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Abstract
We theoretically investigate simultaneous double ionization of C60 Buckminsterfullerene clusters
within the strong field approximation, taking into account two-body effects like Coulomb
blocking. Our analysis suggests that for infrared single-cycle pulses, simultaneous double
ionization becomes comparable in magnitude to sequential double ionization. Additionally,
estimates show that Coulomb blocking weakens with increasing cluster size and field strength.

1. Introduction

Strong laser field physics underpins various research areas, such as attosecond science (Hentschel et al 2001,
Krausz and Ivanov 2009), laser machining of micro- and nano-scale structures (Gattass and Mazur 2008,
Yanik et al 2004, Farsari and Chichkov 2009), the generation of ultrashort electron pulses (Malka et al 2008,
Marceau et al 2013, Krüger et al 2011, Ehberger et al 2015, Zherebtsov et al 2011) for imaging (Sciaini and
Miller 2011), and light-driven electronic nanocircuits (Krüger et al 2011, Zherebtsov et al 2011).

The strong field process central to all of the above areas is ionization (Keldysh 1965, Delone and Krainov
1991). To a good approximation, ionization in atoms and small molecules can be treated in the single active
electron approximation. Electrons are ionized sequentially and do not interact with each other during
ionization and subsequent propagation in the continuum. Two notable exceptions have been identified so
far. The first multi-electron process is non-sequential tunnel ionization (Fittinghoff et al 1992, Weber et al
2000). The tunneled electron quivers in the continuum and, on recollision with the parent system, kicks out
another bound electron. The second process is shake-up/shake-off ionization (Becker and Faisal 2002,
Litvinyuk et al 2005), where the tunneling electron shares energy with the remaining electron core and
excites or ionizes another electron. This can either occur during a separate Coulomb interaction after the
ionization of the first electron or as a simultaneous two-electron process.

If, in the latter case, both electrons are fully ionized in the process, this is also referred to as
simultaneous double ionization (SIDI) in strong laser fields. In atoms, theoretical studies have found it to
be negligible (Bauer and Rzazewski 1996). However, with the transition of strong field physics from atoms
to more complex systems (Krüger et al 2011, Zherebtsov et al 2011, Bhardwaj et al 2003) this question has
to be reconsidered.

In this work, we theoretically analyze the potential of SIDI in C60, representative of complex systems.
Our analysis is based on the strong field approximation (SFA), in which the ionic potential of the parent ion
is neglected. We find that for infrared single-cycle pulses, SIDI becomes comparable in magnitude to
sequential double ionization (SEDI). Finally, we find qualitatively that the relative difference between SIDI
and SEDI shrinks even more with increasing field strength and cluster size. This is reasonable as two
electrons in the ground states are further apart and affect each other less during tunneling.
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2. Theoretical approach

We use atomic units throughout the paper unless stated otherwise.

2.1. Correlated simultaneous double ionization
For SIDI, we consider two active electrons moving in the mean field created by the non-active electrons and
the atomic cores. Using non-relativistic dipole approximation and length gauge, the Hamiltonian of the
system reads

H(t) =
2∑

i=1

(ti + vi − F(t)ri) + w1,2 , (1)

where F(t) is the time-dependent electric field in dipole approximation, ti is the kinetic energy operator of
the ith electron, vi is the effective potential energy operator accounting for the interaction with the atomic
cores and the non-active electrons, and w(1, 2) = 1/|r1 − r2| is the interaction energy operator between the
active electrons. An important approximation in equation (1) is the neglect of the cluster polarization field
which would ensure that the total field strength at the cluster surface is zero. For a given cluster, this
approximation is justified as long as the tunneling barrier is not suppressed below the binding energy of the
ground state.

2.1.1. Initial state-rigid-rotor model
The ansatz for the 2-electron ground state present before the onset of the electric field is obtained using the
rigid-rotor approximation (Savina et al 1993) that describes the electrons of C60 as a free 2D electron gas on
a sphere of radius r0. Using the symmetry adaption to the icosahedral symmetry of C60 (Qiu and
Ceulemans 2002), the single-electron states are superpositions of the form

|l, u〉 =
∑

m

pum|l, m〉 , (2)

where

〈r|l, m〉 = 1

r0
δ(r − r0)Ylm(θ,φ) (3)

are the rigid-rotor eigenstates of a sphere with radius r0,

Ylm(θ,φ) = (2π)−1/2NlmPl|m|(cos(θ)) exp(imφ) (4)

are the spherical harmonics with the normalization factor Nlm, and Pl|m|(·) the associated Legendre
polynomials. u is the quantum number of the symmetry-adapted state, which is a superposition of
rigid-rotor states of different m with real-valued coefficients pum. These coefficients are given explicitly e.g.
in (Qiu and Ceulemans 2002). If not stated otherwise, r0 ≈ 3.5 Å (Goel et al 2004) is used as the radius of
the C60 molecule throughout this work.

The initial state present at a time ti before the pulse is approximated by a single 2-electron configuration
of rigid-rotor states, i.e.

|0i〉 = N
(
|l1, u1〉 ⊗ |l2, u2〉+ (−1)si |l2, u2〉 ⊗ |l1, u1〉

)
⊗ |si, msi〉, (5)

where |si, msi〉 is a coupled 2-electron spin state, and

N =

⎧⎪⎨
⎪⎩

1

2
if l1 = l2 and u1 = u2

1√
2

otherwise
(6)

is a normalization factor. As the HOMO level electrons’ angular momentum in the rigid rotor model is
l = 5 (Savina et al 1993), we are using l1 = l2 = 5 throughout this work. Thus, i = {u1, u2, si, msi} denotes
the set of quantum numbers fully describing the initial state of the 2-electron system. We assume that(

2∑
i=1

ti + vi + w1,2

)
|0i〉 ≈ Ed|0i〉 , (7)

where the ground state energy Ed ≈ −18.98 eV is the energy of the initial 2-electron state, i.e. the opposite
of the double ionization potential (Pogulay et al 2004) between the ground state and the 2-electron
continuum at E = 0.
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2.1.2. Final state-correlated Coulomb wave
In order to fully include correlation in the final state, an eigenfunction of the Hamiltonian

Hcorr =

2∑
i=1

ti + w1,2 (8)

is used as the final state present after the pulse at time tf. This Hamiltonian describes 2 free electrons
interacting with each other due to their Coulomb repulsion. Its eigenstates read (Landau and Lifschitz 1979,
pp 101–129)

〈R, r|ψlm(K , k)〉 = (2π)−
3
2 exp(iKR)Rkl(r)Ylm(θ,φ)|sf, msf〉 (9)

in position-space representation using center-of-mass (COM) and relative coordinates R and r = (r, θ,φ),
respectively. Here,

Rkl(r) =
1√
2π

Ckl

(2l + 1)!
(2kr)l exp(ikr)F

(
i
μ

k
+ l + 1, 2l + 2,−2ikr

)
(10)

is the real-valued Coulomb wave function with the normalization factor

Ckl = 2k exp
(
−π

2

μ

k

) ∣∣∣Γ(l + 1 + i
μ

k

)∣∣∣ , (11)

where Γ(·) is the Gamma function and F (·, ·, ·) is the confluent hypergeometric function. Due to the
fermionic antisymmetry of the final state under particle exchange, l + sf is always even. The corresponding
eigenenergies read

Hcorr|ψlm(K , k)〉 =
(

K2

2M
+

k2

2 μ

)
|ψlm(K , k)〉, (12)

where M and μ are the total and reduced masses of the 2-electron system, respectively. Note that the
parameter k includes both the kinetic and the potential energy of the relative motion of both electrons. As
the ionized electrons will move away from each other for t →∞, and since after ionization, the relative and
COM coordinates of the 2-electron system do not interact anymore, the potential energy of the relative
motion will eventually be entirely converted to kinetic energy. Therefore, k can be interpreted as the
asymptotic momentum of the relative motion.

We denote the set of discrete and continuous quantum numbers fully describing the 2-electron system’s
final state with f = {K, k, l, m} in the following.

2.1.3. SFA
In SFA (Amini et al 2019, Keldysh 1965, Faisal 1973, Reiss 1980), it is effectively assumed that the exact
shape of the molecular binding potential is negligible. Hence, only the value of the ionization potential is
included in the calculation. Using SFA in length gauge, the ionization amplitude for SIDI MSIDI

if in a
time-dependent electric field F(t) in non-relativistic dipole approximation reads

MSIDI
if = −i

∫ tf

ti

dt′ 2F(t′)Dif

(
K − 2A(tf) + 2A(t′)

)
exp(−iSf (t′)), (13)

where
Dif (K) = 〈ψlm(K , k)|R|0i〉 (14)

is the dipole moment,

Sf (t) =

∫ tf

t
dt′

[
1

2M

(
K − 2A(tf) + 2A(t′)

)2
+

k2

2μ
− Ed

]
(15)

is the classical action, and

A(t) = −
∫ t

dt′ F(t′) (16)

is the vector potential of the electromagnetic field. Note that the factor 2 in front of the vector potential A in
(13) and (15) as well as in front of the electric field F in (13) is different from single ionization and is due to
the fact that the 2-electron system is doubly charged.
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We consider a linearly polarized single cycle pulse. More precisely, we assume a field of the form

F(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 t < ti = 0

ezF0 sin(ωt) 0 � t � π

ω
0 t > tf =

π

ω

. (17)

The model for SIDI that we introduce below is valid in the quasi-static limit. Thus, it is assumed that in a
multi-cycle pulse, the ionization of the first half cycle calculated using our model is repeated into the
opposite direction during the next half-cycle, and then the process repeats for the following cycles.

2.1.4. Integration using the saddle-point approximation
The integral over t′ in (13) can be simplified further using the method of steepest descent (saddle point
approximation). Here, we assume quasi-static dynamics, i.e. a small Keldysh parameter (Keldysh 1965)

γ = ω

√
2M|Ed|
2F0

� 1 (18)

as well as �ω � |Ed|. For atomic systems, it is typically assumed further that F0Z � |Ed| for all values of Z
that are covered by the initial state, from which would follow that the term F(t′)Dif

(
K − 2A(tf) + 2A(t′)

)
oscillates much slower than exp(−iSf(t′)) in the integration variable t′. For the type of systems this work is
concerned with, i.e. large molecular systems like C60 in strong fields, this assumption would however not be
correct. Instead, we break down the transition dipole moment 〈ψlm(K, k)|Z|0i〉 into its longitudinal Fourier
components d̃if (Z) according to

〈ψlm(K , k)|Z|0i〉 =
∫

dZ exp(−iKZZ)d̃if (Z), (19)

with

d̃if (Z) = (2π)−1

∫
dKZ exp(iKZZ)〈ψlm(K , k)|Z|0i〉, (20)

and then apply the saddle point approximation to each Fourier component separately. This yields

MSIDI
if ≈

√
8π exp

[
−iSf (tb)

]
F(tb)

∫
dZ Ξf (Z)

∣∣Γf (Z)
∣∣−1/2

d̃if (Z) (21)

· exp

[
−
√

8M

6F(tb)

(
|Ed|+

K2
⊥

2M
+

k2

2μ
+ 2F(tb)Z

)3/2
]

,

with tb = ω−1 arccos(−1 − ωKZ/2F0) the real part of the saddle point, i.e. the ‘birth time’ or tunneling time
in the sense of the saddle point approximation. Moreover,

Γf (Z) = −2F(tb)

M

[
2M

(
|Ed|+

K2
⊥

2M
+

k2

2 μ
+ 2F(tb)Z

)]1/2

(22)

is the curvature of the exponent at the saddle point, and

Ξf (Z) = exp(−i/2(arg(Γf (Z)) + π)) (23)

is a phase ensuring that the integration path crosses the saddle point in the direction of steepest descent.
Note that due to the fact that the dipole-approximated field only couples to the COM coordinates, this

expression resembles the tunneling amplitude of a single particle of mass M and charge 2e into a free
continuum state with momentum K . The important difference however is that the correlation in the final
state is still hidden in the Fourier components d̃if (Z) of the transition dipole moment, and in order to
obtain MSIDI

if , a six-dimensional integral over all 2 × 3 space dimensions has to be calculated. To do this
efficiently, we use three different approximations.

First, since the exponential term in (21) declines exponentially for transversal COM momenta K⊥ 
= 0,
the final wave packet’s (see (9)) transversal COM momentum is very narrowly distributed around K⊥ = 0,
and we can write exp(iKR) ≈ exp(iKZZ).

Second, the exponential expression in (21) is pronounced for values of the COM position Z that are
close to the minimum value with nonzero probability in the initial state. As, within the rigid-rotor model,
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Figure 1. Dependence of the effective separation of both electrons immediately after tunneling reff
f on the angular momentum l,

the asymptotic relative momentum k, and the longitudinal and transversal COM momenta of the final state, KZ and K⊥,
respectively. In (a), K⊥ = 0 and KZ = −2F0/ω are fixed, in (b), K⊥ = 0 and k = 1 are fixed, and in (c), KZ = −2F0/ω and k = 1
are fixed. The laser parameters are F0 = 0.04 a.u. and λ = 8000 nm.

both electrons are confined to a sphere of radius r0, the minimum COM position with nonzero probability
in the initial state is Z = −r0. Since the expressions Γf(Z) and Ξf(Z) only depend weakly on Z, we can
therefore write Γf(Z) ≈ Γf(−r0) and Ξf(Z) ≈ Ξf(−r0).

Third, we apply an approximation to the radial component of the final state, replacing the radial
coordinate r with an effective value

reff
f = argmax

0�r�2r0

Lf (r) (24)

with

Lf (r) =
( r0

r

)l
Rkl(r) exp

⎧⎨
⎩−

√
8M

6F(tb)

[
|Ed|+

K2
⊥

2M
+

k2

2μ
− aF(tb)

(
1− r2

4r2
0

)1/2
]3/2

⎫⎬
⎭ . (25)

The value reff
f describes the most probable separation of both electrons immediately after tunneling and is a

function of the final state’s quantum numbers. A detailed justification and discussion of this approximation
is given in the appendix A. reff

f is shown in figure 1 for the laser parameters F0 = 0.04 a.u. and λ = 8000 nm.

The effective separation reff
f of both electrons decreases with increasing k and l, corresponding to a higher

energy of the relative motion, and it is approximately independent of the final state’s COM momentum K .
Thus, it is assumed that reff

f ≈ reff
kl , where Kperp = 0 and KZ = −2F0/ω fixed.

Using these three approximations in the evaluation of integral (21), we obtain

MSIDI
if ≈ δsi ,sf

δmsi ,msf

2NF(tb)r3
0Ξf (−r0) exp

[
−iSf (tb)

]
(2π)3/2

∣∣Γf (−r0)
∣∣1/2

(
r0

reff
kl

)l

Rkl(reff
kl )

·
∑

m1,m2,l′
δm1+m2,m pu1m1 pu2m2 Nl′m1 Nl−l′,m2 Nl1m1 Nl2m2P(l, m, l′, m′)

5
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·
∫ 1

−1
dx1

∫ 1

−1
dx2 (x1 + x2) Pl′,|m1|(x1)Pl−l′,|m2|(x2)Pl1,|m1|(x1)Pl2,|m2|(x2)

· exp

[
−
√

8M

6F(tb)

(
|Ed|+

K2
⊥

2M
+

k2

2μ
+ (x1 + x2)F(tb)r0

)3/2
]

, (26)

where

P(l, m, l′, m′) = (−1)l′
[

4π(2l + 1)(l − m)!(l + m)!

(2l − 2l′ + 1)(2l′ + 1)

]1/2

×
[
(l − l′ − m + m′)!(l − l′ + m − m′)!(l′ − m′)!(l′ + m′)!

]−1/2
(27)

a numerical factor accounting for the shift of the spherical harmonics from the COM frame to absolute
coordinates. The remaining two-dimensional integral over x1 and x2 can be evaluated numerically.

2.2. Uncorrelated sequential double ionization
In the numerical experiments shown in the next section, we compare photoelectron momentum spectra
after correlated SIDI to those after uncorrelated SEDI. For SEDI, it is assumed that the two electrons ionize
sequentially and do not influence each other. We emphasize however that for infrared single-cycle pulses as
the one used in this work, the analysis in (Bart et al 2020) indicates that Coulomb blocking (CB) effects can
play an important role for SEDI of C60 as well, suppressing SEDI by two to three orders of magnitude. In
that sense, the SEDI rates obtained here must be seen as an upper estimate.

Starting from the same initial state |0i〉, the ionization of each electron is described independently of the
other electron, neglecting any Coulomb interaction of the electrons. The single ionization steps are
calculated in SFA, in an approach analogous to the one presented for SIDI.

The single ionization amplitude for the jth electron from an initial rigid-rotor state |lj, uj〉 into a plane
wave state |kj〉 with wave vector kj reads

M(j)
lj ,uj

(kj) ≈
F(tb,j)r2

0ξkj (−r0) exp
[
−iSkj (tb,j)

]
(

2π|γkj (−r0)|
)1/2

Nlj ,0puj ,0

·
∫

dx x Plj,0(x) exp

⎡
⎣− √

8me

3F(tb,j)

(
|Es,j|+

k2
⊥,j

2me
+ xF(tb,j)r0

)3/2
⎤
⎦ , (28)

where

Skj (tb,j) =

∫ tf

tb,j

dt′
[

1

2me

(
kj − A(tf) + A(t′)

)2 − Es,j

]
(29)

denotes a real-valued phase, tb,j = ω−1 arccos(−1 − ωkz,j/F0) is the jth electron’s birth time and |Es,j| is the

single ionization potential of the jth electron. γkj (z) = − F(tb,j)

me

[
2me

(
|Es,j|+

k2
⊥,j

2me
+ F(tb)z

)]1/2

is the

curvature at the saddle point, and ξkj (z) = exp(−i/2(arg(γkj (z)) + π)) is a phase ensuring that the
integration path crosses the saddle point in the direction of steepest descent. Note that the amplitude itself
has an index j, since the single ionization potential |Es,j| differs between the first (j = 1) and the second
(j = 2) ionization process.

The total ionization amplitude for both steps reads

MSEDI
if = NΘ(k2z − k1z)

[
M(1)

l1,u1
(k1)M(2)

l2,u2
(k2) + M(1)

l2,u2
(k1)M(2)

l1,u1
(k2)

]
, (30)

where f = {k1, k2} are the momenta at the detector of the first and second electrons to ionize, respectively.
As both electrons are accelerated in negative z-direction by the field after tunneling, the second electron’s
momentum is always larger (‘less negative’) at the detector. The Heaviside function Θ(·) accounts for this
fact. Please keep in mind that speaking of a ‘second electron’ here is slightly inaccurate, since of course both
electrons are interchangeable. The ‘second electron’ is a term used to describe those parts of the wave
function that ionize during the second ionization step with ionization potential |Es,2|. In the following, the
amplitude MSEDI

if will be expressed using COM K = k1 + k2 and relative k = 1
2 (k2 − k1) momenta.

6
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Figure 2. Cut through the differential ionization probability distributions at Kperp = 0, shown for SEDI ((a) and (c), see (31))
and SIDI ((b) and (d), see (32)). (a) and (b) show results for the wavelength λ = 8000 nm; (c) and (d) for λ = 1000 nm. The
white dashed lines correspond to both electrons being born at the peak of the field. Note that - in contrast to multi-cycle pulses -
the final momentum of the electrons born at the peak of the half-cycle pulse is nonzero. The maximum field strength is F0 = 0.04
a.u. in all cases. The results are calculated for the initial configuration i = {u1 = ζ , u2 = ζ , si = 0, msi = 0}. For the SIDI
channel, all symmetry-allowed l-contributions up to lmax = 12 have been considered as the final state.

3. Results and discussion

3.1. Differential ionization probabilities
Figure 2 shows a comparison of the differential ionization probability

d4PSEDI

d3Kdk

∣∣∣∣
K⊥=0

= k2

∫
dΩk

∣∣∣MSEDI
i,f={KZ ,K⊥=0,k}

∣∣∣2 (31)

for SEDI (figures 2(a) and (c)) to the differential ionization probability

d4PSIDI

d3Kdk

∣∣∣∣
K⊥=0

=
∑

lm

∣∣∣MSIDI
i,f={KZ ,K⊥=0,k,l,m}

∣∣∣2 (32)

for SIDI (figures 2(b) and (d)). We would like to highlight two important distinctions between the electron
momentum distributions of SEDI and SIDI that could potentially be used to identify SIDI in an
experiment. First, the most likely birth time of the two-electron wave packet in SIDI is at the peak of the
laser pulse. Therefore, the distributions resulting from SIDI are symmetric around Kz = 2F0/ω, which
corresponds to a birth time at this peak. In SEDI, the most likely outcome is that the first electron is born
before and the second after the peak, meaning that the photoelectron distribution exhibits no such
symmetry.

Second, the relative momentum k of both electrons depends on the wavelength λ for SEDI, since longer
time differences between first and second tunneling are possible for long wavelengths. For SIDI, the relative
momentum k is to a good approximation independent of the wavelength. Instead, the distribution in k is
determined by an interplay of the size of the initial state and the interaction energy in the final state. We
discuss this CB effect in more detail in section 3.2. For this reason, the momentum distributions for SIDI
are unchanged along the k-axis (notice however that the Kz-axis is scaled with λ−1) between λ = 1000 nm

7
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Figure 3. The functions Rk,l=0(reff
k,l=0) and fE(k) as defined in (33) together with their product, fresult(k). The laser parameters are

F0 = 0.04 a.u. and λ = 8000 nm.

and λ = 8000 nm. For SEDI, this is not true, and much higher vales of k occur with significant probability
at longer wavelengths.

3.2. The CB effect during SIDI
Small values of k in the final state correspond to a final state with little energy stored in the relative motion
of both electrons. This corresponds to a final state in which both electrons are far apart from each other
after SIDI, since such a state has low potential Coulomb energy. Conversely, large values of k correspond to
both electrons being very close to each other, with a high Coulomb interaction energy. The ground state is
confined to a sphere of radius r0, which puts an upper limit to the separation of both electrons before and
right after tunneling. This translates into a lower limit of the values of k in the final state. On the other
hand, large values of k in the final state corresponding to very small separations are also prohibited, as this
increases the final state’s energy and thus heightens the tunneling barrier. The interplay of both these
effects—the initial state’s confinement pushing towards larger values of k and the energy term pushing
towards smaller values of k—results in a much sharper peak of the distribution in k for SIDI compared to
SEDI at λ = 8000 nm.

Mathematically, the initial state’s confinement is reflected in the analytical expression for MSIDI
if by the

remainder of the Coulomb wave function with the effective radius, Rkl(reff
kl ). The tunneling barrier

prohibiting large values of k manifests in the tunneling exponent, of which

fE(k) = exp

(
−
√

8M

6F0

(
|Ed|+

k2

2 μ
− 2F(tb)r0

)3/2
)

, (33)

is the predominant contribution. Figure 3 shows Rk, l=0(reff
k,l=0) and fE(k) together with their product,

fresult(k). Both factors grow (decline) exponentially for small (large) values of k respectively, thus the
resulting product’s peak in k is very sharp. Also note that the peak in k coincides approximately with the
one in the full distribution in figure 2(b). Since the confinement of the initial state ‘pushes’ the peak in k
towards higher values, the interaction energy of the final state is higher compared to the case in which this
confinement is not present. This additional energy suppresses the ionization probability, and it is therefore a
manifestation of the CB effect. Furthermore, the strength of this suppression, i.e. the strength of the CB
effect during SIDI, is dependent upon the extent to which the initial state is confined, i.e. upon the
geometry and the size of the initial ground state.

3.3. Varied laser parameters
We compare SIDI to SEDI at varied wavelengths λ and peak laser field strengths F0. Figure 4(a) shows the
ratio of the total ionization probabilities PSIDI/PSEDI, and figure 4(b) shows the ratio of the peak values of

the differential ionization probabilities d4PSIDI
d3Kdk

∣∣∣
K⊥=0

and d4PSEDI
d3Kdk

∣∣∣
K⊥=0

. Our model is applicable to laser

parameters in the quasi-static regime, in which γ < 1. For the field strength F0 = 0.04 a.u., the Keldysh
parameter assumes the value γ = 1 at λ ≈ 925 nm, at F0 = 0.02 a.u., this border is at λ ≈ 1850 nm.
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Figure 4. Comparison of the ionization probabilities of SIDI to SEDI at varied wavelengths λ and varied peak field strengths F0.
(a) Ratio of the total ionization probabilities PSIDI

PSEDI
. (b) Ratio of the peak values of the differential ionization probabilities

d4PSIDI
d3Kdk

∣
∣
∣

K⊥=0
and d4PSEDI

d3Kdk

∣
∣
∣

K⊥=0
. The second x-axis indicates the Keldysh parameter γ for F0 = 0.04 a.u. Results for γ � 1, to

which our model is not rigorously applicable, are indicated as gray crosses. All results are calculated for the initial configuration
i = {u1 = ζ , u2 = ζ , si = 0, msi = 0}. In the case of SIDI, all symmetry-allowed l-contributions up to lmax = 12 have been
considered as the final state.

The SEDI channel is larger in magnitude than the SIDI channel; the ratio of the peak values shown in
figure 2 is ca. 0.016 at λ = 8000 nm and F0 = 0.04 a.u. At the same laser parameters, the difference in the
integrated ionization probabilities PSIDI and PSEDI is around three to four orders of magnitude. While the
peak ratio is approximately independent of the wavelength, shorter wavelengths narrow the time window
between the two sequential tunneling events in SEDI. Therefore, the relative importance of SIDI increases
for shorter wavelengths; at λ = 1000 nm and F0 = 0.04 a.u., the difference between PSEDI and PSIDI is
reduced to two to three orders of magnitude. Importantly, as mentioned before, the CB effect was neglected
in SEDI here, and recent work suggests that the CB effect plays an important role for SEDI in short pulses
as well. Specifically, in (Bart et al 2020) it was shown that for sub-nm clusters driven by single-cycle infrared
lasers, this suppression can be two to three orders of magnitude. In combination with that, our analysis
reveals that for sub-nm clusters driven by single-cycle infrared lasers, one can expect the integrated
ionization probability of SIDI to become comparable to SEDI.

3.4. Varied cluster size
The geometry dependence of SIDI mentioned in section 3.2 can be seen clearly by repeating the calculation
presented in section 2 for artificially chosen different molecule radii rvar instead of the actual molecule
radius r0, while freezing all other system parameters. We compare SIDI to SEDI at varied radii rvar and peak
laser field strengths F0. Figure 5(a) shows the ratio of the total ionization probabilities PSIDI/PSEDI, and

figure 5(b) shows the ratio of the peak values of the differential ionization probabilities d4PSIDI
d3Kdk

∣∣∣
K⊥=0

and

d4PSEDI
d3Kdk

∣∣∣
K⊥=0

.

The magnitude of SIDI depends very sensitively on the molecule’s size. The difference between SIDI and
SEDI shrinks with growing cluster size, since the two electrons in the ground state are further apart and
affect each other less during tunneling. Again, recall that the SEDI values reported in figure 5 do not include
CB effects, which would further suppress SEDI compared to SIDI. We have argued in section 3.1 that the
integrated ionization probability of SIDI is expected to be comparable to the integrated ionization
probability of SEDI for C60 exposed to single-cycle pulses of wavelength 8000 nm and peak field strength
F0 = 0.04 a.u. already. Figure 5 suggests that one could expect such a regime with even higher confidence at
higher field strengths or in larger clusters.

For larger clusters, the gap between the first and second ionization energy narrows. The tunneling
exponents of SIDI and SEDI are expected to become comparable, since they fulfill

9
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Figure 5. Comparison of the ionization probabilities of SIDI to SEDI at varied radii rvar and varied peak field strengths F0. (a)
Ratio of the total ionization probabilities PSIDI

PSEDI
. (b) Ratio of the peak values of the differential ionization probabilities

d4PSIDI
d3Kdk

∣
∣
∣

K⊥=0
and d4PSEDI

d3Kdk

∣
∣
∣

K⊥=0
. All results are calculated for the wavelength λ = 8000 nm and the initial configuration

i = {u1 = ζ , u2 = ζ , si = 0, msi = 0}. In the case of SIDI, all symmetry-allowed l-contributions up to lmax = 12 have been
considered as the final state.

exp

(
−
√

8M|Es,1 + Es,2|3/2

6F0

)
� exp

(
−
√

8me|Es,1|3/2

3F0

)
exp

(
−
√

8me|Es,2|3/2

3F0

)
, (34)

where the equality sign holds if Es,1 = Es,2. At the same time, in the limit of large clusters, the CB
suppression in the SIDI channel becomes weaker due to the larger distance of both electrons after
tunneling. As discussed before, SEDI driven by single-cycle laser pulses is weakened by Coulomb blocking
(Bart et al 2020). Therefore, the size-dependent weakening of the CB effect applies to SEDI as well, but plays
less of a role here: During SEDI, both electrons tunnel at different times, and thus have an additional
mechanism to avoid each other, a mechanism that is independent of the size of the molecule.

Beyond this qualitative analysis, our model is however not suitable to analyze this regime quantitatively,
since scaling it to even larger cluster sizes and field strengths would result in an unphysical suppression of
the tunneling barrier. As was discussed in the beginning, this suppression is due to the neglect of the cluster
polarization field which makes the total electric field zero at the cluster surface. This effect has not been
considered in our analysis.

4. Conclusion

We have presented an analytical model for SIDI in C60 clusters. Our analysis suggests that SIDI becomes
comparable to SEDI in C60. SIDI further gains in importance when the size of the cluster is increased, and
therefore is expected to become observable for cluster sizes of a few angstrom and larger. To investigate
clusters much larger than C60, polarization effects need to be included into our model. This will be subject
to further research. Finally, SIDI specific signatures have been discussed which could be used for its
measurement.
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Appendix A. Effective separation of both electrons at tunneling time

The integral in (21) has to be solved, where the explicit form of the transition dipole moment’s Fourier
components reads

d̃if(Z) = δsi,sf
δmsi ,msf

N
1 + (−1)si+l

(2π)3/2r2
0

∑
m1,m2

pu1m1 pu2m2

·
∫

dX

∫
dY

∫
d3r exp (−i (KXX + KY Y))Rkl(r)Y∗

lm(θ,φ) Z

· δ(r1 − r0)δ(r2 − r0)Yl1m1 (θ1,φ1)Yl2m2 (θ2,φ2). (A.1)

After applying the approximations exp (iKR) ≈ exp (iKZZ) and Γf(Z) ≈ Γf(−r0) and Ξf(Z) ≈ Ξf(−r0) that
were discussed in section 2.1.4, (21) becomes a sum of terms of the form

I =

∫
dΩ1

∫
dΩ2 Z Y∗

l′m′(θ1,φ1)Y∗
l−l′,m−m′(θ2,φ2)Yl1m1 (θ1,φ1)Yl2m2 (θ2,φ2)

·
( r0

r

)l
Rkl(r) exp

(
−
√

8M

6F(tr)

(
|Ed|+

K2
⊥

2M
+

k2

2μ
+ 2F(tr)Z

)3/2
)

(A.2)

=
Nl′m′Nl−l′,m−m′Nl1m1Nl2m2

4π2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 1

−1
dx1

∫ 1

−1
dx2

· Pl′|m′|(x1)Pl−l′,|m−m′|(x2)Pl1,|m1|(x1)Pl2,|m2|(x2)

· exp
[
i(m1 − m′)φ1 + i(m2 − m + m′)φ2

]
·
( r0

r

)l
Rkl(r) exp

(
−
√

8M

6F(tr)

(
|Ed|+

K2
⊥

2M
+

k2

2μ
+ 2F(tr)Z

)3/2
)

. (A.3)

We simplify the calculation of the remaining four-dimensional integral by finding an effective radius reff
kl

that allows us to approximately replace

( r0

r

)l
Rkl(r) ≈

(
r0

reff
kl

)l

Rkl(reff
kl ) (A.4)

without changing the integrand’s value too much.
First, we switch to a new coordinate system

x1 → x1 x2 → x2 φ1 → φ1 φ2 → r,

where

r = r0

[
2 − 2

(√
1 − x2

1

√
1 − x2

2 cos(φ1 − φ2)

)]1/2

, (A.5)

and ∣∣∣∣∂(x1, x2,φ1,φ2)

∂(x1, x2,φ1, r)

∣∣∣∣ = ∂φ2

∂r
=

r

r2
0

[
(1 − x2

1)(1 − x2
2) −

(
1 − 1

2

r2

r2
0

− x1x2

)2
]−1/2

(A.6)
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Figure A1. Illustration of the integration boundaries for x2, given fixed values of x1 and r.

is the corresponding Jacobian. In this coordinate system, the integral reads

I =
Nl′m′Nl−l′,m−m′Nl1m1 Nl2m2

4π2

(∫ 2π

0
dφ1 exp

(
i(m1 − m′)φ1

))

·
∫ 2r0

0
dr
( r0

r

)l
Rkl(r)

∫ 1

−1
dx1

∫ x2,max(φ1,r,x1)

x2,min(φ1,r,x1)
dx2

∂φ2(φ1, r, x1, x2)

∂r

· Pl′|m′|(x1)Pl−l′,|m−m′|(x2)Pl1,|m1|(x1)Pl2,|m2|(x2)

· exp
(
i(m2 − m + m′)φ2(φ1, r, x1, x2)

)
· exp

(
−
√

8M

6F(tr)

(
|Ed|+

K2
⊥

2M
+

k2

2μ
+ 2F(tr)Z(x1, x2)

)3/2
)
. (A.7)

Because the outer integral over φ1 separates and is easy to calculate, only the remaining three-dimensional
integral over r, x1, and x2 has to be solved. We do so approximately by replacing the term(

r0
r

)lRkl(r) ≈
(

r0

reff
kl

)l

Rkl(reff
kl ) with a suitable effective value reff

kl . We determine reff
kl in the following way:

The leading term in the integrand I is the exponential part

Lf (x1, x2, r)=
( r0

r

)l
Rkl(r) exp

[
−
√

8M

6F(tr)

(
|Ed|+

K2
⊥

2M
+

k2

2 μ
+2F(tr)Z(x1, x2)

)3/2
]

, (A.8)

and it was already established that the exponential is pronounced for small values of Z. For a fixed
separation coordinate r, the minimum value of Z(x1, x2) depends on r, as the integration boundaries of x2

depend on r, which is illustrated in figure A1. Hence, for a fixed value of r, the minimum value of Z is
assumed at

x1 = x2 = −
(

1 − r2

4r2
0

)1/2

:= xmin(r), (A.9)

and thus the exponential term in (A.8) is—for a fixed value of r—dominated by the contribution at
x1 = x2 = xmin(r). The dominant contribution along the direction of r can then be determined as the
maximum of Lf (r) = Lf (xmin(r), xmin(r), r) in r. The value

reff
f = argmax

0�r�2r0

Lf (r) (A.10)

12



New J. Phys. 23 (2021) 023006 I Schubert et al

Figure A2. Comparison of Lf(xmin(r), xmin(r), r) to Lf (xmin(r), xmin(r), reff
kl ), shown for several values of final-state relative

asymptotic momentum k and final-state angular momentum l. The final-state COM momentum is fixed at K = (0, 0,−2F0/ω).
The laser parameters are F0 = 0.04 a.u. and λ = 8000 nm.

denotes the dominant contribution in r to the final three-dimensional integral, and in our approximation, it
is only dependent on the parameters f of the final state.

Figure 1 shows the value of reff
kl as defined in (A.10) for varying final-state parameters l, k, K⊥ and KZ for

the peak field strength F0 = 0.04 a.u. The dependency on the final-state parameters K⊥ and KZ is relatively
small and will be neglected, thus reff

f ≈ reff
kl , where Kperp = 0 and KZ = −2F0/ω fixed.

After replacing
(

r0
r

)lRkl(r) ≈
(

r0

reff
kl

)l

Rkl(reff
kl ) in the original integral (A.2), it reads

I = δm1,m′δm2,m−m′Nl′m′Nl−l′,m−m′Nl1m1 Nl2m2

(
r0

reff
kl

)l

Rkl(reff
kl )

·
∫ 1

−1
dx1

∫ 1

−1
dx2 Pl′|m′|(x1)Pl−l′,|m−m′|(x2)Pl1,|m1|(x1)Pl2,|m2|(x2)

· exp

(
−
√

8M

6F(tr)

(
|Ed|+

K2
⊥

2M
+

k2

2μ
+ 2F(tr)Z

)3/2
)

. (A.11)

The remaining integrals over x1 and x2 have to be calculated numerically. Note that the term δm2,m−m′ only
occurs because of our approximation, which means that the resulting selection rule is approximate as well.
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To verify the applicability of our approximation
(

r0
r

)lRkl(r) ≈
(

r0

reff
kl

)l

Rkl(reff
kl ), we compare the leading

term Lf(xmin(r), xmin(r), r) to its counterpart after the approximation is applied, i.e. Lf (xmin(r), xmin(r), reff
kl ).

Both terms are shown in figure A2. For values of k and l contributing significantly to the final state (note the
absolute scale), the approximation works fairly well and allows us to greatly simplify the numerics.
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