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Abstract
We investigate the rotation of the polarization of a light ray propagating in the 
gravitational field of a circularly polarized laser beam. The rotation consists 
of a reciprocal part due to gravitational optical activity, and a non-reciprocal 
part due to the gravitational Faraday effect. We discuss how to distinguish the 
two effects: letting light propagate back and forth between two mirrors, the 
rotation due to gravitational optical activity cancels while the rotation due 
to the gravitational Faraday effect accumulates. In contrast, the rotation due 
to both effects accumulates in a ring cavity and a situation can be created in 
which gravitational optical activity dominates. Such setups amplify the effects 
by up to five orders of magnitude, which however is not enough to make them 
measurable with state of the art technology. The effects are of conceptual 
interest as they reveal gravitational spin–spin coupling in the realm of classical
general relativity, a phenomenon which occurs in perturbative quantum gravity.

Keywords: linearized gravity, spin angular momentum of light, spin–spin
coupling of light, gravitational Faraday effect, gravitational optical activity, 
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1.  Introduction

The gravitational field of a light beam was first studied in 1931 by Tolman, Ehrenfest and Podolski 
[1], who described a light beam in the simplest way, namely as a single light ray of constant 
energy density and without polarization. Since then, various models for light beams have been 
considered, such as in [2–4], all of them having in common that the short-wavelength approx
imation is used. This means that the light is either described as a thin pencil or as a continuous 
fluid moving at the speed of light and without any wave-like properties. Recently, we studied the 
gravitational field of a laser beam beyond the short-wavelength approximation [5]: the laser beam 
is modeled as a solution of Maxwell’s equations, and therefore, has wave-like properties. In this 
case, there appear gravitational effects of light that were not visible in the previous models, such 
as frame-dragging due to the light’s spin angular-momentum, the deflection of a parallel propa-
gating test ray, and the rotation of polarization of test rays. The latter is the subject of this article.

Effects of gravitational rotation of polarization were first described in 1957 independently 
by Skrotsky [6] and by Balazs [7]. In 1960, Plebanski found a coordinate-invariant expression 
for the change of the polarization for a light ray coming from flat spacetime, passing through 
a weak gravitational field, and going to flat spacetime again [8]. The gravitational rotation of 
polarization has been studied for several systems: for moving objects, moving gravitational 
lenses [9–11] and other astrophysical situations [12, 13], in the context of gravitational waves 
[14], for rotating rings [15], for ring lasers [16] and for linearly polarized lasers in a waveguide 
[17]. It was also treated more formally in [18–20].

Rotation of polarization is well-known from classical optics, when light rays pass through 
certain media (see e.g. [21]). For this, the medium needs broken inversion symmetry, a property 
certain materials have naturally. Such media with ‘natural optical activity’ lead to different phase 
velocities of right- and left-circularly polarized light. The effect is ‘reciprocal’, i.e. when the light 
ray is reflected back through the medium, the rotation of polarization is undone. In contrast hereto 
is the Faraday effect, which can be created even in isotropic media by applying a magnetic field. 
Here, the rotation is ‘non-reciprocal’, i.e. the polarization keeps rotating in the same direction 
relative to the original frame when the light propagates back along the path. In this article, we 
consider the rotation of the polarization vector of test rays in the gravitational field of a circularly 
polarized laser beam in free space. It turns out that the rotation of polarization contains both a 
reciprocal and a non-reciprocal part. The former can hence be interpreted as gravitational optical 
activity and the latter as a gravitational Faraday effect, also called Skrotsky effect.

The laser beam is described as a perturbative solution to Maxwell’s equations, an expan-
sion in the beam divergence angle θ, which is assumed to be smaller than one radian. The 
description of the laser beam and its gravitational field is given in detail in [5] and summarized 
below. We look at the rotation of the polarization of test rays which are parallel co-propagat-
ing, parallel counter-propagating, or propagating transversally to the beamline of the source 
laser-beam, and consider a cavity where the rotation of the polarization vector accumulates 
after each roundtrip. We thus propose a measurement scheme which may possibly be realized 
in a laboratory in the future, when the sensitivity in experiments has improved accordingly.

The description of the gravitational field of a laser beam is reviewed in section 2, and the 
calculation of the rotation of light polarization in curved spacetime in section 3. In section 4, 
we calculate the Faraday effect for test rays. As already mentioned, only the non-reciprocal 
part of the rotation which is not due to the deflection can be associated with the Faraday effect, 
which is discussed in section 5. Considering a cavity in a certain arrangement, the rotation 
angles acquired after each roundtrip of the light inside the cavity sum up. This is the subject of 
section 6, where we look at a one-dimensional cavity and a ring cavity and discuss the possible 
measurement precision of the rotation angle. We give a conclusion and an outlook in section 7.
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To keep track of the orders of magnitude, we introduce dimensionless coordinates by divid-
ing them by the beam waist w0 as τ = ct/w0, ξ = x/w0, χ = y/w0 and ζ = z/w0, where c is 
the speed of light. Greek indices like xα refer to dimensionless spacetime coordinates and 
latin indices like xa refer to dimensionless spatial coordinates. For the spacetime metric, we 
choose the sign convention (−,+,+,+), such that the Minkowski metric η in the dimension-
less coordinates reads η = w2

0diag(−1, 1, 1, 1). In the numerical examples and plots, we use 
the following values: the beam waist w0 = 10−6 m , the beam divergence θ = 0.3 rad (this 
determines the wavelength, which is given by πθw0 � 1 µm), the polarization λ = 1, and the 
power of the source laser-beam, which is directed in the positive z-direction, P0 = 1015 W.

2. The gravitational field of a laser beam beyond the short wavelength 
approximation

In this section, we summarize the description of the laser beam and its gravitational field pre-
sented in [5]. A laser beam is accurately described by a Gaussian beam. The Gaussian beam 
is a monochromatic electromagnetic, almost plane wave whose intensity distribution decays 
with a Gaussian factor with the distance to the beamline. It is obtained as a perturbative solu-
tion of Maxwell’s equations, namely an expansion in the beam divergence θ, the opening 
angle of the beam, which is assumed to be smaller than one radian. The electromagnetic four-
vector potential describing the Gaussian beam is obtained by a plane wave multiplied by an 
envelope function that is assumed to vary slowly in the direction of propagation, in agreement 
with the property that the divergence of the beam is small. Corresponding to these features, 
one makes the ansatz for the four-vector potential Aα(τ , ξ,χ, ζ) = Ãvα(ξ,χ, θζ)ei 2

θ (ζ−τ), 
where Ã is the amplitude and vα the envelope function4. The exponential factor describes a 
plane wave propagating in ζ-direction with wave number k = 2/(θw0), where w0 is the beam 
waist at its focal point. The laser beam propagates in positive ζ-direction such that its beam-
line concides with the ζ-axis. The beam is illustrated in figure 1. 

Like the four-vector potential for any radiation, Aα satisfies the Maxwell equations, which, 
in vacuum, are given by the wave equations

(
−∂2

τ + ∂2
ξ + ∂2

χ + ∂2
ζ

)
Aα(τ , ξ,χ, ζ) = 0,� (1)

where the Lorenz-gauge condition is chosen. Since the envelope function varies slowly in 
the direction of propagation, the wave equations (1) reduce to a Helmholtz equation for each 
component of the envelope function,

(
∂2
ξ + ∂2

χ + θ2∂2
θζ + 4iw0∂θζ

)
vα(ξ,χ, θζ) = 0.� (2)

This Helmholtz equation is solved by writing the envelope function as a power series in the 
small parameter θ. One obtains an equation for each order of the expansion of the envelope 
function, with a source term consisting of the solution for a lower order, where even and 
odd orders do not mix. The beam is assumed to have left- or right-handed circular polariza-
tion, which we label by λ = ±15. We define this to be the case if its field strength, defined as 
Fαβ = ∂αAβ − ∂βAα, is an eigenfunction with eigenvalue ±1 of the generator of the duality 

4 More precisely, the complex-valued vector potential A we consider is the analytical signal of the real-valued physi-
cal vector potential, which is obtained by taking the real part of A.
5 The vector potential describing the laser beam thus depends on the parameter λ, and so do its energy-momentum 
tensor, the induced metric perturbation and the effects we calculate in the following sections. Therefore, these 
quantities can be thought of as being labelled by an index λ, which we suppress in the following, except for appen-
dix A, where we write the index λ explicitly.
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transformation of the electromagnetic field given by Fαβ �→ −iεαβγδFγδ/2, where εαβγδ is 
the completely anti-symmetric tensor with ε0123 = −1. Our definition of helicity is based on 
the invariance of Maxwell’s equations under the duality transformation and the conservation 
of the difference between photon numbers of right- and left-polarized photons shown in [22] 
(see also [23–26]). For θ = 0, this leads to the usual expressions for the field strength of a 
circularly polarized laser beam.

It turns out that the energy-momentum tensor, which one may expect to be oscillating at the 
frequency of the laser beam, does not contain any oscillating terms when circular polarization 
is assumed. The energy-momentum tensor reads (see appendix A for the explicit expressions)

Tαβ =
c2ε0

2
Re

(
F σ
α F∗

βσ − 1
4
ηαβFδρF∗

δρ

)
.� (3)

The power series expansion of the envelope function induces a power series expansion of the 
energy-momentum tensor and the expansion coefficients are identified as different order terms 
of Tαβ in θ.

Since the energy density of a laser beam is small compared to the one of ordinary mat-
ter, one may expect its gravitational field to be weak. The spacetime metric describing the 
gravitational field is thus assumed to consist of the metric for flat spacetime ηαβ plus a small 
perturbation hαβ. Terms quadratic in the metric perturbation are neglected; this is the lin-
earized theory of general relativity. In this case, the Einstein field equations reduce to wave 
equations for the metric perturbation [27]

1
w2

0

(
−∂2

τ + ∂2
ξ + ∂2

χ + ∂2
ζ

)
hαβ = −16πG

c4 Tαβ ,� (4)

where G is Newton’s constant and where the Lorenz-gauge has been chosen. Like the enve-
lope function and the energy-momentum tensor, the metric perturbation is expanded in the 
beam divergence,

hαβ(ξ,χ, θζ) =
∞∑

n=0

θnh(n)
αβ(ξ,χ, θζ).� (5)

For a laser beam extending from minus to plus spatial infinity, the wave equations (4) result in 

a two-dimensional Poisson equation for each h(n)
αβ, with a source term consisting of a term of 

the energy-momentum tensor of the same order and a term proportional to h(n−2)
αβ , where even 

and odd orders do not mix. Details and the solutions for the zeroth, the first and the third order, 
which are relevant for our purposes, are given in appendix A.

Figure 1.  Schematic illustration of the laser beam propagating in the positive 
ζ-direction: the beam divergence θ describes the opening angle of the laser beam and 
is assumed to be a small parameter (smaller than 1 rad), and the beam waist w0 is a 
measure for the radius of the laser beam at its focal point. The intensity of the laser 
beam decreases with a Gaussian factor with the distance from the beamline.

F Schneiter et alClass. Quantum Grav. 36 (2019) 205007
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For a finitely extended source beam, the solution of (4) with time-independent energy-
momentum tensor of the source laser-beam can be calculated using the Green’s function of 
the three-dimensional Poisson equation,

hαβ =
4Gw2

0

c4

∫
dξ′dχ′dζ ′

Tαβ (ξ
′,χ′, θζ ′)

|�x −�x ′|
,� (6)

where �x = (ξ,χ, ζ) and �x ′ = (ξ′,χ′, ζ ′). The solution (6) is discussed in detail in [5].

3.  Rotation of polarization in a weakly curved spacetime

In this section, we explain the expression presented in [8] for the rotation angle that the polar-
ization vector of a test ray acquires when propagating in a gravitational field.

For a light ray propagating through a gravitational field and starting and ending at spatial 
infinity, the rotation angle of polarization within a plane perpendicular to the propagation 
direction (in the following called ray-transverse plane) is given by equation (5.33) in [8]. For 
our set of coordinates, it takes the form

∆ =
1

2w2
0

∫ ∞

−∞
dτ ta

0εabc∂bhcα(τ , �⊥ + τ t0)tα0 ,� (7)

where εabc is the Levi-Civita symbol in three dimensions with ε123 = 1, ta
0 = γ̇a(τ0) is the ini-

tial tangent to the curve describing the light ray parametrized by the dimensionless parameter 
τ , and the line �⊥ + τ t0 with �⊥ = (ξ0,χ0, 0) constant is equivalent to the spatial part of the 
ray γ  including terms up to linear order in the metric perturbation. Therefore, the evaluation 
of the metric perturbation along the line �⊥ + τ t0 instead of γ  the actual, possibly deflected 
trajectory of a light ray in the gravitational field of the source is justified as the correction 
would be of higher order in the metric perturbation.

The sign of the rotation angle ∆ is chosen such that the positive sign refers to right-handed-
ness (handedness of rotation as inferred from equation (5.20) of [8]). Equation (7) was obtained 
using the formal analogy of Maxwell’s equations in a dielectric medium and Maxwell’s equa-
tions in a gravitational field and using geometric ray optics for vectors. It is shown in [8] that 
the expression in equation (7) is invariant under coordinate transformations that approach the 
identity at spatial infinity. For equation (7) to be valid, the metric perturbation and all its first 
derivatives have to vanish at least as ρ̃−1 for ρ̃ → ∞, where ρ̃ =

√
ξ2 + χ2 + ζ2.

For a light ray that is not deflected by the gravitational field, i.e. that does not change its direc-
tion of propagation, the ray-transverse plane is the same everywhere far away from the laser beam, 
where spacetime is flat. However, when the light ray is deflected, this plane is tilted after passing 
the gravitational field with respect to the one before entering the gravitational field. Therefore, the 
rotation of the polarization vector within the ray-transverse plane given in equation (7) is superim-
posed with a change of the polarization vector δ�ω  due to the deflection of the light ray. The latter 
consists of a rotation plus a deformation which depend on the initial polarization vector �ω6. It does 
not contribute to the gravitational Faraday effect or the optical activity. An experimentalist who 
wants to measure only optical activity and the gravitational Faraday effect would have to correct 
for deflection. The change of the polarization vector is illustrated in figure 2. 

Another approach to determine the rotation of polarization is described in appendix B. It 
agrees with the results presented in this section.

For a linearly polarized test ray, the interpretation of the rotation of the polariza-
tion vector is clear: for example, for a test light-ray propagating in ζ-direction, the 

6 See section 6 in [8].
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polarization vector describing linear polarization in ξ-direction, �εξ = (1, 0, 0), is rotated into 
R∆�εξ = (cos(∆), sin(∆), 0), where R∆ stands for the matrix rotating by the angle ∆ about 
the ζ-axis. For a circularly polarized test ray with helicity λtest = ±1 and with the corre
sponding polarization vector �ελtest = (1,−λtesti, 0)/

√
2, one obtains R∆�ελtest = eiλtest∆�ελtest. 

This means that the circularly polarized test ray acquires the phase λtest∆. In general, for an 
elliptically polarized test light ray, the acquired phases of the circular components lead to a 
rotation of the major axis of the ellipse by an angle ∆.

4.  Rotation of polarization in the gravitational field of a laser beam

In this section, we investigate the rotation of the polarization vector of a test ray passing 
through the gravitational field of a source laser-beam according to equation (7).

We consider different orientations of the test ray with respect to the source beam: parallel 
co-propagating, parallel counter-propagating, and transversal test rays. We find that the effect 
depends strongly on the orientation of the test ray. In particular, we obtain that the order of 
the metric expansion7 that causes the rotation of polarization depends on the orientation of 
the test ray.

The source laser-beam is assumed to propagate along the ζ-axis, to be emitted at ζ = α and 
absorbed at ζ = β . The parallel co-propagating test ray is emitted at ζ = A and absorbed at 
ζ = B and the parallel counter-propagating test ray is emitted at ζ = B and absorbed at ζ = A. 
The test ray that is oriented transversally to the beamline of the source laser-beam is emitted 
at ξ = A and absorbed at ξ = B or vice versa.

In section 4.1 we focus on an ideal situation of infinitely long test rays. The source laser-
beam is considered to be either finitely or infinitely extended. In section 4.2 we look at finitely 

Figure 2.  Change of the initial polarization vector �ω of a light ray γ: the initial 
polarization vector �ω in the initial ray-transverse plane (represented by the solid circle 
on the left and the dashed circle on the right) is rotated by the angle ∆ into R∆�ω (dashed 
arrow on the right) due to the gravitational field, where R∆ is the corresponding rotation 
matrix. Additionally, the deflection of the laser beam tilts the ray-transverse plane into 
its final orientation (solid circle on the right) such that it stays orthogonal to the tangent 
of the deflected laser beam. The tilt leads to an additional change δ�ω  of the polarization 
vector �ω. The rotation by the angle ∆ consists of a reciprocal part due to the gravitational 
optical activity and a non-reciprocal part due to the gravitational Faraday effect.

7 Generally, with the order of the metric expansion, we refer to the order in θ. Any higher order terms of the metric 
perturbation itself are neglected in the linearized theory of general relativity.

F Schneiter et alClass. Quantum Grav. 36 (2019) 205007
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long test rays and a finitely extended source laser-beam, and we discuss the the long-range 
behavior of the rotation of polarization of the test rays. In section 4.3, we discuss the gravita-
tional coupling between the spin of the source laser-beam and the spin of the test ray.

4.1.  Infinitely extended test ray

For the infinitely extended test rays, the conditions for the application of equation  (7) are 
immediately seen to be fulfilled for the finitely extended source beam, as the metric perturba-
tion and all its first derivatives vanish at least as ρ̃−1 for ρ̃ → ∞. This follows directly from 
the Green’s function which is proportional to 1/ρ̃  in three dimensions.

For the parallel test rays, for an infinitely extended source beam and an infinitely extended 
test ray it will always be understood that the emitter and absorber of the test ray are sent to 
infinity more rapidly than those of the source-beam, i.e. |A|, |B| � |α|, |β| → ∞, such that 
also here the test ray indeed begins and ends in flat spacetime. For the transversal test rays, for 
an infinitely extended source beam and infinitely extended test rays, it is assumed that |A| and 
|B| approach infinity fast enough for them to be in flat spacetime.

Besides the strict validity of equation (7), the infinite test-ray has also the advantage to lead 
to relatively simple analytical expressions for the rotation angles.

4.1.1.  Parallel test rays.  We start by looking at the rotation of the polarization vector of test 
rays which are parallel co-propagating or counter-propagating with respect to the source laser-
beam as illustrated in figure 3. 

The parallel co- and counter-propagating test rays are assumed to have a distance 
ρ =

√
ξ2 + χ2  from the beamline, and to travel from ζ = −∞ to ζ = ∞ and from ζ = ∞ to 

ζ = −∞, respectively. They are considered to have transversal polarization described by the 
polarization vector wµ = (0, wξ, wχ, 0). The initial tangents to their worldlines are given by 
γ̇±(τ0) = (1, 0, 0,±(1 − f±)), where the ‘+’ corresponds to the co-propagating test ray and 
the ‘  −  ’ to the counter-propagating test ray. The parameter f± ensures that γ̇± satisfies the 
null condition. It is proportional to the metric perturbation, which means that it does not con-
tribute in equation (7) and can be neglected in the following calculations. Since the integra-
tion in equation (7) is along the line �⊥ + τ t0 = (ξ0,χ0,±τ), we can change the integration 
variable from τ  to ζ when neglecting terms quadratic in the metric perturbation. Then, for the 
parallel propagating test rays we obtain (see equation (D.1))

∆± = − 1
2w2

0

∫ ∞

−∞
dζ

(
∂χ (hξζ ± hτξ)− ∂ξ (hχζ ± hτχ)

)
.� (8)

Figure 3.  Schematic illustration of the rotation of the polarization vector �ω  (here it 
originally has only a component in ξ-direction) of a parallel co-propagating test ray 
with tangent γ̇+ in the gravitational field of the laser beam.

F Schneiter et alClass. Quantum Grav. 36 (2019) 205007
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Notice that the metric perturbation contains a factor w2
0, such that ∆± is dimensionless. For the 

co-propagating test ray, the contribution coming from the first order of the metric perturbation 
cancels, and one obtains in leading order (the third order in θ)

∆+ = λ
GP0θ

3

c5

∫ β

α

dζ |µ|2(1 + 2|µ|2ρ2)e−2|µ|2ρ2
,� (9)

where |µ|2 = (1 + (θζ)2)−1. Note that ζ in (9) parametrizes the source beam (i.e. corresponds 
to ζ ′ in (6)). The derivation of (9) (see appendix E for details) uses an asymptotic expansion in 
1/B, i.e. assumes that B � |ζ ′|, |ρ′|, as well as a finite cut-off ρ0 of the energy density in radial 
direction that is then sent to infinity. The expression with ρ0 kept finite is given by (E.15). 
For an infinitely extended source beam, we can then simply evaluate the limit α → −∞ and 
β → ∞. An alternative derivation that starts from an infinitely extended source beam and an 
infinitely extended test ray is given in appendix D.

The integrand in (9) decreases as a Gaussian with the distance to the beamline. The Gaussian 
factor is the same as the one that appears as a global factor in the energy-momentum tensor of 
the source beam (see [5] or appendix A), which implies that significant contributions to ∆+ for 
the infinitely extended test ray are only accumulated in regions where the energy distribution 
of the source beam does not vanish. In addition, (E.15) shows that there is no effect outside of 
a finite beam when a cut-off of the energy-momentum distribution is considered.

The sign of the rotation angle in equation (9) depends on λ, which specifies the handedness 
of the light in the source laser-beam. The dependence of the rotation angle ∆+ on the distance 
to the beamline is illustrated in the upper graph of figure 4.

For the counter-propagating test ray, we obtain in leading order (the first order in θ)

∆− = −λ
8GP0θ

c5

∫ β

α

dζ |µ|2e−2|µ|2ρ2
� (10)

for the finitely extended source beam and the infinitely extended test ray. Equation (10) is 
derived with the same limiting procedures as (9). Its version with finite radial cut-off of Tµν is 
given in (E.8). The integrand in equation (10) decreases in the same way as the one in equa-
tion (9) with the same Gaussian factor with the distance to the beamline that can be found 
as a global factor in the energy-momentum tensor of the laser beam. We find that there are 
no significant contributions to the rotation angle ∆− outside of the energy distribution for 
an infinitely extended test ray (see equation (E.8)) when introducing a cut-off of the energy-
momentum distribution in transversal direction. The dependence of the rotation angle ∆− on 
the distance to the beamline is illustrated in the lower graph in figure 4. The two orders of 
magnitude larger values for ∆− compared to those for ∆+ arise due to the factor θ2/8 present 
in the expression for ∆+ but not in the one for ∆− (compare equations (9) and (10)).

4.1.2. Transversally propagating test rays.  The transversally propagating test ray is described 
by the initial tangent γ̇± = (1,±(1 − f±), 0, 0). Due to the same argument as before, we do 
not have to take into account the parameter f±. For the rotation angle of the polarization vec-
tor, we obtain for the infinitely extended source beam and infinitely extended test ray (see 
appendix D for the detailed derivation) including terms up to first order

∆t± =± 1
2w2

0

∫ ∞

−∞
dξ ∂χh(0)

τζ +
θ

2w2
0

∫ ∞

−∞
dξ ∂χh(1)

ξζ

=± 4πGP0

c5 erf
(√

2|µ|χ
)
+ λ

2
√

2πGP0θ

c5 |µ|e−2|µ|2χ2
.

�

(11)

F Schneiter et alClass. Quantum Grav. 36 (2019) 205007
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Let us denote the first term in equation (11) as ∆(0)
t±  and the second term as ∆(1)

t± . Then, we 
find that ∆(1)

t± = λθ
4 ∂χ∆

(0)
t+ . One might think that the symmetry of the beam geometry implies 

that ∆(0)
t±  should vanish at ζ = 0 as the term is independent of the helicity of the source beam. 

However, the symmetry is broken due to the direction of propagation of the source laser-beam. 
This can also be seen from the fact that only the τζ -component of the metric perturbation 
contributes to the effect, which would vanish for a massive medium at rest (see for example 
the Levi-Civita metric for an infinitely extended rod of matter [28]). The effect is similar to 

Figure 4.  The absolute value of the polarization rotation angle ∆+ (upper graph) 
for a parallel co-propagating light ray and ∆− (lower graph) for a parallel counter-
propagating light ray as a function of the transversal distance ρ  from the beamline. The 
blue (dashed–dotted) line gives the rotation angle for the infinitely extended source beam 
and test ray. The green (unbroken) line gives the rotation angle for a source beam with 
emitter and absorber at ζ = −200 and ζ = 200, respectively, and infinitely extended 
test ray. The red (dashed) line gives the numerical values for the same extensions of 
the test beam and a finitely extended test light-ray with emitter (absorber) and absorber 
(emitter) at ζ = A = −600 and ζ = B = 600, respectively, for the co-propagating 
(counter-propagating) beam. For the parameters given in the introduction, the factor 
8GP0/c5 is of the order 10−37. The plots show good agreement between our results for 
finitely and infinitely extended beams close to the beamline.

F Schneiter et alClass. Quantum Grav. 36 (2019) 205007
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the deflection of a transversally propagating test ray, which is both deflected radially towards 

the laser beam as well as in ζ-direction [1]. To illustrate the ζ-dependence of ∆(1)
t± , a numerical 

evaluation and a comparison to results for a finitely extended source beam (see the following 
subsection) are given in figure 5.

The first and the second term in equation (11) are fundamentally different in their depend
ence on the variable χ, which can be interpreted as the impact parameter of the scattering of 

the test light-ray with respect to the source beam. ∆(1)
t±  is proportional to the same Gaussian 

function of χ that appears as a global factor in the energy-momentum tensor of the source 
beam for ξ = 0, which means that it vanishes if there is no overlap of the source beam and the 
test ray in the same way as in the case of ∆+ and ∆− above. Instead, the first term in equa-
tion (11) vanishes at χ = 0 and saturates for large values of χ at a finite value, see figure 6 for 
plots showing numerical values for the first term in (11) and for the finitely extended source 
beam. 

Up to numerical factors of order 1, the prefactors in equations (9)–(11) can be interpreted 
as the ratio of the power P0 of the source laser-beam to the Planck power Ep/tp = E2

p/�, where 
Ep =

√
�c5/G is the Planck energy, which explains the smallness of the effect.

4.2.  Finite versus infinite source beams and test rays and the long range behavior

For potential future experiments, finitely extended test-rays are relevant. It may even not be 
possible to realize extensions of the test ray much larger than that of the source beam or one 
may need to know details about the decay of the effect for large distances from the beamline. 
It should then be kept in mind that (7) holds for test rays that begin and end in flat spacetime. 
This is a condition which can be fulfilled only approximatively for a finitely extended test-ray. 
Furthermore, only under this condition has the rotation of the polarization a clear physical, 

Figure 5.  First order contribution (corresponding to the leading order effect of 
gravitational optical activity) to the rotation angle ∆t+ for the polarization vector of an 
transversally propagating test ray with λ = +1: the blue, continuous line corresponds 
to the infinitely extended source beam, and the red, dashed line corresponds to the 
finitely extended source beam, emitted at α = −200 and absorbed at β = 200. The 
test ray runs from ξ = A = −600 to ξ = B = 600 at χ = 10. We find that the results 
for the infinitely extended source beam and test ray can be used to describe the effect 
in the case of the finitely extended source beam and test ray to some approximation for 
ζ-positions that are in between emitter and absorber, but far from them. It can be seen 
that the rotation decreases fast at the ends of the finitely extended source beam.
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Figure 6.  The rotation angle ∆t+ (zeroth and first order) for the polarization vector of 
an transversally propagating test ray: the blue, plain line corresponds to the infinitely 
extended source beam, and the red, dashed line corresponds to the finitely extended 
source beam, emitted at α = −200 and absorbed at β = 200. For the finitely extended 
source beam, the test ray is emitted at ξ = A = −600 and absorbed at ξ = B = 600. 
In the first plot, |∆t+ | is given as a function of the coordinate ζ along the beamline for 
χ = 10. For the parameters given in the introduction, the factor 8GP0/c5 is of the order 
10−37. We find that the results for the infinitely extended beam approximate those for 
the finitely extended beam for ζ-positions in between emitter and absorber that are far 
from emitter and absorber. It can be seen that |∆t+ | decays quickly outside of the range 
of the finitely extended source beam and test ray in contrast to |∆t+ | for the infinitely 
extended ones that always overlap. In both cases, the maximal effect is obtained close 
to ζ = 0. In the second plot, the angle ∆t+ is given as a function of χ at ζ = 0. For 
large values of χ, it reaches a constant value for the infinitely extended source beam 
and test ray (undashed, blue) and decreases for the finitely extended source beam and 
test ray (dashed, red). A dependence on χ as 1/χ2 is found for larger values of χ using 
a multipole expansion presented in appendix F.
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coordinate-invariant meaning. To give a physical meaning to the rotation angle for a finitely 
extended test-ray, a physical reference system may be considered that extends from emitter to 
absorber. To this end, matter properties of the reference system like its density and stiffness 
have to be taken into account to obtain a reliable result. This is very similar to the consider-
ations we made in [29] for the frequency shift of an optical resonator in a curved spacetime. 
We do not follow such an approach in this article.

Here we rather focus on the question under which conditions equation (7), when integrated 
over a finitely extended test ray, leads to results comparable to those of the infinitely extended 
test-ray. We will find that sufficiently close to the beamline the results from the finite integra-
tion can be very close to those of an infinite test-ray, which suggests that the latter, rigor-
ous results with clear physical meaning, also remain valid for experiments using a finitely 
extended test-ray close to the source beam. The situation is quite different, however, in the far 
field, where results from the finite source beam and the infinitely extended one, both evaluated 
using (7), can differ siginificantly. This can be shown with a multipole expansion based on 
equation (6) or by numerically evaluating equation (6). The basic expressions for the numer-
ics are given in appendix C and the multipole expansion is performed in appendix F. Here we 
briefly discuss both approaches and the main results.

The numerical values for the rotation angle for finitely extended test rays and source beams 
presented in figure 4 are obtained from equations  (C.6) and (C.7). The derivative in equa-
tion (7) acting on the metric perturbation is shifted to the energy-momentum tensor by pulling 
it into the integral, using the symmetry of the function |�x −�x ′| to replace the derivative for 
an un-primed coordinate by a derivative for a primed coordinate and partial integration. The 
resulting expressions are evaluated using Python and the scypy.integrate.quad and scypy.inte-
grate.romberg methods. The results for the finitely extended beam and those for the infinitely 
extended beam are very similar close to the beamline, see figure 4. The region in the ξ-χ-plane 
containing most of the energy of the source beam can be defined by a drop of its intensity by 
a factor e−2, which implies a radius w(ζ) =

√
1 + (θζ)2  of that region. In standard notions 

w(ζ) is called the width of the beam as a realistic beam is never infinitely extended in the 
transversal direction and is usually considered to extend only on length scales of the order of 
w(ζ). Equations (9) and (10) imply that there is only a significant rotation angle accumulated 
along an infinitely extended test ray if the latter overlaps with the region bounded by the 
source beam’s width, as the integrands in equations (9) and (10) are proportional to the same 
Gaussian function that can be found as a global factor in the energy-momentum tensor of the 
source beam. In the following, we will call this situation an overlap of the test light ray and 
the source beam. That ∆− and ∆+ are only non-zero for an overlap of test ray and source 
beam is confirmed by equations (E.15) and (E.8), where a cut-off of the source beam’s energy-
momentum distribution is considered. For θζ � 1, we find that w(ζ) ≈ θζ . Therefore, a test 
ray at ρ � 1 overlaps with the source beam only in regions where |θζ| > ρ. For the infinitely 
extended source beam and test ray, there is always an overlap, but it does not need to be the 
case if at least one of the two beams has finite length.

Note that for large values of θζ, the energy-density of the source laser-beam is proportional 
to (θζ)−2 (while transversally it decreases as a Gaussian with the distance to the beamline). 
The same is true for the integrands in equations (9) and (10). Therefore, ∆± in equations (9) 
and (10) are approximately proportional to 1/(θζ) evaluated at the boundaries of the regions 
where test ray and source beam overlap. For the infinitely extended beams, this implies that 
the rotation angles in equations (9) and (10) are approximately proportional to 1/ρ for large ρ . 
The proportionality of ∆− and ∆+ to 1/ρ holds as well for finitely extended source beams if 
ρ � −θα or ρ � θβ. For larger values of ρ , there is no overlap of test ray and source beam 
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(this is illustrated in figure 7 and figure 8). Then, ∆− and ∆+ decay proportional to e−Σρ2
/ρ2 

and e−Σρ2
, respectively, where Σ = 2/(θα)2 for α � −β  or Σ = 2/(θβ)2 for β � −α, as 

shown in equation (E.11) and equation (E.17), respectively. 
The behavior for large distances from the beamline and finitely extended test rays can 

be analysed with a multipole expansion, assuming that the source term in the form of the 
derivatives of the energy-stress tensor can be effectively cut-off at w(ζ). This is presented in 
appendix F. One finds that for ∆± the lowest contributing moment is a quadrupole leading 
to a 1/ρ3 decay for finite B  =  −A. At the same time, the prefactor of these terms decay as 

Figure 7.  Illustration of the overlap of the test ray with the source laser-beam: A 
test ray may overlap with the source laser-beam only if the latter is long enough. 
In the illustration, the path of the test ray is labelled by γ  and starts and ends at A 
and B respectively for the short source laser-beam (starting and ending at α and β 
respectively) or at A′ and B′ for the long source laser-beam (starting and ending at α′ 
and β′ respectively).

Figure 8.  The function −δ− (the integrand in equation (10)) for the polarization vector 
of the parallel counter-propagating light ray is plotted as a function of the coordinate 
along the beamline ζ for a distance from the beamline ρ = 10. The blue (unbroken) 
line gives the rotation angle for the infinitely extended source beam and test ray as in 
equation (10). The red (dashed) line gives the numerical values for a finitely extended 
source beam with emitter and absorber at α = −200 and β = 200, respectively, based 
on (6). It can be seen that δ− decays quickly outside of the range of the finitely extended 
beam in contrast to δ− for the infinitely extended source beam, which continues to 
decay like 1/ζ2 for large ζ just as the source beam’s energy density. The region left 
of the steep descent around ζ ∼ −70 and the region right of the steep ascent around 
ζ ∼ 70 correspond to the overlap regions of source beam and test light-ray. In the case 
of an infinitely extended source beam, these regions are infinitely extended. In the case 
of a finitely extended source beam, the overlap regions end at the end of the source 
beam as can be seen with the steep ascent close to ζ = −200 and the steep descent close 
to ζ = 200 for the red (dashed) curve.
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1/B2 for B � ρ. Higher multipoles lead to an even faster decay, both with ρ  and B. Hence, in 
the case of a finitely extended source beam and an infinitely extended test ray that does not 
overlap with the source beam, one expects to recover the fast decay of ∆± with ρ  obtained 
in equations  (9) and (10). However, a resummation of the multipole expansion would be 
needed to find out its functional form. This is beyond the scope of the present investigation. 
Nevertheless, the analysis makes clear that ∆± sensed by a finitely extended test ray in the 
far-field regime is not captured accurately by the results from the idealized infinitely extended 
test ray for the cases considered.

For the transversal test ray, the χ-dependence of ∆t± for χ � 1 changes drastically for the 
finitely extended source beam compared to the infinitely extended one. In particular, the result 
that the first term in equation (11) does not vanish for large distances from the beamline turns 
out to be an effect of the infinite extension of source beam and test ray. Alternatively, this can 

also be seen as follows: as ∆(0)
t±  is of zeroth order, it remains present when describing the laser 

beam in the paraxial approximation, in which the gravitational field of an infinitely extended 
source beam has the form h00 = h33 = −h30 ∝ ln(ρ) (see [3, 30] and consider an infinite 
pulse length or see [2], consider an energy distribution localized to the beamline, and sub-
tract the Minkowski metric from the resulting spacetime metric). From equation (7) and for a 
transversal infinitely extended test ray, we immediately obtain a rotation angle proportional to 
the first term in equation (11). On the other hand, the solution for the gravitational field for a 
finitely extended source beam can be found in [1]. In appendix G, using this solution and an 
infinitely extended test ray, we obtain the radial dependence of the rotation angle as 1/χ, and 
for a finitely extended test ray, we find that the rotation angle is proportional to 1/χ2 for large 
χ. This is corroborated by the multipole expansion, where we find a monopole contribution 
responsible for the 1/χ2 behavior to zeroth order in θ for χ � B. As function of B  =  −A it 
saturates for large B (i.e. B � χ) and gives a β/χ behavior, see appendix F.

Since ∆(1)
t± = λθ

4 ∂χ∆
(0)
t+ , we find that ∆(1)

t±  decays as 1/χ3 for finitely extended source 
beams and test rays and as 1/χ2 for finitely extended source beams and infinitely extended test 
rays. The corresponding multipole expansion is given in appendix F.

4.3.  Rotation of polarization and gravitational spin–spin coupling

The rotation angles ∆± as well as the first order contribution to ∆t± are proportional to the 
helicity λ of the source laser-beam. As explained in the end of section 3, the rotation angle is 
equivalent to a phase for circularly polarized test light rays, which is given by −λtest∆. This 
phase contains the product of the helicities of the source laser-beam and the test ray, λλtest. 
Therefore, the phase depends on the relative helicity of the two beams. This is gravitational 
spin–spin coupling.

We can consider the source beam as its own test beam, λtest = λ, such that λtest∆+ = C+ 
where C+   >  0 is a function that increases monotonously with the end of the source beam at 
ζ = β  (see (9)). Since C+ enters as a phase Exp(iC+), it can be combined with the global plane 
wave factor at the end of the beam ζ = β  as Exp(iΦ) where Φ = 2(β − τ)/θ + C+. This leads 
to the locally modified wave number k̃ = ∂βΦ = (2 + θ ∂βC+) /θ at ζ = β . Effectively, this 
leads to the interpretation of a locally modified dispersion relation and an effectively reduced 
speed of light. This self-interaction effect is proportional to the intensity of the electromagnetic 
field. It is reminiscent of the apparent modification of the speed of light found in [31] based 
on the eikonal approximation of the solution of the relativistic wave equation of a light-beam 
in its own gravitational field.
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5.  Faraday effect and optical activity

The electromagnetic Faraday effect is a non-reciprocal phenomenon. Non-reciprocity means 
that the effect does not cancel when the test ray propagates back and forth along the same path. 
We investigate this feature for its gravitational analogue.

The rotation angle given in equation (7) is defined with respect to the propagation direction. 
Therefore, the absolute rotation accumulated on the way back and forth through spacetime 
seen by an external reference system at the starting point of the test ray’s trajectory at spatial 
infinity is given by the difference between the rotation angle acquired on the outbound trip 
and the one acquired on the way back. For a tangent vector tµ0  with t0

0 = 1 and ta
0 = d sa with 

d  =  +1 for outbound and d  =  −1 for back propagation, we obtain from equation (7) the rota-
tion angle

∆s,d =
1

2w2
0

∫ ∞

−∞
dτ saεabc∂b(hcf s f + dhcτ ),� (12)

and therefore, the Faraday rotation for one roundtrip becomes

∆F
s = ∆s,+ −∆s,− =

1
w2

0

∫ ∞

−∞
dτ saεabc∂bhcτ .� (13)

We find that the gravitational Faraday effect is given by the spacetime-mixing component of 
the metric perturbation hcτ . In contrast, the first term in (12) containing a purely spatial comp
onent of the metric perturbation does not depend on the propagation direction and cancels on 
the way back and forth. This is the gravitational optical activity for a single trip

∆Op
s =

∆s,+ +∆s,−

2
=

1
2w2

0

∫ ∞

−∞
dτ sasdεabc∂bhcd.� (14)

For the rotation due to the gravitational Faraday effect after one roundtrip for the parallel 
test ray, we obtain from equation (8) to leading order

∆F
+− = ∆+ −∆−

= − θ

w2
0

∫ ∞

−∞
dζ

(
∂χh(1)

τξ − ∂ξh(1)
τχ

)
.

�
(15)

Adding the rotations due to the transversal back and forth propagation leads to (the explicit 
expression is identical to twice the positive contribution of the first term in equation (11)),

∆F
t+t− = ∆t+ −∆t− =

1
w2

0

∫ ∞

−∞
dξ ∂χh(0)

τζ ,� (16)

which means that the effect is of zeroth order. The contribution of gravitational optical activity 
is given as (to leading order and for one direction of propagation)

∆Op
+− =

∆+ +∆−

2

= − θ

2w2
0

∫ ∞

−∞
dζ

(
∂χh(1)

ζξ − ∂ξh(1)
ζχ

)�
(17)

for the parallel test rays, and

∆Op
t+t− =

∆t+ +∆t−

2
=

θ

2w2
0

∫ ∞

−∞
dξ ∂χh(1)

ξζ� (18)
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for the transversal test rays.
From the vanishing of ∆+ in first order in the metric perturbation, we deduce that the 

first order contributions of optical activity and the Faraday effect to the polarization rotation 
accumulated along a parallel co-propagating test ray have the same absolute value and cancel 
each other. In contrast, the two contributions add for the counter-propagating test ray. This 
situation can be compared to the result of Tolman et al [1], which states that a test ray is not 
deflected in the gravitational field of a source light-beam if it is parallel co-propagating, while 
it is deflected if it is parallel counter-propagating. It is the motion of the source of gravity that 
breaks the symmetry; its motion with the speed of light leads to the extreme case of equal 
absolute values of the two effects.

5.1.  Spacetime-medium analogy

The above identification of the two distinct rotation effects and the different types of comp
onents of the metric perturbation can be compared with the formal analogy of electrodynam-
ics in linear dielectric media and electrodynamics in a weakly curved spacetime employed in 
[8]. In particular, Maxwell’s equations in a curved spacetime can be rewritten such that they 
have their usual form in dielectric media [8]

−∂tDa + εabc∂bHc = ia,� (19)

∂tBa + εabc∂bEc = 0,� (20)

∂aDa = ρ, ∂aBa = 0� (21)

by identifying the components of the field strength tensor as

Ea = cFa0� (22)

Ba =
1
2
εabcFbc� (23)

Da = ε0c
√
−gg0µgaνFµν� (24)

Ha =
1

2µ0
εabc

√
−ggbµgcνFµν� (25)

and ia =
√
−gja and ρ =

√
−gj0/c, where jµ is the current density, 

√
−g  is short for √

−det(g) and g is the spacetime metric. This leads to an effective constitutive law

Da = εabEb + εabcΞbHc,� (26)

Ba = µabHb + εabcΥbEc,� (27)

where8

εr,ab = µr,ab = −
√
−g

gττ
gab,� (28)

Ξa = −Υa =
gτa

cgττ
,� (29)

8 Note that what we define as ε is the effective permittivity tensor in contrast to [8], where the identity is subtracted.
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where εr,ab = εab/ε0 and µr,ab = µab/µ0 are the relative permittivity tensor and relative per-
meability tensor, respectively. In the above identification, purely spatial components of the 
metric perturbation lead to non-trivial effective relative permittivity and permeability tensors 
while space-time mixing components of the metric perturbation lead to effective non-vanish-
ing magneto-electrical mixing terms. Note the equivalence of the effective relative permit
tivity and permeability tensors, denoted as impedance matching [32], which is usually not 
encountered in materials.

In linearized gravity using η = w2
0diag(−1, 1, 1, 1) and the set of coordinates τ , ξ,χ and ζ, 

we find

εr,ab = µr,ab = δab
(

1 +
hττ + δcdhcd

2w2
0

)
− hab

w2
0

,� (30)

Ξa = −Υa = − hτa

cw2
0

.� (31)

We obtain for the gravitational Faraday rotation angle from equation (13)

∆F
s = −c

∫ ∞

−∞
dτ smεmab∂aΞb

= −c
∫ ∞

−∞
dτ sm(∇× Ξ)m.

�

(32)

We see that the gravitational Faraday rotation is induced by the curl of the magneto-electrical 
mixing vector Ξ; it is a magneto-optical effect like its analogue in dielectric media. For the 
gravitational optical activity, we obtain from equation (14)

∆Op
s = −1

2

∫ ∞

−∞
dτ smsdεmbc∂bεr,cd

= −1
2

∫ ∞

−∞
dτ sasb (∇× εr)ab .

�

(33)

We find that the gravitational optical activity is induced by a non-vanishing curl of the lines (or 
columns) of the permittivity tensor (and, equivalently, the permeability tensor). In analogy to 
the optical activity in dielectric media, the gravitational optical activity does not mix electric 
and magnetic fields.

For the gravitational field of the laser beam in appendix A, we obtain evaluated up to first 
order in θ

εr,ab = µr,ab =




1 +
h(0)
ζζ

w2
0

0 − θh(1)
ξζ

w2
0

0 1 +
h(0)
ζζ

w2
0

− θh(1)
χζ

w2
0

− θh(1)
ξζ

w2
0

− θh(1)
χζ

w2
0

1


� (34)

Ξj = −Υj = −
θh(1)

τ j

cw2
0

, where j ∈ {ξ,χ}� (35)
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Ξζ = −Υζ = −
h(0)
τζ

cw2
0

,� (36)

and we recover the results in equations (15)–(18).

6. Test rays in cavities

In this section, we will consider the situation of the test light-ray propagating in a cavity. In a 
one-dimensional cavity light propagates back and forth and the effect associated with gravita-
tional optical activity cancels while the gravitational Faraday effect adds up. In a ring cavity 
or an optical fiber coiled around the beamline, the full polarization rotation is accumulated and 
the gravitational Faraday effect represents the leading order effect. For the case of a transver-
sally oriented ring cavity, a situation can be created in which the Faraday effect vanishes and 
only the gravitational optical activity accumulates.

6.1.  Parallel linear cavity

We consider a cavity consisting of two mirrors between which the light propagates back and 
forth, with the axis of the cavity oriented parallel to the beamline and at a distance ρ  from the 
beamline. The setup is illustrated in figure 9.

Up to third order in θ, the light travels undeflected from ζ = A to ζ = B and picks up a 
small deflection of zeroth order in θ when travelling from ζ = B to ζ = A. The deflection 
vanishes when the light ray propagates at the center of the source beam, at ρ = 0. In this case 
only the angle due to the Faraday effect accumulates. For one back and forth propagation, it 
is given by equation (15). Letting the light propagate during the time τ = LF/(πc), where F 
is the finesse of the cavity and L is the length of the cavity, the total angle of rotation is given 
by ∆cav,+− = ∆F

+−F/(2π). For a cavity of finesse F  =  106 [33] and the parameters given in 
the introduction, i.e. beam waist w0 = 10−6 m , beam divergence θ = 0.3 rad, polarization 
λ = 1, and power of the source laser-beam P0 = 1015 W, the rotation angle accumulated by 
the test-ray in the cavity is of the order of magnitude ∆cav,+− ∼ ±10−32 rad . For a cavity at 
distance ρ > 0 from the center of the laser beam, the effect is smaller, and one has to take into 
consideration the deflection when the test ray is counter-propagating to the source laser-beam.

Figure 9.  Schematic illustration of the parallel cavity in the gravitational field of the 
laser beam: the source laser-beam starts at α and ends at β. The test ray propagates on 
the worldline γ  between the mirrors A and B of the cavity. The Faraday effect adds up 
after each roundtrip, while the rotation associated with gravitational optical activity 
vanishes.
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6.2. Transversal linear cavity

Rotating the parallel cavity by ninety degrees, we obtain a transversal cavity, as illustrated in 
figure 10. Analogously to the parallel cavity, one finds that the total angle of rotation is given 
by ∆cav,t+t− = ∆F

t+t−F/(2π). For a finesse of F ∼ 106 and the parameters given in the intro-
duction, it is of the order ±10−32 rad.

6.3.  Ring cavity

In order to measure the polarization rotation including the contribution due to optical activ-
ity for the transversal light ray, we consider a ring cavity: the light propagates from A at 
(ξ,χ, ζ) = (−∞,χ1, 0), to B at (ξ,χ, ζ) = (∞,χ1, 0), to C at (ξ,χ, ζ) = (∞,χ2, 0), where 
χ1 and χ2 have opposite sign, to D at (ξ,χ, ζ) = (−∞,χ2, 0) and back to A. The ±∞ can 
be replaced by distances from the beamline much larger than β. The polarization rotation 
accumulated when propagating from A to B and from C to D add up. The setup is illustrated 
in figure 11. 

The rotation of polarization after one roundtrip is given by twice the expression in equa-
tion (11) for χ1 ∼ 1 and χ2 ∼ −1. For χ1 � β, χ2 � −β  and α = −β , we have shown that 
the effect decays as β/χ2 in appendix F. As the first term in equation (11) corresponding to the 
gravitational Faraday effect is of zeroth order in θ, it does not depend on the beam waist for the 
fixed wavelength given by πθw0. This means that the beam has to be long, but it does not need 
to be focused. Again for a finesse of F  =  106 and the parameters given in the introduction, the 
rotation is of the order of magnitude ∆t+F/(2π) ∼ 10−32 rad.

For χ1 = 0 and χ2 = −∞ or at least −χ2 very large, we find that the polarization rotation 
due to the Faraday effect vanishes (see also equation (E.22)) and the rotation due to gravita-
tional optical activity remains (see also equation (E.23)). Then, the accumulated effect is by 
one order smaller than that due to the Faraday effect at χ1 = χ2 > 1.

A ring cavity can also be used to amplify the rotation angle of the polarization the parallel 
co-propagating test ray acquires: since it is not deflected, one can let the light ray pass through 
the gravitational field N times just in the direction of propagation of the source beam, such that 
the effect is amplified by a factor N.

Figure 10.  Schematic illustration of the transversal cavity in the gravitational field of 
the laser beam: the test ray propagates along the worldine γ , marked as a red line, and 
is reflected at the mirrors A and B. The source laser-beam is emitted at ζ = α and 
absorbed at ζ = β . The Faraday effect adds up after each roundtrip, while the rotation 
associated with gravitational optical activity vanishes.
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6.4.  Measurement precision of the rotation angle

The rotation angle ∆ is experimentally inferred by measuring the additional phase difference 
that the right- and left-circularly polarized components of the test ray acquire when propagat-
ing in the gravitational field as explained in the end of section 3. The measurement precision 
of the phase Φ = −λtest∆ is restricted by the shot noise. Using classical light, the minimal 
uncertainty in a phase estimation cannot exceed the shot noise limit, which is of the order of 

magnitude δΦ ∼ 1√
nM

, where n is the number of photons of the light inside the cavity and M 
the number of measurements [34]. For a cavity resonator driven by a laser with frequency 
ω/(2π) and power Pdr, we find a number of photons n = PdrTav/(�ω), where Tav is the aver-
age time a photon spends in the resonator. Therefore, the number of measurements that can 
be performed with n photons in an experimental time Ttot is given as M = Ttot/Tav, giving 
nM = PdrTtot/(�ω), which is the total number of photons passing the cavity in time Ttot.

The measurement precision becomes thus better by increasing the power of the driving 
laser and lowering its frequency. For cw-laser beams with power Pdr = 100 kW [35]9, for a 
wavelength of approximately 500 nm and a total experimental time of about two weeks, i.e. 
Ttot ∼ 106 s, the minimal standard deviation is given by δΦ ∼ 10−15 rad. Its order of magni-
tude does not change when using a squeezed (single mode coherent) state with the currently 
maximal squeezing of 15 dB [37]10 and analyzing the uncertainty with the corresponding 
quantum Cramér-Rao bound [38].

Figure 11.  Schematic illustration of the ring cavity setup: the test ray propagates along 
the path γ  and is reflected at the mirrors A, B, C and D. The source laser-beam is 
emitted at ζ = α and absorbed at ζ = β . A similar situation can be created with a test 
ray in a wave guide that is wound many times around the source beam.

9 Of course the power of the driving laser cannot be unlimited as the cavity mirrors have to withstand the heating 
due to scattered light. The finesse F ∼ 106 leads to a circulating power in the cavity of the order of 1010 W , which 
leads to a necessary size of the beam at the mirrors of the order of 1 m  [36]. Assuming the transversal setup de-
scribed in section 6, the waist of the test ray has to be smaller than the waist of the source beam and the divergence 
angle of the test ray must be smaller than one radian to ensure a complete overlap of the focal regions of the source 
beam and the test ray. We assumed a waist of the source beam of the order of 10−6 m, which implies a maximum 
waist of the test ray of the same order. Furthermore, the divergence angle of the test ray below one radian implies 
that the distance between the mirrors of the test ray has to be of the order of several meters. The situation for the 
longitudinal cavity turns out to be even more challenging. However, the given parameters serve as an upper limit of 
what would be possible in the near future.
10 Note that this degree of squeezing has only been reached for much a smaller beam power of the order of mW , 
which would actually lead to a decrease in the sensitivity.
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The Cramér-Rao bound is a tight bound on the uncertainty of an unbiased phase-estimation 
that can in principle be achieved in a highly idealized situation, where all other noise sources 
such as thermal noise, electronic noise, seismic noise etc are neglected. The sensitivity can be 
increased by using more than one mode, but without entangling the modes or creating other 
non-classical states no gain in sensitivity at fixed total energy is possible [39].

For a more practical benchmark of current state-of-the-art measurement precision, consider 
the LIGO observatory. It obtains a sensitivity for length changes of their arms of the order of 
10−20 m (strains of the order of 10−23 (Hz)−1/2 on an arm length of the order of 103 m  [40]), 
which corresponds to a phase sensitivity of the order of 10−11 rad at about 1000 nm wave-
length. Another obstacle is that the source-laser power of 1015 W  that we considered here can 
so far only be reached in very short pulses, which means that an extension of our analysis 
to pulsed source beams will be required when one day substantially larger powers and more 
sensitive measurements might become available. We conclude that the angles due to the gravi-
tational Faraday effect of the order of magnitude ∆ ∼ 10−32 rad cannot be measured with 
current and near-future technology.

7.  Summary, conclusion and outlook

We analyzed the rotation of polarization for a test ray propagating in the gravitational field 
of a laser beam. We distinguished the non-reciprocal contribution to the rotation due to the 
gravitational Faraday effect from the reciprocal contribution associated with the gravitational 
optical activity. As the rotation angle is equivalent to a phase for circularly polarized test 
rays, the precision of the measurement of the effect investigated in this article is limited by 
the shot-noise limit when using classical light. With this analysis we found that the rotation 
of polarization of a test ray induced by the gravitational field of a circularly polarized source 
laser-beam is too small to be measured with state-of-the-art technology. The effects are of 
fundamental interest, however.

For an infinitely extended (or at least very long) test ray propagating parallel to the source 
beam, we found that the local rotation picked up by the polarization vector of the test ray is 
proportional to the energy density of the source beam. In that case, we concluded that effects 
are only present for an overlap of the test ray and the source beam’s region of highest intensity 
bounded by its width. Using the approximation of an infinitely extended source beam, such 
an overlap is always present for parallel propagating test rays and we find a decay of the inte-
grated rotation angle with the inverse of the distance to the beamline of the source beam. In the 
realistic situation of a finitely extended source beam, this dependence on the distance remains 
approximately valid as long as there is a significant overlap. However, for the finitely extended 
source beam, there is no overlap for distances from the beamline larger than the extension of 
the beamline multiplied by the divergence angle of the source beam. Above that limit, we find 
that the polarization rotation picked up by a parallel propagating infinitely extended test ray 
decreases as a Gaussian with the distance to the beamline of the source beam. For a finitely 
extended test ray far from the beamline of the source beam, we find that the effects decay with 
the inverse of the third power of the distance using a multipole expansion. However, a finitely 
extended test ray begins and ends in regions with non-vanishing gravitational effect of the 
source beam. Hence, the interpretation of the rotation angle is not straight forward. To over-
come this problem, a physical reference system could be considered that extends or is moved 
from the beginning to the end of the test ray.
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For transversally propagating test rays, the situation is different: the leading order effect 
decreases with the inverse of the distance from an finitely extended source beam for an infi-
nitely extended test ray and with the inverse square for a finitely extended test ray. Therefore, 
of the effects investigated in this article, the rotation of polarization of a transversal test ray 
should be the easiest to detect, while we reiterate that a detection will not be possible in the 
near future. It is interesting to note that the effect remains there also in the geometric optical 
limit and is independent of the source beam’s helicity.

Only the gravitational Faraday effect contributes to the leading order effect for the trans-
versal test ray. The gravitational optical activity induces the next to leading order term, and it 
decays one order more strongly with χ than the gravitational Faraday effect.

It has been shown that for light passing through or being emitted from a rotating spherical 
body [6, 7] or a rotating spherical shell [12], one obtains a rotation of the polarization pro-
portional to the inverse of the square of the distance to the rotating object. On the other hand, 
when the light ray is only passing by these objects or any stationary object, there is no rotation 
of polarization [41, 42, 42]. However, if these objects are in motion, it has been shown that 
the polarization is rotated (for a moving point mass [11], for gravitational lenses [10, 42], for 
a moving Schwarzschild object [9], for moving stars [8]). As the laser beam, although its spa-
cetime metric is stationary, consists of an energy-distribution in motion, our results agree with 
the literature in the sense that the rotation of polarization is non-vanishing.

As another interesting fundamental insight, we found that to first order in the divergence 
angle θ, the polarization vector of a parallel counter-propagating test ray rotates, while this is 
not the case for a co-propagating test ray. We argue that this asymmetry is due to the propaga-
tion of the source laser-beam. This is similar to the deflection of a parallel test ray by the gravi-
tational field of a laser beam which is non-zero for a counter-propagating ray and vanishes for 
a co-propagating ray [1].

The gravitational field of the laser beam depends on its polarization. This is in agreement 
with the gravitational field of a polarized infinitely thin laser beam or pulse derived in [3] and 
the gravitational field of a polarized electromagnetic plane wave presented in [43]. However, 
the gravitational field in the models [3, 43] does not depend on the direction of linear polariza-
tion and neither on the helicity of light in the case of circular polarization. This is in contrast 
to gravitational photon-photon scattering in perturbative quantum gravity discussed in [44]. In 
[5], we showed that the gravitational field of a laser beam considered as a proper perturbative 
solution of Maxwell’s equations beyond the short wavelength approximation does depend on 
the helicity of the laser beam. In the present article, we showed that, accordingly, the polariza-
tions of two light beams couple gravitationally; two circularly polarized light beams inflict on 
each other a phase shift depending on the relation between their helicity. This is gravitational 
spin–spin coupling of light (see [45] for a general review on gravitational spin–spin coupling).

Together with frame-dragging and the deflection of a parallel co-propagating test ray dis-
cussed in [5], the gravitational Faraday effect and gravitational optical activity are only visible 
when the source is treated beyond geometric ray optics. It can be expected that orbital angular 
momentum of light would contribute to the effects mentioned above. See [4, 46] for an invest
igation of the gravitational field of light beams with orbital angular momentum.

The situation considered in [46] and [47] of a spinning test particle can also be considered 
for the solution derived in [5]. This could be an interesting extension of the present article.
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Appendix A.  Metric perturbation (from [5])

In this appendix, we give the explicit expressions for the metric perturbation as derived 
in [5]. The metric perturbation is obtained from the electromagnetic field of a circu-
larly polarized laser beam given in [5], which is determined by the vector potential 
Aα(τ , ξ,χ, ζ) = Ãvα(ξ,χ, θζ)ei 2

θ (ζ−τ), where Ã is the amplitude, vα =
∑∞

n=0 θ
nv(n)

α  is the 
envelop function, whose spatial components, a ∈ {ξ,χ, ζ}, are given up to third order in θ by

vλ(0)
a = ε(0)

a v0,� (A.1)

vλ(1)
a = −ε(1)

a
iµ

2
√

2
(ξ − iλχ) v0,� (A.2)

vλ(2)
a =

µ

2

(
1 − 1

2
µ2ρ4

)
vλ(0)

a ,� (A.3)

vλ(3)
a =

µ

4
(
4 + µρ2 − µ2ρ4) vλ(1)

a ,� (A.4)

where µ = 1/(1 + iθζ), the function v0 is given by

v0(ξ,χ, θζ) = µe−µρ2
,� (A.5)

and ε(0)
a = w0(1,−λi, 0)/

√
2, ε(1)

a = w0(0, 0, 1) and λ = ±1 refers to the helicity. Since we 
work in the Lorenz gauge, the τ -component of the vector potential is given as

Aτ =
iθ
2
∂τAτ =

iθ
2
(∂ξAξ + ∂σAσ + θ∂θζAζ) .� (A.6)

The leading order is thus the usual expression for the electromagnetic field of the Gaussian 
beam in the paraxial approximation. The higher orders are corrections to the paraxial approx
imation. The corresponding components of the energy-momentum tensor are given as Tττ = E, 
Tτ j = −Sj/c and Tjk = σjk  for j, k ∈ {ξ,χ, ζ}. For the vector potential of a circularly polar-
ized laser beam given by equation (A.1), the energy density E, the Poynting vector �S  and the 
stress tensor components σjk up to third order in θ are given as

Eλ = E(0)

[
1 +

|µ|2θ2

2

(
1 + |µ|2(2 − (4|µ|2 − 3)ρ2)ρ2

)]
,

�

(A.7)
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Sλ
ξ /c = E(0)θ|µ|2

[
(θζξ + λχ)− θ2

4

(
λχ− 2|µ|2

(
(2 − ρ2)θζξ + 2(1 − ρ2)λχ

+ (θζξ + λχ)(4 + 3ρ2 − 4|µ|2ρ2)|µ|2ρ2
))]

,

�

(A.8)

Sλ
χ/c = − λE(0)θ|µ|2

[
(ξ − θζλχ)− θ2

4

(
ξ − 2|µ|2

(
2(1 − ρ2)ξ − (2 − ρ2)θζλχ

+ (ξ − θζλχ)(4 + 3ρ2 − 4|µ|2ρ2)|µ|2ρ2
))]

,

�

(A.9)

Sλ
ζ /c = Eλ − 1

2
E(0)(θρ|µ|)2,� (A.10)

σλ
ξξ = E(0)θ2|µ|4(θζξ + λχ)2,� (A.11)

σλ
χχ = E(0)θ2|µ|4(ξ − θζλχ)2,� (A.12)

σλ
ξχ = E(0)λθ2|µ|4(θζξ + λχ)(θζλχ− ξ),� (A.13)

σλ
ξζ = Sλ

ξ /c − E(0) θ
3

2
(θζξ + λχ)|µ|4ρ2,� (A.14)

σλ
χζ = Sλ

χ/c + λE(0) θ
3

2
(ξ − θζλχ)|µ|4ρ2,� (A.15)

σλ
ζζ = Eλ − E(0)(θρ|µ|)2,� (A.16)

where |µ|2 = 1/(1 + (θζ)2) and E(0) = ε0w2
0E2

0|v0|2 = 2P0|µ|2Exp(−2|µ|2ρ2)/(πc).

A.1.  Field equations

The linearized Einstein equations take the form

∆2dhλ(0)
αβ = −κw2

0 tλ(0)
αβ ,� (A.17)

∆2dhλ(1)
αβ = −κw2

0 tλ(1)
αβ ,� (A.18)

∆2dhλ(n)
αβ = −κw2

0 tλ(n)
αβ − ∂2

θζhλ(n−2)
αβ for n > 1,� (A.19)

where t(n)
αβ are the coefficients of the power series expansion of the energy-momentum tensor 

in orders of θ, i.e. Tαβ =
∑

n θ
nt(n)
αβ.
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A.2.  Zeroth order

The metric perturbation in the leading (zeroth) order of the expansion in the beam divergence 
is given by [5]

hττ = hζζ = −hτζ = I(0),� (A.20)

where the function I(0) is given by

I(0) =
8GP0w2

0

c5

(
1
2

Ei
(
−2|µ|2ρ2)− log(ρ)

)
,� (A.21)

where Ei(x) = −
∫∞
−x dt e−t

t  is the exponential integral.

A.3.  First order

The metric perturbation in the first order of the expansion in the beam divergence is given by 
[5]

hλ(1)
αβ =




0 Iλ(1)
ξ Iλ(1)

χ 0

Iλ(1)
ξ 0 0 −Iλ(1)

ξ

Iλ(1)
χ 0 0 −Iλ(1)

χ

0 −Iλ(1)
ξ −Iλ(1)

χ 0




,� (A.22)

where the functions Iλξ
(1) and Iλχ

(1) given by

Iλξ
(1) =

1
4
(θζ∂ξ + λ∂χ) I(0)

= −2GP0w2
0(θζξ + λχ)

c5ρ2

(
1 − e−2|µ|2ρ2

)
,

�

(A.23)

Iλχ
(1) = −1

4
(λ∂ξ − θζ∂χ) I(0)

=
2GP0w2

0(λξ − θζχ)

c5ρ2

(
1 − e−2|µ|2ρ2

)
.

�

(A.24)

A.4. Third order

The only non-zero components of the metric perturbation in the third order of the expansion 
in the beam divergence are given by

hλ(3)
τξ = − GP0w2

0

2c5ρ2

(
(4θζξ + 3λχ) +

(
− (4θζξ + 3λχ)− 2ρ2(3θζξ + 2λχ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζξ + λχ)|µ|4 + 8ρ4(θζξ + λχ)|µ|6
)

e−2|µ|2ρ2

)
,

�

(A.25)
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hλ(3)
τχ = − GP0w2

0

2c5ρ2

(
(4θζχ− 3λξ) +

(
− (4θζχ− 3λξ)− 2ρ2(3θζχ− 2λξ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λξ)|µ|6
)

e−2|µ|2ρ2

)
,

�

(A.26)

hλ(3)
ζξ =

GP0w2
0

2c5ρ2

(
(2θζξ + λχ) +

(
− (2θζξ + λχ)− 2ρ2(2θζξ + λχ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζξ + λχ)|µ|4 + 8ρ4(θζξ + λχ)|µ|6
)

e−2|µ|2ρ2

)
,

�

(A.27)

hλ(3)
ζχ =

GP0w2
0

2c5ρ2

(
(2θζχ− λξ) +

(
− (2θζχ− λξ)− 2ρ2(2θζχ− λξ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λξ)|µ|6
)

e−2|µ|2ρ2

)
.

�

(A.28)

Appendix B.  Another approach to determine the rotation of polarization  
(as described in [11])

Another result for the rotation of the polarization was obtained in [11], where the polarization 
vector is parallel transported through the gravitational field, again starting and ending in flat 
spacetime. The angle of rotation in the αβ-plane is given by

∆̃αβ =

∫ ∞

−∞
dτ̃ γ̇γΓδ

αγgβδ ,� (B.1)

where τ̃  is the parameter parametrizing the geodesic γ . It is obtained as follows: the polariza-
tion vector ωα is parallel transported if

γ̇α∂αω
γ + γ̇αωβΓγ

αβ = 0.� (B.2)

Integrating along the geodesic γ , the change of polarization is given by

δωγ =

∫ ∞

−∞
dτ γ̇α∂αω

γ = −
∫ ∞

−∞
dτ γ̇αωβΓγ

αβ .� (B.3)

From the change of polarization, the angle of rotation in the plane βγ is obtained by writing

(ω + δω)γ =
(
gγ

β + ∆̃γ
β

)
ωβ ,� (B.4)

which has the form of an infinitesimal rotation. The rotation angle is given by (B.1). This 
result is coordinate-invariant if the metric perturbation vanishes far away from the source 
of the gravitational field. This is not the case for the laser beam. However, in some cases the 
result can be applied, as we will explain. Also, (B.1) describes a four-dimensional rotation. If 
the test light-ray is deflected by the laser beam (as for the parallel counter-propagating and the 
transversal light ray), one has to be careful when applying this formula, as the ray-transversal 
plane tilts when the light ray is deflected. In our case, the formula can be applied. Indeed, it 
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leads to the same results as we obtain with equation (7): for the parallel co- and parallel conter-
propagating light rays, one obtains (to third and first order in the expansion in θ, respectively)

∆̃+
ξχ =− θ2

2w2
0

∫ ∞

−∞
d(θζ)

(
∂χ

(
h(3)
ξζ + h(3)

τξ

)

− ∂ξ

(
h(3)
χζ + h(3)

τχ

)
− ∂θζh(2)

ξχ

)
,

�

(B.5)

∆̃−
χξ =− 1

2w2
0

∫ ∞

−∞
d(θζ)

(
∂χ

(
h(1)
ξζ − h(1)

ξτ

)

− ∂ξ

(
h(1)
χζ − h(1)

χτ

))
.

�

(B.6)

The last term of the integrand in the above equation for ∆̃+
ξχ vanishes when integrating from 

ζ = −∞ to ζ = ∞, as in our case hξχ(∞) = hξχ(−∞). Therefore, we see that ∆̃+
ξχ = ∆+ 

and ∆̃−
χξ = ∆−. The same is the case for the transversally propagating light rays: we find (up 

to the first order in the expansion in θ)

∆̃t+
χζ =

1
2w2

0

∫ ∞

−∞
dξ
(
∂χh(0)

τζ − θ∂χh(1)
ξτ + θ∂ξh(1)

χζ

)
,� (B.7)

∆̃t−
ζχ =

1
2w2

0

∫ ∞

−∞
dξ
(
− ∂χh(0)

τζ − θ∂χh(1)
ξτ − θ∂ξh(1)

χζ

)
.� (B.8)

As h(1)
χζ (ξ = ∞) = h(1)

χζ (ξ = −∞), we obtain ∆̃t+
χζ = ∆t+ and ∆̃t−

ζχ = ∆t−.

Appendix C.  Derivation for finitely extended source and test beams

Starting from the solution in equation (6) for the linearized Einstein equations, we find with 

equation (8), using the identity ∂xa
1

|�x−�x ′| = −∂xa′
1

|�x−�x ′| , and partial integration (the energy-
momentum tensor vanishes at infinity)

∆± = −2G
c4

∫ B

A
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|(

θ
(
∂χ′

(
t(1)
ξζ ± t(1)

τξ

)
− ∂ξ′

(
t(1)
χζ ± t(1)

τχ

))

+ θ3
(
∂χ′

(
t(3)
ξζ ± t(3)

τξ

)
− ∂ξ′

(
t(3)
χζ ± t(3)

τχ

)))
.

�

(C.1)

The energy-momentum tensor of the finitely extended beam is given by multiplying the 
expressions in appendix A for the infinitely extended beam with the Heaviside functions 
Θ(ζ − α(ρ)) and Θ(β(ρ)− ζ), where α(ρ) and β(ρ) describe the ζ-coordinate of the source 
beam’s emitter and absorber, respectively. This truncation of the energy-momentum tensor 
leads to a violation of the continuity equation of general relativity, which in our case means 
neglecting recoil on emitter and absorber. This corresponds to energy and momentum being 
inserted into the system and dissipated from it, respectively, and can lead to apparent effects 
close to emitter and absorber that may not be present in practice. The best approximation of 
reality by our model of the finitely extended beam will be achieved for points far from emitter 
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and absorber but close to the beamline (see also [48] for a detailed analysis of a similar 
situation).

When the surfaces of emitter and absorber are considered to match the phase fronts of 
the beam, they are curved and, therefore, depend on ρ . This dependence is of second order 
in θ. The derivatives in equation  (C.1) lead to Dirac delta functions α′(ρ)δ(ζ − α(ρ)) and 
β′(ρ)δ(β(ρ)− ζ), and hence to evaluation of the integrand at the surfaces of emitter and 
absorber, respectively, integrated over the transversal directions. For each term in equa-
tion (C.1), this contributes even higher order terms. In the following, we restrict our consid-
erations to the leading order only (to first order for ∆− and to third order for ∆+). Therefore, 
the contributions of the curved surfaces of emitter and absorber can be neglected and we set 
α and β to be constants. From the expressions given in appendix A for the energy-momentum 

tensor, one sees that t(1)
ξζ = −t(1)

τξ  and t(1)
χζ = −t(1)

τχ. The derivatives appearing in the expression 

for ∆± of the first order terms are given by

∂χt(1)
ξζ =

2P0

πc
|µ|4

(
− 4χ|µ|2(θζξ + λχ) + λ

)
e−2|µ|2ρ2

,� (C.2)

∂ξt(1)
χζ =

2P0

πc
|µ|4

(
− 4ξ|µ|2(θζχ− λξ)− λ

)
e−2|µ|2ρ2

,� (C.3)

and the derivatives of the third order terms are found to be

∂χ

(
t(3)
ξζ + t(3)

τξ

)
= −P0

πc
|µ|6ρ2e−2|µ|2ρ2

(
λ+ (−4|µ|2 + 2/ρ2)χ(θζξ + λχ)

)
,

�
(C.4)

∂ξ

(
t(3)
χζ + t(3)

τχ

)
= −P0

πc
|µ|6ρ2e−2|µ|2ρ2

(
− λ+ (−4|µ|2 + 2/ρ2)ξ(θζχ− λξ)

)
.

�
(C.5)

Considering only the leading order terms in θ, we obtain for the rotation angles of the parallel 
co- and the parallel counter-propagating test rays

∆− = −8GP0

c5

2λθ
π

∫ ∞

−∞
dξ′dχ′

∫ β

α

dζ ′K(ξ′,χ′, ζ ′)

|µ(ζ ′)|4(1 − 2|µ(ζ ′)|2ρ′2)e−2|µ(ζ′)|2ρ′2
,

�
(C.6)

∆+ =
8GP0

c5

λθ3

π

∫ ∞

−∞
dξ′dχ′

∫ β

α

dζ ′K(ξ′,χ′, ζ ′)

|µ(ζ ′)|6ρ′2(1 − |µ(ζ ′)|2ρ′2)e−2|µ(ζ′)|2ρ′2
,

�
(C.7)

where |µ(ζ ′)|2 = 1/(1 + (θζ ′)2) and

K(ξ′,χ′, ζ ′) = log

(
B − ζ ′ + (ρ′′2 + (B − ζ ′)2)1/2

A − ζ ′ + (ρ′′2 + (A − ζ ′)2)1/2

)
,� (C.8)

with ρ′′ =
√
(ξ′ − ξ)2 + (χ− χ′)2 .

For the transversal test ray, we find along the same lines (neglecting again the effect of 
the curved surfaces of emitter and absorber as they are at least of second order in θ), using 
equation (D.8),
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∆t± =
2G
c4

∫ B

A
dξ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|

∂χ′

(
±t(0)

τζ + θt(1)
ξζ

)
.

�

(C.9)

From the expressions for the energy-momentum tensor in appendix A, we find that the deriva-
tives in the above equation are given by

∂χt(0)
τζ =

8P0

πc
|µ|4χe−2|µ|2ρ2

,� (C.10)

∂χt(1)
ξζ =

2P0

πc
|µ|4(λ(1 − 4|µ|2χ2)

− 4θζξχ|µ|2)e−2|µ|2ρ2
�

(C.11)

which leads to the rotation angle for the transversal test ray

∆t± =
8GP0

c5

1
2π

∫ ∞

−∞
dξ′dχ′

∫ β

α

dζ ′Kt(ξ
′,χ′, ζ ′)

|µ(ζ ′)|4
(
± 4χ′ + θ(λ(1 − 4|µ(ζ ′)|2χ′2)

− 4θζ ′ξ′χ′|µ(ζ ′)|2)
)

e−2|µ(ζ′)|2ρ′2
,

�

(C.12)

where the function Kt is given by

Kt(ξ
′,χ′, ζ ′)

= log

(
B − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (B − ξ′)2)1/2

A − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (A − ξ′)2)1/2

)
,

�
(C.13)

where χ′′ = χ′ − χ.
For the numerical analysis, we transform the found expressions for the rotation angles 

into the cylindrical coordinates 
(
ρ′,φ′, ζ ′

)
 with φ′ = arccos(ξ′/ρ′) or 

(
ρ′′,φ′′, ζ ′

)
 with 

ρ′′ =
√
ξ′2 + χ′′2  and φ′′ = arccos(ξ′/ρ′′).

Appendix D.  Derivation for infinitely extended source and test beams

For the parallel test rays, we obtain from equation (7) and t0,± = γ̇±(τ0) = (1, 0, 0,±(1 − f±))

∆± =
1

2w2
0

∫ ∞

−∞
dτ ta

0εabc∂bhcα(�⊥ + τ t0)tα0

=
1

2w2
0

∫ ∞

−∞
dτ εζbc∂b (hcζ(ξ,χ,±τ)± hcτ (ξ,χ,±τ))

=− 1
2w2

0

∫ ∞

−∞
dζ

(
∂χ(hξζ ± hξτ )− ∂ξ(hχζ ± hχτ )

)
.

�

(D.1)

The rotation angle for the parallel counter-propagating test ray is thus given by (considering 
the leading order only)
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∆− =− θ

2w2
0

∫ ∞

−∞
dζ

(
∂χ

(
h(1)
ξζ − h(1)

τξ

)

− ∂ξ

(
h(1)
χζ − h(1)

τχ

))
.

�

(D.2)

From the expressions for the metric perturbation in appendix A, we see that h(1)
ξζ = −h(1)

τξ , 
h(1)
χζ = −h(1)

τχ. For the derivatives in the above expression, we find

∂χh(1)
ξζ − ∂ξh(1)

χζ =
8GP0w2

0

c5 λ|µ|2e−2|µ|2ρ2
,� (D.3)

which leads to the rotation angle for the parallel counter-propagating test ray

∆− = −λ
8GP0θ

c5

∫ ∞

−∞
dζ |µ|2e−2|µ|2ρ2

.� (D.4)

Along the same lines, we find in leading order

∆+ =− θ3

2w2
0

∫ ∞

−∞
dζ

(
∂χ

(
h(3)
ξζ + h(3)

τξ

)

− ∂ξ

(
h(3)
χζ + h(3)

τχ

))
.

�
(D.5)

From the expressions for the metric perturbation in appendix A, one finds for the derivatives 
in the above expression

∂χ

(
h(3)
ξζ + h(3)

τξ

)
− ∂ξ

(
h(3)
χζ + h(3)

τχ

)

=− λ
2GP0w2

0

c5 |µ|2(1 + 2ρ2|µ|2)e−2|µ|2ρ2
.

�
(D.6)

Then, the rotation angle for the parallel co-propagating light ray is given by

∆+ = λ
GP0θ

3

c5

∫ ∞

−∞
dζ |µ|2(1 + 2ρ2|µ|2)e−2|µ|2ρ2

.� (D.7)

For the transversal test ray, we obtain from equation (7) and γ̇± = (1,±1, 0, 0)

∆t± =
1

2w2
0

∫ ∞

−∞
dτ ta

0εabc∂bhcα(τ , �⊥ + τ t0)tα0

=± 1
2w2

0

∫ ∞

−∞
dξ (∂χhτζ − θ∂θζhτχ)

+
1

2w2
0

∫ ∞

−∞
dξ (∂χhξζ − θ∂θζhξχ) .

�

(D.8)

Considering the terms up to first order in θ, it is given by

∆t± = ± 1
2w2

0

∫ ∞

−∞
dξ ∂χh(0)

τζ +
θ

2w2
0

∫ ∞

−∞
dξ ∂χh(1)

ξζ .� (D.9)

From the expressions for the metric perturbation in appendix A, we obtain for the derivatives 
appearing in the above expression

∂χh(0)
τζ =

8GP0w2
0

c5

χ

ρ2

(
1 − e−2|µ|2ρ2

)
,� (D.10)
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∂χh(1)
ξζ = −1

4
(θζ∂χ∂ξ + λ∂2

χ)I
(0).� (D.11)

The first term in equation (D.11) leads to an integration over a derivative, which vanishes,
∫ ∞

−∞
dξ ∂χ∂ξI(0) = ∂χI(0)

∣∣∣
ξ=∞

ξ=−∞
= 0.� (D.12)

Then, we obtain for the rotation angle for the transversal test ray

∆t± =± 4πGP0

c5 erf
(√

2|µ|χ
)

+ λ
2
√

2πGP0θ

c5 |µ|e−2|µ|2χ2
.

�
(D.13)

Appendix E.  Derivation for finitely extended source beams and infinitely 
extended test rays

For an infinitely extended test ray and a finitely extended source beam, we obtain

∆− = − 2G
c4 ∂χ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|

(
tξζ(ξ′,χ′, ζ ′)− tτξ(ξ′,χ′, ζ ′)

)

+
2G
c4 ∂ξ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|

(
tχζ(ξ′,χ′, ζ ′)− tτχ(ξ′,χ′, ζ ′)

)

= − 4Gθ

c4 ∂χ

∫ β

α

dζ ′
∫ ρ0(ζ

′)

0
dρ′ ρ′

∫ 2π

0
dφ′

lim
B→∞

KB(ξ,χ, ζ, ρ′,φ′, ζ ′)t(1)
ξζ (ρ

′,φ′, ζ ′)

+
4Gθ

c4 ∂ξ

∫ β

α

dζ ′
∫ ρ0(ζ

′)

0
dρ′ ρ′

∫ 2π

0
dφ′

lim
B→∞

KB(ξ,χ, ζ, ρ′,φ′, ζ ′)t(1)
χζ (ρ

′,φ′, ζ ′),

�

(E.1)

where cylindrical coordinates ρ′ =
√
ξ′2 + χ′2  and φ′ = arctan(χ′/ξ′) are used and the 

function KB is given by

KB(ξ,χ, ζ, ρ′,φ′, ζ ′)

= log

(
B − ζ ′ + (ρ′′2 + (B − ζ ′)2)1/2

−B − ζ ′ + (ρ′′2 + (B + ζ ′)2)1/2

)
,

�
(E.2)

where ρ′′2 = (ξ′ − ξ)2 + (χ′ − χ)2 = ρ′2 + ρ2 − 2ρ′ρ cos(φ− φ′), and ρ0(ζ
′) = ρ0/|µ(ζ ′)| 

is the finite transversal extension of the beam that is related to the width of emitter and absorber 
and ρ0 is a constant. For β/B � 1, −α/B � 1 and ρ0(ζ

′)/B � 1 for all ζ ′ ∈ [α,β], we obtain
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KB(ρ
′,φ′, ζ ′)

= log

(
B − ζ ′ + (ρ′′2 + B2(1 − ζ ′/B)2)1/2

−B − ζ ′ + (ρ′′2 + B2(1 + ζ ′/B)2)1/2

)

≈ log

(
2(B − ζ ′) + ρ′′2/(2B(1 − ζ ′/B))

ρ′′2/(2B(1 + ζ ′/B))

)

= log

(
1 + ζ ′/B
1 − ζ ′/B

+
4B2

ρ′′2
(1 − (ζ ′/B)2)

)

≈ log

(
4

B2

ρ′′2

)
.

�

(E.3)

In order to evaluate the expression for ∆−, one needs to take derivatives of the function KB. 
One finds

∂χ log

(
4

B2

ρ′′2

)
t(1)
ξζ − ∂ξ log

(
4

B2

ρ′′2

)
t(1)
χζ

=
2P0

πc
|µ′|4e−2|µ′|2ρ′2

(
λρ′∂ρ′ + θζ ′∂φ′

)
log

(
ρ′′2

)
.

�
(E.4)

Therefore, one finds for the following expression appearing in the expression for ∆−,

∂χ

∫ ρ0(ζ
′)

0
dρ′ ρ′

∫ 2π

0
dφ′ lim

B→∞
KB(ρ

′,φ′, ζ ′)t(1)
ξζ

− ∂ξ

∫ ρ0(ζ
′)

0
dρ′ ρ′

∫ 2π

0
dφ′ lim

B→∞
KB(ρ

′,φ′, ζ ′)t(1)
χζ

=
2P0

πc
|µ′|4

∫ ρ0(ζ
′)

0
dρ′ ρ′e−2|µ′|2ρ′2

∫ 2π

0
dφ′

(
λρ′∂ρ′ + θζ ′∂φ′

)
log

(
ρ′′2

)
.

�

(E.5)

The term containing the φ′-derivative vanishes under the integral. With

ρ′∂ρ′

∫ 2π

0
dφ′ log

(
ρ′2 + ρ2 − 2ρρ′ cos(φ′ − φ)

)

= 2πρ′∂ρ′




log

(
ρ′2

)
for ρ � ρ′

log
(
ρ2
)

for ρ > ρ′





= 4π
{

1 for ρ � ρ′

0 for ρ > ρ′

}
= 4πΘ(ρ′ − ρ),

�

(E.6)
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we obtain

2P0λ

πc
|µ′|4

∫ ρ0(ζ
′)

0
dρ′ ρ′

∫ 2π

0
dφ′

e−2|µ′|2ρ′2
ρ′∂ρ′ log

(
ρ′′2

)

= −2P0λ

c
|µ′|2

∫ ρ0(ζ
′)

0
dρ′ Θ(ρ′ − ρ)∂ρ′e−2|µ′|2ρ′2

= −2P0λ

c
|µ′|2

{∫ ρ0(ζ
′)

ρ
dρ′ ∂ρ′e−2|µ′|2ρ′2

: ρ � ρ0(ζ
′)

0 : ρ > ρ0(ζ
′)

}

=
2P0λ

c
|µ′|2Θ(ρ0(ζ

′)− ρ)
(

e−2|µ′|2ρ2
− e−2|µ′|2ρ2

0(ζ
′)
)

.

�

(E.7)

Finally, we obtain for the rotation of polarization for the parallel counter-propagating test ray

∆− = −λ
8GP0θ

c5

∫ β

α

dζ ′

Θ(ρ0 − |µ′|ρ)|µ′|2
(

e−2|µ′|2ρ2
− e−2ρ2

0

)
,

�
(E.8)

which leads to equation (10) for ρ0 → ∞. We see that ∆− vanishes if there is no overlap with 
the beam, i.e. if ρ > ρ0(α) and ρ > ρ0(β). For large ρ , there is only an overlap for large ζ ′ for 
which ρ0(ζ

′) ≈ ρ0θζ
′ and |µ′| = |θζ ′|−1. Evaluating the integral, we find

∆− = λ
8GP0

c5ρ

[
Θ(−θα− ρ/ρ0)

( √
π

2
√

2

(
erf

(
−
√

2ρ
θα

)
− erf

(√
2ρ0

))
− e−2ρ2

0

(
− ρ

θα
− ρ0

))

+Θ(θβ − ρ/ρ0)

( √
π

2
√

2

(
erf

(√
2ρ
θβ

)
− erf

(√
2ρ0

))
− e−2ρ2

0

(
ρ

θβ
− ρ0

))]
.

�

(E.9)

For ρ0 → ∞, we obtain

∆− = −λ
4GP0

c5ρ

√
π√
2(

erfc

(√
2ρ
θβ

)
+ erfc

(√
2ρ

θ|α|

))
,

�

(E.10)

where erfc is the complementary error function. For ρ � θβ and ρ � −θα, using the asymp-
totic expansion of the complementary error function, we obtain

∆− ≈ −λ
2GP0θ

c5ρ2

(
βe−2(ρ/θβ)2

+ |α|e−2(ρ/θα)2

)
.� (E.11)

For ∆+, it follows from equation (C.1) that in leading order (third order in θ), the rotation 
of polarization for the parallel co-propagating light ray is given by
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∆+ = − 2G
c4 ∂χ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|

(tξζ + tτξ)

+
2G
c4 ∂ξ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|

(tχζ + tτχ)

= − 2Gθ3

c4 ∂χ

∫ β

α

dζ ′
∫ ρ0(ζ

′)

0
dρ′ ρ′

∫ 2π

0
dφ′ lim

B→∞
KB(ρ

′,φ′, ζ ′)
(

t(3)
ξζ + t(3)

τξ

)

+
2Gθ3

c4 ∂ξ

∫ β

α

dζ ′
∫ ρ0(ζ

′)

0
dρ′ ρ′

∫ 2π

0
dφ′ lim

B→∞
KB(ρ

′,φ′, ζ ′)
(

t(3)
ξζ + t(3)

τξ

)
.

�

(E.12)

The relevant combination of derivatives of the function KB with the approximation given in 
equation (E.3) is given by

∂χ log

(
4

B2

ρ′′2

)(
t(3)
ξζ + t(3)

τξ

)

− ∂ξ log

(
4

B2

ρ′′2

)(
t(3)
χζ + t(3)

τχ

)

= −P0

πc
|µ′|6ρ′2e−2|µ′|2ρ′2

(
λρ′∂ρ′ + θζ ′∂φ′

)
log

(
ρ′′2

)
.

�

(E.13)

Again, the term containing the derivative with respect to φ′ vanishes under the integration over 
φ′ and we obtain

− P0λ

πc
|µ′|6

∫ ρ0(ζ
′)

0
dρ′ ρ′3

∫ 2π

0
dφ′

e−2|µ′|2ρ′2
ρ′∂ρ′ log

(
ρ′′2

)

=
P0λ

c
|µ′|4

∫ ρ0(ζ
′)

0
dρ′ Θ(ρ′ − ρ)ρ′2∂ρ′e−2|µ′|2ρ′2

=
P0λ

c
|µ′|4

{∫ ρ0(ζ
′)

ρ
dρ′ ρ′2∂ρ′e−2|µ′|2ρ′2

: ρ � ρ0(ζ
′)

0 : ρ > ρ0(ζ
′)

}
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=− P0λ

c
|µ′|4Θ(ρ0(ζ

′)− ρ)

[
2
∫ ρ0(ζ

′)

ρ

dρ′ ρ′e−2|µ′|2ρ′2

+
(
ρ2e−2|µ′|2ρ2

− ρ0(ζ
′)2e−2|µ′|2ρ0(ζ

′)2
)]

=− P0λ

c
|µ′|2Θ(ρ0(ζ

′)− ρ)

[
− 1

2

∫ ρ0(ζ
′)

ρ

dρ′ ∂ρ′e−2|µ′|2ρ′2

+ |µ′|2
(
ρ2e−2|µ′|2ρ2

− ρ0(ζ
′)2e−2|µ′|2ρ0(ζ

′)2
)]

=− P0λ

2c
|µ′|2Θ(ρ0(ζ

′)− ρ)
(
(1 + 2|µ′|2ρ2)e−2|µ′|2ρ2

− (1 + 2|µ′|2ρ0(ζ
′)2)e−2|µ′|2ρ0(ζ

′)2
)

.

�

(E.14)

Finally, the rotation of polarization for the parallel co-propagating light ray is given by

∆+ = λ
GP0θ

3

c5

∫ β

α

dζ ′

Θ(ρ0 − |µ′|ρ)|µ′|2
(
(1 + 2|µ′|2ρ2)e−2|µ′|2ρ2

− (1 + 2ρ2
0)e

−2ρ2
0

)
,

�

(E.15)

which leads to equation (9) for ρ0 → ∞. In this case, we find that

∆+ = −θ2

8

(
1 − ∂σ

)
∆−(

√
σρ)

∣∣∣
σ=1

.� (E.16)

Again, we find that ∆+ vanishes if there is no overlap with the beam, i.e. if ρ > ρ0(α) and 
ρ > ρ0(β). For ρ0 → ∞, ρ � θβ and ρ � −θα, we find

∆+ = λ
GP0θ

3

2c5

(
β

(
1
ρ2 +

1
(θβ)2

)
e−2(ρ/θβ)2

− α

(
1
ρ2 +

1
(θα)2

)
e−2(ρ/θα)2

)

≈ λ
GP0θ

2c5

(
1
β

e−2(ρ/θβ)2
+

1
|α|

e−2(ρ/θα)2

)
.

�

(E.17)

For ∆t± for a finitely extended source beam and an infinitely extended test ray we obtain, 
considering only the leading order contribution,

∆
(0)
t± = ± 1

2w2
0

∫ ∞

−∞
dξ ∂χh(0)

τζ

= ∓2G
c4

∫ β

α

dζ ′
∫

ρ�ρ0(ζ′)

dξ′dχ′

lim
B→∞

∂χKt,B(ξ
′,χ′, ζ ′)t(0)

τζ ,

�

(E.18)
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where the function Kt,B is given by

Kt,B(ξ
′,χ′, ζ ′)

= log

(
B − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (B − ξ′)2)1/2

−B − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (B + ξ′)2)1/2

)
,

�
(E.19)

and where χ′′ = χ′ − χ. For B � 1, we obtain

Kt,B(ξ
′,χ′, ζ ′)

= log




B − ξ′ + (B − ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(B − ξ′)2
)1/2

−B − ξ′ + (B + ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(B + ξ′)2
)1/2




≈ log


 B − ξ′ + (B − ξ′)

(
1 + (χ′′2 + (ζ − ζ ′)2)/(2(B − ξ′)2)

)

−B − ξ′ + (B + ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(2(B + ξ′)2)
)



= log

(
2(B − ξ′) + (χ′′2 + (ζ − ζ ′)2)/(2(B − ξ′))

(χ′′2 + (ζ − ζ ′)2)/(2(B + ξ′))

)

≈ log

(
B + ξ′

B − ξ′
+

4B2

χ′′2 + (ζ − ζ ′)2 (1 − ξ′2/B2)

)

≈ log

(
4B2

χ′′2 + (ζ − ζ ′)2

)
.

�

(E.20)

With the derivative of Kt,B with respect to χ,

∂χ log

(
4B2

χ′′2 + (ζ − ζ ′)2

)
= 2

χ− χ′

χ′′2 + (ζ − ζ ′)2� (E.21)

we obtain for the zeroth order of the rotation of polarization of the transversal test ray

∆
(0)
t± = ∓4GP0

πc5

∫ β

α

dζ ′
∫

ρ�ρ0(ζ′)

dξ′dχ′

χ− χ′

χ′′2 + (ζ − ζ ′)2 |µ
′|2e−2|µ′|2ρ′2

.
�

(E.22)

Note that for χ = 0, the integrand is anti-symmetric in χ′ and ∆(0)
t±  vanishes. For the first order 

contribution, we find

∆
(1)
t± = λ

4GP0

πc5

∫ β

α

dζ ′
∫

ρ�ρ0(ζ′)

dξ′dχ′

χ′(χ− χ′)

(χ− χ′)2 + (ζ − ζ ′)2 |µ
′|4e−2|µ′|2ρ′2

.
�

(E.23)

For χ = 0, the integrand is symmetric in χ′ and ∆(1)
t±  does not vanish.
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Appendix F.  Multipole expansion of the far field for finitely extended source 
and test beams

For the finitely extended source beam, one can get analytical approximations of ∆ in the 
far field. For simplicity we assume here that the source beam extends from −β to β, and 
the probe beam from  −B to B. The maximal radial extension of the source beam, reached at 
ζ ′ = ±β, is then given by ρ′ = θβ/

√
2. This is the maximum scale on which all components 

of the energy-stress tensor and its derivatives fall off like a Gaussian (for smaller values of 
|ζ ′| the decay is even faster). Far field means then that the probe beam should be a distance 
ρ � θβ/

√
2  from the source beam when passing parallel to the source beam. A much shorter 

distance of order ρ � 1 suffices for the transversal beam passing at the beam waist for being 
in the far field regime.

From equations (6) and (8) we obtain, after shifting derivatives to the prime-coordinates 
and partial integration,

∆± =− 2G
c4θ

∫ B

−B
d(θζ)

∫
d3x′

1
|�x −�x ′|[

∂χ′(Tξζ(�x ′)± Tτξ(�x ′))

− ∂ξ′(Tχζ(�x ′)± Tτχ(�x ′))
]
.

�

(F.1)

For the partial integration we assume once more that we are in the far-field, so that boundary 
terms are exponentially suppressed through the Gaussian factor exp(−2|µ|2ρ2). The source 
term relevant for ∆− is given to first order in θ by (see appendix A, equations (A.22)

S−(ρ′, ζ ′) ≡
πc

4P0θ

[
∂χ′(Tξζ(�x ′)− Tτξ(�x ′))

− ∂ξ′(Tχζ(�x ′)− Tτχ(�x ′))
]

=
2e−2 ρ′2

1+θ2ζ′2 λ(1 + θ2ζ ′2 − 2ρ′2)
(1 + θ2ζ ′2)3 .

�

(F.2)

Manifestly, S− enjoys azimuthal symmetry. It is then useful to expand the function 1/|�x −�x ′| 
as (see e.g. [49] p 93)

1
|�x −�x ′|

=

∞∑
l=0

rl
<

rl+1
>

Pl(cosϑ
′)Pl(cosϑ) ,� (F.3)

where Pl are the Legendre-polynomials, r< (r>) is the smaller (larger) of |�x| and |�x ′|, and ϑ (ϑ′) 
the angle between the z-axis and �x  (�x ′). For calculating the far field, we can set everywhere 
r> = r = |�x| and r< = r′ = |�x ′|. This leads to

∆− =

∞∑
l=0

∆
(l)
−

= −16GP0θ

c5

∞∑
l=0

∫ B

−B
dζ

Q(l)
−

(ρ2 + ζ2)(l+1)/2 Pl

(
ζ√

ρ2 + ζ2

)
,

�

(F.4)
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where the multipoles Q(l)
−  are given by

Q(l)
− =

∫ β

−β

dζ ′
∫ ∞

0
ρ′dρ′ (ρ′2 + ζ ′2)l/2

× Pl

(
ζ ′√

ρ′2 + ζ ′2

)
S−(ρ′, ζ ′),

�

(F.5)

and we have used that in cylinder coordinates ϑ = arccos(ζ/
√
ρ2 + ζ2), and correspondingly 

for ϑ′ . The multipoles and their contributions to ∆− can be calculated analytically. All odd 
multipoles vanish, and so do the monopole and dipole contribution (l = 0, 1, respectively). ∆− 
is then dominated by the quadropole contribution l  =  2. The correction due to higher order 
multipoles l = 4, 6, ... decays quickly with l. We therefore limit ourselves to listing the results 
for l = 2, 4, 6. Note that the direct dependence on ζ ′ of 1/|�x −�x ′| (rather than on θζ as for 
the rest of the integrand) brings about additional θ dependence. Neglecting these higher order 
terms, we find

Q(2)
− =

βλ

4
,� (F.6)

Q(4)
− =

βλ

8
(−3 + 4β2),� (F.7)

Q(6)
− =

3βλ
64

(15 − 40β2 + 16β4),� (F.8)

and, with Ω ≡ 8λθGP0/c5,

∆
(2)
− =

Ωβ

2
B

(B2 + ρ2)3/2 ,� (F.9)

∆
(4)
− =

Ωβ(−3 + 4β2)

16
(2B3 − 3Bρ2)

(B2 + ρ2)7/2 ,� (F.10)

∆
(6)
− =

Ωβ(15 − 40β2 + 16β4)

256
(8B4 − 40B2ρ2 + 15ρ4)

(B2 + ρ2)11/2 .
�

(F.11)

For ∆+, the lowest contributing terms are from the derivatives of the third order of the 
metric. The expression for S− is replaced by S+ given by

S+(ρ′, ζ ′) ≡
πc

P0θ2

[
∂χ′(Tξζ(�x ′) + Tτξ(�x ′))

− ∂ξ′(Tχζ(�x ′) + Tτχ(�x ′))
]

= −e−2 ρ′2

1+θ2ζ′2 λρ′2(1 − ρ′2/(1 + θ2ζ ′2))

(1 + θ2ζ ′2)3 .

�

(F.12)

Also here the monopole contribution (l  =  0) and all contributions with odd l, in particular the 
dipole contribution (l  =  1) vanish. The lowest order non-vanishing contributions are
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Q(2)
+ = −βλθ2

16
,� (F.13)

Q(4)
+ =

βλθ2

64
(9 − 8β2),� (F.14)

Q(6)
+ = −3βλθ2

128
(15 − 30β2 + 8β4),� (F.15)

to be substituted into the expression corresponding to (F.4), i.e.

∆+ =

∞∑
l=0

∆
(l)
+

= −16GP0θ

c5

∞∑
l=0

∫ B

−B
dζ

Q(l)
+

(ρ2 + ζ2)(l+1)/2 Pl

(
ζ√

ρ2 + ζ2

)
.

�

(F.16)

This leads to

∆
(2)
+ = −Ωθ2

8
Bβ

(B2 + ρ2)3/2 ,� (F.17)

∆
(4)
+ =

Ωθ2(−9 + 8β2)

128
(−2B3 + 3Bρ2)

(B2 + ρ2)7/2 ,� (F.18)

∆
(6)
+ = −Ωθ2Bβ(15 − 30β2 + 8β4)

512
(8B4 − 40B2ρ2 + 15ρ4)

(B2 + ρ2)11/2 ,
�

(F.19)

where we recall that Ω contains already one factor θ. So both ∆± fall off as 1/ρ3 in the far-
field due to the quadrupole contribution. For fixed ρ,β  that contribution decays as 1/B for 
large B, i.e. B � ρ. This can be traced back to the integral over ζ in and would not be the case 
for the monopole contribution.

For ∆t± we start with the lowest, zeroth order in θ. It is then useful to keep the derivatives 
of the energy-stress tensor outside the calculation of the multipoles, as otherwise the cylindri-
cal symmetry gets spoiled. We find

∆
(0)
t± = ∓8GP0

c5

∫ B

−B
dξ ∂χ

∞∑
l=0

Pl

(
ζ√

ρ2+ζ2

)

(ρ2 + ζ2)(l+1)/2 Q(0)(l)
t± ,� (F.20)

Q(0)(l)
t± =

∫ β

−β

dζ ′
∫ ∞

0
dρ′ρ′(ρ′2 + ζ ′2)l/2Pl

(
ζ ′√

ρ′2 + ζ ′2

)

× 1
1 + θ2ζ ′2

e−2 ρ′2

1+θ2ζ′2 .

�

(F.21)

Also here, all the odd-power multipoles (l = 1, 3, 5, . . .) vanish due to the fact that the 

Legendre-polynomials of odd order are odd, whereas the rest of the integrand in Q(0)(l)
t±  is even 

in ζ ′. The three lowest non-vanishing multipoles read
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Q(0)(0)
t± =

β

2
,� (F.22)

Q(0)(2)
t± = − 1

24
β(3 − 4β2),� (F.23)

Q(0)(4)
t± =

1
160

β(15 − 40β2 + 16β4).� (F.24)

The corresponding contributions to ∆t± at ζ = 0 are

∆
(0)(0)
t± = ±Ω̃

Bβ

χ
√

B2 + χ2
,� (F.25)

∆
(0)(2)
t± = ±Ω̃

Bβ(3 − 4β2)(2B2 + 3χ2)

24χ3(B2 + χ2)3/2 ,� (F.26)

∆
(0)(4)
t± = ±Ω̃

Bβ(15 − 40β2 + 16β4)

640χ5(B2 + χ2)5/2

(8B4 + 20B2χ2 + 15χ4),
�

(F.27)

where Ω̃ = 8GP0/c5. We see that now there is a contribution from the monopole that leads to 
a decay as 1/χ2 with the minimal distance χ from the beamline when evaluated at ζ = 0 and 
in the limit of χ � B. The next (quadrupole) term contributes a 1/χ4 decay. In the limit of 
B → ∞ at fixed χ, the monopole contribution converges to a β/χ2 behavior.

For the first order term in ∆t±, the contribution to the Faraday effect, we obtain with the 
expressions for the energy-momentum tensor given in appendix A, using the symmetry of 
|�x −�x ′| and performing a partial integration,

∆
(1)
t± =

2Gθ

c4 ∂χ

∫ B

−B
dξ

∫ ∞

−∞
dξ′dχ′dζ ′

1
|�x −�x ′|

t(1)
ξζ

=
λθ

4
∂χ∆

(0)
t+ − GP0θ

2

πc5 ∂χ

∫ B

−B
dξ ∂ξ

∫ ∞

−∞
dξ′dχ′

∫ β

−β

dζ ′
1

|�x −�x ′|
ζ ′

1 + θ2ζ ′2
e−2 ρ′2

1+θ2ζ′2 .

�

(F.28)

We neglect the second term as it is of higher order in θ. For the first term, we find from the 

multipole expansion of ∆(0)
t+  for ζ = 0

∆
(1)(0)
t± = −λθ

4
Ω̃

Bβ(B2 + 2χ2)

χ2(B2 + χ2)3/2 ,� (F.29)

∆
(1)(2)
t± = −λθ

4
Ω̃

Bβ(3 − 4β2)

8χ4(B2 + χ2)5/2

(2B4 + 5B2χ2 + 4χ4),
�

(F.30)

∆
(1)(4)
t± = −λθ

4
Ω̃

Bβ(15 − 40β2 + 16β4)

128χ6(B2 + χ2)7/2

(8B6 + 28B4χ2 + 35B2χ4 + 18χ6).
�

(F.31)
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In a real experiment, it should be kept in mind that the gravitational effects from emitter and 
absorber and the power-supplies feeding them, as well as heat-radiation from the absorber 
may lead to effects that mask the rotation of the polarization of the source beam itself in the 
far field, if their dipole- or monopole-contributions do not vanish. If one wishes to evaluate 
these effects, a careful modelling of the entire setup will be necessary.

Appendix G. The infinitely thin beam

The metric perturbation induced by an infinitely thin beam of light that extends along the 
ζ-axis from −β to β is given by the only non-zero components hττ = −hτζ = hζζ = h, where 
h is given as [1]

h =
4GP0w2

0

c5 log

(
β − ζ + (ρ2 + (β − ζ)2)1/2

−β − ζ + (ρ2 + (β + ζ)2)1/2

)
.� (G.1)

Therefore, we find with equation (7) at ζ = 0 and for large χ

∆t± ≈ ± 1
2w2

0

∫ B

−B
dξ ∂χh(0)

τζ

≈ ±8GP0

c5

βB

χ
√

B2 + χ2
,

�

(G.2)

where we considered a test ray extending from  −B to B, and

∆t± ≈ ±8GP0

c5

β

χ
,� (G.3)

for the infinitely extended test ray.
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