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Abstract
We derive the best possible bounds that can be placed on Yukawa- and chameleon-like
modifications to the Newtonian gravitational potential with a cavity optomechanical quantum
sensor. By modelling the effects on an oscillating source-sphere on the optomechanical system
from first-principles, we derive the fundamental sensitivity with which these modifications can be
detected in the absence of environmental noise. In particular, we take into account the large size of
the optomechanical probe compared with the range of the fifth forces that we wish to probe and
quantify the resulting screening effect when both the source and probe are spherical. Our results
show that optomechanical systems in high vacuum could, in principle, further constrain the
parameters of chameleon-like modifications to Newtonian gravity.

1. Introduction

General relativity is one of the most successful theories of nature, but there are compelling reasons to
explore modifications to the behaviour of gravity on both large and small scales. Most of the precise
predictions of general relativity have consistently been demonstrated experimentally: among many others
these include the perihelion shift of Mercury [1] and the existence of gravitational waves [2]. Similarly, the
current standard cosmological model, the Λ cold dark matter (ΛCDM) model, is another of general
relativity’s success stories. However, in order to match observation, ΛCDM requires a positive cosmological
constant [3, 4]. This is backed up by observations of supernovae, which indicate that the Universe’s
expansion is accelerating [5]. While a natural part of general relativity, a cosmological constant poses a
theoretical challenge to particle physics since the small observed value is inherently sensitive to
high-energies, requiring delicate balancing [6]. Furthermore, many theories of high energy physics that
attempt to solve this and other problems—such as building a consistent quantum theory of
gravity—predict deviations from general relativity. These theories are collectively known as modified gravity
theories.

Modified gravity theories, however, typically face a difficult challenge in the form of Solar System tests of
Newton’s laws. Models that differ from general relativity significantly enough to explain the observed
acceleration of the Universe on large scales are typically ruled out by their predicted deviations on smaller
scales (Solar System and laboratory tests) [7–9]. There are a large variety of approaches to modified
gravity—see Koyama [10] for a comprehensive review—but many models attempt to address the problem
of Solar System tests via a screening mechanism [11]. Such mechanisms can be built into modified gravity
theories to conceal deviations on Solar System scales, without changing the large scale behaviour. An
approach considered by many authors is the chameleon mechanism [12–14]; the basic idea is to add a
scalar field that couples directly to gravity in a manner that depends on the local density of matter. In
high-density regions, such as inside a Galaxy, the effects of modified gravity are screened out, allowing the
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theory to evade Solar System tests. In the low-density void regions between galaxies, however, the effects of
modified gravity would be unscreened.

If such a density-dependent gravity mechanism is at play, it ought to be detectable in principle by
high-precision laboratory experiments. In particular, the fundamental sensitivity improvements offered by
quantum systems are especially promising [15]. At the moment, the detection of modified gravity, and in
particular, chameleon fields, has been explored through a diverse variety of methods. Searches with classical
systems include theoretical proposals for torsion balance tests of fifth forces [16–22], some of which have
already been carried out as experiments [23, 24]. Additional proposals suggest that experiments which
measure Casimir forces may also be used to constrain chameleon theories [18, 25–28]. In atom
interferometry, which is already routinely used for quantum sensing, the uniformity of the atoms as well as
the additional sensitivity gained from the superposition of flight-paths has led to impressive precision
gravimetry sensitivities [29–32]. Several proposals have explored in depth the possibilities of searching for
modified gravity and dark energy with atom interferometry [33–39], and some of the most stringent
bounds on existing theories have been obtained in this way [40, 41]. Further viable routes towards detecting
modified gravity include ultra-cold neutron experiments [28, 42–47] and neutron interferometry
[45, 48–51]. Finally, tests of atomic transition frequencies [52, 53], close examination of vacuum chambers
and photo-detectors [54, 55], as well as tests of the electron magnetic moment [56] have also been
proposed.

An additional approach to detecting the small-scale effects of modified gravity and screening is to take
advantage of recent developments in the field of optomechanics, where a small mechanical element is
coupled to a laser through radiation-pressure [57, 58]. Optomechanical systems encompass a diverse set of
platforms which range from microscopic movable mirrors as part of a Fabry–Pérot cavity [59], levitated
particles [60], clamped membranes [61], liquid helium [62] and trapped cold atoms [63]. When the
mechanical element is cooled down to sufficiently low temperatures, it enters into a quantum state that can
be manipulated through measurements and optical control techniques. Ground-state cooling has been
demonstrated across a number of platforms, including clamped membranes [64, 65] and recently also for
levitated systems [66]. Optomechanical systems show promising potential as both classical and
quantum-limited sensors [67–69], and recent studies have proposed their use as gravity sensors [70–73]. In
fact, experimental searches for fifth forces with classical optomechanical setups have already been
performed (see e.g. [74, 75]), where the bounds achieved fell within those excluded by atom interferometry.
A key question which we explore in this work therefore becomes whether an optomechanical sensor in the
quantum regime can improve on these bounds. For an overview of searches for new physics with levitated
optomechanical systems, see the recent review by Moore et al [76]. The advantage of optomechanical
sensors, as opposed to, for example, cold atom interferometry is that the sensitivity of the system can be
improved while retaining the compact setup of the experiment. In contrast, improving the sensitivity of
atom interferometry primarily relies on increasing the length of the flight-path of the atoms.

The key question we seek to answer in this work is: what fundamental range of parameters of modified
gravity theories could ideally be excluded with a quantum optomechanical sensor? To address this question,
we consider an idealised system described by a nonlinear, dispersive, optomechanical Hamiltonian which
couples the optical and mechanical degrees of freedom through a nonlinear radiation-pressure term. This
Hamiltonian is often linearised for a strong coherent input drive, however the fully nonlinear (in the sense
of the equations of motion) Hamiltonian is a more fundamental description. While all quantum systems are
affected by noise, we here assume that the coherence times can be made long enough for the measurement
protocol to be carried out. As a result, our analysis explores the bounds in the absence of environmental
noise and decoherence. We then consider the gravitational field that arises when a source mass is placed
next to the sensor.

Since it is often difficult in experiments to distinguish a signal against a constant noise floor, we consider
an oscillating source mass, which gives rise to a time-dependent gravitational field. Such a signal can then
be isolated from other common low-frequency 1/f noise sources via a Fourier analysis of the data. To
determine whether our analysis is valid in the case of a chameleon field, we derive the time-dependent
potential that results from the source mass from first principles, where we find that a potential that moves
with the mass is the correct choice for non-relativistic velocities. Another key consideration for
optomechanical systems is the relatively large size of the optomechanical probe. This has been found to be
significant in previous classical experiments with chameleon fields, such as the MICROSCOPE experiment
[77, 78], and we find that it also contributes significantly to the chameleon screening of the fifth force in the
envisioned setup of the quantum experiment we consider here (as opposed to, for example, cold atoms,
where the screening length of the atomic probes is very small). To take the finite screening length into
account, we go beyond the common approximation that the probe radius is small compared to the range of
the chameleon field and derive analytic expressions for the modified force seen by the probe.
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Then, using tools from quantum information theory and quantum metrology such as the quantum
Fisher information (QFI), we are able to estimate the fundamental sensitivity for detecting deviations from
Newtonian gravity. To further improve the sensitivity, we also consider known ways to enhance the
optomechanical sensor in the form of squeezed light and a modulated optomechanical coupling [73].

Our main results include the bounds presented in figure 4, which shows the parameter ranges of
modified gravity theories that could potentially be excluded with an ideal optomechanical sensor. The
bounds are computed for a specific set of experimental parameters. To facilitate investigations into
additional parameter regimes, we have made the code used to compute the bounds available (see the data
availability statement). While experiments are unlikely to achieve the predicted sensitivities due to noise and
systematic effects, our bounds constitute a fundamental limit for excluding effects beyond Newtonian
gravity given the experimental parameters in question.

This work is structured as follows. In section 2 we present the proposed experimental setup and
optomechanical Hamiltonian, and then we proceed to discuss Yukawa potentials as a modification to the
Newtonian gravitational potential in section 3. We consider those sourced by a chameleon field and provide
a first-principles’ derivation of the time-dependent potential that results from the mass oscillating around
an equilibrium position. We also discuss screening effects inherent to chameleon fields and derive the
screening effect that arises from the size of the optomechanical probe. In section 4, we linearise the
modified gravitational potential, and in section 5, we provide an introduction to quantum metrology and
the QFI. These tools allow us to present analytic expressions for the fundamental sensitivity of the system,
which we do in section 6. The work is concluded by a discussion in section 7 and some final remarks in
section 8.

2. Optomechanical model and dynamics

In this section, we introduce the model of the optomechanical system and show how the effects of a
time-varying gravitational field can be included in the dynamics.

2.1. Experimental setup
We envision an experimental setup similar to that used in [79], where an oscillating source mass made of
solid gold is placed in a vacuum chamber adjacent to an optomechanical probe (see figure 1). We have
chosen gold because we require the highest possible density in order to detect gravitational effects and
maximise the effect of density-dependent screening mechanisms such as chameleon fields7. The source mass
oscillates back and forth, which can be achieved in a number of different ways [80]. One such
implementation is with the help of a shear piezo, which oscillates at a fixed frequency. The optomechanical
probe is then allowed to move along the same axis as the oscillating mass. By injecting light into the cavity,
the position of the optomechanical coupling is dispersively coupled to the optical field through
radiation-pressure. The light then picks up a phase shift conditioned on the displacement of the mechanical
mode, which has been influenced by the gravitational force. Therefore, information about the gravitational
field is imprinted on the optical state. The light is then collected and measured either as it leaks from the
cavity or through a scheme where the cavity is coherently opened to access the full intra-cavity state [81].

While the optomechanical interaction can generally be described with the same dynamics for a large
range of systems, the force and strength of the coupling differ for each platform. In this work, we begin with
a general description of a single interacting mode, but later specialise towards a spherical mechanical
element since it allows for analytical treatments of some modified gravity potentials.

The optomechanical Hamiltonian, which governs the dynamics of the optomechanical probe, is given by
(in the absence of an external gravitational field):

Ĥ0 = �ωc N̂a + �ωmech N̂b − � k(t) N̂a

(
b̂† + b̂

)
, (1)

where ωc and ωmech are the oscillation frequencies of the optical cavity mode and mechanical mode
respectively, with annihilation and creation operators â, â† and b̂, b̂†. We have also defined N̂a = â†â and
N̂b = b̂†b̂ as the photon and phonon number operators.

The coupling k(t) is the (potentially time-dependent) characteristic single-photon interaction strength
between the number of photons and the position of the mechanical element. It takes on different forms
depending on the optomechanical platform in question. Among the simplest couplings is that for a moving

7 While there are denser materials, such as depleted uranium, gold is a stable material that has previously been used for small-mass
sensing, see e.g. reference [79].
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Figure 1. A gold source mass attached to a shear piezo oscillates to create a time-varying gravitational field. The field, which
potentially contains deviations from Newtonian gravity, is detected by an optomechanical probe system where the photon
number â†â couples to the mechanical position x̂mech as â†âx̂mech, here presented as a moving-end mirror in a Fabry–Pérot cavity.
The amplitude ε x0 of the source mass oscillation is a fraction of the total distance x0 between the systems. By accounting for the
vacuum background density, we may also compute bounds on the parameters of the chameleon screening mechanism.

mirror, of mass m, that makes up one end of a cavity, k = (ωl/L)
√
�/(2mωmech), where ωl is the laser

frequency and L is the length of the cavity. In this work, we also consider modulating the coupling in time;
it has been previously found that such modulations can be used to enhance the sensitivity of the
optomechanical sensor if they can be made to match the oscillation of the external force [73]. Modulation
of the optomechanical coupling can be introduced in different ways depending on the experimental
platform in question. For example, the mechanical frequency of a cantilever can be modified by applying an
oscillating electric field [82, 83], and a modulated coupling arises naturally through the micro-motion of a
levitated system in a hybrid electro-optical trap [84–86].

All quantum systems are affected by noise due to their interaction with the environment. Such an
interaction usually results in dissipation and thermalisation, which in turn leads to decoherence of the
off-diagonal elements of the quantum state. For cavity optomechanical systems, common sources of noise
include photons leaking from the cavity, as well as thermalisation of the mechanical element due to
interactions with the surrounding residual gas, or from vibrations from the mount [58]. The nature of the
noise is unique to each experimental platform and must be carefully modelled in each case.

In this work, we are interested in deriving the best-possible sensitivity that an optomechanical system
can achieve. We therefore assume that the Q-factor of the cavity is high enough that the system stays
coherent throughout the duration of our measurement protocols. Recently, Q-factors of 109 have been
demonstrated in magnetically levitated meso-mechanical systems [87], and linewidths of 81 ± 23 μHz have
been measured [88]. We also assume that the system has been cooled to temperatures such that the
surrounding environment does not cause the mechanical mode to heat up during the protocol. To reduce
unwanted vibrations or gravitational noise, it is also possible to add decoupling stages in the experiments
[89], such as suspension stages made by fused silica fibres [90, 91]. Under these conditions, it is possible to
consider an approximately unitary description of the experiment, which we shall use to derive a
fundamental limit of the sensitivity that could in principle be achieved with an optomechanical system. To
then describe a realistic experiment, all of the above effects must be taken into account. We discuss this and
other potential future work in section 7.

When treating the system in a closed and ideal setting, we can model the initial state as a separable state
of the light and the mechanical element. For the optical state, we consider injecting squeezed light into the
cavity. Squeezed light has been shown to fundamentally enhance the sensitivity to displacements [15]. By
including squeezing here, we generalise our scheme to include these input states. However, we note that in
order to improve the sensitivity overall, it is always more beneficial to increase the number of photons
rather than squeezing the system. Squeezing also reduces quadrature noise [92]. The state of the mechanical
element, on the other hand, is most accurately described as thermal at a non-zero temperature. With these
assumptions, the initial state of the system can be written as

�̂(0) = |ζ〉〈ζ| ⊗
∞∑

n=0

tanh2n rT

cosh2 rT
|n〉〈n|, (2)

where |ζ〉 = Ŝζ |μc〉 is a squeezed coherent state of the optical field where Ŝζ = exp
[
(ζ∗â2 − ζâ†2)/2

]
and

where the coherent state satisfies â|μc〉 = μc|μc〉. The squeezing parameter can also be in spherical polar
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form as ζ = rsq eiϕ. Squeezed states can be generated through four-wave mixing in an optical cavity [93] or
parametric down-conversion [94]. See also reference [95] for a review of squeezed state generation. The
parameter rT of the thermal state arises from the Bose–Einstein distribution and is defined by
tanh rT = exp[−�ωmech

2kBT ], where T is the temperature of the system and kB is Boltzmann’s constant.

2.2. Modelling the gravitational force
In order to compute the sensitivity bounds for detecting modified gravity, we model the effect of the
gravitational force from the moving source mass on the optomechanical system as a contribution to the
dynamics. When the force is weak, it can be linearised and included as a displacement term in the
optomechanical Hamiltonian in equation (1). In this section, we provide a general derivation of this
linearised force, while in section 4 we specialise to Yukawa-like and chameleon modifications to the
Newtonian potential. The linearisation is necessary to properly describe the quantum dynamics of the setup
with the current theoretical machinery; we will however describe the chameleon field in full generality to
allow for future work to improve the theoretical description.

We start by assuming that the source mass and the mechanical element of the optomechanical system
are constrained to move along the x-axis. We let the mechanical element be subject to a harmonic potential
centred at x = 0 and we label the position of the source mass xS(t). Then, we assume that there is a small
perturbation to the centre-of-mass position of the mechanical element that we call δx, and, assuming that
|xS(t)| � |δx| at all times, we write the relative distance between the systems as xS(t) − δx. Provided that δx
remains small, we can Taylor expand the system to first order in δx. Given a generic potential term
V(xS(t) − δx), we find, to first order in δx:

V(xS(t) − δx) = V(xS(t)) − V ′(xS(t)) δx +O[(δx)2]. (3)

The first term in equation (3) represents a time-dependent shift of the overall energy, however it does not
depend on the position of the optomechanical system. The second term describes the (potentially
time-dependent) displacement of the mechanical element with δx. The second-order term in δx leads to a
shift in the mechanical frequency that we do not model here, but dynamics of this kind have been
previously studied [96]. The expansion in equation (3) is valid as long as δx remains small such that the
higher-order terms can be neglected. We outline the conditions for this being true in the discussion (see
section 7).

We proceed to promote δx to an operator δx → x̂mech, which can be written in terms of the annihilation
and creation operators b̂ and b̂† of the mechanical element as

x̂mech = xzpf

(
b̂† + b̂

)
, (4)

where xzpf =
√
�/(2 mωmech) is the zero-point fluctuation of the mechanical oscillator. It should be noted

here that the dynamics of a nonlinear optomechanical system with a driving term proportional to x̂2
mech has

been solved, however the inclusion of these effects adds significant complexity to the mathematical
treatment of the system [96], while it will likely not result in a significant improvement of the sensitivity.

The full optomechanical Hamiltonian including the modified gravitational potential can then be
written as

Ĥ(t) = Ĥ0 − V ′(xS(t))xzpf

(
b̂† + b̂

)
, (5)

where Ĥ0 is given in equation (1) and where the time-dependent modified Newtonian gravitational force is
contained in the second term.

The time-evolution of the system with the Hamiltonian in equation (5) can be written as the following
time-ordered exponential:

Û(t) =
←−T exp

[
− i

�

∫ t

0
dt′ Ĥ(t′)

]
, (6)

where the time-dependence of the gravitational potential in Ĥ(t) requires careful consideration. Such
dynamics have been studied previously [96, 97] and we provide a short overview of the treatment appendix
C. Later on in this work, we use the expression for Û(t) to derive the sensitivity of the system to
modifications of the Newtonian potential, but first, we will study the form of the modifications in-depth.
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3. Modified gravitational potential and screening from the source and the probe

In this section, we discuss an example of how the chameleon mechanism would alter the Newtonian force
law on sub-millimetre scales. We write all equations in terms of SI units, but energy units (as used elsewhere
in the literature) can be restored by setting � = c = 1 throughout.

3.1. Yukawa modifications to the gravitational force law
Although there are many ways of modifying Newton’s laws on short distances, perhaps one of the best
motivated theoretically is to add a Yukawa term to the potential. Yukawa potentials are ubiquitous in scalar
field theories, since they are the solution to the sourced (inhomogeneous) Klein–Gordon equation for a
massive field in the case of spherical symmetry. As a consequence of Lovelock’s theorem [98], modifications
to general relativity require either additional degrees of freedom such as a scalar field, or more exotic
scenarios such as large extra dimensions, higher derivatives, or non-locality. Consequently, additional scalar
fields are common in modified gravity theories. These act like a fifth force, and for a source of mass MS and
test particle mass m, give rise to a gravitational potential of the form:

V(r) = −GMSm

r

(
1 + α e−r/λ

)
, (7)

where α parametrises the intrinsic difference in strength between the Yukawa-like fifth force and gravity,
while λ parametrises the range of this fifth-force. Note that it is possible to have α � 1 and still agree with
existing constraints, provided the force is sufficiently short range to have evaded tests of gravity on short
distances.

For this work, we will consider a chameleon screening mechanism that gives rise to a Yukawa-like force.
However, the methods we describe can be broadly applied to many different Yukawa-type modifications of
the gravitational field on short distances. In the chameleon mechanism, short distance modifications to the
Newtonian force law are screened from the reach of Solar System tests by the presence of a
density-dependent scalar field, known as the chameleon field. In regions of relatively high average
density—such as can be found inside a Galaxy—the chameleon field has a high mass, making it hard to
detect at colliders and altering the gravitational force law in such a way as to be consistent with Solar-System
experiments (this is the ‘screening’ effect). However, in regions of low-density—such as in cosmological
voids—the field is lighter and the effects of modified gravity unscreened. This allows modified gravity
theories to have substantial effects on cosmological scales, while being difficult to detect on galactic or
Solar-System scales.

We review the properties of chameleon fields in appendix A. The net effect of the chameleon scalar field
φ is to modify the effective Newtonian potential affecting a test particle. Specifically, the effective potential
at position X is given by

Φeff(X) = ΦN(X) +ΦC(X) ≈ ΦN(X) +
φ(X)

M
, (8)

where ΦN is the standard Newtonian potential, and ΦC is the modification to it arising from the chameleon
field. The parameter M (here chosen to be a mass to give the correct units for a potential) determines how
strongly the chameleon field affects test particles and arises from the non-minimal coupling of the
chameleon field to curvature as discussed in appendix A.

In this work, we consider a chameleon model with an effective interaction potential

Veff(φ) =
Λ4+n

φn
+

φρ

M
(�c)3. (9)

We explore only the case n = 1 in this work: other models and choices of n are possible, but we choose this
specific example to demonstrate how the method works in principle. This model has two parameters; Λ,
which characterises the energy scale of the chameleon’s self-interaction potential; and M which is defined
above.

For n = 1 the background value of the field, φbg, in an environment of constant mass density ρbg is
given by

φbg =

√
MΛ5

ρbg(�c)3
. (10)

In the centre of the source, the chameleon field reaches its minimum value of φS (which can be obtained by
replacing the density ρbg in equation (10) with the source density ρS). The mass of the chameleon field, mbg,
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is density dependent (see appendix A) and given by

mbgc2 =

(
4 ρ3

bg(�c)9

M3Λ5

)1/4

. (11)

The key question for us is how the field results in a force on the optomechanical sensor. This is what we
consider next.

3.2. Force on the optomechanical sensor
The effect of a chameleon field is in principle detectable in a high-vacuum environment. In practice, this
requires extremely precise acceleration measurements, which an optomechanical system can provide. While
the optomechanical probe can come in many different shapes, in this work, for the sake of simplicity, we
model both the source mass and the detector probe as spheres. This allows us to compute the sensitivity
using the chameleon (erroneous capital) force between these two spheres. There are therefore two effects to
consider: the response of the field in equation (8) to the spherical source, and the response of the probe to
that field. Due to the nature of the chameleon field, a non-point-like probe will not simply follow the
gradient of equation (8) as would a test particle: instead there is an additional screening effect due to the
interactions of the probe itself with the field.

To derive the force that acts on the sensor, we consider the field inside the vacuum chamber. Burrage
et al [33] derived the chameleon field around a spherical source of mass MS and radius RS as a function of
distance from the centre of the sphere, r. They assumed in their derivation that the range of the chameleon
force was large compared to the size of the source (that is, mbgRSc/� � 1). To allow us to consider a broad
parameter space, we do not assume that either mbgRSc/� � 1 or mbgRPc/� � 1 where the indices S and P
denote the source and probe, respectively. In what follows, we go beyond existing studies in this regard by
including sources (probes) with non-negligible size compared to the range of the force.

We use the same asymptotic matching approach as Burrage et al [33] to obtain an expression for the
chameleon field around a spherical matter distribution:

φ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φi, r < Si

φi +
�cMi

8πRiM

r3 − 3S2
i r + 2S3

i

rR2
i

, Si < r < Ri

φbg −
�cMi

4πrM(1 + mbgRic/�)

(
1 − S3

i

R3
i

)
e−mbgc(r−Ri)/�, r > Ri

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (12)

Here, i = S, P for the source and probe respectively. φi is the equilibrium value of the chameleon field in a
material with the source (probe) density: the field will attain this value at some radius Si � Ri. There is then
a transition layer where the field φi increases to its surface value, before increasing to the equilibrium value
in the background density, φbg. The range of the force outside the source is controlled by the
density-dependent chameleon mass, mbg. The full derivation of equation (12) is given in appendix A.1.

The value of the length scale Si depends on the source/probe properties, the chameleon model, and
environmental properties. For the model we consider here, it is found by solving the following cubic
equation:

S2
i

R2
i

+
2

3

[
1

1 + mbgRic/�
− 1

]
S3

i

R3
i

= 1 − 8πM

3Mi
Ri(φbg − φi)c/�+

2

3

[
1

1 + mbgRic/�
− 1

]
. (13)

In the mbgRic/�→ 0 and φbg � φi limits, this reduces to

Si = Ri

√
1 − 8πM

3Mi

Riφbg

�c
, (14)

which is the result found by Burrage et al [33]. Si parametrises the screening effect of the chameleon
mechanism for a spherical source/probe: for example, when Si is much lower than Ri, the field is effectively
unscreened while for Si ≈ Ri the field is heavily screened. Outside of the source (r > Ri), we see from
equation (12) that the scalar field, and thus the modified gravitational potential, has an effective Yukawa
form. Thus, a chameleon field of this type would manifest as a Yukawa-like modification to the acceleration
of a test particle. Since our proposed experimental setup will involve measuring acceleration outside of the
sphere, we only need the r > Ri part of the solution.

7



New J. Phys. 24 (2022) 033009 S Qvarfort et al

When viewed as a Yukawa-type force of the form considered in equation (7), and when the probe itself
does not contribute to the screening, the resulting fifth-force strength α and range λ are given by

αbg =
2M2

P

M2
ξS, and λbg =

�

mbgc
, (15)

where MP ≈
√
�c/(8πG) = 4.341 × 10−9 kg is the reduced Planck mass (here expressed as a mass rather

than an energy), αbg depends on the background density through ξS, which is given by [33]

ξS =

⎧⎪⎨
⎪⎩

1, ρSR2
S < 3M φbg/(�c),

1 − S3
S

R3
S

, ρSR2
S > 3Mφbg/(�c).

(16)

As long as the optomechanical sensor is approximated as a point-particle, such that RP/λbg � 1, the force
felt by the optomechanical probe can therefore be written as

F = −GMSm

|XS|2

[
1 + αbg

(
1 +

|XS(t)|
λbg

)
e−|XS(t)|/λbg

]
, (17)

where XS is the vector-position of the source. The point-particle approximation is however quite severe,
especially for an optomechanical probe, the radius of which can be quite large compared with the range of
the force in question. We proceed to consider the screening from the probe in the following section.

3.3. Chameleon screening from the optomechanical probe
Compared with the atoms used in alternative approaches to the detection of fifth-force modifications to
gravity, such as atom interferometry, the optomechanical probe can potentially be relatively large compared
to the range of fifth forces. This can result in significant contributions to the chameleon field screening. The
screening depends strongly on the geometry of the system; in general, numerical methods are needed to
compute the full screening [99]. As such, it is difficult to estimate the screening for say a Fabry–Pérot
moving-end mirror; however the problem is simplified when both the source sphere and the probe are
spherically symmetric. This is the case when the mechanical element in the optomechanical system is a
levitated sphere, made, for example, by silica.

To estimate the extent of the screening for a spherical optomechanical probe, we consider the force that
arises from the movement on the time-dependent mass. See appendix B.3 for the full calculation. In the
limit where the probe radius is much smaller than the distance between the probe and the source sphere
RP � |XS(t)|, we find the following expression for the force:

F = −GMSm

|XS|2

[
1 + αbg,P

(
1 +

|XS(t)|
λbg

)
e−|XS(t)|/λbg f (RP/λbg, |XS(t)|/λbg)

]
, (18)

where the sensor-dependent fifth-force strength is defined as

αbg,P =
2M2

P

M2
ξSξP, (19)

where we have added the subscript ‘P’ to denote that screening from the probe is here taken into account.
Furthermore, ξS and ξP (again labelled S for the source and P probe, respectively), are given in
equation (16). To compute ξP, we replace MS, RS and ρS with m, RP and ρP. Finally, the function f is a
form-factor given by

f (u, v) = (1 + u)e−u

[
sinh(u)

u
−

(
v

1 + v
− 2

)
1

v

(
cosh(u) − sinh(u)

u

)]
. (20)

This approaches 1 in the x = mbgRPc/� = RP/λbg → 0 limit, in which case equation (18) reduces to the
result of Burrage et al [33] for the force between two spheres. Since spherical probes or source masses
generally maximise the screening [99], equation (18) can be interpreted as a conservative estimate of the
screening due to the shielding from the probe.

Burrage et al [33] make use of RP/λbg → 0, since the probe radius in the case of atom interferometry is
typically much smaller than λbg. For an optomechanical probe, however, the additional screening
introduced by the probe can be substantial, but not, as we shall see, detrimental. In what follows, we
compute the sensitivity both with and without the screening from the probe, where the latter corresponds
to approximating the probe as a point particle.

8
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3.4. Potential from a moving source-mass
In this work, we consider a moving source mass. This brings up a consideration of how the chameleon field
responds to the motion of the source mass. For the gravitational field, we know that changes in the
potential propagate outwards at the speed of light, and thus the appropriate potential to use is the retarded
Newtonian potential. The situation is less clear for the scalar field, however. Since it is massive, it is not
immediately obvious information will propagate outwards at the speed of light. To get an idea of its
behaviour we need to know the speed, vI, at which information propagates through the scalar field. We
show in appendix B.2 that this is also, in fact, the speed of light. Consequently, the potential at 3D position
X can be approximated by the time dependent form

ΦC(X, t) =
φbg

M
− GMS

|X − XS(t)|αbg e−|X−XS(t)|/λbg (21)

where t should be replaced with the retarded time given by equation (B.9), however, we can ignore this for
the non-relativistic speeds and distances considered in this setup. Since both the chameleon field, φ, and the
metric, gμν (which gives rise to the Newtonian potential, ΦN) are well-defined dynamical quantities, the
time-dependence of this potential is well-defined. We note at this point that if quantum corrections are
large, the effective speed of information propagation for the scalar field, vI, may differ from c [100].
However, large quantum corrections of this size would mean that we cannot readily use the effective field
theory treatment of the chameleon field assumed throughout [101], so we do not consider this effect here.
We can therefore use equation (21) in the discussion that follows to measure the values of α and λ, and thus
the parameters Λ and M of the chameleon field.

4. Linearised modified Newtonian potential

In order to compute the sensitivity of the optomechanical system, we need to include the force on the
sensor shown in equation (18) into the dynamics of the optomechanical system. It is possible to obtain the
solution numerically, but in order to obtain analytic expressions, we choose to linearise the Yukawa
modification of the force for small oscillations of the source-mass. We let the time-dependent distance
between the systems xS(t) be given by:

xS(t) = x0 (1 − ε cos(ω0 t + φ0)) , (22)

where ε is a dimensionless oscillation amplitude defined as a fraction of x0, where ω0 is the oscillation
frequency and φ0 is a phase shift that we specify later in order to maximize the sensitivity.

In the following two sections, we show the linearisation of the force for a generic Yukawa potential, and
for the chameleon force with a large optomechanical probe that contributes to the screening.

4.1. Linearising the Yukawa potential
We now linearise the contributions from the Yukawa potential to equation (7) for small oscillation
amplitudes ε � 1. We note that, for specific values of α and λ, higher order contributions to the Newtonian
gravitational force may be larger than the first-order contributions to the Yukawa force. It is therefore
important that, when taking data in an experiment, we determine the origin of the observed values (see the
discussion in section 7). Linearising, we obtain

GYuk(t) ≈ −GMSm

x2
S(t)

− mgN [κ+ σε cos(tω0 + φ0)] , (23)

where gN = GMS/x2
0 is the Newtonian gravitational acceleration at the equilibrium distance x0 and where

we defined the two parameters

κ = α e−x0/λ
(

1 +
x0

λ

)
, and σ = α e−x0/λ

(
2 + 2

x0

λ
+

x2
0

λ2

)
, (24)

which quantify the deviation of the constant and the time-dependent part of the force from the Newtonian
one, respectively. We make this distinction because in an experiment, it is often possible to isolate a
time-dependent signal from a constant noise floor. In addition, systematic effects such as the Casimir effect
can be effectively screened out in this way (we return to this point in the discussion in section 7). We will
therefore focus on estimating σ as part of our analysis.

9
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4.2. Linearising the chameleon potential from a screened spherical probe
For a spherical optomechanical probe, the force between the probe and the source is given in equation (18).
We note that the form factor shown in equation (20), which arises due to the screening from the
optomechanical probe, depends on xS(t) and is therefore time-dependent. To determine the constant and
time-dependent contributions, we again assume that the source sphere oscillates around the equilibrium
distance x0 according to equation (22). Noting that xS(t) only enters into the y-terms in equation (20), we
find

Gcha(t) ≈ −GMSm

x2
S(t)

− mgN (κ+ σε cos(ω0 t + φ0)) , (25)

where the expressions for κ and σ now read

κ = αbg,P e−x0/λbg

[(
1 +

x0

λbg

)
A(RP/λbg) +

(
1 + 2

λbg

x0

)
B(RP/λbg)

]
, (26)

σ = αbg,P e−x0/λbg

[(
2 + 2

x0

λbg
+

x2
0

λ2
bg

)
A(RP/λbg) +

(
4 + 6

λbg

x0
+

x0

λbg

)
B(RP/λbg)

]
,

where we have defined:

A(u) = (1 + u)e−u sinh(u)

u
, and B(u) = (1 + u)e−u

(
cosh(u) − sinh(u)

u

)
. (27)

The expressions in equation (27) arise from the form-factor in equation (20).
For the parameter regimes considered in this work, we find that RP/λbg � 1. This means that the form

factors become A(RP/λbg) = 1 and B(RP/λbg) = 0. As a result, κ and σ simplify to

κ = αbg,P e−x0/λbg

(
1 +

x0

λbg

)
,

σ = αbg,P e−x0/λbg

(
2 + 2

x0

λbg
+

x2
0

λ2
bg

)
, (28)

which has the same form as equation (24). We are now ready to compute the sensitivities of the
optomechanical sensor, but first, we provide a brief introduction to the quantum metrology tools we use for
this purpose.

5. Quantum metrology and ideal bounds

In this work, we are interested in the best-possible sensitivity that can be achieved with the optomechanical
probe. To determine the sensitivity of the probe, we turn to tools from quantum metrology. Specifically, we
focus on computing the QFI, which we denote Iθ , where θ is the parameter that we wish to estimate.
Intuitively the QFI can be seen as a measure of how much the quantum state of the system changes given a
specific encoding of θ. The QFI then provides a measure of the change in the state with θ compared with
the case when the state is unaffected. See also reference [102] for an intuitive introduction to the QFI and
related concepts in quantum metrology.

The connection to sensitivity stems from the fact that the QFI provides a lower bound to the variance
Var(θ) of θ through the quantum Cramér–Rao bound [103, 104]:

Var(θ) � 1

MIθ
, (29)

where M is the number of measurements or probes used in parallel. The standard deviation of θ is then
given by Δθ = 1/

√
MIθ .

For unitary dynamics and mixed initial states written in the form of �̂ =
∑

nλn|λn〉〈λn|, the QFI can be
cast as [105, 106]:

Iθ = 4
∑

n

λn

(
〈λn|Ĥ2

θ|λn〉 − 〈λn|Ĥθ|λn〉2
)
− 8

∑
n �=m

λnλm

λn + λm

∣∣∣〈λn|Ĥθ|λm〉
∣∣∣2

, (30)

where the operator Ĥθ is defined as Ĥθ = −iÛ†
θ∂θÛθ . Here, Ûθ is the unitary operator that encodes the

parameter θ into the system.

10
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In our case, Û(θ) is the unitary operator that arises from the Hamiltonian in equation (5), and the effect
we wish to estimate is the effect of the Yukawa potential on the probe. Therefore, in order to compute Iθ ,
we must first solve the time-evolution of the system, which is often challenging when the signal is
time-dependent, as is the case for us here. Some of these challenges can however be addressed by making
use of a previously established method for solving the Schrödinger equation using a Lie algebra approach
[107]. Details of this solution were first used to study a purely Newtonian time-dependent gravitational
potential [73] and can be found in appendix C.

Using the expression for Iθ in equation (30), we can derive a compact expression for the QFI that
represent the sensitivity with which modifications to Newtonian gravity can be detected. In our case, we let
the parameter θ of interest be either κ or σ as defined in equation (24). By then applying the Cramér–Rao
bound, we can derive the standard deviation for each parameter. We then consider the ratios Δκ/κ or
Δσ/σ, which describe the relative error of the collective measurements.

In this work, we say that we can distinguish modifications to the Newtonian potential if the error in κ

and σ is smaller than one, that is, when Δκ/κ < 1 or Δσ/σ < 1. Note that, to find the sensitivity to the
actual values of, for example, α and λ, we would need a full multi-parameter likelihood analysis, which
requires us to go beyond the regular error-propagation formula for the parameter we consider here. Such an
analysis is currently beyond the scope of this work. Instead, we focus mainly on detecting σ, since it is the
amplitude of the time-dependent signal.

Unfortunately, the QFI does not actually reveal the optimal measurement that saturates the quantum
Cramér–Rao bound. To obtain this information, one must compute the classical Fisher information for a
particular measurement and examine whether it saturates the QFI. It is known that, when the
optomechanical coupling is constant and takes on specific values, that a homodyne measurement of the
optical field is optimal [70, 73]. When the optomechanical coupling is modulated at resonance, as is the
case here, the optimal measurement is not yet known. The gravitational interaction between the source and
the optomechanical probe results in a phase shift of the optical state. Therefore, the utility of a homodyne
measurements can be expected also for the case of modulated optomechanical coupling, but we leave this
specific analysis to future work. In practice, once the optomechanical probe has interacted with the source,
the system is measured to extract information about the gravitational force. Standard measurements that
are performed on the optomechanical system include homodyne and heterodyne measurements of the
cavity field, as well as photon detection measurements, which can either be resolving (counting the number
of photons) or non-resolving (merely detecting the presence of a photon). In a homodyne measurement,
the output light from the optomechanical system is brought into interference with a local oscillator light
field which comes from the same source as the input light field of the optomechanical system. This is the
same measurement principle that is, for example, employed in a Mach–Zehnder interferometer to infer a
phase shift on a light field. Heterodyne measurements, on the other hand, compare the collected light with a
different coherent state reference. The usefulness of each measurement depends on the situation at hand.
Since we focus on deriving the best-possible sensitivities in this work, we leave it to future work to analyse
the sensitivity that can be gained from specific measurements.

6. Results

We are now ready to compute the sensitivities that can be achieved with an ideal optomechanical sensor for
detecting modifications of gravity. Specifically, we consider a region of parameter space to be possible to
exclude using the optomechanical sensor when the best precision possible on the parameters α and λ (or
the chameleon parameters M and Λ) is sufficient to distinguish them from zero, their values in ordinary
general relativity.

6.1. Fundamental sensitivities
We first present some simple expressions for the sensitivities that can be achieved, and we then proceed to
compute the parameter regions that could potentially be excluded with an optomechanical sensor. When
the source mass oscillates at the same frequency as the optomechanical system, that is, when ω0 = ωmech,
the effects accumulate and cause the position of the optomechanical system to become increasingly
displaced.

Following the outline in appendix C we find the following expressions for the sensitivities for κ and σ at
time tωmech = 2πn (see [73] for a detailed derivation). For large enough temperatures in the mechanical
state, such that rT � 1, the expressions simplify and we find that the sensitivities Δκ and Δσ are given by

Δκ =
1√
MgN

1

ΔN̂a

√
2�ω5

mech

m

1

8πnk0
, (31)
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Table 1. Example parameters used to compute the bounds on modified gravity for a generic optomechanical
sensor. We denote the optomechanical (probe) mass by m so as to not confuse it with the Planck mass MP.

Parameter Symbol Value

Source mass MS 10−6 kg
Source mass density ρS 19.3 × 103 kg m−3

Source mass radius RS 2 × 10−4 m
Equilibrium distance x0 10−3 m
Source oscillation amplitude ratio ε 0.1
Background density ρbg 8.27 × 10−14 kg m−3

Optomechanical coupling k0/(2π) 10 Hz
Mechanical frequency ωmech/(2π) 100 Hz
Probe mass m 10−14 kg
Oscillator (probe) mass density (silica) ρP 1538 kg m−3

Coherent state parameter |μc|2 106

Squeezing parameter rsq 1.73

Number of measurements M 103

Time of measurement ωmt = 2πn n = 10
Newtonian gravitational force at equilibrium distance mgN ∼6.67 × 10−25 N

Sensitivities (constant coupling)
Sensitivity κ Δκ 1.36 × 10−3

Sensitivity for constant force mgNΔκ 9.08 × 10−28 N
Sensitivity σ Δσ 27.1 × 10−3

Sensitivity for res. oscillating force mgNΔσε 1.81 × 10−27 N

Sensitivities (resonant coupling)
Sensitivity κ Δκ(mod) 2.71 × 10−3

Sensitivity for constant force mgNΔκ(mod) 1.81 × 10−27 N
Sensitivity σ Δσ(mod) 1.73 × 10−3

Sensitivity for res. oscillating force mgNΔσ(mod)ε 1.15 × 10−28 N

Δσ =
1√
MgN

1

ΔN̂a

√
2�ω5

mech

m

1

4πnk0 ε
, (32)

where n is an integer, and for an optomechanical coupling k(t) ≡ k0 and phase φ0 = π, and where the
variance (ΔN̂a)2 of the photon number is given by [73]

(ΔN̂a)2 = |μc|2 e4rsq +
1

2
sinh2(2rsq) − 2Re[e−iϕ/2μc]2 sinh(4rsq), (33)

where rsq and ϕ are the squeezing amplitude and phase, and where μc is the coherent state amplitude of the
optical mode. The expression in equation (33) is maximised when e−iϕ/2μc is completely imaginary, which
causes the last term of equation (33) to vanish. This can be achieved by assuming that μc ∈ R and setting
the squeezing phase to ϕ = π/2. The other parameters in equation (33) have been previously defined in the
text (see also table 1 for a summary).

The sensitivities can be improved by modulating the optomechanical coupling at the same frequency as
the gravitational signal [73]. In this work, we choose a sinusoidal modulation with k(t) = k0 cos(ωkt), where
k0 is the amplitude of the modulation and ωk is the modulation frequency. At resonance, when ωk = ωmech,
and for the optimal phase choice φ0 = π/2, we find that the sensitivities for measuring κ and σ become

Δκ(mod) =
1√
MgN

1

ΔN̂a

√
2�ω5

mech

m

1

4πnk0
, (34)

Δσ(mod) =
1√
MgN

1

ΔN̂a

√
2�ω5

mech

m

1

2π2n2k0ε
. (35)

Here, equation (35) scales with n−2 rather than n−1. This enhancement arises from the additional
modulation of the optomechanical coupling, and was already noted in the context of time-dependent
gravimetry for a purely Newtonian potential [73]. By now considering the cases where the uncertainty in
the parameter is a fraction of the parameter itself, we are able to define the regions in which modifications
to Newtonian gravity can be established with certainty.
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6.2. Experimental parameters
We assume that the oscillating source mass oscillates at the resonant frequency of the optomechanical
system. We further assume that the source mass is made of solid gold, which has a density of
ρ = 19.3 × 103 kg m−3. For a mass of MS = 10−6 kg (1 mg), this translates into a source mass radius of
RS = 2.3 × 10−4 m. While this mass is very small compared with those currently used in atom
interferometry experiments [40], gravitational fields from masses of slightly larger radii have recently been
detected [79]. The reason for choosing such a small mass is that the systems can be placed very close
together while still achieving a significant oscillation amplitude. This allows us to probe parameter regimes
of a short-ranged force. Due to the scaling of the sensitivity as Δθ ∼ x2

0, choosing a smaller x0 is always
going to be beneficial. We therefore set x0 = 10−3 m and assume that the oscillation amplitude ratio is
ε = 0.1. This ensures that, when the source mass oscillates, it does not come into contact with the
optomechanical system8.

For the optomechanical probe, we use the following example parameters: we assume that the effective
mass of the optomechanical probe is m = 10−14 kg, and that the light–matter coupling has an amplitude of
k0/(2π) = 10 Hz. We then assume that the mechanical frequency can be made as low as ωmech/(2π) =

100 Hz, which is important since the expressions for Δκ and Δσ scale with ω
5/2
mech. For the squeezed

coherent state, we assume that the coherent state parameter is given by |μc|2 = 106 and that the phase of the
squeezed light can be set to ϕ = π, which ensures that the photon number variance (ΔN̂a)2 shown in
equation (33) is maximized. One of the highest squeezing factors that have been achieved to-date is
rsq = 1.73 [108], which is what we choose to include here. We also consider a protocol where we perform
M = 103 measurements at time tωmech = 20π, which allows us to improve the sensitivity a bit further.

To derive the bounds on the chameleon parameters M and Λ, we assume that the optomechanical
system can be operated in high vacuum. This also helps in terms of mitigating mechanical noise; in generic
oscillators, damping effects are well-understood and largely not present below 10−7 mbar [109]. On the
other hand, it can be challenging to confine a levitated optomechanical system at high vacuum [88].
Recently, however, several works have demonstrated trapping at 10−7 mbar of pressure [88, 110], even going
as low as 9.2 × 10−9 mbar [111]. Using these values as our starting point, we note that 10−9 mbar translates
into a molecular background density of ρbg = 8.27 × 10−14 kg m−3. To derive this value, we have used the
ideal gas law, which can be rewritten to give ρbg = PmH/(kBT). Here, P is the pressure (in Pascal), kB is
Boltzmann’s constant, T is the temperature (in kelvin), and where we have assumed that the vacuum
chamber has been vented with hydrogen of molecular mass mH = 3.3 × 10−27 kg before being emptied
(that is, it was filled with hydrogen gas, such that any residual particles inside the chamber are H2 particles).

All parameters are summarized in table 1. There, we also give values for the Newtonian gravitational
force for source and sensor at their respective equilibrium positions, which is approximate equivalent to the
time-averaged Newtonian force and the sensitivities shown in equations (31), (32), (34), and (35). We find
that for a constant optomechanical coupling, the sensitivities become Δκ = 1.36 × 10−3 and
Δσ = 27.1 × 10−3. For a time-dependent optomechanical coupling modulated sinusoidally at resonance,
we find sensitivities Δκ(mod) = 2.71 × 10−3 and Δσ(mod) = 1.73 × 10−3, where Δκ(mod) is slightly worse
than Δκ and Δσ(mod) is slightly better than Δσ. In table 1, we also give the corresponding force
sensitivities.

To see how strong the modified contributions to the force are compared with just the Newtonian part,
we plot the amplitude of the time-dependent modification Fmod = GmMS

x2
0

εσ as a fraction of the Newtonian

force FN = GmMS
x2

0
. The result can be found in figure 2, where we have plotted contours for Fmod/FN = εσ

using the experimental parameters in table 1. Figure 2(a) shows Fmod/FN as a function of α and λ, and
figure 2(b) shows Fmod/FN as a function of M and Λ. The filled-in contours in figure 2(b) correspond to the
force shown in equation (17), where the screening from the optomechanical probe itself has been ignored.
The lines, on the other hand, correspond to the force shown in equation (18) where the screening from a
spherical probe has been taken into account.

6.3. Fundamental bounds for the Yukawa parameters α and λ

We are now ready to compute the bounds on the parameter ranges that could potentially be tested with a
quantum optomechanical system. To find the bounds, we consider the ratios Δκ/κ and Δσ/σ as functions
of α and λ, where κ and σ were defined in equation (24) as the modification due to the gravitational force
at the equilibrium distance and the amplitude of the time-dependent contribution. The result can be found
in figure 3(a): the dark green dashed line shows where the relative error satisfies Δκ/κ = 1, and the dotted

8 For the choice of such a small source-mass, it might be the case that we must take the mass of the modulation mechanism into
account, which would change both the effective mass seen by the optomechanical probe, as well as the screening of the force. A standard
piezo stack has a mass of 16 g, for example.
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Figure 2. Plots of the ratio of the Newtonian force and the modification Fmod/FN = εσ. Plot (a) shows the ratio as a function of
α and λ. Plot (b) shows the ratio as a function of M and Λ in units of the Planck mass MP and eV, respectively. The filled-in
contours show the ratio without screening from the probe. The lines instead show the ratio for when the probe is spherical and
contributes to the screening. As a result, the strength of the force is reduced. The parameters used to make these plots can be
found in table 1. The mapping between the (α,λ) and (M,Λ) spaces is non-trivial. The left hand figure shows the range of force
modifications that can potentially detected, which is different to the range of theoretically-interesting chameleon parameters,
shown on the right.

Figure 3. Ideal bounds for detecting modifications to Newtonian gravity with an optomechanical sensor. Each bound shows
where the value of the modification is greater than the error bound. The parameters used in both plots are shown in table 1. Plot
(a) shows the bounds for the Yukawa parameters α and λ. The dashed dark green line indicates where Δκ/κ = 1, and the dotted
lighter green line where Δκ(res)/κ = 1. The light purple area shows the parameter regime where Δσ(res)/σ < 1 and the dark
purple area shows where Δσ/σ < 1. Since κ is a constant effect, modulating the optomechanical coupling yields no
improvement of the sensitivity. Plot (b) shows the bounds for the chameleon parameters M in terms of the Planck mass MP and
Λ in eV. The bounds include a point-particle approximation of the sensor (the two largest lighter purple areas) and the inclusion
of screening from a spherical probe (darker purple areas). The magenta dotted lines shows where the screening length of the
source mass is zero SS = 0, below which the screening of the probe starts reducing the sensitivity. Similarly, the orange dashed
line shows where the screening length of the probe is zero SP = 0, below which the screening of the spherical probe reduces the
sensitivity. We have refrained from plotting the bounds Δκ/κ and Δκ(mod)/κ here as they roughly follow the outline of the
bounds on σ.

green line shows where Δκ(mod)/κ = 1. Since κ corresponds to the static modification of the gravitational
force, modulating the optomechanical coupling does not improve the sensitivity. We instead focus on the
dynamic contribution from σ. The lighter purple region shows where Δσ/σ < 1, and the darker purple
region shows where Δσ(mod) < 1. The resonantly modulated optomechanical coupling provides a
significant enhancement for Δσ.
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The general features in figure 3(a) can be understood by examining the form of κ and σ, which are
shown in equation (24). When λ � x0, the exponential can be approximated as e−x0/λ ∼ 1. This means that
σ becomes σ ∼ 2α, which is independent λ and thereby explains the straight line at |α| ∼ 10−3. Once
λ < x0, which corresponds to a short-ranged Yukawa force, the effect can no longer be seen by the
optomechanical probe. However, the bounds in figure 3(a) could be shifted to the left by decreasing x0. Care
must be taken that the two systems do not touch, which is limited by the source sphere and probe radii, as
well as the oscillation amplitude ε x0. For the example parameters used here, the smallest distance between
the systems is 0.7 mm.

6.4. Fundamental bounds for the chameleon parameters M and Λ

To obtain the bounds on M and Λ, we rescale M in terms of the reduced Planck mass MP. We then compute
the bounds for M and Λ by plotting Δσ/σ as a function of M and Λ for the following two cases: (i) when
the probe is approximated as a point-particle (no probe screening), and (ii) when the screening from the
probe is taken into account. The latter we denote by Δσ(scr) and Δσ(mod)

(scr) . We compute these quantities by
numerically solving equation (13) for SS and SP at each point. The expression for σ is given in
equation (28).

The result can be found in figure 3(b). Note that we do not plot the bounds for Δκ and Δκ(mod) for
clarity, and because as static contributions they are more difficult to distinguish from a constant noise floor.
The lighter regions show the bounds when the optomechanical probe does not contribute to the screening
of the fifth force. This is equivalent to approximating the probe as a point-particle. In contrast, the darker
regions show the reduction in sensitivity due to the screening that arises from a spherical optomechanical
probe.

To explain the features of the plot, we draw lines where the screening from the probe SP and source
system SS vanishes. The magenta line shows where SS = 0 and the orange line shows where SP = 0. Above
each line, the screening is zero, while below the lines, the screening lengths increase. Finally, the right-most
boundary of the dark purple area can be understood as follows: the appearance of M−3 in mbg (see
equation (11)) ensures that, when M is large compared with the other quantities, mbg is small. This, in turn,
means that the range of the force λbg, as shown in equation (15) will be large. It then follows that the
amplitude σ (see equation (28)) will be approximately σ ≈ αbg,P, where αbg,P = 2M2/M2

P from
equation (19) (note that ξS = ξP = 1 because we are considering the range of Λ above the orange and
magenta lines). This means that σ is independent of Λ and the boundary becomes a vertical line. The point
at which the ratio Δσ/σ = 1 then occurs is M/MP = 48.1.

6.5. Relation to existing experimental bounds
To see how the theoretical bounds in figure 3 relate to known experimental bounds on Newtonian gravity,
we plot the convex hull of the shaded areas in figures 3(a) and (b) against the bounds presented in
references [112–114]. By comparing with experimental results, we are able to demonstrate where
optomechanical systems could help further constrain known bounds according to the results in this work.
We emphasise however that this comparison is highly hypothetical, since experimental challenges such as
noise, long-term stability, and integration over many runs of the experiment have not been included in our
analysis. Much more work is required before it is known exactly how the optomechanical probe compares
with other platforms (see section 7).

The bounds can be found in figure 4, where figure 4(a) shows the bounds in terms of α and λ, and
where figure 4(b) shows the bounds in terms of M and Λ. The yellow regions show the convex hull of the
bounds derived in this work, and the purple region shows the combined parameter spaces that have been
experimentally excluded. The orange area in figure 4(b) shows the excluded region for when the
optomechanical probe is approximated as a point-particle, i.e. the chameleon screening due to the finite size
of the probe is neglected.

Our results indicate that, for the values used in this work, even the ideal realisation of a nonlinear
optomechanical sensor achieves similar bounds on α and λ to those already reported in the literature. The
decoherence, dissipation and thermalisation effects not accounted for in this description are likely to further
reduce the sensitivity. This suggests that the sensitivity of the system must be improved further, should we
wish to probe the hitherto unexplored regions in figure 4(a). From inspecting equations (31), (32), (34),
and (35), we note that the strongest dependence is with the mechanical frequency ωmech. Thus the lower
ωmech, the better the sensitivity. Another strategy would be to increase the strength of the light–matter
coupling k0, however this is a long-standing challenge for many experimental platforms. More effective
perhaps would be to decrease the separation distance x0 between the probe and source systems, which
would allow the optomechanical sensor to explore a larger range of λ, in particular smaller λ, since the
Yukawa potential will not be as suppressed there. However, as the sensor is moved closer to the source

15



New J. Phys. 24 (2022) 033009 S Qvarfort et al

Figure 4. Comparison between predictions (this work) and known experimental bounds (pink region). Both plots show the
convex hull (yellow) of the bounds derived in this work in figure 3. Plot (a) shows the bounds in terms of the Yukawa parameters
α and λ, while plot (b) shows the bounds in terms of the chameleon screening parameters M and Λ. Plot (b) also includes the
bounds (yellow) for when the optomechanical probe contributes to the screening of the chameleon field. The pink areas
represent the experimentally excluded regions based on figure 8 of [112] and recent results presented in [113] (see figure 6). (b)
shows bounds in terms of M and Λ, which are the mass and energy-scale for the chameleon screening mechanism. The
experimentally excluded regions are based on those reported in reference [114].

sphere, the Casimir effect is expected to strongly contribute to the resulting acceleration (see below).
On the other hand, our results according to figure 4(b) indicate that optomechanical systems could be used
to probe some hitherto unexplored regions of the chameleon parameters M and Λ. The advances here likely
depend on the quality of the background vacuum.

7. Discussion

In this section, we discuss the challenges that must be overcome when considering an experiment of this
nature. They include systematics and noise that affect the experiment, as well as forces that arise from the
Casimir effect.

7.1. Examining the conditions for linearising the force
In order to definitely rule out modifications to the Newtonian potential, we must experimentally determine
if the observed data deviates from that predicted by Newtonian gravity. Doing so requires extensive
knowledge of the full dynamics of the system, including higher-order contributions from the Newtonian
potential that we have neglected in our main analysis. With this in mind, we examine the derivation of the
linearised gravitational potential (see the expansion in equation (3)) to determine when this linearisation
breaks down. We assumed that the perturbation δx to the position of the optomechanical element is small
compared with xS(t) (the distance from the probe to the source mass) at all times. However, depending on
the intended precision of the measurement of the force, Newtonian gravitational terms of second order in

δx may become relevant, that is, terms of the form ∝
(

b̂† + b̂
)2

. These terms can be included into the full

dynamical analysis, which has been done in [115]. We leave performing the same analysis for modified
gravity to future work.

Moreover, the radiation pressure found in an optomechanical setup has the explicit effect of displacing
the mechanical element. When the light–matter coupling is modulated at mechanical resonance, the
maximum position increases linearly as a function of time [73]. Once this displacement grows too large, the
approximation under which the optomechanical Hamiltonian in equation (1) was derived is no longer valid
(see e.g. reference [116] for details of how the optomechanical Hamiltonian is derived). A method for
dealing with a displacement driven by radiation pressure would be attempting to cancel the expected
radiation pressure by manually introducing a time-dependent linear potential ∼(b̂† + b̂) into the dynamics
[73]. In this way, the displacement from the light-radiation pressure is cancelled, while the phase from the
gravitational interaction is still imparted on the optical state. The drawback of this method is that it most
likely introduces additional noise into the experimental setup from the linear driving term. We do however
leave the full quantum metrology analysis to future work.
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7.2. Limitations due to the Casimir effect
Due to the relative weakness of gravity compared with electromagnetic force, the latter are likely to
dominate any experimental setting. Therefore, any stray electromagnetic effects must be controlled very
precisely in order to detect deviations from Newtonian gravity. One of the most important effects that has
to be taken into account is the Casimir force [117], which becomes significant when the distance between
the probe and the source mass is small. To estimate the effect of the Casimir force, we use an analytic
formula given in [118] (based on the results of [119]) for the force due to the Casimir effect between two
homogeneous perfectly conducting spheres at a distance much larger than their radii. The model of two
perfectly conducting spheres is unlikely to accurately describe the experimental realisation of the
optomechanical setup described in this article, both in terms of geometry and material. Therefore, we will
use this case to give only a first estimate of the effect and discuss how to suppress it.

We consider the Drude boundary condition model for isolated conductors (see [118] for details). For
the distance between the probe and the source x0 − RS − RP being much larger than the thermal
wavelength, i.e. x0 − RS − RP � λT = �c/(2πkBT) (where the thermal wavelength is about 1 μm at room
temperature) the classical thermal contribution to the Casimir force dominates, which leads to the
expressions

FC ≈ 18kBT
R3

SR3
P

(x0 − RS − RP)7
, (36)

where RP and RS are the radii of the probe and the source, respectively. At room temperature and for the
parameters given in table 1, equation (36) leads to an acceleration of the order of 9 × 10−13 m s−2,
experienced by the probe mass, while the gravitational acceleration induced by the source mass is of the
order of 6 × 10−11 m s−2. Casimir forces are therefore of order 10−2 smaller than the main gravitational
component. The size of the fifth force corrections we consider here are largely controlled by the two
parameters σ and κ as shown in equation (25). At peak sensitivity, when x0 ∼ λ, this means that the ratio of
the Casimir force to the Newtonian gravitational force should be compared to α. We see from figure 3(a)
that this ratio can be as low as 10−3 at the edge of the detectable region; the corrections are even smaller at
lower λ. Furthermore, since the Casimir force grows very strongly with the inverse distance of the source
and probe mass, the Casimir force quickly overshadows the fifth force contributions by many orders of
magnitude when the source–probe distance is decreased to achieve better sensitivities. This shows that the
Casimir effect is a relevant systematic that has to be controlled, that is, either precisely quantified or
reduced. One way to reduce the force is to lower the temperature of the setup.

Another option to suppress the Casimir effect is to place a material in-between the source mass and the
sensor that acts as a shield to the Casimir effect [120, 121]. The Casimir force of the shield will be stationary
while the un-shielded gravitational acceleration will be time-dependent, and therefore, clearly
distinguishable [122]. This approach is, however, limited by the size of the shield. For example, in levitated
optomechanics, the screening scheme can be naturally realized by placing the source mass behind one of the
cavity end mirrors such that the mirror serves as a shield. However, in the case of detecting modifications
due to a chameleon field, the presence of the mirror might introduce additional screening effects that need
to be accounted for. The Casimir effect may also be reduced by modulating or compensating for the
Casimir force with radiation pressure [123], nano-structuring of the source and probe surfaces [124], or an
optical modulation of the charge density [125].

Further analysis of the impact of a shield, or other techniques for accounting for the impact of the
Casimir force, will require detailed numerical modelling. For example, Pernot–Borr et al [77] considered
the impact of cylindrical walls on the screening of a source, finding that it can depend strongly on the
thickness of the wall used for screening. Since we here consider the fundamental limits of an
optomechanical setup, we leave a numerical analysis of the impact of different approaches to future work.

7.3. Improvements to the sensitivity
There are a number of ways in which the sensitivity of the optomechanical system can be further improved.
In this work, we considered spherical source masses and probes in order to analytically derive the screening
from the probe, however, choosing a differently-shaped source may improve the bounds that could be
achieved. For example, a source mass in the form of a slab much larger than the probe system would
mitigate gradient contributions from the Newtonian part of the potential, since the gravitational force from
an infinite plane is constant. Furthermore, it was shown in reference [99] that symmetric source masses
tend to be much more strongly screened (and thus have smaller detectable effects) then asymmetric sources.
Therefore, we would expect to obtain more favourable precision bounds than those presented in this work
by considering asymmetric sources. An interesting prospect also arises from the fact that the
optomechanical probe itself can also be asymmetric, e.g. in the shape of a levitated rod [126], which offers
an additional avenue compared with, for example, atomic systems. However, these non-spherical cases
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bring with them additional challenges. The approximation used in equation (12) assumes a spherical source
(probe), and approximates the nonlinear solution of the chameleon field equation with an analytic
expression derived by asymptotic matching. To accurately obtain measurements with a non-spherical setup
would require precise numerical modelling of the chameleon field around a (non-spherical) source and
probe, such as done in reference [99]. The precise effect on the sensitivity is left to future work.

As a final note, we mention that the nonlinear radiation-pressure term in the Hamiltonian in
equation (1) appears in many different contexts, of which not all fall under the category of optomechanics
(such as for example electromechanical setups [127]). Our results therefore apply to these systems as well.
We therefore have a large range of systems to choose from when it comes to optimising the geometry and
resulting sensitivity.

7.4. Future work towards an experimental proposal
The sensitivities calculated in this work give us an indication of the resolution of the force that the
optomechanical probe can achieve in principle. That is, we learn the magnitude of the gravitational force
that can be detected. In practice, however, we must then determine whether this force is simply the
Newtonian force, or whether it is due to the Newtonian force and an additional force that arises from the
modification. With a good-enough resolution, such a modification can be detected even if the Newtonian
force is much stronger than the modification. There are several methods by which the modification can be
detected. The first is to very carefully model the influence of the Newtonian force on the optomechanical
dynamics and data that is collected through e.g. a homodyne measurement. If a deviation in the collected
data is then seen, steps should be taken to rule out any other source. Another way is to carefully change the
equilibrium separation distance x0 between the source sphere and the optomechanical probe. Since the
modifications considered in this work changes quite drastically due to the inclusion of the exponential term
in equation (7), it should be possible to detect such an exponential change in the data. Both of these
methods here can be theoretically explored in future work.

Our results can be used to evaluate the fundamental ability of a quantum optomechanical system to
probe a particular parameter regime of modified gravity theories. A realistic optomechanical system,
however, will be affected by a number of systematics and noise sources, including optical dissipation from
photons leaking from the cavity, mechanical thermal noise, Brownian motion noise, damping effects, and
noise from the trapping or clamping mechanism, as well as radiation back-action noise and shot-noise. Yet
additional noise sources include external gravitational noise and environmental vibrations (see e.g.
[80, 122] for a discussion of a related experimental setup). Generally, such noise sources have spectral
contributions at the resonant frequency of the sensor and are enhanced as well as the signal from the source
mass that we wish to detect. Therefore, in practice, it may be favourable to consider an off-resonant sensing
scheme, such as those discussed in references [80, 122]. We also note that such additional noise sources will
be particularly dominant when the mechanical frequency is low, however we see from equations (31) and
(32) that a low mechanical frequency is a necessary requirement if we wish to achieve a high sensitivity. We
also note that it is not clear how the sensitivity gained from e.g. modulating the optomechanical coupling
changes when the Q-factors of the cavity and the oscillators are considered.

To model the noise and systematics mentioned in the previous paragraph, a plausible next step beyond
this work involves linearising the optomechanical dynamics around a strong coherent input-state [58]. With
the help of phase-space methods [128], it is then possible to include most of the systematics and noise terms
mentioned above into the dynamics. In addition, a homodyne measurement could be modelled using
input–output theory for the optical mode. One can then examine the susceptibility of the mode and
determine the noise levels required for these effects to be detectable [129]. An important question that must
be addressed is the laser power required to maximise the sensitivity. Since the linearisation gives rise to
equations of motion that differ from those used here, it is difficult to predict what the resulting bounds on
modified gravity theories will look like compared with those presented here. Most likely, the presence of
noise and absence of non-Gaussian resources (which arise from the nonlinear coupling) means that the
prediction for the sensitivity is reduced.

To instead extend the analysis in this work even further in the nonlinear optomechanical regime, we
must include noise in the solution of the dynamics for the nonlinear Hamiltonian in equation (1). However,
since the resulting nonlinear Langevin equations are generally much more difficult to solve (although
certain solutions in the weak-coupling limit and for systems with weak optical decoherence exist
[130, 131]), we expect this to be challenging. A preliminary step towards modelling Markovian optical
decoherence affecting the intra-cavity state was recently taken [132], and mechanical thermal noise has been
modelled using a range of methods [133, 134]. For a strongly coupled system, however, optical and
mechanical noise cannot be treated separately, and must instead be considered together [135, 136]. To our
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knowledge, fundamental quantum metrology bounds in the noisy nonlinear regime have not yet been
considered.

Another aspect that needs to be modelled is the additional screening that arises from the inclusion of a
shield to block out Casimir forces. In addition, for a levitated optomechanical sphere, a mirror must be
placed between the optomechanical probe and the source, which also contributes to the screening (but
which can, at the same time, act as the Casimir shield). To carry out a full analysis of the screening, the
geometry of the vacuum chamber, along with the trapping mechanism of the optomechanical system and
the Casimir shield, must be carefully modelled. It is then possible to exactly predict the magnitude of the
modified force that the optomechanical probe can detect.

8. Conclusions

In this work, we derived the best-possible bounds for detecting modified gravity with a quantum
optomechanical sensor. We modelled the effects of a force from an oscillating source mass on the
optomechanical probe and estimated the sensitivity of the system by computing the qantum Fisher
information. In particular, we considered the additional screening that arises due to the relatively large size
of the optomechanical probe. Our results show that optomechanical sensors could, in principle, be used to
improve on existing experimental bounds for the chameleon screening mechanism, although more work is
needed to evaluate the prospects for using experimental optomechanical systems as probes for modified
gravity.
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Appendix A. The chameleon mechanism

In this appendix we briefly review the derivation of the chameleon mechanism and how it gives rise to a
fifth-force; the reader is directed to references [12–14] for further details. Throughout this appendix we will
use energy units (� = c = 1) for notational simplicity. The basic idea of the chameleon screening
mechanism is to screen the effects of additional degrees of freedom in a modified gravity model (typically
light scalar fields), by making their mass dependent on the local density. This results in a scalar field whose
mass is large inside the Solar System where the average density is high and is thus difficult to create in
collider experiments, but has a lighter mass in the intergalactic medium where the density of matter is
lower. Typically, this is achieved using a scalar field whose action is of the form:

S = Sm(ψ(m),Ω
−2(φ)gμν)

+

∫
d4 x

√
−g

[
1

16πG
R − 1

2
∇μφ∇μφ− V(φ)

]
, (A.1)
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where gμν is the spacetime curvature, R is the Ricci tensor, V(φ) is the chameleon potential, and S(m) is the
matter action. Various choices of screening mechanism are possible with this action, but the chameleon
mechanism corresponds the following choice of the functions V(φ) (the interaction potential) and Ω(φ)
(which represents direct, non-minimal coupling between the chameleon field and gravity):

V(φ) =
Λ4+n

φn
, (A.2)

Ω(φ) = 1 − φ

M
. (A.3)

In this work, we will consider the case n = 1 for simplicity. One way to understand the effect of the Ω(φ)
term is to regard matter as coupling to the so called Jordan frame metric, g̃μν = Ω−2(φ)gμν , while the
chameleon field sees a different metric, gμν , which suggests quanta of the scalar field, if we were somehow
able to isolate them, would be observed to fall differently to normal matter (violating the equivalence
principle). One can either regard g̃μν as the ‘real’ metric, in which case φ has an unusual direct coupling to
gravity, or gμν , in which case all particles have a special coupling to φ via the function Ω(φ) appearing
wherever the metric does in the matter action, Sm. Ultimately what matters, however, is how objects will be
observed to move in the presence of this scalar field. Formally, we can obtain this from the geodesic
equation for the four-vector position Xμ = (t, X), since normal matter sees the metric g̃μν :

d2Xρ

dλ2
+ Γ̃ρ

μν

dXμ

dλ

dXν

dλ
= 0. (A.4)

If we regard gμν as the true metric, then the effect of the chameleon field is to add what appears to be a

fifth force, since when we take the Newtonian limit we can re-write Γ̃ρ
μν in equation (A.4) in terms of the

Newtonian potential, ΦN and Ω to obtain:

d2Xk

dλ2
= −∂kΦ+ ∂k log Ω(φ(X)) = −∂k(ΦN +ΦC), (A.5)

where ΦC = −logΩ(φ(X)) is an effective fifth-force potential. The strength of this fifth force is
characterised by Ω, but to compute its effects we need to know how the scalar field couples to matter.
Varying equation (A.1) with respect to φ we obtain:

∇μ∇μφ− V ′(φ) − d log Ω(φ)

dφ
gμνTμν = 0, (A.6)

where Tμν is the Hilbert stress energy tensor. For non-relativistic matter, the scalar field is sourced by the
local matter density, with gμνTμν = −ρ, giving

∇μ∇μφ− V ′(φ) +
d log Ω

dφ
ρ = 0. (A.7)

This is equivalent to the scalar field interacting via the potential:

Veff(φ) = V(φ) − log Ω(φ)ρ. (A.8)

If we use the form in equation (A.3), then for cases where φ � M, we can approximate logΩ(φ) as:

log Ω(φ) ≈ − φ

M
. (A.9)

Under this approximation, the effective scalar field potential becomes

Veff(φ) = V(φ) +
φρ

M
. (A.10)

and the chameleon fifth force potential is:

Φcham(X) = − log Ω(φ(X)) ≈ φ(X)

M
. (A.11)

For the purposes of this work, we will consider the n = 1 chameleon field. In a region with constant mass
density ρbg, this means that the chameleon rests at the vacuum value:

φbg =

√
MΛ5

ρbg
, (A.12)
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for which fluctuations of the field have mass:

m2
bg(ρbg) = V ′′

eff(φbg) = 2

√
ρ3

bg

M3Λ5 . (A.13)

As expected, the mass of field fluctuations increases with the background density, which means in areas of
comparative high density such as inside the Solar System9, the mass is large and the scalar field difficult to
excite and detect.

A.1. Chameleon field from a spherical source
The chameleon field in the vicinity of a spherical source of mass MS and radius RS can be computed by
solving the Klein–Gordon equation,

d2φ

dr2
+

2

r

dφ

dr
− V ′

eff(φ) = 0. (A.14)

This is a non-linear equation, but an approximate solution was found by Burrage et al [33] in the limit
mbgRS � 0. This is valid for the atoms considered there, but in our case we may need to consider larger
sources. We therefore repeat the derivation of Burrage et al [33] for the case of arbitrary mbgRS. The
fundamental strategy uses the method of asymptotic matching [137] to derive an approximate solution for
the full domain of the differential equation, by smoothly matching together solutions valid in different
domains.

In the strongly perturbing case (ρSR2
S > 3Mφbg/(�c)), the solution reaches its equilibrium value, φS, for

density ρS at some radius S � RS. We denote the region with r < S the interior region, or region I. The
solution there can thus be approximated as constant

φI(r) = φS. (A.15)

There is then a transition layer (region II) between S < r < RS where the solution rapidly shifts towards the
background value, φbg. Since the density ratio between the source-sphere and the external vacuum is high,
we will find φbg � φS as a result of equation (A.12). In the transition layer (S < r < RS), the field will begin
to increase, eventually reaching a regime where φ � φS. Because we can re-write equation (A.10) as

Veff(φ) =
ρφ

M

[
φ2

S

φ2
+ 1

]
, (A.16)

then once φ � φS the density-dependent term dominates the potential. Under such conditions,
V ′

eff(φ) ≈ ρ/M and we can solve equation (A.14) analytically:

φII(r) =
MS

8πMRS

r2

R2
S

+
C

r
+ D. (A.17)

Finally, far away from the source sphere, φ is close to its background value, φbg, and we can approximate the
potential as quadratic: Veff(φ) ≈ m2

bg(φ− φbg)2/2. The solution there takes the form

φIII(r) = φbg +
E

r
e−mbgr +

F

r
e+mbgr. (A.18)

Here, region III is defined as r > RS. Note that although φ � φS outside the sphere, equation (A.17) does
not apply because the density outside the sphere is now ρbg which is typically much smaller than ρS: the
density dependent term in the potential is thus no longer dominant outside the source. We note, however,
that solutions φII and φIII are technically only valid in the vicinity of r ∼ RS and r � RS respectively.
However, we can approximate the behaviour of the fully-non-linear solution for all r by matching these
asymptotic solutions at S and RS, which imposes four constraints to ensure smoothness of the
asymptotically matched solution: φI(S) = φII(S),φ′

I(S) = φ′
II(S),φII(RS) = φIII(RS),φ′

III(RS) = φ′
III(RS). We

also note that we require F = 0 to have a solution approaching φbg as r →∞, which means that there are
four unknowns, C, D, E, and the radius S. We solve for these four unknowns, finding

C =
MS

4πM

S3

R3
S

, (A.19)

9 Compared to the average density inside a cosmological void.
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D = φS −
3MSS2

8πMR3
S

, (A.20)

E = − MS

4πM(1 + mbgRS)

(
1 − S3

R3
S

)
embgRS , (A.21)

where S satisfies

S2
S

R2
S

+
2

3

[
1

1 + mbgRS
− 1

]
S3

S

R3
S

= 1 − 8πM

3MS
RS(φbg − φS) +

2

3

[
1

1 + mbgRS
− 1

]
. (A.22)

Taken together, equations (A.19)–(A.21) and (A.22) imply equation (12), and reduce to the Burrage et al
[33] result in the case mbgRS → 0 limit. As a cubic equation for S, it is of limited use to express S in closed
form, and for the purposes of this work we solve equation (A.22) numerically. This can run into
catastrophic cancelation problems, due to the finite floating-point precision, when S ≈ RS (that is, the
heavily screened regime), since we need to compute 1 − S3/R3

S. Hence, when the numerical solution gives
S/RS close to 1, we switch over to an analytic approximation obtained by substituting S/RS = 1 + ε and
solving for ε to first order. This gives

ε = −4πM

3MS
RS(φbg − φS)(1 + mbgRS), (A.23)

which implies

1 − S3

R3
S

≈ 4πM

MS
RS(φbg − φS)(1 + mbgRS). (A.24)

We see that equation (A.24) agrees with the Taylor expansion of equation (14) in the mbgRS → 0 limit.

Appendix B. Time dependence of a chameleon field

The main result of this work is that an oscillating optomechanical system can be used to detect the presence
of chameleon fields. However, throughout we have made the assumption that such a field responds
essentially instantaneously to the motion of the mass that sources it. For purely gravitational effects this
assumption is justified since information about the position of the source mass propagates outwards at the
speed of light. However, the situation is less clear for a scalar field sourced by a moving mass, since the field
is massive: there is no a priori guarantee that information can propagate outwards at the speed of light. To
address this, we derive the propagator for a chameleon field sourced by a point mass and demonstrate that
the resulting retarded chameleon potential can be treated as if information propagates instantaneously, for
non-relativistic oscillating masses.

B.1. Time dependence of the gravitational potential
First, we will derive the response of the gravitational field to a small mass, neglecting back-reaction and
gravitational wave emission as negligible. In the linearised limit which allows us to make contact with
Newtonian gravity, the metric perturbation hμν around ημν satisfies:

∂σ∂νhσ
μ + ∂σ∂μhσ

ν − ∂μ∂νh − ∂λ∂
λhμν

− ημν∂ρ∂λhρλ + ημν∂λ∂
λh = 16πGTμν , (B.1)

where we are using the −+++ metric convention. We choose the Lorenz gauge, defined by the condition
∂μhμν = 1

2∂
νh, which simplifies this to:

∂λ∂
λh̄μν = −16πGTμν , (B.2)

where h̄μν = hμν − 1
2 hημν is the trace-reversed perturbation. A generic expression for the Hilbert stress

energy tensor is:

Tμν = − 2√
− det g

δSm

δgμν
, (B.3)

where Sm is the matter action. For a point particle of mass MS, the appropriate matter action is:

Sm = MS

∫
dτ

√
−gμν q̇μq̇ν , (B.4)

22



New J. Phys. 24 (2022) 033009 S Qvarfort et al

where qμ(τ ) describes the particle trajectory and dots denote differentiation with respect to proper time, τ
(the variation with respect to qμ yields the geodesic equation, verifying that this is indeed the action we
seek). This means that the stress–energy tensor at position X for a point particle following trajectory q(τ)
is:

Tμν =
MSq̇μq̇νδ(3)(X − q(τ))√
− det g

√
−gαβ q̇αq̇β

. (B.5)

For low (non-relativistic) velocities in a Minkowski background this means T00 = MSδ
(3)(X − q(τ)) = ρ, as

we would expect, with all other components zero. Note that we are ignoring any back-reaction on this
moving particle, which would give only higher order corrections. Taking the trace of equation (B.2) yields:

∂λ∂
λh = −16πGρ, (B.6)

which is the same equation satisfied by h̄00, and so we have h = h̄00 (note the sign—ημν h̄μν = −h, but
ημνTμν = −ρ). Meanwhile, ∂λ∂λh̄ij = 0 as there are no spatial parts of Tμν . This describes propagating
gravitational waves, which we neglect, and can be safely set to zero. Thus, we need only solve equation (B.6),
which has a known solution in terms of a retarded potential:

h = 4G

∫
d3X′

ρ
(

t − |X−X′|
c , X′

)
|X − X′| . (B.7)

For the point source with density ρ(X, t) = MSδ
(3)(X − q(t)), this means:

h(X, t) =
4GMS

|X − q(tret)|
, (B.8)

where tret is the retarded time that solves:

tret = t − |X − q(tret)|
c

. (B.9)

Note, comparing with the standard perturbative parameterisation of the metric:

ds2 =− dt2(1 + 2Φ) + wi(dxi dt + dt dxi)

+ [(1 − 2Ψ)δij + 2sij]dxi dxj, (B.10)

we see that Φ = −h/4, or in other words:

Φ(X, t) = − GMS

|X − q(tret)|
, (B.11)

which is the retarded gravitational potential for a point source of mass M, as we would expect. Note that
this is well defined (in the Lorenz gauge), as it is not derived from energy considerations but from the
equation of motion of the metric perturbation.

B.2. Time dependence of the chameleon field
The evolution of the scalar field is significantly more complicated, due to the fact that it satisfies a highly
non-linear equation of motion, equation (A.6). However, provided the source mass is not large then we can
consider small deviations from the background value φbg and linearise the equation:

∂λ∂
λΔφ−

m2
bgc2

�2
Δφ =

Δρ(X, t)

M
, (B.12)

where Δφ = φ− φbg and Δρ is the deviation from ρbg that sources the field deviation. This is the
Klein–Gordon equation with mass mbg, but with a source on the right hand side. To solve this, we need to
make use of the retarded propagator of the Klein–Gordon equation [138]:

Gret(X, Y) =
Θ(X0 − Y0)

2π
δ(τ 2(x, Y)) (B.13)

−Θ(X0 − Y0)Θ(τ 2(X, Y))
mbgcJ1(mbgcτ(X, Y)/�)

4π�τ(X, Y)
,

τ(X, Y) =
√

c2(X0 − Y0)2 − (X − Y)2. (B.14)
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Here, J1 is a Bessel function of the first kind. Note that we choose the retarded, rather than advanced or
Feynman propagator here in order to ensure that the field responds causally to the movements of the
source. The general solution of equation (B.12) is

Δφ(X) =

∫
d4X′Δρ(x′)

M
Gret(X, X′). (B.15)

For our point particle, the density deviation is

Δρ(X, t) = MSδ
(3)(X − q(t)). (B.16)

The corresponding solution is thus:

φ(X, t) = φbg +
MSc

M

∫
dt′

[
θ(t − t′)

2π
δ(c2[t − t′]2 − |X − q(t′)|2)

− θ(t − t′)θ(c2[t − t′]2 − [X − q(t′)]2)
mbgcJ1(mbgc

√
c2(t − t′)2 − |X − q(t′)|2/�)

4π�
√

c2(t − t′)2 − |X − q(t′)|2

]
. (B.17)

We use the formula:

δ(f (X)) =
∑

i

δ(X − Xi)

|f ′(Xi)|
, (B.18)

where Xi are solutions of f(Xi) = 0. In the q constant case, it is easy to see that there are two solutions,
t′ = t ± |q − X|, but only the negative solution matters, due to the θ(t − t′) term (this is the causal effect of
the retarded propagator, and ensures that we only integrate over contributions from the past of the time t
we are looking at). In the case where q is time dependent, solving (t − t′)2 − |X − q(t′)|2 = 0 is less trivial,
but still results in a unique retarded time, tret, exactly the same quantity that is well known from
electrodynamics. To see that it is unique, consider that tret is by definition the time at which light arriving at
an observer at time t was emitted by the source. Assume there are two such times, t1, t2. We have
(temporarily putting back the factors of c for clarity) c(t − ti) = |q(ti) − X|, and can subtract these two
equations from each other to obtain c(t2 − t1) = |q(t1) − X| − |q(t2) − X|. This implies that the distance of
q from X has changed at the speed of light—not possible unless the source itself is moving at the speed of
light. Thus, for sub-luminal sources, tret is unique10. Hence:

δ(c2[t − t′]2 − |X − q(t′)|2) =
δ(t′ − tret)

2(c2(tret − t) + (X − q(tret)) · v(tret))

= − δ(t′ − tret)

2c|X − q(tret)|
(

1 − (X−q(tret))
|X−q(tret)| · v(tret)/c

) , (B.19)

where we have used equation (B.9) and v(t) is the velocity of the source. Thus, the first part of the integral
reduces to:

I1 = − MS

4πM|X − q(tret)|
(

1 − (X−q(tret))·v(tret)
|X−q(tret)|c

) . (B.20)

This is indeed exactly the same as the expression found in electrodynamics, where the propagating field (the
photon) is massless, and thus the second term in equation (B.17) is not present. In our case, however, we
have to deal with the massive part of the integral too:

I2 = − cMS

4πM

∫
dt′ θ(t − t′)θ(c2[t − t′]2 − |X − q(t′)|2)

(
mbgcJ1(mbgc

√
c2(t − t′)2 − |X − q(t′)|2/�)

�
√

c2(t − t′)2 − |X − q(t′)|2

)
.

In this case, the effect of the two Heaviside step functions is to force us to integrate over the past, up to the
retarded time:

I2 = − cMS

4πM

∫ tret

−∞
dt′

mbgcJ1(mbgc
√

c2(t − t′)2 − |X − q(t′)|2/�)

�
√

c2(t − t′)2 − |X − q(t′)|2
. (B.21)

Now, make the substitution:

u =
mbgc

�

√
c2(t − t′)2 − |X − q(t′)|2, (B.22)

10 Actually, there is still a solution for tadv > t, but this is eliminated due to the causal θ(t − t′) function.
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t′(u) = t − �

c2mbg

√
u2 +

m2
bgc2

�2
|X − q(t′(u))|2, (B.23)

du =
mbgc[c2(t′ − t) + (X − q(t′)) · v(t′)]

�
√

c2(t − t′)2 − |X − q(t′)|2
dt′, (B.24)

to obtain:

I2 = +
mbgcMS

4πM�

∫ ∞

0
du

J1(u)√
u2 + m2

bgc2|X − q(t′(u))|2/�2 − [X − q(t′(u))] · v(t′(u))mbg/�
. (B.25)

This would not seem to offer a significant simplification, unless we adopt the low-velocity approximation,
|v0|/c � 1. The second term in the denominator is O(v/c), so we can in general neglect it (note that
|X − q(t′)|/c is not in general small as X can be arbitrarily far from the source). We can also expand
|X − q(t′(u))|2 as a power series in u around the retarded time, tret = t′(0):

|X − q(t′(u))|2 = |X − q(tret)|2 +
d|X − q(t′)|2

dt′

∣∣∣∣
t=tret

dt′

du
u +

d2t′

du2

d|X − q(t′)|2
dt′

∣∣∣∣
t′=tret

u2

2

+

(
dt′

du

)2 d2|X − q(t′)|2
dt′2

∣∣∣∣
t′=tret

u2

2
+ O(u3). (B.26)

We find:

d|X − q(t′)|2
dt′

= −2(X − q(t′)) · v(t′),
d2|X − q(t′)|2

dt′2
= 2|v(t′)|2 − 2(X − q(t′)) · dv′

dt′
, (B.27)

dt′

du
=

�
√

c2(t − t′)2 − |X − q(t′)|2
mbgc[c2(t′ − t) + (X − q(t′)) · v(t′)]

, (B.28)

d2t′

du2
=

�

mbgc
√

c2(t − t′)2 − |X − q(t′)|2

(
dt′

du

)

− �
√

c2(t − t′)2 − |X − q(t′)|2

mbgc
[
c2(t′ − t) + (X − q(t′)) · v(t′)

]2 ×
[

c2 − |v(t′)|2 + (X − q(t′)) · dv(t′)

dt′

]
dt′

du
.

(B.29)

And evaluated at u = 0 (or t′ = tret), this gives:

d|X − q(t′)|2
dt′

∣∣∣∣
t′=tret

= −2(X − q(tret)) · v(tret), (B.30)

d2|X − q(t′)|2
dt′2

∣∣∣∣
t′=tret

= +2|v(tret)|2 − 2(X − q(tret)) · dv′

dt′

∣∣∣∣
t′=tret

, (B.31)

dt′

du

∣∣∣∣
u=0

= 0, (B.32)

d2t′

du2

∣∣∣∣
u=0

=
�

2

m2
bgc2

[
c2(tret − t) + (X − q(tret) · v0(tret))

] . (B.33)

Hence:

|X − q(t′(u))|2 = |X − q(tret)|2 −
�

2(X − q(tret)) · v(tret)

m2
bgc2

[
c2(tret − t) + (X − q(tret) · v(tret))

]u2 + O(u3).

We substitute in equation (B.9) to obtain

|X − q(t′(u))|2 = |X − q(tret)|2 +
�

2 (X−q(tret))
|X−q(tret)| · v(tret)/c

m2
bgc2

[
1 − (X−q(tret))

|X−q(tret)| · v(tret)/c
]u2 + O(u3).

25



New J. Phys. 24 (2022) 033009 S Qvarfort et al

The u2 term is proportional to v/c once SI units are restored and so we can ignore it in the non-relativistic
limit. Generally speaking, higher order terms in the expansion about u = 0 will also have terms
proportional to v/c � 1, so we neglect them11. This reduces the integral to:

I2 = +
MSmbgc

4πM�

∫ ∞

0
du

J1(u)√
u2 + m2

bgc2|X − q(tret)|2/�2

= +
MS

4πM|X − q(tret)|
(

1 − e−mbgc|X−q(tret)|/�

)
. (B.34)

Combining this with equation (B.20), again in the v � c limit, gives:

Δφ(X, t) = − MS

4πM|X − q(tret(X, t))|e
−mbg|X−q(tret(X,t))|. (B.35)

This is the expected Yukawa potential, only with the retarded time for the position of the source. It is worth
noting that the fact that the force carrier (in this case the scalar bosonic chameleon field excitations) is
massive does not appear to affect the retarded time, which describes information propagating through the
field at the speed of light, even though the bosons themselves do not. The fact that the retarded time
appears, both here and in electrodynamics, is not because the force carriers themselves (photons in the case
of electrodynamics) travel at the speed of light—it is due to the causal structure of space–time itself.

B.3. Screening by the optomechanical probe
Burrage et al [33] derived an expression for the force between two extended spheres due to a chameleon
field. However, their approach considered the forces between individual atoms, for which the range of the
force could largely be ignored (corresponding to the mbgr � 1 limit). With the larger sensor devices we
consider in this work this is not necessarily applicable. Furthermore, since in this case we envision an
oscillating source, we need to be certain that time-dependent effects do not come into play. For this reason,
we re-derive the force between two spheres without the static spheres and mbgr � 1 assumption. The
derivation closely follows that of Burrage et al [33], with the assumption of a spherical probe to provide a
simplification (more accurate modelling of the optomechanical probe will in principle be necessary for
performing the actual experiment).

As in Burrage et al [33], we denote the source sphere A and the test sphere (B) for which we are
computing the force (as a model for the optomechanical probe). The force is determined by the rate of
change of the momentum resulting from the energy momentum flux across the surface of ball B:

Fi = Ṗi = −
∫
∂B
τ

j
i nj dS, (B.36)

where τ
j
i are the spatial components of the energy momentum tensor (including gravity), ∂B is the surface

of ball B, nj the surface normal vector and dS the surface area element. The gravitational and matter
contributions to the energy momentum tensor follow as in Burrage et al [33], with the main change being
to the chameleon field term:

T(φ)j
i = −∇iφ∇jφ+ δ

j
i

(
1

2
∇μφ∇μφ+ V(φ)

)
. (B.37)

The chameleon field at position X and time t with X centred on ball B is given by

φ(X, t) = φbg + φA(X, t) + φB(X) = φbg −
ξAMA

4πM(1 + mbgRA)

e−mbg(|X−XA(t)|−RA)

|X − XA(t)|

− ξBMB

4πM(1 + mbgRB)

e−mbg(r−RB)

r
, (B.38)

where r = |X| and where the prefactors ξA and ξB are given by

ξi =

⎧⎪⎨
⎪⎩

1, ρiR
2
i < 3Mφbg,

1 − S3
i

R3
i

, ρiR
2
i > 3Mφbg.

(B.39)

11 One can argue that this must be true for the solution to reduce to the static Yukawa potential in the v → c limit.
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Note that that we have assumed the linear regime, where the fields from the two chameleon sources add.
The gradient of the contribution φB(x) from ball B is given by

∇iφB =
ξBMB

4πM

1

r2

(1 + mbgr)

(1 + mbgRB)
e−mbg(r−RB)∇ir =

ξBMB

4πM

Xi

r3

(1 + mbgr)

(1 + mbgRB)
e−mbg(r−RB). (B.40)

The chameleon stress–energy tensor is therefore given by

T(φ)j
i = −

(
∂iφA +

ξBMB

4πM

Xi

r3

(1 + mbgr)

(1 + mbgRB)
e−mbg(r−RB)

)
×

(
∂ jφA +

ξBMB

4πM

Xj

r3

(1 + mbgr)

(1 + mbgRB)
e−mbg(r−RB)

)

+ δ
j
i

[
1

2

(
∂kφA +

ξBMB

4πM

Xk

r3

(1 + mbgr)

(1 + mbgRB)
e−mbg(r−RB)

)

×
(
∂kφA +

ξBMB

4πM

Xk

r3

(1 + mbgr)

(1 + mbgRB)
e−mbg(r−RB)

)
− 1

2
(∂t(φA + φB))2

]
, (B.41)

where, as Burrage et al [33], we ignore the contribution from the potential, V(φ). Note that Burrage et al
[33] assume the mbgr � 1 limit, which we generalise here to arbitrarily large r. To do this, we will make
only the assumption that |X|/|XA| � 1 on the surface of ball B, that is, that the radius of ball B is much
smaller than the distance to ball A. This means we can expand

|X − XA| ≈ |XA|
(

1 − X · XA

|XA|2
+ O(|X|2/|XA|2)

)
. (B.42)

We can then expand the derivative of the field from sphere A as

∂iφA =
ξAMA

4πM|XA|2
(1 + |XA|mbg)

(1 + mbgRA)
exp

(
−mbg(|XA| − RA) +

mbgX · XA

|XA|
+ O(|X|2/|XA|2)

)

×
[
− XAi

|XA|
+ Xj

(
δij

|XA|
− 3XAiXAj

|XA|3
+

mbgXAiXAj

(1 + |XA|mbg)|XA|2

)
+ O(|X|2/|XA|2)

]
, (B.43)

where we have deliberately not expanded the exponential in |X|/|XA|. This is because we cannot generally
assume that mbg|X| � 1 (though we will examine this limit later).

We are seeking to perform an integral of the form

−
∫
∂B

dS T(φ)j
i nj. (B.44)

First, use the fact that ∂tφB = 0 (we are in the frame of reference of B, so all time dependence is in the
motion of ball A). The time derivative of the field is

∂tφA =
ξAMA

4πM

(X − XA) · (−vA)

|X − XA|3
(1 + mbg|X − XA|)

(1 + mbgRA)
e−mbg(|X−XA|−RA) = −vi

A∂iφA, (B.45)

which can be written in terms of the spatial derivative because the time dependence only appears through
XA, which always appears together with X in the form |X − XA|. This allows us to simplify the expression
for the stress–energy tensor:

T(φ)j
i ≈

(
−δk

i δ
jl +

δ
j
iδ

kl

2

)
(∂kφA + ∂kφB)(∂lφA + ∂lφB) − δ

j
i

2
vk

Av
l
A∂kφA∂lφA. (B.46)

We therefore find that the integral splits into three parts:

−
∫
∂B

dS T(φ)j
i nj = IAA + IAB + IBB, (B.47)

IAA =

(
δ(k

i δ
l)j − δ

j
i

2
[δkl − vk

Av
l
A]

)
1

RB

∫
∂B

dS Xj∂kφA∂lφA, (B.48)

IAB =

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
2

RB

∫
∂B

dS Xj∂kφA∂lφB, (B.49)

IBB =

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
1

RB

∫
∂B

dS Xj∂kφB∂lφB. (B.50)
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We can write

∂iφB||X|=RB =
ξBMB

4πM

Xi

R3
B

≡ QBXi, (B.51)

where we define

QB =
ξBMB

4πM

1

R3
B

. (B.52)

Similarly:

∂iφA = QA

(
−XAi + XjAij

) (1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|XA|−RA) exp

(
mbgX · XA

|XA|

)
, (B.53)

QA =
ξAMA

4πM

1

|XA|3
, (B.54)

Aij =

[
δij −

3XAiXAj

|XA|2
+

mbgXAiXAj

(1 + mbg|XA|)|XA|

]
. (B.55)

This means we can write the three integrals IAA, IAB, IBB as

IAA =

(
δ(k

i δ
l)j − δ

j
i

2
[δkl − vk

Av
l
A]

)
Q2

A

RB

[
XAkXAlBj(2mbg) − (XAkAlm + XAlAkm)Bjm(2mbg)

+ AkmAlnBjmn(2mbg)
] (1 + mbg|XA|)2

(1 + mbgRA)2
e−2mbg(|XA|−RA), (B.56)

IAB =

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
2QAQB

RB
(−XAkBil(mbg) + AkmBjml(mbg))

(1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|XA|−RA), (B.57)

IBB =

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
Q2

B

RB

∫
dS XjXkXl, (B.58)

where we have expressed everything in terms of the following integrals:

Bi(m) =

∫
dS Xi emX·XA/|XA|, (B.59)

Bij(m) =

∫
dS XiXj emX·XA/|XA|, (B.60)

Bijk(m) =

∫
dS XiXjXk emX·XA/|XA|. (B.61)

In fact, one can immediately see that IBB = 0, because the integral of a cubic polynomial vanishes over a
sphere: ∫

∂B
XiXjXk dS = 0. (B.62)

This follows from symmetry since the integrand is odd when X →−X and we integrate over the whole
sphere (one can also verify this directly by evaluating it in spherical polar co-ordinates).

To evaluate the remaining integrals in equations (B.59)–(B.61), we switch to polar co-ordinates.
Without loss of generality, we can arrange our co-ordinates at any time to be such that XA is along the z
axis, which simplifies the calculation. For Bi(m) we obtain

Bi(m) =

∫
Xi emz dS. (B.63)

We define our polar co-ordinates as

X = r sin θ cos ψ,

Y = r sin θ sin ψ,

Z = r cos θ. (B.64)

We can see immediately that B1 = B2 = 0 since

B1 ∝
∫ 2π

0
dψ cos ψ = 0, B2 ∝

∫ 2π

0
dψ sin ψ = 0. (B.65)
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We therefore only need to evaluate B3:

B3(m) = 2πR3
B

∫ π

0
dθ sin θ cos θ emRB cos θ =

4πRB

m2
(mRB cosh(mRB) − sinh(mRB)). (B.66)

We can summarise this as

Bi(m) = δi3
4πRB

m2
(mRB cosh(mRB) − sinh(mRB)), (B.67)

which generalises, for an arbitrary axis choice, to

Bi(m) =
XAi

|XA|
4πRB

m2
(mRB cosh(mRB) − sinh(mRB)). (B.68)

Next, we evaluate Bij(m). We can make similar arguments here to conclude that B13 = B23 = 0 (for the same
reason that B1 = B2 = 0). Furthermore:

B12 ∝
∫ 2π

0
sin ψ cos ψ = 0. (B.69)

Hence, all the cross-terms vanish, so this tensor is diagonal. The diagonals are:

B11 = R4
B

∫ 2π

0
dψ cos2 ψ

∫ π

0
sin3 θ emRB cos θ =

πRB

m3
(4mRB cosh(mRB) − 4 sinh(mRB)), (B.70)

B22 = R4
B

∫ 2π

0
dψ sin2 ψ

∫ π

0
sin3 θ emRB cos θ =

πRB

m3
(4mRB cosh(mRB) − 4 sinh(mRB)), (B.71)

B33 = 2πR4
B

∫ π

0
dθ cos2 θ sin θ emRB cos θ =

πR

m3
(−8mRB cosh(mRB) + 4(2 + m2R2

B) sinh(mRB)). (B.72)

This can be summarised as

Bij(m) = δij
πRB

m3
(4mRB cosh(mRB) − 4 sinh(mRB))

+ δi3δj3
πRB

m3
(−12mRB cosh(mRB) + 4(3 + m2R2

B) sinh(mRB)), (B.73)

or, for a generic axis choice:

Bij(m) = δij
πRB

m3
(4mRB cosh(mRB) − 4 sinh(mRB))

+
XAiXAj

|XA|2
πRB

m3
(−12mRB cosh(mRB) + 4(3 + m2R2

B) sinh(mRB)). (B.74)

Finally, we can compute Bijk(m). First, note that this is a rank-3 symmetric tensor. Rank m symmetric
tensors in d dimensions have (m + d − 1)!/(d − 1)!m! independent components, which for d = 3 gives
(m + 1)(m + 2)/2. This means we have to compute ten independent components in total. However, as
before most are actually 0. Again, similar arguments to before imply B331 = B221 = B321 = 0. We also find
that:

B111 ∝
∫ 2π

0
dψ cos3 ψ = 0,

B222 ∝
∫ 2π

0
dψ sin3 ψ = 0,

B112 ∝
∫ 2π

0
dψ cos2 ψ sin ψ = 0,

B221 ∝
∫ 2π

0
dψ sin2 ψ cos ψ = 0. (B.75)

There are, in fact, only three non-zero components:
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B333 = 2πR5
B

∫ π

0
dθ cos3 θ sin θ emRB cos θ

=
πRB

m4
(4mRB(6 + m2R2

B) cosh(mRB) − 12(2 + m2R2
B) sinh(mRB)). (B.76)

B311 = R5
B

∫ 2π

0
dψ cos2 ψ

∫ π

0
dθ cos θ sin3 θ emRB cos θ

=
πRB

m4
(−12mRB cosh(mRB) + 4(3 + m2R2

B) sinh(mRB)). (B.77)

B322 = R5
B

∫ 2π

0
dψ sin2 ψ

∫ π

0
dθ cos θ sin3 θ emRB cos θ

=
πRB

m4
(−12mRB cosh(mRB) + 4(3 + m2R2

B) sinh(mRB)). (B.78)

To summarise this, we note that only terms with at least one of i, j, k equal to 3 are non-zero. The other two
indices must then be a diagonal matrix. This means that we can write:

Bijk = δi3

[
δjk

πRB

m4
(−12mRB cosh(mRB) + 4(3 + m2R2

B) sinh(mRB))

+ δj3δk3
πRB

m4

(
4mRB(9 + m2R2

B) cosh(mRB)

− 4(9 + 4m2R2
B) sinh(mRB)

) ]
+ (all permutations). (B.79)

Or, using symmetrised index notation:

Bijk =
XA(i

|XA|

[
δjk)

πRB

m4
(−12mRB cosh(mRB) + 4(3 + m2R2

B) sinh(mRB))

+
XAiXAj)

|X|2A
πRB

m4
(4mRB(9 + m2R2

B) cosh(mRB) − 4(9 + 4m2R2
B) sinh(mRB))

]
, (B.80)

where for an arbitrary tensor, circular brackets around indices indicate the symmetrised indices:

M(i1 ...in) ≡
1

n!

∑
permutations

Mip1 ...ipn , (B.81)

where p1 . . . pn run over all permutations of 1 . . . n. For example:

M(ij) ≡
1

2
(Mij + Mji), (B.82)

M(ijk) ≡
1

6
(Mijk + Mikj + Mjki + Mjik + Mkij + Mkji). (B.83)

We can now proceed to substitute these into the expressions for IAA and IAB. First, we consider IAA, since this
term is argued to be zero by Burrage et al [33] in the mbgr � 0 limit. First, we can ignore the velocity
dependent terms, since we work in the non-relativistic limit where |vA| � 0 (we are using units where
c = 1). To gain some further understanding of the behaviour, let us consider the RB → 0 limit:

Bi(m) ≈ 4πXAi

3|XA|m3
(mRB)4 + O((mRB)6), (B.84)

Bij(m) ≈ δij
4π

3m4
(mRB)4 + O((mRB)6), (B.85)

Bijk(m) ≈ XA(i

|XA|

[
δjk)

4π

15m5
(mRB)6 +

XAjXAk)

|XA|2
8π

15m5
(mRB)6 + O((mRB)8)

]
. (B.86)
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This gives

IAA ≈
(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
Q2

A

RB

[
πXAkXAlXAj

6|XA|m3
bg

(2mbgRB)4 − πXAkAlj

6m4
bg

(2mbgRB)4 + O((2mbgRB)6)

]

× (1 + mbg|XA|)2

(1 + mbgRA)2
e−2mbg(|XA |−RA),

=

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
QAξAMA(1 + mbg|XA|)

4πM
e−mbg|XA|

[
8πmbgXAkXAlXAj

3|XA|

(
RB

|XA|

)3

− 8πXAkAlj

6

(
RB

|XA|

)3
]

× (1 + mbg|XA|)2

(1 + mbgRA)2
e−2mbg(|XA |−RA), (B.87)

IAB ≈
(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
2QAQB

RB

[
−4πXAk

3m4
bg

δil(mbgRB)4 + O((mbgRB)6)

]
(1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|XA|−RA)

=

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
QA

ξBMB

4πM
(1 + mbgRB)e−mbgRB

[
−8πXAk

3
δil

]
(1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|xA|−RA). (B.88)

This suggests that IAA is subdominant in this limit, provided:

QA

QB

(1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|XA|−RA) � RB

|XA|
. (B.89)

Then this means that we can essentially ignore the IAA term in the RB → 0 limit, which agrees with the
calculation of Burrage et al [33]. Furthermore, provided we stay in the limit in equation (B.89), then IAA

will always be suppressed relative to IAB. Generally speaking, this may not be the case, however, in which
case we would have to include the IAA term. For now, let us compute the force without this term, and just
include the IAB contribution:

Fi =

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
2QAQB

RB
(−XAkBjl(mbg) + AkmBjml(mbg))

(1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|XA|−RA). (B.90)

Let us evaluate each piece in turn:

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
XAkBjl(mbg) =

1

2
(δk

i δ
jl + δ

j
iδ

kl − δ
j
iδ

kl)XAkBjl

=
XAi

2
Bjj

= XAi
2πR3

B

mbg
sinh(mbgRB), (B.91)

where in the last line we simply add the non-zero diagonals, equations (B.70)–(B.72). The next piece is
slightly more complicated: (

δ(k
i δ

l)j − δ
j
i

2
δkl

)
AkmBjml(mbg) =

1

2
AimBmjj. (B.92)

Consider m = 1, 2, 3 in turn, and use co-ordinates where XA is along the z axis for simplicity. We find that
B1jj = B111 + B122 + B133 = 0, B2jj = B211 + B222 + B233 = 0 and the only non-zero component is
B3jj = B311 + B322 + B333, which is obtained by summing equations (B.76) and (B.77). Together this implies:

Bm33 = δm3
4πR2

B

m3
bg

(mbgRB cosh(mbgRB) − sinh(mbgRB)). (B.93)

In the same co-ordinates, we find

Ai3 = δi3

(
mbg|XA|

1 + mbg|XA|
− 2

)
, (B.94)
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which implies:

(
δ(k

i δ
l)j − δ

j
i

2
δkl

)
AkmBjml(mbg) = δi3

(
mbg|XA|

1 + mbg|XA|
− 2

)
2πR3

B

m2
bg

× (mbgRB cosh(mbgRB) − sinh(mbgRB)). (B.95)

We conclude that

Fi = QAQB

[
− XAi

4πR2
B

mbg
sinh(mbgRB) +

XAi

|XA|

(
mbg|XA|

1 + mbg|XA|
− 2

)

× 4πR2
B

m2
bg

(mbgRB cosh(mbgRB) − sinh(mbgRB)

]
(1 + mbg|XA|)
(1 + mbgRA)

e−mbg(|XA|−RA)

=
ξAξBMAMB

16π2M2|XA|3R3
B

(1 + |XA|mbg)

(1 + mbgRA)
e−mbg(|XA|−RA) ×

[
− XAi

4πR2
B

mbg
sinh(mbgRB) +

XAi

|XA|

(
mbg|XA|

1 + mbg|XA|
− 2

)

× 4πR2
B

m2
bg

(mbgRB cosh(mbgRB) − sinh(mbgRB)

]

= −GξAξBMAMBM2
P

2πM2|XA|2
(1 + |XA|mbg)

(1 + mbgRA)
e−mbg(|XA|−RA) XAi

|XA|

[
4π

mbgRB
sinh(mbgRB) −

(
mbg|XA|

1 + mbg|XA|
− 2

)

× 4π

m2
bg|XA|RB

(mbgRB cosh(mbgRB) − sinh(mbgRB)

]

= −GMAMB

|XA|2
2ξAξB

(
MP

M

)2 (1 + |XA|mbg)

(1 + mbgRA)
e−mbg(|XA|−RA) XAi

|XA|

[
1

mbgRB
sinh(mbgRB) −

(
mbg|XA|

1 + mbg|XA|
− 2

)

× 1

m2
bg|XA|RB

(mbgRB cosh(mbgRB) − sinh(mbgRB)

]
. (B.96)

Including the gravitational force, and moving to co-ordinates centred on ball A, we find:

F(r) = −GMAMB

r2

[
1 + 2ξAξB

(
MP

M

)2 (1 + |XA|mbg)

(1 + mbgRA)
e−mbg(|XA|−RA) f (mbgRB, mbg|XA|)

]
, (B.97)

where we have a form-factor function that modifies the force, given by

f (u, y) = (1 + u)e−u

[
sinh(u)

u
−

(
v

1 + v
− 2

)
1

v

(
cosh(u) − sinh(u)

u

)]
. (B.98)

This force has several peculiar features. Firstly, there appears to be a double-counting of the distance from
the centre of ball B to its surface (RB) featuring in the exponential suppression with distance. Note, however,
that this additional exponential arises from the screening affect of the probe itself, that is, its lack of
response to the chameleon field when the probe is itself large. Secondly, we note that if we computed the
force of ball B on ball A, we would not obtain a symmetric force of opposite sign. In other words, this force
appears to violate Newton’s third law, which on the face of it suggests that momentum is not conserved.
However, this is misleading, because the derivation takes into account the stress energy tensor not only of
the ball itself (τ (m)μν) but of the chameleon field (τ (φ)μν). Momentum should still be conserved if the
momentum of both the balls and the field are included in the calculation. This differs from the Newtonian
force derived by Burrage et al [33] since in the mbgRB � 1 limit the force is inverse-square, meaning that
Newton’s shell theorem applies; a sphere should exert the same inverse-square force as an equivalent point
mass. But this does not apply to Yukawa potentials, implying that the chameleon force does not obey the
strong equivalence principle (in addition to the explicit violation of the weak equivalence principle due to
the force being density-dependent). In any case, the form factor f is typically close to 1 (it is equal to 1 in the
mbgRB � 1 limit), so can in most cases be neglected.
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Appendix C. Derivation of the sensitivity

The dynamics that arise for a moving source-mass was solved in references [96]. Resonant gravimetry and
enhancements from modulated optomechanical couplings were considered in [73]. We here outline the
solution and refer the reader to [73] for the full derivation.

C.1. Solution of the dynamics
The time-evolution that arises from the Hamiltonian in equation (5) can be written as

Û(t) = e−iFN̂a
N̂a e

−iF
N̂2

a
N̂2

a e
−iFB̂+

B̂+ e
−iFN̂aB̂+

N̂aB̂+ e
−iFB̂−

B̂− e
−iFN̂aB̂−

N̂aB̂− , (C.1)

where we have transformed into a frame that is rotating with the free optical evolution â†â, and where the
operators are given by

N̂2
a = (â†â)2,

N̂a = â†â, N̂b = b̂†b̂,

B̂+ = b̂† + b̂, B̂− = i(b̂† − b̂),

N̂aB̂+ = N̂a(b̂† + b̂), N̂aB̂− = N̂ai(b̂† − b̂). (C.2)

By differentiating Û(t) and equating the result with the Hamiltonian in equation (5), we can use the linear
independence of the Hilbert space to find the following coefficients [96]

FN̂a
= 2

xzpf

�

∫ t

0
dt′ V ′(xS(t′)) sin(ωmecht′)

∫ t′

0
dt′′ g(t′′) cos(ωmecht′′)

+ 2
xzpf

�

∫ t

0
dt′ g(t′) sin(ωmecht′)

∫ t′

0
dt′′ V ′(xS(t′′)) cos(ωmecht′′),

FN̂2
a
= −2

∫ t

0
dt′ g(t′) sin(ωmecht′)

∫ t′

0
dt′′ g(t′′) cos(ωmecht′′),

FB̂+
=

xzpf

�

∫ t

0
dt′ V ′(xS(t′)) cos(ωmecht′),

FB̂− =
xzpf

�

∫ t

0
dt′ V ′(xS(t′)) sin(ωmecht′),

FN̂aB̂+
= −

∫ t

0
dt′ g(t′) cos(ωmecht′),

FN̂aB̂− = −
∫ t

0
dt′ g(t′) sin(ωmecht′), (C.3)

where V ′(xS(t)) is a generic potential given in equation (5).

C.2. Derivation of the quantum Fisher information
In the case where we are estimating a linear mechanical displacement, Ĥθ can be decomposed into [72]

Ĥθ = BN̂a + C+B̂+ + C−B̂−, (C.4)

where the coefficients are given by

B = −∂θFN̂a
− 2FN̂aB̂−∂θFB̂+

,

C+ = −∂θFB̂+
,

C− = −∂θFB̂− . (C.5)

For an initially coherent state in the optical field and a thermal state of the mechanical element, as that
shown in equation (2), we have λn = tanh2n(rT)/cosh2(rT) and |λn〉 = |ζ〉 ⊗ |n〉. The QFI can then be
written as the following expression given the initially coherent state of the optical mode and thermal state of
the mechanical element shown in equation (2)

Iθ = 4 B2 |μc|2 + 4

(
C2
+ + C2

−
)

cosh(2rT)
. (C.6)
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We can then obtain the expressions in equations (31), (32), (34) and (35) by dropping the second term,
which we can assume to be much smaller than the first term, and taking the derivative of FN̂a

and FB̂+
for κ

and σ while assuming k(t) = k0 and k(t) = k0 cos(ωmecht), respectively.
We emphasise here that the reason that the time dependent Newtonian gravitational acceleration does

not appear in the result is due to the linearity of the derivative. Ultimately, a sensing scheme of this form
has a certain resolution, which we are able to compute from these results. In practice, the data must still be
analysed in order to distinguish between the Newtonian and the modified gravitational force, which we
discuss in section 7.
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