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Abstract
The development of novel materials for vacuum electron sources in particle accelerators is an active
field of research that can greatly benefit from the results of ab initio calculations for the
characterization of the electronic structure of target systems. As state-of-the-art many-body
perturbation theory calculations are too expensive for large-scale material screening, density
functional theory offers the best compromise between accuracy and computational feasibility. The
quality of the obtained results, however, crucially depends on the choice of the
exchange–correlation potential, vxc. To address this essential point, we systematically analyze the
performance of three popular approximations of vxc [PBE, strongly constrained and appropriately
normed (SCAN), and HSE06] on the structural and electronic properties of bulk Cs3Sb and Cs2Te
as representative materials of Cs-based semiconductors employed in photocathode applications.
Among the adopted approximations, PBE shows expectedly the largest discrepancies from the
target: the unit cell volume is overestimated compared to the experimental value, while the band
gap is severely underestimated. On the other hand, both SCAN and HSE06 perform remarkably
well in reproducing both structural and electronic properties. Spin–orbit coupling, which mainly
impacts the valence region of both materials inducing a band splitting and, consequently, a
band-gap reduction of the order of 0.2 eV, is equally captured by all functionals. Our results
indicate SCAN as the best trade-off between accuracy and computational costs, outperforming the
considerably more expensive HSE06.

1. Introduction

Computational methods for material modeling have finally reached into almost all the areas of materials
science and discovery, including those fields that, for historical reasons and scientific distance, are far away
from condensed-matter physics. Among them, the design and production of photocathode materials for par-
ticle accelerators is certainly worth a mention [1, 2]. The most recent advances in this field have imposed a
paradigm shift driven by the necessity to develop vacuum electron sources producing increasingly focused
particle beams with minimized mean transverse emittance [3–5]. These characteristics can be best achieved
through the development of photocathodes based on semiconducting materials which absorb visible light close
to the infrared threshold. Alkali antimonides and tellurides generally fulfill this requirement and have been
extensively investigated in this context [3, 6–8] along with conventional semiconductors like GaAs [8–10] and
popular thermoelectric materials such as PbTe [11, 12].

The search for novel semiconducting materials with optimized characteristics for photocathode applica-
tions greatly benefits from ab initio quantum-mechanical simulations. Reliable predictions of material com-
positions and of the corresponding electronic properties are seen as a complement and, in some cases, even as
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a replacement of the expensive trial-and-error experimental growth and characterization procedures [13–18].
To this end, multi-purpose databases of materials properties computed from density functional theory (DFT),
such as NOMAD [19], Materials Project [20], the Open Quantum Materials Database [21], or Materials Cloud
[22], are regarded with particular interest for a quick screening of suitable compounds and also as a source
of input data for photoemission models [23]. Yet, the vast majority of the electronic-structure information
stored in these databases are obtained under semi-local approximations of the exchange–correlation potential
(vxc). As such, these data are likely suitable only for a qualitative assessment of properties that are relevant for
photoemission.

Recent studies on Cs-based multi-alkali antimonide crystals based on many-body perturbation theory
(MBPT) provide state-of-the-art references for the electronic and optical characteristics of these materials
[24, 25]. However, these methods are too expensive to be used for high-throughput screening, or in the sim-
ulations of surfaces and defected systems, which more closely reflect the intrinsic features of the real materials
at significantly large computational costs and complexity. A good compromise is given by advanced approx-
imations of vxc, which have undergone impressive progress in the last decade [26, 27]. Recent developments
include new parametrizations in the class of meta-generalized gradient approximation (GGA) functionals
[28–31], approximations based on machine-learning methods [32, 33], and improved descriptions of the long-
range dispersion interaction [34–37]. Range-separated hybrid functionals and meta-GGA approximations are
presently efficiently implemented in many DFT packages [38–40] and, as such, can be routinely used in the ab
initio simulations of large systems.

To reliably take advantage of DFT calculations in the study of Cs-based photocathode materials, a sys-
tematic comparison between the performance of against reliable references is urgently needed. Similar studies
were performed either on specific families of materials such as lead chalcogenides (see, e.g. reference [41]), or
on new functionals [42–44]. General benchmark studies on solids [45–47] are also a valuable starting point
for reference, but the multi-atomic composition of photocathode materials as well as their peculiar chemical
properties demand dedicated analysis. This is precisely the scope of this work.

Herein, we investigate the structural and electronic properties of cesium antimonide (Cs3Sb) and cesium
telluride (Cs2Te), two semiconductors largely employed in the context of photocathode research, in the frame-
work of DFT with different approximations of vxc. Having the practical application in mind, we settled to
consider functionals that are implemented and ‘ready to use’ in a large number of DFT programs, but also rep-
resent different levels of exchange–correlation approximations. To this end, we choose three well-established
functionals representative for increasing levels of sophistication in the treatment of the exchange–correlation
potential, namely, the semi-local Perdew–Burke–Ernzerhof functional [48] implementing the GGA, the
strongly constrained and appropriately normed (SCAN) parameterization of the meta-GGA [49], and the
Heyd–Scuseria–Ernzerhof range-separated hybrid functional HSE06 [50]. These functionals are prominent
representatives of their respective class of approximations (GGA, meta-GGA, and hybrids) that are widely
applied to solids. Among the three considered approximations for vxc, meta-GGA is certainly the least mature
one, as testified by the number of new developments [28, 51–53] and recent benchmark studies [42–44, 54]
dedicated to it. In this developing scenario, the choice of considering SCAN is partly driven by our own positive
experience with this functional.

After the optimization of the lattice parameters, which we benchmark against experimental values, we
compute band structure and density of states (DOS) of the target systems. The resulting band-gap is contrasted
with GW0 results from MBPT. Our results show that the SCAN functional is an excellent choice in terms of
accuracy and computational efficiency and an overall improvement to the PBE functional. We finally assess the
performance of the three aforementioned functionals in describing spin–orbit coupling (SOC) effects, which
are known to be relevant in the investigated materials, as they are composed of relatively heavy atomic species.
We find that SOC, which has a relatively small effect on the electronic properties of both materials, is equally
captured by all considered vxc approximations.

This paper is organized as follows. In section 2 the theoretical background of our calculations is reviewed
and the relevant computational details are summarized. The body of results is presented in section 3, including
the analysis of structural and electronic properties as well as SOC. Summary and conclusions are reported in
section 4.

2. Theoretical background and computational details

The results of this work are obtained using DFT [56] within the Kohn–Sham (KS) scheme, which maps the
many-body system into an auxiliary system of non-interacting electrons with the same density as the fully
interacting one [57]. In this framework, one has to solve for each (valence) electron i the KS equations, which
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in atomic units read: [
−1

2
∇2 + vs (r)

]
ϕi (r) = εKS

i ϕi (r) . (1)

The eigenvalue εKS
i is the KS energy per particle and the eigenfunction ϕi (r) the KS wave function. The Hamil-

tonian operator in square brackets contains two terms, namely the kinetic energy operator and the effective
potential per particle

vs(r) = vext(r) + vH(r) + vxc(r), (2)

including the external potential vext, accounting for the electron–nuclear interaction in absence of exter-
nal fields, the Hartree potential, vH, and, the exchange–correlation potential vxc, the exact form of which is
unknown.

The simplest approximation of vxc, proposed already by Kohn and Sham in their seminal paper [57], con-
sists of treating exchange and correlation effects as in the homogeneous electron gas. On the next rung, we
find the GGA, in which vxc is derived from the local electron density and its gradient. The PBE parame-
terization of GGA is adopted in this work. Taking one step further consists of approximating vxc including
also the kinetic energy density: this is the so-called meta-GGA approximation. As a representative of this
level of approximation, which is currently explored in a number of development and benchmark studies
[28, 42–44, 51–54], we employ herein the SCAN functional [49], which fulfills all the constraints for semi-local
exchange–correlation functionals and has shown superiority in comparison to many other local and semi-local
approximations on a broad range of systems [58, 59]. Very recently, two regularized versions of the SCAN func-
tional have been proposed, namely rSCAN [30] and r2SCAN [31]. The performance of the former is reported in
the appendix.

In parallel, another class of approximations for vxc has been developed in the last two decades, the so-
called hybrid functionals incorporating a fixed amount of Hartree–Fock exchange correcting the underlying
semi-local DFT approximation [60]. Thanks to the presence of a fraction of Hartree–Fock exchange, the self-
interaction error, which affects also meta-GGA functionals [58], is alleviated. More recently, this recipe has
been further improved through the introduction of range-separated hybrid functionals, in which the treatment
of the exchange-interaction additionally depends on the range between the orbitals. Here, as a representative
of this class, we use the HSE06 functional [50] which has shown remarkable success in the description of bulk
properties for semiconducting and insulating condensed systems [61]. In this functional, the electron–electron
interaction is split into a short-range and a long-range part: the short range part of the functional consists of
75% of the semi-local PBE xc functional and 25% of non-local Hartree–Fock exchange; in the long range part
the functional coincides with PBE.

Other relevant aspects in the solution of the KS equation concern the treatment of core electrons and
the choice of the basis set. In this work, we choose the all-electron full-potential implementation of FHI-
aims [62]. This package uses numerical atom-centered orbitals as basis set for all electrons. The zero-order
regular approximation is applied to correct for relativistic effects of the core-electrons. Additionally, a non-
self-consistent post-scf approximation is applied to account for SOC [63]. These calculations are carried out
with intermediate settings for basis-set and integration grids. A 18×18× 18 and a 6×12× 6 k-grid is chosen for
Cs3Sb and Cs2Te, respectively. In both cases the convergence of the k-grid is checked for the PBE functional.
The unit cells of both materials are optimized separately for each functional by calculating the stress tensor
until the forces acting on each atom are converged below 1.0 × 10−3 eV Å−1.

In absence of reliable experimental references for Cs2Te and Cs3Sb single crystals, we benchmark the accu-
racy of the DFT band gaps against the outcomes of GW calculations [64] in the partially self-consistent flavor
GW0 [65, 66]. In this formalism, the screened Coulomb potential W0 is evaluated in a single-shot procedure,
while the single-particle Green’s function G is updated self-consistently. These calculations are performed with
the all-electron full-potential code exciting, which implements the linearized augmented plane wave plus
local orbital method [67, 68]. The size of the basis set is determined by the radius of the muffin-tin (MT)
spheres around the nuclei and the plane wave cutoff. The local orbitals available in the default species files are
included in the calculations. We anticipate that this can lead to a systematic underestimation of the band gaps
[68]. An MT radius of 1.8 and 2.5 bohr is used for both species in Cs2Te and Cs3Sb, respectively. A plane-wave
cutoff of 8.0 Ha is adopted in both cases. GW0 calculations are performed on top of the PBE electronic struc-
ture obtained upon sampling the Brillouin zone with an 8 ×8× 8 k-mesh in Cs3Sb and 4 ×8× 4 in Cs2Te. In
the GW0 step, a 6 ×6× 6 k-grid is used for Cs3Sb and a 3 ×6× 3 one in Cs2Te. Screening is computed in the
random-phase approximation including 200 empty states in both systems. It is worth noting that, while the
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Figure 1. Ball-stick representation of the primitive unit cells of (a) Cs3Sb and (b) Cs2Te. Cs atoms in blue (light blue for Cs1 and
dark blue for Cs2) and Sb and Te atoms in gray. Brillouin zones of (c) Cs3Sb and (d) Cs2Te with high-symmetry points and the
path connecting them highlighted. Graphics created with XCrysDen [55].

Table 1. Lattice parameters of the conventional unit cell, volume per atom
(Ω), and cohesive energy per atom (Ecoh) of Cs3Sb and Cs2Te.

PBE SCAN HSE06 Exp.

Cs3Sb
a (Å) 9.298 9.194 9.220 9.14–9.19a

Ω (Å3/atom) 50.24 48.58 48.99 47.72–48.51
Ecoh (eV/atom) −2.037 −2.436 −2.316 —

Cs2Te
a (Å) 9.542 9.250 9.481 9.109b

b (Å) 5.845 5.845 5.811 5.871b

c (Å) 11.591 11.598 11.557 11.494b

Ω (Å3/atom) 53.88 52.26 53.06 51.22
Ecoh (eV/atom) −2.655 −3.081 −3.037 —

a[69, 70, 75, 76].
b[80].

self-consistency on the G alleviates the starting-point dependence of the GW0 calculations, a dependence of
the results on the underlying approximation for vxc (PBE, in this case) cannot be entirely ruled out.

3. Results

3.1. Structural properties
We begin our analysis by inspecting the structural properties of both compounds. Two different crystal struc-
tures have been reported for Cs3Sb: a partially ordered NaTl structure [69], and a completely ordered anti-BiF3

structure [70]. Here, we consider the latter geometry (space group Fm3̄m), in line with previous theoretical
studies [24, 71–74]. The primitive unit cell consists of three lattice sites for Cs atoms and one lattice site for Sb,
see figure 1(a). There are two crystallographically inequivalent lattice sites for Cs, characterized by different
coordination and bonding character, which here are denoted as Cs1 and Cs2. The fractional coordinates of
Cs1 are ( 1

4 , 1
4 , 1

4 ) and ( 3
4 , 3

4 , 3
4 ) while Cs2 is located at ( 1

2 , 1
2 , 1

2 ). The Sb atom is at the origin, (0, 0, 0).
The experimental lattice parameter of Cs3Sb, as obtained using x-ray and electron diffraction methods

[69, 70, 75, 76], ranges from 9.14 Å to 9.19 Å. In table 1, we compare our DFT results with the above-cited
experimental references and, unsurprisingly, we find that PBE overestimates the lattice parameter by 1.18%.
This is a well-known problem of this functional and has also been reported for many other bulk materials [45,
77, 78]. Also HSE06 tends to overestimate the lattice parameter, which is understandable considering that the
fraction of exact exchange is included on top of a semi-local approximation for vxc. However, this functional
leads to a sizable improvement over PBE, yielding lattice vectors only 0.33% larger than the experimental one.
The best agreement with experiment is obtained with the SCAN functional, which delivers a value coinciding
with the upper boundary of the experimental range (see table 1). The computed unit cell volumes reflect this
behavior. A very similar trend in accuracy for the three used functionals has been observed by Zhang et al in
the analysis of 64 different bulk solid materials [45].

Turning to the cohesive energy, which is calculated by subtracting the total energy of free atoms from the
total energy of the crystal unit cell, the SCAN and the HSE06 functionals yield very similar results, with the
former featuring a slightly more negative value (see table 1). This finding is consistent with two recent studies
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that agree on the superiority of the SCAN functional over PBE in the prediction of accurate formation energies
[58, 79]. The PBE functional underestimates the cohesive energy by 0.3–0.4 eV/atom.

Two orthorhombic crystal structures have been identified for Cs2Te: one with space-group symmetry
P212121 [81], and, more recently, an anti-PbCl2 crystal structure belonging to the space group Pnma [80].
Herein, we focus on the latter. The orthorhombic unit cell of Cs2Te is characterized by the three lattice vectors
a, b, and c, and, in addition, by six internal parameters x1,2,3 and z1,2,3, which are needed to define the atomic
positions of the eight cesium and four tellurium atoms. The fractional coordinates of the four lattice sites
are (x1,2,3, 1

4 , z1,2,3), ( 1
2 + x1,2,3, 1

4 , 1
2 − z1,2,3), ( 1

2 − x1,2,3, 3
4 , 1

2 + z1,2,3) and, (1 − x1,2,3, 2
4 , 1 − z1,2,3) with the inte-

gers 1, 2, 3 representing the positions of Cs1, Cs2, and Te, respectively. The experimental lattice parameters of
Cs2Te, as obtained from x-ray diffraction measurements [80], are reported in table 1. The internal parameters
are given in the appendix (table 3).

In the case of Cs2Te, all the considered functionals overall overestimate the unit cell volume with respect
to the measurements. However, the same trend discussed for Cs3Sb is obtained also for this material: SCAN
yields results in closest agreement to the experimental ones, followed by HSE06 and, lastly, by PBE, which gives
rise to the largest overestimation. The individual lattice vectors, a, b, and c exhibit a slightly different behavior
compared to the whole volume, computed as their product. While the a parameter is, like the volume, overes-
timated by all adopted vxc approximations, with SCAN offering the best performance (+1.55% compared to
the experiment) and PBE the worst one (+4.75%), the b vector is underestimated by all functionals, with PBE
and SCAN giving the same and best result in this case (−0.44%with respect to the experimental reference); the
estimate of HSE06 is anyway satisfactory (−1.02% below the experimental target). Finally, for the c parameter,
HSE06 yields the closest value in comparison with the measurement (+0.55%) while SCAN overestimates the
target by +0.90%, performing slightly worse than PBE (+0.84%). As for the cohesive energy, the SCAN and
the HSE06 functionals give very similar values, while, once again, the PBE functional predicts the shallowest
value, that is about 0.4 eV/atom more positive than the results obtained with the other functionals.

3.2. Electronic properties
After analyzing the structural properties and stability of the considered materials, we now turn to their elec-
tronic structure, which is key to understand their behavior as photocathode materials. We start by inspecting
the band structure and the DOS, which is further decomposed into atom-projected contributions (see figure 2).

Bulk Cs3Sb is characterized by an indirect band gap between the high-symmetry points X and Γ, in agree-
ment with the predictions of earlier studies [25, 71, 72, 82]. The highest occupied states of Cs3Sb are dominated
by Sb electrons in the 5p-shell, giving rise to three low-dispersive bands (see figure 2, left panels). The next
valence state is 7.0–7.5 eV deeper in energy compared to the valence-band maximum, and is dominated by
Sb s-orbitals, as visualized in the projected DOS (PDOS). Occupied Cs states appear at even lower energies,
around 9.5–10.0 eV (Cs1) and 10.5–11.5 eV (Cs2), also giving rise to flat ‘atomic-like’ bands. Identifying the
contributions of chemically inequivalent atoms is particularly relevant in view of x-ray spectroscopy studies
[25, 74, 83, 84]. In the conduction region of Cs3Sb, bands are overall much more dispersive (see figure 2,
left panels). The bottom of the conduction band at Γ corresponds to the minimum of a parabolic state with
Cs1–Cs2 hybridized sp-contributions. At higher energies, hybridized s- and d-states appear.

The general features discussed above, concerning band character and dispersion, are equally reproduced
in all our calculations, regardless of the approximation adopted for vxc. The quantity that is mainly affected
by the choice of the xc functional is the size of the band gaps (see table 2). In the absence of reliable experi-
mental references (it is very challenging to grow and characterize single crystalline Cs3Sb samples [85, 86]), we
benchmark our DFT results against those obtained with the GW0 approximation of MBPT. A comparison of
the band structure between DFT (PBE functional) and the single-shot G0W0 approximation has been reported
for Cs3Sb in reference [25]. As discrepancies concerning band shape and dispersion are found to be marginal,
herein, we solely focus on the absolute values of the band gaps.

Given the indirect nature of the electronic gap in Cs3Sb, which is correctly reproduced by all three consid-
ered functionals, it is instructive to inspect also the smallest direct band gap at Γ, hereafter addressed as optical
gap. Unsurprisingly, the PBE functional underestimates the electronic gap by almost 50% compared to the
GW0 method, in line with previous studies [25, 71, 72, 82]. On the other hand, band-gap values in very good
agreement with the benchmark reference are obtained with both SCAN and HSE06: differences with respect
to the GW0 gaps are on the order of 15 meV.

Similar trends are obtained also for the optical gaps, however, with some remarkable differences (see
table 2). The PBE result is only about 3 5% below the GW0 one, in agreement with previous studies [25, 71, 72],
while both SCAN and HSE06 values depart from the reference by about 100 meV. The reason for the different
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Figure 2. Band structure and PDOS of Cs3Sb (left) and Cs2Te (right) obtained with PBE (panels (a) and (b)), SCAN ((c) and
(d)), and HSE06 functional ((e) and (f)). The energy is set to zero at the valence band maximum (dashed line). Solid, dashed,
dotted and dash-dotted lines represent contributions from s-, p-, d- and f-orbitals, respectively.

behavior of optical and electronic gaps can be understood through a close inspection of the band structures
(see figure 2, left panels). In the conduction region, the relative energy separation between the lowest-lying
bands is critically sensitive to the xc functional. While PBE features a separation of about 0.54 eV between the
conduction band minimum and the next bands around Γ [see figure 2(a)], this value is drastically reduced
in the band structures obtained with SCAN [0.17 eV, see figure 2(c)] and also with HSE06 [figure 2(e)], even
though to a slightly lesser extent (0.43 eV). This variation results in an overall reduction in the energy difference
between the conduction band minimum at Γ and the subsequent minimum at X of 267 meV for SCAN and
74 meV for HSE06. At higher energies the unoccupied states are reproduced analogously by all three function-
als, although absolute energies are generally lower in the PBE result compared to the other two. We see a similar
trend also in the valence bands: the energy separation between highest-occupied bands and the next (flat) one
depends on the adopted xc functional (see figure 2, left panels). In the PBE band structure, this band appears
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Table 2. Electronic and optical gaps including SOC of Cs3Sb and Cs2Te in eV.

PBE SCAN HSE06 GW0 Exp.

Cs3Sb
Egap 0.65 1.21 1.24 1.22
Eopt

gap 1.03 1.46 1.65 1.56
Egap + SOC 0.51 1.06 1.10 — 1.60a

Eopt
gap + SOC 0.85 1.31 1.48 —

Cs2Te
Egap 1.76 2.26 2.47 2.63
Eopt

gap 1.76 2.26 2.47 2.63
Egap + SOC 1.58 2.06 2.30 — 3.3b

Eopt
gap + SOC 1.58 2.06 2.30 —

a[87].
b[88].

at approximately 7.0 eV, while its energy decreases in the SCAN (7.2 eV) and HSE06 result (7.6 eV). The same
trend is followed qualitatively and quantitatively also by the deepest manifold of occupied bands displayed in
figure 2, left panels.

Cs2Te has a direct band gap at the Γ-point (see figure 2, right panels): hence, in this material, electronic and
optical gaps coincide. Similar to Cs3Sb, also in Cs2Te the uppermost occupied bands bear mainly p-character
of the anion, which is here the Te atoms. However, in this case, a manifold of 12 bands is found at the top of the
valence region since the unit cell contains 4 Te atoms. Also, in analogy with Cs3Sb, the next occupied states are
largely separated in energy from the latter (7.8–8.4 eV below the valence band maximum). In this region, bands
are highly hybridized despite their low dispersion, exhibiting contributions from both Te s- and Cs p-states.
The conduction bands of Cs2Te are slightly more dispersive than the valence ones, especially in the vicinity of
the minimum at Γ, where the lowest-unoccupied band exhibits a parabolic-like shape, as a fingerprint of the
s-orbitals of both species dominating that state. Energetically higher conduction bands show low dispersion
and the signatures of hybridization between d- and s-states of Cs and Te.

The above-mentioned features are qualitatively captured by all three considered functionals, as in the case
of Cs3Sb. Again and expectedly, PBE leads to an underestimation of the gap by about one third in comparison
to our GW0 result (see table 2). Our PBE result is in good agreement with the value reported in reference
[89]. Also SCAN and HSE06 give rise to smaller band-gaps compared to the GW0 reference by 350 meV and
150 meV, respectively.

Differences in the relative band energies induced by different approximations of vxc are less pronounced in
Cs2Te compared to Cs3Sb (see figure 2, right panels). The separation between the conduction band minimum
and the next unoccupied band at Γ varies only by 40 meV between PBE and HSE06 and, again, to a larger
amount for SCAN (210 meV). The width of the highest-energy valence band manifold is equally captured
by all xc functionals. Deeper bands are found starting from −7.8 eV (PBE), −8.0 eV (SCAN), and −8.4 eV
(HSE06) with respect to the valence-band top set to zero in figure 2, right panels.

The comparison of the computed band gaps with the experimental ones is a delicate matter. Reference
values are available for Cs3Sb [87] and Cs2Te [88], which both correspond to rather old measurements. Given
the well-known experimental difficulties in controlling the composition and the quality of the samples of both
materials [86, 90], it is wise to handle these data with care in a comparison with ab initio results obtained
for stoichiometric materials in ideal bulk unit cells. Under these premises, we notice that the experimental
gap available for Cs3Sb, obtained from photoconductivity and photoabsorption measurements [87], matches
well with the optical band gap calculated with HSE06. On the other hand, the experimental gap of Cs2Te
(3.3 eV resulting from photoemission spectroscopy [88]) overestimates all calculated data, including the one
from GW0, by at least 0.5 eV. Systematic first-principles studies and new measurements are needed for a final
assessment of this point.

3.3. The impact of SOC
SOC is a relativistic effect that can have a non-negligible impact on the electronic structure of materials formed
by heavy atoms. In order to assess the role of SOC in the two investigated systems, Cs3Sb and Cs2Te, and the
capability of the considered approximations for vxc to capture it, we performed an additional set of calcula-
tions, the result of which we contrast with those discussed above. In this analysis, we focus on a window of
approximately 5 eV around the gap region. At a first glance, it is clear that in both materials SOC affects the
occupied bands much stronger than the unoccupied ones (see figure 3). In Cs3Sb, the valence bands exhibit
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Figure 3. Band structures and DOS close to the gap region of Cs3Sb (left) and Cs2Te (right), computed from DFT using (a)–(b)
PBE, (c)–(d) SCAN, and (e)–(f) HSE06 functional with and without SOC, solid and dashed lines, respectively. The valence band
maxima without SOC correction is set to zero in all plots.

an SOC-induced splitting of about 0.25 eV and 0.45 eV at the high symmetry points W and Γ, respectively.
Additionally, the uppermost occupied band is slightly shifted upwards under the effect of SOC. Considering
that the conduction-band minimum is unaltered by SOC, the band gap is overall decreased by approximately
0.15 eV, see table 2. A similar effect is noted also in the conduction region, again close to Γ, where the two
degenerate bands at approximately 3 eV in figure 3(a) are split by 0.24 eV under the effect of SOC. This feature
is so localized in k-space that it is hardly appreciable in the plot of the DOS.

In Cs2Te, the changes in the band structure induced by SOC are more pronounced than in Cs3Sb. The
valence bands are pulled apart such that the upper states are up-shifted and the lower ones are down-shifted
compared to their counterparts computed without SOC (see figure 3, right panels), resulting in an overall
splitting of 0.2 eV. As an additional effect, SOC reduces the band dispersion, especially along the path between
the high symmetry points S and Y as well as between Z and U, where the states are almost flat. The conduction
region of Cs2Te is totally unaffected by SOC: both band structures and DOS displayed in figure 3, right panels,
overlap with the results obtained without SOC.

No remarkable difference related to SOC splittings are appreciated among the results obtained with dif-
ferent approximations for vxc in both materials. Differences in the calculated band-gaps are in line with those
obtained neglecting SOC (see table 2). Our PBE and HSE06 results for Cs3Sb follow qualitatively the same
trend shown in reference [82]. This is to be expected, as SOC is a physical effect that does not depend on the
details of the approximations adopted for vxc. This finding has an important implication: if one is interested
solely in the SOC splittings, a semi-local functional will be sufficient to capture them.

4. Summary and conclusions

We studied the performance of different levels of approximations for the exchange–correlation potential (PBE,
SCAN, and HSE06) in DFT calculations on cesium antimonide and cesium telluride, both being actively used as
photocathode materials for vacuum electron sources. We focused on the structural and electronic properties
of these two bulk crystals, including the effects of SOC. We found that all adopted approximations tend to
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overestimate the unit cell volume of both materials in comparison to the experimental references, with the
PBE functional showing the largest discrepancies and the SCAN functional reproducing most accurately the
experimental lattice parameters. All explored functionals predict the same qualitative features in the electronic
structures of the materials, including band-gap character, band dispersion, and atom-projected contributions
to the total DOS. Differences among the adopted approximations arise in terms of band energies, including
the values of the electronic and optical gaps. As expected, the PBE functional largely underestimates these
quantities in both materials, while both SCAN and HSE06 yield values in much better agreement with the GW0

reference, adopted in absence of reliable experimental data. The gaps resulting from the HSE06 approximation
are the closest to the GW0 benchmark, followed by those delivered by SCAN, which are systematically lower
by about 0.2 eV.

In both materials, SOC induces band splittings in the valence region; in Cs3Sb, additional splittings appear
also in the conduction region. In Cs3Sb, the band splittings occur in the vicinity of the high-symmetry points
Γ and W, while in Cs2Te the internal splitting in the valence region its the width of this band by approxi-
mately 0.2 eV. As a result of SOC, the band gap of both materials is decreased by a corresponding amount
of energy. These effects are reproduced almost identically by all considered functionals: approximations in
the treatment of relativistic effects impact the description of this property much more strongly than the
one on vxc.

In conclusion, our results indicate SCAN as the optimal choice to approximate the exchange–correlation
potential in DFT calculations of Cs-based antimonide and telluride materials. Both structural and electronic
properties are reliably reproduced at computational costs that are only slightly larger than those of general-
ized gradient approximations of vxc (see table 4 in the appendix). In agreement with the current knowledge,
we found that PBE is suitable for simulating structural parameters but should be avoided in the quantitative
description of the electronic properties. Compared to the popular range-separated hybrid functional HSE06, in
the considered materials, SCAN produces superior outcomes in terms of lattice vectors and unit-cell volumes.
On the other hand, HSE06 results for electronic and optical gaps are systematically closer to the GW0 refer-
ence. This is not surprising, as this hybrid functional has been specifically developed to accurately reproduce
band gaps by means of DFT. The computational costs demanded by HSE06 are, however, generally higher
compared to SCAN, which makes the latter a more convenient choice in the study of surfaces and defected
bulks requiring large supercells. The ability of SCAN to reproduce the electronic properties of the considered
Cs-based materials can be ascribed to the orbital character of the bands in the vicnity of the gap. As shown in
figure 2, the valence and conduction regions of both Cs3Sb and Cs2Te are dominated by s- and p-orbitals, for
which already the GGA approximation works fairly well. This finding and the proposed rationale suggests that
any meta-GGA implementation may work well for these classes of systems. However, the numerical perfor-
mance can critically depend on the details of the specific parameterization and should be therefore carefully
assessed.

The all-electron implementation adopted in this study makes our findings independent of the descrip-
tion of core levels via different pseudopotential recipes. The use of this approximation requires, therefore,
dedicated benchmark studies. Likewise, the choice of the basis set (e.g. plane waves) introduces additional
parameters, such as the plane-wave cutoff, that have to be carefully evaluated for convergence. Our work rep-
resents therefore a cornerstone for the systematic assessment of various approximations and parameters in the
DFT simulations of crystalline Cs-based photocathode compounds, and their impact in describing relevant
properties. This is vital for predictive high-throughput screening on such systems, which can greatly contribute
to the discovery and development of novel and more efficient materials for vacuum electron sources.
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Table 3. Internal lattice parameters for Cs2Te computed from DFT with
different approximations for vxc and compared with the available
experimental reference [80].

PBE SCAN HSE06 Exp. [80]

x1 0.028 0.035 0.029 0.016
z1 0.172 0.183 0.173 0.180
x2 0.146 0.154 0.147 0.152
z2 0.572 0.571 0.572 0.568
x3 0.246 0.241 0.246 0.248
z3 0.886 0.886 0.885 0.888

Table 4. Comparison among PBE, SCAN, and rSCAN functionals in terms of
the average run time needed per self-consistent iteration (tav), and the number
of iterations needed to converge the solution of the KS equations.

Cs3Sb Cs2Te

PBE SCAN rSCAN PBE SCAN rSCAN

tav (s) 4.43 5.49 5.36 7.71 10.31 10.07
Nr. of iterations 17 24 21 16 23 18

Table 5. Lattice parameters of the conventional unit cell, volume per atom
(Ω), and cohesive energy per atom (Ecoh) of Cs3Sb and Cs2Te comparing the
SCAN and the rSCAN functional.

a (Å) Ω (Å3/atom) Ecoh (eV/atom)

Cs3Sb
SCAN 9.194 48.58 −2.436
rSCAN 9.238 49.27 −2.371

a (Å) b (Å) c (Å) Ω (Å3/atom) Ecoh (eV/atom)

Cs2Te
SCAN 9.250 5.845 11.598 52.26 −3.081
rSCAN 9.456 5.849 11.611 53.52 −3.016

Table 6. Electronic and optical gaps including SOC of Cs3Sb and Cs2Te in eV
comparing the SCAN and rSCAN functional.

Egap Eopt
gap Egap + SOC Eopt

gap + SOC

Cs3Sb
SCAN 1.21 1.46 1.06 1.31
rSCAN 1.15 1.44 1.01 1.30

Cs2Te
SCAN 2.26 2.26 2.06 2.06
rSCAN 2.19 2.19 2.00 2.00

Appendix.

In table 3, we report the calculated internal lattice parameters of Cs2Te. In table 4,we compare the performance
of PBE, SCAN, and rSCAN for calculations run on the same computational infrastructure. It can be seen that
both the average run time per self-consistent iteration (tav) and the number of iterations needed for conver-
gence are comparable. The rSCAN functional shows a slightly improved performance compared to the original
SCAN functional.

Tables 5 and 6, as well as figure 4 present the comparison between the performances of SCAN [49] and
rSCAN [30] functionals. We notice slightly increased unit cell volumes and slightly more positive values of the
cohesive energy given by the rSCAN functional in comparison with SCAN (table 5). Differences in the band
gaps are smaller than 0.1 eV, with the rSCAN functional yielding lower values (table 6). However, no visible
differences are found in the band structures computed with the two functionals (see figure 4).
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Figure 4. Band structure and total DOS of Cs3Sb (top) and Cs2Te (bottom) for the SCAN and rSCAN functional.
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