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Summary

Statistical models of human cognition and behavior often rely on data that have been

aggregated across study participants and fail to consider heterogeneity, that is, differences

across individuals or groups. If overlooked, heterogeneity can bias parameter estimates and

may lead to false-positive or false-negative findings. Often, heterogeneity can be detected

and predicted with the help of covariates, such as demographic variables, personality

traits, or biomarkers. However, identifying predictors of heterogeneity may prove to be

a challenging task, especially in situations with a large number of candidate covariates

and vague hypotheses about the sources of heterogeneity. To solve this issue, I propose

two novel approaches for detecting and predicting individual and group differences with

covariates in a wide range of models used in contemporary psychological research.

The theoretical foundation of the work presented in this dissertation is the case-wise

partial derivative of the log-likelihood function with respect to the model parameters. This

derivative is also referred to as the score function. Analyses of the score function have a

long history in hypothesis testing and model modification. One important advantage of

many score-based approaches is their computational efficiency.

This cumulative dissertation is composed of three projects. Project 1 advances the

individual parameter contribution (IPC) regression framework. IPC regression allows

studying heterogeneity in structural equation model (SEM) parameters by regressing

them on a set of covariates. By means of a Monte Carlo simulation study, I evaluate

the use of IPC regression for dynamic panel models and show that IPC regression is

a promising method for detecting differences in the stability and interrelationships of

processes. Moreover, I demonstrate that the estimates provided by IPC regression can

be biased and, as a remedy, develop a bias correction procedure. As a contribution on a

theoretical level, I derive IPCs for general maximum likelihood estimators, which opens the

framework for other model classes beyond SEMs. Project 2 illustrates how IPC regression

can be used in practice. To this end, I provide a step-by-step introduction to the IPC

regression implementation in the ipcr package for the R system for statistical computing.

Finally, Project 3 progresses the SEM tree framework. SEM trees are a model-based

recursive partitioning method for finding covariates that predict group differences in SEM

parameters. A SEM tree is a data-driven method that divides a data set recursively

into homogeneous subsets. The original SEM tree implementation uses a likelihood-ratio

criterion to search for predictive covariates, which is computationally demanding. As a

solution to this problem, I combine SEM trees with a family of score-based tests that

have been recently popularized in psychometrics. The resulting score-guided SEM trees

compute quickly, solving the runtime issues of the likelihood-ratio-guided SEM trees, and

show favorable statistical properties in a Monte Carlo simulation.
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Zusammenfassung

Statistische Modelle menschlicher Kognition und Verhaltens stützen sich häufig auf ag-

gregierte Daten der Studienteilnehmenden und vernachlässigen dadurch oft Heterogenität,

das heißt Unterschiede zwischen Personen oder Gruppen. Die Nichtberücksichtigung vor-

liegender Heterogenität kann zu verzerrten Parameterschätzungen und zu falsch positiven

oder falsch negativen Tests führen. Häufig kann Heterogenität mithilfe von Kovariaten

wie demografischen Variablen, Persönlichkeitsmerkmalen oder Biomarkern erkannt und

vorhergesagt werden. Allerdings erweist sich die Identifizierung von Prädiktoren von

Heterogenität oft als schwierige Aufgabe, insbesondere wenn viele potenzielle Prädiktoren

vorliegen und Hypothesen über die Ursache der Heterogenität vage sind. Zur Lösung

dieses Problems schlage ich zwei neue Ansätze vor, die individuelle und gruppenspezifis-

che Unterschiede mithilfe von Kovariaten vorhersagen. Beide Ansätze können auf eine

Vielzahl von Modellen angewendet werden, die in der aktuellen psychologischen Forschung

gebräuchlich sind.

Die theoretische Grundlage dieser Dissertation stellt die fallweise partielle Ableitung

der Log-Likelihood-Funktion hinsichtlich der Modellparameter dar. Diese Ableitung wird

auch als Score-Funktion bezeichnet. Die Score-Funktion wird seit langem zur Testung von

statistischen Hypothesen und zur Modifzierung von Modellen eingesetzt. Ein wichtige

Eigenschaft vieler Score-basierter Ansätze ist ihre geringe Laufzeit.

Die vorliegende kumulative Dissertation setzt sich aus drei Projekten zusammen. Pro-

jekt 1 widmet sich dem Verfahren IPC-Regression (Individual Parameter Contribution).

IPC-Regression ermöglicht die Exploration von Parameterheterogenität in Strukturgle-

ichungsmodellen (SEM), indem Modellparameter auf Kovariaten regrediert werden. Mittels

einer Monte-Carlo-Simulationsstudie evaluiere ich den Nutzen von IPC-Regression für

die Exploration von Heterogenität in dynamische Panelmodelle und zeige, dass IPC-

Regression eine vielversprechende Methode zur Schätzung von Unterschieden in autore-

gressiven und kreuzverzögerten Parametern ist. Weiterhin demonstriere ich, dass die

IPC-Regressionschätzer unter bestimmten Bedingungen verzerrt sein können und entwickle

dafür ein Korrekturverfahren. Als theoretischen Beitrag leite ich IPCs für allgemeine

Maximum-Likelihood-Schätzer her, wodurch der Einsatz der Methode auf weitere Mod-

ellklassen ermöglicht wird. Projekt 2 veranschaulicht, wie IPC-Regression in der Praxis

eingesetzt werden kann. Dazu führe ich schrittweise in die Implementierung von IPC-

Regression im ipcr-Paket für die statistische Programmiersprache R ein. Schließlich werden

in Projekt 3 SEM-Trees weiterentwickelt. SEM-Trees sind eine modellbasierte rekursive

Partitionierungsmethode und finden datengeleitet Kovariaten, die Gruppenunterschiede in

Parameterwerten eines SEM vorhersagen. Dabei unterteilt der SEM-Tree den Datensatz in

homogene Gruppen. Bisher verwenden SEM-Trees ein Likelihood-Ratio als Kriterium, um
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nach prädiktiven Kovariaten zu suchen. Dieses Vorgehen ist jedoch sehr rechenaufwändig.

In Projekt 3 kombiniere ich SEM-Trees mit unterschiedlichen Score-basierten Tests, die in

den letzten Jahren in der Psychometrie Verbreitung gefunden haben. Die daraus resul-

tierenden Score-Guided-SEM-Tees lassen sich deutlich schneller als SEM-Trees berechnen,

die das Likelihood-Ratio-Kriterium verwenden. Zudem zeigen Score-Guided-SEM-Tees

bessere statistische Eigenschaften als die herkömmlichen SEM-Trees.
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1 Introduction

Heterogeneity is ubiquitous in psychological and social research. Heterogeneity can be

defined as differences across individuals or groups that influences the outcome and may

correlate with characteristics of primary scientific interest. While heterogeneity may have

various causes and manifestations, it always poses the same problem: if overlooked or

ignored, heterogeneity can bias and invalidate statistical analyses, leading to incorrect

conclusions derived from the sample. To avoid this problem, researchers face the challenging

task of determining whether there is a substantially relevant amount of heterogeneity in

the sample and, if so, must account for this variability in the statistical model.

Heterogeneity can be observed or unobserved (e.g., Lubke & Muthén, 2005). If the

sources of heterogeneity are observed, differences across individuals or groups can be

addressed by incorporating covariates that act as moderator variables into the model.

For instance, it may be well known that the effectiveness of a type of psychotherapy

differs between female and male patients. A researcher interested in the effectiveness

of the therapy for a certain psychological disorder may then account for this source of

heterogeneity by using gender as a grouping variable that predicts the differences between

females and males. Conversely, unobserved heterogeneity occurs when the sources of

heterogeneity in the data are not known beforehand. However, some of the unobserved

heterogeneity can often be explained with the help of covariates.

Explaining heterogeneity with observed covariates often appears to be a promising

endeavor since many data sets studied in psychological research are vast and contain

numerous variables. The question remains how researchers can decide between variables

stemming from potentially multiple questionnaires, genetic data, and biomarkers in

situations when hypotheses about the potential causes of heterogeneity are vague. Which of

these covariates could possibly reduce heterogeneity and improve the predictive performance

of the model? Not only is testing a large number of covariates labor-intensive, but it also

heightens the risk of overfitting the model by including too many covariates (e.g., Yarkoni

& Westfall, 2017). Such an overfitted model may perform well in the sample at hand but

generalizes poorly to new data.

The complexity of the model poses another challenge for the identification of het-

erogeneity with covariates. A widely used statistical technique to fit complex networks

is structural equation modeling. Structural equation models (SEMs; see Bollen, 1989)

generalize diverse statistical approaches such as the t-test, analysis of variance, linear re-

gression, and factor analysis models. Typically, SEMs consist of many different parameters.

Some of these parameters may describe how a latent construct is derived from directly

observable variables, whereas others indicate relationships among distinct constructs. Thus,

it appears highly improbable that a source of heterogeneity affects all parameters of a
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1. Introduction

SEM uniformly, rather than just certain parts. Therefore, researchers need to determine

in which parts of their model heterogeneity can be accounted for with a covariate and

which parts are not influenced. Like overfitting a model by including too many covariates,

complex models entail the risk of overfitting a model due to specification errors, that is,

specifying superfluous ways a covariate influences parts of the model.

The work summarized in this dissertation aims to improve the treatment of heterogeneity

in contemporary psychological models, particularly in SEMs. In the first line of work

(Project 1 and 2), I advance a recently proposed method called individual parameter

contribution (IPC) regression to model heterogeneity in parameters as a function of

covariates. IPC regression stands out from other methods addressing heterogeneity in

SEMs due to its flexibility and computational efficiency. IPC regression allows testing

and estimating if and how a parameter changes with respect to a discrete or a continuous

covariate. The method encompasses every type of SEM parameter and can also be used to

study linear regression models, generalized models, and mixed models. IPC regression was

first introduced by Oberski (2013). Among other things, I contribute to the method by

providing a software implementation, investigate its finite-sample properties for different

models with simulation studies, and propose two alternative versions of IPC regression

that either exhibit less bias or minimize the risk of overfitting. In the second line of

work (Project 3), I advance the SEM tree framework by developing score-guided SEM

trees. SEM trees are a model-based recursive partitioning method (Zeileis et al., 2008)

that finds covariates to predict group differences in the parameters of a SEM by growing

tree structures that divide a data set recursively into homogeneous subsets. The original

SEM trees put forward by Brandmaier et al. (2013) use a likelihood ratio criterium to

select splits. However, this likelihood-ratio-based split search procedure requires the

estimation of many SEMs, making it computationally demanding. Therefore, I propose

an alternative split search based on the score function, which is computationally more

efficient. In addition to the runtime improvement, I also compare the performance of

different likelihood-ratio-guided and score-guided SEM trees in a simulation study.

IPC regression and score-guided SEM trees are based on a common statistical founda-

tion. Both methods make use of the so-called score function to assess heterogeneity. The

score function is defined as the partial derivative or gradient of the log-likelihood function

with respect to the model parameters. Analysis of the score function has a long history

in the assessment of parameter invariance (Zeileis & Hornik, 2007). In econometrics, the

score function is often studied to detect change points in time series. More recently, a

family of score-based tests has been proposed to uncover heterogeneity in factor analysis

models (Merkle et al., 2014; Merkle & Zeileis, 2013). An important advantage of most

score-based approaches is their computational efficiency.

The outline of this dissertation is as follows. Chapter 2 gives an overview of SEMs

and highlights the consequences of heterogeneity on SEMs. Chapter 3 lays the theoretical

2



1. Introduction

foundation for IPC regression and score-guided SEM trees by introducing the score function.

Chapter 4, 5, and 6 summarize the individual projects encompassing this cumulative

dissertation, which are reprinted in the Appendix. Finally, Chapter 7 concludes this

dissertation with a general discussion, featuring a detailed comparison of IPC regression

and score-guided SEM trees and covers their strengths, limitations, areas of applications,

and potential future developments.
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2 Heterogeneity and Structural Equation Models

IPC regression and score-guided SEM trees aim primarily at uncovering and addressing

heterogeneity in SEMs. The following chapter provides an introduction to SEMs, which

complements the rather concise treatments of SEMs in the individual projects. I will first

give an overview of SEMs. Then, I highlight that the predominant methods to evaluate

SEMs are not suited to detect heterogeneity. Afterwards, I discuss the consequences of

heterogeneity for SEMs and summarize popular approaches to address heterogeneity in

SEMs.

2.1 Structural Equation Modeling

Structural equation modeling is a widely applied statistical method in psychology and

the social sciences. Diverse methods such as linear regression models, confirmatory factor

analysis models, errors-in-variables models, simultaneous equation models, growth curve

models, and dynamic panel models can be specified within the SEM framework. SEMs

allow the joint analysis of observed and latent variables and their interrelations and

give ways to account for measurement errors. Moreover, SEMs provide a unified and

comprehensive approach to test hypotheses on these interrelations and permit complex

inferences on multivariate, correlational data. A large body of work has been published

about SEMs. The classic textbook of Bollen (1989) remains the conventional reference.

Hoyle (2012) covers more recent developments. Kline (2016) provides a non-technical

introduction to SEMs. Yuan and Bentler (2006) give a more concise treatment of SEMs

well suited for mathematically inclined readers.

SEMs are most conveniently described in terms of mean and covariance structures. Let

µ and Σ denote the mean vector and covariance matrix of an unknown population. A SEM

implies a certain structure, where the mean vector and covariance matrix are expressed

as functions of a vector of unknown model parameters θ. The model is estimated by

minimizing a fitting function F that measures the discrepancy between the model-implied

mean vector µ(θ) and the model-implied covariance matrix Σ(θ) and the corresponding

sample equivalents, that is the observed sample mean ȳ and the observed covariance

matrix S. In many SEM applications, the mean structure is not of particular interest. In

these situations, the sample mean is simply ignored and SEMs are also called covariance

structure models.

A SEM is specified by formulating a system of linear equations between a set of

variables. Conventionally, these equations are grouped into a measurement part defined in

Equation 2.1 and a structural part shown in Equation 2.2. Given a sample of size N , a

4



2. Heterogeneity and Structural Equation Models

SEM can be defined as follows:

yi = τ +Ληi + εi (2.1)

ηi = α+Bηi + ζi, i = 1, . . . , N (2.2)

The measurement part relates the p-variate vector of observed variables yi from individual

i to the m-variate vector of latent variables ηi weighted by the factor loading matrix Λ

of dimension p×m. The p-variate vector τ contains the intercepts of the measurement

part. The p-variate random vector εi represents measurement errors or the unexplained,

unique part of the observed variables and is assumed to be independent and identically

normally distributed with mean zero and covariance matrix Ψ, that is, εi
iid∼ N (0,Ψ).

In the structural part, the latent variables ηi are related to each other via the m × m

matrix B of regression coefficients. The m-variate vector α contains the intercepts of the

structural part. The m-variate random vector ζi contains the error terms of the latent

variables and is assumed to be independent and identically normally distributed with

mean zero and covariance matrix Φ, that is, ζi
iid∼ N (0,Φ). It is further assumed that εi

and ζi are uncorrelated.

The vectors τ and α and the matrices Λ, Ψ, A, and Φ contain the parameters of

the model. Any entry of these objects can either be a free parameter or may be set to a

fixed value. Furthermore, some of the free parameters may be constrained in certain ways,

for instance, to have the same values. The free parameters are stored in the q-variate

parameter vector θ. Unlike other statistical methods, such as linear regression, SEMs

are not automatically identified.1 An identified SEM provides sufficient data points in

the observed mean vector ȳ and the observed covariance matrix S to establish a unique

solution to infer each free parameter from the data. Identification can be a challenging task.

Bollen (1989) provides a list of necessary or sufficient conditions for model identification.

In order to derive the model-implied mean and covariance structures, Equation 2.2 has

to be rearranged so that the latent variables ηi only appear on one side of the equality sign.

Given an identity matrix Im×m of order m and assuming that Im×m −B is non-singular,

the so-called reduced form equation can be derived as follows:

ηi = α+Bηi + ζi

ηi −Bηi = α+ ζi

(Im×m −B)ηi = α+ ζi

ηi = (Im×m −B)−1 (α+ ζi) (2.3)

1However, one can argue that linear regression models are not identified, when the number of predictors
is larger than the number of data points.
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2. Heterogeneity and Structural Equation Models

Next, we substitute the reduced form into the measurement part in Equation 2.1:

yi = τ +Λ (Im×m −B)−1 (α+ ζi) + εi (2.4)

Finally, the mean and covariance structures are obtained by calculating the expected value

and the variance-covariance matrix of the observed variables:

E(yi) = τ +Λ (Im×m −B)−1 α = µ(θ) (2.5)

Cov(yi,yi) = Λ (Im×m −B)−1 Φ
[
(Im×m −B)−1]⊤ Λ⊤ +Ψ = Σ(θ) (2.6)

Since the right-hand side of Equation 2.4 is a linear combination of the normally distributed

random vectors εi and ζi, the distribution of the observed variables yi can be expressed

in terms of SEM matrices as follows:

yi
iid∼ N

(
τ +Λ (Im×m −B)−1 α,Λ (Im×m −B)−1 Φ

[
(Im×m −B)−1]⊤ Λ⊤ +Ψ

)
(2.7)

Traditionally, point estimates for the free model parameters θ are estimated by minimiz-

ing some form of fitting function that measures the discrepancy between the sample mean

and covariance and their observed model-implied counterparts as defined in Equation 2.5

and 2.6. Different fitting functions have been suggested. Some of them, like the ordinary

least squares fitting function (e.g., Duncan, 1966) and the weighted least squares fitting

function (Browne, 1984), are distribution-free methods. Others, such as the generalized

least-squares fitting function (e.g., Browne, 1974) and the maximum likelihood fitting

function (Jöreskog, 1977), assume multivariate normally distributed data. In recent times,

Bayesian estimation of SEMs has become more popular (see Smid et al., 2020, for an

overview). In what follows, I focus on the maximum likelihood estimation for multivariate

normal data because it is most commonly used for the estimation of SEMs. Yuan and

Bentler (2006) define the maximum likelihood fitting function as

F (ȳ,S,µ(θ),Σ(θ)) = (ȳ − µ(θ))⊤ Σ(θ)−1 (ȳ − µ(θ)) + tr
(
SΣ(θ)−1

)
− ln

[
det

(
SΣ(θ)−1

)]
− p. (2.8)

Later in Section 3.1, I will briefly outline how Equation 2.8 can be minimized to obtain

parameter estimates.

2.2 Model Fit Evaluation

Assessing the fit of a SEM to data is crucial to prevent drawing incorrect conclusions from

an inadequate model. Numerous ways of assessing the fit of SEMs have been proposed. In

the following, I give an overview of the most commonly used approaches based on Kline

6



2. Heterogeneity and Structural Equation Models

(2016).

Global fit statistics are arguably the most popular criteria to judge SEMs. These

statistics serve as an average or overall measure, condensing the fit of a model into a single

number. In the past, the likelihood-ratio test was recommended to test the null hypothesis

that there are no differences between the means and covariances as predicted by the model

and the means and covariances of the population. Rejecting this hypothesis says that the

differences between means, covariances, or both exceed those expected by sampling error,

and the model is at least partially misspecified. Conversely, if the null hypothesis is not

rejected, it is assumed that the model fits the data well. The corresponding test statistic

can be obtained by multiplying the value of the fitting function F in Equation 2.8 by N−1.

Under the assumption of independent and identically multivariate normally distributed

data and a correctly specified model, (N − 1)F follows asymptotically a χ2 distribution

with p(p+ 3)/2− q degrees of freedom (Bollen, 1989).2 This particular likelihood-ratio

test is usually referred to as the χ2 test in the SEM literature.

Methodological problems of the χ2 test led to a gradual shift away from the exact

testing of model fit to approximating model fit with various indices. The main reason for

this shift is the severe dependency of the χ2 test on sample size in the sense that even a

small and, in practical terms, meaningless misspecification will lead to a rejection of the

model, given a large enough sample (Hu & Bentler, 1998). As a solution to this problem,

fit indices such as the root mean square error of approximation (RMSEA; Steiger, 1990),

the comparative fit index (CFI; Bentler, 1990), or the standardized root mean square

residual (SRMR; Bentler, 1995) have been proposed to approximate the global fit of a

SEM (see Schermelleh-Engel et al., 2003; West et al., 2012, for an overview). Most of these

fit indices are a function of the χ2 test and involve a trade-off between goodness of fit and

model parsimony. In practice, the fit of a model is judged as acceptable if its fit indices

satisfy certain thresholds. Although fit indices are less sensitive to the sample size than

the likelihood-ratio test, other problems remain. While some researchers questioned the

practice of using fit indices with thresholds as if they were test statistics (Barrett, 2007;

Fan & Sivo, 2005; Marsh et al., 2004), others noted that fit indices can vary dramatically

with the values of incidental parameters that are unrelated with the misspecification in

the model (Saris et al., 2009).

As the name implies, global fit statistics measure only the average fit of a model and do

not inform researchers what parts of a given model are likely to be misspecified. Therefore,

Kline (2016) suggests to accompany global fit statistics with more local measures of model

fit and discusses three strategies. First, researchers may locate model misfit by carefully

inspecting the residuals of the SEM, that is, the differences between the observed means

and covariances and the estimated means and covariances as implied by the model. Second,

2When only the covariance structure is of interest and no mean structure is specified, the degrees of
freedom are p(p+ 1)/2.
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2. Heterogeneity and Structural Equation Models

one may specify and estimate a set of slightly deviating SEMs and select the one associated

with the best global fit. Third, one can employ a hypothesis testing approach. Starting

with a basic model, one adds parameters to the model as long as the model fit is improved.

Usually, a likelihood-ratio test or a score test is employed to judge whether the modification

improves the model fit. This testing procedure requires the basic model to be nested in

the modified model. This strategy is also called specification search in the SEM literature

(Kaplan, 1988) and will be discussed at a later point in greater detail.

Since the procedures outlined above predominate the assessment of SEMs, it is im-

portant to note that they do not alert researchers to unaccounted heterogeneity. Jedidi

et al. (1997) demonstrate this problem by simulating data for a SEM with two exogenous

latent factors that predict a single endogenous latent factor. The authors generated data

for two groups of equal size that differed in the signs of the regression coefficients of the

latent factors and the means of the exogenous factors. Further, they ignored the group

differences and fitted a SEM on the pooled data. Although Jedidi et al. obtained heavily

biased estimates of the model parameters, which did not represent any of the two groups,

the χ2 test was nonsignificant and the approximate fit indices were perfect, implying that

the model fitted the data well. This behavior of the global fit statistics given unaccounted

heterogeneity is certainly undesirable. It stems from the fact that global fit statistics are

functions of the differences between the observed means and covariances and the estimated

means and covariances. Since the sample means and covariances combine information from

all individuals in the sample, differences between individuals and groups are averaged out

and thus cannot affect the global fit statistics. The same applies to most local procedures

for assessing model fit. Thus, specialized methods are needed to address heterogeneity in

SEMs.

2.3 Effects of Heterogeneity

Heterogeneity can affect the measurement part, the structural part, or both parts of a

SEM. In the measurement part, differences between individuals or groups can occur in the

intercepts τ of the measurement part, the factor loadingsΛ, or in the covariance matrixΨ of

the measurement errors. Such differences violate the assumption of measurement invariance

(see Horn & McArdle, 1992; Meredith, 1993; Millsap, 2011), implying that the hypothesized

latent variables η do not capture the same theoretical meaning across individuals and

groups. Thus, a violation of measurement invariance entails that relationships among the

latent variables are only interpretable at the level of homogeneous subgroups. Therefore,

data should not be pooled across groups. Conversely, when measurement invariance can

be successfully established, one can be confident that potential heterogeneity does not

result from a different understanding of the latent variables across individuals and groups.

Heterogeneity in the structural part may influence the intercepts α of the latent variables,

8
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the regression coefficients B, or the covariance matrix Φ of the latent errors. Researchers

that ignore parameter heterogeneity in the structural part and analyze the pooled data may

encounter biased parameter estimates (Becker et al., 2013). Importantly, these aggregated

estimates may not represent any individual in the sample and can lead to type I and type

II errors. For instance, if one heterogeneous parameter is zero in one group but non-zero in

the remaining sample, one may conclude that the estimate is significantly non-zero in the

complete sample. Moreover, sign differences in regression or covariance parameters may

mask important relationships at the individual or subgroup level as nonsignificant results

at the overall sample level. Consequently, it is critical to assess, identify, and account for

heterogeneity to avoid drawing incorrect conclusions from a SEM.

2.4 Methods for Addressing Heterogeneity

In the following, I will synthesize and compare some popular methods for studying

heterogeneity in SEMs. SEM methods to address heterogeneity may be divided into two

types: (1) methods that employ covariates to estimate observed heterogeneity and (2)

methods that aim to uncover unobserved heterogeneity and do not rely on covariates.

The first group of methods employs moderators such as grouping variables (e.g., male

or female) or individual characteristics of the persons in the data set (e.g., age) to account

for differences across individuals and groups. One of the first methods proposed to study

heterogeneity in SEMs are multigroup structural equation models (MGSEMs; Jöreskog,

1971; Sörbom, 1974). MGSEMs are routinely applied in the exploration of measurement

invariance (e.g., Millsap & Kwok, 2004; van de Schoot et al., 2012) and stimulated the

development of further approaches to address heterogeneity in SEMs. The objective of

MGSEMs is to disclose the effect of a grouping variable that splits the sample into two

or more non-overlapping, mutually exclusive subsets. Within each of these subsets, a

group-specific submodel is estimated. The values of one, multiple, or all model parameters

may vary across submodels, allowing the MGSEM to adapt to group differences. MGSEMs

are most suitable to examine the effect of a single grouping variable with few levels.

Studying grouping variables with many categories or the joint effects of multiple grouping

variables usually requires a large sample to estimate the submodels in every subset reliably.

When these sample size requirements are not meet, researchers may accept a certain loss

of information and resort to collapsing categorical variables into fewer groups or analyze

multiple variables one at a time. Another disadvantage is that MGSEMs require continuous

covariates like participants’ age to be split up into small categories such as young, middle-

aged, and old individuals. Categorizing continuous covariates can be particularly difficult

when no information about the number of groups and the best split points are available.

Moreover, MGSEMs neglect the ordering inherent to continuous or ordinal covariates. For

example, when the effect of age on learning speed is investigated, one would expect a

9
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monotonic effect, where a decrease in learning speed accelerates with age. Unfortunately,

there is no way to incorporate the ordering of a covariate into a classic MGSEM analysis.

Several alternatives to MGSEMs have been put forward. SEMs with interaction terms

can be used to investigate the effect of a continuous covariate on the relationship between

latent variables. Marsh et al. (2013) give an overview of different approaches to specify

SEMs with interaction terms. Like MGSEMs, SEMs with interactions are best suited

for studying the effects of a single covariate. Disentangling the effects of two or more

covariates often leads to complicated models with many parameters, which can be hard to

estimate.

Merkle and Zeileis (2013) and Merkle et al. (2014) suggested testing parameter het-

erogeneity with a family of score-based tests. These score-based tests infer all necessary

information for evaluating the effect of a covariate from an estimated SEM that does

not need to include said covariate. Notably, this property makes score-based tests much

simpler than MGSEMs or SEMs with interaction terms since no additional SEMs need to

be specified and estimated. However, different from MGSEMs and SEMs with interaction

terms, score-based tests merely provide hypothesis tests and do not directly quantify

heterogeneity. Furthermore, score-based tests are limited to investigate the effects of a

single covariate at a time.

Brandmaier et al. (2013) proposed SEM trees as a method aiming specifically at the

joint evaluation of multiple covariates. SEM trees are built upon the model-based recursive

partitioning paradigm (Strobl et al., 2009; Zeileis et al., 2008). SEM trees split the

sample recursively with respect to a set of covariates, building a tree-like structure in

the process until homogeneous groups are found. An important feature of the method

is its interpretability. The split decision of a SEM tree can be graphically represented

as a decision tree. On a statistical level, SEM trees automate MGSEMs. The method

performs an exhaustive search for every possible split of all available covariates, fitting a

large number of MGSEMs in the process. Unlike MGSEMs, SEM trees take the ordering

inherent to continuous and ordinal covariates into account. Moreover, the method is well

suited for investigating larger sets of covariates since SEM trees rank the importance of

covariates by placing them into different levels of the tree. A well-documented weakness of

tree methods such as SEM trees is their susceptibility to random fluctuations, where even

small changes to the data can lead to very different trees (e.g., Berk, 2006; Hastie et al.,

2009). As a remedy, Brandmaier et al. (2016) suggested using SEM forests to complement

SEM trees. SEM forests are ensemble methods that resample SEM trees to obtain more

robust results about the influence of covariates. An important drawback of SEM trees and

forests is their reliance on likelihood ratios to determine splits. Obtaining these likelihood

ratios is computationally demanding, often rendering SEM trees and forests infeasible.

In Project 3, I introduce computationally more efficient SEM trees that are guided by

score-based tests instead of likelihood ratios.
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The second group of methods does not rely on covariates to detect heterogeneity.

Various clustering methods (see Hastie et al., 2009, for an overview) and approaches such

as finite mixture models (Arminger et al., 1999; Jedidi et al., 1997; Lubke & Muthén,

2005; Muthén & Shedden, 1999) are designed to detect clusters of similar individuals in

heterogeneous data sets. Clustering algorithms can be employed before the SEM analysis is

conducted and aim to minimize within-cluster variability while maximizing between-cluster

variability. On the other hand, finite mixture models are model-based procedures that

allow detecting heterogeneity in model parameters (see also Magidson & Vermunt, 2002,

for a comparison of finite mixture models and clustering). Finite mixture SEMs can be

seen as a generalization of MGSEMs. Whereas the number of groups must be prespecified,

the group membership does not need to be known beforehand and is learned from the data.

Generally, mixture approaches are considered a very stringent approach to heterogeneity

as they do not rely on covariates. However, they have a lower statistical power to detect

heterogeneity than tests for given groups when informative covariates are available (Smit

et al., 2000). Moreover, mixture models provide no straightforward interpretation of the

resulting groups. Therefore, latent class analyses are usually followed up by a second step

of characterizing the latent groups using covariates for interpretability (e.g., Cohen & Bolt,

2005; Maij-de Meij et al., 2008).

When the clustering of the data is known a priori, unobserved heterogeneity across

clusters can be accounted for with multilevel SEMs. Typical examples for clustered

data structures are students nested in classrooms or repeated observations of the same

individuals. For longitudinal data, it is common to model differences in developmental

patterns between individuals by specifying latent variables whose factor loadings are fixed

at specific values (see Mehta & Neale, 2005). For instance, latent growth curve models

(e.g., Bollen & Curran, 2005) and dynamic panel models (e.g., Hamaker et al., 2015;

Zyphur, Allison, et al., 2020; Zyphur, Voelkle, et al., 2020) usually contain latent variables

called random intercepts whose factor loadings are all constrained to one in order to

account for stable differences between individuals over time (so-called traits). Another

more flexible multilevel SEM approach addresses heterogeneity by defining separate SEMs

for each level of the data (e.g., Asparouhov & Muthén, 2021; Muthén, 1994). One SEM

describes how responses vary within their respective clusters, and another SEM pertains

to the variation between clusters. Both multilevel SEM approaches allow quantifying

heterogeneity and enable researchers to make cluster-specific predictions. However, in

order to explain heterogeneity, covariates are usually added to multilevel SEMs.

11



2. Heterogeneity and Structural Equation Models

2.5 Individual Parameter Contribution Regression and Score-Guided Struc-

tural Equation Model Trees

In this dissertation, I develop IPC regression and score-guided SEM trees, which are two

novel approaches to address heterogeneity in SEMs with covariates. IPC regression is

introduced in detail in Project 1 and Project 2, and score-guided SEM trees are presented

in Project 3. Importantly, IPC regression and score-guided SEM trees offer advantages

over the established methods for addressing heterogeneity in SEMs as outlined above. Both

approaches are very general in terms of covariates and allow the investigation of categorical,

ordinal, and continuous variables within the same framework. Moreover, IPC regression

and score-guided SEM trees enable researchers to study the effects of multiple covariates

and their interactions simultaneously. Another aspect of both methods is their data-driven

nature that allows researchers to work with a single theory-guided model, rendering the

respecification and re-estimation of alternative models unnecessary. This feature can

prevent specification errors and is particularly important when a theory-guided model is

already complex and difficult to estimate, and it makes both methods computationally

very efficient, resulting in a short runtime.
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IPC regression and score-guided SEM trees are based on the same methodological founda-

tion. Both methods employ the score function to detect and estimate heterogeneity in

SEM parameter estimates. In the following chapter, I illuminate important properties

of the score function that are used in the individual projects of this dissertation but not

derived explicitly. Afterwards, I provide an overview of score-based approaches for model

checking and highlight how they are related to IPC regression and score-guided SEM trees.

Finally, leading on to the individual projects, I introduce the case-wise or individual score

function used to quantify heterogeneity.

3.1 The Score Function

Fisher (1922, 1925) defined the score function, or simply score, as the partial derivative of

the log-likelihood function with respect to the parameter vector. In his early works about

maximum likelihood theory, Fisher primarily used the score to obtain maximum likelihood

estimates (Stigler, 2007). Later, Rao (1948) introduced the first score-based procedure for

hypothesis testing, known as Rao’s score test. This section will first introduce the score

function and its key properties in very general terms. Then, I relate the results to SEMs.

LetX be a (possibly multivariate) random variable from the probability density function

f(X;θ). As in the previous section, θ denotes a q-variate vector of unknown parameters.

Further, lnL(θ;X) = ln f(X,θ) is the log-likelihood function of X. The corresponding

score function is obtained by taking the partial derivative of the log-likelihood with respect

to the parameters:

S(θ;X) =

[
∂ lnL(θ;X)

∂θ1
. . .

∂ lnL(θ;X)

∂θq

]⊤
(3.1)

The score measures the steepness of the log-likelihood when evaluated at a specific

point of the parameter vector. While the score is a function of the parameters, it also

depends on the random variable X and is therefore affected by the random character of

sampling. In other words, the score itself is a random variable whose properties can be

studied. In the following, I will derive the mean and variance of the score.

Under certain regularity conditions (see Serfling, 1980), it can be shown that the

expected value of the score evaluated at the true parameter value θ is zero:

E [S(θ;X)|θ] =
∫ ∞

−∞

∂ ln f(x;θ)

∂θ
f(x;θ)dx

=

∫ ∞

−∞

∂f(x;θ)

∂θ
f(x;θ)−1f(x;θ)dx

13
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=

∫ ∞

−∞

∂

∂θ
f(x;θ)dx

=
∂

∂θ

∫ ∞

−∞
f(x;θ)dx

=
∂

∂θ
1

= 0q (3.2)

Hence, the score evaluated at the true parameters fluctuates randomly around zero. This

property of the score function is crucial for different score-based hypothesis tests, as I will

show later.

The variance of the score is called Fisher information and is defined as

Var[S(θ;X)|θ] = E
{
[S(θ;X)− E(S(θ;X)|θ)] [S(θ;X)− E(S(θ;X)|θ)]⊤|θ

}
= E

[
S(θ;X)S(θ;X)⊤

∣∣θ]
= I(θ). (3.3)

The Fisher information plays an important role in many statistical applications (see Ly

et al., 2017). Briefly put, it measures the amount of information the random variable

X carries about the unknown parameter θ. In maximum likelihood theory, the Fisher

information is crucial for assessing the precision of the parameter estimates and is used

to estimate the variance-covariance matrix and confidence intervals of the parameter

estimates and to construct hypothesis tests.

Suppose the log-likelihood function is twice differentiable with respect to the parameters

and certain regularity conditions (Lehmann & Casella, 1998) to hold. Then, the Fisher

information is equal to the negative expected value of the Hessian matrix of the log-

likelihood. More formally, let 0q×q be a zero matrix of dimensions q × q, then it can be

shown that

0q×q =
∂

∂θ⊤ E [S(θ;X)|θ]

=
∂

∂θ⊤

∫ ∞

−∞

∂ ln f(x;θ)

∂θ
f(x;θ)dx

=

∫ ∞

−∞

∂

∂θ⊤

[
∂ ln f(x;θ)

∂θ
f(x;θ)

]
dx

=

∫ ∞

−∞

[
∂2 ln f(x;θ)

∂θ∂θ⊤ f(x;θ) +
∂ ln f(x;θ)

∂θ

∂f(x;θ)

∂θ⊤

]
dx

=

∫ ∞

−∞

∂2 ln f(x;θ)

∂θ∂θ⊤ f(x;θ)dx+

∫ ∞

−∞

∂ ln f(x;θ)

∂θ

∂f(x;θ)

∂θ⊤ dx

=

∫ ∞

−∞

∂2 ln f(x;θ)

∂θ∂θ⊤ f(x;θ)dx+

∫ ∞

−∞

∂ ln f(x;θ)

∂θ

∂ ln f(x;θ)

∂θ⊤ f(x;θ)dx
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= E

[
∂2 ln f(x;θ)

∂θ∂θ⊤

∣∣∣∣θ]+ E

[
∂ ln f(x;θ)

∂θ

∂ ln f(x;θ)

∂θ⊤

∣∣∣∣θ]
= E

[
∂2 ln f(x;θ)

∂θ∂θ⊤

∣∣∣∣θ]+ E
[
S(θ;X)S(θ;X)⊤

∣∣θ] . (3.4)

Rearranging terms yields:

E
[
S(θ;X)S(θ;X)⊤

∣∣θ] = −E

[
∂2 ln f(x;θ)

∂θ∂θ⊤

∣∣∣∣θ] = I(θ) (3.5)

Thus, the Fisher information is also the expected curvature (or second derivative)

of the log-likelihood. When evaluated at the maximum likelihood estimates, the Fisher

information indicates how certain the model parameters are estimated. Low values of the

Fisher information imply that the log-likelihood appears to be flat around the estimated

parameters and many nearby parameter values are approximately as likely. Conversely,

larger values of the Fisher information indicate a peaked likelihood, meaning the parameter

estimates are more reliable.

Arguably, the most important area of application of the score function is parameter esti-

mation. LetY = [y1, . . . ,yN ]
⊤ be a data matrix withN independent identically distributed,

p-variate random variables with probability density functions f(y1,θ), . . . , f(yN ,θ). The

associated log-likelihood function of the joint probability distribution is lnL(θ;Y) =

ln
∏N

i=1 f(yi,θ). Maximum likelihood estimates θ̂ for the unknown parameters θ can be

obtained by maximizing the log-likelihood function, that is,

θ̂ = argmax
θ

lnL(θ;Y). (3.6)

It is easier to find the roots (the zeros) of the score than the maximum of the log-

likelihood in most situations. Therefore, maximum likelihood estimates are most commonly

found by solving

S(θ̂;Y) = 0q. (3.7)

Usually, this is achieved by applying an optimization algorithm like gradient ascent that

repeatedly evaluates the score until a root is found (see Nocedal & Wright, 2006). However,

the score function is not only zero at a maximum of the log-likelihood but also at a

minimum. Hence, it is necessary to verify that the solution is indeed a maximum. This

condition can be checked by computing the second partial derivative of the log-likelihood

function. If for all j = 1, . . . , q,

∂2 lnL(θ;Y)

(∂θj)
2

∣∣∣∣∣
θ=θ̂,θj=θ̂j

< 0, (3.8)
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then the log-likelihood in the neighborhood of θ̂ is convex and L(θ̂;Y) is a maximum.

Additionally, it needs to be verified if the maximum is global and not a local maximum.

Unfortunately, there are no methods that can guarantee to identify whether the maximum

is global or not. In practice, the optimization algorithm is run multiple times with different

starting values to see whether the same solution for Equation 3.7 is obtained repeatedly.

More details about estimation are given by Myung (2003).

The properties of the score derived above translate directly to the SEM framework.

The corresponding normal-theory log-likelihood function for SEMs is

lnL(θ; ȳ,S) = −N

2
ln |Σ(θ)| − N

2
tr
{
Σ(θ)−1

[
S+ (ȳ − µ(θ)) (ȳ − µ(θ))⊤

]}
(3.9)

(Yuan & Bentler, 2006). A simple relationship exists between the log-likelihood function

in Equation 3.9 and the maximum likelihood fitting function F shown in Equation 2.8.

F is the difference between a log-likelihood where all the elements of µ and Σ are freely

estimated and the usual log-likelihood as defined in Function 3.9. More specifically, when

evaluated at µ̂ = ȳ and Σ̂ = S, the log-likelihood is

lnL(ȳ,S; ȳ,S) = −N

2
ln |S| − Np

2
(3.10)

and the difference yields the fitting function F :

2

N
[lnL(ȳ,S; ȳ,S)− lnL(θ; ȳ,S)] = F (ȳ,S,µ(θ),Σ(θ)), (3.11)

Since lnL(ȳ,S; ȳ,S) is a constant, the maximum likelihood estimate θ̂ found by maximizing

lnL(θ; ȳ,S) also minimizes F (ȳ,S,µ(θ),Σ(θ)). Likewise, the score function and Fisher

information can be equivalently obtained based on the fitting function F :

− ∂

∂θ

N

2
F (ȳ,S,µ(θ),Σ(θ)) = S(θ; ȳ,S) (3.12)

E

[
∂2

∂θ∂θ⊤
N

2
F (ȳ,S,µ(θ),Σ(θ))

]
= I(θ) (3.13)

Closed-form solutions that express the score and Fisher information in terms of SEM

vectors and matrices as defined in Section 2.1 are provided by Neudecker and Satorra

(1991) and von Oertzen and Brick (2014).

3.2 Score-Based Model Checking

Various statistical techniques utilize the score function to determine whether a theoretical

model fits the data adequately. These score-based approaches may be broadly divided

into two categories: (1) procedures that consider the scores of the sample jointly and (2)
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methods that analyze the individual or case-wise scores. A classic example of the former

methods is the score test, primarily used to test parameter constraints. The latter group

of methods, including IPC regression and score-guided SEM trees, is mainly applied to

assess parameter instability due to differences across persons or changes over time. This

section will briefly summarize some important score-based approaches that utilize the joint

score function. I introduce the use of individuals scores in the next section.

The eponymous score test put forward by Rao (1948) was the first type of score-based

procedure to be used extensively in practical applications and stimulated the development

of other score-based approaches. The score test can be equivalently understood in terms

of the Lagrange multipliers used in optimizing a function subject to restrictions, as shown

by Aitchison and Silvey (1958) and Silvey (1959). Especially in econometric literature,

the Lagrangian interpretation has become more commonly used after an influential paper

by Breusch and Pagan (1980).

The score test, along with the likelihood-ratio test (Neyman & Pearson, 1928) and

the Wald test (Wald, 1943), is one of the three classical approaches to hypothesis testing.

In statistical literature, the three tests are often referred to as the Holy Trinity (e.g.,

Rao, 2005). All three tests are asymptotically equivalent but may differ in finite samples.

Other than the likelihood-ratio test, which requires the estimation of an unrestricted and

a restricted model, and the Wald test, which requires the estimation of an unrestricted

model, the score test only requires the estimation of a restricted model. This property

makes the score test computationally more efficient than the likelihood-ratio test and

well suited to test constraints on parameters whose unconstrained maximum likelihood

estimates lie close to boundary points in the parameter space. A detailed comparison of

the three tests is given by Buse (1982).

More formally, let H0 : θ = θ0 =
[
θ⊤
r ,θ

⊤
u

]⊤
be the null hypothesis to be tested, where

θr represents k components of the parameter vector θ that are fixed at specific values. θu

denotes the remaining q − k elements of θ that are to be freely estimated. Further, we

denote the maximum likelihood estimate of θ0 with θ̂. Then,

ST = S(θ̂;Y)⊤I(θ̂)
−1
S(θ̂;Y) (3.14)

is the score test statistic and has an asymptotic distribution of χ2
k, when H0 is true (Rao,

1948). Recall that the mean of the scores evaluated at the true parameters is zero (see

Equation 3.2). Intuitively speaking, if the values of the restricted parameters in θr are close

to the true values, the log-likelihood function is near its maximum and the score should

not differ from zero by more than the sampling error. Consequently, large deviations of

the score function from zero constitute evidence against the null hypothesis.

In psychometric research and especially in the SEM literature, the score test is better

known as the modification index (MI), popularized by the influential LISREL software
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(Jöreskog et al., 2016) used to estimate SEMs. Typically, the MI tests the null hypothesis

that a single parameter equals zero and is usually computed separately for all SEM

parameters that are fixed to zero. Thus, the MI estimates how the fit of a SEM, measured

in terms of the χ2 test statistic, would improve if a fixed parameter were added to the

model and freely estimated. Different procedures have been proposed to calculate the

MI. The most recent iteration of the MI (see Saris et al., 1987; Satorra, 1989; Sörbom,

1989) is equivalent to the score test statistic shown in Equation 3.14. Since the MI usually

tests only parameters constrained to zero, the maximum likelihood estimates can be taken

directly from the model. This property makes the MI computationally more efficient for

detecting specification errors in SEMs than other methods such as the likelihood-ratio

test, which would require the specification and estimation of further SEMs with the added

parameters.

The use of the MI for the detection of specification errors has been repeatedly questioned.

Several simulation studies show that the MI is not as accurate as one would hope (Kaplan,

1988; MacCallum, 1986; MacCallum et al., 1992; Silvia & MacCallum, 1988; Whittaker,

2012). Especially in small samples and when confronted with models with a higher number

of specification errors, following the advice of the MI by adding parameters to the model

does not guarantee that one arrives at the correct model (but see also Chou & Bentler,

1990, for more promising results). Moreover, as demonstrated by Saris et al. (1987) and

Saris et al. (2009), the MI is often not an adequate indication of the size of the model’s

misspecification and may vary with the values of other incidental parameters unrelated to

the specification errors. As a remedy, the authors suggested using the MI in combination

with the expected parameter change (EPC). The EPC provides an estimate of the value

a parameter would have, had it been freely estimated. Thus, the EPC offers additional

information about the size of the misspecification that goes beyond the significance test

provided by the MI. Computationally, the EPC is closely connected to the MI and can be

calculated for any fixed parameter θl, where l = 1, . . . , k, by dividing its MI by the partial

derivative of the log-likelihood with respect to θl.

Critics have also argued that model modification based on the MI or EPC is data-driven,

thus susceptible to capitalize on chance characteristics of the sample (e.g., MacCallum

et al., 1992). Therefore, it poses the risk of overfitting the model, and it remains highly

doubtful whether a modified model will generalize to other samples or even the population.

Overfitting is not only a potential pitfall for the use of the MI and EPC but a more general

concern, also pertaining to IPC regression and score-guided SEM trees. I will touch upon

this issue in the Discussion in Chapter 7. Despite this criticism, the MI has recently

found a new application as part of the group iterative multiple model estimation algorithm

that has been put forward to address heterogeneity in neuroscientific and ambulatory

assessment data (e.g., Gates et al., 2017; Gates & Molenaar, 2012; Nestler & Humberg,

2021).
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The MI and EPC are closely related to IPC regression. Although the MI and EPC aim

to quantify specification errors and not heterogeneity like IPC regression, Oberski (2013)

demonstrated that the MI and EPC for MGSEMs correspond to IPC regression under

certain conditions. However, this equivalency ends in situations that cannot be handled

by MGSEMs, such as continuous or multiple covariates, making IPC regression a much

more flexible method for the investigation of heterogeneity.

3.3 Individual Scores and Parameter Heterogeneity

While analyses of the joint score function are helpful to detect model misspecification

by assessing parameter constraints, individual scores are helpful to determine if model

parameters are invariant across persons. Individual scores of SEMs can be obtained by

calculating the partial derivative of the individual log-likelihood function with respect to

the parameters. Under the assumption of multivariate normality, the following individual

log-likelihood only considers data from individual i:

lnL(θ;yi) = −1

2

[
(yi − µ(θ))⊤ Σ(θ)−1 (yi − µ(θ)) + ln |Σ(θ)|+ p ln(2π)

]
(3.15)

Summing the individual log-likelihood functions yields the full sample log-likelihood in

Equation 3.9 used to estimate SEMs.

When evaluated at the parameter estimates θ̂, the individual scores

S(θ̂;yi) =

[
∂ lnL(θ;yi)

∂θ1

∣∣∣∣
θ=θ̂,θ1=θ̂1

. . .
∂ lnL(θ;yi)

∂θq

∣∣∣∣
θ=θ̂,θq=θ̂q

]⊤
, i = 1, . . . , N,

(3.16)

form a new matrix, where each individual i has q scores, one for each estimated parameter

in θ̂. The scores act as goodness-of-fit between persons and parameter estimates, where

small values indicate good fit and large scores point towards bad fit. Importantly, this

information can be used to derive insights about parameter heterogeneity. Let us assume

the same parameter values hold for all individuals. In this case, all individual scores

fluctuate randomly around zero, much like the residuals in a linear regression model.

However, if the parameters are heterogeneous, the fluctuation of the scores is no longer

entirely random. For example, say there is a difference between two groups in the sample.

At an individual level, this group difference is reflected in the scores as follows: on average,

scores of the first group will be more often negative than positive, and the scores of second

the group will be more often positive than negative, or vice versa. Although such a pattern

is a clear sign for parameter heterogeneity, it is usually too subtle for visual inspection.

Therefore, methods such as IPC regression and score-guided SEM trees are needed.

IPC regression and score-guided SEM trees process the information in the scores in
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different ways. On the one hand, IPC regression uses individual scores to approximate

individual-specific parameter values called IPCs. Then, potential heterogeneity in these

IPCs is modeled by means of linear regression. IPC regression estimates how parameters

change as functions of covariates and provides p-values that allow inferring whether the

partial effects of the covariates are significantly different from zero. The first two projects,

summarized in Chapter 4 and 5, introduce IPC regression in great detail. On the other

hand, score-guided SEM trees rely on a family of score-based tests to detect heterogeneity.

These score-based tests aggregate the individual scores into a single test statistic to infer

whether the model parameters vary with respect to a covariate. Different aggregation

schemes of the individual scores are presented in the final project, summarized in Chapter

6.
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4 Identifying Heterogeneity in Dynamic Panel Models with Individual

Parameter Contribution Regression

Arnold, M., Oberski, D. L., Brandmaier, A. M., & Voelkle, M. C. (2020). Identifying

heterogeneity in dynamic panel models with individual parameter contribution

regression. Structural Equation Modeling: A Multidisciplinary Journal, 27 (4),

613-628. https://doi.org/10.1080/10705511.2019.1667240

A copy of this project is attached in the Appendix on pages 47 to 62.

Dynamic panel models (Hsiao, 2014) are popular approaches to studying longitudinal

data where the same subjects are observed multiple times. Building upon the idea of

Granger causality (Granger, 1969), they allow answering questions concerning the direction

and strength of reciprocal relationships between repeatedly measured variables. Especially

in psychological research, it is common practice to specify and estimate dynamic panel

models within the SEM framework (Allison et al., 2017; Bollen & Brand, 2010; Zyphur,

Allison, et al., 2020; Zyphur, Voelkle, et al., 2020).

There are many variants of dynamic panel models. An important distinguishing feature

is the treatment of time. On the one hand, so-called discrete-time dynamic panel models

assume that the temporal spacing between assessments is constant throughout the study

(Biesanz, 2012). This assumption is often problematic because it complicates comparing

estimates from studies with different sample schemes and, if violated, leads to biased

parameter estimates. On the other hand, continuous-time dynamic panel models solve

these issues by treating time as a continuous variable (Oud & Jansen, 2000; Voelkle et al.,

2012). These models allow the time intervals to vary between measurements and across

individuals and produce parameter estimates that are not affected by the sampling scheme.

A commonly encountered problem that complicates the analysis of longitudinal data

is heterogeneity in the form of systematic differences across individuals or groups. For

instance, individuals may show stable, or trait-like, differences in the means levels, exhibit

different recovery speeds after random shocks, or differ in the coupling of the measured

variables. However, methods to address heterogeneity in dynamic panel models are often

complicated to use or computationally demanding. In Project 1, we demonstrate how

heterogeneity in discrete and continuous-time dynamic panel models can be identified and

estimated with IPC regression.

IPC regression was originally proposed by Oberski (2013) as a flexible and fast tool

to detect heterogeneity in SEMs. IPC regression allows to model individual and group

differences in SEM parameters as a function of covariates. In Project 1, we show by means

of a Monte Carlo simulation that IPC regression provides biased estimates of heterogeneity

in certain situations. To solve this issue, we introduce a novel bias correction procedure
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termed iterated IPC regression that produces approximately unbiased estimates at the

cost of increased variability. In terms of power to detect heterogeneity, IPC regression

proved to be less powerful than MGSEMs in our simulation study. Given homogeneous

samples without any heterogeneity, IPC regression showed an adequate control of type I

errors. Overall, IPC regression performed better when used to investigate discrete-time

dynamic panel models than continuous-time dynamic panel models. On a theoretical

level, we extend Oberski’s work in the following ways: first, we connect IPC regression to

the general maximum likelihood estimation technique. Second, we correct some errors in

Oberski’s derivations that lead to incorrect estimates for certain parameter types. Third,

we present a theoretical example illuminating the bias of IPC regression. Last but not

least, we provide users with the ipcr package (https://github.com/manuelarnold/ipcr) for

the R system for statistical computing (R Core Team, 2021) that allows users to perform

IPC regression with ease.

In sum, Project 1 demonstrates that IPC regression is a promising tool to study

heterogeneity in dynamic panel models that is easy to use and computationally efficient.

Moreover, our study provides important empirical and theoretical insights into the potential

and challenges of the IPC regression framework and advances the understanding of the

method.
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5 Predicting Differences in Model Parameters with Individual Parameter

Contribution Regression Using the R Package ipcr

Arnold, M., Brandmaier, A. M., & Voelkle, M. C. (2021). Predicting differences in

model parameters with individual parameter contribution regression using the R

package ipcr. Psych, 3 (3), 360-385. https://doi.org/10.3390/psych3030027

A copy of this project is attached in the Appendix on pages 63 to 88.

Project 2 builds upon Project 1 and further advances the IPC regression framework.

The project aims specifically at potential users of IPC regression who may wish to know

how IPC regression can be employed to detect heterogeneity in their models. To this end,

we describe ipcr, an R package which supplies functions to perform IPC regression in

practice. We provide a step-by-step introduction to ipcr with detailed example code using

the classic HolzingerSwineford1939 data set shipped with the lavaan package (Rosseel,

2012).

ipcr is a flexible and user-friendly package that allows users to perform IPC regression

with a single command and offers different ways to visualize the results of an IPC regression

analysis. To a large extent, ipcr relies on the infrastructure provided by the sandwich

package (Zeileis et al., 2020) mainly used for calculating robust covariance matrices of

the model parameter estimates. Moreover, the ipcr package allows users to perform

regularized IPC regression by interfacing with the glmnet package (Friedman et al., 2010).

This functionality aims to decrease overfitting and is particularly handy when the effects

of many covariates are to be investigated.

Besides these rather practical instructions for potential users, Project 2 also advances

IPC regression on a methodological level. First, we expand IPC regression’s application

area from SEMs to a broader range of parametric models, including linear regression

and mixed-effects models, and analytically derive results for linear regression models.

Second, we describe four novel Monte Carlo simulations that benchmark IPC regression

in situations that have not been considered by Oberski (2013) or in Project 1. These

simulations investigate the performance of IPC regression for linear regression models,

multiple covariates, and continuous covariates and compare the results with MGSEMs

and SEMs with an interaction term. As in the previous simulations, IPC regression

showed overall promising results. The observed type I error rates were close to the optimal

rate in homogeneous, regardless of the types of covariates (dummy or continuous), the

number of covariates, or sample size. Moreover, we found little differences in terms of bias

and variance of the estimates provided by IPC regression compared to the estimates of

MGSEMs or SEMs with an interaction term. However, IPC regression was consistently

less powerful than the established methods.
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6 Score-Guided Structural Equation Model Trees

Arnold, M., Voelkle, M. C., & Brandmaier, A. M. (2021). Score-guided structural

equation model trees. Frontiers in Psychology, 11, 1-18. https://doi.org/10.3389/

fpsyg.2020.564403

A copy of this project is attached in the Appendix on pages 89 to 106.

Model-based recursive partitioning (Strobl et al., 2009; Zeileis et al., 2008) is a general

framework for uncovering heterogeneity in parametric models. It identifies important

covariates that explain differences in model parameters by recursively splitting the sample

into subgroups so that these subgroups are maximally different from each other. This way,

hierarchical tree structures of covariates can be grown that describe subsets with sets of

parameter estimates.

Various implementations of model-based recursive partitioning for different model

classes have been proposed. The first instance of model-based recursive partitioning to

investigate SEMs is the SEM tree algorithm put forward by Brandmaier et al. (2013),

which is implemented in the R package semtree. The SEM tree algorithm selects split

variables among covariates by splitting the sample into subgroups and fitting a MGSEM

to each subgroup. Then, a likelihood ratio for each possible split of each covariate is

calculated. If the split associated with the largest likelihood ratio improves the fit of the

model significantly, the data is partitioned and the algorithm proceeds recursively.

Although straightforward, the original SEM tree algorithm suffers from two problems:

first, the algorithm is computationally demanding. The calculation of every likelihood

ratio requires the estimation of SEMs, which often makes growing SEM trees unfeasible.

Second, the split decision suffers from a variable selection bias (see Strobl et al., 2007)

that favors the selection of covariates with many unique values over covariates with few.

Brandmaier et al. (2013) implemented different correction procedures for this bias to the

semtree package.

In Project 3, we adopt the generic model-based recursive partitioning algorithm

suggested by Zeileis et al. (2008) and guide the construction of SEM trees by a family

of score-based tests instead of likelihood ratios. Introduced to psychometrics by Merkle

and Zeileis (2013) and Merkle et al. (2014), these score-based tests monitor fluctuation in

case-wise derivatives of the log-likelihood function to detect parameter differences. Unlike

the classic likelihood-ratio approach, score-based tests are computationally inexpensive

because they do not require refitting models for every possible split. Besides the new

score-guided SEM trees, we also put forward a new version of likelihood-ratio-guided SEM

trees that provides unbiased variable selection. We show by means of a Monte Carlo

simulation that guiding SEM trees by score-based tests improves the runtime drastically.
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Moreover, the score-guided and the new likelihood-ratio-guided SEM trees outperformed

the classic methods proposed by Brandmaier et al. (2013) in terms of power to detect

heterogeneity and provided accurate type I error rates. Finally, we implemented all new

methods to the semtree package.
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7 Discussion

This dissertation presents IPC regression and score-guided SEM trees, two methods for

addressing heterogeneity in SEMs with covariates. After highlighting key differences

between IPC regression and score-guided SEM trees, I compare both approaches to

established methods for addressing heterogeneity. Finally, I devote the remainder of the

dissertation to a discussion of conceptual and technical challenges and point towards

possible areas of application and future research.

7.1 Comparison of Methods

While IPC regression and score-guided SEM trees address heterogeneity with covariates,

both methods are by no means identical. In the following, I first summarize the key

difference and then compare both methods to established approaches to heterogeneity in

SEMs.

7.1.1 Individual Parameter Contribution Regression and Score-Guided Struc-

tural Equation Model Trees

Objective. The primary objective of IPC regression and score-guided SEM trees is to

detect and quantify heterogeneity. Both methods approach this goal in different ways. In

addition to predicting heterogeneity, score-guided SEM trees provide means to identify

homogeneous subgroups of individuals with identical parameter values. This property

makes the trees also well-suited for classification tasks which may even be the main

objective of one’s study.

Quantifying heterogeneity. Both methods quantify parameter heterogeneity in dif-

ferent ways. IPC regression estimates the effects of covariates on model parameters in

the form of linear functions, one for each parameter. The results of an IPC regression

analysis can be interpreted in the same way as researchers interpret linear regression

models. Moreover, based on the estimates of the IPC regression equations, IPC regression

allows predicting individual and group-specific parameter values for any covariate values.

Non-linear relationships or interactions can be investigated by simply adding polynomial

terms or product terms of the covariates to the IPC regression equations. In contrast,

score-guided SEM trees address the relationships between covariates and model parameters

in a non-linear way by splitting with respect to a covariate and estimating separate

parameter values for the post-split samples. In theory, this non-linear approach seems

advantageous as it allows the trees to explore arbitrary non-linear effects of covariates

and covariate interactions by repeatedly splitting the sample. However, approximating
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complicated non-linear effects will often require an enormous sample size. Moreover, the

non-linear approach makes score-guided SEM trees less suited for extrapolating parameter

values than IPC regression.

Another critical difference pertains to the interpretation of the estimated parameter val-

ues. IPC regression provides estimates of partial effects of covariates on model parameters.

That is, the effect of a covariate when all other covariates are held constant. In contrast,

score-guided SEM trees estimate conditional parameter values, meaning the parameters

estimated after a split further down the tree depend on all splits selected further up the

tree. As a result, the first split of a tree is immensely influential, and a different split may

lead to an entirely different tree. Unconditional measures of variable importance can be

obtained by resampling trees leveraging the SEM forest approach (see Brandmaier et al.,

2016).

Covariate types. Although IPC regression and score-guided SEM trees encompass

discrete, ordinal, and continuous covariates, the types of the covariates can affect the

analysis. IPC regression is most parsimonious and easiest to interpret for the investigation

of continuous and dichotomous covariates. Categorical or ordinal covariates with multiples

levels must be split up into several dummy variables, where one level serves as a baseline.

Unfortunately, this categorization approach disregards the ordering of ordinal covariates.

Alternatively, ordinal covariates could also be treated as continuous variables, but this

may not always be appropriate. However, since IPC regression is merely standard linear

regression with IPCs, users may resort to one of the many methods proposed for linear

regression models with ordinal predictors (e.g., Bürkner & Charpentier, 2020; Helwig,

2017). Conversely, score-guided SEM trees work best with categorical and ordinal variables,

whereas the effects of continuous covariates are harder to interpret as the trees dichotomize

them to split the sample.

Preventing overfitting. IPC regression and score-guided SEM trees provide several

safeguards that prevent overfitting. As described in Project 2, IPC regression can be

coupled with regularization techniques such as the least absolute shrinkage and selection

operator (LASSO; Tibshirani, 1996, 2011). Although different ways of regularization

are implemented in the ipcr package, there are currently no studies that indicate how

well regularized IPC regression may work in practice. Besides regularization, overfitting

may also be averted by adjusting the significance level to correct the testing of multiple

covariates. However, as with regularized IPC regression, such corrections for IPC regression

have not been studied yet. Fortunately, the situation is different for score-guided SEM

trees, and different techniques to prevent overfitting were already investigated in the

model-based recursive partitioning literature. For instance, Brandmaier et al. (2016)

demonstrated the use of SEM forests to prevent overfitting and improve generalizability

27



7. Discussion

to new samples. Moreover, in Project 3, we successfully applied a Bonferroni correction to

control the testing of multiple covariates.

Output. Both methods provide users with different outputs. On the one hand, IPC

regression provides users with a standard regression output for each model parameter.

These outputs indicate if and how covariates influence model parameters and can guide

the modification of the model. On the other hand, score-guided SEM trees estimate a

MGSEM that accounts for heterogeneity in the sample. In theory, this MGSEM could be

directly reported or may serve as a basis for modifying the original model.

Statistical properties. Not much is known about how both approaches compare in

terms of power to detect heterogeneity and qualities of their estimates. The Monte Carlo

simulations in the individual projects imply that both IPC regression and score-guided SEM

trees are slightly less powerful and less precise than MGSEMs. The online supplemental

material of Project 1 (https://www.tandfonline.com/doi/suppl/10.1080/10705511.2019.

1667240) compares IPC regression and the original SEM tree implementation put forward

by Brandmaier et al. (2013). Given normally distributed data, SEM trees exhibited a

smaller power than IPC regression. When provided with non-normally distributed data,

SEM trees were prone to committing type I errors. In contrast, IPC regression yielded

robust results that were mostly unaffected by non-normality. However, the results of

SEM trees would likely improve had the trees been estimated with the new score-guided

split selection procedure. For instance, score-guided SEM trees clearly outperformed the

original SEM tree implementation in Project 3.

7.1.2 Established Methods

Compared to the established methods for addressing heterogeneity in SEMs with covari-

ates summarized in Section 2.4, IPC regression and score-guided SEM trees offer some

advantages. In contrast to MGSEMs and SEMs with interaction terms that are used

to study either discrete grouping variables or continuous covariates, IPC regression and

score-guided SEM trees are very general in terms of covariates and allow the investigation

of categorical, ordinal, and continuous variables within the same framework. Moreover,

IPC regression and score-guided SEM trees enable researchers to study the effects of

multiple covariates and their interactions simultaneously. Another useful feature is that

both methods render repeated respecification and re-estimation of alternative models

unnecessary. Not only will this feature save the user time, but it may also prevent specifica-

tion errors and is particularly important when the theory-guided model is already complex

and difficult to estimate. Furthermore, the score-based nature of both methods makes

them computationally very efficient. This advantage is most noticeable when comparing

the runtime of score-guided SEM trees with the conventional SEM trees suggested by
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Brandmaier et al. (2013). The score implementation can often reduce runtime drastically

from hours to seconds or minutes. Finally, when compared to score-based, IPC regression

and score-guided SEM trees also provide estimates of parameter heterogeneity in addition

to hypothesis tests.

Clearly, the main disadvantage of IPC regression and score-guided SEM trees is that

the methods’ performance depends on the covariates available. If none of these covariates

is in any way related to individual or group differences, both methods will fail to detect

any heterogeneity. Thus, IPC regression and score-guided SEM trees are not suited to

confirm the homogeneity of a sample but merely confirm homogeneity with respect to

available covariates. If a more stringent homogeneity test is needed, researchers may resort

to latent class or finite mixture models.

7.2 Applications and Caveats

IPC regression and score-guided SEM trees can be applied in a variety of ways. Next, I

discuss possible applications and caveats, starting with the topic of model modification.

7.2.1 Model Modification

Traditionally, model modification, sometimes also called specification search, refers to the

process in which a model’s fit is improved in a stepwise fashion (Kaplan, 1988; MacCallum,

1986; MacCallum et al., 1992; Yuan & Liu, 2021). The process typically begins by fitting

a SEM to data. If the fit of the initial model is inadequate, one or more parameters are

added to the model in order to improve its fit to the data. Especially in the early days of

SEMs, the MI served as one of the main heuristics to guide model modification because

it provides a computationally inexpensive way to assess how much the fit had improved

had a new parameter been introduced to the model (MacCallum et al., 1992). However,

other criteria for the goodness of fit can be used just as well. While model modification

of SEMs was traditionally most often performed as a forward selection procedure that

increased model complexity in the process, regularization techniques stemming originally

from machine learning were proposed by Jacobucci et al. (2016) and Huang et al. (2017)

and offer a backward specification search that penalizes model complexity (Yuan & Liu,

2021).

Model modification based on the MI has been criticized as a data-driven technique

that is prone to capitalizing on chance characteristics of data and producing an overfitted

model, which may perform well in a sample at hand but generalizes poorly to new data

(MacCallum et al., 1992). Some methods have been proposed to minimize the risk of

overfitting. Saris et al. (1987) and Saris et al. (2009) suggest using the MI in combination

with the EPC, which approximates the value of a new parameter had it been added to

the model. The authors argue that the EPC gives a direct estimate of the size of the
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misspecification that should be considered for model modification. MacCallum et al. (1992)

investigate the use of cross-validating modified models and find mixed results. MacCallum

et al. conclude that a conservative approach with few modifications of the original model

and clear interpretability is most useful and call for researchers to acknowledge that

their initial model has been subject to modification to improve its fits. Importantly,

the criticism and recommendations for model modification based on the MI also provide

valuable insights for model modification guided by IPC regression and score-guided SEM

trees.

Model modification guided by IPC regression is complicated by multiple testing

issues. IPC regression produces an estimate with a corresponding p-value for each model

parameter and each covariate (ignoring possible interactions between covariates and

polynomial effects). For example, when provided with a model with 20 parameters and 5

covariates, IPC regression will produce 100 estimates of how the covariates affect the model

parameters. Not only might the sheer amount of information overwhelm the user, but it

also increases the likelihood of false-positive findings, that is, type I errors. In Project 2,

we discussed three strategies for how IPC regression results can be best translated into

an improved model. In the following, I reiterate and add to these strategies. The first

strategy aims to reduce the amount of positive or significant findings by either applying

regularization as proposed in Project 2 or adjusting the significance level for multiple

testing. If LASSO regularization is applied, I suggest treating every effect that was not

set to zero as potentially important. An adjustment of the significance level, such as

the well-known Bonferroni correction, can address multiple testing of covariates, model

parameters, or both. In most cases, it seems reasonable to adjust only for the number of

covariates to avoid overcorrection. Second, following the advice of Saris et al. (1987) and

Saris et al. (2009) regarding the use of the EPC, I recommend considering the estimated

effects of the covariates from a substantive point of view. Only those effects that are

interpretable and large enough to matter in the substantive theory should give grounds

for changing the model. Likewise, one should also consider what model parameters are

found to be heterogeneous. Most likely, heterogeneity in nuisance parameters, such as

error variance parameters, needs to be much more pronounced than heterogeneity in a

regression parameter central to one’s inquiry to justify a model modification. Third, I

strongly recommend to cross-validate the augmented model. Cross-validation would be

best performed on a completely new sample. Since new samples are likely not always

available, researchers can split the sample into a training and a test data set if the sample

is sufficiently large. The training data set is used for model modification guided by IPC

regression, and the test data set is then used to assess the fit of the augmented model.

Often, the sample will be too small to be reasonably split in half. In that case, one may

modify the model using the complete sample and then evaluate the augmented model with

k-fold cross-validation. Although the strategies outlined above follow the recommendations
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regarding model modification using the MI, they have not been applied in practice or

studied. Thus, future research is needed to determine how IPC regression can be best

used for model modification.

In contrast to IPC regression, score-guided SEM trees provide users with a MGSEM

that could, in principle, replace the original model. However, in practice, the resulting

MGSEM will often be too complex, comprising too many groups and parameters, which

makes it hard to interpret. Fortunately, the semtree R package (Brandmaier et al., 2013)

offers users several options to prevent SEM trees from splitting the sample into too sparse

groups. In Project 3, we successfully applied a Bonferroni adjustment of the significance

level to control for the testing of multiple covariates. While this correction prevented

an inflation of type I errors in our simulation study, it has the apparent disadvantage

that it decreases the tree’s power to detect heterogeneity drastically if the number of

covariates is large. Another strategy is to specify a minimum number of individuals

within each group. By selecting a reasonable minimal group size, researchers can limit

the number of splits and be assured that the SEMs in the leaf nodes (i.e., the submodels

after the last splits of the tree) are stable enough to be interpreted. Besides the number

of splits, the number of model parameters is also an issue. Currently, the SEM tree

algorithm estimates a separate set of parameters for every group identified by a tree. On

the one hand, this approach makes SEM trees flexible by detecting heterogeneity in all

parts of a model, but, on the other hand, it leads most likely to an over-parametrized

MGSEM. In Project 3, we investigate the use of so-called global parameter constraints

that set the value of a parameter equal across all groups. We found that while these

global constraints could reduce the number of parameters, they can greatly hinder a

tree’s ability to detect heterogeneity when heterogeneous parameters are constrained.

Therefore, we discourage specifying global constraints unless reliable prior knowledge

about the homogeneity of certain parameters exists. So, what is currently missing, and

could facilitate model modification, is an automated way that identifies which parameters

are equal across specific groups of the tree. Alternatively, users could also be provided

with more detailed information on which parameters are most heterogeneous and drive

the tree’s split decisions. Finally, model modification guided by score-guided SEM trees is

complicated by the well-recognized problem that tree methods tend to be unstable. Even

slight changes to the original data sets (e.g., removing some individuals with outliers)

may sometimes change one of the top splits, leading to an entirely different tree structure

(Philipp et al., 2018). To solve this issue, Brandmaier et al. (2016) proposed SEM forests.

SEM forests are an ensemble approach that are based on random forests (Breiman, 2001)

and estimate the importance of covariates. SEM forests consist of a large number of

SEM trees. These trees are provided with a subset of covariates, which is resampled for

every tree. The resampling decorrelates covariates and allows to compute a new measure

that ranks the importance of covariates for a forest. I suggest that SEM forests always
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accompany SEM trees to ensure that the importance of covariates is factored into the

modified model.

I close this discussion of model modification by reiterating and adding to MacCallum

et al.’s (1992) call for transparency about model modification. In addition to disclosing

that a theory-grounded model was changed, authors should strive to be as precise as

possible in stating how they augmented their models. Brandmaier and Jacobucci (in

press) highlight that researchers often fail to report the full set of analyses conducted.

In particular, Brandmaier and Jacobucci identify meta-parameters (e.g., penalty terms

used in regularized IPC regression or the minimum group size of SEM trees) as crucial

pieces of information that are frequently not disclosed. Often, default values for these

meta-parameters are employed, which can change in the developmental process of software

(see Epskamp, 2019). Therefore, Brandmaier and Jacobucci (in press) encourage users to

use workflows with containerized environments which guarantee that others can execute

code with the same software version originally used for the analysis. An example of such a

workflow is given by Peikert and Brandmaier (2021). If this is not feasible, Brandmaier

and Jacobucci (in press) recommend making code publicly available so the full set of

settings that were used can be examined.

7.2.2 Causal Interpretation

At various places, the language in this work suggests some sort of causal connection

between covariates and parameter heterogeneity. For example, in Project 1 and 2, IPC

regression is presented as a method to estimate the effects of covariates on individual or

group differences, implicitly implying that the parameter differences are caused by the

covariates. Likewise, the group differences found by score-guided SEM trees in Project 3

could easily be understood as estimates of causal quantities. However, this language was

mainly employed for ease of illustration. Thus, and in view of the growing interest in the

subject of causality and causal inferences in recent times (e.g., Pearl & Mackenzie, 2018),

it seems worthwhile to clarify that the covariates’ effects estimated by IPC regression and

score-guided SEM trees are not guaranteed to be causal quantities. Such as other statistical

methods like linear regression, which operate on the level of associations (Chen & Pearl,

2013), IPC regression and score-guided SEM trees merely predict heterogeneity. Besides

the causal direction between covariate and parameter differences, IPC regression and

score-guided SEM trees are also unable to rule out the possibility of spurious relationships

that are caused by unobserved variables. Hence, additional reasoning and assumptions are

needed to make a case for a convincing causal interpretation of the findings, especially in

non-experimental data.

Importantly, this warning also pertains to demographic variables such as age, gender, or

variables like personality traits. Often, it is erroneously assumed that these fixed variables

can only be a cause but not an effect (Meehl, 1971; Spector & Brannick, 2011). Although
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psychological or environmental factors can obviously not alter demographic variables like

age, they can affect the age distribution of a sample. Spector and Brannick (2011) illustrate

this argument with an example: they suppose that in a given sample, women report on

average a higher job satisfaction than men. One possible explanation is that gender has

caused the difference in job satisfaction. However, Spector and Brannick argue that it

could also be the case that women are less tolerant to dissatisfying working conditions and

therefore quit dissatisfying jobs more often than men. Thus, since less dissatisfied women

work than dissatisfied men, we would expect that overall job satisfaction for women is

higher than for men. Spector and Brannick also provide alternative scenarios in which job

satisfaction affects the gender distribution of the sample.

In summary, I recommend being cautious with causal language when reporting the

results of an IPC regression or score-guided SEM tree analysis in the same way as one would

report linear regression results. Nevertheless, although IPC regression and score-guided

SEM trees cannot identify and estimate causal effects on their own, they are still helpful

by identifying which covariates are linked with parameter heterogeneity, which can be the

first step of establishing a causal relationship (see Shadish et al., 2002).

7.2.3 Predicting Interindividual Differences in Intraindividual Variation

Especially in longitudinal data analysis, it is common to differentiate between two sources

of variation: interindividual differences that occur between persons and intraindividual

differences that unfold within persons over time (Schmiedek et al., 2020; Voelkle et al.,

2014). Importantly, interindividual and intraindividual variation is rarely identical or

even similar. One reason is that interindividual variation also reflects temporally stable

differences, which per definition, does not feature in the quantification of intraindividual

variation. Generally, inference about intraindividual variation from interindividual variation

requires the ergodic assumption to hold (Molenaar, 2004), which implies that the sample is

homogenous and its characteristics do not change over time (but see Adolf & Fried, 2019).

Interestingly, IPC regression and score-guided SEM trees can be useful tools to identify

and predict interindividual differences, or heterogeneity, in intraindividual variation.

However, the ability of the methods to do so depends largely on the data and model.

For example, when provided with cross-sectional data, both methods are limited to

predicting interindividual differences in model parameters. Generalizing these results to

the intraindividual level is seldom appropriate and may lead to misleading conclusions

(see Simpson’s paradox; Kievit et al., 2013). However, when longitudinal data is available,

the theory-guided model may explicitly account for variation on the interindividual and

intraindividual level with different model parameters. Popular examples are dynamic panel

models (Zyphur, Allison, et al., 2020; Zyphur, Voelkle, et al., 2020). These models are

often specified with random intercepts that account for stable differences in the means

of the observed variables (e.g., Hamaker et al., 2015). The variance parameters of these
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random intercepts quantify the mean differences between persons. Other model parameters,

such as autoregressive parameters, describe intraindividual variation by gauging how long

random shocks persist in the system. In Project 1, we demonstrate how interindividual

differences in parameters pertaining to intraindividual variation can be identified with

IPC regression. A similar demonstration in which SEM trees are used was put forward by

Brandmaier et al. (2018).

7.2.4 Latent Covariates

Throughout the dissertation, covariates were conveniently assumed to be directly observable.

Unfortunately, this assumption is unrealistic for applied psychological research, where the

influence of latent variables such as personality traits or intelligence is often of interest.

To study parameter heterogeneity with respect to latent covariates, I propose a simple

two-step procedure. First, factor scores are obtained by fitting confirmatory factor analysis

models (see Hardt et al., 2019, for an overview about different approaches to obtain

factor scores). Then, IPC regression or score-guided SEM trees are provided with the

corresponding factor scores. Alternatively, IPCs can also be studied in SEMs that contain

measurement models of the latent variables.

7.3 Areas of Applications

The question remains, which psychological research areas are most promising for appli-

cations of IPC regression and score-guided SEM trees. From a methodological point of

view, I highly recommend always testing SEM parameters for heterogeneity because the

commonly applied measures to assess SEMs do not capture heterogeneity (see Section

2.2). Further, given that sufficient sample size and predictive covariates are needed to

detect heterogeneity, large data sets rich in covariates seem especially well suited. Typical

examples include longitudinal panel data sets such as the German Socio-Economic Panel

Study or the growing number of ambulatory assessment data sets (Wrzus & Mehl, 2015)

that usually contain plenty of measurements of a small number of individuals.

From a substantive point of view, the application of IPC regression and score-guided

SEM trees is most interesting in research areas that are characterized by a large degree

of heterogeneity, such as cognitive aging (Lindenberger, 2014), brain structures (Kievit

et al., 2018), indicators of successful aging (Gerstorf et al., 2016), or personality traits

(Chamorro-Premuzicm, 2014). For instance, SEM trees have been successfully applied

to study heterogeneity in well-being (Brandmaier et al., 2017), the relationship between

brain and cognition (de Mooij et al., 2018; Simpson-Kent et al., 2020), and psychological

disorders (Ammerman et al., 2019). Moreover, both methods seem to align well with the

rationales of longitudinal research as put forward by Baltes and Nesselroade (1979), who

call for the identification of interindividual differences in intraindividual change and its
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causes.

7.4 Conclusion and Outlook

This cumulative dissertation developed two novel procedures to detect and predict hetero-

geneity with covariates in contemporary psychological models. Both methods approach

heterogeneity by analyzing the partial derivative of the log-likelihood with respect to

model parameters, also known as the score function. Based on pioneering work by Oberski

(2013), Project 1 advanced the IPC regression framework and highlighted its potential

to predict heterogeneity in dynamic panel models. Project 2 focussed on the software

implementation of IPC regression and provided further benchmarks. Finally, project 3

introduced score-guided SEM trees by combining score-based tests (Merkle & Zeileis, 2013)

with SEM trees (Brandmaier et al., 2013), solving runtime and multiple testing issues in

the SEM tree framework.

The concluding discussion has shown that while IPC regression and score-guided SEM

trees are promising methods, much research remains to be done. While score-guided SEM

trees are much more developed, IPC regression would benefit from further theoretical

research, for instance, concerning different strategies for model modification. As the work

presented in this dissertation is primarily theoretical and based on simulation studies,

applications with real psychological data seem to be the next step.
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Jöreskog, K. G., Olsson, U. H., & Y. Wallentin, F. (2016). Multivariate analysis with

LISREL. Springer.

Kaplan, D. (1988). The impact of specification error on the estimation, testing, and

improvement of structural equation models. Multivariate Behavioral Research,

23 (1), 69–86. https://doi.org/10.1207/s15327906mbr2301 4

Kievit, R. A., Brandmaier, A. M., Ziegler, G., van Harmelen, A.-L., de Mooij, S. M. M.,

Moutoussis, M., Goodyer, I., Bullmore, E., Jones, P., Fonagy, P., the NSPN Consor-

tium, Lindenberger, U., & Dolan, R. J. (2018). Developmental cognitive neuroscience

using latent change score models: A tutorial and applications. Developmental Cog-

nitive Neuroscience, 33, 99–117. https://doi.org/10.1016/j.dcn.2017.11.007

Kievit, R. A., Frankenhuis, W. E., Waldorp, L. J., & Borsboom, D. (2013). Simpson’s

paradox in psychological science: A practical guide. Frontiers in Psychology, 4, 1–14.

https://doi.org/10.3389/fpsyg.2013.00513

Kline, R. B. (Ed.). (2016). Principles and practice of structural equation modeling (4th

ed.). Guilford Press.

Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2. ed.). Springer.

Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346 (6209),

572–578. https://doi.org/10.1126/science.1254403

Lubke, G. H., & Muthén, B. O. (2005). Investigating population heterogeneity with factor

mixture models. Psychological Methods, 10 (1), 21–39. https://doi.org/10.1037/1082-

989X.10.1.21

Ly, A., Marsman, M., Verhagen, J., Grasman, R. P., & Wagenmakers, E.-J. (2017). A

tutorial on Fisher information. Journal of Mathematical Psychology, 80, 40–55.

https://doi.org/10.1016/j.jmp.2017.05.006

MacCallum, R. C. (1986). Specification searches in covariance structure modeling. Psycho-

logical Bulletin, 100 (1), 107–120. https://doi.org/10.1037/0033-2909.100.1.107

MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in

covariance structure analysis: The problem of capitalization on chance. Psychological

Bulletin, 111 (3), 490–504. https://doi.org/10.1037/0033-2909.111.3.490

Magidson, J., & Vermunt, J. K. (2002). Latent class models for clustering: A comparison

with K-means. Canadian Journal of Marketing Research, 20, 37–44. https : / /

jeroenvermunt.nl/cjmr2002.pdf

Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2008). Fitting a mixture item

response theory model to personality questionnaire data: Characterizing latent

classes and investigating possibilities for improving prediction. Applied Psychological

Measurement, 32 (8), 611–631. https://doi.org/10.1177/0146621607312613

Marsh, H. W., Wen, Z., Hau, K.-T., & Nagengast, B. (2013). Structural equation models of

latent interaction and quadratic effects. In G. R. Hancock & R. O. Mueller (Eds.),

Structural equation modeling (pp. 267–308). Information Age Publishing.

40

https://doi.org/10.1207/s15327906mbr2301_4
https://doi.org/10.1016/j.dcn.2017.11.007
https://doi.org/10.3389/fpsyg.2013.00513
https://doi.org/10.1126/science.1254403
https://doi.org/10.1037/1082-989X.10.1.21
https://doi.org/10.1037/1082-989X.10.1.21
https://doi.org/10.1016/j.jmp.2017.05.006
https://doi.org/10.1037/0033-2909.100.1.107
https://doi.org/10.1037/0033-2909.111.3.490
https://jeroenvermunt.nl/cjmr2002.pdf
https://jeroenvermunt.nl/cjmr2002.pdf
https://doi.org/10.1177/0146621607312613


8. References

Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on

hypothesis-testing approaches to setting cutoff values for fit indexes and dangers

in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Mod-

eling: A Multidisciplinary Journal, 11 (3), 320–341. https ://doi .org/10.1207/

s15328007sem1103 2

Meehl, P. E. (1971). High school yearbooks: A reply to Schwarz. Journal of Abnormal

Psychology, 77 (2), 143–148. https://doi.org/10.1037/h0030750

Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural

equations modeling. Psychological Methods, 10 (3), 259–284. https://doi.org/10.

1037/1082-989X.10.3.259

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance.

Psychometrika, 58 (4), 525–543. https://doi.org/10.1007/bf02294825

Merkle, E. C., Fan, J., & Zeileis, A. (2014). Testing for measurement invariance with

respect to an ordinal variable. Psychometrika, 79 (4), 569–584. https://doi.org/10.

1007/S11336-013-9376-7

Merkle, E. C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups:

A generalization of classical methods. Psychometrika, 78 (1), 59–82. https://doi.

org/10.1007/S11336-012-9302-4

Millsap, R. E., & Kwok, O.-M. (2004). Evaluating the impact of partial factorial invariance

on selection in two populations. Psychological Methods, 9 (1), 93–115. https://doi.

org/10.1037/1082-989x.9.1.93

Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge.

Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing

the person back into scientific psychology, this time forever. Measurement, 2 (4),

201–218. https://doi.org/10.1207/s15366359mea0204 1

Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods &

Research, 22 (3), 376–398. https://doi.org/10.1177/0049124194022003006

Muthén, B. O., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using

the EM algorithm. Biometrics, 55 (2), 463–469. https://doi.org/10.1111/j.0006-

341x.1999.00463.x

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical

Psychology, 47 (1), 90–100. https://doi.org/10.1016/S0022-2496(02)00028-7

Nestler, S., & Humberg, S. (2021). Gimme’s ability to recover group-level path coefficients

and individual-level path coefficients. Methodology, 17 (1), 58–91. https://doi.org/

10.5964/meth.2863

Neudecker, H., & Satorra, A. (1991). Linear structural relations: Gradient and Hessian of

the fitting function. Statistics & Probability Letters, 11 (1), 57–61. https://doi.org/

10.1016/0167-7152(91)90178-t

41

https://doi.org/10.1207/s15328007sem1103_2
https://doi.org/10.1207/s15328007sem1103_2
https://doi.org/10.1037/h0030750
https://doi.org/10.1037/1082-989X.10.3.259
https://doi.org/10.1037/1082-989X.10.3.259
https://doi.org/10.1007/bf02294825
https://doi.org/10.1007/S11336-013-9376-7
https://doi.org/10.1007/S11336-013-9376-7
https://doi.org/10.1007/S11336-012-9302-4
https://doi.org/10.1007/S11336-012-9302-4
https://doi.org/10.1037/1082-989x.9.1.93
https://doi.org/10.1037/1082-989x.9.1.93
https://doi.org/10.1207/s15366359mea0204_1
https://doi.org/10.1177/0049124194022003006
https://doi.org/10.1111/j.0006-341x.1999.00463.x
https://doi.org/10.1111/j.0006-341x.1999.00463.x
https://doi.org/10.1016/S0022-2496(02)00028-7
https://doi.org/10.5964/meth.2863
https://doi.org/10.5964/meth.2863
https://doi.org/10.1016/0167-7152(91)90178-t
https://doi.org/10.1016/0167-7152(91)90178-t


8. References

Neyman, J., & Pearson, E. S. (1928). On the use and interpretation of certain test

criteria for purposes of statistical inference: Part I. Biometrika, 20 (1), 175–240.

https://doi.org/10.2307/2331945

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). Springer.

Oberski, D. L. (2013). A flexible method to explain differences in structural equation model

parameters over subgroups. http://daob.nl/wp-content/uploads/2013/06/SEM-

IPC-manuscript-new.pdf

Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of

panel data by means of SEM. Psychometrika, 65 (2), 199–215. https://doi.org/10.

1007/BF02294374

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect.

Basic Books.

Peikert, A., & Brandmaier, A. M. (2021). A reproducible data analysis workflow. Quanti-

tative and Computational Methods in Behavioral Sciences, 1, 1–27. https://doi.org/

10.5964/qcmb.3763

Philipp, M., Rusch, T., Hornik, K., & Strobl, C. (2018). Measuring the stability of

results from supervised statistical learning. Journal of Computational and Graphical

Statistics, 27 (4), 685–700. https://doi.org/10.1080/10618600.2018.1473779

R Core Team. (2021). R: A language and environment for statistical computing. https:

//www.R-project.org

Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several pa-

rameters with applications to problems of estimation. Mathematical Proceedings

of the Cambridge Philosophical Society, 44 (1), 50–57. https://doi.org/10.1017/

S0305004100023987

Rao, C. R. (2005). Score test: Historical review and recent developments. In N. Balakrishnan,

H. N. Nagaraja, & N. Kannan (Eds.), Advances in ranking and selection, multiple

comparisons, and reliability (pp. 3–20). Birkhäuser.
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Dynamic panel models are a popular approach to study interrelationships between repeatedly
measured variables. Often, dynamic panel models are specified and estimated within
a structural equation modeling (SEM) framework. An endemic problem threatening the
validity of such models is unmodelled heterogeneity. Recently, individual parameter con-
tribution (IPC) regression was proposed as a flexible method to study heterogeneity in SEM
parameters as a function of observed covariates. In the present paper, we derive how IPCs
can be calculated for general maximum likelihood estimates and evaluate the performance of
IPC regression to estimate group differences in dynamic panel models in discrete and
continuous time. We show that IPC regression can be slightly biased in samples with large
group differences and present a bias correction procedure. IPC regression showed generally
promising results for discrete time models. However, due to highly nonlinear parameter
constraints, caution is indicated when applying IPC regression to continuous time models.

Keywords: Autoregressive cross-lagged model, continuous time modeling, heterogeneity,
structural equation modeling

INTRODUCTION

Dynamic panel models (Hsiao, 2014) are routinely used in
econometrics, psychology, and sociology tomodel the coupling
between several repeatedly measured variables. Building upon
the idea of Granger causality (Granger, 1969), dynamic models

allow answering questions concerned with the direction and
strength of reciprocal relationships. Especially in psychological
research, it is common practice to specify and estimate dynamic
panel models within the structural equation modeling (SEM)
framework (e.g., Allison, Williams, & Moral-Benito, 2017;
Bollen & Brand, 2010; Zyphur, Allison et al., 2019, Zyphur,
Voelkle et al., 2019).

An endemic problem that complicates the analysis of long-
itudinal panel data are systematic differences across individuals
or groups. For instance, individuals may show stable, trait-like
differences in the mean levels; a random shock might have
a long-lasting effect on some persons, while its effect vanishes
quickly for others; or the coupling between processes may
differ across subjects. By overlooking such heterogeneity,
researchers risk drawing incorrect conclusions from their data
(Halaby, 2004).

Heterogeneity can often be explained through covariates
such as demographic variables, biomarkers, or personality
traits. Various approaches have been suggested to identify if
and how covariates are linked to individual or group differences
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in dynamic panel models. A popular way is the use of multi-
level models with random effects (e.g., Singer &Willet, 2003).
For instance, dynamic panel models are often specified with
random intercepts to account for trait-like differences in the
mean level of the observed variables (e.g., Hamaker, Kuiper, &
Grasman, 2015). By regressing random effects on covariates,
multilevel models can also be used to explore correlates and
predictors of heterogeneity. Another popular approach to inves-
tigate heterogeneity are multi-group structural equation models
(MGSEM; Sörbom, 1974) which allow the specification of
panel models with different parameter values across groups.
MGSEMs are particularly useful if the number of groups is
small. However, using MGSEMs to disentangle the effects of
many grouping variables can become tedious as multiple
MGSEMs need to be specified and estimated. Fortunately,
there exist approaches to perform such testing automatically,
which become feasible with large sample sizes: Brandmaier,
von Oertzen, McArdle, and Lindenberger (2013) and
Brandmaier, Prindle, McArdle, and Lindenberger (2016) pro-
posed a combination of MGSEMs and recursive partitioning
methods to recover groups with similar parameter values.
These so-called SEM trees or SEM forests fit a large number
of MGSEMs to identify which grouping variables are impor-
tant. Recently, Brandmaier, Driver, and Voelkle (2018) also
applied these methods to dynamic panel models.

While the above methods are able to detect heterogeneity in
a wide range of situations, they also come with certain draw-
backs. The use of random effects to detect individual or group
differences in dynamic panel models is often hindered by diffi-
culties to specify the random effects for certain types of para-
meters. Whereas including random effects for intercept
parameters is relatively straightforward, specifying random
effects for regression and variance parameters is much more
problematic and usually requires Bayesian methods (e.g.,
Driver & Voelkle, 2018; Schuurman, Ferrer, de Boer-
Sonnenschein, & Hamaker, 2016). A drawback of MGSEM
and MGSEM-based approaches like SEM trees and forests is
that these methods require either categorical grouping variables
or require continuous covariates to be split into meaningful
grouping variables which might obscure the relationship
between differences in a parameter and a continuous covariate.
Furthermore, SEM trees and forests may experience difficulties
when there is a clear set of target parameters of interest. Since
these methods compare the group-wise likelihood, which con-
siders differences in all parameters across all levels of the
covariates jointly, the difference of interest may be masked if
a larger difference is found in other parameters. This masking
effect is well-known in the regression mixture literature
(George et al., 2013) and may occur particularly in the case of
distributionalmisspecification (e.g., Usami,Hayes,&McArdle,
2017). Finally, especially in large data sets, the computational
burden ofmethods like Bayesianmultilevel models, SEM trees,
and SEM forests often constitutes amajor impediment to imple-
ment these approaches in practice.

As an alternative approach to identify and estimate heteroge-
neity in dynamic panel models, we propose the use of individual
parameter contribution (IPC) regression (Oberski, 2013). As we
will discuss in the following, the IPC regression framework
allows modeling SEM parameters as a function of covariates.
Put shortly, IPC regression proceeds in three steps. First, a theory-
driven (confirmatory) SEM is specified and estimated. Second,
individual contributions to all model parameters are calculated
using the case-wise derivative of the log-likelihood function. The
resulting IPCs approximate individual-specific parameter values.
Third, the IPCs are regressed on a set of categorical or continuous
covariates to explain group differences or individual differences
in the parameters. For instance, a researcher could regress the
IPCs to one parameter on individuals’ age to test whether this
parameter is invariant to age differences or to estimate how the
parameter changes as a function of age.

The primary advantages of IPC regression over other
approaches to heterogeneity outlined above are its simplicity,
flexibility, and lowcomputational demand. IPC regression sepa-
rates the estimation of the theory-driven model from the inves-
tigation of individual group differences. This separation is
especially useful if the theory-driven model is complex, that is,
has many observed variables and parameters. Although the
underlying mathematics can be challenging, on the side of the
applied researcher, basicknowledgeof linear regressionanalysis
is sufficient for successfully applying IPC regression in practice.
IPCregressionallows testingevery typeofSEMparameter (e.g.,
means, variances, covariances) for individual or group differ-
enceswithout theneed for specifying randomeffects.Moreover,
the method allows studying the effect of multiple grouping
variables as well as continuous covariates and their interactions.
Furthermore, IPC regression is a computationally lightweight
procedure that can be performed in seconds.

IPCs are not limited to SEMs and can be derived for every
type of maximum likelihood estimate. The contributions are
calculated by linearizing the case-wise derivative of the log-
likelihood function around the maximum likelihood estimates.
The case-wise derivative of the log-likelihood function, also
known as score function, has long been used to investigate the
plausibility of statistical models (e.g., Zeileis, 2005; Zeileis &
Hornik, 2007). Recently, score-based tests became popular in
the exploration of measurement invariance in SEM (Merkle,
Fan, & Zeileis, 2014; Merkle & Zeileis, 2013; Wang, Merkle,
& Zeileis, 2014;Wang, Strobl, Zeileis, &Merkle, 2018). These
score-based tests are used to test measurement invariance with
respect to a continuous or ordinal auxiliary variable. IPC
regression is different to these tests by providing estimates of
how amodel parameter varies as a function of covariates. Other
frequently applied score-based approaches to identify misspe-
cification in SEMs are the modification index (Sörbom, 1989)
and the expected parameter change (Saris, Satorra, & Sörbom,
1987), which both test the validity of certain parameter restric-
tions but do not address the problem of parameter heterogeneity
even though they are closely related (Oberski, 2013).
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As of now, IPC regression has only been evaluated for
a confirmatory factor analysis model (CFA; Brown, 2006). In
a Monte Carlo simulation, Oberski (2013) reported excellent
finite sample performance. We will later show that these
results do not fully generalize to more complex models such
as dynamic panel models. In general, large individual or group
differences in one specific parameter can lead to biased IPC
regression estimates for that specific parameter and also may
lead to biased IPC regression estimates for other parameters.
As a consequence, large differences in one parameter can
increase the risk of a type I error in other constant parameters.
To solve this problem, we propose a bias correction procedure
termed iterated IPC regression that we recommend for
dynamic panel models. The remainder of this article is orga-
nized as follows: first, we will briefly present bivariate
dynamic panel models in discrete and continuous
time. Second, IPC regression is formally introduced. Third,
we evaluate the finite-sample properties of IPC regression for
dynamic panel models in two simulation studies.

AUTOREGRESSIVE AND CROSS-LAGGED
MODELS FOR PANEL DATA

The following section gives an outline of the SEM specifi-
cations for two simple dynamic panel models in discrete
and continuous time that will be used throughout the pre-
sent article. Readers unfamiliar with dynamic panel models
are referred to Biesanz (2012). More details about the
continuous-time models are given by Voelkle, Oud,
Davidov, and Schmidt (2012).

Figure 1 shows a path diagram for a bivariate dynamic
panel model for three waves of data. This structural model
can be described with the following two equations:

xi;t ¼ βxxxi;t�1 þ βxyyi;t�1 þ ui;t (1)

yi;t ¼ βyyyi;t�1 þ βyxxi;t�1 þ vi;t; i ¼ 1; . . . ; n; t ¼ 2; 3 (2)

Here, xi;t and yi;t are the measurements of two different
variables of individual i at time point t. For sake of simpli-
city, we assume that x and y are free of measurement error
and mean centered.

The regression coefficients βxx and βyy are called auto-
regressive parameters and they describe the stability in
each x and y from one measurement occasion to the next.
The regression coefficients βxy and βyx are referred to as
cross-lagged effects and indicate how x influences y and
vice versa. The initial assessments of x and y are treated
as exogenous variables with zero mean and variance ϕxx,
ϕyy respectively, and covariance ϕyx. For the remaining
measurement occasions, u and v denote the dynamic
error terms. The variance and covariance parameters of
the dynamic error terms are symbolized by ψxx, ψyy, and
ψyx respectively.

Equations (3a)–(3c) show the SEM specification of the
model in Figure 1:

yi ¼ Byi þ ζi (3a)

xi;1
yi;1
xi;2
yi;2
xi;3
yi;3

26666664

37777775 ¼

0 0 0 0 0 0
0 0 0 0 0 0
βxx βxy 0 0 0 0
βyx βyy 0 0 0 0
0 0 βxx βxy 0 0
0 0 βyx βyx 0 0

26666664

37777775
xi;1
yi;1
xi;2
yi;2
xi;3
yi;3

26666664

37777775þ

xi;1
yi;1
ui;2
vi;2
ui;3
vi;3

26666664

37777775 (3b)

FIGURE 1 Path diagram of a bivariate autoregressive and cross-lagged panel model for three waves of data.
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Covðζi; ζiÞ ¼ Φ ¼

ϕxx ϕyx 0 0 0 0
ϕyx ϕyy 0 0 0 0
0 0 ψxx ψyx 0 0
0 0 ψyx ψyy 0 0
0 0 0 0 ψxx ψyx
0 0 0 0 ψyx ψyy

26666664

37777775 (3c)

The resulting model-implied covariance matrix of x and y is
given by

Covðyi; yiÞ ¼ ΣðθÞ ¼ I6 � Bð Þ�1Φ I6 � Bð Þ�1
h iT

; (4)

where θ is a vector with the model parameters and I6
denotes an identity matrix of order six.

Although not explicitly stated, the temporally spacing
between assessments plays an important role in the model
as presented in Figure 1. The model treats time as a discrete
variable that indicates the temporally ordering of the assess-
ments and is therefore also referred to as discrete-time
dynamic panel model. As pointed out elsewhere (e.g., Oud,
2007; Oud & Delsing, 2010; Voelkle et al., 2012), treating
time as a discrete variable complicates comparing estimates
from models with different sample schemes and can bias
estimates if assessments are not equally spaced. A solution
to these problems is treating time as a continuous variable
using stochastic differential equation models (Oud & Jansen,
2000; for a recent overview of continuous-time modeling in
the behavioral and related sciences, see van Montfort, Oud, &
Voelkle, 2018). These continuous-time dynamic panel models
allow estimating continuous-time parameters which can be
used to extrapolate to any arbitrary time point.

Following Voelkle et al. (2012), we specify a continuous-
time model by constraining the discrete-time model para-
meters from Figure 1 to functions of underlying continuous-
time parameters A andQ, and the time intervals Δtj. The new
parameter matrix A corresponds to the continuous-time ver-
sion of auto- and cross-lagged effects, the drift parameters,
while Q contains the continuous-time version of dynamic
error term variance parameters, or diffusion parameters:

A ¼ axx axy
ayx ayy

� �
Q ¼ qxx qyx

qyx qyy

� �
(5)

Let Δtj be the time interval between the assessments j and
jþ 1; then the discrete-time regression coefficients are
constrained as a function of A:

bxx bxy
byx byy

� �
¼ expðA � ΔtjÞ; (6)

where exp denotes the matrix exponential function. The
corresponding constraint for the variance of the dynamic
error term is

ψxx ψyx
ψyx ψyy

� �
¼ irow A�1

# expðA# � ΔtjÞ � I4
� �

rowðQÞ
n o

; (7)

where A# :¼ A� I2 þ I2 � A. The operator row puts the
elements of Q into a column vector and the operator irow
stacks the elements of a vector row-wise into a matrix.

The interpretation of the continuous-time model para-
meters can be facilitated by transforming them into the
discrete-time parameters for an arbitrary time interval Δtj.
For example, plugging Δtj ¼ 1 into the estimated drift
parameters on the right-hand side of Equation (8) gives
the discrete-time regression coefficients for a time interval
of one between assessments.

INDIVIDUAL PARAMETER CONTRIBUTION
REGRESSION

In the following, we will show how heterogeneity in the
parameters of dynamic panel models in discrete or contin-
uous time can be identified and explained by IPC regres-
sion. To this end, we first motivate the derivation of IPCs
for general maximum likelihood estimation. Next, we show
how the contributions of SEM parameter estimates can be
obtained. Then, we demonstrate that IPC regression can be
biased in samples with large individual or group differ-
ences. As a solution to this problem, we present a bias
correction procedure.

IPCs to maximum likelihood estimates

Let y1; . . . ; yn be a sample of independently distributed p-
variate random variables with corresponding density func-
tions f ðθ1; y1Þ; . . . ; f ðθn; ynÞ. IPC regression is applicable
in situations where differences between the individual-
specific values of the q-variate parameter vector θi can be
expressed as a function of a vector of covariates zi. For
instance, differences in the parameter values of a two-group
population can be estimated via IPC regression using
a single dummy-coded grouping variable zi as covariate.

For sake of illustration, we will assume that f is
a multivariate normal density. The associated log-
likelihood function for a single individual i is given by

ln Lðθ; yiÞ ¼ � 1

2
yi � μðθÞ½ �`ΣðθÞ�1 yi � μðθÞ½ �

n
þ ln detðΣðθÞÞ½ � þ p lnð2πÞ

o
ð8Þ

with model-implied mean vector μðθÞ and model-implied
covariance matrix ΣðθÞ. In the following, we will use θ to
denote parameter values. True values of the parameters will
be marked by a subscript, for instance θi, and the maximum

likelihood estimate will be denoted by bθ.
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The first and second derivatives of the log-likelihood func-
tion for a given person are important for computing IPCs. The
first-order partial derivative of the individual log-likelihood
function with respect to the parameters is the score function

Sðθ; yiÞ ¼ @ lnLðθ;yiÞ
@θð1Þ

. . . @ lnLðθ;yiÞ
@θðqÞ

h iT
; (9)

where θðjÞ denotes the j-th element of the parameter vector
θ. Evaluation of the score function at specific parameter
values measures to which extent an individual’s log-
likelihood is maximized. Note that the expected values of
the score function at the true parameter values are zero, that
is E Sðθi; yiÞ½ � ¼ 0 holds for all individuals in the sample.
The second-order partial derivative is known as Hessian
matrix and will be denoted by

Hðθ; yiÞ ¼
@2 lnLðθ; yiÞ

@θ @θT
: (10)

The expected value of the negative Hessian matrix evalu-
ated at the true individual specific parameter values

IðθiÞ ¼ E � @2 lnLðθ; yiÞ
@θ @θT

����
θ¼θi

" #
(11)

is called the Fisher information matrix and plays a key role
in determining standard errors and asymptotic sampling
variance of the maximum likelihood estimates.

The maximum likelihood parameter estimate bθ can be
obtained by solving the first-order conditions

Xn
i¼1

Sðbθ; yiÞ ¼ 0; (12)

such that bθ is an extremum. In homogeneous samples,
where θi ¼ θ0 for i ¼ 1; . . . ; n, the resulting parameter esti-

mate bθ is a consistent estimate of true parameter values θ0.

In heterogeneous samples, bθ will typically be close to the
mean of the individuals’ true parameter values θ1; . . . ; θn.

The idea behind the derivation of IPCs is to find the
individual roots of the score function instead of finding the
roots of the sum of all individual score values as shown in
Equation (12). Hypothetically, solving Sðbθi; yiÞ ¼ 0 for
every individual in the sample would yield individual para-

meter estimates bθ1; . . . ;bθn. Unfortunately, for many prob-
ability distribution such as the normal distribution, the

system of equations Sðbθ; yiÞ ¼ 0 does not have a unique
solution for a single data point. However, we can approx-
imate the individual scores by linearizing the mean of all

scores around the maximum likelihood estimate and then
disaggregate the resulting expression:

1

n

Xn
i¼1

Sðθ; yiÞ �
1

n

Xn
i¼1

Sðbθ; yiÞ
þ 1

n

Xn
i¼1

Hðbθ; yiÞ θ� bθ� �
(13)

Without changing the right-hand side of Equation (13), the
Hessian matrix can be replaced by the estimated negative
Fisher information matrix.

1
n

Xn
i¼1

Sðbθ; yiÞ � IðbθÞ θ� bθ� �
(14)

In geometric terms, Equation (14) approximates the mean
of scores with a tangent line at the maximum likelihood
estimate. Now, we disaggregate this tangent into n indivi-
dual tangents by replacing the mean of scores evaluated at
the maximum likelihood estimate with the individual score
values evaluated at the maximum likelihood estimate:

Sðbθ; yiÞ � IðbθÞ θ� bθ� �
(15)

Finally, setting Equation (15) to zero and solving for θ
yields a q-variate vector of individual’s i contributions to
the parameter estimates:

0 ¼ Sðbθ; yiÞ � IðbθÞ IPCðbθ; yiÞ � bθh i
IPCðbθ; yiÞ ¼ bθþ IðbθÞ�1Sðbθ; yiÞ (16)

The interpretation or meaning of the IPCs, and all averages
or statistics based on them, follows from the interpretation
of the maximum likelihood estimates bθ. This property is
particularly important for dynamic panel models. The IPCs
of autoregressive or cross-lagged parameter will only
approximate the individual within-person relationship if
the dynamic model separates the within-person process
from stable between-person differences (Hamaker et al.,
2015).

IPCs to SEM parameter estimates

Instead of the sum of individual log-likelihoods in Equation
(8), it is common to use the aggregated log-likelihood
function (also called fitting function) in SEM (Voelkle,
Oud, von Oertzen, & Lindenberger, 2012). The maximum
likelihood fitting function for multivariate normally distrib-
uted variables is
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F y; S; μðθÞ;ΣðθÞð Þ ¼ y� μðθÞ½ �`ΣðθÞ�1 y� μðθÞ½ �

þ tr SΣðθÞ�1
h i

� ln jSΣðθÞ�1j
h i

� p; ð17Þ

with sample means �y and sample covariance matrix S
(Yuan & Bentler, 2007). Optimizing either the sum of
individual log-likelihood functions or an aggregated fitting
function yields equivalent parameter estimates (Bollen,
1989).

Using the aggregated fitting function, IPCs to SEM
parameter estimates are a function of the individual’s data
and two matrices Δ and V that are provided by most
standard SEM software packages. The first matrix Δ is the
following Jacobian matrix

Δ ¼ @½μðθÞ; σðθÞ�T
@θ

; (18)

where σðθÞ denotes the half-vectorized model-implied cov-
ariance matrix. Δ indicates the sensitivity of the model-
implied mean vector and covariance matrix to changes in
the parameters. The second matrix is the weight matrix V
which depends on the chosen estimator (e.g., Savalei,
2014). In SEMs estimated with normal theory maximum
likelihood, the corresponding weight matrix is

V ¼ ΣðθÞ�1 0

0 1
2D

T
p ΣðθÞ�1 � ΣðθÞ�1
h i

Dp

" #
; (19)

with duplication matrix Dp (Magnus & Neudecker, 2019).
Sample estimates of Δ and V can be obtained by replacing

θ with bθ.
Following Satorra (1989) and Neudecker and Satorra

(1991), the Fisher information matrix can be expressed as
IðθÞ ¼ ΔTVΔ and a partial derivative of the fitting function
is given by

� 1

2

@F �y;S; μðθÞ;ΣðθÞð Þ
@θ

¼ ΔTV
�y
s

� �
� μðθÞ

σðθÞ
� �	 


: (20)

Individual score values can be obtained by replacing the
aggregated mean vector and covariance matrix in Equation
(20) by the individual contributions to these sample
moments. To this end, we define n vectors

di :¼
yi

vech yi � �y½ � yi � �y½ �T
� �" #

(21)

(Satorra, 1992), where the operator vech half-vectorizes
a symmetric matrix. Note that the averaged individual con-
tributions to the sample moments are identical to the

observed sample moments, that is 1
n

Pn
i¼1 di ¼ �y s½ �T.1

Thus, analogous to Equation (16), the individual contribu-
tions to SEM parameter estimates can be estimated by

IPCðbθ; yiÞ ¼ bθþ bΔTbVbΔ� ��1bΔTbV di � μðbθÞ
σðbθÞ
� �	 


: (22)

The above definition of the IPCs should replace that given
by Oberski (2013), which yields incorrect means of the
IPCs to factor loading and regression parameters.

Predicting heterogeneity in panel models with IPC
regression

The IPCs of a single individual are usually plagued by
random fluctuation and will most likely be poor estimates
of the true individual parameter values. However, studying
the IPCs of groups of individuals or jointly modeling the
IPCs of the whole sample can average out this noise. One
obvious method for revealing meaningful differences in the
parameters is linear regression estimated by ordinary least
squares. Regressing the IPCs on a set of additional covari-
ates z allows to test and estimate if and how individual
parameter values vary as a function of z.

For instance, we could investigate via IPC regression
whether the cross-lagged estimated effect bβyx from x on y in
the model shown in Figure 1 differs between women and

men. To this end, the IPCs to bβyx are regressed on a dummy
variable z representing gender. Using women as a baseline
group, the following IPC regression equation is estimated

IPCi;βyx ¼ bγ0 þbγ1zi þ νi; (23)

where νi is a random residual with mean zero. In the above
equation, the IPC regression intercept bγ0 is the estimated
value of βyx for women and bγ1 denotes the estimated dif-
ference between women and men in βyx. In other words, the
IPC regression slope estimate bγ1 is a measure of hetero-

geneity in the cross-lagged effect bβyx with respect to the
covariate gender. As in standard regression analysis, a t-test
could be applied to test bγ1, that is, to infer whether the
estimated subgroup difference between women and men inbβyx is significantly different from zero. In this setup,
Oberski (2013) showed that bγ1 and its Wald statistic are
equivalent to the robust expected parameter change and
robust modification index familiar from MGSEM (Satorra,
1989). Based on the size of the estimate and the test result,
an informed decision can be made to modify the original
model or not. An obvious choice of modification would be
to use gender as a grouping variable in an MGSEM. The
partial effects of several covariates on the parameters can
be investigated using multiple linear regression analysis. To

1The biased estimate of the sample covariance is used.
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investigate parameter heterogeneity in the complete model
presented in Figure 1, an IPC regression equation needs to
be estimated for each of the 10 model parameters:

IPCi;βxx ¼ bγTβxxzi þ νi;βxx (24a)

IPCi;βyx ¼ bγTβyxzi þ νi;βyx (24b)

..

.

IPCi;ψyy
¼ bγTψyy

zi þ νi;ψyy
(24j)

In Equations (24a)–(24j), the IPC regression estimates bγ
indicate the estimated effects from multiple covariates z on
a certain parameter estimate.

Due to its flexibility and computational efficiency, the
linear regression framework offers researchers many possi-
bilities to investigate heterogeneity by means of IPC regres-
sion. The interplay of the covariates could be studied by
adding interactions to Equations (24a)–(24j). Furthermore,
higher-order polynomial terms, such as quadratic or cubic
terms can be easily specified to test for nonlinear relation-
ships. If the number of covariates is large, regularization
techniques like lasso (Tibshirani, 1996) could be used to aid
the selection of important covariates. Finally, latent vari-
ables could be included by replacing the regression equa-
tions above with SEMs.

Bias and inconsistency

IPC regression estimates of individual or group differences
can be slightly inaccurate under certain circumstances. As
shown above, IPC regression estimates are functions of
maximum likelihood estimates and observed data. If an
IPC regression estimate depends on a maximum likelihood
estimate of a parameter that differs across individuals or
groups, the IPC regression estimate will be inaccurate. As
a rule of thumb, the inaccurateness increases with the
amount of individual or group differences in the sample.

In the next paragraphs, we will demonstrate some prop-
erties of IPC regression estimates with the help of the
exponential distribution. We chose the exponential distribu-
tion for the sake of clarity since it only has a single para-
meter. We will show that IPC regression estimates do not
always correspond to individual- or group-specific maxi-
mum likelihood estimates, that is, with parameters esti-
mated using homogeneous segments of the sample.
Further, we will show that IPC regression estimates are
not guaranteed to converge to the true individual- or group-
specific parameter values and, as a result, can be
inconsistent.

Consider the exponential distribution with density
f ðλ; yÞ ¼ λe�λy, y � 0, and rate parameter λ > 0. We

assume that n individuals have been sampled in equal
shares from a two-group population with different group-
specific rate parameters λ1 and λ2. The maximum likeli-
hood estimate of λ for the whole sample is the reciprocal of

the sample mean bλ ¼ �y�1 ¼ n=
Pn

i¼1 yi. To recover the

group differences in bλ, we regress the IPCs to bλ on
a dummy variable z that is zero in the first group and one
in the second group:

IPCi;λ ¼ bγ0 þbγ1zi þ νi (25)

Next, we express the IPC regression estimates bγ0 and bγ1 as
a function of group-specific maximum likelihood estimatesbλ1 and bλ2 that are estimated separately in homogeneous
subsamples. Intermediate steps can be found in the
Appendix.

bγ0 ¼ 4bλ21bλ2bλ1 þ bλ2� �2 (26)

bγ1 ¼ 4λ1λ2 bλ2 � bλ1� �
bλ1 þ bλ2� �2 (27)

Analogously to the bias of an estimator, which is the
difference between an estimator’s expected value and the
true value of the parameter, we may define the bias of an
IPC regression estimate as the difference between an IPC
regression estimate and the group-specific maximum like-
lihood estimate. Taking the probability limits of the result-
ing biases is trivial (see White, 1984) and allows us to
determine whether the IPC regression estimates are
consistent.

bγ0 � bλ1 ¼ 2bλ21bλ2 � bλ31 � bλ1bλ22bλ1 þ bλ2� �2 �!P 2λ21λ2 � λ31 � λ1λ
2
2

λ1 þ λ2ð Þ2 �0 (28)

bγ1 � bλ2 � bλ1� �
¼

bλ1 � bλ2� �3
bλ1 þ bλ2� �2 �!P λ1 � λ2ð Þ3

λ1 þ λ2ð Þ2 �0 (29)

It follows from Equations (28) and (29) that the IPC regres-
sion estimates bγ0 and bγ1 are systematically different from the
group-specific maximum likelihood estimates. As this bias is
unaffected by the sample size, the IPC regression estimates
are also inconsistent. For instance, consider a sample drawn
in equal shares with λ1 ¼ 0:5 and λ2 ¼ 1:5. These parameter
values imply that bγ0 and bγ1 converge to 0.375 and 0.75,
respectively. Not only would IPC regression underestimate
both group-specific parameter values (first group: 0.375 vs.
0.5, second group: 0:375þ 0:75 ¼ 1:125 vs. 1.5) but also
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underestimate the difference between both groups (0.75
vs. 1). In homogeneous samples, however, where λ1 ¼ λ2,

the IPC regression estimates are consistent as bγ0 � bλ1 andbγ1 � ðbλ2 � bλ1Þ converge in probability to zero.
Deriving the asymptotic bias for more complex models

such as SEMs is challenging. However, later in the manu-
script, we will demonstrate by means of Monte Carlo
simulations that the results stated above generalize to
dynamic panel models.

Iterative IPC regression: Bias correction procedure

To resolve the problems discussed in the previous paragraph,
we propose an iterative algorithm similar to Fisher’s scoring
(e.g., Demidenko, 2013) to correct the bias of IPC regres-
sion. As discussed before, IPC regression estimates are
biased if they depend on maximum likelihood estimates of
parameters that differ across individuals or groups. This bias
can be removed by replacing the pooled maximum likeli-
hood estimates based on the entire sample with individual-
or group-specific parameter estimates. However, instead of
estimating these parameters separately, which is usually not
possible for single individuals, we iteratively predict the
individual- or group-specific parameters through IPC regres-
sion and re-estimate the IPC regression estimates.

Our proposed bias correction procedure, which we call
iterative IPC regression, proceeds in the following way:
First, an SEM is estimated and IPC regression is performed
as described above. Second, the resulting IPC regression
estimates are then used to predict a specific value for SEM
parameter j of individual i:

eθi;j ¼ zTi eγj; i ¼ 1 . . . ; n; j ¼ 1 . . . ; q (30)

Third, these individual-specific parameter values are used
to-recalculate the IPCs of each individual.

gIPCi ¼ eθi þ IðeθiÞ�1Sðeθi; yiÞ; i ¼ 1 . . . ; n (31)

Fourth, IPC regression estimates are re-estimated using the
re-calculated IPCs for that specific parameter.

eγj ¼ Xn
i¼1

ziz
T
i

 !�1Xn
i¼1

zTi gIPCi;j; j ¼ 1 . . . ; q (32)

Re-estimating the IPC regression estimates once will
reduce but not eliminate the bias. However, by iterating
over the steps shown in Equations (30)–(32), the IPC
regression estimates will approach unbiased and consistent
estimates of individual- or group-specific differences in
maximum likelihood estimates. A graphical demonstration
of the bias correction procedure is presented in Figure 2.

The iterated IPC algorithm converges if the change in either
the IPC regression estimates or in the log-likelihood becomes
negligibly small. Unfortunately, the algorithm does not always
converge. Especially, if the true individual- or group-specific
value of a parameter lies close to (or at) the border of its
parameter space, the algorithm might go awry. However,
given strong heterogeneity in a sample, we observed across
various models that the iterations often yield substantial
improvement over the initial IPC regression estimates before
breaking down. Therefore, the iteration with the largest log-
likelihood might be preferred to the initial results.

We would like to note two more observations on the bias
correction procedure. First, IPC regression estimates are
unbiased in homogeneous samples and therefore cannot be
further improved by updating the IPCs. If iterated IPC regres-
sion is used in a homogeneous sample, the algorithm will
overfit the estimates to random fluctuation of the data. In this
case, the resulting estimates can be marginally worse than the
initial estimates, but the difference will be inconsequential for
most practical purposes. Second, updating the IPCs comes at
the cost of additional computational demands. In our experi-
ence, however, the algorithm usually converges quickly within
few iterations. Even for samples with a few thousand indivi-
duals and models with more than 30 parameters, updating the
IPCs took less than a minute with a standard desktop PC.

Software implementation

IPC regression is implemented as a package for the statis-
tical programming language R (R Core Team, 2019),
termed ipcr. The ipcr package makes it easy for researchers
to study heterogeneity in the parameter estimates of an
SEM fitted with the OpenMx package (Neale et al., 2015).
The ipcr package performs “vanilla”, IPC regression as
introduced by Oberski (2013) as well as iterated IPC
regression. More information of how the ipcr package can
be installed and used can be found under https://github.
com/manuelarnold/ipcr/.

MONTE CARLO SIMULATIONS

To evaluate the performance of vanilla and iterated IPC
regression to detect and estimate heterogeneity in dynamic
panel models in discrete and continuous time we conducted
the following two Monte Carlo simulations. The first simu-
lation aims to substantiate our theoretical considerations
regarding the bias for bivariate dynamic panel models.
The second simulation investigates whether IPC regression
provides valid inferences and compares the power of the
method with MGSEM. Additional simulations to evaluate
the performance of IPC regression for non-normally dis-
tributed data, more periods, and a comparison to
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a multilevel model, an MGSEM, and an SEM tree are
provided as Online Supplemental Material.

Simulation I: Demonstration of the bias

In the following simulation studies, we used the discrete-
time dynamic panel model depicted in Figure 1 with five
measurement waves as a simulation model. The data
were sampled from a multivariate normal distribution
with two distinct sets of parameter values. 125 observa-
tions were generated per group, resulting in a pooled
sample with 250 observations in total. A discrete-time
and a continuous-time dynamic panel model were fitted
to the same data, ignoring the group differences. Then,
we used vanilla and iterated IPC regression with
a dummy variable to recover the group differences in
the parameter values of the dynamic panel models.
Iterated IPC regression was performed by re-estimating
the IPC regression parameters until the change in all
parameters was smaller than 0.0001. We repeated this
procedure 10,000 times.

The discrete-time population parameter values used to
generate the data are shown in the upper half of Table 1,
separated for both groups. For easy reference, we transformed

these parameter values into continuous time and printed them
in the lower half of the table. As clearly apparent fromTable 1,
group 1 and 2 differ substantively. The first group is charac-
terized by strong autoregressive coefficients and no cross-
lagged effects, whereas the second group exhibits substantial
cross-lagged effects and smaller autoregressive coefficients.
In addition, the variance of x and y was chosen twice as high
for the second group as compared to the first.

We will first discuss the results for the discrete-time
dynamic panel model. As expected from the theoretical exam-
ple, both IPC regression methods provided accurate estimates
of heterogeneity in the initial variance and covariance para-
meters. Further, IPC regression estimates for regression coeffi-
cients and dynamic error term variance parameters were
slightly distorted. Figure 3 depicts boxplots visualizing the
bias of the IPC methods for regression coefficients (top
graph) and dynamic error term variance parameters (lower
graph). The estimates of vanilla IPC regression are printed in
red and estimates after updating the IPCs are depicted in blue.
Boxplots whose median lines lie close to the dotted black line
indicate that the corresponding IPC regression estimates were
approximately unbiased. Using the vanilla method, the inter-
cepts (marked with the subscript 0) of the IPC regression
equations were more biased than the slopes (subscript 1). Our

FIGURE 2 Demonstration of iterated IPC regression. 1000 individuals were sampled in equal shares from a two-group exponential distribution with
group-specific rate parameters λ1 ¼ 0:5 and λ2 ¼ 1:5. Iterated IPC regression with a dummy variable indicating grouping was used to estimate the group
difference in the rate parameter. On the left side, initial and re-estimated IPC regression estimates are shown. Red dots are estimates of λ1 and blue dots are
estimates of the difference λ2 � λ1. Dashed lines mark the corresponding maximum likelihood estimates. Clearly, the initial IPC regression estimates are
biased. After just two iterations, however, the iterated IPC regression estimates approach the corresponding maximum likelihood estimates. The log-
likelihood function is shown on the right side. The iterative reduction of the bias in the IPC regression estimates leads to an increase of the log-likelihood.
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updated IPC method erased the bias in the intercepts and
provided accurate estimates for all types of model parameters.
Averaged over all parameters, the root mean squared error of
iterated IPC regression (RMSE = 0.089) was slightly smaller
than the one of the vanilla procedure (RMSE = 0.094).

The performance of the IPC regression methods for the
continuous-time dynamic model was similar to the find-
ings for the discrete-time parameters above. The estimates
for the initial variance and covariance parameters pro-
vided by both IPC regression methods were near the true
values, whereas estimates for the remaining model para-
meters were biased. Figure 4 presents the bias in the IPC
regression estimates for drift and diffusion parameters.
Overall, the IPC regression estimates showed more varia-
bility for the continuous-time parameters than for the
discrete-time parameters. As for the discrete-time model,
vanilla IPC regression exhibited a slight bias. Re-
estimating the IPCs with our correction procedure reduced
this bias at the cost of increased variability of the IPC
regression estimates. Moreover, the iterated IPC algorithm
converged only in 53.78% of the trials and fell back to the
starting values or an intermediate solution in the remain-
ing trials. Nevertheless, in terms of the RMSE averaged
over all parameters, iterated IPC regression (RMSE =
0.168) slightly outperformed vanilla IPC regression
(RMSE = 0.174).

TABLE 1
Group-specific Population Parameter Values for the Dynamic Panel

Models in Discrete and Continuous Time

Time θ Group 1 Group 2 θ Group 1 Group 2

Discrete βxx 0.700 0.450 ϕyx 0.300 1.000

βyx 0.000 0.300 ϕyy 1.000 2.000

βxy 0.000 0.300 ψxx 0.510 1.145

βyy 0.700 0.450 ψyx 0.153 0.168

ϕxx 1.000 2.000 ψyy 0.510 1.145

Continuous axx – 0.357 – 1.092 ϕyx 0.300 1.000

ayx 0.000 0.805 ϕyy 1.000 2.000

axy 0.000 0.805 qxx 0.713 2.760
ayy – 0.357 – 1.092 qyx 0.214 – 1.034
ϕxx 1.000 2.000 qyy 0.713 2.760
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FIGURE 3 Boxplots of the bias of the IPC regression estimates for the discrete-time dynamic panel model. Red: vanilla IPC regression, blue: iterated IPC
regression.
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Simulation II: Statistical power and false positive rate

In the second simulation, we investigated the power of IPC
regression to detect a difference in a parameter value and
the false positive rate in case of homogeneous parameters.
We generated multivariate normal data from bivariate
dynamic panel models with five measurement occasions.
We specified the population models in a way that only the
cross-lagged effects from the variable x on y differed
slightly between two groups. All other parameters were
equal. In contrast to the previous simulation, we used
different population models for the discrete- and continu-
ous-time models. The corresponding parameter values for
both population models (shown in Table 2) resulted in
similar but not identical population covariance matrices.
After a data set was generated, a pooled dynamic panel
model was fitted, and parameter heterogeneity was tested
with IPC regression (vanilla and iterated) using a dummy
variable. We used the same convergence criterion for iter-
ated IPC regression as in the previous simulation. We
investigated power and false positive rate for group sizes
of 100, 125, 150, 175, and 200 resulting in total sizes of

200, 250, 300, 350, and 400. For each sample size, we
replicated this process 10,000 times.

As a reference, we compared the power of the IPC
regression methods to the power of MGSEM. Although
MGSEM lacks the flexibility and computational simplicity
of IPC regression, in simple (single-variable) group com-
parisons with correctly specified models, standard max-
imum-likelihood theory suggests it should provide the
uniformly most powerful test. MGSEM therefore presents
a good gold standard reference for these cases. The
MGSEMs were specified by letting only the cross-lagged
effects of x on y differ between groups. We computed the
power of the MGSEMs by conducting likelihood ratio
tests that compared the fit of the MGSEMs to the fit of
the pooled models.

Figure 5 shows the power of IPC regression for the dis-
crete-time model. Depicted is the rejection rate of the null
hypothesis that the cross-lagged effects from x on y are equal
in both groups, plotted against the number of individuals for
a significance level of 5%. Red lines refer to the power of
vanilla IPC regression, blue lines to iterated IPC regression,
and black lines mark the power of MGSEM. For the discrete-
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FIGURE 4 Boxplots of the bias of the IPC regression estimates for the continuous-time dynamic panel model. Red: vanilla IPC regression, blue: iterated
IPC regression.
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time model, the IPC regression methods appeared to be on
average 3.97 percentage points (range: [3.03, 5.30]) less
powerful than MGSEM. Iterated IPC regression achieved
a marginally larger power with a difference of 0.66 percentage
points (range: [0.35, 0.94]). The power for the continuous-
time model is presented in Figure 6. We found that the
difference in power between the IPC regression methods
and MGSEM were substantively larger for the continuous-
time model than for the discrete-time model. On average, the
power of the IPC regression was 20.68 percentage points
(range: [14.25, 27.47]) smaller than the power of MGSEM.
In addition, the power of IPC regression appeared to grow
more slowly as a function of sample size. Again, iterated IPC
appeared slightly more powerful than vanilla IPC regression
(average difference: 0.28, range: [0.17, 0.44]).

Besides power, the false detection rate of the IPC regres-
sion methods is of great importance for drawing correct

conclusions from the data. We assessed the type I error rate
for population parameters that are identical in the two groups
for a significance level of 5%. We summarized the results by
averaging the type I error rate for the three parameter types in
the models (initial variance, regression coefficient/drift,
dynamic error term variance/diffusion). Table 3 shows the
proportions of type I errors for the discrete-time model and
Table 4 for the continuous-time model. In line with simulation
results from Oberski (2013), the type I error rates were close
to 5% for most parameters. Iterated IPC regression committed
slightly more type I errors for regression and drift parameters.
These findings imply that the standard errors of iterated IPC
regression for regression/drift parameters were slightly too
small and could explain why iterated IPC regression appeared
marginally more powerful to detect heterogeneity.

In contrast to Simulation I, therewas not a single case of non-
convergence of the iterated IPC regression algorithm in
Simulation II. This finding suggests that the convergence pro-
blems for the continuous-time dynamic panel model were
mainly driven by the larger group differences used in the pre-
vious simulation.

DISCUSSION

The present study investigated the performance of IPC
regression (Oberski, 2013) to identify and estimate para-
meter heterogeneity in dynamic panel models. Overall, we
found that IPC regression is a promising method to identify
and estimate individual or group differences. In comparison
to other contemporary approaches formally addressing het-
erogeneity with covariates, IPC regression offers a general

TABLE 2
Population Parameter Values for the Dynamic Panel Models Used in

Simulation II.

Discrete time Continuous time

θ Value θ Value θ Value θ Value

βxx 0.500 ϕyx 0.300 axx – 0.780 ϕyx 0.300

βyx 0.200/0.300 ϕyy 1.000 ayx 0.424/0.546 ϕyy 0.300

βxy 0.200 ψxx 0.650 axy 0.424 qxx 1.306

βyy 0.500 ψyx 0.013 ayy – 0.780 qyx – 0.379

ϕxx 1.000 ψyy 0.650 ϕxx 1.000 qyy 1.306

Note. That the cross-lagged effects βyx and ayx differ between the two
groups.
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FIGURE 5 Power to detect that the population group difference in the cross-lagged effect βyx of the discrete-time model is non-zero. Black crosses:
MGSEM, red squares: vanilla IPC regression, blue pluses: iterated IPC regression.
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framework that encompasses all types of SEMs and covari-
ates and makes identifying and explaining individual dif-
ferences as simple, flexible, and fast as linear regression.

IPC regression was evaluated in terms of bias in the
recovery of true group differences, the power to detect
parameter heterogeneity, and the type I error rate for
homogeneous parameters. By means of a theoretical

example and through Monte Carlo simulations, we
demonstrated that original, “vanilla”, IPC regression
estimates can be slightly biased due to large differences
in regression parameters. Additional heterogeneity in
variance parameters may amplify this bias. As a rule
of thumb, the bias seems to affect mainly parameters
connected to endogenous variables like regression and
residual variance parameters, whereas the IPC regres-
sion estimates for parameters associated with exogenous
variables such as the initial variance parameters remain
comparatively unbiased. Hence, IPC regression may
perform worse for SEMs with many directed paths
such as dynamic panel models than for models with
few directed paths such as CFA models. This argument
would also explain why Oberski (2013) found nearly
unbiased estimates of group differences in a CFA
model.

To correct the bias in vanilla IPC regression, we
introduced a novel updating procedure, which we
termed iterated IPC regression. Iterated IPC regression
produced approximately unbiased estimates of group
differences in the parameters of a discrete-time dynamic
panel model and outperformed vanilla IPC regression in
terms of the RMSE. For the continuous-time dynamic
panel model, however, iterated IPC regression corrected
the bias but at the cost of adding additional variability
to the estimates. Nevertheless, updating the IPCs still
improved the estimates on average as indicated by
a smaller RMSE.

In situations in which MGSEM could be applied as an
alternative to IPC regression, we compared the power of IPC
regression to that of MGSEM, which theory suggests is
uniformly most-powerful in these cases. IPC regression
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FIGURE 6 Power to detect that the population group difference in the drift parameter ayx of the continuous-time model is non-zero. Black crosses:
MGSEM, red squares: vanilla IPC regression, blue pluses: iterated IPC regression.

TABLE 3
Proportions of Type I Errors for the Parameters Estimates of the

Discrete-time Dynamic Panel Model

Vanilla IPC Iterated IPC

Group size β ϕ ψ β ϕ ψ

100 5.483 5.047 5.353 6.097 5.047 5.437
125 5.167 5.163 5.133 5.663 5.163 5.277
150 5.037 5.143 5.010 5.500 5.143 5.207
175 5.173 4.940 5.150 5.600 4.940 5.090
200 5.093 4.900 4.850 5.443 4.900 4.983

TABLE 4
Proportions of Type I Errors for the Parameters Estimates of the

Continuous-time Dynamic Panel Model

Vanilla IPC Iterated IPC

Group size a ϕ q a ϕ q

100 5.333 5.083 5.353 5.250 5.083 4.477
125 5.103 5.007 5.263 5.183 5.007 4.620
150 5.207 5.090 5.143 5.247 5.090 4.657
175 5.077 5.193 4.993 5.157 5.193 4.580
200 4.810 5.207 4.803 4.920 5.207 4.463
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yielded power only slightly below that of this theoretically
optimal method to detect group differences in the cross-
lagged effect of a discrete-time dynamic panel model. For
the continuous-time model, however, IPC regression was no
more than half as powerful as MGSEM. It should be noted
that MGSEM cannot be applied to all scenarios allowed by
IPC regression; for example, MGSEM does not investigate
partial effects of multiple covariates of model parameters. In
agreement with earlier theoretical findings, both IPC regres-
sion methods did control the type I error rate accurately.

In summary, our findings demonstrate that (iterated) IPC
regression is a useful tool to study heterogeneity in dis-
crete-time dynamic panel model. For continuous-time
dynamic panel models, however, our findings were mixed:
high variance caused by the bias correction procedure and
a small power make (iterated) IPC regression unappealing
especially in smaller data sets. We believe that these pro-
blems are caused by non-linear parameter constraints and
high correlation between parameter estimates of the con-
tinuous-time dynamic panel model. Considering these dif-
ficulties, IPC regression seems more appropriate for models
that can be parameterized without non-linear constraints
such as the discrete-time dynamic panel model or other
contemporaneous models for longitudinal data such as
latent growth curve models (Bollen & Curran, 2006) or
latent change score models (McArdle, 2001), if these mod-
els are applicable.

Although IPC regression is a general, easy to use,
and flexible approach to detect parameter heterogeneity,
we want to stress that it is not always the most appro-
priate one. Depending on a study’s objective, other
methods for addressing heterogeneity should be pre-
ferred to IPC regression. For example, multilevel mod-
els are like an obvious choice in situations where it is
sufficient to allow for varying parameter values between
individuals and there is no interest in explaining these
differences. In contrast, if a study aims to test differ-
ences between few known groups in the data (e.g., in
variance parameters), MGSEM will often be the better
choice. If a study’s goal is to determine homogeneous
groups in the data with help of additionally observed
covariates, partitioning methods like SEM trees or for-
ests often are better suited for the task, in particular if
computation time is not an issue.

In the following, we will briefly touch upon some lim-
itations of IPC regression that researchers should consider.
First, the usefulness of IPC regression depends on the
covariates available. If none of the additional covariates is
related to individual or group differences in the parameters,
IPC regression will fail to detect the source of heterogene-
ity. In cases of unobserved group membership, researchers
may want to resort to methods like finite mixture models
(Jedidi, Jagpal, & DeSarbo, 1997; Lubke & Muthén, 2005;
Muthén & Shedden, 1999). Second, IPC regression is

a data-driven or exploratory procedure and therefore sus-
ceptible to capitalize on chance characteristics of the data
(MacCallum, Roznowski, & Necowitz, 1992). Modifying
models by blindly following the advice of IPC regression
may lead to a model that works well in the observed sample
but does not generalize to others. We thus recommend
paying not only close attention to the p-value provided by
IPC regression, but also to the size of the estimated indivi-
dual or group difference. See also Saris, Satorra, and van
der Veld (2009), for a related discussion about model mod-
ification using the modification index and expected para-
meter change. Third, using IPC regression to investigate the
effect of a large number of covariates on complex models
with many parameters will yield a large number of IPC
regression estimates that can be challenging to interpret.
Regularization techniques such as lasso (Tibshirani, 1996)
could be used to find a subset of the most important
covariates.

In summary, however, we believe that IPC regression is
a useful tool to investigate parameter heterogeneity in
SEMs for longitudinal data such as dynamic panel models
that combines flexibility with its unique computational
simplicity.
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APPENDIX
EXPRESSING IPC REGRESSION ESTIMATES

WITH GROUP-SPECIFIC ESTIMATES

In the following, we express the IPC regression estimates bγ0 and bγ1 in

terms of the group-specific maximum likelihood estimates bλ1 and bλ2 as
shown in Equations (26) and (27). Note that bγ0 and bγ1 are simple ordinary

least squares estimates given by bγ1 ¼ sIPC;z=s2z and bγ0 ¼ IPC�bγ1�z, where
sIPC;z is the sample covariance between the IPCs and the covariate zi, s2z is
the sample variance of the covariate, and IPC and �z are the sample means
of the IPCs and the covariate, respectively.

Following Equation (16), the IPC of individual i is given by

IPCðbλ; yiÞ ¼ bλþ IðbλÞ�1Sðbλ; yiÞ ¼ bλþ bλ2 1bλ � yi

	 

¼ 2bλ� bλ2yi:

Next, we express the pooled maximum likelihood estimate bλ as a function of
the group-specific maximum likelihood estimates:

bλ ¼ 1

n

Xn
i¼1
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 !�1
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n
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Using both equations from above, the IPC regression slope bγ1 can be
written in terms of the group-specific maximum likelihood estimates:

bγ1 ¼ sIPC;z
s2z

¼
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Finally, we can derive the IPC regression intercept bγ0 in the same way
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Abstract: Unmodeled differences between individuals or groups can bias parameter estimates and
may lead to false-positive or false-negative findings. Such instances of heterogeneity can often be
detected and predicted with additional covariates. However, predicting differences with covariates
can be challenging or even infeasible, depending on the modeling framework and type of parameter.
Here, we demonstrate how the individual parameter contribution (IPC) regression framework, as
implemented in the R package ipcr, can be leveraged to predict differences in any parameter across
a wide range of parametric models. First and foremost, IPC regression is an exploratory analysis
technique to determine if and how the parameters of a fitted model vary as a linear function of
covariates. After introducing the theoretical foundation of IPC regression, we use an empirical data
set to demonstrate how parameter differences in a structural equation model can be predicted with
the ipcr package. Then, we analyze the performance of IPC regression in comparison to alternative
methods for modeling parameter heterogeneity in a Monte Carlo simulation.

Keywords: heterogeneity; individual differences; linear regression; R; structural equation modeling;
latent variables

1. Introduction

A fundamental assumption of parametric modeling is that the model parameters rep-
resent all individuals in the sample. However, populations investigated in the behavioral
sciences and related fields are rarely homogeneous and instead are often characterized by
substantial differences between individuals or groups. For example, heterogeneity may
reflect age differences in cognitive functioning (e.g., [1]) and differences in the prevalence
of depression between women and men (e.g., [2]). Overlooking such heterogeneity re-
sults in an incomplete model with potentially biased parameter estimates and may lead
to false-positive or false-negative findings [3,4]. Conversely, discovering and explaining
heterogeneity can substantially support theory building.

Individual and group differences can often be accounted for with additional covariates
such as contextual or background variables. In practice, researchers routinely probe the
effects of potentially important covariates by using them as moderator variables or by
estimating group-specific parameter values using pre-defined grouping variables. How-
ever, researchers are often limited to investigate only certain types of model parameters,
depending on the choice of modeling technique. For instance, in regression models such as
linear regression, generalized linear regression, and linear mixed models, differences in
regression coefficients can be studied by simply adding covariates with main and interac-
tion effects. On the contrary, uncovering heterogeneity in the variance parameter of the
regression errors (or in the different variance parameters of a mixed model) with covariates
is much more challenging. For example, in the statistical programming language R [5],
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neither the built-in function lm (for fitting linear regression models) or the functions of
the widely used lme4 package (for fitting mixed models; [6]) allow for ways to explain
individual and group differences in the variance parameters in the model with covariates.
Other modeling frameworks, such as structural equation modeling (SEM; [7,8]), offer the
user more flexibility to incorporate covariates and investigate their effects on all model pa-
rameters. One popular method for investigating the effect of a discrete covariate is the use
of multigroup structural equation models (MGSEMs, [9]). MGSEMs allow estimating SEMs
with different parameter values across the levels of a grouping variable. If the covariate
under investigation is continuous, one possible way to assess its effect is to include it into
the SEM as a moderator variable by specifying a SEM with an interaction term (e.g., [10]).
MGSEMs and SEMs with interactions are best suited in situations with a priori knowledge
about the sources of heterogeneity and a clear set of target parameters. However, both
approaches can quickly become impractical in an exploratory analysis of the potential
effects of a larger number of covariates on multiple model parameters. As MGSEMs and
SEMs with interactions are usually conducted by looking at the effects of one covariate at
a time, many SEMs need to be specified, estimated, and evaluated. Moreover, exploring
potential interactions between covariates may result in MGSEMs with too sparse groups or
overly complex interaction models with too many parameters to be stably estimated.

As an alternative procedure to exploring the effects of covariates by adding them
to the model, we introduced individual parameter contribution (IPC) regression [11,12].
IPC regression allows determining whether and how the parameters of a model vary as
functions of covariates. IPC regression proceeds in three steps. First, the model is fitted to
data. This model represents a given scientific theory, encompassing all variables that pertain
to this theory and for which hypothesized relationships can be specified. Second, individual
contributions to the model parameters are calculated. These IPCs are rough approximations
of individual-specific parameter values. Third and last, the IPCs are regressed on a set
of covariates such as discrete grouping variables or continuous variables to investigate
whether any of these covariates predict differences in the parameters. The result of an IPC
regression analysis may be used to explore predictors of parameter heterogeneity, generate
new hypotheses about predictors of individual or group differences in model parameters,
and may ideally help revise the substantive theory. To perform IPC regression in practice,
we provide the R package ipcr.

IPC regression is a general, flexible, simple, and computationally efficient method. In
principle, IPC regression allows investigating all types of model parameters of a parametric
model. For instance, IPC regression makes it feasible to predict differences in certain
types of model parameters, such as the residual variance parameters in regression models,
which would not be possible by adding covariates directly to the model. Furthermore, IPC
regression encompasses both discrete grouping variables as well as continuous covariates.
This flexibility regarding the measurement level of the covariates appears particularly
advantageous when working with SEMs. For SEMs, the effects of discrete and continu-
ous covariates are often studied with different techniques, that is, either with MGSEMs
(for discrete variables) or SEMs with interactions (for continuous variables). With IPC
regression, we can leverage the same approach for studying covariates with different levels
of measurement. Although the derivation of the IPCs is a little more involved, a basic
understanding of linear regression is sufficient to perform IPC regression in practice. A
final key feature of IPC regression is a clear separation between model estimation and
the investigation of parameter differences. This separation is especially advantageous
when the model is complex and hard to estimate (either in the sense of computation time
or convergence problems) because assessing parameter heterogeneity does not involve
repeated re-specification and re-estimation.

IPCs are calculated by transforming the partial derivative of an objective function
with respect to the parameters. Objective functions such as the well-known log-likelihood
function are used to estimate model parameters. Various statistical procedures analyze
the derivative of an objective function to assess the fit of a statistical model. In the SEM
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framework, the modification index (MI; [13]) uses the derivative to approximate how
much the fit of a model would change after a new parameter is added to the model. As
an extension to the MI, which is merely a test statistic, the expected parameter change
(EPC; [14,15]) has been put forward for obtaining a direct estimate of the added parameter.
Although the MI and EPC aim to quantify specification errors, Oberski [11] demonstrated
that the MI and EPC for MGSEMs correspond to IPC regression under certain conditions.
However, this equivalency ends in situations that cannot be handled by MGSEMs, such as
continuous or multiple covariates, making IPC regression a much more flexible method
for the investigation of heterogeneity. Other methods that analyze partial derivatives are
structural change tests (e.g., [16,17]). Originally used in the detection of change points in
time series analysis [18], structural change tests have been recently popularized by Merkle
and Zeileis [19] and Merkle et al. [20] to uncover parameter heterogeneity in psychometric
models. The difference between structural change tests and IPC regression is that structural
change tests provide formal tests whether the parameters of a model are invariant with
respect to a covariate. In contrast, IPC regression seeks to model the relationships between
parameters and covariates by means of linear regression.

The purpose of this study is threefold. First, we introduce the ipcr package, which
offers functions to perform IPC regression in R. Second, we expand upon earlier research,
which focused on predicting differences in SEM parameters, by discussing how IPC re-
gression can be used to investigate a much broader range of parametric models. Third, we
compare the performance of IPC regression to established methods in four small Monte
Carlo simulations. The remainder is structured as follows: Section 2 illustrates IPC re-
gression by means of an instructive example. Section 3 deals with the theory behind IPC
regression. This section is optional and addresses readers that are interested in more
technical details. Section 4 gives an overview of the ipcr package. Section 5 illustrates
how the ipcr package is applied in practice based on data from the lavaan package [21].
Section 6 presents the simulation results. Finally, this study concludes in Section 7 with a
discussion of the method and the simulation results.

2. Introductory Example

In the following, we illustrate the rationale behind IPC regression with a simple
regression example. Let us assume we want to predict an outcome variable y as a linear
function of a single explanatory variable x. The corresponding simple linear regression
model can be defined as

yi = β0 + β1xi + εi, i = 1, . . . , N. (1)

This regression model contains the parameters β0, β1, and σ2. The regression coeffi-
cients β0 and β1 denote the intercept and slope of the regression line. σ2 is the variance
of the regression errors ε; that is, the part of the variability in the outcome y that is not
explained by the explanatory variable x. Unbiased and efficient parameter estimates can
be obtained by employing the ordinary least squares (OLS) estimation method.

Further, we suspect that our model parameters could vary with respect to a covariate z.
One way to assess the influence of z would be to simply add the covariate to our model by
specifying a direct effect from z on y and an interaction effect between z and x. The direct
and interaction effects would then tell us how β0 and β1 are influenced by z. However,
adding the covariate to the model does not enable us to quantify its influence on the
variance parameter σ2. On the other hand, IPC regression offers a way to estimate the
effect of z on σ2.

An IPC regression analysis involves three steps. In the first step, the simple linear
regression model defined in Equation (1) is fitted to data. Generally, models investigated
with IPC regression consist solely of variables important to one’s scientific theory. Therefore,
covariates are usually not included in the first-step model but are used later as predictor
variables in step three. In the second step, a new data matrix of IPCs is calculated. Every
row of this data matrix corresponds to one individual and every column to one parameter.
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For example, row i contains the values of the three model parameters specific to individual i.
The IPCs of a single individual are usually too noisy to be useful estimates of individual-
specific parameters. However, regressing the IPCs on covariates averages out this noise
and may reveal meaningful differences in the parameters. Figure 1 illustrates the three
steps of IPC regression.

A) Fitted model: B) Data matrix with IPCs: C) Predict IPCs with
covariate : 

1

for

Figure 1. The three steps of IPC regression. Panel A shows the model under investigation. It is not
necessary to include any covariates in the model. Panel B visualizes the structure of the new data
matrix containing the IPCs. Panel C shows the three IPC regression equations for the respective
model parameters. Note that we model the IPCs to each of the three model parameters in a separate
regression model.

The IPC regression coefficients are interpreted as in any linear regression model. The
IPC regression slope γ1,β0 represents the change in the intercept β0 of the first-step model
for a one-unit change in the covariate z. Further, the IPC regression slope γ1,β1 indicates
how z moderates the effect of the explanatory variable x on the outcome y. Finally, γ1,σ2

represents the relationship between z and the variance of the regression errors σ2. A
positive relationship indicates that individuals with smaller covariate values exhibit a
smaller error variance and are therefore closer to the regression line, whereas individuals
with larger values show more unexplained variability.

As in standard regression analysis, a t-test can be carried out to test the null hypotheses
γ0 = 0 and γ1 = 0. Testing γ1 = 0 can be seen as a test of parameter homogeneity with
respect to the covariate z, and rejecting it implies that the parameter under investigation is
not constant across individuals. It should be noted that the errors ζi of the IPC regression
equations are usually not normally distributed, even if the original data used for model
fitting are normal. Therefore, the standard errors of the IPC regression estimates may be
inaccurate in small samples.

Figure 1 shows a simplistic example with a single covariate. In practice, one might
be interested in investigating the effects of multiple covariates and their interactions or
estimating non-linear relationships between the model parameters and covariates by
adding quadratic and cubic terms. All these techniques work exactly as in standard linear
regression.

3. Derivation and Properties of Individual Parameter Contributions

In the following, we will first derive the IPCs in very general terms and then give more
specific results for linear regression models. Further derivations for SEMs are provided by
Arnold et al. [12]. Readers uninterested in technical details may skip this section.

3.1. Calculation of the Individual Parameter Contributions

In brief, IPCs are calculated by transforming the partial derivative of a case-wise
objective function with respect to the parameters. More formally, let f (θ) be an objective
function used to estimate a q-variate vector of model parameters θ based on data from
N individuals. Typical examples for such an objective function are the sum of squared
residuals (SSE) for linear regression models or the normal-theory maximum-likelihood
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fitting function for SEMs. The model parameter estimates θ̂ are obtained by minimizing
the objective function, that is,

θ̂ = argmin
θ

f (θ). (2)

In practice, f is minimized by finding the roots (the zeros) of the partial derivative of
the objective function. Thus, parameter estimates θ̂ can be found by solving the first-order
condition

S(θ̂) = 0, (3)

where

S(θ) =
[

∂ f (θ)
∂θ(1)

· · · ∂ f (θ)
∂θ(q)

]�
(4)

is the partial derivative of the objective function f (θ) with respect to the parameters θ.
Additional steps may be required to ensure that the parameter estimates are associated
with the global minimum, depending on the type of objective function. In maximum
likelihood estimation, the partial derivative defined in Equation (4) is known as the score.
We will use this term to refer to the derivatives of all kinds of objective functions in the
following.

The idea behind the derivation of the IPCs is simple. Instead of employing a score
S(θ), which takes information from all individuals into account to estimate a single set
of parameters, we specify individual-specific scores to find individual-specific parameter
estimates. In greater detail, let Si(θ) denote the score that uses only data from individual i.
Hypothetically, solving Si(θ̂i) = 0 would yield a vector of parameter estimates θ̂i specific
to individual i. Unfortunately, the system of equations Si(θ̂) = 0 is undetermined for most
objective functions because there are more unknown parameters than individual-specific
data. However, we can approximate the individual scores by combining individual data
with information from the model.

Individual scores can be approximated through linearization. The equation for the
linearization of the score S(θ) at the model parameter estimates θ̂ is:

S(θ) ≈ S(θ̂) + H(θ̂)
(

θ− θ̂
)

(5)

The first term, which is the intercept of the linear approximation, is just the score itself,
evaluated at the parameter estimates. From Equation (3), we can see that this intercept is
always zero. The function

H(θ) =
∂2 f (θ)
∂θ ∂θ�

(6)

is the Hessian matrix of second-order partial derivatives of the objective function with
respect to the parameters. In the equation above, H(θ) is the slope of the linearized score.

In the next step, we individualize this linear approximation of the score by replacing
the sample score S(θ̂) with an individual-specific score Si(θ̂). As a result, the intercepts
of the individual score approximations are no longer zero but fluctuate around zero. In
contrast to the sample score S(θ̂), the sample Hessian matrix H(θ̂) cannot be individualized
as that would destabilize the approximation. Therefore, we are borrowing the Hessian
matrix from the complete sample. As a result, the individualized approximated scores

Si(θ̂) +
1
N

H(θ̂)
(

θ− θ̂
)

, for i = 1, . . . , N, (7)

all have the same slope.
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Finally, finding the roots of these individualized scores yields the IPCs.

0 = Si(θ̂) +
1
N

H(θ̂)
[

IPCi(θ)− θ̂
]

IPCi(θ̂) = θ̂−
[

1
N

H(θ̂)

]−1
Si(θ̂) (8)

The mean and variance of the IPCs correspond to well-known quantities. It follows
directly from Equation (3) that the mean of the IPCs equals the parameter estimates; that
is, 1/N ∑N

i=1 IPCi(θ̂) = θ̂. Calculating the variance of the IPCs yields the following sample
estimate of the so-called sandwich estimator of the covariance matrix of the parameters
(see [22]):

V̂ar
[

IPCi(θ̂)
]
=

[
1
N

H(θ̂)

]−1 1
N

N

∑
i=1

Si(θ̂)Si(θ̂)
�
{[

1
N

H(θ̂)

]−1
}�

= V̂ar(θ̂) (9)

Next, we will give more explicit examples by deriving the IPCs to the regression
coefficients of the standard multiple linear regression model, using the SSE objective
function. The following model

yi = x�i β + εi, i = 1, . . . , N, (10)

extends the simple linear regression model in Equation (1) by having p regressors x with a
corresponding p-variate vector of regression coefficients β.

To calculate the IPCs to the estimated regression coefficients β̂, we need the first-order
and second-order partial derivatives of the objective function. The SSE objective function
minimizes the sum of the squared differences between the observed values of the outcome
variable y and the predicted values based on the regression model. Formally, the SSE
objective function is defined as

f (β) =
N

∑
i=1

(
yi − x�i β

)2
. (11)

The first-order and second-order derivatives of the objective function are:

S(β) = 2
N

∑
i=1

(
−xiyi + xix

�
i β

)
(12)

H(β) = 2
N

∑
i=1

xix
�
i (13)

Thus, the IPCs of individual i to the estimated regression coefficients β̂ are given by

IPCi(β̂) = β̂ −
[

1
N

H(θ̂)

]−1
Si(β̂)

= β̂ −
(

2
N

N

∑
i=1

xix
�
i

)−1(
−2xiyi + 2xix

�
i β̂

)

= β̂ +

(
1
N

N

∑
i=1

xix
�
i

)−1

xiyi −
(

1
N

N

∑
i=1

xix
�
i

)−1

xix
�
i β̂

=

(
1
N

N

∑
i=1

xix
�
i

)−1

xiyi +

⎡⎣Ip −
(

1
N

N

∑
i=1

xix
�
i

)−1

xix
�
i

⎤⎦β̂, (14)

where Ip denotes an identity matrix of order p.
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Equation (14) allows us to illustrate the behavior of IPCs from groups of the sample.
Let G be the index set of a group of nG individuals with the same values in their covariates.
Consider the following group-specific mean:

1
nG

∑
j∈G

IPCj(β̂) =

(
1
N

N

∑
i=1

xix
�
i

)−1
1

nG
∑
j∈G

xjyj

+

⎡⎣Ip −
(

1
N

N

∑
i=1

xix
�
i

)−1
1

nG
∑
j∈G

xjx
�
j

⎤⎦β̂ (15)

In the above equation, the outer product of the regressors xx� plays an important
role. If the group-specific average of the outer product is identical to the outer product
averaged over the complete sample, then the first term of Equation (15) equals the OLS
estimate of the group-specific regression coefficients and the second term is zero. Therefore,
the mean of the IPCs from this group will be an unbiased estimator of the group-specific
regression coefficients. However, if the group-specific average of the outer product differs
from the outer product averaged over the complete sample, then the first term will not
be identical to the OLS estimate and the second term will not drop out. Thus, group
differences in the outer product bias the IPCs. The size of this bias is proportional to the
size of the differences in the outer products. These insights also apply to other model
classes. Generally speaking, the bias of the IPCs increases with the amount of heterogeneity
in the data [12]. In homogeneous samples, the IPCs are guaranteed to be unbiased.

3.2. Bias Correction Procedure

Arnold et al. [12] suggested a correction procedure termed iterated IPC regression
that removes bias in the IPCs in a stepwise fashion. Iterated IPC regression proceeds
as follows: first, the model is fitted, and standard IPC regression is performed. Second,
individual-specific model parameters are predicted using the coefficients of the IPC regres-
sion equations. Third, these individual-specific model parameters are used to re-estimate
the IPCs. The third step reduces some bias in the IPCs as the re-estimated IPCs are closer
to the true individual-specific parameter values. By iterating over steps 2 and 3, the bias
of the IPCs usually vanishes completely and the IPC regression estimates converge to
unbiased estimates of the individual parameters. In a simulation study, Arnold et al. [12]
compared both IPC regression approaches by predicting group differences in dynamic
panel models. In contrast to standard IPC regression, whose estimates were slightly biased,
the iterated algorithm provided nearly unbiased but slightly less precise estimates. Iterated
IPC regression is implemented in the ipcr package. However, the iterated algorithm is
limited to SEMs at present.

4. The ipcr Package: Overview and Installation

The ipcr package supplies functions for calculating IPCs and performing IPC regres-
sion. To a large extent, ipcr relies on infrastructure provided by the sandwich package [23].
sandwich allows users to estimate a wide variety of model-robust covariance estimators.
The sandwich package contains the generic functions estfun() and bread() used as the
building blocks to calculate the IPCs. estfun() returns the case-wise partial derivatives of
the objective function with respect to the model parameters (see Equation (4) for the sum
of the case-wise scores). bread() extracts an estimator for the expectation of the negative
derivative of the objective function; usually the Hessian as defined in Equation (6).

Since the ipcr package was first introduced by Arnold et al. [12] to investigate pa-
rameter differences in SEMs fitted with the OpenMx package [24], support for various
parametric models has been added. Now, ipcr can also be used to investigate SEMs fitted
with the lavaan package [21]. Other than SEMs, linear and generalized regression models
fitted by R’s built-in lm() and glm() functions are supported. Moreover, by using some ex-
tractor functions provided by the merDeriv package [25], ipcr can also be applied to study
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parameter heterogeneity in Gaussian linear mixed models fitted with the lme4 package [6].
Other notable new features are better plotting capabilities and regularized IPC regression.

ipcr can be downloaded from GitHub https://github.com/manuelarnold/ipcr (ac-
cessed on 5 August 2021). The easiest way to obtain ipcr is via the devtools package [26].
To install and load ipcr within R, simply use the following commands:

R> library("devtools")

R> install_github("manuelarnold/ipcr")

R> library("ipcr")

5. Application

This section demonstrates how parameter differences can be detected and predicted
with the ipcr package, using the HolzingerSwineford1939 data set included in the
lavaan package.

5.1. Data Overview

HolzingerSwineford1939 is a classic data set that has often been used to illustrate
different SEM applications. It consists of mental ability test scores of 301 seventh-grade and
eighth-grade children from two different schools and additional variables indicating the
children’s sex, age, school, and grade. For the sake of simplicity, we limit this demonstration
to a subset of the variables. We will use three visual ability test scores to fit a confirmatory
factor analysis (CFA) model. Then, we use sex, age, school, and grade as IPC regression
predictor variables to predict differences in the model. The variables are briefly described
in Table 1.

Table 1. Selected variables from the HolzingerSwineford1939 data set.

Variable Name Description Level of Measurement

Model data:
x1 Visual perception Interval (M = 4.94, SD = 1.17)
x2 Cubes Interval (M = 6.09, SD = 1.18)
x3 Lozenges Interval (M = 2.25, SD = 1.13)
Covariates:
sex Gender Nominal (48.3% female, 51.7% male)
ageyr Age, year part Interval (M = 13.00, SD = 1.05)
agemo Age, month part Interval (M = 5.38, SD = 3.46)
school School (Pasteur or Grant-White) Nominal (52% Pasteur, 48% Grant-White)
grade Grade Ordinal (52.3% grade 7, 47.7% grade 8)

Note: M: mean, SD: standard deviation.

5.2. Data Pre-Processing

Below, we explain how missing data can be handled and show some preparation steps
that facilitate the interpretation of IPC regression. First, we load the lavaan package that
contains the data set. Then, we store the data set under a new variable name:

R> library("lavaan")

R> HS_data <- HolzingerSwineford1939

The students’ age is stored in two different variables: ageyr measures the age in
completed years, and the variable agemo contains the additional months. Next, we combine
this information into a single variable that measures the students’ age in months:

R> HS_data$age_months <- 12 * HS_data$ageyr + HS_data$agemo

Currently, the ipcr package requires the data used to fit the model and covariates to be
complete, that is, without any missing values. In the cases of the HolzingerSwineford1939
data set, there is just a single missing value in the covariate grade. In order to keep this
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illustration simple, we will exclude the individual with the missing value from the data set
by deleting the corresponding row in the data.frame. However, it has long been known
that list-wise deletion is not optimal, and users with incomplete data sets might consider
more sophisticated methods such as multiple imputation (see [27,28]) to deal with missing
values. Here, we delete the incomplete row with the following command:

R> HS_data <- HS_data[complete.cases(HS_data), ]

As in standard linear regression, the interpretation of the intercept can often be
facilitated by centering the predictor variables at their means. After centering the covariates,
a regression intercept represents the estimated parameter value for individuals with an
average value on all covariates. The effects of categorical covariates, such as grouping
variables, can be studied by encoding them as dummy variables. In the following, we
center the covariate months and change the coding of all categorical covariates to either 0
or 1. We store the resulting covariates in a new data.frame called covariates:

R> covariates <- data.frame(sex = HS_data$sex - 1,

+ months = scale(HS_data$age_months,

+ center = TRUE,

+ scale = FALSE),

+ school = as.numeric(HS_data$school) - 1,

+ grade = HS_data$grade - 7)

5.3. Fitting the Model

After the data have been prepared, we fit a CFA model using the cfa function from
lavaan. The CFA consists of a latent variable, indicating the students’ visual ability, mea-
sured by three manifest variables x1, x2, and x3. Figure 2 shows a graphical representation
of the model. The corresponding lavaan syntax for specifying this model is as follows:

R> model_visual <- ’visual =~ x1 + x2 + x3’

Figure 2. Path diagram of the CFA model. The parameters λ1 and λ2 denote factor loadings, φ

represents the variance of the latent variable V, and ψ1, ψ2, and ψ3 are measurement error variances.

We can now fit the model:

R> fit_visual <- cfa(model = model_visual, data = HS_data)

The model contains 6 free parameters: 2 factor loadings (the factor loading of x1 is
fixed at 1 and the loadings of x2 and x3 are estimated), 1 latent variance parameter, and 3
residual variance parameters of the manifest variables. Since the model has zero degrees of
freedom and is just identified, we cannot assess its fit.
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5.4. Individual Parameter Contribution Regression

The core of the ipcr package is the ipcr() function. ipcr() calculates IPCs for the
parameters of a fitted model and, when provided with a data.frame of covariates, performs
IPC regression. Other than the ipcr() function, the ipcr package offers the convenience
functions get_ipcs() and get_scores(), which return a data.frame of IPCs or scores,
respectively.

In the following, we call the ipcr() function to investigate whether and how the
parameters of the CFA model for visual abilities vary with respect to the covariates:

R> library(ipcr)

R> ipcr_visual <- ipcr(fit = fit_visual, covariates = covariates)

ipcr() automatically regresses the IPCs of all model parameter estimates on all
covariates in the provided data.frame and returns an object of class icpr. The usual R
accessor functions such as coef(), fitted(), plot(), predict(), print(), and summary()

can be used to extract various information from the ipcr object. To get a first overview,
we can plot a heatmap using plot(ipcr_visual) that shows the correlations between the
IPCs and covariates (see Figure 3). By specifying the argument print_corr = TRUE, the
correlation coefficients are printed on the heatmap. Note that the heatmap depicts the
zero-order correlations between IPCs and covariates, whereas IPC regression estimates
the partial effects of the covariates on the IPCs. Zero-order correlations and partial effects
might differ, especially if some of the covariates are correlated.
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Figure 3. Correlations between covariates (x-axis) and the IPCs of the model parameters (y-axis)
obtained with plot(ipcr_visual, print_corr = TRUE). Parameter names are given in lavaan syntax.
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More detailed information can be obtained with the summary() function. summary()
prints the IPC regression results for each estimated model parameter:

R> summary(ipcr_visual)

Standard IPC regression coefficients:

Parameter Covariate Estimate Std..Error t.value Pr...t..

1 visual=~x2 (Intercept) 0.565 0.326 1.732 0.084

2 visual=~x2 sex -0.253 0.313 -0.809 0.419

3 visual=~x2 months -0.027 0.016 -1.712 0.088

4 visual=~x2 school 0.037 0.321 0.114 0.909

5 visual=~x2 grade 0.676 0.365 1.853 0.065

6 visual=~x3 (Intercept) 1.301 0.484 2.690 0.008

7 visual=~x3 sex -1.192 0.464 -2.566 0.011

8 visual=~x3 months -0.021 0.023 -0.897 0.371

9 visual=~x3 school 0.152 0.477 0.320 0.749

10 visual=~x3 grade 0.722 0.541 1.333 0.184

11 x1~~x1 (Intercept) 1.046 0.288 3.634 0.000

12 x1~~x1 sex -0.253 0.276 -0.917 0.360

13 x1~~x1 months 0.015 0.014 1.065 0.288

14 x1~~x1 school -0.069 0.284 -0.242 0.809

15 x1~~x1 grade -0.093 0.322 -0.287 0.774

16 x2~~x2 (Intercept) 1.305 0.229 5.695 0.000

17 x2~~x2 sex -0.603 0.220 -2.739 0.007

18 x2~~x2 months 0.003 0.011 0.251 0.802

19 x2~~x2 school 0.325 0.226 1.438 0.151

20 x2~~x2 grade -0.195 0.257 -0.759 0.448

21 x3~~x3 (Intercept) 0.255 0.269 0.947 0.344

22 x3~~x3 sex 0.341 0.259 1.317 0.189

23 x3~~x3 months -0.014 0.013 -1.084 0.279

24 x3~~x3 school 0.240 0.266 0.905 0.366

25 x3~~x3 grade 0.149 0.302 0.493 0.622

26 visual~~visual (Intercept) 0.577 0.310 1.864 0.063

27 visual~~visual sex 0.611 0.297 2.055 0.041

28 visual~~visual months 0.028 0.015 1.914 0.057

29 visual~~visual school -0.108 0.305 -0.353 0.725

30 visual~~visual grade -0.650 0.347 -1.875 0.062

The output is structured as follows: the first column contains the names of the model
parameters. The second column shows the names of the covariates, where (Intercept)

simply refers to the intercept of the corresponding IPC regression equation. The remaining
columns display the estimates, standard errors, t-values, and p-values of the IPC regression
parameters as in a standard regression output. Using a significance level of α = 0.05, we
infer that there are three significant sex differences: the factor loading of the indicator
x3, the error variance of the indicator x2, and the variance of the latent factor differs
significantly between girls and boys. The other covariates do not significantly affect the
remaining model parameters. The partial effects of the IPC regression equations can be
visualized with the plot_differences() function. Figure 4 shows the estimated factor
loading of the indicator x3 for different values of the covariates months and sex when all
other covariates are zero.
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Figure 4. Estimated conditional differences in the factor loading of the indicator x3. Left plot: IPCs to
the factor loading are plotted on the students’ age in months. The solid blue line marks the estimated
factor loading as a function of months when all other covariates are zero. The dashed blue lines
represent the upper and lower limit of the 95% pointwise confidence bands. Right plot: IPCs to the
factor loading are plotted on the students’ gender. The big dots mark the estimated factor loadings
for girls and boys when all other covariates are zero. The error bars indicate the 95% confidence
intervals of the estimated gender-specific factor loading.

By default, the accessor functions extract information about all model parameters. The
output can be limited to a single or a subset of parameters of interest by specifying the
parameter argument. For instance, the function call coef(ipcr_visual, parameter =

"visual~~visual") shows only the IPC regression estimates for the variance parameter of
the latent factor.

5.5. Non-Linear Effects and Interactions

Since IPC regression is linear regression at its heart, studying non-linear effects or
interactions between covariates follows the known logic of adding extra terms to the
regression model that are functions of the original covariates. For example, curvilinear rela-
tionships between model parameters and covariates can be modeled by adding polynomial
terms to the data.frame provided to the covariate argument. Similarly, we can probe
interactions between covariates by including product terms. To avoid multicollinearity,
we recommend centering all non-dummy covariates used to generate new polynomial
or product terms. It is important to remember that more complex models may seem to
explain a larger part of the observed variation than simple models unless model selection is
performed using approaches that adjust for model complexity or use independent data. A
detailed account of modeling non-linear and interaction effects in linear regression models
is given by Cohen et al. [29].

Besides exploring relationships between model parameters and covariates, IPC regres-
sion also provides means to discover non-linear relationships in the model. For example,
consider the simple linear regression model in Equation (1). This model postulates a linear
effect of the explanatory variable x on the outcome y denoted by the regression coefficient
β1. By regressing the IPCs to β1 on the squared variable x, we can estimate and test the
explanatory variable’s potential quadratic effect on the outcome y.
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5.6. Bias Correction

IPC regression may provide biased estimates of parameter differences in heteroge-
neous samples (see [12]). The ipcr package provides a correction procedure called iterated
IPC regression that removes the bias in the IPC regression estimates at the cost of adding
additional variance. One can perform iterative instead of standard IPC regression by
calling the ipcr() function with the additional argument iterate set to TRUE. By default,
iterate is set to FALSE, and standard IPC regression is performed. The iterated IPC re-
gression algorithm tries to remove bias in the IPCs in a stepwise fashion and updates the
IPC regression estimates as long as the change in any parameter between iterations is
smaller than a numerical threshold (by default, the absolute difference needs to become
smaller than 1× 10−4). This stopping criterion can be changed via the conv argument of the
ipcr() function. Moreover, the user can also specify the maximum number of iterations
by changing the max_it argument. By default, the algorithm terminates after 50 iterations.
We will later compare the performance of both standard and iterated IPC regression in a
series of simulation studies.

5.7. Regularization

If the number of covariates becomes large, there is a risk that we overfit the regression
models. A solution to this problem is to make the IPC regression output sparser by coupling
IPC regression with the least absolute shrinkage and selection operator (LASSO) [30,31].
LASSO is a widely applied form of regularization that adds a penalty term to the SSE
objective function. This penalty term shrinks regression parameters towards zero, thus
setting some of them to zero, and, as a result, produces sparser models and reduces
overfitting. Note that this approach sets out to minimize prediction error at the cost of
regression coefficients becoming biased estimates (see also [32])).

The ipcr package performs LASSO regularized IPC regression by interfacing the
glmnet package [33]. More specifically, by setting the argument regularization to TRUE,
ipcr() calls the cv.glmnet() function to estimates regularized linear regression models,
using k-fold cross-validation. The settings of cv.glmnet() can be changed by providing
ipcr() with the specific arguments. By default, 10-fold cross-validation with 100 different
values for the penalty term is carried out.

To perform LASSO regularized IPC regression, all covariates need to be standard-
ized beforehand. Standardization prevents LASSO from preferring variables with more
variability over variables with less variability. Without standardization, covariates with
smaller variances will be penalized more severely than covariates with larger variances.
The following command standardizes all covariates:

R> covariates_std <- scale(covariates, center = FALSE, scale = TRUE)

Then, we perform regularized IPC regression and inspect the results with summary():

R> ipcr_visual_reg <- ipcr(fit = fit_visual, covariates = covariates_std,

+ regularization = TRUE)

R> summary(ipcr_visual_reg)

Regularized standard IPC regression coefficients:

Parameter Covariate Estimate

1 visual=~x2 (Intercept) 0.6

2 visual=~x2 sex -0.142

3 visual=~x2 months -0.274

4 visual=~x2 school .

5 visual=~x2 grade 0.403

6 visual=~x3 (Intercept) 1.449

7 visual=~x3 sex -0.543

8 visual=~x3 months .

9 visual=~x3 school .
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10 visual=~x3 grade 0.071

11 x1~~x1 (Intercept) 0.835

12 x1~~x1 sex .

13 x1~~x1 months .

14 x1~~x1 school .

15 x1~~x1 grade .

16 x2~~x2 (Intercept) 1.211

17 x2~~x2 sex -0.329

18 x2~~x2 months .

19 x2~~x2 school 0.131

20 x2~~x2 grade .

21 x3~~x3 (Intercept) 0.627

22 x3~~x3 sex .

23 x3~~x3 months .

24 x3~~x3 school .

25 x3~~x3 grade .

26 visual~~visual (Intercept) 0.527

27 visual~~visual sex .

28 visual~~visual months .

29 visual~~visual school .

30 visual~~visual grade .

The summary() function shows by default the regularized parameter estimates for
the penalty term associated with the minimum mean cross-validated error. Parameter
estimates for specific penalty terms can be obtained by specifying the s argument in
the ipcr() function call and can then be displayed via summary(). In the above output,
coefficients that were set to zero are marked with a dot, resulting in a sparse coefficients
matrix with the most important coefficients. Standard errors, t-values, and p-values are not
shown in the output as they are not provided by glmnet.

6. Simulation Studies

The following series of simulation studies showcases different applications of IPC
regression and illustrates the method’s statistical properties. In Simulation I, we revisit the
introductory example and predict group differences in the variance of the regression errors
of a simple linear regression model. In the subsequent three simulation studies, we turn to
SEMs. In Simulation II, we investigate the effect of multiple covariates on the type I error
rate. Then, we compare the performance of IPC regression with MGSEMs (Simulation III)
and SEMs with interactions (Simulation IV) as established benchmark methods.

All simulations were carried out with R (version 4.0.3). We used R’s built-in lm

function to estimate the simple linear regression model in Simulation I. All SEMs were
fitted with the lavaan package (version 0.6–7). We used a developmental snapshot of the
ipcr package to perform IPC regression (commit: https://github.com/manuelarnold/
ipcr/commit/d4132c73b0e05ced1da6be71119d846424a1a3d6 (accessed on 6 August 2021).
d4132c7). Throughout all simulations, we set the significance level for all hypothesis
tests to 5%. We replicated all experimental conditions 1000 times. The simulation scripts
and complete simulation results can be found in our online Supplementary Material
(https://osf.io/p5xrk accessed on 6 August 2021).

6.1. Simulation I: Simple Linear Regression Model

Simulation I assessed how well IPC regression could predict group differences in a
simple linear regression model such as the one shown in Equation (1). We sampled the
data from a two-group population with a group difference in the error variance σ2. This
simulation setup corresponds to a situation in which the reliability of the outcome variable
differs between groups. For example, such group differences are often encountered in
cross-cultural samples (e.g., [34]). If overlooked, the group differences would bias standard
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errors and render the OLS estimator inefficient. The remaining model parameters, the
intercept β0 and the slope β1, did not vary between groups and were set to 1 and 0.5,
respectively. In every simulation replication, we simulated data, fitted the linear regression
model while ignoring the group difference, and then recovered the group difference with
IPC regression using a dummy variable which was 0 in the first group and 1 in the second
group. We considered only the performance of standard IPC regression in Simulation I
because iterated IPC regression for linear regression models is not yet implemented in the
ipcr package. We investigated the following simulation conditions:

• Group-specific value of σ2: The error variance of the first group σ2
g1 was set to 1 in all

simulation conditions. In the second group, the error variance σ2
g2 varied across the

following values: 5/10, 6/10, 7/10, 8/10, 9/10, 10/10, 10/9, 10/8, 10/7, 10/6, 10/5. We chose the
values so that the absolute value of the log-variance ratio | ln(σ2

g2/σ2
g1)| was the same

for the most extreme conditions (5/10 and 10/5). Note that the 10/10 condition resulted
in a homogeneous sample without group differences.

• Sample size: The sample size per group n was either 125, 250, or 500. The total sample
size N, therefore, equaled 250, 500, or 1000.

6.1.1. Power

First, we report the observed statistical power of IPC regression to detect the group
difference in the error variance. Statistical power is the proportion of t-tests that correctly
rejected the null hypothesis of equal error variance in both groups if there truly was a
difference. Figure 5 relates the power to the size of the group difference and sample size.
We plotted the natural logarithm of the ratio of the error variance in the second group to
the error variance in the first group on the x-axis so that the distances between consecutive
ratios were similar. As expected, the power increased with the size of the group difference
and sample size. When the error variance in the second group was either half or twice as
large as in the first group, the power approached 100%, regardless of sample size. In the
absence of any group differences, when the error variance was equal to 1 in both groups,
the proportions of the rejected test approached the significance level of 5%.
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Figure 5. The power of IPC regression to detect a group difference in the error variance σ2. The
dashed line marks a power of 5%.
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6.1.2. Estimated Group Difference

Besides the statistical power to detect a group difference, the quality of the estimated
group-specific parameters is also crucial. Figure 6 depicts the bias of the estimates of the
group difference in the error variance provided by IPC regression. IPC regression yielded
nearly unbiased estimates when the true group difference was small or zero. However,
larger group differences were negatively biased. This negative bias implied that IPC
regression either overestimated or underestimated the group difference, depending on
whether the error variance of the second group (which varied across simulation conditions)
was smaller or larger than the error variance of the first group (which was fixed at 1 in all
experimental conditions). When the error variance of the second group was smaller than
the error variance of the first group, IPC regression overestimated the group difference.
Conversely, when the error variance was larger in the second group than in the first group,
IPC regression underestimated the group difference. The sample size had no apparent
effect on the bias but decreased the variability of the estimates.
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Figure 6. Boxplots with the bias of the estimated group difference in the error variance σ2.

6.2. Simulation II: Type I Error Rate

Simulation II aimed to assess the type I error rate of IPC regression, that is, the
proportions of false-positive findings that a parameter differs with respect to a covariate
although it is constant in the population. Ideally, the rate of false positives should approach
the significance level of 5%.

The population model used in Simulation II and the remaining simulations is pre-
sented in Figure 7. Depicted is a regression model with two latent variables, each measured
by three indicators. The values of the factor loading λ and the regression coefficient β var-
ied across groups and individuals in Simulation III and IV but were constant in Simulation
II with λ = 1 and β = 0.5. Thus, the population used in Simulation II was homogeneous.
After generating multivariate normally distributed data from the population, we fitted
the model by fixing the first indicator of each latent variable (that is, x1 and y1) to 1 and
estimating the remaining 13 parameters (4 factor loadings, 6 residual variance parameters, 2
latent variance parameters, and 1 regression parameter) freely. Then, standard and iterated
IPC regression were performed.
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Figure 7. Path diagram of the simulation model. The factor loading λ varied between two groups in
Simulation III and the regression parameter β differed across individuals in Simulation IV.

We investigated the following experimental factors:

• Number of covariates: The IPC regression algorithm was provided either with 1, 2, or 3
covariates. These covariates did not predict any parameter differences.

• Type of covariates: The covariates were either dummy or standard normally distributed
variables.

• Sample size (N): The simulated samples contained either 250, 500, or 1000 individuals.

6.2.1. Type I Error Rate

The observed type I error rates were close to the optimal rate of the 5% significance
level. The average type I error rate was 4.92% for standard IPC regression with little
variation across model parameters and simulation conditions. The rate of iterated IPC
regression was slightly larger and was 5.25%. Iterated IPC regression rejected the null
hypothesis more often than expected in smaller samples. When averaged over all model
parameters and the other simulation conditions, iterated IPC regression exhibited a type I
error rate of 5.58% in samples with 250 individuals, 5.40% in samples with 500, and 5.09%
in samples with 1000 individuals.

Additional information about the convergence of the iterated IPC regression algorithm
is given in Appendix A.1.

6.3. Simulation III: Group Difference in the Measurement Part

In Simulation III, we introduced heterogeneity to the measurement part of the model
shown in Figure 7 by letting the factor loading λ vary between two groups. The regression
parameter β was constant and was set to 0.5. IPC regression was provided with a grouping
variable to predict the group difference. As a reference, we compared the performance of
IPC regression with MGSEMs. The power to detect group differences of MGSEMs was
assessed by performing likelihood-ratio tests between a MGSEM where λ was allowed
to vary between groups and a single-group SEM where λ was constrained to be equal
between groups. The remaining parameters of the MGSEMs were constrained to be equal
between groups. The following simulation conditions were investigated:

• Group-specific value of λ: The value of the factor loading in the first group λg1 was set
to 1. For the second group, the value of λg2 varied across 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2,
1.3, and 1.4.

• Sample size: The sample size per group n was either 125, 250, 500. Therefore, the total
sample size N was 250, 500, or 1000.
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6.3.1. Power

Figure 8 shows the power of standard and iterated IPC regression and the MGSEMs
to detect the differences in the factor loading λ. The power of standard and iterated IPC
regression was nearly identical, resulting in overlapping lines. As expected, the power of
all methods grew substantively with the sample size and the size of the group differences.
MGSEMs were consistently more powerful than the IPC regression methods in detecting
the group difference. For medium-sized group differences, when λg2 was either 0.8 or 1.2,
we found MGSEMs on average to outperform the IPC regression methods by roughly 21
percentage points. When λg2 = 1, the factor loading was identical in both groups, resulting
in a homogeneous sample. In this case, the proportions of significant tests approached the
significance level of 5% for all methods.
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Figure 8. The power of standard and iterated IPC regression and MGSEMs to detect a group
difference in the factor loading λ. The dashed line marks a power of 5%.

6.3.2. Estimated Group Difference

Figure 9 presents boxplots of the bias of the estimated group difference in the factor
loading, provided by standard and iterated IPC regression and MGSEMs. All methods
produced nearly unbiased estimates. The estimates of the group difference provided by
MGSEMs exhibited less variability than the IPC regression estimates in all experimental
conditions. In terms of the root mean squared error (RMSE) averaged over the two group-
specific estimates of the factor loading, MGSEMs (RMSE: 0.067) were marginally more
accurate than standard (RMSE: 0.076) and iterated (RMSE: 0.077) IPC regression.
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Figure 9. Boxplots with the bias of the estimated group difference in the factor loading λ (y-axis) for
different true group differences and sample sizes.

6.4. Simulation IV: Individual Differences in the Structural Part

In Simulation IV, we compared the performance of standard and iterated IPC regres-
sion to a SEMs with an interaction term. The data were generated by letting the regression
parameter β vary across individuals and fixing the factor loading λ at 1. More specifi-
cally, the individual values of β were a linear function of a standard normally distributed
covariate z:

βi = 0.5 + γzi (16)

The value of the coefficient γ determined the relationship between covariate and
regression parameter and was of primary interest in this simulation. We investigated the
following simulation conditions:

• Value of γ: The dependency of the individual regression parameter values on the
covariate was either −0.2, −0.15, −0.1, −0.05, 0, 0.05, 0.1, 0.15, or 0.2. Note that the
zero condition corresponds to a homogeneous sample with a constant regression
parameter β.

• Sample size (N): The simulated samples contained either 250, 500, or 1000 individuals.

There are several ways to specify SEMs with interactions (see [10] for an overview).
Following Marsh et al. [35], we contrasted IPC regression with a SEM containing a product
term consisting of the indicators of the exogenous latent variable ξ and the covariate z. We
used a parcel of the indicators x1, x2, and x3 to create this product term, which we denote
with zx̄. Note that x̄ refers to the row-wise means and not the mean of a single variable.
We also added the covariate to the model and specified a main effect of the covariate on
the endogenous latent variable η. Moreover, we let all exogenous predictor variables co-
vary. Finally, to avoid having to specify a mean structure, we used double-mean centering
(see [36]); that is, we centered all manifest variables, computed the product term using
the centered variables, and then centered the product term again. A path diagram of
the interaction model is shown in Figure 10. The direct effect of the product term on the
endogenous variable (i.e., the regression parameter βη,zx̄) is an estimate of the coefficient γ
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in Equation (16). We assessed the power of the SEMs with a product term by testing the
hypothesis βη,zx̄ = 0 via z-tests.

Figure 10. Path diagram of the interaction model with a product term.

6.4.1. Power

Figure 11 presents the observed power of the IPC regression methods and the inter-
action SEMs to detect that the regression parameter β depended on the covariate z. As in
Simulation II, the power of standard and iterated IPC regression was nearly the same. The
SEMs with the product term were slightly more powerful than the IPC regression methods.
The largest difference in power was found when the sample consisted of 500 individuals
and the absolute value of the coefficient γ was 0.1. Under this condition, the SEMs with a
product term outperformed the IPC regression methods by approximately 15 percentage
points. For γ = 0, when the regression parameter β did not depend on the covariate z, the
proportions of significant tests of all methods approached the significance level of 5%.
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Figure 11. The power of standard and iterated IPC regression and SEMs with a product term to
detect the dependency of the regression parameter β on the covariate z. The dashed line marks a
power of 5%.
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6.4.2. Estimated Interaction

Figure 12 shows boxplots with the bias of the estimates of the coefficient γ provided
by standard and iterated IPC regression and the SEMs with a product term. SEMs with a
product term underestimated the absolute value of the dependency slightly. In comparison,
IPC regression yielded mostly unbiased but also more volatile estimates. Especially in
smaller samples with 250 observations, iterated IPC regression produced some outliers that
were not found in the estimates provided by standard IPC regression. In terms of RMSE
averaged over all simulation conditions, standard (RMSE: 0.051) and iterated (RMSE: 0.051)
IPC regression were marginally outperformed by SEMs with a product term (RMSE: 0.042).

Additional information about the convergence of the iterated IPC regression algorithm
is given in Appendix A.2.
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Figure 12. Boxplots with the bias of the estimates of the dependency γ (y-axis) for different values of
γ and sample sizes.

7. Discussion

The present study showed how differences in model parameters can be predicted with
IPC regression using the ipcr package. We showcased the functionality of the ipcr package
using a classic data set and provided detailed R code. We expanded upon earlier research
about predicting parameter differences in SEMs and demonstrated that IPC regression can
also predict parameter differences in linear regression models. Moreover, we presented
novel simulation results that illuminated the method’s performance for linear regression
models and contrasted it with SEMs with an interaction term.

We see IPC regression primarily as a diagnostic tool that indicates whether there is
any predictive potential for parameter heterogeneity in a set of covariates and provides
researchers with hints on how these covariates can be integrated into their models. As
such, IPC regression offers some advantages compared to other procedures for exploring
heterogeneity with covariates. One of these advantages is the flexibility of the method:
IPC regression allows researchers to investigate all types of model parameters. We demon-
strated this flexibility by predicting group differences in the error variance of a linear
regression model. Another merit of IPC regression is its simplicity. Especially for model
classes where model specification and estimation can become complicated such as SEMs,
researchers can obtain results much quicker with IPC regression via a single call of the
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ipcr() function than, for instance, from specifying and estimating MGSEMs and SEMs
with interaction terms. One can also argue that this simplicity makes IPC regression less
prone to specification errors and may prove useful if a complex model is hard to estimate.
Finally, IPC regression can guide the selection of important covariates among a larger set
of covariates, particularly in combination with LASSO regularization as implemented in
the ipcr package.

The question remains as to how we can best translate the results of IPC regression
into an improved parametric model. A key problem of data-driven methods like IPC
regression is their susceptibility to capitalize on chance, that is, to overfit to noise in
the data (see [37,38] for a discussion of the problem). In other words, IPC regression
may indicate model modifications that increase the model’s fit in the sample at hand but
generalize poorly to new data. The risk of overfitting rises with the complexity of the model
and the number of covariates. For example, given a model with 10 parameters and a set of
10 covariates, IPC regression will produce 100 IPC regression estimates with associated
p-values. Using the conventional 5% level of significance and assuming homogeneous data
(i.e., no parameter differences at all), one would expect to 5 five false-positive effects of a
covariate on a model parameter on average. We recommend three different strategies to
minimize the risk of overfitting the model. First, adopting a machine learning perspective,
we encourage researchers to apply regularized IPC regression, which penalizes each
regression for model complexity. Second, if the sample size is sufficiently large, one should
additionally split the sample into a training and a test data set. The training data set is
used for model estimation with IPC regression. After modifying the model following
the results of IPC regression, the fit of the new augmented model is then independently
evaluated in the test data set. Third, we suggest considering the estimated change in model
parameters in addition to p-values to determine how to modify a given theory-based model.
For instance, a statistically significant group difference in a parameter may be just too
small to be of scientific interest and would not necessarily warrant model modification. In
most cases, such thresholds for scientific relevancy will be different for different types of
parameters. Most likely, heterogeneity in nuisance parameters such as an error variance
needs to be much more pronounced than heterogeneity in a regression parameter central
to one’s inquiry to justify a model modification.

The results of our simulations were overall promising. In line with previous simula-
tion studies reported by Oberski [11] and Arnold et al. [12], we found that IPC regression
provided adequate control of type I errors under the null hypothesis of homogeneous
parameters. Moreover, we found little differences in terms of bias and variance of the esti-
mates provided by IPC regression and MGSEMs. However, as in the previous simulation
studies, IPC regression was consistently less powerful in detecting parameter heterogeneity
than MGSEMs. We expanded upon previous studies that only discussed IPC regression for
SEMs and predicted a group difference in the error variance of a linear regression model.
The estimates of the group differences were slightly biased. In another simulation study,
we compared IPC regression to SEMs with a product interaction term suggested by Marsh
et al. [10]. Interestingly, IPC regression was more accurate but less precise than SEMs with
an interaction term and exhibited a lower power. As part of our simulation studies, we also
compared standard IPC regression with iterated IPC regression. Iterated IPC regression
was suggested by Arnold et al. [12] as an unbiased alternative to standard IPC regression.
Unfortunately, these comparisons were limited to SEMs as iterated IPC regression has not
yet been implemented for other model classes. Both IPC regression methods yielded almost
identical results in terms of power and bias. However, iterated IPC regression showed
some cases of non-convergence, especially in smaller samples and when provided with
continuous covariates. Furthermore, the type I error rate of iterated IPC regression was
marginally larger than the significance level in smaller samples. Similar performance of
the IPC regression methods was to be expected because the parameter differences tested
were too small to bias standard IPC regression.
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Although the ipcr package makes performing IPC regression for various parametric
models straightforward in most situations, it is still under ongoing development, and
we would like to note some of its current limitations. The biased estimates obtained for
the linear regression model underline the need to generalize the iterated IPC regression
algorithm and develop a version for regression models. Moreover, the sometimes poor
convergence rate of iterated IPC regression highlights the necessity for an improved
algorithm that is more reliable in smaller samples and when provided with continuous
covariates. Another limitation is that IPC regression currently requires complete data sets
without missing values. Especially for researchers working with SEMs who routinely
employ full information maximum likelihood to deal with missingness, this limitation
might be an issue. We plan to implement support for SEMs fitted on incomplete data in
the future. In the meantime, we suggest using an imputation technique such as multiple
imputation as a workaround [27,28]. Finally, even though the combination of IPC regression
and regularization seems like a natural fit to handle larger sets of covariates, more research
is needed to understand this interplay better and determine better default settings.

IPC regression may not always be the best choice for exploring parameter heterogene-
ity with covariates. Besides adding covariates directly to the model, other techniques are
available for testing and estimating the effects of covariates. If the sample is clustered
into known groups, mixed-effects or multilevel models (e.g., [39,40]) are an obvious al-
ternative and allow parameters to vary across groups. Unlike IPC regression, the use of
mixed-effects models is usually motivated by a prior belief that certain data segments
differ. In contrast, IPC regression is a more exploratory or data-driven procedure to identify
potentially important covariates. Further, IPC regression does not rely on a clustered data
structure. Of course, IPC regression can also be used to study heterogeneity in mixed-effects
models. Other methods for exploring parameter heterogeneity are structural change tests
(e.g., [16,18]). These tests have been recently introduced to psychometrics and are applied
to discover parameter differences with respect to a covariate [19]. Especially if one wants to
explore the effect of ordinal covariates, which can be hard to incorporate in the regression
framework, structural change tests may be a well-suited alternative (see [20]). However,
unlike IPC regression, structural change tests are limited to testing if a parameter changes
but do not estimate how it changes with respect to a covariate. Another established ap-
proach to investigate heterogeneity with covariates are model-based recursive partitioning
techniques (e.g., [41,42]). These methods divide a data set into homogeneous subgroups by
finding covariates that predict parameter differences. For SEMs, model-based recursive
partitioning was popularized as SEM trees and gained attention in the past years [43–45].
Finally, it is important to note that the performance of IPC regression depends primarily
on the available covariates. If there are parameter differences, but these differences are
unrelated to the covariates, IPC regression will fail to detect them. That is, covariates need
to be sufficiently informative and reliable to be usable in the context of IPC regression.
Consequently, IPC regression is not a global test of heterogeneity. Methods such as finite
mixture models (e.g., [46–48]) that do not depend on covariates provide a more thorough
test of parameter homogeneity than IPC regression.

Having these alternatives to IPC regression and limitations of the ipcr package in
mind, we believe that IPC regression can be applied in many situations to uncover hetero-
geneity and gross model misspecification. Furthermore, in many cases in which additional
covariates are available, it makes sense to run IPC regression as part of exploration and
model checking procedures. Note that IPC regression should then be labeled as exploratory
analyses and run only after all confirmatory actions were performed.
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Appendix A. Convergence of Iterated IPC Regression

The iterated IPC algorithm was not always able to find a satisfactory solution. We
counted all simulation trials in which the algorithm did not converge after 50 iterations or
aborted prematurely as a non-converged trial. In the following, we report the percentages
of non-converged trials for Simulation II and IV. All attempts converged in Simulation III.
Iterated IPC regression was not evaluated in Simulation I as it has not yet been implemented
for linear regression models.

Appendix A.1. Simulation II

Table A1 presents the percentages of non-converged trials for continuous covariates.
The instability of the iterated IPC regression algorithm was driven by the sample size and
the number of continuous covariates. Smaller samples and more continuous covariates
led to a larger number of non-converged trials. However, when provided with dummy
variables, the iterated IPC algorithm was much more stable, and there were only four
instances of non-convergence for smaller samples with 250 individuals and three covariates.

Table A1. Non-Convergence of the Iterated IPC Regression Algorithm.

N Number of Covariates NC a

250 1 3.10
500 1 0.20
1000 1 0.00
250 2 9.90
500 2 0.60
1000 2 0.00
250 3 24.40
500 3 3.20
1000 3 0.00

a Percentages of the non-converged simulation trials.

Appendix A.2. Simulation IV

Table A2 summarizes the percentages of trials in which the iterated IPC regression
algorithm did not converge, separated for different sample sizes. Convergence prob-
lems were mainly limited to smaller samples with 250 individuals, whereas iterated IPC
regression found a solution almost every time in larger samples.
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Table A2. Non-Convergence of the Iterated IPC Regression Algorithm.

N NC a

250 4.2
500 0.3
1000 0

a Percentages of the non-converged simulation trials.
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s u b s et s. I n p a st r e s e ar c h,  S E M tr e e s h a v e b e e n e sti m at e d pr e d o mi n a ntl y  wit h t h e

R p a c k a g e s e m t r e e . T h e ori gi n al al g orit h m i n t h e s e m t r e e p a c k a g e s el e ct s s plit

v ari a bl e s a m o n g c o v ari at e s b y c al c ul ati n g a li k eli h o o d r ati o f or e a c h p o s si bl e s plit of

e a c h c o v ari at e.  O bt ai ni n g t h e s e li k eli h o o d r ati o s i s c o m p ut ati o n all y d e m a n di n g.  A s a

r e m e d y,  w e pr o p o s e t o g ui d e t h e c o n str u cti o n of  S E M tr e e s b y a f a mil y of s c or e- b a s e d

t e st s t h at h a v e r e c e ntl y b e e n p o p ul ari z e d i n p s y c h o m etri c s (M er kl e a n d Z eil ei s, 2 0 1 3 ;

M er kl e et al., 2 0 1 4 ). T h e s e s c or e- b a s e d t e st s  m o nit or fl u ct u ati o n s i n c a s e- wi s e

d eri v ati v e s of t h e li k eli h o o d f u n cti o n t o d et e ct p ar a m et er diff er e n c e s b et w e e n gr o u p s.

C o m p ar e d t o t h e li k eli h o o d-r ati o a p pr o a c h, s c or e- b a s e d t e st s ar e c o m p ut ati o n all y

ef fi ci e nt b e c a u s e t h e y d o n ot r e q uir e r e fitti n g t h e  m o d el f or e v er y p o s si bl e s plit. I n

t hi s p a p er,  w e i ntr o d u c e s c or e- g ui d e d  S E M tr e e s, i m pl e m e nt t h e m i n s e m t r e e , a n d

e v al u at e t h eir p erf or m a n c e b y  m e a n s of a  M o nt e  C arl o si m ul ati o n.

K e y w or d s: e x pl or at or y  d at a a n al y si s,  h et er o g e n eit y,  m o d el - b a s e d r e c ur si v e  p artiti o ni n g,  p ar a m et er st a bilit y,

str u ct ur al c h a n g e t e st s, str u ct ur al e q u ati o n  m o d eli n g

I N T R O D U C TI O N

Str u ct ur al e q u ati o n  m o d els ( S E Ms; B oll e n, 1 9 8 9 ; Kli n e, 2 0 1 6 ) ar e a  wi d el y a p pli e d t e c h ni q u e i n
s o ci al a n d ps y c h ol o gi c al r es e ar c h t o  m o d el t h e r el ati o ns hi ps b et w e e n  m ulti pl e v ari a bl es. S E Ms ar e
es p e ci all y us ef ul  w h e n s o m e of t h e v ari a bl es u n d er i n v esti g ati o n ar e l at e nt ( n ot dir e ctl y o bs er v a bl e)
or c o nt ai n  m e as ur e m e nt err ors.  Vari o us st atisti c al pr o c e d ur es s u c h as f a ct or a n al ysis,  A N O V A,
li n e ar r e gr essi o n,  m e di ati o n  m o d els, gr o wt h c ur v e  m o d els, a n d d y n a mi c p a n el  m o d els c a n b e
s p e ci fi e d  wit hi n t h e S E M fr a m e w or k.

A  m aj or c h all e n g e t h at c o m pli c at es t h e s p e ci fi c ati o n a n d i nt er pr et ati o n of S E Ms ar e p ot e nti al
di ff er e n c es b et w e e n s u b gr o u ps of t h e s a m pl e.  Gr o u p di ff er e n c es c a n p ert ai n t o v ari o us as p e cts of a
S E M. F or i nst a n c e, i n a l at e nt gr o wt h c ur v e  m o d el,  w e  m a y fi n d di ff er e n c es i n h o w p e o pl e c h a n g e
o v er ti m e, or i n a f a ct or a n al ysis  m o d el, t h e f a ct or str u ct ur e  m a y v ar y a cr oss gr o u ps.  B y n e gl e cti n g
s u c h i nst a n c es of s a m pl e h et er o g e n eit y, S E M p ar a m et er esti m at es  m a y n ot r e pr es e nt a n y i n di vi d u al
i n t h e s a m pl e, a n d r es e ar c h ers ris k dr a wi n g i n c orr e ct c o n cl usi o ns fr o m t h eir d at a ( e. g., Ki e vit et al.,
2 0 1 3 ).  T his  m a k es i d e ntif yi n g gr o u p di ff er e n c es i n S E M p ar a m et ers a n i m p ort a nt t as k.

O n e p o p ul ar str at e g y is t o d et e ct h et er o g e n eit y i n S E Ms  wit h t h e h el p of c o v ari at es.  M ulti- gr o u p
str u ct ur al e q u ati o n  m o d els ( M G S E Ms; S ör b o m, 1 9 7 4 ) all o w esti m ati n g di ff er e nt p ar a m et er v al u es
f or t h e l e v els of a gr o u pi n g v ari a bl e, s u c h as  m al es a n d f e m al es or tr e at e d v ers us n o n-tr e at e d.
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By comparing the fit of a single-group SEM to the fit of a
MGSEM, equality constraints on parameters across groups can
be tested with the likelihood-ratio test. Multi-group structural
equation modeling excels as a confirmatory tool to test a limited
number of hypotheses about group differences. As part of
exploratory data analysis, however, the method can often become
tedious in large data sets. With many potentially important
grouping variables, many MGSEMs need to be specified and
estimated. Moreover, since MGSEMs require discrete grouping
variables, numeric and ordinal covariates such as age or
socioeconomic status need to be discretized, which often leads to
a loss of information (but see Hildebrandt et al., 2016).

SEM trees, as first presented by Brandmaier et al. (2013b),
can be seen as an extension of MGSEMs for exploring parameter
heterogeneity in SEMs. SEM trees are a data-driven approach
that automatically searches through all available covariates to
identify partitions of the full sample that differ with respect to
SEM parameter estimates. SEM trees build upon the model-based
recursive partitioning paradigm (for an overview, see Zeileis et al.,
2008; Strobl et al., 2009). One key feature of SEM trees is their
interpretability: SEM trees provide a graphical representation
of how covariates and covariate interactions predict non-linear
differences in SEM parameters. The building blocks of SEM
trees are called nodes, each containing a SEM fitted to a distinct
subsample. The SEM tree algorithm forms a binary tree structure
by hierarchically splitting these nodes. Each node of the SEM
tree has either two successors (daughter nodes) and is called an
inner node or no successors and is called a leaf (or terminal
node). The first node of the tree is called the root and has
no parent nodes. The inner nodes of the tree represent split
decisions. Each split decision involves a covariate (e.g., age
of the observed individuals) and a cut point in the covariate
(e.g., divide the sample into individuals younger and older than
45 years). A leaf of a tree contains a partition of the sample
that is best described with a set of SEM parameters. All leaves
taken together exhaustively partition the original sample and
can be thought of as a MGSEM with potentially many groups.
An important difference to conventional multi-group structural
equation modeling is that the group membership in a SEM tree is
not pre-specified but learned from the data.

There are currently two software packages for the statistical
programming language R that allow fitting SEM trees. One
is the semtree package (Brandmaier et al., 2013b) that
has been widely applied in the literature (Brandmaier et al.,
2013a, 2016, 2017, 2018; Jacobucci et al., 2017; Usami et al.,
2017, 2019; de Mooij et al., 2018; Ammerman et al., 2019;
Serang et al., 2020; Simpson-Kent et al., 2020). The other
software implementation is the partykit package (Hothorn
and Zeileis, 2015). Unlike semtree, partykit is not limited
to a specific model class such as SEMs but provides the
infrastructure for general recursive partitioning across various
model classes. Among other features, partykit provides the
generic MOB algorithm for model-based recursive partitioning
that has been used to study heterogeneity in M-estimators
(Zeileis et al., 2008), Bradley-Terry models (Strobl et al., 2011),
Rasch models (Strobl et al., 2015; Komboz et al., 2018),
multinomial processing trees (Wickelmaier and Zeileis, 2018),

generalized linear mixed-effects models (Fokkema et al., 2018),
network models (Jones et al., 2020), and circular regression
models (Lang et al., 2020). Moreover, MOB is also used
in more specialized recursive partitioning packages such as
psychotree (Zeileis et al., 2020). Recently, Zeileis (2020)
demonstrated on his blog how MOB can be coupled with the
SEM software lavaan (Rosseel, 2012) to estimate SEM trees.
Outside of the R ecosystem, SEM trees have also been fitted in
Mplus (Serang et al., 2020).

SEM trees are estimated by recursively selecting the covariate
that best partitions the sample into different subgroups. Thus,
the evaluation of potential splits is the central aspect of
the algorithm. The semtree package uses a procedure that
transforms all non-dichotomous covariates (that is, covariates
with more than two values) into a set of dichotomous split
candidates. Then, the tree growing algorithm computes the
likelihood ratio between a single SEM (fitted on the complete
sample of the current node) and MGSEMs (representing the
model after the split) for every split candidate and selects
the candidate associated with the largest likelihood ratio. The
number of MGSEMs needed to calculate these likelihood ratios
is directly related to the number of possible splits of the
covariate. For instance, evaluating a numeric covariate such
as age with many different values will require more MGSEMs
to be estimated than evaluating a discrete covariate such as
handedness. The reliance of the semtree package on likelihood
ratios has the apparent drawback that the computational burden
becomes large to excessive if there are many covariates and
the covariates have many unique values. Another problem of
the current semtree package is that the standard approach to
split evaluation (called naïve selection approach in semtree) is
biased by favoring the selection of covariates with many unique
values over covariates with few unique values (Brandmaier
et al., 2013b). The semtree package offers a correction
procedure (fair selection approach) for this selection bias (also
known as attribute selection error; Jensen and Cohen, 2000).
However, this correction procedure is heuristic and comes
at the price of decreased statistical power to detect group
differences. To solve this problem, we suggest to use a well-
known method for likelihood-ratio-guided covariate selection
that does not suffer from a selection bias while retaining
full statistical power. We implemented this method into the
semtree package.

In contrast to the semtree package, model-based recursive
partitioning in the partykit package uses so-called score-
based or structural change tests (e.g., Zeileis and Hornik, 2007)
for assessing whether the values of one or more parameters
depend on a covariate. Score-based tests are obtained by
cumulating the case-wise gradients of the log-likelihood function
evaluated at the parameter estimates. Unlike the likelihood-
ratio test, score-based tests do not require the estimation of
group-specific models for the evaluation of each split. This
property leads to two advantages that make score-based tests
highly attractive for model-based recursive partitioning. First,
they are computationally efficient, as only the pre-split model
needs to be estimated once. Second, when subgroups become
small, fitting multi-group models to obtain likelihood ratios
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may become unstable. We propose using the advantages of
score-based tests and added SEM trees guided by score-based
tests to the semtree package. Our implementation of score-
guided trees differs in some points from the generic MOB
algorithm from the partykit package. MOB uses score-based
tests to select a covariate, and it locates the optimal cut point
in this covariate by comparing likelihood ratios. In contrast,
our semtree implementation uses a score-based cut point
localization, which is computationally more efficient. Moreover,
MOB is currently limited to a single score-based test statistic,
whereas semtree offers a broader selection of different test
statistics that recently became popular in the exploration of
measurement invariance in SEMs (Merkle and Zeileis, 2013;
Merkle et al., 2014; Wang et al., 2014, 2018).

The present study assesses a wide range of variable selection
techniques in a Monte Carlo simulation study using the
semtree package. We implemented an optimal likelihood-
ratio-based method to improve the statistical properties of the
likelihood-ratio-based split selection in semtree and added
a family of score-based tests as a computationally efficient
alternative. We evaluated the performance of these new methods
next to the classical naïve and fair methods. Moreover, we
explored two techniques offered by semtree that allow testing
specific hypotheses and incorporating a priori knowledge about
group differences. The remainder of this manuscript is organized
as follows: first, we reiterate the basic principles of SEM
trees. Second, the existing likelihood-ratio-based implementation
is outlined in detail and complemented with an unbiased
method for selecting covariates. Third, we recapitulate a family
of score-based tests and show how they can be used to
guide the split decision of SEM trees. Fourth, the simulation
setup and results are shown. The study concludes with a
discussion of the simulation results and recommendations for
future research.

INTRODUCTORY EXAMPLE

In the following, we illustrate the rationale behind SEM trees
with an instructive example. Readers familiar with SEM trees may
skip this section.

Let us assume a researcher estimated a confirmatory factor
analysis (CFA; Brown, 2015) model that explains the scores of
three ability tests of 600 male and female test takers of different
ages with a single common latent factor and test-specific error
terms. The data were collected at two different testing facilities.
The researcher wonders if the parameter values of her CFAmodel
differ with respect to the sites, the test takers’ age, and gender. She
investigates this question with the help of a SEM tree.

The data for this fictional example were simulated such that
the factor loading of the first ability test for individuals older
than 45 years was smaller (0.6) than for younger individuals
(0.8). This represents a violation of measurement invariance; that
is, differences among individuals’ responses to an item are not
only due to differences in the latent factor but also due to the
item functioning differently across groups and being measured
with different precision. Further, we lowered all factor loadings

of older individuals tested at the second site by 0.1, imposing
another form of violation of metric invariance. The covariate
gender had no impact on the parameters of the CFA model and
served as a noise variable.

Figure 1 shows the resulting SEM tree for the simulated data
set. The SEM tree consists of 5 nodes depicted as ovals, each of
them containing a CFA model. Node 1 is the root node of the
SEM tree and contains the CFA model fitted on the full data set
with N = 600 individuals. In this illustrative example, the SEM
tree algorithm concluded that the fit of themodel in the root node
could be improved most by splitting the data into a group of 300
individuals younger than 45 years (Node 2) and a group of 300
individuals older than 45 years (Node 3). Node 2 and 3 are said to
be the daughters of Node 1. After splitting the sample associated
with Node 1, the algorithm proceeds recursively with Node 2 and
3. Whereas the fit of the model for younger individuals (Node
2) could not be improved any further, the SEM tree algorithm
split the group of older individuals (Node 3) into two subgroups
with 150 older individuals tested at site 1 (Node 4) and 150 older
individuals tested at site 2 (Node 5). After this split, the SEM
tree algorithm terminated as no further split would significantly
improve any of the submodels’ fit. Nodes 2, 4, and 5 are the leaves
of the SEM tree, and individuals within these nodes were found
to be homogeneous with respect to the covariates. As expected,
the SEM tree algorithm did not select the covariate gender for
splitting because this covariate was not associated with any group
differences in the simulated data set.

It is important to note that the structure of the SEM tree
shown in Figure 1 is not specified a priori but learned top-
down in an exploratory way. The algorithm only requires a
pre-specified template SEM (in the example, the CFAmodel) and
a data set including covariates that serve as split candidates to
identify homogeneous groups. The selection of covariates and
the identification of optimal cut points are then learned from
the data. Throughout the tree, the structure of the template SEM
remains the same, and only the values of the parameter estimates
change as the model is fitted recursively on different subsamples.

STRUCTURAL EQUATION MODEL

TREES

The generical SEM tree algorithm can be described in four steps:

1. Specify a template SEM.
2. Fit the template SEM to all observations in

the current node.
3. Assess whether the SEM parameter estimates are constant

or vary with respect to the covariate.
4. Choose the covariate that is associated with the largest

group differences. If the group difference exceeds a
threshold, split the node into two daughter nodes, and
repeat the procedure with Step 2 for both daughter nodes.
Otherwise terminate.

Likelihood-ratio-guided and score-guided SEM trees differ in
how Step 3 of the general SEM tree algorithm is implemented.
In other words, the procedures use different approaches to
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FIGURE 1 | Illustrative example of a SEM tree. The SEM tree recursively partitioned a CFA model with respect to individuals’ age and study site.

evaluate heterogeneity and to search for optimal split points
in covariates. The following section outlines Steps 1–4 for
likelihood-ratio-guided SEM trees before introducing score-
guided SEM trees afterward.

Step 1: Specification of the Template

Model
The starting point for growing a SEM tree is the specification
of a template SEM. A template model reflects hypotheses about
the data by specifying relations among observed variables and
latent constructs and is determined by the research question. The
template model is fitted on all subsamples associated with the
nodes of the SEM tree. It is important to note that the structure
of the template model stays the same in the entire SEM tree
(but see Brandmaier et al., 2013a for trees with multiple models).
Hence, parameters fixed to a constant (e.g., zero or one) in the
template model are fixed to the same constant in all submodels
of the tree. Only parameters freely estimated in the template
model are allowed to differ across groups and contribute to the
assessments of splits.

Fixing many parameters of the template model to constants
can hinder the SEM tree algorithm from identifying group
differences. Usually, some parameters are fixed to ensure the

identification of the SEM. In some model classes, additional
constraints are specified to model specific relationships or
trajectories. For instance, in latent growth curve models (see
McArdle, 2012 for an overview), the factor loadings of a latent
random slope variable are often fixed to model a specific growth
pattern such as linear or quadratic growth. By fixing these
loadings, a SEM tree will not be able to estimate different
growth patterns between groups and, as a result, may overlook
heterogeneity. In this case, estimating the factor loadings as free
parameters may improve the SEM tree’s flexibility to adapt to
subgroup-specific trajectories.

By default, SEM trees estimate all non-fixed parameters
freely in each submodel, and every parameter contributes to
the evaluation of split candidates. This behavior is suboptimal
if there is a clear set of target parameters that are of interest
to investigate a given theory. As a solution, the semtree
package offers the option to specify a set of so-called focus
parameters. By declaring focus parameters, the SEM tree will
only consider heterogeneity in these parameters when assessing
split candidates. Thus, focus parameters are useful for testing
parameter-specific hypotheses about group differences. For
instance, if one wants to test measurement invariance, one could
specify the measurement model’s parameters as focus parameters

Frontiers in Psychology | www.frontiersin.org 4 January 2021 | Volume 11 | Article 564403

92



Arnold et al. Score-Guided SEM Trees

and disregard heterogeneity in the structural model. Besides
focus parameters, the semtree package allows constraining
specific parameters to be equal across all submodels of the
tree. This is done by estimating these parameters in the full
sample once and using the resulting values throughout the tree.
Such equality constraints allow incorporating prior knowledge
about homogeneous parameters and can increase the power to
detect heterogeneity in the remaining parameters. We will later
demonstrate the use of focus parameters and equality constraints
in two short simulation studies.

Step 2: Model Estimation
Various estimation techniques for SEMs have been discussed. In
principle, SEM trees can operate with any estimation method
that provides a fit statistic and are not necessarily limited to
a multivariate normal distribution. At present, however, only
maximum likelihood estimation for multivariate normal data is
implemented in the semtree package. Therefore, semtree
is currently less suited for investigating models fitted on non-
normal data such as SEMs with categorical outcomes. In the
following, we will focus on maximum likelihood estimation for
multivariate normal data.

SEMs are usually specified by expressing the structure of
a mean vector and a covariance matrix as a function of a
q-variate vector θ with model parameters. These parameters
are estimated by minimizing a fitting function F that measures
the discrepancy between the observed means ȳ and the model-
implied means μ(θ) as well as the discrepancy between
the observed covariance matrix S and the model-implied
covariance matrix Σ(θ). Several fitting functions have been
proposed. The following maximum likelihood fitting function
is widely used as it yields efficient parameter estimates
under the assumption of multivariate normally distributed
data:

FML
[
ȳ, S, μ(θ), Σ(θ)

] = [
ȳ − μ(θ)

]T
Σ(θ)−1 [

ȳ − μ(θ)
]

+tr
[
SΣ(θ)−1] − ln

{
det

[
SΣ(θ)−1]} − p (1)

In the equation above, p denotes the number of observed
variables in the SEM. A fitting function also provides
a test of overall model fit. Evaluated at the parameter
estimates θ̂ , (N−1)F asymptotically follows a χ2 distribution
with q degrees of freedom under the null hypothesis
of a correctly specified model, where N refers to the
sample size. A detailed account of SEM estimation
can be found in the textbooks by Bollen (1989) and
Kline (2016).

Step 3: Split Evaluation
The original SEM tree algorithm suggested by Brandmaier et al.
(2013b) compares the fit of a single-group model to the fit of a
MGSEM, which consists of all submodels in the current leaves, to
decide whether to split a node according to a covariate. For the
sake of simplicity, we assume that all covariates are dichotomous
and discuss non-dichotomous covariates afterward.

LetMF represent themodel associated with the root node (that
contains the full data set) and let θ̂F denote the corresponding
parameter estimates. Further, we mark the observed mean vector

of the full data set as ȳF and the observed covariance matrix
as SF . To evaluate a candidate covariate for a specific node,
we split the node into two daughter nodes according to the
covariate. Then, group-specific SEM parameters θ j, j = 1, . . . , J,
are estimated for all subsamples associated with the J current leaf
nodes. Since the subsamples associated with the current leaves are
non-overlapping, the submodels can be joined into a MGSEM,
which we from now on refer to as MSUB. As MF is nested within
MSUB, we can test the following null hypothesis of parameter
homogeneity with respect to the covariate under evaluation:

H0 : θ j = θ0, ∀j = 1, . . . , J (2)

Rejecting Equation 2 implies that the model parameters vary
with respect to the covariate. Brandmaier et al. (2013b) suggested
using the following log-likelihood ratio betweenMF andMSUB as
a test statistic for Equation 2:

LR = (N − 1)

⎧⎨
⎩FML

[
ȳF, SF, μ(θ̂F), Σ(θ̂F)

]

−
J∑

j=1

nj
N
FML

[
ȳj, Sj, μ(θ̂ j), Σ(θ̂ j)

]⎫⎬
⎭ (3)

Under the null hypothesis that there is no influence of
the covariate under scrutiny, LR asymptotically follows a χ2

distribution with (J−1)q degrees of freedom.
This testing procedure provides a powerful and efficient

solution for dichotomous covariates. However, evaluating a
categorical, an ordinal, or a continuous covariate that has
more than two unique values requires an additional step of
locating the optimal cut point. Brandmaier et al. (2013b)
suggested to compute the likelihood ratio in Equation 3 for
every meaningful partition of the covariate and then to select
the cut point associated with the maximum likelihood ratio. For
categorical covariates, the best partition is found by splitting
them into a set of dichotomous variables applying a one-against-
the-rest scheme for all possible combinations of categories.
For ordinal and continuous covariates, the ordering inherent
to these covariates allows applying a procedure known as
exhaustive split search (Quinlan, 1993) to find the optimal cut
point. Given a covariate with m unique values, this procedure
tests m−1 potential partitions to locate the maximum of the
likelihood ratios. For continuous covariates, it is also necessary
to omit a certain fraction of the data associated with the
smallest and largest values of the covariate in order to obtain
a sufficiently large sample to estimate the SEMs in both
partitions. From the above, it is clear that the computational
demand of SEM trees grows with the number of covariates with
many unique values as every potential cut point requires the
estimation of SEMs.

Locating the optimal cut point in categorical, ordinal, and
continuous covariates with the maximum of the likelihood
ratios has important implications for the test statistic shown
in Equation 3. By choosing the maximum of a set of statistics
(one for each possible partition), the resulting distribution is no
longer the same as the distribution of the individual statistics.
Thus, a maximally selected likelihood-ratio test statistic does not
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follow a χ2 distribution under the null hypothesis of parameter
homogeneity. The deviation from the χ2 distribution is directly
related to the number of potential cut points. With a growing
number of possible cut points, the maximum of the likelihood-
ratio values will be increased purely by random fluctuations.
Consequently, using the χ2 test for the evaluation of covariates
will artificially inflate the probability of type I errors and favors
the selection of covariates with many potential cut points over
the selection of covariates with few.

Brandmaier et al. (2013b) discuss different correction
procedures for this selection bias that are used in the semtree
package. The default method, labeled naïve in semtree, uses the
χ2 distribution for evaluating covariates and simply ignores the
resulting selection bias. To reduce this bias, semtree offers the
option to use the naïvemethod in combination with a Bonferroni
correction for multiple testing within the same covariate by
dividing the p-value obtained from the likelihood-ratio test in
Equation 3 by the number of potential cut points. However, this
Bonferroni adjustment can lead to overcorrection and decreases
the probability of selecting covariates with many possible cut
points, as demonstrated by Brandmaier et al. (2013b). We will
refer to this Bonferroni adjusted naïve method simply as the
naïve method from now on. Besides the Bonferroni correction,
different cross-validation methods are implemented in the
semtree package. Cross-validation separates the estimation of
SEMs from the testing of a potential cut point (e.g., Jensen
and Cohen, 2000). SEM trees can be grown with a two-stage
approach (Loh and Shih, 1997; Shih, 2004; Brandmaier et al.,
2013b) that splits the sample associated with a node in half.
One half of the sample is used to find the optimal cut point
for every covariate. The other half is used to evaluate only the
best cut points via the likelihood-ratio test. This method is called
fair in the semtree package. Since the fair method uses only
half of the sample for split selection, its power for detecting
heterogeneity can be expected to be considerably lower than
the power of methods that employ the whole sample. A much
simpler and more elegant way of avoiding the selection bias and
correction procedures altogether is to use the correct distribution
of the maximally selected likelihood-ratio test statistic (maxLR).
Andrews (1993) showed that the asymptotic distribution of
maxLR is the supremum of a certain tied-down Bessel process
from which p-values can be obtained (see Zeileis et al., 2008;
Merkle and Zeileis, 2013). We now implemented the maxLR
statistic into the semtree package to provide a more efficient
and robust likelihood-ratio-based covariate selection.

Step 4: Covariate Selection
To select a single covariate from a set of candidate covariates,
the likelihood ratio for the optimal cut point is computed for
every covariate, and the covariate associated with the smallest
p-value is chosen. If the p-value is smaller than a pre-specified
threshold, determined by the desired probability of a type I error,
splitting is continued recursively. One should keep in mind that
testing several covariates will artificially inflate the type I error
probability. One of several solutions to this problem is the use of
Bonferroni adjusted p-values. Given a large number of covariates,

however, the Bonferroni correction will reduce the power of
the SEM tree drastically and will produce sparse trees. In such
cases, one may resort to unadjusted p-values for the selection
of covariates and, if needed, can limit the size of the SEM tree
with additional stopping criteria like a minimum number of
individuals per node.

SCORE-GUIDED SEM TREES

Using likelihood-ratio tests to grow SEM trees can become
computationally burdensome if not infeasible as the evaluation
of a covariate requires the estimation of MGSEMs for every
potential cut point. Furthermore, when subgroups become small,
fitting MGSEMs may become unstable. Alternatively, SEM trees
can be guided by score-based tests that do not require the
estimation ofMGSEMs to evaluate a split at all. This makes score-
based tests computationally efficient and often more stable as
compared to likelihood-ratio tests. In the following, we will first
introduce the general notion behind score-based tests and then
introduce a family of score-based test statistics for covariates with
different levels of measurement.

Score-Based Tests
Score-based tests originated in econometrics, where they are
primarily employed to detect parameter instability in time
series models (e.g., Hansen, 1992; Andrews, 1993). Score-based
tests can be summarized in three steps: first, the case-wise
derivatives of the log-likelihood function with respect to the
model parameters are computed. These case-wise derivatives,
also called scores, indicate how well the model parameters
represent an individual. The larger the score, the larger the misfit
of a given model parameter for a given individual. Second, the
scores are sorted with respect to a covariate for which we want
to test parameter homogeneity. Third, the scores are aggregated
into a test statistic that allows testing of the null hypothesis of
homogeneous parameters (see Equation 2).

Score-based tests have been derived for general M-estimators
that encompass popular estimation techniques such as least-
squares methods and maximum likelihood as special cases
(Zeileis and Hornik, 2007). For the sake of simplicity, we limit
ourselves to maximum likelihood estimation for multivariate
normally distributed data. The associated log-likelihood function
for a single individual i is given by

ln L(θ; yi) = 1
2

{ [
yi − μ(θ)

]T
Σ(θ)−1 [

yi − μ(θ)
]

+ ln
[
det(Σ(θ))

] + p ln(2π)

}
. (4)

Equation 4 is the normal theory log-likelihood function for a
single individual i and yields identical parameter estimates to FML
shown in Equation 1 if summed over individuals and maximized.

The individual scores are calculated by taking the partial
derivative of the log-likelihood function with respect to the
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parameters and evaluating the expression at the estimates:

S(θ̂; yi) =
[

∂ ln L(θ; yi)
∂θ1

∣∣
θ=θ̂

· · · ∂ ln L(θ; yi)
∂θq

∣∣
θ=θ̂

]T
(5)

The scores assess the extent to which an individual’s log-
likelihood is maximized by one of the q parameters. Values close
to zero indicate a good fit between model and individual, whereas
large scores point toward a strong misfit. Note that by definition,
the scores evaluated at the maximum likelihood estimates θ̂ sum

up to zero; that is,
N∑
i=1

S(θ̂; yi) = 0.

For the construction of a test statistic, the scores are cumulated
according to the order induced by a covariate under scrutiny. For
instance, if parameter homogeneity is assessed with respect to
age, the first row consists of scores from the youngest individual.
For the second row, scores of the youngest and second youngest
individuals are summed up, and so forth. More formally, the
cumulative score process is defined as

CSP(θ̂; s) = 1√
N

I(θ̂)−1/2
s∑

h=1

S(θ̂; yh), (6)

where the index s denotes the number of sorted individuals
entering the equation, and the index h selects the sorted

individuals until h = s. Furthermore, I(θ̂)−
1/2 is the estimated

half-squared inverse of the Fisher information matrix. Pre-

multiplying with I(θ̂)−
1/2 decorrelates the scores so that the q

cumulative score processes are unrelated to each other. In the
following, we place the values of the cumulative score process
row-wise into an N × q matrix that we denote with CSP and
refer to the cumulative sum from the first s-th individuals of the
k-th parameter as CSPs,k. The plots in Panel (A–C) in Figure 2
illustrate how sorting and cumulating scores make parameter
heterogeneity visible.

Hjort and Koning (2002) show that under mild conditions
and constant parameters, each column of the cumulative
score process matrix CSP converges in distribution to a
univariate Brownian bridge. A Brownian bridge is a stochastic
process that is pinned to zero at the start and end and
exhibits the most variability in the middle. Thus, the null
hypothesis of parameter homogeneity in Equation 2 can be
tested by comparing the observed cumulative score process
to the analogous statistic of a Brownian bridge. Panel (C)
and (D) in Figure 2 illustrate the difference between the
cumulative score process of a heterogeneous parameter and the
Brownian bridge.

Test statistics can be obtained by aggregating the cumulative
score process matrix into a single scalar. Critical values and
p-values for these test statistics can be found by applying the
same aggregation to the asymptotic Brownian bridge (Zeileis
and Hornik, 2007). Different ways of aggregating the cumulative

FIGURE 2 | Artificial example to visualize the effect of sorting and cumulating. 100 observations were sampled from two Poisson distributions with different rate

parameters. 50 observations were generated with a rate parameter of 2 and 50 observations with a rate parameter of 5. Panel (A) shows the scores of the 100

observations in random order. Panel (B) displays the 50 scores of observations generated with a rate parameter of 2 first, followed by the 50 scores sampled with a

rate parameter of 5. After sorting the scores according to the two groups, a clear pattern emerges as the first 50 scores are mostly negative, and the remaining

scores are mostly positive. Panel (C) shows the cumulative score process. The negative and positive scores are cumulated, and the change point is noticeable from

the negative peak in the cumulative score process. Panel (D) depicts five randomly generated Brownian bridges. Under the null hypothesis of a constant rate

parameter, the cumulative score process would have behaved similarly to the 5 Brownian bridges in Panel (D).
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scores will produce test statistics that will be sensitive to
different patterns of parameter heterogeneity. The choice of
a test statistic also depends on the level of measurement
of the covariate.

Merkle and Zeileis (2013) proposed three different test
statistics for continuous covariates:

DM = max
s=1,...,N

[
max

k=1,...q

(∣∣CSPs,k∣∣)
]

(7)

CvM = 1
N

N∑
s=1

q∑
k=1

CSP2s,k (8)

maxLM = max
s=s,...,s̄

{[ s
N

(
1 − s

N

)]−1
q∑

k=1

CSP2s,k

}
(9)

Equations 7–9 show the double maximum (DM), Cramér-von-
Mises (CvM), and maximum Lagrange multiplier (maxLM) test
statistics. DM is the simplest test statistic and rejects the null
hypothesis if, at any point, the maximum of any of the q processes
strays too far away from zero. However, Merkle and Zeileis (2013)
note that considering only themaximumof the q processes wastes
power because the DM statistic ignores heterogeneity in other
parameters. Furthermore, even for the same parameter, smaller
peaks before and after the maximum are not considered, which
may lead to a loss of power if the parameter changes its values
across more than two groups. Using sums instead of maxima
solves these problems. The CvM statistic sums the squared values
over all parameters and individuals and is therefore well suited
for detecting multiple group differences in several parameters. If
one suspects that a single change point will manifest in several
parameters, the maxLM statistic that considers the maximum
values of all parameters at a single point is more appropriate.
Unlike the other test statistics for continuous covariates, the
maxLM statistic contains a scaling term s

N
(
1 − s

N
)
, which

increases sensitivity for peaks before and after the middle of
the processes. A disadvantage of this scaling is that individuals
with very small and very large values of the covariate need to be
omitted to stabilize the test statistic. Therefore, one has to specify
an interval

[
s, . . . , s̄

]
with a lower and upper threshold of the

covariate. Parameter shifts outside of these boundaries are not
considered. The maxLM statistic is asymptotically equivalent to
the maxLR statistic from the previous section (Andrews, 1993).

For ordinal and categorical covariates, Merkle et al. (2014)
suggested test statistics that focus on bins of individuals at each
level of the covariates:

WDM = max
l=1, ...,m−1

{[nl
N

(
1 − nl

N

)]−1/2
max

k=1,...q

∣∣CBSPl,k∣∣
}

(10)

maxLMO = max
l=1, ...,m−1

{[nl
N

(
1 − nl

N

)]−1
q∑

k=1

CBSP2l,k

}
(11)

Equations 10 and 11 present the weighted double maximum
(WDM) and the maximum Lagrange multiplier statistics for
ordinal covariates (maxLMO). For both test statistics, we first
group the individuals into m−1 bins associated with the first
m−1 levels of the covariate. Then, we sum the scores in each
bin and cumulate the sums, yielding a (m−1) × q matrix CBSP

of cumulative bins of scores. In the equations above, we denote
the cumulative bin of scores associated with the l-th level of the
covariate and the k-th parameter with CBSPl,k. Both statistics are
scaled by nl

N
(
1 − nl

N
)
, where nl represents the cumulative number

of individuals per bin. The main difference is that the maxLMO
statistic considers heterogeneity in all parameters, whereas the
WDM only considers the most heterogeneous parameter.

Categorical covariates do not possess a natural ordering that
can be used to construct a test statistic. Alternatively, a test
statistic can be obtained by summing the squared differences in
the sum of scores across bins of individuals associated with a
different level of the covariate (Hjort and Koning, 2002). In the
following Lagrange multiplier (LM) statistic

LM =
m∑
l=1

q∑
k=1

(
BSPl,k − BSPl−1,k

)2
, (12)

BSPl,k denotes the sum of the scores of the k-th parameter from
individuals associated with the l-th level of the covariate. B0,k,
k = 1, . . . , q, is not associated with any of the 1, . . . , m levels of
the covariate and is set to zero.

To apply the test statistics outlined above in practice, critical
values and p-values are needed in order to compare split points
across covariates. Analytic solutions are available for the DM,
maxLR,WDM, and LM statistic. For the remaining test statistics,
critical values and p-values can be obtained through repeated
simulation of Brownian bridges. Different strategies for obtaining
critical values and p-values for the DM, maxLR, and CvM
statistics are discussed by Merkle and Zeileis (2013) and for the
WDM, maxLMO, and LM statistics by Merkle et al. (2014).

SEM Trees Guided by Score-Based Tests
Score-guided SEM trees can be obtained by replacing the
evaluation of covariates in Step 3 of the general SEM tree
algorithm with score-based tests instead of the likelihood-ratio
test. Because score-based tests operate like an omnibus test
for all possible cut points in a covariate, a single best cut
point needs to be located after the selection of a covariate.
Cut points can be obtained by identifying which of the unique
values of the covariate maximizes the respective score-based
test statistic. Omitting the outer sums or maxima in the
Equations 7–11 pairs every unique value of the covariate with
a specific value of the partially summed test statistic. Then,
a cut point can be determined by splitting the sample after
the observation associated with the maximum of these partially
summed test statistics. Due to its scaling term, the respective
maxLM statistic for ordinal and continuous covariates appears to
be particularly well suited for identifying the optimal cut points.
We implemented this fully score-based cut point localization
procedure in the semtree package. Alternatively, the optimal
cut point can be determined by maximizing the partitioned
log-likelihood (that is, the sum of the log-likelihood for all
observations to the left and the sum for all observations to the
right of the cut point) over all conceivable values of the covariate.
Since this approach requires the estimation of a sequence of
SEMs, it will be slower than a purely score-based cut point
identification. However, it will still be faster than a SEM tree
purely guided by likelihood ratios because only the localization
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of a cut point but not the selection of the covariate requires the
estimation of additional SEMs. This hybrid strategy is currently
applied by the generic MOB algorithm from the partykit
package, which uses the maxLM statistic for selecting covariates
and the maxLR statistic for locating cut points.

SIMULATION STUDY

We conducted four Monte Carlo simulations to evaluate
SEM trees in different settings. The first two simulations
compare the original SEM tree split selection methods with
the newly proposed SEM trees guided by the maxLR statistic
and score-based tests. The first simulation aims at illustrating
the performance of the different SEM trees under the null
hypothesis of parameter homogeneity. The second simulation
investigates power, the precision of cut point estimation, and
group recovery for a heterogeneous population consisting of two
groups. The third and fourth simulations demonstrate the use
and common pitfalls of SEM trees with focus parameters and
equality constraints.

All simulations were carried out with the statistical
programming language R. SEM trees were fitted with the
semtree package. semtree interfaces the OpenMx package
(Neale et al., 2016) for the estimation of SEMs. To grow score-
guided SEM trees, we linked semtree to the strucchange
package (Zeileis et al., 2002). strucchange offers a unified
framework for implementing score-based tests for a wide
range of models. All features used in this simulation are
available in the semtree package. Our simulations were
performed using R 4.0.2, OpenMx 2.18.1, strucchange
1.5–2, and a developmental snapshot of the semtree package1.
The simulation scripts and results are provided as Online
Supplemental Material2.

In all simulations, we aimed at ensuring an optimal type I error
rate; that is, we tried limiting the proportions of false-positive
splits to the significance level of 5%. To achieve this, we adjusted
the p-values of the likelihood-ratio and score-based tests with the
Bonferroni procedure to correct for the multiple testing of several
covariates. Besides the Bonferroni correction, we used the default
settings of the semtree package throughout our simulation
studies. The score-based tests were performed by applying the
default settings of the strucchange package. The data used to
fit the SEMs were drawn from amultivariate normal distribution.
All experimental conditions were replicated 10,000 times.

Simulation I: Type I Error Rate and

Runtime
Simulation I assessed the type I error rate under the null
hypothesis of constant parameters and the runtime for a different
number of noise variables and sample sizes. The simulated data
was homogeneous without any group differences.

Figure 3 shows the linear latent growth curve model used in
Simulation I and II. Model specification and parameter values

1https://github.com/brandmaier/semtree/commit/
30ca7500e43ca99975dfe6b8917ef8f293beaeb3
2https://osf.io/k82y3/

 1

FIGURE 3 | Path diagram of the linear latent growth curve model used for

data generation in Simulation I and II. The parameter values were obtained by

fitting the model on scores from the longitudinal Wechsler Intelligence Scale

for Children data set.

were taken from McArdle and Epstein (1987), who modeled the
scores of 204 young children from theWechsler Intelligence Scale
for Children over four repeated occasions of measurement at 6, 7,
9, and 11 years of age (see Brandmaier et al., 2013b for a SEM tree
analysis of these data). In both simulation studies, we generated
multivariate normal data, using the mean vector and covariance
matrix implied by the model presented in Figure 3.

After generating the data, the linear latent growth curve model
presented in Figure 3 was estimated, serving as a template model
for the SEM trees. The model was defined by six free parameters:
the mean and the variance of the random intercept fI , the mean
and the variance of the random slope fS, the covariance between
the random intercept and the random slope, and the residual
error variance that was constrained to be equal for all four
measurements of the observed variable y.

The following experimental factors were varied:

• Level of measurement of the noise variables: We provided
the SEM trees with randomly generated noise variables. The
noise variables were either continuous (standard normal),
ordinal with 6 levels (with an equal number of observations
per level), or dichotomous (with an equal number of
observations in both classes). For a given condition, all
noise variables had the same level of measurement.

• Number of noise variables: Either 1, 3, or 5 noise
variables were generated.

• Sample size (N): The simulated samples contained either
504 or 1,008 observations. The odd numbers resulted from
the necessity to be divisible by 6 to allow for an equal
number of observations per level of the ordinal noise
variables.

First, we will inspect the type I error rates of the different SEM
tree approaches and compare their computation time afterward.
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Percentage of Type I Errors
Every tree consisting of more than one node was counted as
a type I error. Ideally, the proportion of type I errors should
approach 5%. Table 1 shows the empirical type I error rates of
the different SEM tree approaches. The results are sorted with
respect to the level of measurement of the noise variables. To get
a better understanding of the simulated error rates, we printed
results for methods that fell inside a 95% confidence interval
around the optimal rate of 5% for 10,000 replications (CI: [4.573;
5.427]) in bold. For ordinal and dichotomous noise variables,
all SEM tree implementations yielded error rates mostly close
to the desired 5%. For continuous covariates, however, only fair,
maxLR,CvM, andmaxLM trees had satisfactory type I error rates.
DM trees exhibited slightly too few type I errors. As predicted by
Brandmaier et al. (2013b), naïve trees that were provided with
continuous noise variables over-adjusted and produced error
rates that were too small by a factor of 10. Increasing the sample
sizes amplified this overcorrection. For the remaining methods,
varying the number of noise variables and the sample size did not
systematically influence the error rates.

Runtime
We recorded the computation time for the different SEM trees
in seconds. As a matter of course, the runtime varies widely
depending on the computing platform. However, comparing
the runtime of the different methods allows for relative
comparisons and provides estimates for current standard
computing platforms. Necessarily, the absolute estimates will
become outdated soon. The simulation was conducted with an
Intel R© Xeon R© CPU E5-2670 processor using a single core.

Table 2 presents the median of the computation time in
seconds. The median runtime for ordinal and dichotomous
noise variables was small. The score-guided trees (WDM,
maxLMO, and LM) showed a minor speed advantage over
the likelihood-ratio-guided trees (naïve, fair, and maxLR).
For continuous noise variables, however, for which many
possible cut points needed to be evaluated, the runtime of
likelihood-ratio-guided SEM trees was excessively larger than
the computation time of score-guided SEM trees. For instance,
given the larger sample size and five noise variables, likelihood-
ratio-guided SEM trees needed several minutes to compute,
whereas score-guided SEM trees (DM, CvM, and maxLM)
were performed in fractions of a second. The runtime of the
fair trees was roughly half as long as the runtime of naïve
and maxLR trees, most likely because the fair method tests
only half of the possible cut points for continuous variables.
As expected, a larger sample size and more noise variables
led to an increase in computation time of the likelihood-
ratio-guided SEM trees. In contrast, the runtime of score-
guided SEM trees remained virtually the same. This implies
that even for larger samples consisting of larger numbers of
individuals and many covariates, score-guided SEM trees can be
computed in short time.

Simulation II: Power, Cut Point

Estimation, and Group Recovery
Simulation II evaluated the performance of likelihood-ratio and
score-guided SEM trees in heterogeneous samples consisting
of two subgroups.

TABLE 1 | Empirical type I error rates.

Continuous Ordinal Dichotomous

Nr. noise N Naïve Fair maxLR DM CvM maxLM Naïve Fair maxLR WDM maxLMO Naïve Fair LM

1 504 0.56 5.15 5.27 3.85 5.01 5.05 4.50 5.71 5.31 5.08 5.16 5.15 5.21 4.89

3 504 0.60 5.01 5.43 4.17 5.05 5.57 4.99 5.78 5.41 5.38 5.59 5.18 5.45 4.76

5 504 0.51 5.26 5.25 4.18 5.11 5.62 5.10 5.73 5.66 5.59 5.69 5.07 5.39 4.55

1 1,008 0.25 4.71 5.39 3.93 4.86 5.17 3.93 5.27 4.71 4.95 4.76 5.17 5.31 4.99

3 1,008 0.35 4.95 5.04 3.91 4.57 5.01 4.80 5.67 5.23 5.60 5.24 5.13 4.97 4.92

5 1.008 0.35 5.23 5.37 4.61 5.13 5.48 4.95 5.60 5.27 5.25 5.68 4.81 5.04 4.61

Nr. noise = number of noise variables, N = sample size. Error rates within the 95% confidence interval around the optimal rate of 5% are printed in bold.

TABLE 2 | Median runtime in seconds.

Continuous Ordinal Dichotomous

Nr. noise N Naïve Fair maxLR DM CvM maxLM Naïve Fair maxLR WDM maxLMO Naïve Fair LM

1 504 35.0 15.8 34.7 0.2 0.2 0.2 0.6 0.7 1.4 0.2 0.2 0.4 0.4 0.2

3 504 105.6 48.1 105.7 0.2 0.2 0.2 1.3 1.5 1.9 0.2 0.2 0.4 0.7 0.2

5 504 179.3 81.0 179.3 0.2 0.2 0.2 2.1 2.5 2.6 0.2 0.2 0.7 1.0 0.2

1 1,008 72.7 34.5 72.7 0.2 0.2 0.2 0.5 0.6 1.3 0.2 0.2 0.3 0.4 0.2

3 1,008 222.7 105.0 222.7 0.2 0.2 0.2 1.3 1.5 1.9 0.2 0.2 0.5 0.7 0.2

5 1.008 374.7 175.4 366.7 0.2 0.2 0.2 2.1 2.5 2.7 0.3 0.3 0.8 1.1 0.2

Nr. noise = number of noise variables, N = sample size.

Frontiers in Psychology | www.frontiersin.org 10 January 2021 | Volume 11 | Article 564403

98



Arnold et al. Score-Guided SEM Trees

We varied the following experimental factors:

• Level of measurement of the covariate: The SEM tree
was provided with a single covariate that was either a
continuous variable (standard normal), an ordinal variable
with 6 levels, or a dichotomous variable.

• Group differences:We tested two types of group differences.
Either the fixed slope of the linear latent growth
curve model shown in Figure 3 or all random effects
varied between groups. Table 3 presents the values used
for the heterogeneous parameters. Note that in the
fixed slope condition, only a single parameter varied
between groups, whereas in the random effects condition,
three parameters varied. The values of the remaining
homogeneous parameters are shown in Figure 3.

• Noise variable: In the noise condition, the SEM tree
algorithm was provided with a noise variable in addition
to the informative covariate. In the no-noise condition,
only the informative covariate was given to the tree. The
noise variable was independent of the group differences
and randomly selected to be a continuous variable
(standard normal), an ordinal variable with 6 levels, or a
dichotomous variable.

• Cut point location: We tested three different positions of
the optimal cut point in the informative covariate. The cut
points were either central, partitioning the sample into two
groups of equal size, moderately non-central, resulting in
a larger subgroup consisting of 66.67% of the observations
and a smaller subgroup with 33.33% of the observations,
or strongly non-central with 83.33% of the observations in
the larger subgroup and 16.67% of the observations in the
smaller subgroup. We counterbalanced the non-central cut
points so that moderately non-central cut points occurred
either after the 1/3- or after the 2/3-quantile of the covariate
and strongly non-central cut points either after the 1/6- or
the 5/6-quantile.• Sample size (N): The sample consisted either of 504 or 1,008
observations.

We evaluated each method in terms of statistical power to
detect heterogeneity, the precision of the estimated cut points,
group recovery, and runtime. For each condition, the results of
the best-performing method are printed in bold in the following
tables. Due to space constraints, we report only the most
important simulation results. The complete simulation results are
provided as Online Supplemental Material2.

TABLE 3 | Parameter differences used in Simulation II.

Fixed effects Random effects

Parameter Group 1 Group 2 Parameter Group 1 Group 2

E(fI ) 5.389 5.695 Var (fI) 25.137 38.023

Var (fS) 2.808 4.247

Cov (fI, fS) 0.745 1.127

Power
We define statistical power as the percentage of SEM trees that
correctly selected the covariate as a split at any cut point and any
level of the tree.

Table 4 shows the estimated power of the different SEM
trees. We will first compare the overall performance of the
original naïve and fair trees with the newly implemented
maxLR and score-guided trees. With respect to power, we
found that naïve trees performed roughly as well as the newly
implemented methods for ordinal and dichotomous covariates
but poorly for continuous covariates. The other classical method,
fair trees, showed overall the lowest power of all methods
under investigation. As expected, the likelihood-ratio-guided
maxLR trees yielded similar results as the score-guided maxLM
trees but were consistently slightly more powerful. Among the
experimental conditions, the type of group differences and the
cut point location impacted the rank order of the methods the
most. DM and WDM trees were the most powerful methods
for detecting heterogeneity in the fixed slope parameter. In
contrast, maxLR, CvM, maxLM, and maxLMO trees proved to
be the more powerful methods for detecting heterogeneity in
the random effects. We expected this behavior because the DM
and WDM test statistics focus on heterogeneity in a single
parameter, whereas all other methods monitor group differences
in multiple parameters. Overall, the likelihood-ratio-based test
statistic maxLR and the score-based test statistics with a scaling
term (that is, maxLM,WDM, and maxLMO) were more sensitive
for non-central cut points but less sensitive for central cut points
than the DM and CvM statistics for continuous covariates that
do not use any scaling. As an optimal baseline, we compared
the power of the SEM trees with MGSEMs, denoted as MG
in Table 4. Like the SEM trees, the MGSEMs were specified
by letting all parameters vary between groups. In contrast to
SEM trees, MGSEMs were unaffected by noise variables and
were informed about the true cut point. Therefore, the MGSEMs
present the upper limit achievable in terms of statistical power.
Not surprisingly, MGSEMs were more powerful than all SEM
tree methods, given continuous and ordinal covariates, but
equally powerful in conditions with dichotomous covariates and
without noise variables, where cut points did not need to be
learned from the data.

The presence of a noise variable (not shown in Table 4)
approximately halved the power of all tree methods but affected
naïve trees most severely. The pronounced effect of noise
variables on naïve trees was mainly driven by continuous noise
variables, which led to severely over-adjusted p-values. Providing
naïve trees with ordinal or dichotomous noise variables led to
a decrease of power that was comparable to the decrease in
other methods. Increasing the sample size had an approximately
uniform effect and raised the power of all methods substantively.

Precision of Estimated Cut Points
The estimation of the optimal cut point in the covariate is crucial
for recovering the true grouping of individuals. The approaches
for locating cut points differed between likelihood-ratio and
score-guided SEM trees. Likelihood-ratio-guided trees found cut
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TABLE 4 | Power to detect group differences.

Continuous Ordinal Dichotomous

N CL Naïve Fair maxLR DM CvM maxLM MG Naïve Fair maxLR WDM maxLMO MG Naïve Fair LM MG

Group difference in the fixed slope

504 1⁄2 10.0 14.5 36.8 46.7 41.7 35.4 52.8 35.8 17.4 38.4 44.2 37.0 52.4 52.8 27.0 51.8 52.8

1⁄3 7.7 13.1 31.6 35.4 32.4 30.5 47.1 30.4 15.7 32.6 37.7 31.6 46.1 45.9 24.0 45.2 45.9

1⁄6 3.2 8.1 16.8 9.8 13.0 16.4 29.7 17.8 10.4 19.4 21.2 19.0 29.8 30.1 17.0 29.3 30.1

1,008 1⁄2 30.6 29.8 72.9 84.9 76.3 72.1 87.2 73.8 37.6 75.7 83.3 75.0 86.4 85.5 51.4 85.2 85.5

1⁄3 24.3 26.1 66.1 74.9 64.8 65.6 82.0 65.7 32.3 68.0 77.2 67.4 81.3 81.5 47.6 81.2 81.5

1⁄6 8.7 15.6 38.5 25.9 26.2 38.5 58.2 39.5 19.9 42.0 48.7 41.4 57.9 58.6 30.4 58.7 58.6

Group differences in the random effects

504 1⁄2 18.2 19.4 51.8 48.3 56.5 49.9 69.4 52.1 24.5 54.2 46.4 53.2 68.5 68.8 36.0 67.4 68.8

1⁄3 13.7 17.1 44.1 35.6 44.6 42.8 62.8 45.0 21.0 47.5 39.9 45.9 63.1 62.9 32.8 61.0 62.9

1⁄6 5.3 10.4 22.9 12.0 18.1 23.8 40.6 24.5 13.4 26.4 22.8 26.8 40.9 41.1 21.0 38.0 41.1

1,008 1⁄2 53.3 45.1 88.0 85.7 89.6 87.6 95.9 89.4 55.0 90.4 84.2 90.1 95.7 95.7 69.1 95.5 95.7

1⁄3 43.9 37.5 82.7 74.4 80.0 80.9 93.3 84.2 47.7 85.6 77.5 84.3 93.1 93.4 63.3 93.0 93.4

1⁄6 17.3 21.0 52.8 26.6 36.4 49.9 73.4 55.3 28.3 57.4 47.3 53.6 73.4 73.3 39.8 69.8 73.3

N = sample size, CL = cut point location, 1⁄2 = central cut point location, 1⁄3 = moderately non-central, 1⁄6 = strongly non-central, MG = MGSEM. Best-performing

methods are printed in bold.

points by maximizing a partitioned log-likelihood, and score-
guided SEM trees determined cut points by searching through a
disaggregated maxLM statistic. We limit ourselves to discuss cut
points estimated by maxLR and maxLM trees in the following.
We used only trees that selected the covariate for the initial split
of the data, ignoring possible further splits. Since noise variables
had no visible effect, we will discuss only simulation trials without
additional noise variables. Also, we did not evaluate dichotomous
covariates because there is only a single trivial cut point.

Table 5 presents bias, standard deviation, and root mean
squared error (RMSE) of the estimated cut points. Both
approaches produced similar cut points that were nearly
unbiased. Overall, cut points estimated by maxLR were slightly
more precise in terms of RMSE. Interestingly, group differences
in the random effects led to slightly biased cut point estimates
provided by maxLM trees, which was not observed for maxLR
trees. Estimates for non-central cut points showed more
variability than for central cut points in both methods. A larger
sample size of 1,008 observations increased both methods’
precision and reduced the bias of cut points estimated bymaxLM.

Group Recovery
We used the adjusted Rand index (ARI; Hubert and Arabie,
1985; Milligan and Cooper, 1986) to measure how well the true
groups are recovered by each SEM tree method. The ARI is
widely used to measure the similarity between two partitions
and is adjusted for agreement by chance. A large ARI value up
to the maximum of 1 indicates a high agreement between the
partitioning estimated by a tree and the true partitioning, while
smaller values imply a lower degree of similarity. Particularly, an
ARI of 0 is obtained if a tree fails to detect any group differences
and does not split the sample.

The ARI of the different tree methods is shown in Table 6. In
our simulation setup, the ARI of a SEM tree method seemed to
be mainly determined by its power to detect heterogeneity as a

similar rank order as for the statistical power emerged. Given a
continuous covariate, score-guided DM and CvM trees showed
the largest ARI for central cut points, maxLM and maxLR trees
showed the largest ARI for non-central cut points, while the
original likelihood-ratio-guided naïve and fair trees performed
poorly. As with power,DM trees had a higher ARI for a difference
in the slope, and the ARI of the other score-guided and maxLR
trees was higher for differences in the random effects. Naïve trees
performed better when provided with an ordinal or dichotomous
covariate. For ordinal covariates,WDM trees exhibited the largest
ARI if the fixed slope differed between groups, whereas the ARI
of maxLR and maxLMO trees was higher for differences in the
random effects. For dichotomous covariates, naïve trees showed
a slightly higher ARI than score-guided LM trees. However, if
provided with an additional noise variable, naïve trees showed
a more pronounced decrease in the ARI than LM trees (not
shown in Table 6). This effect was mainly driven by continuous
noise variables, which led to overcorrected p-values of naïve trees.
Non-central cut points generally reduced the ARI of all trees,
affecting DM and CvM trees without a scaling term the most.
The ARI of all tree methods improved substantially for larger
samples with 1,008 simulated individuals without drastically
changing the rank order.

Runtime
The computation time of the SEM trees in Simulation II was
in line with the observed runtime in Simulation I. Overall, the
median computation time of score-guided SEM trees was 0.50 s
with little variability across the simulation conditions. In contrast,
the runtime of likelihood-ratio-guided trees varied considerably
according to the level of measurement of the covariate and noise
variable. The overall median computation time for simulation
conditions with ordinal or dichotomous covariate and noise
variable was 0.88 s for naïve trees, 0.89 s for fair trees, and 1.40 s
for maxLR trees. However, if either the covariate or the noise

Frontiers in Psychology | www.frontiersin.org 12 January 2021 | Volume 11 | Article 564403

100



Arnold et al. Score-Guided SEM Trees

TABLE 5 | Estimated cut points.

Continuous Ordinal

maxLR maxLM maxLR maxLMO

N CL B SD RMSE B SD RMSE B SD RMSE B SD RMSE

Group difference in the fixed slope

504 1⁄2 0.013 0.388 0.389 0.017 0.408 0.408 −0.003 0.798 0.797 0.011 0.750 0.750

1⁄3 0.014 0.430 0.430 0.014 0.440 0.440 0.022 0.955 0.956 0.013 0.878 0.878

1⁄6 0.011 0.694 0.694 −0.022 0.686 0.686 0.010 1.347 1.347 0.015 1.312 1.312

1,008 1⁄2 −0.002 0.273 0.273 0.000 0.282 0.282 −0.004 0.546 0.545 −0.010 0.459 0.459

1⁄3 −0.006 0.310 0.310 −0.007 0.311 0.311 −0.004 0.603 0.603 −0.006 0.494 0.494

1⁄6 0.004 0.491 0.491 −0.001 0.499 0.499 0.004 0.933 0.933 0.007 0.836 0.836

Group differences in the random effects

504 1⁄2 0.014 0.345 0.345 0.183 0.348 0.393 0.003 0.699 0.699 0.255 0.790 0.831

1⁄3 0.011 0.381 0.381 0.177 0.401 0.439 0.018 0.769 0.769 0.246 0.882 0.916

1⁄6 0.013 0.611 0.611 0.098 0.602 0.610 0.003 1.187 1.187 0.138 1.260 1.267

1,008 1⁄2 0.015 0.224 0.225 0.085 0.240 0.255 0.001 0.415 0.415 0.118 0.542 0.555

1⁄3 0.011 0.245 0.245 0.092 0.268 0.283 0.010 0.457 0.457 0.117 0.600 0.611

1⁄6 0.004 0.387 0.387 0.076 0.421 0.428 −0.001 0.728 0.728 0.102 0.943 0.949

N = sample size, CL = cut point location, 1⁄2 = central cut point location, 1⁄3 = moderately non-central, 1⁄6 = strongly non-central, B = bias, SD = standard deviation,

RMSE = root mean squared error.

TABLE 6 | Adjusted Rand index.

Continuous Ordinal Dichotomous

N CL Naïve Fair maxLR DM CvM maxLM Naïve Fair maxLR WDM maxLMO Naïve Fair LM

Group difference in the fixed slope

504 1⁄2 0.069 0.085 0.243 0.377 0.323 0.234 0.277 0.120 0.296 0.361 0.294 0.527 0.270 0.518

1⁄3 0.055 0.075 0.208 0.261 0.215 0.204 0.230 0.108 0.246 0.306 0.248 0.459 0.240 0.452

1⁄6 0.022 0.044 0.101 0.036 0.036 0.105 0.131 0.065 0.141 0.159 0.142 0.301 0.170 0.293

1,008 1⁄2 0.248 0.209 0.557 0.726 0.636 0.556 0.647 0.313 0.662 0.751 0.675 0.855 0.514 0.852

1⁄3 0.196 0.179 0.500 0.604 0.490 0.504 0.575 0.267 0.593 0.697 0.607 0.815 0.476 0.812

1⁄6 0.067 0.098 0.275 0.137 0.097 0.290 0.335 0.159 0.353 0.430 0.358 0.586 0.304 0.587

Group differences in the random effects

504 1⁄2 0.136 0.125 0.361 0.378 0.441 0.341 0.428 0.187 0.444 0.361 0.413 0.688 0.360 0.674

1⁄3 0.102 0.109 0.309 0.252 0.312 0.293 0.371 0.160 0.388 0.308 0.356 0.629 0.328 0.610

1⁄6 0.038 0.063 0.150 0.049 0.066 0.170 0.192 0.091 0.205 0.175 0.206 0.411 0.210 0.380

1,008 1⁄2 0.449 0.339 0.711 0.714 0.763 0.701 0.818 0.479 0.827 0.747 0.800 0.957 0.691 0.955

1⁄3 0.370 0.281 0.664 0.585 0.632 0.645 0.769 0.415 0.780 0.686 0.744 0.934 0.633 0.929

1⁄6 0.142 0.149 0.406 0.141 0.171 0.398 0.494 0.243 0.509 0.404 0.457 0.733 0.398 0.698

N = sample size, CL = moderately non-central, 1⁄2 = central cut point location, 1⁄3 = moderately non-central, 1⁄6 = strongly non-central, MG = MGSEM. Best-performing

methods are printed in bold.

variable were continuous, the overall median runtime increased
drastically. For instance, for conditions with a continuous
covariate, a continuous noise variable, and a sample size of 504,
the computation time of naïve, fair, and maxLR trees increased
to 70.18, 32.85, and 71.05 s, respectively. For samples with
1,008 individuals, the runtime increased to 149.91, 72.23, and
280.58 s, respectively.

Simulation III: Focus Parameters
The goal of Simulation III was to demonstrate how specific
hypotheses about parameter heterogeneity, such as certain types

of measurement invariance, can be tested with the use of
SEM trees with focus parameters. By default, SEM trees split
with respect to differences in any model parameter. At times,
researchers may be interested in finding group differences only
for a subset of parameters that are referred to as focus parameters
in the semtree package. When focus parameters are given,
SEM trees will only assess heterogeneity in these parameters and
ignore group differences in the remaining parameters to evaluate
a split.

Figure 4 shows the population model used to generate data in
Simulation III and IV. Depicted is a confirmatory factor model
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FIGURE 4 | Path diagram of the CFA model used in Simulation III and

Simulation IV. The model consists of two correlated latent factors, each

measured by three indicators. The latent covariance φ differed between the

two groups in Simulation III. In Simulation IV, there were also differences in the

factor loading λ.

with two correlated factors, each measured by three indicators.
A two group-population was simulated, where both factors were
uncorrelated in the first group (φg1 = 0) and covaried with φg2 =
0.471 in the second group. The factor loading λ did not vary in
Simulation III and was set to 0.837 in both groups, corresponding
to a latent factor accounting for 70% of the variance in the
observed variables. In each simulation replication, we generated
250 individuals per group, resulting in a total sample size of
500. The model shown in Figure 4 was then estimated with
a common identification constraint; specifically, by fixing the
variances of the two factors f 1 and f 2 to one and estimating the
latent covariance, all factor loadings, and all residual variances
freely. We did not specify a mean structure. To recover the group
difference, we provided maxLR and maxLM trees with a standard
normally distributed informative covariate. The true cut point in
the covariate point was central.

We explored the following three scenarios:

• Testing measurement invariance:We ignored heterogeneity
in the latent covariance φ and tested only the
(homogeneous) measurement part of the model by
treating all factor loadings and residual variances as
focus parameters. This scenario can be seen as an
exploration of which covariates predict violations of strict
measurement invariance.

• Testing the latent covariance: Only the (heterogeneous)
latent covariance φ was treated as a focus parameter, and the
remaining (homogeneous) parameters did not contribute
to the assessment of potential splits. This scenario is
akin to ignoring the covariates’ information on violations
of measurement invariance and, instead, investigating
differences on the latent level only.

• No focus parameters: No focus parameters were specified,
and all parameters contributed to the evaluation of a
potential split. This scenario served as a baseline.

Table 7 shows the percentage of maxLR and maxLM trees that
split the sample and rejected the specific null hypothesis for a
significance level of 5%. In the measurement invariance scenario,

TABLE 7 | Type I error and power to detect group differences.

Scenario maxLR maxLM

Testing measurement invariance 4.86 4.85

Testing the latent covariance 99.10 99.18

No focus parameters 82.97 81.21

The first row shows the type I error rates and the second and third row the statistical

power to detect group differences.

the SEM trees tested the null hypothesis that all parameters of
the measurement model are homogeneous. Both maxLR and
maxLM trees yielded error rates that were close to the optimal
rate of 5%. In other words, the SEM tree methods successfully
ignored the group difference in the covariance structure of the
latent variables. Without focus parameters, the SEM trees tested
the standard null hypothesis of complete parameter equivalency
across groups. The maxLR and the maxLM trees rejected the
null hypothesis in over 80% of the replications. If only the latent
covariance φ was declared as a focus parameter, the power of
both SEM trees to detect the group difference rose substantially
and almost approached one. This finding highlights that the
sensitivity of SEM trees for heterogeneity in a specific set of
target parameters can be significantly enhanced by specifying
focus parameters if differences with respect to the non-focus
parameters can be safely ignored.

Simulation IV: Global Equality

Constraints
Simulation IV aimed at investigating the utility of SEM trees
with equality constraints and pointing out common pitfalls.
Equality constraints are useful to incorporate prior knowledge
about the homogeneity of specific parameters into a SEM tree.
By constraining a parameter to equality, a so-called global
constraint, this parameter is estimated once in the full sample,
and the resulting estimate is used in all submodels. Constraining
parameters increases a SEM tree’s sensitivity for group differences
in the remaining parameters and might stabilize estimation.
However, by erroneously constraining parameters to equality
that are actually different in certain groups, a SEM tree can be
severely misspecified.

We investigated the following conditions:

• Group differences:We tested two types of group differences.
Either the latent covariance differed between groups
(φg1 = 0, φg2 = 0.471) and the factor loading was
homogeneous (λg1/g2 = 0.837) or the latent covariance
was homogeneous (φg1/g2 = 0.471) and the factor loading
differed (λg1 = 0.837, λg2 = 0.640). All other values were
as shown in Figure 4. We generated 250 individuals per
subgroup and provided the SEM trees with a standard
normal covariate with a central cut point.

• Equality constraints: Either the heterogeneous parameter
(the latent covariance φ or the factor loading λ), all factor
loadings and residual variances of the factor f 2, or no
parameters were constrained to equality.
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TABLE 8 | Power to detect group differences.

Equality constraints maxLR maxLM

Group difference in the latent covariance φ

None 82.52 81.13

Latent covariance φ 5.71 5.52

Measurement model of f2 91.25 90.40

Group difference in the factor loading λ

None 83.20 81.44

Factor loading λ 24.89 22.65

Measurement model of f2 91.52 90.92

The empirical power of maxLR andmaxLM trees for detecting
heterogeneity for a significance level of 5% is shown in Table 8.
Without equality constraints, both SEM tree methods showed
a power of slightly above 80%. As expected, constraining a
heterogeneous parameter reduced the power significantly, but
the exact effect depended on the specific parameter. After
constraining the heterogeneous latent covariance φ, there was no
possibility for the trees to detect a difference between groups. The
latent covariance φ was the only parameter associated with the
correlation between the factors, and the group difference had no
other parameter left to manifest. As a result, the power of maxLR
and maxLM trees reduced to the type I error level. However,
after constraining the heterogeneous factor loading λ, the trees
still found significant group differences in 24.89% (maxLR) and
22.65% (maxLM) of the replications. This finding implies that the
group difference in the factor loading λ were picked up by other
unconstrained parameters of the measurement model. Finally,
constraining the homogeneous parameters of the measurement
model of factor f 2 increased the power to detect differences
in the latent covariance or the factor loading by roughly 10
percentage points.

The results of Simulation IV suggest that constraining
homogeneous parameters to equality can increase the power
of SEM trees but also involves the risk of introducing severe
misspecification. Constraining a heterogeneous parameter leads
to a distorted picture of group differences as the SEM tree might
or might not find significant heterogeneity in other parameters
that are homogeneous across subgroups. Thus, it seems generally
advisable to fully explore differences in all parameters or to use
focus parameters rather than taking the risk ofmisspecifying trees
by using inadequate equality constraints.

Summary
In our simulation studies, the likelihood-ratio-guided naïve trees
showed mixed results, confirming the known weaknesses of
the approach. When provided with ordinal or dichotomous
covariates, naïve trees showed an adequate control of type
I errors and were among the best-performing methods in
terms of power to detect heterogeneity and group recovery.
However, with continuous covariates, naïve trees were overly
conservative, resulting in too few type I errors and low power.
The likelihood-ratio-guided fair trees showed overall the lowest
power of all methods, resulting in a poor group recovery.
In contrast to naïve trees, the type I error rate of fair trees

was close to optimal, regardless of the measurement level of
the provided covariates. Therefore, fair trees may be useful in
very large samples where low power is less of an issue. The
likelihood-ratio-guided maxLR trees, that we implemented in
the semtree package, resolved many of the weaknesses of
the classical SEM tree methods naïve and fair and positioned
themselves slightly above the score-guided maxLM trees in
terms of power, group recovery, and cut point precision. maxLR
trees and the score-guided maxLM (for continuous covariates),
and maxLMO trees (for ordinal covariates) exceeded other split
selection approaches in conditions with group differences in
multiple parameters associated with the random effects and non-
central cut points. SEM trees guided by the score-based DM (for
testing continuous covariates) andWDM (ordinal covariates) test
statistics outperformed other methods in terms of power and
group recovery when group differences were to be found in a
single parameter describing the fixed slope. Different from DM
trees, WDM trees were also sensitive to non-central cut points.
Score-guided CvM trees performed better than other methods in
detecting heterogeneity in the random effects when the cut point
was central. Finally, the score-based LM trees for categorical
covariates were slightly less powerful than the naïve method.
Although maxLMO and LM trees were roughly on par with naïve
trees, the score-based methods clearly outperformed naïve trees
when provided with an additional continuous noise variable.
Overall, all score-guided trees and the newly implemented
maxLR trees showed a satisfactory control of type I errors.
The most striking difference between likelihood-ratio and score-
guided SEM trees was the runtime. Whereas the runtime of
all likelihood-ratio-based methods was excessive if one of the
covariates under evaluation was continuous, score-guided trees
were computed quickly. In summary, all newly implemented
methods (maxLR and the score-based methods) outperformed
the original naïve and fair methods. Moreover, no single method
under evaluation performed best across all situations, and all of
the new methods had some unique advantages which may justify
their use given certain conditions.

Regarding focus parameters and equality constraints, we
found that both can successfully be applied to increase the
power of SEM trees to detect group differences if there is
either a clear set of target parameters or prior knowledge about
homogeneous parameters available. Still, we discourage the use
of equality constraints in favor of focus parameters, which allow
exploring the effects of selected parameters without incurring
misspecifications during the split evaluation.

DISCUSSION

In the present study, we introduced score-guided SEM trees
as a fast and efficient way for growing SEM trees. Along with
score-guided SEM trees, we also implemented a new likelihood-
ratio-guided split selection based on the maxLR statistic that
solved many of the shortcomings of the original likelihood-ratio-
guided SEM trees (Brandmaier et al., 2013b). We evaluated and
compared the newly implemented and the original SEM tree
approaches in a Monte Carlo simulation study. We investigated
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those cases in which users want to adjust the type I error
rate for multiple testing of covariates. Overall, we conclude
that the new split selection procedures are superior to the
original split selection because they have higher statistical power
and are unbiased in the selection of covariates that predict
group differences in SEM parameters. Among the SEM tree
methods, score-guided trees stand out due to their computational
efficiency, making the use of SEM trees in large data sets feasible.

Our simulation studies evaluated three different likelihood-
ratio-guided SEM tree approaches and five different score-guided
SEM trees. The score-guided SEM trees were based on test
statistics recently popularized in psychometrics by Merkle and
Zeileis (2013) and Merkle et al. (2014) for studying heterogeneity
in SEM parameters. When provided with continuous covariates,
we found that guiding SEM trees with score-based tests
significantly reduced the runtime of the trees. If solely provided
with ordinal and categorical variables, score-guided SEM trees
performed as well as likelihood-ratio-guided SEM trees. The large
difference in the runtime of both approaches for continuous
covariates can be attributed to the fact that the evaluation of
a covariate by a likelihood-ratio-guided SEM tree requires the
estimation of a MGSEM for every unique value of covariate. This
leads to a large number of MGSEMs to be estimated as most
values of continuous covariates are usually unique. However,
score-guided SEM trees do not require the estimation of any
MGSEMs for the evaluation of a covariate and, therefore, can be
computed in little time.

Score-guided SEM trees and likelihood-ratio-guided trees
based on the newly implemented maxLR statistic also proved
to be more powerful in detecting group differences than the
original SEM tree methods if one of the covariates provided
to the SEM tree were continuous. The low statistical power
of the original SEM tree implementation is a side effect of a
suboptimal correction of the selection bias. The low power of
the naïve method for continuous covariates can be explained by
the overcorrection of the Bonferroni adjusted p-values due to too
many possible cut points in the continuous variables. The low
power that the fair method displayed throughout all simulation
conditions was because the fair selection method uses only half
of the sample for selecting the best covariate.

Besides the evaluation of the original and newly proposed SEM
tree methods, we also demonstrated the utility and pitfalls of
trees with focus parameters and equality constraints. We showed
that focus parameters are well suited to investigate specific
hypotheses about parameter heterogeneity, such as different types
of measurement invariance. Specifying equality constraints for
homogeneous parameters increased the power of SEM trees for
detecting group differences in the remaining parameters. We also
demonstrated that misspecified equality constraints can obscure
group differences and thus discourage this approach. As the effect
of misspecified equality constraints can be hard to predict for a
user, we recommend to explore differences in all parameters or to
use focus parameters rather than risk to misspecify trees by using
inadequate equality constraints.

The faster runtime of score-based tests is a major advantage
for practical use and enables the wider adoption of SEM trees.
The slow runtime of likelihood-ratio tests had made SEM trees
unattractive if not impossible to run with large data sets on

desktop computers. The runtime improvementmay become even
more important if one wishes to complement SEM tree inferences
with resampling methods such as SEM forests (Brandmaier et al.,
2016). SEM forests are a more robust alternative to single SEM
trees if the overall importance of variables is of primary interest
because small variations in the sample often lead to different
trees. As SEM forests are based on hundreds if not thousands of
trees, they will profit dramatically from the score-guided strategy.

The question remains which of the newly implemented
methods should be used to estimate SEM trees. Our simulation
results imply that all of the new methods have their unique
strengths. However, in practice, when it is usually unknown
how many of the model parameters are heterogeneous or if
the subgroups are roughly equal in size, the advantages of the
DM, WDM, and CvM statistics seem hard to exploit. Instead,
the maxLR (if computational feasible), maxLM, maxLMO, and
LM trees statistics are best suited for situations without a priori
knowledge about potential group differences. Moreover, if one
is only interested in change in a specific parameter, specifying a
focus parameter may represent an excellent alternative to theDM
andWDM statistics.

Although SEM trees are a powerful and flexible method for
investigating heterogeneity in SEMs, we want to stress that they
are not always the most appropriate one. It is important to note
that the performance of the SEM trees depends on the covariates
available. If none of these covariates is in any way related to
group differences, SEM trees will fail to detect any heterogeneity.
In situations without informative covariates, researchers may
resort to latent class or finite mixture models (Jedidi et al.,
1997; Muthén and Shedden, 1999; Lubke and Muthén, 2005) for
detecting heterogeneity. Latent class approaches automatically
test for differences between all possible groups of individuals
without requiring covariates. A disadvantage of these methods
is that the number of subgroups needs to be pre-specified by
the user. Another disadvantage of SEM trees is that they provide
only sparse information about how a parameter changes with
respect to a covariate. Recently, Arnold et al. (2019) suggested
a framework called individual parameter contribution regression
that allows modeling SEM parameter estimates as a linear
function of covariates.

There are several limitations of our study. First, we focused
narrowly on the semtree package for growing SEM trees
and did not evaluate SEM trees estimated by the generic
MOB algorithm from the partykit package. Ideally, a future
study should aim to replicate our findings using MOB. Second,
most of our simulations were performed using a linear latent
growth curve model with only two types of group differences.
Likely, different types of SEMs or parameter differences could
have changed the performance of some of the methods under
investigation. However, we would expect the general pattern of
results to hold for other models as well. Third, for the sake
of simplicity, we tested only a small number of uncorrelated
covariates and did not test any covariate interactions. Fourth, we
did not assess the influence of non-normally distributed data and
model misspecification on the SEM trees. These remain topics for
future research.

In summary, we found score-guided SEM trees to be fast,
flexible, and powerful tools for investigating heterogeneity in
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SEM parameters. Based on our work, we suggest that score-
guided split selection should become the new standard for
estimating SEM trees and forests.
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