457 0.0327 0.0298
γ2 0.0627 0.0416 0.0466 0.0363
γ3 0.0752 0.0714 0.0638 0.0447

Table 5.2: The first row shows the average Frobenius error, ∥α̂ − α∥F , for the estimated
parameter matrix α̂. The remaining rows show the RMSE for QMLE of γ̂ in our COINtensity
VECM.

CryptoDynamics_Simulation

5.4 Dynamics of Cryptocurrencies

5.4.1 Data and Descriptive Statistics

In the empirical part of the paper, we analyze the joint dynamics of the largest
cryptocurrencies. In particular, we are interested in the following set of questions.

I. Do cointegration relations exist among cryptocurrencies?

II. Which cryptocurrencies affect and which are affected by long-term equilibrium
effects?

III. How does the impact of the cointegration relationships change in a dynamic
setting?

We use daily time series data of the largest ten cryptocurrencies, which we obtained
from Coinmarketcap.com. Since some of the currencies have a very short trading
history, we restrict our analysis to those with a time series dating back to at least
July 2017. The reason for this decision is to include the boom and the bust of the
crypto-bubble at the end of 2017 and start of 2018. To avoid pathological cases, we
also remove stable coins such as Tether (USDT). Stable coins are characterized by a
fixed exchange rate with the USD and are therefore expected to be stationary in levels.
The list of currencies included in our analysis can be found in Table 5.3. In total, we
have 945 daily price observations from July 25, 2017 until February 25, 2020.

The aggregated market capitalization of our sample is around 230 bn USD and captures
more than 95% of the total market capitalization of cryptocurrencies. Our analysis
therefore has a high degree of external validity. By looking at Table 5.3, it becomes
apparent that the crypto market is still dominated by Bitcoin. However, also ETH and
XRP occupy a dominant position in the market.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Simulation
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Currency Symbol Market Cap (106 USD) Avg Return (%) σ
Bitcoin BTC 170,370 0.181 0.019
Ethereum ETH 27,223 0.077 0.020
XRP XRP 11,087 0.028 0.022
Bitcoin Cash BCH 6,477 0.133 0.047
Litecoin LTC 4,567 0.092 0.025
EOS EOS 3,764 0.107 0.034
Binance Coin BNB 3,164 0.338 0.053
Monero XMR 1,978 0.204 0.031
Stellar XLM 1,320 0.222 0.045
Ethereum Classic ETC 1,076 0.066 0.032

Table 5.3: List of cryptocurrencies and descriptive statistics. Market capitalization as of
February 25, 2020, obtained from Coinmarketcap.com.

CryptoDynamics_Scraping

Figure 5.3 shows the development of the log prices over time. The multivariate time
series reveals a strong co-movement of cryptocurrencies. For instance, we can observe
a sharp rise in prices for all currencies at the end of 2017, followed by a sharp decrease
at the beginning of 2018 during burst of the cryptocurrency bubble. This empirical
observation suggests a dependence of currencies in levels, not only in first differences. It
is thus an essential task to account for cointegration, when analyzing the joint dynamics
of cryptocurrencies. Failing to do so would only paint an incomplete picture.
Before any cointegration analysis can be done, one has to assure that all the currencies
series are non-stationary and integrated of the same order. Performing the Augmented
Dickey-Fuller (ADF) test with a constant and a time trend, the null hypothesis of a
unit root cannot be rejected for the individual logged prices at 90% level. The lag
length k for the ADF test has been selected by the Ng and Perron (1995) downtesting
procedure starting with a maximum lag of 12. However, the results of the ADF test
are not sensitive to the choice of k and the null cannot be rejected for any number of
lagged terms in each of the series.
In the next step, we apply differences of the time series and compute the ADF test
statistic on the differenced data. This time, the null of non-stationarity is rejected
for all indices at the 99% level. This suggests that daily returns follow a stationary
process. Since the original series must be differenced one time in order to achieve
stationarity, we conclude that the cryptocurrency prices are integrated of order one,
such that the vector Xt is I(1). The results of the tests are summarized in Table 5.4.
Having confirmed that all the series are integrated of the same order, this allows to
test for cointegration.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Scraping
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Figure 5.3: Time series of log prices from July 2017 - February 2020. BTC, ETH, XRP, BCH
and all others.

CryptoDynamics_Series

Xt ∆Xt

ADF KPSS ADF KPSS
BTC 0.76 < 0.01 < 0.01 > 0.1
ETH 0.56 < 0.01 < 0.01 > 0.1
XRP 0.21 < 0.01 < 0.01 > 0.1
BCH 0.59 < 0.01 < 0.01 > 0.1
LTC 0.60 < 0.01 < 0.01 > 0.1
EOS 0.41 < 0.01 < 0.01 > 0.1
BNB 0.40 < 0.01 < 0.01 0.04
XMR 0.62 < 0.01 < 0.01 > 0.1
XLM 0.28 < 0.01 < 0.01 0.07
ETC 0.39 < 0.01 < 0.01 > 0.1

Table 5.4: p-values of the stationary tests for the level and first difference data.

5.4.2 Estimation Results for Linear VECM

In the first step, we determine the cointegration rank graphically by using the Wachter
Q-Q plot proposed by Onatski and Wang (2018). As explained in the last section,
large deviations of the empirical quantiles of eigenvalues from the theoretical quantiles
of the Wachter distribution indicate that the present matrix does not have full rank.
We conclude from Figure 5.4 that there are four cointegration relations since we can
observe four eigenvalues deviating from the 45 degree line.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Series
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Figure 5.4: Wachter QQ plot to determine the cointegration rank r.
CryptoDynamics_Wachter

BTC ETH XRP BCH LTC EOS BNB XMR XLM ETC
β1 1.00 0.00 0.00 0.00 1.98 0.13 -0.94 -3.42 0.57 0.70
β2 0.00 1.00 0.00 0.00 -0.28 -0.27 0.24 -1.09 0.11 0.31
β3 0.00 0.00 1.00 0.00 -0.97 0.39 0.20 0.54 -0.76 0.00
β4 0.00 0.00 0.00 1.00 0.53 -0.43 -0.06 -1.27 0.37 -0.42

Table 5.5: Estimated cointegration vectors β̂.
CryptoDynamics_Estimation

Having fixed the cointegration rank, we can proceed with estimating the cointegration
vectors. The estimated coefficients can be found in Table 5.5. To make the estimator
unique, we normalize the j-th entry of the j-th cointegration vector to 1. Due to this
normalization, we have one vector associated with each of the four largest currencies.
For instance, we can observe for β1 that the entry for BTC is one whereas the entries
for ETH, XRP and BCH are all close to zero. Based on these estimation results, we plot
the time series of our four stochastic trends in Figure 5.5. Apart from the beginning of
our observation period and apart from the crypto bubble of 2017/2018, we can observe
steady and mean-reverting stochastic trends. These observations can be confirmed
statistically. Results from the ADF test reject the hypothesis that these trends have
a unit root. We can continue to estimate the short-run parameters α and Γ. In the
following, we select the lag order, k = 1, using the Bayesian information criterion (BIC).

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Wachter
https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
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Figure 5.5: Time series of the long-term stochastic trends. β̂⊺1Xt−1, β̂⊺2Xt−1, β̂⊺3Xt−1 and
β̂⊺4Xt−1.

CryptoDynamics_Estimation

The estimation results of our baseline VECM indicate that cointegration plays an
important role for cryptocurrencies. See Table 5.6 for the estimation of the loading
matrix α. The (j,i)-th entry of the table shows how currency j is affected by error
correction term i, where ECTj,t−1

def
= β̂j

⊺Xt−1. Almost all currencies are significantly
affected by at least one stochastic trend, with BTC and LTC being the only exceptions.
We additionally test the hypothesis of weak exogeneity to examine whether a given
currency is unaffected by all stochastic trends. The null and alternative hypotheses are:

H0 ∶ αj,1 = . . . = αj,r = 0 vs. H1 ∶ ∃ αj,k≤r ≠ 0 (5.17)

The test statistic is constructed as a classical Wald statistic. We reject the null
hypothesis for all currencies at a significance level of 0.1%. Cointegration therefore has
universal effects. The long-run linkages between the indices suggest that cryptocurrency
prices are not independent, but predictable using information of others. The results also
suggest that investors who seek to diversify their portfolios internationally should be
aware that the ten cryptocurrency prices in the system follow a common stochastic trend.
This means that these markets generate similar returns in the long-run. Therefore,
diversification across the markets is limited and investors should include other markets
with lower correlation to hedge their risk.

In the first error correction term, ETH and BNB do not tend to return to the long-run
equilibrium as the coefficient on the error term is positive. In the second one, ETH,
XRP, EOS and XLM all have the predicted negative sign, which indicates that the

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation


5.4. DYNAMICS OF CRYPTOCURRENCIES 103

disequilibrium given in the error correction term will be reduced period by period.
However, the size of the estimates differs widely and is quite small compared to the other
short-term adjustment parameters. These results suggest that distortions in the long-
run equilibrium will be corrected slowly and unevenly among the ten cryptocurrencies.
In the third one, XRP, BCH and EOS carry the burden of adjustment to return to the
long-run relationship. In the fourth one, EOS, XMR, ETC are the leaders in the system
and that BCH carries the burden of adjustment to return to the long-run relationship.

ECT1 ECT2 ECT3 ECT4
BTC 0.0045 -0.0017 -0.0119 0.0005
ETH 0.0084 -0.0228 0.0098 0.0085
XRP -0.0010 -0.0385 -0.0287 0.0164
BCH 0.0044 0.0024 -0.0348 -0.0403
LTC 0.0019 -0.0144 -0.0185 -0.0138
EOS -0.0068 -0.0293 -0.0382 0.0438
BNB 0.0308 -0.0199 0.0142 -0.0047
XMR 0.0024 0.0026 -0.0123 0.0268
XLM 0.0067 -0.0276 0.0205 0.0205
ETC -0.0009 -0.0096 0.0007 0.0282

Table 5.6: Estimated loading matrix α̂. Red color indicates significance of negative coefficients,
blue color indicates significance of positive coefficients, with significance at 5%, 1% and 0.1%
level.

CryptoDynamics_Estimation

BTC ETH XRP BCH LTC EOS BNB XMR XLM ETC
BTC 0.08 -0.08 -0.03 -0.05 -0.06 0.07 0.00 0.06 0.02 -0.04
ETH -0.07 0.05 -0.07 0.00 0.07 -0.02 0.01 0.02 0.02 -0.08
XRP -0.17 0.06 0.11 -0.03 0.03 0.01 0.05 0.06 -0.08 -0.12
BCH -0.28 0.13 -0.09 0.19 -0.05 -0.00 0.08 0.06 0.01 -0.14
LTC 0.01 -0.11 -0.03 0.02 0.09 -0.05 0.02 0.03 -0.01 -0.02
EOS -0.07 -0.06 -0.07 -0.03 0.11 0.00 0.08 0.02 0.01 -0.01
BNB 0.15 0.01 0.02 0.03 -0.18 0.01 0.18 -0.04 -0.13 -0.06
XMR -0.05 -0.01 -0.07 -0.01 0.02 0.03 0.07 -0.04 -0.01 -0.05
XLM 0.04 -0.08 -0.04 -0.07 0.09 0.03 0.00 -0.03 0.13 -0.11
ETC 0.05 -0.01 -0.09 0.05 -0.00 0.05 0.01 -0.08 0.02 -0.07

Table 5.7: Estimated coefficient matrix Γ̂. Red color indicates significance of negative
coefficients, blue color indicates significance of positive coefficients, with significance at 5%,
1% and 0.1% level.

CryptoDynamics_Estimation

The estimation results for the lagged differences can be found in Table 5.7. Compared
to the estimated coefficients for the error correction terms, the lagged differences seem
to be less important. Some currencies, such as BCH and BNB, have highly significant
coefficients associated with their own lagged value. Another interesting observation is
that BTC and BCH both depend on each other negatively.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
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5.4.3 Estimation Results for COINtensity VECM

All the previous results are obtained in the baseline linear VECM setting. For a
dynamic analysis we henceforth rely on our COINtensity VECM. We estimate the
model by the profile likelihood estimation framework introduced in section 2.2. In
the first step, we estimate the cointegration vectors β as before. In practice, we then
estimate the nonlinear part of the model by random parameter search. We assume
that the parameter vector θ2 = γ lies in Θ2 = [−1,1]r. The candidate parameters are
generated from the r-dimensional uniform distribution in the same range. Our number
of simulations is 10,000.
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Figure 5.6: Time series of cointegration intensity G(β̂⊺Xt−1; γ̂) (grey) and spline interpolation
(blue).

CryptoDynamics_Nonlinear

The time series of the estimated COINtensity function, G(β̂⊺Xt−1; γ̂), is visualized
in Figure 5.6. We can observe a time-varying pattern of the intensity by which
cryptocurrencies are affected by long run equilibrium effects. Prior to the building
of the bubble at the end of 2017, cointegration intensity was low with values below
zero. The following increase goes along with the strong increase in prices across all
cryptocurrencies in the last quarter of the same year. The subsequent months can be
characterized by a highly volatile cointegration intensity. Recently, from the second
half of 2018, we can observe a period of stabilization with only few values exceeding
the -0.5 and 0.5 thresholds. We conclude that nonlinearity was more prevalent in the
turbulent period of the cryptocurrency bubble.

We also evaluate the out-of-sample predictive power of the COINtensity VECM com-
pared to the linear baseline model. Even if prediction is not the main purpose of this

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Nonlinear
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research, it can still provide insight into the usefulness of the nonlinear specification.
For the out-of-sample analysis we consider the period from February 26 to October
13, 2020. The results can be found in Table 5.8. We report the root mean square
error (RMSE) of prediction for both models and for each cryptocurrency separately.
It becomes evident that the COINtensity specification outperforms the linear model.
For nine out of ten currencies the RMSE is lower. We apply the test of Diebold and
Mariano (2002) to test whether this outperformance is significant. We find that only
for one currency (BNB) the forecast is significantly better.

Linear COINtensity DM-test
BTC 0.0451 0.0450 0.1883
ETH 0.0614 0.0579 0.8132
XRP 0.0488 0.0446 0.8226
BCH 0.0580 0.0579 0.8991
LTC 0.0504 0.0506 0.8904
EOS 0.0575 0.0541 0.8004
BNB 0.0675 0.0589 0.0413
XMR 0.0538 0.0527 0.1571
XLM 0.0559 0.0524 0.7931
ETC 0.0539 0.0539 0.6541

Table 5.8: Out-of-sample predictive performance in terms of root mean squared error (RMSE)
for the linear VECM and COINtensity VECM specification. Additionally, p-values from the
Diebold-Mariano test are reported.

5.5 A Simple Statistical Arbitrage Trading Strategy

In this section, we apply a simple cointegration-based trading strategy for cryptocurren-
cies. We use the same data as in the previous section. Under the assumption of mean
reversion of the long term stochastic trends, a large deviation from the equilibrium
relationships should lead to profitable investment opportunities. In the following we
define the cointegration spreads. For each cointegration relationship, j = 1, . . . , r, we
have

Sj,t = β
⊺
jXt

= βj,1X1,t + . . . + βj,pXp,t.
(5.18)

These spreads are nothing more than weighted averages of log prices of cryptocurrencies,
where the weighting is done by the cointegration vectors. If the spread exceeds an
upper threshold, we enter a short position, if the spread goes below the lower threshold,
we enter a long position. The reasoning behind the strategy is very intuitive. A large
positive spread is a signal that the portfolio is overpriced and it is profitable to sell it.
On the other hand, if we encounter a large negative spread, the portfolio is underpriced
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and we should buy it. We choose three different threshold levels, τ ∈ (±σj,±1.5σj,±2σj),
which are chosen to be symmetric around the long term mean of the stochastic trend
and σj is the estimated standard deviation. This investment decision is repeated for
each estimated cointegration relationship and for each trading day. So each day, we
have to make a decision to either buy, sell or hold our positions. The trading strategy
follows Leung and Nguyen (2019), who consider a similar statistical arbitrage strategy.
However, our strategy differs in two aspects. First, Leung and Nguyen (2018) use the
approach of Engle and Granger (1987) to estimate the cointegration vector and second,
our paper utilizes r cointegration relations while their paper is restricted to a single
one. We backtest our strategy and compare the performance to the cryptocurrency
index CRIX (Trimborn and Härdle (2018)).
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Figure 5.7: Visualization of the statistical arbitrage trading strategy for simulated data.
Neutral position, short position and long position.

Threshold ±σj ±1.5σj ±2σj CRIX
Number of Trades 40 21 12 -
Net Profits 28,474 24,876 21,247 15,330
Maximal Drawdown 3,078 2,989 2,893 55,297
Annual Sharpe Ratio 2.24 1.99 1.77 0.22

Table 5.9: In-sample performance statistics for different threshold levels.
CryptoDynamics_Trading

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Trading
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Figure 5.8: In-sample performance of the trading strategy with thresholds τ = ±1.5σ (black)
vs. CRIX (yellow).

Table 5.9 summarizes the performance of our trading strategy for different threshold
levels and compares it to the performance of the CRIX. The number of trades is
decreasing with an increasing threshold level. For each of the candidate thresholds,
we can make substantial profits. The optimal threshold in our analysis is τ = ±σj. It
has the highest net profits, the largest Sharpe ratio and a similar maximal drawdown
to the other threshold levels. While the net profits of the benchmark index portfolio
(CRIX) are comparable to our arbitrage strategy, the risk is significantly higher. The
maximal drawdown is more than ten times as large as for the optimal strategy. Also
the Sharpe ratio, which relates expected returns to the standard deviation, is clearly
smaller. Figure 5.8 visualizes the time series of the cumulative returns of our trading
strategy and of the CRIX. As expected of an arbitrage strategy, there is almost no
dependence of the cumulative returns to the market. An interesting observation is that
the only substantial losses are made during the height of the crypto bubble at the end
of 2017. The gains and losses are very volatile in this period. From the middle of 2018
until the beginning of 2020 we can observe small but steady profits.

While the backtesting results show a great performance of our trading strategy, a word
of caution is needed. First, backtesting is an in-sample evaluation with limited external
validity. There is no guarantee that long-term relationship will hold in the future, which
is an implicit assumption in our cointegration analysis. This problem is particularly
severe in the case of cryptocurrencies due to their very short history. Another caveat is
that we assume perfect markets. In reality, investors face short selling restrictions and
transaction costs, even if some exchanges as Bitfinex allow for short selling.

To further evaluate our trading strategy, we take a look at its out-of-sample performance.
We consider the same set of cryptocurrencies in a time period from February 26 to
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October 13, 2020. The results are reported in Table 5.10. It becomes evident that
for none of the threshold levels we can make a positive profit. The reason for this
is the divergence of the cointegration relation in the out-of-sample period, as shown
in Figure 5.9. To analyze the trading performance in more detail, we consider each
cointegration relation separately in Figure 5.10 for a threshold of ±1.5σ. Most of the
losses originate from the first long-run relationship, which begins to deviate from its
mean at the end of August. A similar phenomenon can be observed for the fourth
cointegration relation. The remaining two stochastic trends do not diverge significantly,
leading to a close-to-zero profit. It will be interesting to observe in the future whether
our estimated cointegration relations are indeed mean-reversing, i.e. whether they
will return to their equilibria, as predicted by our model. This would also provide
more information on the profitability of our trading strategy. While the out-of-sample
analysis can be seen as evidence against the possibility of statistical arbitrage, it is too
soon to tell whether the long-run relations disappeared completely.

Threshold ±σj ±1.5σj ±2σj CRIX
Number of Trades 5 4 3 -
Net Profits -2,134 -2,363 -1,660 10,692
Maximal Drawdown 675 571 543 10,186
Annual Sharpe Ratio -1.56 -2.20 -1.73 0.87

Table 5.10: Out-of-sample performance statistics for different threshold levels.
CryptoDynamics_Trading
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Figure 5.9: Time series of long-run stochastic trends. Dashed vertical line indicates the begin
of the out-of-sample period.

5.6 Conclusion

This paper examined the joint behavior of cryptocurrencies in a non-stationary setting.
We were in particular interested in three questions.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Trading
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Figure 5.10: Out-of-sample analysis of long run equilibrium relationships and profits from
corresponding trading strategies. The red horizontal lines visualize the thresholds τ = ±1.5σ.

I. Do cointegration relations exist among cryptocurrencies?

II. Which cryptocurrencies affect and which are affected by long-term equilibrium
effects?

III. How does the impact of the cointegration relationships change in a dynamic
setting?

To address problem I. and II., we tested for cointegration using the approach of Onatski
and Wang (2018) and estimated a linear VECM. We found that our sample of currencies
are indeed cointegrated with rank four. By testing for weak exogeneity, we were able to
show that all cryptocurrencies are significantly affected by long term stochastic trends.
To address problem III., we proposed a new nonlinear VECM specification, which we
call COINtensity VECM. The model has a good interpretability without the need of
having to estimate many new parameters. The results of our dynamic VECM show a
time-varying dependence of cryptocurrencies on deviations from long run equilibria.
We find that the nonlinearity of error correction is stronger during the time of the
cryptocurrency bubble, compared to a later time period.

Finally, we utilized the estimated cointegration relationships to construct a simple
statistical arbitrage trading strategy, extending the one proposed in Leung and Nguyen
(2019). Our strategy shows a great in-sample performance, beating the industry
benchmark CRIX in terms of net profits, Sharpe ratio and maximal drawdown. A look
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at the out-of-sample performance takes a more cautious perspective. In particular, the
trading strategy can only be successful if the cointegration equilibrium relations hold
in the long-run.

5.A Appendix: Simulation Design

Setting 1.1: Baseline VECM specification:

∆Xt = αβ
⊺Xt−1 + Γ1∆Xt−1 + εt,

with parameter matrices

α =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.47 −1.3 0 −1.26

0 0.97 0 0

0 0 −0.74 0

−1.19 0.85 0 0

0.55 0.78 −1 −1.37

0.8 0.75 0 0

0 −0.74 −1.26 0.78

0 −1.4 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, β =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0.8

0 0 −1.29 1.49

−0.87 0 −0.53 −0.82

1.45 1.48 0.9 −0.69

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Γ1 = diag{0,0.7979,0,0.7932,0,0.5377,0,0.7227}.

Setting 1.2: COINtensity VECM specification:

∆Xt = αβ
⊺Xt−1 {1 + tanh (γ

⊺β⊺Xt−1)} + εt.
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α =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.10 0.47 −0.12

0.10 −0.20 −0.12

0.67 0.20 −0.30

0.37 0.34 0.30

−0.71 0.49 0.28

−0.62 −0.45 0.10

−1.00 0.03 0.32

−0.82 0.72 0.88

−0.77 0.50 −0.70

−0.08 0.76 0.24

−0.01 −0.82 −0.05

−0.62 0.58 0.68

0.27 0.91 −0.28

0.95 −0.44 0.03

−0.58 0.91 0.11
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⎟
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⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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, β =
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⎜
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⎜
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⎜
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⎜
⎜
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1 0 0

−1 1 0

0 −1 1

0 0 −1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎞
⎟
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⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

γ = (0.2,0.3,−0.4)⊺.

Setting 2.2:

α =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.10 0.27 0.37

0.10 −0.20 −0.23

−0.14 0.20 −0.30

−0.08 0.10 0.30

0.04 0.08 0.16

0.24 −0.26 −0.00
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⎞
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⎟
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⎠

, β =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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−1 1 0
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0 0 0

0 0 0

⎞
⎟
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⎟
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⎟
⎟
⎟
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⎠

,

γ = (0.2,0.3,−0.4)⊺.
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