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Abstract

The tumor microenvironment (TME) plays a pivotal role in the behavior and develop-

ment of solid tumors as well as shaping the immune response against them. As the

tumor cells proliferate, the space they occupy and their physical interactions with the

surrounding tissue increases. The growing tumor tissue becomes a complex dynamic

structure, containing connective tissue, vascular structures, and extracellular matrix

(ECM) that facilitates stimulation, oxygenation, and nutrition, necessary for its fast

growth. Mechanical cues such as stiffness, solid stress, interstitial fluid pressure (IFP),

matrix density, andmicroarchitecture influence cellular functions andultimately tumor

progression and metastasis. In this fight, our body is equipped with T cells as its spear-

head against tumors. However, the altered biochemical and mechanical environment

of the tumor niche affects T cell efficacy and leads to their exhaustion. Understand-

ing the mechanobiological properties of the TME and their effects on T cells is key for

developing novel adoptive tumor immunotherapies.
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INTRODUCTION

As cancer remains one of the largest challenges of modern medicine,

much effort has gone into novel treatments. At the front line of

the battlefield are immunotherapies targeting immune checkpoint

inhibitors, helping to reinstate potent anti-tumor efficacy of endoge-

nous T cells.[1] However, the presence and activation of T cells in

the tumor microenvironment (TME) are of utmost importance to can-

cer remission. Tumor tissue and cells exhibit morphological, physical,

Abbreviations: CAF, cancer-associated fibroblast; CTL, cytotoxic T lymphocyte; ECM,

extracellular matrix; IF, interstitial fluid flow; IFP, interstitial fluid pressure; PDGF,

platelet-derived growth factor; IL-10, interleukin 10; IL-35, interleukin 35; TAM,

tumor-associatedmacrophage; TCR, T cell receptor; TGF-β, transforming growth factor-beta;

Treg, regulatory T cell; TME, tumormicroenvironment; VEGF, vascular endothelial growth

factor
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biochemical, and genetic features different from healthy tissues and

cells, although they originate from the body’s own cells.[2–4] These

features are very important in the classification of tumors, cancer

research, treatment planning, and prognosis of patients.[4–6] Tumors

are commonly classified into solid (e.g., carcinoma, sarcoma,melanoma,

etc.) and non-solid (hematological neoplasms or blood cancers such as

leukemia, lymphoma, and myeloma), depending on whether the tumor

tissue contains liquid areas or not.[7–9] Solid tumors constitute the

majorityof all cancers andcancerdeaths, and in this respect, becauseof

the vast diversity, are cumbersome to tackle and necessitate research

across disciplines.[10]

One of the important discoveries in tumor research is that the

physical properties of TME play a decisive role in tumor develop-

ment, antitumor immunity, and response to antitumor therapy in solid
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TABLE 1 Physicochemical properties of TME: Contributors and consequences

Mechanism Hyperpermeable

vasculature

Nonfunctional

lymphatics

Compression of

lymphatics and vessels

Increased fibrillar matrix deposition

Contraction of the cells

Increasing volume of tumor

tissue

Compression by

surrounding tissue

Crosslinked fibers

Tensile stress Alignment and linearization of

fibrillar matrix

Fluid pressure/flow Solid stress Stiffness Microarchitecture

Consequence Induction of matrix

metalloproteinase

activity

Stimulation of tumorigenic

pathways

Increased

epithelial-mesenchymal

transition

Growth factor secretion

Angiogenesis

Enhanced immune cell

infiltration

Actomyosin contractility

Contact guidance for

migration of cancer cells

Induction of matrix

metalloproteinase activity

Modulation of β1 integrin
expression

Alterations of gene

expression

Genomic instability

Low glucose, O2, and pH

High lactic acid and ROS

Prevention of drug/immune cell delivery

Secretion of immunosuppressive and angiogenicmolecules

(HIF-1α, TGF-β, IL-10, VEGF, etc.)
Expression of immune checkpoint receptors (PD-1, etc.)

Activation of Tregs and CTL exhaustion

Activation of CAFs

Activation of YAP/TAZ down-stream pathways

Invasion andmetastasis

Abbreviations: CAF, cancer-associated fibroblast; CTL, cytotoxic T lymphocyte; HIF-1α, hypoxia-inducible factor 1 alpha; IL-10, interleukin 10; PD-1, pro-

grammed cell death protein 1; ROS, reactive oxygen species; TAZ, transcriptional coactivatorwith PDZ-bindingmotif; TGF-β, tumor growth factor-beta; Treg,

regulatory T cell; VEGF, vascular endothelial growth factor; YAP, Yes-associated protein (Nia et al.,[12] Lim et al.,[18] Zhang et al.[29]).

tumors.[11] After the cornerstones for understanding cancer devel-

opment at the cellular level were named,[2] the physical properties

of TME were recently discussed under four main headings by Nia

et al.[12]: (1) solid stress, (2) interstitial fluid pressure (IFP) and fluid

flow (IF), (3) stiffness and material properties, and (4) microarchitec-

ture (see Table 1). Although the body of literature considering the

above factors is growing, the relationship between TME and T cells,

which are the chief commanders in antitumor immunity,[13] is an

under-researched area. The presence and activity of tumor-infiltrating

T cells have been associated with a good prognosis in many cancer

types.[14–17] However, TME poses a strong barrier to tumor infiltration

by T cells, and this barrier is also seen as a reason for failure in adoptive

T cell therapy.[11,18,19] Whilemetabolic/biochemical profile of the TME

on T cells and immunotherapy has been recently reported in the litera-

ture in detail (see the review of Lim et al.[18]), in this review, the effects

of the mechanobiological features of TME on tumor-infiltrating T cells

are discussed.

ECM MICROARCHITECTURE AND STIFFNESS
INFLUENCE TUMOR INFILTRATION

The TME is a complex and abnormal structure, which is composed of

various cells within an altered fibrillar extracellular matrix (ECM) (col-

lagen, fibronectin, hyaluronan, etc.).[20] The main difference between

normal and tumor ECM is the increase in deposition of fibrillar matrix

components (such as collagen and fibronectin) and an increase in

protein crosslinking as well as linearization. In combination, lead-

ing to increased stiffness,[21] varying between 100% and 1400%

between healthy tissues and their respective solid tumors[21–26]

(see also Table 1 of our recent review[27]). As the tumor grows,

ECM stiffness increases, and collagen fibers are arranged in a par-

allel anisotropic orientation (tumor-associated collagen signature),

which inhibits non-tumor cells but accelerates tumor cell proliferation.

This is caused by the activity of tumoral stromal/mesenchymal cells,

fibroblasts, and tumor-associated macrophages (TAMs).[11] Increasing

cytoskeletal tension with increasing stiffness promotes focal adhesion

coalescence.[21] Parallel anisotropicorientationof collagenacts as con-

tact guidance for tumor cells, and together with linearization facili-

tates their migration, tissue invasion, and colonization.[28,29] Unfortu-

nately, the resulting TME microarchitecture with parallel anisotropic

alignment, linearization, and crosslinkedmatrix restricts the access for

immune cells and drugs into the tumor, rendering treatment compli-

cated (see Figure 1A).[11,29]

In many cases, tumor rejection starts with the infiltration of the

tumor cells by immune cells including T cells after the initial cyto-

toxic T lymphocyte (CTL) response. T cells are more successful at infil-

trating the restrictive ECM and bypassing obstacles in the ECM than

other immune cells.[30,31] Collagen contrarily affects the infiltration

of T cells and their migration within the TME. On the positive side, it

stimulates faster T cell migration compared to chemokine-dependent

migration.[32] T cells interact with the ECM via integrins, which direct

and enable migration. Once integrins are blocked, migration stops.[33]

However, when collagen is present in the matrix, T cell migration con-

tinues despite the β1-integrin blocking antibody. In other words, the

effect of collagen on the direction and speed of T cell migration is

seen as determinative.[34] On the contrary, migration and infiltration

of T cells is significantly reduced, once a certain collagen density is



SIMSEK AND KLOTZSCH 3 of 9

F IGURE 1 The complex relationship between tumormicroenvironment and T cells. (A) Aligned collagen fibers in the tumor extracellular
matrix, high interstitial fluid pressure in the TME and interstitial fluid flow from tumor center to periphery impede T cells to infiltrate the tumor
tissue; (B) Serial killing capacity depends onmatrix stiffness. The immunological synapse between CTL and tumor cell is established and the actin
cytoskeleton is linked to the complex to exert mechanical force across the synapse. CTL released perforin and granzymemolecules to kill tumor
cells and stiffer conditions enhance the serial killing capacity of CTLs. (C) High interstitial fluid pressure and fluid flow in the TME trigger the
tumor-associated cells to release chemokines and cytokines which suppress CTLs and potentiate Tregs. Tregs can also inhibit CTLs directly (CTL:
cytotoxic T lymphocyte, Treg: regulatory T cell, TCR: T cell receptor, MHC:major histocompatibility complex, LFA1: leukocyte-specific integrin,
lymphocyte function-associated antigen-1, ICAM1: intracellular adhesion receptor-1)

reached,[34] in example, when space between the fibrils is smaller than

5 µm.[32] A recent study by Sun et al. showed that discoidin domain

receptor 1 (DDR1)’s extracellular domain (DDR1-ECD) facilitates col-

lagen fiber alignment, hence immune exclusion. Upon knock-out and

capture by monoclonal antibodies specific to DDR1-ECD, T cell inva-

sion was restored, resulting in triple-negative breast cancer remission

for 10 out of 18 mice.[35] This potential new strategy to alter the ECM

is promising and togetherwith optimizing T cell infiltration through the

restrictive ECM could provide a potential cure. T cells therefore must

break free from the ECM confinement and move forward, drastically

altering, that is, deform, their cell bodies through actin cytoskeletal

dynamics (cell deformability).[36,37]

Both ameboid movements with pseudopodia andmesenchymal-like

movement with lamellipodia are seen in terms of the 3D motility of T

cells in tissue. T cells can switchbetween these twomovement patterns

according to ECM conditions (mesenchymal-ameboid plasticity).[38]

Within the lymph nodes, T cells can reach high speeds by ameboid

movement.[39] In a recent study, Tabdanov et al.[40] investigated the

motility of activated T cells in tumor tissue on a “2.5D” structured sur-

face with nanogrooves as a model system. Unlike 2D, “2.5D” surfaces

contain topographic features (folds, grooves, etc.) that cause changes

in membrane curvature on one side of the cell.[41] As the matrix stiff-

ness of the “2.5D” substrate increased, in-groove interactions, amoe-

boidmovement, andmigration speed of activated T cells decreased.[40]

This indicates thatTMEarchitecture andmechanical properties are the

main factors that prevent T cell infiltration. Perturbation or fine-tuning

these specific features could potentially provide a tool to optimize infil-

tration into the complex 3-dimensional tumor architecture to finally

target cancer cells.

ECM MICROARCHITECTURE AND STIFFNESS
INFLUENCE T CELL ACTIVATION AND
CYTOTOXICITY

Once T cells have overcome the TME barrier, activation and killing

capacity become important. T cell activation and cytotoxicity were

shown to increase not only with high stiffness of their environment
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but also with direct force application under in-vitro conditions (for

details please see our recent review).[42] Therefore, it is predicted that

increased mechano-signaling in TME may support antitumor immune

response activation.[43] As the immunological synapse is established,

the complex is linked to the actin cytoskeleton of the CTL in order to

exert mechanical force across the synapse,[44–46] enabling the CTL’s

to kill the target cell,[44,45] via perforin accumulation.[44] The syner-

gistic effect of the applied force and perforin potentiates the killing

capacity of CTL enabling serial engagements (see Figure 1B).[44,47,48]

For example, when perforin and ovalbumin-specific T cells are added

to ovalbumin-loaded B16 melanoma cell culture, T cells apply more

mechanical force and more perforin pores are formed on cancer cells

in the stiffer matrix (50 kPa vs. 12 kPa), with higher killing capacity.[44]

As solid tumor cells are stiffer because of their cytoskeletal contractil-

ity and contributions from ECM rigidity, CTLs killing capacity is high,

however, for circulating tumor cells and metastasis this tremendously

changes as tumor cells separated from theTMEbecome softerwith the

development of immune tolerance.[49–51]

T cells interact with tissues and cells through the formation of actin-

rich microvilli, also shown to establish the immunological synapse,

through penetration into the antigen-presenting cell.[52–54] Besides

their exploratory role in searching for antigens,[55] microvilli can reg-

ulate T cell signaling by forming areas with high membrane curvature

and T cell receptor (TCR) enrichment.[56] The formation of high mem-

brane curvature is considered to be accompanied with biological pro-

cesses, such as regulating the assembly of signaling microclusters. It

has been shown that antigen recognition by T cells is facilitated by for-

mation of protrusions (200–1000 nm in diameter), which is associated

with amplified and sustained signaling at the tip of the microvilli, but

also couples the signaling zone via the actin network to the nuclear

envelope. Recent studies from others and our own, suggests that spo-

radic nonspecific TCRphosphorylation can occur at the tip ofmicrovilli,

where CD45 is sterically excluded through the formation of tight con-

tacts to the antigen-presenting cell.[57,58] Our recent publication using

nanoporous substrates, led to a strongly enhanced T cell activation

and proliferation, compared to flat substrates.[59] Together the signal

processes mediated through microvilli represent potential targets for

immune therapies aswell as to facilitate an enhanced tumor infiltration

and killing capacity.

HIGH IFP AND IF SUPPRESS T CELL INFILTRATION

As the cancer cells proliferate, the area occupied by the solid tumor

within the healthy tissue increases. The tumor as well as its surround-

ing is exposed to compressive stress, mechanical stretching and tensile

stress at the tumor/healthy tissue margin (i.e., solid stress).[60] Blood

vessels and lymphatics in the tumor tissue are compressed, resulting in

vascular instabilitywith reducedcapacity and impairmentof blood sup-

ply critical for oxygen and nutrient needs.[61] To overcome the blood

supply problem, tumor cells induce angiogenesis by secreting various

molecules, such as vascular endothelial growth factor (VEGF), platelet-

derived growth factor (PDGF), etc.[62,63] As a result, new vessels are

formed within the tumor, but this vascularity is prominent with its

abnormal and ineffective nature, such as hyperpermeability.[63,64] Sub-

sequently, increased fluid and macromolecule (e.g., albumin) flow into

the tumor. The accumulation of albumin in TME increases osmolar-

ity, triggering inflammation[65] and ECM production through cancer-

associated fibroblasts (CAF).[28,66] Increased IF and fluid pressure

within the tumor cause mechanical stress on the tumor margin.[67] As

the lymphatic system is dysfunctional with hyperpermeable vessels, IF

and IFP increase lead to hypoxia, further triggering angiogenesis.[68]

In humans, interstitial pressure in normal tissue ranges between -

2 and -0 mmHg, while IFP in tumor tissue, is generally elevated at

around 10–40 mmHg, varying between different tumor types and dif-

ferent regions of the tumor tissue.[69–73] In case of progressive and

treatment-unresponsive melanoma tissue, the IFP can increase up to

100 mmHg.[69] Increasing IF and mechanical stress in ECM together

induce transforming growth factor-beta (TGF-β) release from tumor

stromal cells. TGF-β further increases stromal stiffening by increasing

CAF differentiation, contraction, and ECM remodeling as TGF-β stimu-

lates collagen-I production in CAFs.[74]

To reduce IF and IFP within the TME, antiangiogenic treatment

was applied in breast tumors together with the inhibitory anti-

VEGF antibody (bevacizumab) or with the VEGF receptor tyrosine

kinase inhibitor (cediranib), resulting in necrotic tumor and enhanced

T cell infiltration.[75,76] Anti-angiogenic therapy provides vascular

normalization and homogeneous intratumoral blood supply.[77] In

a different study, IFP was significantly decreased with the anti-

PDGF receptor kinase antibody (imatinib) with similar positive results

on patient’s survival.[68] In addition to anti-angiogenic treatments,

some studies aimed to reduce IFP and IF indirectly by reduc-

ing density, contraction, stiffness, and epithelial-mesenchymal tran-

sition in the TME with the help of radiotherapy[78] and phar-

macological agents targeting vasculature, cells, and ECM compo-

nents (vascular disrupting drugs (tubulin ZD6126),[79] vasodila-

tors (e.g., hydralazine),[80] chemotherapeutics (e.g., taxanes targeting

integrins),[72] TGF-β1 inhibitors,[81] dexamethasone,[82] etc.). There

were also studies using some physical methods (e.g., hyperthermia,[83]

and photodynamic therapy[84]) for the same purpose. Furthermore,

Chen et al.[32] showed that antigen-specific transmigration of T cells

into a microfluidics-based cancer model was stalled under elevated

hydrostatic pressure (see Figure 1A). In summary, extravasation only is

possible from peripheral well-organized vessels which are exposed to

low IFP.

CYTOKINE SECRETION IS INFLUENCED BY IFP

High IFP, mechanical stress together with stiffness increase the

secretion of cytokines and chemokines from tumor cells and tumor-

associated cells (stromal/mesenchymal cells, TAMs, etc.)[85,86]

causing the suppression of TILs. In particular, while CD8+ T cell

function decreases, regulatory T cell (Treg) activity increases (see

Figure 1C).[67] The multipotent immunosuppressive cytokine TGF-β
plays a primary role in the regulation of the T cell-mediated immune



SIMSEK AND KLOTZSCH 5 of 9

response and the development of immune tolerance.[87,88] In the

presence of TGF-β, T cell activation is blocked mainly by the inhi-

bition of TCR signaling.[89] Co-stimulation of the TCR and TGF-β
receptor II on CD4+ T cells in the TME stimulates the transcription

factor forkhead box protein p3 (Foxp3) expression, which in turn

enables the conversion of CD4+ T cells to suppressor Tregs.[89–91]

Foxp3 is specifically expressed in Tregs and is responsible for the

continuation of Treg functions and immunosuppressive effects at full

capacity.[92] Tregs also inhibit cytokine secretion from T helper 1 and

T helper 2 cells and the activation of CD4+ and CD8+ T cells.[91]

TGF-β suppresses tumor-infiltrating effector T cells by Mothers

against decapentaplegic homologs (Smad)-mediated down-regulating

of the expression of granzyme, perforin, and interferon genes.[93]

In addition to its immunosuppressive effects, TGF-β also inhibits

the function of tumor-infiltrating T cells through triggering of the

epithelial-mesenchymal transition and CAF proliferation.[94,95] Tregs

in the TME provide the continuation of the immunosuppressive effect

by secreting cytokines TGF-β, interleukin 10 (IL-10), and interleukin

35 (IL-35).[96,97] TGF-β, IL-10, and IL-35 together reduce the antigen

presentation of dendritic cells and the function of T helper cells and

cytotoxic T cells.[97] In some in vitro cancer studies, the addition of

IL-10 and TGF-β to the medium has shown a marked increase in tumor

progression and a noticeable decrease in antitumor immunity with

suppressed inflammatory cytokine secretion.[98,99] In addition, IL-10

and IL-35 together are believed to be responsible for T cell exhaustion

and the expression of some inhibitory receptors in the TME.[100]

Thehigh IFPand IFwithin theTMEpreventT cells fromkilling tumor

cells, with exact mechanisms still unknown. Further research will be

necessary to decipher those mechanism to provide effective methods

withminimal side effects/complications for thepatient to increase infil-

tration of tumor tissue by T cells and to activate tumor-infiltrating T

cells despite high IFP. Potential strategies could include effectively low-

ering the IFPwithin the TME or to desensitize T cells to high IFP.

CONCLUSION AND OUTLOOK

In summary, Tolkien would have described Bilboes path from the Shire

to Mordor as long and difficult, in a similar fashion T cells are con-

fronted with a big hurdle to enter into the TME in order to fulfill their

task.Howon this path physical properties of TMEaffect T cells remains

largely unknown. Considering the remission rates and treatment suc-

cess of solid tumors, it is clear that TME stands as a formidable fortress

against immuno- and pharmacotherapy agents. The mechanisms by

which the restricted migration of T cells to the tumor center, their

limited contact with cancer cells or their insufficient killing capacity

needs further investigation. How can T cells be equipped or fine-tuned

against these pushbacks? Or how can TME be modified to increase

treatment success? How can the methods developed in vitro be used

for therapies with maximum efficiency but minimum side effects? Is

there general concepts, that can be applied to all solid tumors and to

what level does it need to be tissue specific? Undoubtedly, answer-

ing these key questions requires a multidisciplinary approach, and it is

exciting to have scientists teaming up to combine their expertise inves-

tigating the role of physical properties to optimize efficacy of novel

immune therapies. Working together with clinicians from early stages

onwards will be necessary to even the path to clinical success. Model

systems have to be chosenwisely in order to transition frompreclinical

to clinical research.
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