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Abstract: We introduce QP manifolds that capture the generalised geometry of type IIA string
backgrounds with Ramond–Ramond fluxes and Romans mass. Each of these is associated with a
BPS brane in type IIA: a D2, D4, or NS5-brane. We explain how these probe branes are related to
their associated QP-manifolds via the AKSZ topological field theory construction and the recent
brane phase space construction. M-theory/type IIA duality is realised on the QP-manifold side as
symplectic reduction along the M-theory circle (for branes that do not wrap it); this always produces
IIA QP-manifolds with vanishing Romans mass.
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1. Introduction

It is well established that the natural language to describe backgrounds of string theory
and M-theory is not through conventional geometry but through higher ‘algebroids’ [1].
The NS sector, for example, can be described by a Courant algebroid on a bundle T⊕ T∗ [2].
If one includes the RR sector as well, then one must work on a slightly more general Leibniz
algebroid [3–6]. These higher algebroids, called generalised geometries in the physics
community, unify both the enhanced global symmetry of the background along with the
enhanced gauge symmetries that come from combining diffeomorphisms and n-form gauge
transformations. They are characterised by a ‘generalised tangent bundle’ E→ M, sections
V of which generate the infinitesimal gauge transformations through a derivation called
the Dorfman or generalised Lie derivative LV . This derivative satisfies a Leibniz identity
but is not antisymmetric, unlike the Lie derivative. Instead, it is only antisymmetric up to
homotopy—a key property of these higher algebroids. Given a generalised tangent bundle,
the choice of the Dorfman derivative is not unique but can be twisted by a set of fluxes
satisfying the Bianchi identities.

It has been noted that, in many cases, these algebroids have an equivalent description
in terms of a particular class of non-commutative geometries called QP manifolds (see,
e.g., [7] for a review). These are graded supermanifolds1 M that come equipped with a
degree −P Poisson bracket (·, ·) and a degree 1 vector field Q such that Q2 = 0. It turns out
that one can write the vector field Q = (Θ, ·) for some homogeneous Hamiltonian function
Θ of degree P + 1. The condition Q2 = 0 is then equivalent to (Θ, Θ) = 0, the classical
master equation.

The link between QP manifolds and higher algebroids was first noted in [8,9] where
they showed that Courant algebroids E → M can equivalently be defined as degree 2
graded symplectic manifolds. The case of exact Courant algebroids involving T ⊕ T?

(with graded manifoldM = T∗[2]T[1]M) is the one relevant for the NS sector of string
theory. Both the anchor map2 and the possible flux twistings are encoded in the choice of
Θ, sections of E are given by homogeneous functions of degree 1, and the generalised Lie
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derivative is given by ((Θ, V), V′). In [10], this correspondence was extended to include
the Leibniz algebroids relevant for backgrounds of M-theory and type IIB by considering
higher degree graded symplectic manifolds. There, it was also noted that homogeneous
functions onM correspond to sections of the bundles appearing in the tensor hierarchy [11]
of exceptional field theory and that Q is the QP equivalent of the derivative ∂̂. In this paper,
we complete this correspondence by finding the QP manifolds relevant for IIA algebroids,
both massive and massless.

Not only does the QP picture provide a unified description of the algebroids and the
tensor hierarchies of string/M-theory, but it also helps to uncover the relationship between
these algebroids and brane physics. For example, the AKSZ construction [12] allows one
to construct a topological theory on a manifold of dimension P + 1 from a degree P QP
manifold. When performed on the spaceM = T∗[2]T[1]M, one finds the Wess–Zumino
(WZ) term for the string, i.e., the integral over a 3-manifold Σ3 of the NS 3-form flux H,
where the boundary ∂Σ3 is interpreted as the worldvolume of the string. In [10], this was
extended to the M2, M5 and D3 branes, where it was shown that the AKSZ construction
reproduced the relevant WZ term. The QP structure also allows one to study the phase
space and current algebras for branes, which was performed in [13,14] for the fundamental
string and M2 brane and in [15] for M5 and D3 branes. In this paper, we will outline how
one can extend this analysis further to include the D2, D4 and NS5 branes of type IIA,
including a Romans mass [16] deformation for the D2 and D4; we treat the D2 brane in
detail.

This paper is structured as follows. In Section 2, we write down the QP manifolds
associated to the D2, D4 and NS5 branes and derive the most general Hamiltonian function
Θ in each case. We find that the D2 and D4 QP manifolds allow for a Romans mass, while
the NS5 does not. We also show that the condition (Θ, Θ) = 0 precisely recovers the
Bianchi identities, and hence Θ encodes all of the possible flux-twistings of the associated
Leibniz algebroid. We further show that homogeneous functions of degree P− 1 can be
interpreted as sections of the generalised tangent bundle for (massive) IIA, and the bracket
defined by ((Θ, V), V′) precisely recovers the flux-twisted generalised Lie derivative of [6].
In Section 3, we show how one can recover the NS5 and D2 QP manifolds from a circle
reduction in the QP manifolds of M5 and M2 branes, respectively. In Section 4, we derive
the AKSZ topological model for the QP manifolds and show that they recover the WZ term
for the respective branes, hence justifying the nomenclature. We also study the brane phase
space for the D2 brane. Finally, Section 5 is left for discussion. For conventions and useful
formulae, see, e.g., ([10], Appendix A and B).

2. QP Manifolds for IIA Branes
2.1. D2 (P = 3 Algebroid)

The QP manifold for the D2 brane is the following

M = T∗[3]T[1]M×R[1]×R[2] . (1)

It has the following graded coordinates with a natural degree 3 symplectic form ω,
which induces a Poisson bracket (·, ·) of degree −3 (the P-structure).

xµ ψµ ξ χµ φ pµ

0 1 1 2 2 3
(2)

(xµ, pν) = δµ
ν , (ξ, φ) = 1 , (ψµ, χν) = δµ

ν . (3)

Since the bracket is degree 3, the displayed brackets are antisymmetric. Other com-
binations of coordinates within the bracket vanishes. We will see later that this choice of
QP-manifold is motivated by dimensional reduction in the M2 algebroid. Through these
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relations, we find the components of the antisymmetric tensor ωab, and the bracket acting
on general graded functions f , g is given by the formula

( f , g) = (−1) f ∂R
a f ωab ∂bg . (4)

Note that the definition of ∂R
a is such that the combination (−1) f ∂R

a f is a right deriva-
tion on f ; all other derivatives are left derivations.

The Q-structure on the manifold is a degree 1 vector field such that Q2 = 0. It is
defined via a Hamiltonian function Θ of degree 4. The most general Hamiltonian we can
write down is the following3.

Θ = Θ0 + Θflux
= −ψp + 1

2 mφ2 + J1ψξφ− 1
2 F2ψ2φ + 1

3! Hψ3ξ + 1
4! F4ψ4 + aχφ + 1

2 bχ2 + cχψξ + 1
2 dχψ2 ,

(5)

where Θ0 = −ψp and the sign −F2 is chosen for convenience. Here Θ0 is the Hamiltonian
vector field associated to the de Rham differential on T[1]M while J̃1, F2, F4, H are all
functions on T[1]M, i.e., differential forms on M. The derivative Q = (Θ, ·) has the
property Q2 = 0 if and only if (Θ, Θ) = 0, or equivalently (Θ0, Θflux) = − 1

2 (Θflux, Θflux).
Using (4), one can check that this implies

0 = a = b = c = d , (6)

0 = dm + 2mJ1 , (7)

0 = dF2 −mH + J1 ∧ F2 , (8)

0 = dF4 − F2 ∧ H , (9)

0 = dH − J1 ∧ H , (10)

0 = dJ1 . (11)

Remark 1.

1. For J1 = 0, the identities arising from Q2 = 0 correspond precisely to Bianchi identities and
field equations for the fluxes of massive type IIA with the conventions of [6].

2. The field J1 can naturally be viewed as a gauge connection for a R+ gauge transformation
generated by rescalings ξ → eλξ, φ → e−λφ. For these transformations to still satisfy (3)
then we also need to shift pµ → pµ − ∂µλξφ. Putting this into (5), we see that this has the
effect of transforming J1 → J1 + dλ. The constraint (11) then just says that this is a flat
connection. Flat connections on R+ gauge bundles are always gauge trivial. That is, we can
always pick a gauge where J1 = 0 globally. Hence, this is classically equivalent to the massive
IIA Bianchi identities.

We can relate this QP manifold with the generalised geometry of massive IIA super-
gravity [6]. Indeed, if we consider functions of degree 3− 1 = 2, we find the most general
thing we can write down is

V = vµχµ − αφ + βµψµξ + 1
2 γµνψµψν , (12)

where the − sign is again chosen for convenience. We can interpret this as a section
of TM ⊕ R ⊕ T∗M ⊕ ∧2T∗M. This is the generalised tangent bundle for massive IIA
supergravity, assuming the manifold M has dimension≤ 3. We can further define a bracket
between 2 such sections via
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−((Θ, V), V′) = (Lvv′)χ

− (ıvdα′ − ıv′(dα−mβ− ıvF2)φ

+ (Lvβ′ − ıv′(dβ− ıv H))ψξ

+ (Lvγ′ − ıv′(dγ− β ∧ F2 − αH)

+ α′(dβ− ıvH)− β′ ∧ (dα−mβ− ıvF2))ψ
2

= LF
VV′ ,

(13)

where we have set the J1 connection to 0. As mentioned, this is always possible and there is
no global obstruction. If we had left it in the equation then all of the derivatives would be
replaced with covariant derivative D with respect to this R+ gauge action. We note that we
find precisely (minus) the Dorfman derivative for massive IIA gravity as defined in [6]. In
the following, we will always set the J1 field to 0, knowing that we can reintroduce it by
changing all derivatives into covariant derivatives.

2.2. D4 (P = 5 Algebroid)

Next, we consider the D4 algebroid. This will follow very similarly to above. The
appropriate QP manifold (M, ω, Q) is given by

M = T∗[5]T[1]M×R[2]×R[3] . (14)

We can define the local homogeneous coordinates

xµ ψµ ξ φ χµ pµ

0 1 2 3 4 5
(15)

There is a natural antisymmetric Poisson bracket (P-structure) on this space given by
the Poisson brackets

(xµ, pν) = δµ
ν , (ξ, φ) = 1 , (ψµ, χν) = δµ

ν , (16)

which is induced by the symplectic structure

ω = dpµdxµ − dχµdψµ − dξdφ . (17)

Once again, we can write down the Q-structure via an associated Hamiltonian function
Θ of degree 5 + 1 = 6. The most general degree 6 function we can write down takes the form:

Θ = Θ0 + Θflux
= −ψp + 1

3! mξ3 + J1ψξφ + 1
4 F2ψ2ξ2 + 1

3! Hψ3φ + 1
4! F4ψ4ξ + 1

6! F6ψ6 + aχψ + 1
2 bχψ2 ,

(18)

where Θ0 = −ψp. Once again, the differential Q = (Θ, ·) satisfies Q2 = 0 if and only if
(Θ, Θ) = 0. We find that this is equivalent to

0 = a = b , (19)

0 = dm− 3mJ1 , (20)

0 = dF2 − 2J1 ∧ F2 −mH , (21)

0 = dF4 − J1 ∧ F4 − F2 ∧ H , (22)

0 = dF6 − F4 ∧ H , (23)

0 = dH + J1 ∧ H , (24)

0 = dJ1 . (25)
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Remark 2.

1. Setting J1 = 0, we recover the Bianchi identities for massive IIA supergravity.
2. J1 is a flat R+ connection coming from the same rescaling gauge symmetry. The charges of all

the fluxes under this R+ are different, however, to the D2 algebroid.

Once again, relate this structure to the generalised geometry for massive IIA super-
gravity of [6]. We can consider the most general homogeneous function of degree 5− 1 = 4,
which is

V = vχ + 1
2 αξ2 + βψφ + 1

2 γψ2ξ + 1
4! δψ4 , (26)

which we can view as a section of TM ⊕ R ⊕ T∗M ⊕ ∧2T∗M ⊕ ∧4T∗M, which is the
generalised tangent bundle for massive IIA generalised geometry for dim M ≤ 4. Note
further that ((Θ, V), V′) defines a bracket on the space of degree 4 functions, i.e., generalised
vector fields. Setting the gauge connection J1 to 0 for now we find

−((Θ, V), V′) = (Lvv′)χ

+ [Lvα′ − ıv′(dα−mβ− ıvF2)]
1
2 ξ2

+ [Lvβ′ − ıv′(dβ− ıvH)]ψφ

+ [Lvγ′ − ıv′(dγ− αH − ıvF4 − β ∧ F2)

− β′ ∧ (dα−mβ− ıvF2) + α′(dβ− ıv H)] 1
2 ψ2ξ

+ [Lvδ′ − β′ ∧ (dγ− αH − ıvF4 − β ∧ F2) + γ′ ∧ (dβ− ıvH)] 1
4! ψ

4

= LF
VV′ ,

(27)

which is precisely the form of the generalised Lie derivative in [6]. Note that if we had
included the J1 in the calculation then we would obtain the same answer, just with ∂→ D,
the covariant derivative associated to the R+ action.

2.3. NS5 (P = 6 Algebroid)

In this case we consider the QP-manifold (M, ω, Q) with

M = T?[6]T[1]M×R[3]×R[1]×R[5] . (28)

In a local homogeneous in degree coordinate chart we write

xµ ψµ ξ ζ χµ φ pµ

0 1 1 3 5 5 6
(29)

and define the P-structure via the nonvanishing Poisson brackets (and permutations thereof)

(xµ, pν) = δµ
ν , (ξ, φ) = 1 , (ψµ, χν) = δµ

ν , (ζ, ζ) = 1 , (30)

whose associated symplectic form in the convention of [10] is

ω = dpµdxµ − 1
2 dζdζ − dχµdψµ − dφdξ . (31)

We will see later how this choice for the NS5 is motivated via direct dimensional
reduction from the M5 algebroid. One should note that, since we are in P = 6, the Poisson
bracket is antisymmetric on even coordinates but symmetric on odd.

We write down the most general Q-structure, as above, in terms of the associated
Hamiltonian Θ, which in this case has degree 7:

Θ = Θ0 + Θflux

= −ψp + J1ψξφ + 1
2 F2ψ2φ + 1

3! Hψ3ξζ + 1
4! F4ψ4ζ − 1

6! F6ψ6ξ − 1
7! H̃ψ7 + aψξχ + 1

2 bψ2χ ,
(32)
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where H̃ is a 7-form, which should be interpreted as the 7-form dual to H, the 3-form flux.
We then find Q2 = 0 ⇐⇒ (Θ0, Θflux) = − 1

2 (Θflux, Θflux), which implies

0 = a = b ,

0 = dH + J1 ∧ H ,

0 = dF2 − J1 ∧ F2 ,

0 = dF4 − H ∧ F2 ,

0 = dF6 − H ∧ F4 + J1 ∧ F6 ,

0 = dH̃ + 1
2 F4 ∧ F4 − F6 ∧ F2 ,

0 = dJ1 .

(33)

Remark 3.

1. Setting J1 = 0, we recover the Bianchi identities for massless IIA supergravity. This is
always possible as J1 is a flat R+ connection.

2. Note that, unlike the D2 and D4 branes, we do not have the Romans mass appearing here.
Viewing the Romans mass as the flux of the D8 brane, we note that the NS5 brane only couples
to the D8 brane via a D6 brane [17]. Our construction here, however, does not include any
D6 branes since we have no F8 flux. We therefore, do not expect that the QP manifold for NS5
branes would allow for massive deformations and this is indeed what we find.

Once again, we can relate this QP manifold to the generalised geometry of (massless)
IIA supergravity [6] by considering homogeneous functions of degree 6− 1 = 5. These
take the general form

V = −vχ + αφ + βψξζ + 1
2 γψ2ζ − 1

4! δψ4ξ + 1
5! εψ5 . (34)

This can be identified with a section of TM⊕ T∗M⊕R⊕∧2T∗M⊕∧4T∗M⊕∧5T∗M,
which is the generalised tangent bundle for IIA supergravity provided dim M ≤ 5. We can
then define a bracket between any two such functions via

−((Θ, V, V′) = −Lvv′χ

+ [Lvα′ − ıv′(dα− ıvF2)]ψξφ

+ [Lvβ′ − ıv′(dβ− ıv H)]ψξζ

+ [Lvγ′ − ıv′(dγ− αH − β ∧ F2 − ıvF4)

− β′ ∧ (dα− ıvF2) + α′(dβ− ıv H)] 1
2 ψ2ζ

− [Lvδ′ − ıv′(dδ− γ ∧ H − β ∧ F4)

− β′ ∧ (dγ− αH − β ∧ F2 − ıvF4) + γ′ ∧ (dβ− ıvH)] 1
4! ψ

4ξ

+ [Lvε′ + α′(dδ− γ ∧ H − β ∧ F4)

− γ′ ∧ (dγ− αH − β ∧ F2 − ıvF4) + δ′ ∧ (dα− ıvF2)]
1
5! ψ

5

= LF
VV′ .

(35)

We see that we precisely obtain the form of the Dorfman derivative as in [6].

3. IIA/M-Theory Duality
3.1. M5 to NS5

We start with the M5 algebroid of [10]. This is given by the graded manifoldMM5 =
T?[6]T[1]N ×R[3]. Here we choose N to be a principal S1-bundle over a manifold M:

S1 ↪→ N � M .
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The fibre will be playing the role of the M-theory circle. We will be working in coordinates

xµ y ψµ ξ ζ φ χµ pµ π

0 0 1 1 3 5 5 6 6
(36)

onMM5 that are adapted to a local trivialisation of N, such that the index-free coordinates
{y, ξ, φ, π} coordinatise T?[6]T[1]S1; φ and ξ in particular are associated with the funda-
mental vector field and Maurer–Cartan 1-form on S1, respectively. We will also need a
connection for the S1 bundle. This is equivalently a certain 1-form on N, which we can
identify with the degree 1 function A on T[1]N that takes the form

A = ξ + Aµ(x)ψµ , (37)

for Aµ a locally-defined gauge potential on the base M.
We make the obvious choice for the P-structure that accords with the one we made

for the NS5. The Q-structure of the M5 algebroid depends on two forms G4 and G7, which
obey the familiar M-theory Bianchi identities dG4 = 0 and dG7 +

1
2 G4G4 = 0. It can be

checked that these are equivalent to nilpotency of the Q-structure QM5 ≡ (ΘM5, •) that
arises from

ΘM5 = −ψµ pµ − πξ + G7 + G4ζ . (38)

The forms G4 and G7 can be expanded in terms of basic (S1-invariant and with vanish-
ing contraction with the S1 vector field) forms Ln and the connection A as follows:

G7 = L7 +AL6 , G4 = L4 +AL3 , (39)

where here and henceforth we identify basic forms on N with the forms on M whose
pullbacks produce basic forms on N.

The M-theory/type IIA duality will be realised via symplectic reduction with respect
to the Hamiltonian lift of the canonical S1 action on N. (For this we follow the recent
treatment [18], also in a graded symplectic context). While this gives rise to a T[1]S1 action
on T[1]N, we will only be gauging the degree zero subgroup (i.e., S1), which will have
the effect of retaining the ‘extra’ coordinates φ, ξ. This Hamiltonian lift of the S1 action
is generated by π. Since π is of degree 6, the associated Hamiltonian vector field (π, •)
is degree-preserving, as expected. The Q-structure will reduce in this case if and only if
QM5π = 0 mod π, which states the fluxes G4, G7 must be S1-invariant.

Instead of reducing the Q-structure of (38) immediately, we will first perform a sym-
plectomorphism that produces a new Q-structure Q̄, where the locally-defined connection
1-form Aµ (appearing through A) is traded in favour of its field strength 2-form, which is
globally defined on M. This way the fluxes appearing in the Q-structure will be manifestly
basic forms on N and will thus descend to forms on the base M4. The symplectomor-
phism is in this case generated by the degree 6 function −φAµψµ. This acts trivially on all
coordinates except for

ξ → ξ − Aµψµ , pµ → pµ − φ∂µ Aνψν , χµ → χµ − φAµ . (40)

This map transforms the Q-structure (38) into

ΘM5 → Θ̄ ≡ −ψµ pµ − πξ + L7 + ξL6 + (L4 + ξL3)− φF , (41)

where F is the field strength of the connection in the standard convention Fµν = 2∂[µ Aν].
Since A → ξ we observe that the effect of the symplectomorphism is to identify the new
ξ with the connection A, from which we infer that φ is identified with the fundamental
vector field generating the S1 action.
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It is now easy to calculate how the Q-structure of (41) reduces under the symplectic
reduction generated by π. We evidently obtain the Q-structure of an NS5 algebroid with
the identifications

L7 = −H̃ , L6 = −F6 , L4 = F4 , L3 = −H , F = −F2 , 0 = J1 . (42)

The geometric considerations that led to the introduction of the symplectomorphism (40)
have also produced the correct identification of the type IIA Ramond–Ramond 2-form flux
with the curvature of the connection associated with the M-theory circle bundle.

3.2. M2 to D2

We parallel the derivation we gave for the M5 reduction above. The QP manifold
associated with the M2 brane is MM2 = T?[3]T[1]N [19]. We again choose N to be a
principal S1-bundle over a manifold M. We will be working in coordinates

xµ y ψµ ξ φ χµ pµ π

0 0 1 1 2 2 3 3
(43)

The Q-structure in this case is determined by a 4-form that we expand in horizontal
forms via a connection A for the S1-bundle, so G4 = L4 +AL3. Then the Q-structure in
these coordinates can be expressed via its Hamiltonian, which takes the form

ΘM2 = −ψµ pµ − πξ + L4 +AL3 . (44)

We again perform a canonical transformation generated, in this case, by the degree +3
function φAµ(x)ψµ. This in particular has the effect of replacing A → ξ (c.f. (37)) and

ΘM2 → Θ̄ = −ψµ pµ − πξ + L4 + ξL3 − φF , (45)

for F ≡ dA. Assuming the original 4-form G4 was S1-invariant, we find that all three forms
L4, L3, F are basic, which implies that Q̄π = 0. Therefore we can immediately perform a
symplectic reduction with respect to the S1 action generated by π. The result is clearly the
graded manifoldMD2 = T?[3]T[1]M×R[1]×R[2] for the D2-brane given above, with the
P structure as in that previous subsection, and with Q-structure determined by the fluxes

F4 = L4 , H = −L3 , F2 = −F , F1 = 0 , F0 = 0 . (46)

We find in particular that this reduction in the M2 algebroid to a D2 algebroid always
generates a D2 algebroid with vanishing Romans mass parameter F0. This is in accord
with the known lore that the Romans massive IIA theory cannot be obtained through an
ordinary Scherk–Schwarz compactification of M-theory. It can be found by dualising IIB
with a linear F1 flux, equivalently as a certain compactification of F-theory [20], or as a
generalised Scherk–Schwarz compactification of exceptional field theory [21] that involves an
explicit linear winding/dual coordinate dependence in the frame field5.

4. Applications
4.1. AKSZ Models

Each QP manifold has an associated topological field theory given by the AKSZ
construction [12]. For certain choices of QP manifolds, the associated action functionals
turn out to be related to the Wess–Zumino couplings between strings, M5- and D3-branes
and the relevant background fluxes [10,23,24]. Here we will establish a similar relation for
the putative ‘D2-brane’ algebroid and the ‘NS5-brane’ algebroid, and thereby partly justify
the appellation. We do not do the ‘D4-brane’ algebroid explicitly here as it will follow very
similarly to the D2 algebroid. We will also set the J1 connection to 0 in the following and
will follow the work of [10] closely.
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4.1.1. D2 Brane

The AKSZ construction builds a topological theory on Maps(T[1]Σ→M) where Σ
is a dimension P + 1 manifold ifM is a QP manifold of degree P. For a degree P = 3 QP
manifold, the AKSZ construction therefore requires dim Σ4 = 4, and we will assume that it
has boundary

∂Σ4 = W3 , (47)

where we can interpret W3 as the worldvolume of the D2 brane. The AKSZ action is then
given by

S = Sbulk + Sboundary , Sbulk =
∫

Σ4

ϑ−Θ , (48)

where ϑ is a symplectic potential, i.e., dϑ = ω, and the boundary action is chosen in
conjunction with consistent boundary conditions on the fields such that the resulting
equations of motion define stationary points of Sbulk. We will see that Sboundary is the WZ
term for the D2 brane, as found in, e.g., [25].

On any QP manifold, one has a degree counting vector field, or Euler vector field, ε
such that, for any homogeneous coordinate za one has

ε(za) = (degza)za . (49)

We can use this to define a global ϑ by ϑEuler = 1
P ıεω, where P is the degree of the

symplectic form (see, e.g., [10] [Appendix A.1] for more details). However, this does not
turn out to be the correct choice to give the D2 brane WZ term. It is possible to show
that any two symplectic potentials differ by the exterior derivative acting on a function of
degree P. It turns out that the ‘good’ choice for ϑ is given by

ϑgood = ϑEuler +
2
3 d(ξφ)

= pdx− 1
3 ψdχ− 2

3 χdψ− ξdφ .
(50)

The choice of homogeneous function ξφ is globally well defined. Indeed, writing
M = T∗[3](T[1]M × R[1]), the function ξφ is the Hamiltonian that generates the R+

rescaling of R[1]. That is, it generates the R+ rescaling for which J1 is a connection. This
provides a remarkable interpretation for the mysterious field J1 as being necessary for the
WZ terms and suggests that, by leaving J1 explicit in the calculation, one could do the
AKSZ construction in a ϑ-agnostic way. For simplicity, we shall not present that argument
here and proceed without J1 and with ϑ = ϑgood as given in (50).

The bulk action is given by

Sbulk =
∫

Σ4

pdx− 1
3 ψdχ− 2

3 χdψ− ξdφ

−
(
−ψp + 1

2 mφ2 − 1
2 F2ψ2φ + 1

3! Hψ3ξ + 1
4! F4ψ4

)
,

(51)

where we interpret ψ, ξ to be 1-forms on Σ4, χ, φ to be 2-forms, and p to be 3-forms. We
consider the boundary terms arising from a variation of Sbulk, which is given by

I =
∫

W3

−pδx + 1
3 ψδχ− 2

3 χδψ + ξδφ , where δSbulk = I +
∫

Σ4

(e.o.m) . (52)

It is always consistent to substitute fields for their own equations of motion. Looking
at the equations of motion for p, ψ, ξ, φ we find, respectively,
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ψµ = dxµ , (53)

pµ = dχµ − F2µψφ + 1
2 Hµψ2ξ + 1

3! F4µψ3 , (54)

dφ = 1
3! Hψ3 , (55)

dξ = 1
2 F2ψ2 −mφ , (56)

where, e.g., Hµψ2 is shorthand for Hµνρψνψρ. Note that substituting in (53) means that we
can interpret all functions Fp, H as pull-backs of differential forms on the target space M.
Substituting (53) and (54) into (52), we find

I =
∫

W3

−dχδx + (ıδxF2)φ− (ıδx H)ξ − (ıδxF4) +
1
3 dxδχ− 2

3 χδdx + ξδφ

=
∫

W3

δ( 1
3 χdx) + (ıδxF2)φ− (ıδx H)ξ − (ıδxF4) + ξδφ .

(57)

We can remove the first term by setting χ|W3 = 0, which is consistent with the
equations of motion (53)–(56). Next, we use the following results, which follow from the
solution to the Bianchi identities H = dB, Fp = dCp−1 − H ∧ Cp−3 + m eB.

ıδx H = δB− d(ıδxB) ,

ıδxF2 = δC1 − d(ıδxC1) + m ıδxB ,

ıδxF4 = δC3 − d(ıδxC3)− (δB− d(ıδxB)) ∧ C1 + H ∧ ıδxC1 + m ıδxB ∧ B .

(58)

Here and henceforth, all target-space forms are to be interpreted as pullbacks to the world-
volume, and their variations are those induced by variations of the worldvolume embedding
x : W3 → M, so that, e.g., δB evaluates to x?LδxB. Substituting these into (57), performing
some integration by parts and using the equations of motion, we find this becomes

I =
∫

W3

−δC3 + δB ∧ C1 − δB ∧ ξ + δC1 ∧ φ + ξ ∧ δφ , (59)

where we have reintroduced the ∧ to make the interpretation of these objects as (pull-backs
of) differential forms on M explicit. Finally, we can solve the equations of motion for φ, ξ
given in (55) and (56) by

φ = B− α′
2π F ,

ξ = C1 + m α′
2π A + X ,

(60)

where dF = dX = 0 and dA = F. The factors of α′ are introduced for convenience later.
We will see that it is natural to associate A with the Born–Infeld 1-form and F its field
strength. Indeed, this identification will match the WZ term given in [25]. Furthermore,
this combination of B, F is invariant under NS-NS gauge transformations [26], just as φ
should be. Substituting these into (59), we find

I =
∫

W3

−δ
(

C3 + C1 ∧ ( α′
2π F− B) + 1

2 (
α′
2π )

2m A ∧ F
)
− XδF . (61)

Imposing the condition that X|W3 = 0 we see that I = −δIWZ [25].
We now choose Sboundary so that the equations of motion (53)–(56) are stationary points

of the full action S. Hence, the variation of Σboundary must cancel I above, and we see that
we need

Sboundary = IWZ , (62)
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where here IWZ stands the Wess–Zumino action of the D2 brane [25]. This then implies,
as desired

δS = δSbulk + δSboundary =
∫

Σ4

(e.o.m) . (63)

4.1.2. NS5 Brane

We will now perform the same analysis for the NS5 brane. We will not perform the
analysis for the D4 brane since it follows very similarly to the D2 brane above. We once
again build a theory on Maps(T[1]Σ7 →M) where Σ7 is a 7-dimensional manifold such
that the boundary

∂Σ7 = W6 , (64)

is interpreted as the worldvolume of the NS5 brane. We take the AKSZ action given by

S = Sbulk + Sboundary Sbulk =
∫

Σ7

ϑ + Θ . (65)

Note that the relative sign in the bulk action is different to that chosen for the D2 brane.
Ultimately, the relative sign is not important for the AKSZ construction and + is only
chosen here for convenience. We take the following ‘good’ choice of symplectic potential.

ϑgood = ϑEuler +
1
3 d(ξφ)

= pdx− 1
6 ψdχ− 5

6 χdψ− 1
2 ξdφ− 1

2 φdξ − 1
2 ζdζ .

(66)

Note that, once again, the good choice of ϑ differs from the canonical choice by
a global function which is the Hamiltonian generating the R+ action for which J1 is a
gauge potential.

The bulk action is

Sbulk =
∫

Σ7

pdx− 1
6 ψdχ− 5

6 χdψ− 1
2 ξdφ− 1

2 φdξ − 1
2 ζdζ

− ψp + 1
2 F2ψ2φ + 1

3! Hψ3ξζ + 1
4! F4ψ4ζ − 1

6! F6ψ6ξ − 1
7! H̃ψ7 .

(67)

We vary the action and consider the boundary terms that arise.

I =
∫

W6

pδx + 1
6 ψδχ + 5

6 χδψ + 1
2 ξδφ + 1

2 φδξ + 1
2 ζδζ (68)

Once again, it is always consistent to substitute fields for their own equation of motion.
Looking at the equations of motion for p, ψ, φ, ζ, ξ, we find, respectively,

ψµ = dxµ , (69)

pµ = −dχµ + F2µψφ + 1
2 Hµψ2ξζ + 1

3! F4µψ3ζ − 1
5! F6µψ5ξ − 1

6! H̃µψ6 , (70)

dξ = 1
2 F2ψ2 , (71)

dζ = 1
3! Hψ3ξ + 1

4! F4ψ4 , (72)

dφ = − 1
3! Hψ3ζ − 1

6! F6ψ6 . (73)

Substituting (69) and (70) into (68), we find

I =
∫

W6

−δ( 1
6 χdx) + (ıδxF2)φ + (ıδx H)ξζ + (ıδxF4)ζ − (ıδxF6)ξ − (ıδx H̃)

+ 1
2 ξδφ + 1

2 φδξ + 1
2 ζδζ

(74)

We can remove the first term with the boundary condition χ|W6 = 0, which is con-
sistent with the equations of motion. We then use the following results, which follow
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from the solutions to the Bianchi identities H = dB, Fp = dCp−1 − H ∧ Cp−3, H̃ =

dB̃ + 1
2 (−F2C5 + F4C3 − F6C1).

ıδx H = δB− d(ıδxB) ,

ıδxF2 = δC1 − d(ıδxC1) ,

ıδxF4 = δC3 − d(ıδxC3)− (δB− d(ıδxB)) ∧ C1 + H ∧ ıδxC1 ,

ıδxF6 = δC5 − d(ıδxC5)− (δB− d(ıδxB)) ∧ C3 + H ∧ ıδxC3 ,

ıδx H̃ = δB̃− d(ıδx B̃)− 1
2 (δC1 − d(ıδxC1) ∧ C5 − 1

2 F2 ∧ ıδxC5

+ 1
2 (δC3 − d(ıδxC3)− (δB− d(ıδxB)) ∧ C1 + H ∧ ıδxC1) ∧ C3 +

1
2 F4 ∧ ıδxC3

− 1
2 (δC5 − d(ıδxC5)− (δB− d(ıδxB)) ∧ C3 + H ∧ ıδxC3) ∧ C1 − 1

2 F6 ∧ ıδxC1 .

(75)

Substituting these into (74) we find

I =
∫

W6

δC1φ + δBξζ + δC3ζ − δBC1ζ − δC5ξ + δBC3ξ − δB̃ + 1
2 δC1C5

− 1
2 δC3C3 + δBC1C3 +

1
2 δC5C1 +

1
2 ξδφ + 1

2 φδξ + 1
2 ζδζ .

(76)

We can then solve the equations of motion for ξ, ζ, φ given in (71)–(73) by

ξ = G1 = C1 + dc0 ,

ζ = G3 = C3 − Hc0 + dc2 ,

−φ = G5 = C5 − Hc2 + dc4 ,

(77)

where we have used the same notation as [27], and where cp are locally differential forms
that transform in such a way that Gp′ are gauge invariant. Substituting these into (76)
we find

I =
∫

W3

−δ
(

B̃ + 1
2 (−G5C1 + G3C3 − G1C5)

)
+ . . . = −δIWZ , (78)

where the . . . corresponds to terms quadratic in the cp, which vanish when one enforces a
duality constraint relating c0 and c4, and a self-duality constraint on c2. This matches the
constraints originally found in [28] for these worldvolume fields. Hence, the boundary
term is precisely the variation of (minus) the WZ term for the NS5 brane [27]. The boundary
action Sboundary must be chosen to cancel this term and hence we need

Sboundary = IWZ , (79)

where here IWZ stands for the Wess–Zumino action of the NS5 brane, e.g., [27].

4.2. The (Topologically Massive) D2 Brane Phase Space

We first consider the case where all fluxes except the Romans mass m have been
switched off. Then the Hamiltonian Θ of (5) associated to the Q-structure QM onM =
T?[3]T[1]M×R[1]×R[2] simplifies to

Θ = −ψµ pµ + 1
2 mφ2 , (80)

with m constant.
The construction of [15] produces a degree-zero Poisson bracket on the subspace of

Maps(T[1]Σ2 →M) , (81)

defined by the zero locus of the vector field dT[1]Σ2
−QM. This induces an ordinary Poisson

bracket on the degree-zero subspace of that zero locus, which we will now identify as the
phase space of a D2 brane on a Romans massive background (the brane worldvolume being
R× Σ2). We will focus on the novelty of the D2 brane versus the case of the M2 brane
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(which was already discussed in that reference), which is the pair of R[1]×R[2] coordinates
ξ and φ and their contribution to the brane phase space.

The coordinates ξ and φ on the target spaceM, respectively, give rise to degree 1 and
3 superfields ξ and φ, which are some of the components of a map T[1]Σ2 →M. These are
expanded in component fields as

φ = 1
2 φα1α2(σ)ε

α1α2dσ1dσ2 + . . . ≡ Φ(σ)dσ1dσ2 + . . . , ξ = ξα(σ)dσα + . . . , (82)

where σα = (σ1, σ2) are coordinates on Σ2, εαβ is the invariant Levi–Civita tensor density
with ε12 = 1, deg dσα = 1, and the ellipses denote component fields of non-zero degree
(“ghosts”). The brane phase space construction then gives a Poisson bracket formula for
smeared currents such as

− 〈ξ|ε〉 ≡
∫

T[1]Σ2

ξε , (83)

for ε any form on Σ2. This formula takes the form{
〈 f |ε〉 , 〈g|η〉

}
= ±〈( f , QMg)|εη〉 ± 〈( f , g)|εdT[1]Σ2

η〉 , (84)

for f , g any functions onM. We refer to [15] for the signs and more details.
We see from (84) that the Romans mass will appear in the Poisson brackets of Φ(σ)

and ξα(σ). Indeed we derive the non-vanishing Poisson brackets (where ε12 = 1)

{Φ(σ), ξα(τ)} =
∂

∂τα
δ2(σ− τ) , {ξα(σ), ξβ(τ)} = mεαβδ2(σ− τ) , (85)

with the currents associated with the other variables (x, ψ, χ, p) giving the standard brane
position/momentum Poisson brackets.

The D2-brane worldvolume on a Romans massive background carries a gauge field,
which evolves according to topologically massive electrodynamics [29] (coupled to the
worldvolume scalar fields determining the brane embedding in spacetime). The phase
space of this theory is given in terms of the spatial vector potential Aα(σ) and its conjugate
momentum Dα(σ), with gauge transformations generated by the Gauss law constraint G:

{Aα(σ), Dβ(τ)} = δ
β
α δ2(σ− τ) , G ≡ ∂αDα − 1

2 mεαβ∂α Aβ . (86)

The dynamics of the theory is given by the Hamiltonian

H =
∫

d2σ (E2 + B2) , B ≡ εαβ∂α Aβ , Eα ≡ Dα + 1
2 mεαβ Aβ . (87)

This Hamiltonian is manifestly gauge-invariant, as the variables B and Eα Poisson-
commute with the Gauss law constraint G.

The Poisson brackets (85) obtained in the QP manifold picture are precisely the Poisson
brackets of the gauge-invariant variables

{Eα(σ), Eβ(τ)} = mεαβδ2(σ− τ) , {Eα(σ), B(τ)} = εαβ ∂

∂τβ
δ2(σ− τ) , (88)

if we identify Eα = εαβξβ and Φ = −B. Furthermore, the zero-locus condition (dT[1]Σ2
−

QM = 0) implies dT[1]Σ2
ξ = −mΦ, which is equivalent to

εαβ∂αξβ = −mΦ , (89)

for the degree-zero component fields that we are interested in; this in turn gives the Gauss
law constraint albeit expressed via Eα rather than Dα:

∂αEα = mB . (90)
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Alongside the usual position-momentum conjugate variables, we have therefore
recovered the D2-brane phase space, including the correct modified Gauss law arising from
the topologically massive electrodynamics on the brane.

The preceding analysis is valid locally also in the case where all fluxes are switched on
in (5). This is because whenever Q2 = 0, the Hamiltonian with fluxes can be locally written

Θ = −ψµ pµ + 1
2 mφ2 + Θflux = −ψµ pµ + 1

2 mφ2 + (−ψµ pµ + 1
2 mφ2, Ψ) , (91)

where Ψ is the obvious function in degree 3, including all relevant gauge potentials. The
last equality states that the fluxes (excepting the Romans mass) can be removed by a local
canonical transformation. The result for the brane phase space with fluxes included can
thus be obtained from the fluxless result via a canonical transformation generated by the
obvious expression involving potentials for all fluxes. This kind of argument is articulated
in more detail in ([15], Section 3.3).

5. Discussion

We introduced QP manifolds (also known or symplectic L∞-algebroids) that cap-
ture the exceptional generalised geometry of type IIA backgrounds, including Romans
mass [6,21]. Using canonical constructions that take QP manifolds as input, namely the
AKSZ construction [12] and the brane phase space construction [15], we demonstrated
how each of the “D2”, “D4”, and “NS5” algebroids corresponds to its namesake brane.
This further establishes the connection between QP manifolds, generalised geometry, and
string/M-theory. We also checked that the D2 and NS5 algebroids behave correctly with
respect to type IIA string theory/M-theory duality: when the Romans mass vanishes,
they arise from the M2 and M5 algebroids upon symplectic reduction with respect to
a circle action, which corresponds to the compactification of the 11th dimension on the
string/M-theory side.

There remain a few puzzles with respect to the string theory interpretation. One is that
all three algebroids can accommodate a closed 1-form flux J1 (as in (5) for the D2) on top of
the expected NSNS and RR fluxes, which naturally transforms as a gauge connection for the
R+ symmetry ξ → eλξ, φ→ e−λφ. This suggests a new IIA supergravity with a gauged R+

symmetry. While we can (classically) set J1 = 0 by a canonical transformation, the J1 field
could define a genuinely different quantum theory. There are already known IIA theories
with gauged R+ symmetry coming from the trombone symmetry [30–32]. However, the
charges under the R+ symmetry of all the fields seem to not match and hence this is
unlikely to correspond to the trombone symmetry. It would be interesting to investigate
further whether one can define a consistent supergravity with these gauge symmetries.

Another puzzle is that the D2 and D4 algebroids accommodate Romans mass, but
the NS5 algebroid does not. As we noted in the main text, this is consistent with the fact
the D6-brane flux F8 does not appear in the NS5 Q-structure because the mass and the D6
coupling appear together [17]. This ultimately underscores the continuing mystery of the
absence of QP manifolds relevant for (p > 5)-branes (equivalently, of degree P > 6).

A perhaps-related mystery is the lack of known QP manifolds that encode information
about the fermionic fields in supergravity. Generalised and exceptional generalised geome-
try and the closely related double/exceptional field theory seem to “know” information
that would otherwise be obtained via supersymmetry; the relative coefficient between
the kinetic and Wess–Zumino terms of the string is one example [33,34]. Our derivation
of the D2-brane physics from (Romans massive) IIA supergravity data is another: it is
a curious “converse” to the derivation of the Romans IIA supergravity equations from
kappa-symmetry of the (topologically massive) D2-brane lagrangian [35].

Finally, it would be interesting to relate the D4 algebroid to some of the other known
ones via QP-manifold avatars of known stringy dualities. On the string theory side, of
course, the D4 brane is obtained by, e.g., wrapping an M5 brane on the M-theory circle, or
else via T-duality from the D3 brane. Fortunately, a T-duality that relates Courant algebroids
(i.e., F1 algebroids in the terminology of this paper) has recently been realised [18] in terms
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of (graded) Lagrangian correspondences. It, therefore, seems plausible there could exist a
duality web linking the various QP-manifolds/generalised geometries, which precisely
mirrors the string/M-theory duality web.
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Notes
1 A supermanifold with an extra Z-grading on its structure sheaf, so all functions f have a well-defined degree deg f ; for us,

deg f ≥ 0 and deg mod 2 equal the Grassmann parity, and this grading is equivalent to the existence of a degree-counting vector
field (“Euler”), which we employ later.

2 The anchor map a : E→ T is intrinsic to the definition of these higher algebroids; see, e.g., [1].
3 A priori, one could have terms such as αµ

ν pµψν and βµ pµξ. However, we will assume that α is invertible, which is equivalent to
saying that the anchor map associated to the algebroid is surjective. Hence, one can always perform a canonical transformation to
set αµ

ν = δµ
ν and β = 0.

4 The necessity of performing asymplectomorphism before the symplectic reduction was also observed in [18].
5 In double field theory, Romans IIA theory arises by giving the Ramond–Ramond fields a linear dependence on the dual

coordinates [22].

References
1. Baraglia, D. Leibniz algebroids, twistings and exceptional generalized geometry. J. Geom. Phys. 2012, 62, 903–934. [CrossRef]
2. Coimbra, A.; Strickland-Constable, C.; Waldram, D. Supergravity as Generalised Geometry I: Type II Theories. J. High Energy

Phys. 2011, 11, 091. [CrossRef]
3. Hull, C.M. Generalised Geometry for M-Theory. J. High Energy Phys. 2007, 7, 79. [CrossRef]
4. Pires Pacheco, P.; Waldram, D. M-theory, exceptional generalised geometry and superpotentials. J. High Energy Phys. 2008, 9, 123.

[CrossRef]
5. Coimbra, A.; Strickland-Constable, C.; Waldram, D. Supergravity as Generalised Geometry II: Ed(d) ×R+ and M theory. J. High

Energy Phys. 2014, 3, 19. [CrossRef]
6. Cassani, D.; de Felice, O.; Petrini, M.; Strickland-Constable, C.; Waldram, D. Exceptional generalised geometry for massive IIA

and consistent reductions. J. High Energy Phys. 2016, 8, 74. [CrossRef]
7. Cattaneo, A.S.; Schaetz, F. Introduction to supergeometry. Rev. Math. Phys. 2011, 23, 669–690. [CrossRef]
8. Roytenberg, D. Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds; University of California: Berkeley, CA,

USA, 1999.
9. Ševera, P. Letters to Alan Weinstein about Courant algebroids. arXiv 2017, arXiv:1707.00265.
10. Arvanitakis, A.S. Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L∞-algebroid. Adv. Theor.

Math. Phys. 2019, 23, 1159–1213. [CrossRef]
11. de Wit, B.; Nicolai, H.; Samtleben, H. Gauged Supergravities, Tensor Hierarchies, and M-Theory. J. High Energy Phys. 2008, 2, 44.

[CrossRef]
12. Alexandrov, M.; Schwarz, A.; Zaboronsky, O.; Kontsevich, M. The Geometry of the master equation and topological quantum

field theory. Int. J. Mod. Phys. A 1997, 12, 1405–1429. [CrossRef]
13. Ikeda, N.; Koizumi, K. Current Algebras and QP Manifolds. Int. J. Geom. Meth. Mod. Phys. 2013, 10, 1350024. [CrossRef]
14. Alekseev, A.; Strobl, T. Current algebras and differential geometry. J. High Energy Phys. 2005, 3, 35. [CrossRef]

http://doi.org/10.1016/j.geomphys.2012.01.007
http://dx.doi.org/10.1007/JHEP11(2011)091
http://dx.doi.org/10.1088/1126-6708/2007/07/079
http://dx.doi.org/10.1088/1126-6708/2008/09/123
http://dx.doi.org/10.1007/JHEP03(2014)019
http://dx.doi.org/10.1007/JHEP08(2016)074
http://dx.doi.org/10.1142/S0129055X11004400
http://dx.doi.org/10.4310/ATMP.2019.v23.n5.a1
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://dx.doi.org/10.1142/S0217751X97001031
http://dx.doi.org/10.1142/S0219887813500242
http://dx.doi.org/10.1088/1126-6708/2005/03/035


Universe 2022, 8, 147 16 of 16

15. Arvanitakis, A.S. Brane current algebras and generalised geometry from QP manifolds: Or, “when they go high, we go low”.
arXiv 2021, arXiv:2103.08608.

16. Romans, L.J. Massive N=2a Supergravity in Ten-Dimensions. Phys. Lett. B 1986, 169, 374. [CrossRef]
17. Bergshoeff, E.; Lozano, Y.; Ortin, T. Massive branes. Nucl. Phys. B 1998, 518, 363–423. [CrossRef]
18. Arvanitakis, A.S.; Blair, C.D.A.; Thompson, D.C. A QP perspective on topology change in Poisson-Lie T-duality. arXiv 2021,

arXiv:2110.08179.
19. Kokenyesi, Z.; Sinkovics, A.; Szabo, R.J. AKSZ Constructions for Topological Membranes on G2-Manifolds. Fortsch. Phys. 2018,

66, 1800018. [CrossRef]
20. Hull, C.M. Massive string theories from M theory and F theory. J. High Energy Phys. 1998, 11, 027. [CrossRef]
21. Ciceri, F.; Guarino, A.; Inverso, G. The exceptional story of massive IIA supergravity. J. High Energy Phys. 2016, 8, 154. [CrossRef]
22. Hohm, O.; Kwak, S.K. Massive Type II in Double Field Theory. J. High Energy Phys. 2011, 11, 86. [CrossRef]
23. Ikeda, N. Topological field theories and geometry of Batalin-Vilkovisky algebras. J. High Energy Phys. 2002, 10, 076. [CrossRef]
24. Roytenberg, D. AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories. Lett. Math. Phys. 2007,

79, 143–159. [CrossRef]
25. Green, M.B.; Hull, C.M.; Townsend, P.K. D-brane Wess-Zumino actions, t duality and the cosmological constant. Phys. Lett. B

1996, 382, 65–72. [CrossRef]
26. Lozano, Y. Eleven-dimensions from the massive D2-brane. Phys. Lett. B 1997, 414, 52–57. [CrossRef]
27. de Boer, J.; Shigemori, M. Exotic Branes in String Theory. Phys. Rept. 2013, 532, 65–118. [CrossRef]
28. Bergshoeff, E.A.; Riccioni, F. String Solitons and T-duality. J. High Energy Phys. 2011, 5, 131. [CrossRef]
29. Deser, S.; Jackiw, R.; Templeton, S. Topologically Massive Gauge Theories. Annals Phys. 1982, 140, 372–411. [CrossRef]
30. Howe, P.S.; Lambert, N.D.; West, P.C. A New massive type IIA supergravity from compactification. Phys. Lett. B 1998,

416, 303–308. [CrossRef]
31. Lavrinenko, I.V.; Lu, H.; Pope, C.N. Fiber bundles and generalized dimensional reduction. Class. Quant. Grav. 1998, 15, 2239–2256.

[CrossRef]
32. Riccioni, F. Local E(11) and the gauging of the trombone symmetry. Class. Quant. Grav. 2010, 27, 125009. [CrossRef]
33. Arvanitakis, A.S.; Blair, C.D.A. Unifying Type-II Strings by Exceptional Groups. Phys. Rev. Lett. 2018, 120, 211601. [CrossRef]

[PubMed]
34. Arvanitakis, A.S.; Blair, C.D.A. The Exceptional Sigma Model. J. High Energy Phys. 2018, 4, 64. [CrossRef]
35. Bergshoeff, E.; Cowdall, P.M.; Townsend, P.K. Massive IIA supergravity from the topologically massive D2-brane. Phys. Lett. B

1997, 410, 13–21. [CrossRef]

http://dx.doi.org/10.1016/0370-2693(86)90375-8
http://dx.doi.org/10.1016/S0550-3213(98)00045-5
http://dx.doi.org/10.1002/prop.201800018
http://dx.doi.org/10.1088/1126-6708/1998/11/027
http://dx.doi.org/10.1007/JHEP08(2016)154
http://dx.doi.org/10.1007/JHEP11(2011)086
http://dx.doi.org/10.1088/1126-6708/2002/10/076
http://dx.doi.org/10.1007/s11005-006-0134-y
http://dx.doi.org/10.1016/0370-2693(96)00643-0
http://dx.doi.org/10.1016/S0370-2693(97)01143-X
http://dx.doi.org/10.1016/j.physrep.2013.07.003
http://dx.doi.org/10.1007/JHEP05(2011)131
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1016/S0370-2693(97)01199-4
http://dx.doi.org/10.1088/0264-9381/15/8/008
http://dx.doi.org/10.1088/0264-9381/27/12/125009
http://dx.doi.org/10.1103/PhysRevLett.120.211601
http://www.ncbi.nlm.nih.gov/pubmed/29883167
http://dx.doi.org/10.1007/JHEP04(2018)064
http://dx.doi.org/10.1016/S0370-2693(97)00911-8

	Introduction
	QP Manifolds for IIA Branes
	D2 (P=3 Algebroid)
	D4 (P=5 Algebroid)
	NS5 (P=6 Algebroid)

	IIA/M-Theory Duality
	M5 to NS5
	M2 to D2

	Applications
	AKSZ Models
	D2 Brane
	NS5 Brane

	The (Topologically Massive) D2 Brane Phase Space

	Discussion
	References

