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Abstract
Novel ‘smectic-P’ behavior, inwhich self-propelled particles form rows andmove on average along
them, occurs generically within the orientationally ordered phase of simplemodels that we simulate.
Both apolar (head–tail symmetric) and polar (head–tail asymmetric)models with aligning and
repulsive interactions exhibit slow algebraic decay of smectic order with system size up to somefinite
length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation
instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the
rows in large systems andmotion and smectic ordermay spontaneously globally rotate. These
observations agree with a newhydrodynamic theorywhichwe present here. Variants of ourmodels
also exhibit active smectic ‘A’ and ‘C’ order, withmotion orthogonal and oblique to the layers
respectively.

1. Introduction

Activematter, bywhichwemean out of equilibrium systems that locally convert energy into directedmotion,
can potentially exhibit new phases not present in equilibrium systems. Even active phases that do have
equilibrium counterparts often behave quite differently from them, in both their fluctuations [1–7] andflow
properties [8–13].

All of thework just described and cited dealt with phases of active particles with orientational order, but no
translational order [14, 15].More recently, attention has turned to translationally ordered phases [16–22]. One
class of such phases is ‘active smectics’ [23, 24], which are out of equilibrium analogs of smectic liquid crystal
phases. In these phases, in addition to orientationally ordering, the particles spontaneously form regularly
spaced, liquid-like layers. That is, translational symmetry is broken in only one direction, while the systems
themselves are two- or three-dimensional.

This theoretical work focused on active analogs of the smectic-A phase, for which particle alignment is
perpendicular to the layers. These theories [23, 24] predicted in particular that smectic order is long-ranged in
d=3 dimensions and quasi-long-ranged (i.e., power-law correlated) in d=2, in strong contrast to the
equilibrium case, in which smectic order is only quasi-long-ranged [26] in d=3 and completely destroyed by
thermal fluctuations (i.e., short-range correlated) in d=2 [25]. This phenomenon—that is, activity stabilizing
order in low spatial dimensions inwhich it is absent in equilibrium—is similar to the ‘violation’ of the
Mermin–Wagner theorem that occurs in polar active fluids in two-dimensions (d=2) [1–3].

Prior to theworkwe report here, none of the predictionsmade in [23, 24] had been confirmed either in
experiments or simulations. For active particle systems, few striped patterns have been reported so far [17, 27–
29], and none have been studied quantitatively as smectic phases. (See, however, the shaken rice grain
experiments ofNarayanan et al [30].)
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In this paperwe report the generic emergence of active smectic order in simulations of very simple self-
propelled particlemodels, inwhich the alignment interactions of the familiar Vicsek [31]model are
supplemented by short-ranged repulsive interactions between particles. Suchmodels have been studied
[7, 22, 32], but not in the high density regimeswe consider here. Simulating both thismodifiedVicsekmodel and
an apolar (i.e., head–tail symmetric) version of it in d=2 space dimensions [6], we observe the development of
quasi-long-ranged smectic order over a range of length scales in part of the orientationally ordered phases
exhibited by thesemodels (see figure 1).When the repulsion is anisotropic (i.e., dependent on the angle between
the direction of particlemotion and the inter particle relative position vector), wefind also smectic-A (inwhich

Figure 1. Simulation results for isotropic repulsion. (a) Smectic order parameter S1 as a function of global density. Black squares:
apolarmodel with b = 0.2, s = 0.02; red triangles: polarmodel with b = 0.32, s = 0.04. (b) and (c) Smectic-P configurations for
the polarmodel with r = 100 , b = 0.05, s = 0.007 and the apolarmodel with r = 80 , b = 0.1, s = 0.01. Only a small portion of a
bigger system is shown. (d)Phase diagram in the ( )s b, plane for the apolarmodel with r = 80 . (e)Undulations for a system of size
L=400 in the apolarmodel r = 80 , b = 0.1, s = 0.01. Part of a configurationwith the y direction dilated for clarity. Arrows
indicate the slowmotion of the arches. (f) and (g) Scaling of smectic order parameters Snwith system size L. (f)The apolarmodel with
r = 80 , b = 0.1, s = 0.01 shows aweak algebraic decay of S1 (red circles) up to a critical system size »L 100c with S2

1 4 (red crosses)
and S3

1 9 (red oblique crosses) falling perfectly on top of S1 for L L ,c as predicted by the hydrodynamic theory. Above Lc scaling
breaks down due to the undulation instability. (g)The polarmodel with r = 100 , b = 0.05, s = 0.007 shows similar weak algebraic
decay at small  »L L 60NL . However for L LNL the results for S1, S2

1 4, and S3
1 9 start to diverge, and S1 decays faster than

algebraically.
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the layers are orthogonal to the particle alignment) and smectic-C order, inwhich the layersmake an acute angle
with the particle alignment (figures 2(a)–(c)). Both of these configurations also occur in equilibrium. But the
active smectic configurationwemost frequently observe, particularly with isotropic repulsion, is a new state of
activematter with no equilibrium counterpart that we call ‘smectic P’, inwhich the particle alignment is
primarily parallel to the layers (figures 1(b) and (c)). A pictorial summary of the polar and apolar smectic A andP
order is given infigure 3.

We deliberately refrain from calling the regions of smectic order we have found phases, since in all cases
studied, quasi-long-ranged smectic order disappears beyond somemodel-dependent length scale. This
disappearance of order is explained by comprehensive phenomenological theories of polar and apolar active
smectics that we present here. These theories predict that symmetry-allowed nonlinearities in the polar case
destroy smectic order at the longest length scales, and that a long butfinite wavelength ‘undulation’ instability
likewise disorders the apolar case. Both predictions agreewith our simulations.

Finally, we also report a number of spectacular collective dynamical phenomena, such as spontaneous global
rotation of both orientational and smectic order for some polar smectic P, and large-scale swirling structures in
polar smectic A,which await theoretical elucidation.

2. Simulations:models and results

2.1. Simulationmodels
Weconsider two classes ofmodels: in the polarmodel, particlesmove along an intrinsic heading vector, which
they align ferromagnetically with that of their neighbors. In the apolar (or nematic)model, particles align their
axeswith those of their neighbors, andmovewith equal probability in either direction parallel to this axis. In
both classes, we add to this alignment interaction (which is in competitionwith noise) pairwise repulsion
between neighbors.We consider both isotropic repulsion, inwhich the repulsion does not depend on the
angular position of neighbors with respect to the particleʼs intrinsic axis, and anisotropic repulsion, inwhich
it does.

More specifically, in the spirit of theVicsekmodel [31], we consider point particlesmoving at constant speed
v0. At discrete timesteps, the position ri of particle i ismoved along the unit vector

( ) ( ( ) ( ))q q+ = + +t t tu 1 cos 1 , sin 1i i i
T :

( ) ( ) ( ) ( )+ = + +t t v tr r u1 1 with, 2.1i i i0

( ) [ ( ) ( ) ( )] ( ) ( )q b s c+ = + +t t t t tA R1 arg , 2.2i i i i

where ( )c Î - p p⎡⎣ ⎤⎦t ,i 2 2
is an angular white noise drawn from auniformdistribution,σ is a parameter setting

the strength of the angular noise, and Ai and Ri are respectively ‘alignment’ and ‘repulsion’ vectors obtained
fromaverages over neighbors defined as those particles locatedwithin a distance rint., with the default interaction
range set to unity (i.e. =r 1int , see appendix F). The same unit rangewas chosen for both interactions for
simplicity.We have checked that taking different ranges does not qualitatively change themodelʼs behavior.

The twomodels are distinguished by their alignment interaction:
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where theNineighbors j include particle i, ( ) =t 1 for the polarmodel, while for the apolarmodel ( ) t is
randomly chosen to be±1 at each stepwith equal 50% probability. The repulsion vector Ri is identical for both
cases: it is the average over all neighbors of a pairwise force along r̂ji, the unit vector pointing fromparticle j to i.
Themagnitude of this repulsive force is the same for all neighbors in the isotropic case, while, in the anisotropic
case, it depends on ( · ˆ )f = u racosji i ji , the angular position of particle j relative to the axis of particle i
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Herewe only consider g = 0 and g = p
2
. For g = 0, repulsion is stronger ahead of and behind the particles,

whereas for g = p
2
it is stronger towards the left and right.
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2.2. Regions of smectic order
For b = 0, the polar and apolarmodels defined above respectively reduce exactly to theVicsekmodel [31] and
the active nematicsmodel of [6], which both have twomain parameters: the noise strengthσ and the global
mean number density r0. Thus,β, which controls the repulsion strength, is the only newparameter.We have
explored systematically the three-parameter space of ourmodels. As in the repulsion-free case, an orientational
order–disorder transition is found upon increasingσ and/or decreasing r0, in both the polar and the apolar

Figure 2.Anisotropic repulsion. (a)–(c)Configurationswith g = 0 (scale indicated by the bar). (a)Apolarmodel with a portion of a
smectic-C pattern (L=40, r = 200 , s = 0.005, b = 0.1) (b)Transient patternwith chevron structures in the polarmodel, due to
competition of differently tilted smectic-C patches. (L=24, r = 100 , s = 0.008, b = 0.128). (c)Portion of a final smectic-A
configuration (L=20, r = 120 , s = 0.05, b = 0.5). (d) and (e)Rotation of polar, smectic P (g = p

2
, L=40, r = 100 , s = 0.02).

(d)Time series for b = 0.04 ; top panel: orientation of polar (f) and smectic (fs) directors, the latter angle being shifted by p- 2;
bottompanel: density of defects. (e)Rotation speedΩ as a function ofβ. (f) Swirls of polar particles with anisotropic repulsion
(g = 0); color indicates direction ofmotion (L=48, r = 100 , s = 0.01, b = 1.3).
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case. Note that the coexistence phase of this transition, best described in the liquid/gas framework [33], is
essentially unobservable at such high-densities. Significant smectic order is only found for relatively high
densities ( r 80 ), inside the orientationally ordered phase (figure 1(a)).

We quantify this smectic order with smectic order parameters Sn, which are defined as

( ) ( )ºS I tq , , 2.5n n

where ( ) ∣ ( )∣rº á ñI t t Nq q, , 2 2, with r=N L0
2 the total number of particles, and ˆº nq zqn 0 , with

p
ºq

a

2

l
0 .

Here

( ) ( ) ( )·òr r= -t r tq r, d , e . 2.6q r2 i

is the spatial Fourier transformof the density, n is a non-zero integer, ẑ is themean normal to the layers, and al
the layer spacing, which is typically of the order of the interaction range, see appendix E.We hereafter restrict
ourselves to high average densities ( r 80 ) and low speeds ( –=v 0.2 0.30 ), and varyσ andβ.We use square
domains of linear size Lwith periodic boundary conditions, and consider only ‘zero-winding number’ smectic
configurations (see appendixG for details).

The polar and apolarmodels, whether with isotropic or anisotropic repulsion, share qualitatively similar
‘phase’ diagrams in the (β,σ) plane, whosemain features are shown infigure 1(d) for the apolarmodel with
isotropic repulsion.When both repulsion and noise strengthσ are sufficiently low, the systemdevelops
orientational order. Inside this region, a line starting at b s= = 0 andfinishing at bmax close to the
orientational order–disorder transition delimits a domain inwhich smectic order appears over a large, butfinite,
range of length scales (see appendix E,figure E1). The location of the boundaries of these regimes do not change
muchwith system size L, but themaximal levels of global smectic order generally decrease with increasing L
(whereas local smectic order remains strong).

The type of smectic order observed depends on themodel (table 1). For isotropic and anisotropic repulsion
with g = p

2
, a novel type of smectic order emerges that is not observed in equilibrium [34].We call this new type

of smectic order, inwhich the particle axes are parallel to the layers (figures 1(b) and (c) and 3(b) and (d)),
‘smectic P’.

Since repulsion between particles favors translational order, anisotropic repulsion favors anisotropic
translational order (i.e., layering). This implies, in particular, that when repulsion is stronger perpendicular to
the direction of particlemotion (as is the case for case g p= 2), the smectic P configuration just described is
preferred.

In our case, isotropic repulsion leads to the smectic P order, which also occurs, for the reasons just given, in
the explicitly anisotropic case g p= 2, for which repulsion is stronger to the left and right of the direction of
motion of the particles. This is because, in the isotropic case, particles do notmove away from those ahead of or

Figure 3.Pictorial illustration of the different types of smectic order. Red arrows indicate the dominant direction(s) of particlemotion
in each case. (a)Apolar smectic A. (b)Apolar smectic P.Note that this has the same symmetries (in particular, both up–down and left–
right inversion symmetry) as the apolar A. (c)Polar smectic A. This has lost up–down symmetry, but retains left–right symmetry. (d)
Polar smectic P. This has lost left–right symmetry, but retains up–down symmetry. It therefore is a distinct order from the polar A
order.
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behind them as effectively, since this requires speeding up or slowing down, which in the simplestmodel with
fixed speed they cannot do.We have confirmed that the P order is also favored for active particlesmodels with
variable speed [35], inwhich the speeds of the particles are allowed tofluctuate around the preferred speed v0 due
to the action of the various forces. In general, the additional anisotropy linked to the propulsion direction of self-
propelled particles effectivelymimics the effect of weaker repulsion in those directions.

For g = 0, repulsion is strongest in the front and back of particles, and onemight naively expect smectic-A
order. However, in the apolar case, this is in fact never observed. Instead, the left/right symmetry is
spontaneously broken, and the particles’ axes tip away from the layerʼs normal: a smectic Cwith
∣ ∣  pF - F 0.2S , whereΦ and FS denote respectively the angles of the particle axes and the layer normal (see
figure 2 (d)). Only in the polarmodel, after a possibly long transient duringwhich patches of smectic-C order
compete and form locally chevron-like structures, (figure 2(b)), does the system eventually reach a smectic-A
state (figure 2(c)).

2.3.Quasi-long-ranged order and large-scale phenomena
In all cases, defect-less smectic configurations are only observed in sufficiently small (albeit still quite large)
systems (see supp.mat.movies 1 and 2). Even in simulations that start from carefully prepared ‘perfect’ initial
configurations, spontaneous nucleation of dislocations and/or large-scale undulations occur beyond some
model-dependent lengthscale, whichwe call Lc (LNL) for the apolar (polar) case; themeaning of these names is
explained in the ‘hydrodynamic theory’ section below. For L less than this length scale, Sn shows either no decay,
or very slow algebraic decaywith L; the latter is what wemean by quasi-long-ranged smectic order. Formuch
larger systems, Sn decreasesmuch faster with L (figures 1(f) and (g)). For L Lc in the apolar case, the system
shows undulations of the smectic-P layers (figure 1(e)). Thewavelength of the undulations is well defined
asymptotically and typically large ( –~100 200). Note that this wavelength is of order of Lc. This undulation
pattern is not quite steady: its ‘arches’ slowlymove as indicated by the arrows infigure 1(e) and supp.mat.movie
3. This accompanied by the constant nucleation of dislocations in the sheared regions between arches. For
L LNL in the polar case, no undulation instability is observed. At large scales, polar smectics-P layers show

traveling fluctuations on all scales. In contrast to the apolar case, thesefluctuations never cohere into a regular
moving pattern that is stationary in a co-moving frame. Instead, the deviations continue evolving randomly in
time, and do not develop a single typical wavelength.Note that our theory predicts thatfluctuatingmodes with
the largest wavelength are expected to have the largest amplitude, whichmay produce the impression of a
transient regular patternwithwavelength of the order L 2 (supp.mat.movie 2).

Conspicuous by their absence in our simulations of both apolar and polar systems are the ‘giant number
fluctuations’ [1, 4, 7, 30] (see figure 4) observed [7, 30], and predicted by hydrodynamic theories [1, 7] in both
polar [1, 7] and apolar [4, 30]flocks with orientational, but no translational, order.

Wefinally report on two spectacular phenomena observedwith anisotropic repulsion. For polar smectics P
with g = p

2
, we observe a spontaneous breaking of the left/right symmetry in the formof global rotation of both

the particle axes and the smectic layers. For smallβ values, at fixed system size, rotationmay be intermittent and
may change sign in time (figure 2(d) and supp.mat.movie 4). But for sufficiently large systems, even an initially
prepared defect-free smectic-P configuration starts rotating either clockwise or counterclockwise with awell-
defined, steady angular velocityωwhich increases strongly withβ (figure 2(e)). Our observations of the
intermittent, slow-rotation regimes reveal that the polar orientation angleΦ is ‘driving’ rotation: the angle of
particle axes changes first, with FS, the angle of the layerʼs normal,fixed, lagging behind. The stress thus induced
on the smectic layers then generates dislocations, FS slips, and the defects annihilate. SinceΦ continues rotating,
this sequence continuously repeats itself.We note that we do not observe hopping of individual particles
between the layers; instead the observed global rotation corresponds to breaking of layers and reattaching to
neighboring layers, which leads to formation of dislocation lines travelling through the system (‘defect waves’,
supp.mat.movie 4).

Table 1.Type of smectic order (A,C, P) and large-scale phenomena
observed for polar and apolarmodels with isotropic and anisotropic

( )g = p0,
2

repulsion.

Repulsion: Isotropic g = p
2 g = 0

Polarmodel: P, travelling

fluctuations

P, rotation A, swirls

Apolarmodel: P, undulations P, undulations C

6

New J. Phys. 18 (2016) 063015 PRomanczuk et al



For the polar smectic-A, another spectacular phenomenon sometimes occurs for the largerβ values within
the smectic region: large-scale rotating ‘swirls’, made of a spiral, flower-like arrangement of smectic layers
(figure 2(g), and supp.mat.movie 5). In a periodic domain, a number of clockwise and counterclockwise swirls
may emerge, which experience some effective repulsion, leading to stable configurations of equal number of ‘+’

and ‘−’ swirls that coexist with the swirl-free one.

3.Hydrodynamic theory

Wenowdemonstrate thatmost of the above results arewell accounted for by hydrodynamic theories of active
smectics. The variables of the hydrodynamic theory are the field ( )u tr, giving the displacement of the layers
perpendicular to their unperturbed, uniformly spaced, parallel locations, and the number density ( )r tr, . The
latter is a slowhydrodynamic variable because of number conservation, while the former is theGoldstonemode
associatedwith the spontaneous breaking of continuous translational symmetry in the direction perpendicular
to the layers. The theory consists of a closed set of stochastic partial differential equations for the time evolution
of ( )u tr, and ( )r tr, , containing all terms at lowest order in a gradient expansion that are consistent with the
symmetries of the underlying dynamics and the broken symmetry state. Sincewe have two different broken
symmetries (polar and apolar smectic P), we have two sets of hydrodynamic equations.

3.1. Apolar smectic P
In two-dimensions, there is no symmetry difference between the smectic-P order found here and the apolar
active smectic-A phase treated in [23]: both are symmetric under separate inversions about the z axis (the normal
to the smectic layers) and about the x axis (along the layers). Hence the equations for this case are the same as
those developed in [23] for apolar active smectic A. They read

( )dr¶ = ¶ + ¶ - ¶ + ¶ +u B u D u K u C f , 3.1t z ux x x z u
2 2 4

( )dr dr dr¶ = ¶ + ¶ + ¶ ¶ + ¶ +r r rD D C u C u f , 3.2t x x z z x z x z z
2 2 2 3

where dr r rº - 0, and fu and fρ areGaussian, zero-mean, white noises with variances

( ) ( ) ( ) ( ) ( )d dá ¢ ¢ ñ = D - ¢ - ¢f t f t t tr r r r, , , 3.3u u u

( ) ( ) ( ) ( ) ( ) ( )d dá ¢ ¢ ñ = D ¶ + D ¶ - ¢ - ¢r r r rf t f t t tr r r r, , . 3.4x x z z
2 2

We set the cross-correlation ( ) ( )á ¢ ¢ ñ =rf t f tr r, , 0;u corrections to this can be shown to be ‘irrelevant’ in the
renormalization group sense of having no effect on the large distance, long time behavior of the system.HereB,
Dux,K, rD x, rD z ,C,Cx,Cz,Du,Drx, andDrz are all phenomenological parameters that cannot be determined by
symmetry arguments, butmust be deduced from experiments, simulations or a detailed kinetic theory.

In an equilibrium smectic, the Dux term in (3.1) is forbidden by rotation-invariance of the free energy. It is,
however, permitted here [36] simply because rotation-invariance at the level of the EOM, which is all one can
demand in an active system, does not rule themout. The physical content of this term is that layer curvature

Figure 4.Number fluctuations for apolar particles with nematic interactions and isotropic repulsion. These systems exhibit smectic-P
order for system sizes L Lc, and instability for L Lc. The critical system size for the parameters used here is »L 200c . In
contrast to both polar and apolar active fluids with orientational, but no translational, order, we observe no ‘giant number
fluctuations’: that is, we donot observe áD ñ µ áD ñan n2 2 with a > 1; rather, wefind conventional behavior (i.e., a = 1). Parameters:
r = 8, =v 0.3, s = 0.01, b = 0.1.
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produces a local vectorial asymmetrywhichmust lead to directedmotion of the layers, as this is a driven system.
A similar termoccurs in singlemembranes with ‘pumps’ [36, 37].

TheB term simply acts to keep the smectic layers equidistant, while theK term is a bendmodulus that tends
to keep them straight. The rest of the terms in (3.1) and (3.2) are present in equilibrium, although the

equilibrium requirement [38] that = r

r

C

C

D

D
x

z

x

z
does not hold in our non-equilibrium system.

There is no a priori symmetry argument that determines the sign of Dux . As shown in [23]when >D 0ux ,
smectic layerfluctuations are suppressed, leading to quasi-long-ranged smectic order in d=2, in contrast to the
short-ranged smectic order found in equilibrium [25].When <D 0ux , the perfect smectic state with constant

( )u tr, and ( )r r=tr, 0 is unstable against ‘undulations’, in which the layers wiggle in unison. This is easily seen
by Fourier transforming the (linear) equations ofmotion in space. For wavevectors q with =q 0z , ρ and u

decouple, leading to the growth rate ( )n = - -q D q Kqx ux x x
2 4. Assuming >K 0, all modeswith

∣ ∣< ºq q D Kx uxmax are unstable, with themost unstablemode being =q q 2c max .We show in
appendix A.1 that allowing ¹q 0z does not change this result: the instability always grows fastest along x. This is
precisely what our simulations show: undulations appear and grow along the layers, but only in systemswhose
extension Lx along this axis is large enough. Thisminimal size is of the order of the scale of the observed
undulations, whichwe identify with:

∣ ∣
( )p

pº =L
q

K

D

2
2 . 3.5

ux
c

max

Note that thewavelength of the undulations is of order Lc, but not necessarily equal to it, as it will ultimately be
determined by nonlinear, saturating terms neglected here.Wewill also use equation (3.5) to define a ‘critical
length scale’ in the stable case >D 0ux , as the scale beyondwhich active tension effects (which then suppress
fluctuations) become important.

We now analyze noise-induced fluctuations in our theory.We focus on the case inwhich Lc is large, the
positional noiseDu is small, and the density noises ( )Dr x z, are large, all of which, as we argue in appendix A.2, are
satisfied in our simulations. Herewe simply sketch the derivation of, and summarize, our results; details are
given in appendices A.3 andA.4.

We begin by spatiotemporally Fourier transforming the equations ofmotion (3.1) and (3.2) and solve the
resultant linear algebraic equations for the transformed fields ( )wu q, and ( )r wq, in terms of the random
forces ( )wf q,u and ( )wrf q, . Autocorrelating, and using (3.3) and (3.4) gives an expression for

( ) ∣ ( )∣w wº á ñC uq q, ,uu
2 . Integrating this over all frequenciesω gives the equal time correlation function

( ) ∣ ( )∣º á ñC u tq q,uu
ET 2 , fromwhichwe can in turn calculate equal-time real space correlation functions.
The correlations of uwe thereby obtain are related to the smectic order parameters. Recall that

( )ºS I tq ,n n , where ( ) ∣ ( )∣rº á ñI t t Nq q, , 2 2, with r=N L0
2 the total number of particles, and ˆº nq zqn 0 .

These Sn are sensitive tofluctuations of the displacement field u since a translation byDu clearly changes the
complex phase of ( )r tq ,n by Dnq u0 .We show in appendix A.4 that for the apolarmodel:

∣ ( )∣ ( )ò ò= - á D ñ
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥S

w

L
x z

n q
u rd d exp

2
, 3.6n

n
L L

2 0 0

2
0
2

2

where ∣ ( )∣ ∣ ( ) ( )∣á D ñ º á + ¢ - ¢ ñu u t u tr r r r, ,2 2 can be easily obtained by Fourier transforming ( )C quu
ET back

to real space, and thewnʼs are uninteresting constants given in equation (A.70). This calculation, given in detail
in appendix A.3, reveals the existence of two other important lengths in addition to Lc:

( )x x
p

º
D

º
¢

Dq

K

q

KB4 3
, and

16
, 3.7x

u
z

u0 0
2

3

2

with ¢ º - rB B CC Dx x. The resultant behavior of Snwith system size exhibits numerous crossovers, which
delimit five different regions of the ( )L D, ux plane, as summarized infigure 5:

Region I is defined by ∣ ∣ ºL L K Duxc and  xL x. Here the order parameters Sn decay algebraically with

L: µ h-S Ln
n

I
2
, with h

I
a non-universal exponent that is amonotonically increasing function of the noise

strengthsDrx andDrz .

Region II, inwhich L Lc and  x xLx z , is characterized by rather fast algebraic decay of Sn according

to µ h- - -S L nn
n1 2

I
2

.

Region III, defined by L Lc and  xL z , shows even faster decaywith L: µ - -S L nn
2 6. This corresponds to

purely short-ranged smectic correlations. the systembreaks up into decorrelated smectic regions offixed
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size whose number scales as L2; their contributions to the global order parameters Sn simply add randomly,
leading to the scaling µ µSn N L

1 1

r
2 .

Region IV, inwhich L Lc and >D 0ux , exhibits quasi long-ranged smectic orderwith µ h-S Ln
n

IV
2

, where
h

IV
is very close to, but different from h

I
(see equation (A.74)).

RegionV is defined by L Lc and <D 0ux . Here, the system is unstable against undulations, andwe
expect µ -S Ln

2.

Note that varying L, while keeping parameters fixed, will not necessarily explore all of these regions. For
example, a systemwith a sufficiently large inmagnitude, negative Dux (specifically, large enough that  xL xc ,
whichwould not have to be very large if the positional noiseDu is small, since then xx is large)will follow the
horizontal locus labeled ‘(1)’ infigure 5, andwill pass directly from regime I to the unstable regimeV. This is
precisely the scenariowe observe in our simulations of the apolarmodel. Our numerical results show that for
<L Lc, ( )S L1 , ( )S L2

1 4, and ( )S L3
1 9 coincide (figure 1(f)), which is in full agreementwith our theoretical

prediction in region I, inwhich Sn satisfy

( ) [ ( )] ( )µS L S L . 3.8n
n

1
2

For L Lc, ( )S L1 , ( )S L2
1 4, and ( )S L3

1 9 depart from each other (figure 1(f)), and the undulation instability
appears (figure 1(e)), which implies the system is in the unstable regionV. Asmentioned earlier, the slow drift
‘arches’ of the undulations in our simulations generates dislocations (figure 1(e)), which destroys the smectic
order. Thereforewe expect to see amuch faster algebraic decay of Snwith L in regionV than in region I. This is,
indeed, what we see, as shown infigure 1(f). Note also that theweak algebraic decay of Sn for L Lc observed in
our simulations is not that predicted in [23]. That prediction applied in region IV infigure 5, which is the region
of longest length scales in the stable case ( >D 0ux ).

3.2. Polar smectic P
Polar smectics P do have a different symmetry than polar smectic A, because themeanmotion parallel to the
layers (i.e., along the x-direction) breaks the  -x x symmetry. Adding to the original apolarmodel (3.1) and
(3.2) all x-inversion symmetry-breaking terms that are ‘relevant’, the hydrodynamic equations read7:

( )dr¶ = ¶ + ¶ + ¶ - ¶ + ¶ +u B u D u g u K u C f , 3.9t z ux x x x z u
2 2 3 4

Figure 5.Regions distinguished by the scaling behavior of smectic order parameters Snwith system size L and active tensionDux. Red
lines indicate the lengthscale Lc defined in themain text. In region I, defined by ∣ ∣p< ºL L K D2 uxc and  xL x , in the apolar

case, µ h-S L ;n
n I

2
in the polar case, Snʼs do not decay. In region II, defined by <L Lc and  x xLx z , both the apolar and polar

smectic P obeys µ h- - -S L nn
n1 2I

2
. In region III ( <L Lc and  xL z), both the apolar and polar smectic P obey µ - -S L nn

2 6: purely

short-ranged smectic correlations, as explained in themain text. In region IV ( L Lc and >D 0ux ) µ h-S Ln
n IV

2
for both the apolar

and polar cases. In regionV,which is L Lc and <D 0ux , both the apolar and polar smectics P are unstable, andwe expect
µ -S Ln

2. RegionVI, inwhich L LNL, only exists for the polar case.Here nonlinear effects become important, andmay induce
dislocations that destroy the smectic order. If they do, thenwe expect µ -S Ln

2 in this region as well. The horizontal dashed lines
above and below the L-axis are the path followed by increasing L atfixed parameters in our simulations of respectively the apolar
model (1, data shown infigure 1(f)) and the polarmodel (2, data shown infigure 1(g)).

7
Despite the absence of  -x x symmetry, there is no contribution to ¶ ut proportional to ¶ ux , since such a term violates rotational

invariance.
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( )
( ) ( ) [( ) ]

( ) ( ) ( )

dr dr dr dr

dr dr

dr

¶ = ¶ + ¶ + ¶ + ¶ ¶

+ ¶ ¶ ¶ + ¶ ¶ + ¶

+ ¶ ¶ + ¶ ¶ - ¶ +

r r r

r
⎡
⎣⎢

⎤
⎦⎥

v D D g u

g u u g u g

g u v u u f
1

2
. 3.10

t x x x z z x z

z x z z x x

x z x z x

2 2
2

2

3 4 5
2

6 2
2

The terms in these equations that are identical to those in (3.1) and (3.2)have the same physical origin as they did
there. The new terms (e.g., the g term), are present here, but not in the apolar case, because they violate  -x x
symmetry, which is not present in the polar case, but is present in the apolar case.

The noises fu and fρhave the same statistics (3.3) and (3.4) as before. As in the apolar case, the trivial ordered
solution undergoes a long-wavelength instability at zero noisewhen <D 0ux . The dispersion relation for =q 0z

modesnow reads ( )n = - - -q gq D q Kqix x ux x x
3 2 4.Hence the instability (which again is strongest for q along x̂)

has the same spatial structure as before, but propagates dispersively due to the g term,with phase velocity
( )= =v q q gq, 0p x z x

2.We thus expect (assuming as usual that nonlinear saturationdoes notmodify themode

structure) themost unstablemode to propagate at a speed vc given by =v vpc ( )
∣ ∣

= = = =q q q gq
g D

K
, 0

2x z
ux

c c
2 .

For >D 0ux , modes of anywavevector q are now stable, but each propagates along the layers with the phase
velocity ( )= =v q q gq, 0p x z x

2.We observe such propagation of fluctuations in our simulations (supp.mat.
movie 2).

Linearizing equations (3.9) and (3.10), we can calculate the behavior of the smectic order parameters Snwith
L exactly as we did in the apolar case. Details are given in appendix B; the result is that the active polar smectic P,
in this linear approximation, ultimately has the same crossover structure as that illustrated for the apolar case in
figure 5. The only difference is that h = 0

I
, which implies that in region I, the Snʼs, rather than falling off

algebraically with L, are essentially constant.
The above discussionwas based entirely on the linear approximation. Asmentioned earlier, the

nonlinearities in equations (3.9) and (3.10) are relevant (technically, ‘marginal’) in d=2.We therefore expect
that there exists a nonlinear length scale LNL, growing very rapidly (specifically, like ( )DnAexp , withA a non-
universal constant and ν a universal exponent thatwe have not yet determined)with decreasing noise strength
Δ, where byΔwemean a suitably weighted average of the noise strengthsD r ru x z, , , beyondwhich our theory is
not valid.What happens beyond LNL remains an open question, which can only be answered by a full
renormalization group analysis. Since such an analysis is quite formidable, we restrict ourselves to plausible
speculation. The relevant nonlinearitiesmaymake the systemmuch softer (i.e.,fluctuatemuchmore strongly) at
longwavelength, as in other similar dynamical problems (e.g., the two-dimensional KPZ equation [39]). Then
this softness will almost certainly lead to the unbinding of dislocations at the longest length scales L LNL, even
when Dux is positive. This would imply that all polar smectic-Pʼs would be disordered at the longest length
scales. Therefore, we expect both a breakdownof scaling law (3.8) and amuch faster algebraic decay of ( )S Ln

with L for L LNL. This adds another region tofigure 5:

RegionVI: for polar smectic Pwith L LNL, nonlinear effects become important, whichmay induce
dislocations and destroy smectic order.We expect ( ) µ -S L Ln

2.

This new region (VI)maynot exist for all polar smectics P. In active polar smectics A [24], nonlinear effects
of the same type (i.e., marginal in d=2) as those found here destroy smectic order at long length scales in some,
but not all, regions of parameter space.Whether this can happen for polar smectics P remains an open question.

These predictions and speculations are in good agreementwith our simulations, as illustrated infigure 1(g),
inwhichwe again plot ( )S L1 , ( )S L2

1 4, and ( )S L3
1 9. They lie on top of each other for small system size, as

predicted above for region I and IV. For large L they depart from each other and decaymuch faster: we interpret
the system size at which this happens as LNL. That is, these simulations are following the locus labeled ‘(2)’ in
figure 5. Apparently, the active tensionDux is so large that the locus does not enter into regions II and III.
However, unlike in the apolar case,Dux appears to be be positive here, sincewe observe no undulation instability.
Although, we emphasize, this is not a universal property of polar smectic-P order: it is entirely possible that
microscopicmodels different fromoursmay exhibit an undulation instability.

4. Summary anddiscussion

Wehave shown that active particlemodels which have both repulsion and alignment generically exhibit smectic
configurations for sufficiently large densities. This occurs in both apolarmodels, inwhich the particles are
equally likely tomove in either direction parallel to their body axes, and in polarmodels, inwhich there is a
preferred sign ofmotion along the axis.
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These results were obtainedwithVicsek-stylemodels, but we have checked that our conclusions also hold
for continuous-time Langevinmodels of the type studied in [35]; ergo, they are not artifacts of the discrete-time
updating. Depending on the symmetry of the particles and alignment, and on the anisotropy of the repulsion,
smectic order and various dynamical large-scale phenomena emerge, as summarized in table 1.

We have found that a new type of smectic arrangement ismost common in ourmodels: a state we call
‘Smectic P’, inwhich particle alignment (andmotion) is primarily parallel to the layers (figures 1(b) and (c)). This
smectic-P order is unique to active particles: states with the particle axes along the smectic layers have never been
seen in equilibrium.

In both the apolar and the polar cases, we observeweak algebraic decay of smectic order parameter ( )S Ln

with system size L for L smaller than some crossover length, andmuch faster algebraic decay for larger L. In the
apolar case we also observe an undulation instability in large systems, while in the polar case we do not.

To understand these phenomena, we havemodified the hydrodynamic theories of active smectics A
introduced in [23, 24] to treat both apolar and polar smectics P. The theory of apolar smectics P proves to be the
same as that for apolar smectics A; indeed, we interpret the instability we see as precisely the instability predicted
in the ‘negative active tension’ case in [23].We have, however, extended this theory of the apolar case to treat the
regime of system sizes L smaller than the instability length Lc.Wefind that two additional important length
scales smaller than Lc can also appear for small values of the ‘active tension’Dux, which is themost important
fundamentally non-equilibriumparameter in the hydrodynamic theory. This theory leads to the prediction of
thefive distinct regimes of behavior in (L D, ux) plane illustrated infigure 5.

The behavior that we observe in our simulations of the apolar case, as just summarized above, is entirely
consistent with this hydrodynamic theory for a systemwith sufficiently negative active tensionDux, such that,
with increasing system size L, our systemmoves along the locus labeled (1) in figure 5. Note that this instability
is not inherent to all apolar systems. Somemodels that have the same symmetries as ours, but that differ in
detail, may exhibit stable apolar phases. The hydrodynamic theory predicts that such a stable apolar system
will exhibit algebraically slow decay of smectic order out to arbitrarily large system size, at least for sufficiently
small noise.

The hydrodynamic theory of the polar phase predicts rather different behavior. In addition to the five regions
of the (L D, ux) plane, a sixth region appears, which includes all systems larger than yet another characteristic
length LNL (figure 5).We believe dislocationswill always appear in this region, andmake smectic order short
ranged.Our numerical results are consistent with this prediction for a systemwith large positive active
tensionDux.

Note that, just as not all apolar systems need be unstable, nor do all polar systems need to be stable. Some
polarmodels, different fromours, will probably exhibit an undulation instability of the typewe observe in the
apolar case, although, in the polar case, this instability be propagative.

We did not observe ‘giant’numberfluctuations, which are a signature of orientationally ordered but
translationally disordered phases [1, 4, 7, 30] (figure 4). But these simulations, because of their intrinsic
difficulty, were performed at sizes nevermuch larger than the characteristic lengths Lc or LNL.We cannot
exclude, and indeed believe, that giant numberfluctuations, as well as other exotica generically present in
orientationally ordered flocks, will exist in very large active systems showing local smectic order and long-ranged
orientational order.

Despite the general success of the hydrodynamic theories developed here in explainingmany of the
phenomenawe observe in our simulations, some of them remainmysterious. In particular, the spontaneous
rotation of the smectic layers (figure 2(a) and (b), supp.mat.movies 4 and 5) is a type of spontaneous chiral
symmetry breaking that is beyond the scope of the theories presented here, which assume an achiral steady state.
We hope to develop a hydrodynamic theory of such symmetry breaking in futurework.
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AppendixA.Hydrodynamic theory predictions for the apolar active smectic P phase

A.1. Eigenfrequencies and instability threshold
Webegin by Fourier transforming the equations ofmotion (3.1) and (3.2) in themain text:

[ ( )] ( ) ( ) ( ) ( )w w dr w w- + G - =u Cq fq q q qi , i , , , A.1u z u

( ) ( ) [ ( )] ( ) ( ) ( )w w dr w wG + - + G =r r rq u fq q q q qi , i , , , A.2z u

wherewe have defined:

( ) ( )G º + +D q Kq Bqq , A.3u ux x x z
2 4 2

( ) ( )G º +r r rD q D qq , A.4x x z z
2 2

and

( ) ( )G º +r C q C qq . A.5u x x z z
2 2

The two eigenfrequencies w of these equations ofmotion are, as usual, those values ofω that allow them to have
non-zero solutions for dr and uwhen the forces fu and fρ on the right-hand sides are set to zero; i.e., they are the
solutions of the eigenvalue equation:

( ) ( )w w+ G + G + G - G G =r r rCqi 0, A.6u z u u
2 2

which are:

[ ( ) ( ) ( ( ) ( )) ( ) ] ( )w = - G + G  G - G + Gr r r Cqq q q q q
i

2
4 . A.7u u z u

2 2

Stability requires that the imaginary part of these eigenfrequencies to be negative. The real part is readily seen to
be zero. This will be the case if and only if two conditions are satisfied:

( ) ( ) [ ( ) ( )] ( ) ( )G + G > G - G + Gr r rCqq q q q q4 A.8u u z u
2 2

and

( ) ( ) ( )G + G >rq q 0. A.9u

Squaring thefirst of these conditions (A.8) implies

( ( ) ( )) ( ( ) ( )) ( ) ( )G + G > G - G + Gr r rCqq q q q q4 A.10u u z u
2 2 2

which can be reorganized to read:

( ) ( ) ( ) ( )G G - G >r rCqq q q 0. A.11u z u
2

Using our definitions (A.3)–(A.5) for ( )G qu , ( )Gr q , and ( )Gr qu in this expression gives, after gathering terms

( ) ( )+ + + >rAq Fq q D q D q Kq 0, A.12
z x z x x ux x x
4 2 2 2 2 4

wherewe have defined º -rA BD CCz z and º - +r rF BD CC D Dx x ux z . Note thatA and Fwill both be>0
for sufficiently smallC, provided that Dux is not too large and negative. In this case the left-hand side of (A.12) is a
monotonically increasing function of qz

2, and, hence, has itsminimumat =q 0z . Hence, it is at =q 0z that the
condition (A.12)willfirst be violated. Furthermore, this violationwillfirst occurwith decreasing qxwhen

= - =q D K qx ux max, where qmax is the critical value of qx defined in themain text. (Recall that herewe are
discussing the case <D 0ux .)Thus, our claim in themain text that thefirst instability with increasing system size
occurs at = =q q q0,z x c follows provided that our second condition (A.9) is not violated at a larger q. But
noting that ( )G qu and ( )Gr q are both>0 for any >q qx c (since then + >D q Kq 0ux x x

2 4 , andwe also know thatB
and both rD x and rD z are>0), it is clear that (A.9) can not be violated before (A.8). This completes our
demonstration that the first instability with increasing system size occurs, in the apolar case, at = =q q q0,z x c.

A.2. Fourier space u–u correlation functions
The linear algebraic equations (A.1) and (A.2) are easily solved for ( )wu q, and ( )dr wq, . The result for ( )wu q,
is

( )
[ ( )] ( ) ( )

( )( )
( )w

w w w

w w w w
=

- + G +

- -

r r

+ -
u

f Cq f
q

q q q
,

i , i ,
, A.13

u z

where w are the two eigenfrequencies found above. From equation (A.6), we can read off

( ) ( )w w+ = - G + Gr+ - i , A.14u
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and

( )w w = G - G Gr r+ - Cq , A.15
z u u
2

both of whichwill prove useful later.We also note that w are purely imaginary, which of course implies
that *w w= - .

Using this last fact, and our expression (A.13) for ( )wu q, , we immediately get for the autocorelations

( ) ∣ ( )∣
∣ ( )∣ [ ( )]

( )( )( )( )
∣ ( )∣

( )( )( )( )
( )

w w

w w

w w w w w w w w
w

w w w w w w w w

ºá ñ

=
á ñ + G

- - + +

+
á ñ

- - + +

r

r

+ - + -

+ - + -

C u

f

f C q

q q

q q

q

, ,

,

,
, A.16

uu

u

z

2

2 2 2

2 2 2

which is obviously born to be integrated by complex contour techniques. Before doing so, however, we need the
spatio-temporally Fourier transformed autocorrelations of the noises ∣ ( )∣wá ñf q,u

2 and ∣ ( )∣wá ñrf q, 2 . These are
easily read off from the real space correlation functions (3.3) and (3.4) in themain text:

∣ ( )∣ ( ) ( ) ( )wá ñ = D + D º Dr r r rf q qq q, , A.17x x z z
2 2 2

∣ ( )∣ ( )wá ñ = Df q, . A.18u u
2

Using these in (A.16) gives

( )
[ ( )] ( )

( )( )( )( )
( )w

w

w w w w w w w w
=

D + G + D + D

- - + +
r r r

+ - + -
C

q q C q
q

q
, . A.19uu

u x x z z z
2 2 2 2 2 2

Integrating (A.19) over all frequenciesω by obvious complex contour techniques then gives, after a little
algebra, the equal time correlation function:

( ) ∣ ( )∣

∣ ( )∣

( )
[ ( )]

( )

ò
w
p

w

w w w w

ºá ñ

= á ñ

=
-
+

D -
D G + Dr r

+ - + -

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

C u t

u

C q

q q

q

q

,

d

2
,

i

2
, A.20

uu
ET

u
u z

2

2

2 2 2

which can be simplified using our earlier expressions (A.14) and (A.15) for the sums and products of the
eigenvalues, yielding, after a slight rearrangement of terms, our final result:

( ) ∣ ( )∣

( )
[ ( ) ]

[ ( ) ( )] ( ) ( )

( )( ) ( )

º á ñ

=
D
G¢

+
D - D G

G + G G¢ G

º +

r r

r r

C u t

Cq C

C C

q q

q

q

q q q q

,

2 2
,

, A.21

uu
ET

u

u

z u u

u u

uu
ET

uu
ET

2

2

1 2

wherewe have defined

( ) ( )
( )
( )

( )G¢ º G -
G

G
r

r
Cqq q

q

q
, A.22u u z

u2

( )
( )( ) º

D
G¢

C
q2

, A.23uu
ET u

u

1

and

( )
( ( ) )

[ ( ) ( )] ( ) ( )
( )( ) º

D - D G

G + G G¢ G
r r

r r
C

Cq C
q

q

q q q q2
. A.24uu

ET z u u

u u

2
2

Thefirst term ( )Cuu
ET 1 in (A.21) exhibits very different behavior for wavevectors with ∣ ∣ ºq q D K2x uxc

and q qx c. Note that for <D 0ux , qc is thewavevector ofmaximum instability described in themain text. For
>D 0ux , qc is simply a crossover wavevector between the two regimes that wewill nowdescribe. For q qx c, we

can, by the definition of qc, neglect theDux term in Gu. Doing so, we immediately see that the first (i.e., the G¢u)
term in the correlation function (A.20)has the same form, forwavevectors q with q qx z , as the full,
equilibrium [25] ( )C quu . It is given by
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( )
( )

( )( )

l
=

D
¢ +

C
B q q

q
2

, A.25uu
ET u

z x

1
2 2 4

wherewe have defined the ‘smectic penetration depth’ l º ¢K B and ¢ º - rB B CC Dx x. Note that this is
much larger than -q 2 for q q ;x z hence, this range of wavevectors dominates the contribution of ( )C quu

ET to the
real spacefluctuations for system sizes L Lc. Note also that ( )C quu

ET is, for small Dux , extremely anisotropic:

for q qx c, it scales like
-q 2 for  lq qz x

2, and like -q 4 for  lq qz x
2. For q qx c, it is~

D
Bq

u
2 for

q D B qz ux x, while it is~
D

D q
u

ux
2
for q D B qz ux x. In short, it is alwaysmuch larger, for a given ∣ ∣q , for

small qz; i.e., for directions of wavevector q near the plane of the smectic layers. It also changes its behavior
dramatically between the range q qx c,in which it scales like

-q 2 for all directions of q, and q qx c, where it
scales like -q 2 for  lq qz x

2, and like -q 4 for  lq qz x
2.

The second term in (A.21) has neither this anisotropy, nor this sensitivity towhether q qx c or q qx c.

To see this, note that the ratio
( )G¢

Cq

q
z

u

2

is bounded above by
¢

C

B
, while the sum ( ) ( )G + Grq qu scales like q2 for all

directions of q, evenwhen Dux is small. (Note that this is true even thoughwe are considering q qx c, which is,

by definition, the regime ofwavevectors inwhich the Kqx
4 termdominates the D qux x

2 term, because the rD qx x
2

term in Gr still dominates the Kqx
4 term, since rD x, unlike Dux , need not be small when the activity is small.)

Indeed, this second term scales like -q 2 for all directions of q.Wewill see in amoment that, as a result, this
term leads to essentially isotropic algebraic decay of smectic order parameter correlations at all length scales.

Note also that only this second term growswith increasing density noise ( )Dr x z, (since thefirst termdepends
only on the positional noiseDu).

The above results are completely general.Wewill inwhat follows frequently consider the limit of large Lc,
small positional noiseDu, and large density noises ( )Dr x z, . All three of these criteria are satisfied in our
simulations: empirically, ~L a100 ;c the positional noiseDu should be proportional to themean squared
velocityfluctuations perpendicular to the layers, which, since themotion is primarily parallel to the layers,
should scale like our angular noise strength parameter s ~ -102 4. Finally, the density noises ( )Dr x z, are large,
because our algorithm introduces an ( ) 1 noise in the step that randomly, with equal probability,makes the
particlemove either forward or backward along the direction selected. This will not, in the small or zeroσ limit,
contribute to the displacement noiseDu, since in that limit all of themotion is along the layers. But random
statisticalfluctuations in the number of particlesmoving left or right within a layer will clearly lead to
fluctuations in the density; that is, to appreciable ( )Dr x z, . This combination of large density noise and small

positional noisemeans that the second term ( )Cuu
ET 2 can, at intermediate length scales, actually dominate the

behavior of the real spacefluctuations of u, even though, as wewill see in the next section, the contributions of
thefirst term ( )Cuu

ET 1 growmore rapidly (for L Lc) as a function of distance.

A.3. Real space u–u correlations, apolar case
In order to predict the scaling with system size of the smectic order parameters we determine in our simulations,
we need to calculate ∣ ( ) ( )∣ ∣ ( )∣á + ¢ - ¢ ñ º á D ñu t u t ur r r r, , 2 2 . This in general gets two contributions: a ‘bulk’
term given by:

∣ ( )∣
( )

[ ( · )] ( ) ( )ò p
á D ñ = -u

q
Cr q r q2

d

2
1 cos A.26B uu

ET2
2

2

and a ‘zeromode’ term ∣ ( )∣á D ñu r 2
0 given by:

∣ ( )∣ [ ( )] ( ) ( )åá D ñ = - =
¹

u
L

q x C q q tr
2

1 cos , 0, , A.27
q

x uu
ET

x z
2

0 2
0x

where the sum is, as usual, over all values = pqx
m

L

2 , =m integer, allowed by our periodic boundary conditions,
excludingm= 0.

The bulk term represents the contribution from all Fouriermodeswith ¹q 0z , while the ‘zeromode’ term,
as its name suggests, incorporates the contribution frommodeswith =q 0z . The lattermodes would be absent
in a systemwith fixed boundary conditions (i.e., u= 0 on the boundaries), but is present in our simulations,
sincewe use periodic boundary conditions.

Wewill consider first the contribution of thefirst term ( )Cuu
ET 1 to ∣ ( )∣á D ñu r 2 , whichwewill call ∣ ( )∣á D ñu r 2

1,

and then that of the second term ( )Cuu
ET 2 , whichwewill equally unimaginatively call ∣ ( )∣á D ñu r 2

2.

Let usfirst consider the case L Lc. In this casewe are in the regime x Lc and 
l

z
Lc

2

. In this regime,

the range of wavevectors q qx c, q qz x dominates the contribution of the first term to both the bulk term
(A.26) and the zeromode piece (A.27).We can therefore, for this range of r, replace thefirst term in (A.21)with
equation (A.25), which, as noted earlier, has exactly the same form as in an equilibrium smectic, for which these
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correlationswere computed long ago [25]. Hence, for the contribution from the bulk term from ( )( )C quu
ET 1 , we

can simply quote the results of [25]with the trivial replacement of kBT in the equilibriumproblemwithD 2;u

this gives

∣ ( )∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

∣ ∣ 

x l

l

x
l

á D ñ = =
x⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

u
x

q
g

x

z

x z

z
x z

r
2

, ,

, ,
A.28B

x
B

x

q

q
z

2
1,

0
2

2

2

2

x
B

0
2

0
2

wherewe have defined the correlation lengths

( )
( )x x

p x

l
º

¢
D

º
B K

q

8
, and

4
, A.29x

B

u
z

x
B

0
2

2

along x and z respectively, and the scaling function ( )g w as a function of its argument
∣ ∣

º
l

w x

z

2

is [25]

( ) ( ) ( )
p

= +
-

g w w
w

erf 2
e

4
. A.30

w 4

The lengths xx
B and xz are the distances along x and z at which the rmsfluctuations ∣ ( )∣á D ñu r B

2
1, are of

order al (more precisely, they are
p

al
2

2
). Note that x xz x

B inwell ordered systemswhere x lx
B .

Inmost systems, the contribution of the zeromodes are negligible, due to the factor of
L

1
2 in front of

equation (A.27). In active smectics, however, if the system size L Lc, the critical size abovewhich active
tension effects become important, so that we can drop the active tension term D qux x

2 relative to the Kqx
4 term

(since, for such system sizes,  ºq q D Kx uxc ), ( )=C q q t, 0,uu x z is so large at small qx (diverging like q

1

x
4 as

q 0x ), that this ‘zeromode’ term can actually dominate. Indeed, for L Lc, wefind that, for x L, the sum
in (A.27) is dominated by the smallest allowed qxʼs, for whichwe can expand the cosine to leading order in

x

L
.

This gives

( )

∣ ( )∣ ( ) ( )

( )

å

å p

x

á D ñ » =

=
D

º

p

¹

=

¥
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

u
L

q x C q q t

x

L

m

L K

q

x

r
1

, 0,

2
2

2
, A.31

q
x uu x z

m

u

m

L

x

2
1,0 2

0

2

2

1

2

2 4

0
2

2

x

wherewe have defined a correlation length xx given by

( )x =
Dq

K4 3
A.32x

u0

such that when x=x x the zeromode real space fluctuations ∣ ( )∣á D ñ =u r
q

2 2
0

0
2 , where º pq

a0
2

l
, with al the layer

spacing. This correlation length is clearlymuch shorter than that coming from the ‘bulkmodes’, which is given
by equation (A.29), in the small noise (D  0u ) limit, since it diverges like D1 u asD  0u , while the bulk
correlation length diverges like D1 u asD  0u . Hence, we expect xx to give the correlation length in the x
direction for small displacement noiseDu.

This zeromode contribution (A.31) dominates the bulk contribution (A.28) for ∣ ∣ ∣ ∣ lx z , provided that

∣ ∣
x

Dx

K q

z

24

2u

z

2

0
2 . This leads to the requirement ( )∣ ∣ ∣ ∣

xD
x K

q

z48
1 4

u z0
2 , which is clearlymuch smaller, for

∣ ∣  lz 36 , than the value of x at which the bulk term crosses over frombeing controlled by z to being controlled
by x; i.e., ∣ ∣ ∣ ∣ l~x z . Hence, for all large rʼs at which the bulk termmakes an appreciable contribution to

∣ ( )∣á D ñu r 2
1, we can replace that bulk termby

∣ ∣
xq

z2

z0
2

. Hence, we can always (for L Lc) and large r replace

∣ ( )∣ ∣ ( )∣ ∣ ( )∣á D ñ = á D ñ + á D ñu u ur r rB
2

1
2

1,
2

1,0 with

∣ ( )∣ ∣ ∣ ( )
x x

á D ñ = +
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟u

q

z x
r

2
. A.33

z x

2
1

0
2

2

Nowwe consider the case L Lc. In this case the zeromodes’ contribution to ∣ ( )∣á D ñu r 2 is always

negligible. For x Lc and 
l

z
Lc

2

2 , ∣ ( )∣á D ñu r B
2

1, is again given by equation (A.28). For x Lc or 
l

z
Lc

2

2 , the
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integration of ( )( )C quu
ET 1 over large qʼs (i.e., q qx c) gives a constant, which can be obtained by evaluating

equation (A.28) at = =x L z, 0c .
It is the integration of ( )Cuu

ET 1 over small qʼs (i.e., q qx c) that dominates in this regime of L. In this regime
of q’,s in the stable case >D 0ux , G ¢u scales like q2 for all directions of q. Specifically, in this limit,
G ¢ » ¢ +B q D qu z ux x

2 2. Using this in (A.23), and using the result in (A.26) plus the constant then gives

∣ ( )∣ ( )
p x

á D ñ =
D

+
⎛
⎝⎜

⎞
⎠⎟u

BD

R

L

L

q
r

4
ln

2
, A.34u

ux x
B

2
1

c

c

0
2

where ( )º +R x zD

B
2 2ux .

Now let us consider the contribution of the second term in (A.21) to the real spacefluctuations of u. Since
this scales like q1 2 for all directions of q, it will alsomake contributions to themean squared real space

fluctuations ∣ ( )∣á D ñu r 2 that scale like ( )∣ ( )∣á D ñ µu r ln r

a
2

2
l
. This scaling holds for this term for all r. The

detailed calculation goes as follows: we start by rewriting ( )( )C quu
ET 2 in polar coordinates ( )qq, where

( ) ( )q q=q q q, sin , cosx z :

( ) ( ) ( )( ) t q=C
C

q
q

2
, A.35uu

ET 2
2

wherewe have defined:

( ) ( )
( ¯ ¯ )( )

( )t q
q q

q q q q
º

+
+ +

F G

D D J H

sin cos

sin cos sin cos
, A.36

x z

2 2

2 2 2 2

( )º D - DrF C C , A.37x x u

( )º D - DrG C C , A.38z z u

( )º ¢ rJ B D , A.39x

( )º ¢¢ rH B D . A.40z

( )¢¢ º - rB B CC D , A.41z z

¯ ( )º +rD D D , A.42x x ux

and

¯ ( )º +rD D B. A.43z z

Inserting (A.35) into the general expression (A.26) for ∣ ( )∣á D ñu r 2 gives

∣ ( )∣
( )

[ ( · )] ( )

( ) [ ( · )] ( )

( )ò

ò ò

p

p
t q q

á D ñ = -

=
-

p

p

-

L

u
q

C

C
q

q

r q r q

q r

2
d

2
1 cos

2
d d

1 cos
, A.44

uu
ET2

2

2

2
2

2
2

2

0

whereΛ is an ultraviolet cutoff of order
a

1

l
.

The integral over q in this expression can readily be evaluated for large r by dividing it, likeGaul8, into three
parts:

[ ( · )] ( )ò
-

= - +
L

q
q

I II III
q r

d
1 cos

, A.45
0

wherewe have defined

( ) (∣ ( )∣) ( )
∣ ( ) ∣

ò q fº = L + -
q f-

L
I

q

q
r

d
ln ln cos , A.46

r
1

cos

( ∣ ( )∣) ( )
∣ ( ) ∣

ò
q f

º
-

q f-

L
II q

qr

q
d

cos cos
, A.47

r
1

cos

and

[ ( ∣ ( )∣)] ( )∣ ( ) ∣ò
q f

º
- -q f-III q

qr

q
d

1 cos cos
. A.48r

0

1
cos

8
Gaul refers to a historic geographic region in Europe, roughly contiguouswith present-day France.
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In these expressions,f is the angle between r and the z-axis, andwe have exploited the evenness of the cosine to
replace its argument with its absolute value.

The integral II clearly converges as  ¥q , due to the oscillation of the cosine, combinedwith the
q

1 falloff.

We can therefore safely take the upper limit on this integral to¥ for large r, where the lower limit is small, and
obtain

( ∣ ( )∣) ( )
∣ ( ) ∣

ò
q f

»
-

q f-

¥
II q

qr

q
d

cos cos
. A.49

r
1

cos

Now,making the linear change of variables of integration from q to ℓ ∣ ( )∣q fº -qr cos in both (A.48) and
(A.49) gives

ℓ ℓ
ℓ

( )ò»
¥

II d
cos

, A.50
1

and

ℓ ℓ
ℓ

[ ] ( )ò=
-

III d
1 cos

, A.51
0

1

both of which are clearlyfinite, ( ) 1 constants, independent of r andf. Using this fact, and (A.46), in (A.45), we
obtain

[ ( · )] ( ) (∣ ( )∣) ( )

(∣ ( )∣) ( ) ( )





ò q f

q f

-
= L + - +

= + - +

L

⎛
⎝⎜

⎞
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q
q

r

r

a

q r
d

1 cos
ln ln cos 1

ln ln cos 1 , A.52
l

0

where in the second equality we have absorbed a constant ( )Laln into the other ( ) 1 constants coming from the
integrals II and III.

Using this result in (A.44) gives

∣ ( )∣ ( ) (∣ ( )∣) ( )
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òp
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wherewe have defined
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t q q¡ º

p

p

-

2
d , A.54

2
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( ) ( ) (∣ ( )∣) ( )òf
p

t q q f qº
¡

-
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-
h

2
ln cos d , A.55

2

2

The integral forϒ can be evaluated by the simple trigonometric substitution qºv tan , which gives

( )
( ¯ ¯ )( )

( )òp
¡ º

+
+ +-¥

¥
v

Fv G

D v D Jv H

2
d , A.56

x z

2

2 2

which can be straightforwardly evaluated by complex contour techniques, giving:

( )
¯ ¯ ¯

( )
¯ ¯ ¯

( )

¡ =
D - D

¢¢ + ¢ ¢¢

+
D - D

¢ + ¢ ¢¢

r

r r r

r

r r r

C C

B D D D D B B D D

C C

B D D D D B B D D

2

2
. A.57

z z u

z x z z x z

x x u

x x z x x z

Onemight think that this logarithmic divergence would, for r Lc, be dominated by the stronger power law
divergence of the contributions ∣ ( )∣á D ñu r 2

1 coming from thefirst term, at least for large r. But if the density
noises ( )Dr x z, are large and the positional noiseDu is small, this need not be the case, since the coefficientϒ of
the logarithmic divergence has pieces that grow linearly withDrx z, . Andwe do in fact expect that, in our
simulations, the density noisesDr are largewhile the displacement noiseDu is small, as explained in the
main text.

So, in the limit of small angular noise, we expect ( )Dr x z, to be large, by some suitable dimensionlessmeasure,
compared toDu. Thismeans that the contribution from the non-equilibrium second term in (A.20) to
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∣ ( )∣á D ñu r 2 can actually dominate that of thefirst term all theway out to the correlation length (i.e., xx given by

(A.32) for L Lc, or xx
B given by (A.29) for L Lc)provided that the value of ∣ ( )∣á D ñu r 2

2 is greater than q

2

0
2

(the value of the contribution of thefirst term at the correlation length) there. This leads to the condition

( )
p
¡ ⎛

⎝⎜
⎞
⎠⎟

C X

a q4
ln

2
, A.58

l 0
2

whereX stands for either xx or xx
B. Assuming, as seems reasonable, that the diffusion constants D̄x z, and ( )rD x z,

are all comparable, and are larger than or comparable to Dux , and likewise assuming that ¢¢ ~ ¢B B and

D ~ D º Dr r rx z , we can estimate ¡ ~ D

¢
rC

B D2 , whereD is the common value of the diffusion constants D̄x z, and

( )rD x z, . On dimensional grounds, we expect r~D C0 , where r0 is themean density. Using this estimate, we
obtain a lower bound on the density noise required for the second, non-equilibrium term in (A.20) to dominate
all theway out to the correlation lengths xx and xx

B:

( ) ( )
p r

D
¢

r
B

q

8

ln
, A.59

X

a

0
2

0
2

l

which should be satisfied in our simulations sinceDr is large, for the reasons discussed earlier, whileDu is small,
whichmakes both xx and xx

B large, thereby reducing the right-hand side of (A.59).
In summary, for values ofDr that are large enough, in the sense just described, and values of the active

tension Dux that are small enough, there are four important crossover lengths. Thefirst is Lc, beyondwhich the
effects of the active tension become important. The other three, which are independent of Dux in this limit, are
the correlation lengths xx, xx

B (for L Lc and L Lc, respectively), and xz that give the distances along x and z
beyondwhich ∣ ( )∣á D ñu r 2 grows algebraically with x and z. These length scales divide the Dux-system-size L
plane into five regions, as illustrated infigure 5. The active tension Dux is only important for length scales

∣ ∣ ºL L K Duxc , which defines the upper and lower bounding curves. Because of this, regions I, II, and III
extend right across the L-axis, where =D 0ux . In region I (  xL x), the second, entirely non-equilibrium,

logarithmic contribution ∣ ( )∣á D ñu r 2
2 to ∣ ( )∣á D ñu r 2 dominates. In region II (  x xLx z), ∣ ( )∣á D ñu r 2 is

much bigger than the lattice spacing al for r primarily along x̂ (i.e., the layer direction) and  xx x, but ismuch
less than al for all points whose separation lies primarily in the ẑ direction (i.e., the layer normal). Region IV
( >D 0ux and L Lc) is not further divided intomore sub-regions by the correlation lengths xx and xz , since
the behavior of ∣ ( )∣á D ñu r 2 is always logarithmic for large r (i.e., x Lc or  lz Lc

2 ) in all directions, which
solely determines the L-dependence of the quantitiy Sn. Andfinally, for <D 0ux and L Lc, the smectic state is
unstable.We do not have any analytic theory for the long-term, large distance state of the system in this regime.
However, as argued in themain text, we expect the instability to induce nucleation of dislocations, whichwill cut
off order prameter correlations at Lc, hence, for L Lc, we expect µ =Sn A L

1 1
2 .

To summarize the above rather complicated discussion, ∣ ( )∣ ∣ ( )∣ ∣ ( )∣á D ñ = á D ñ + á D ñu u ur r r2 2
1

2
2, where

∣ ( )∣á D ñu r 2
1,2 represent respectively the contributions of the first and second terms in (A.20). For L Lc,

∣ ( )∣á D ñu r 2
1 is given by
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while for L Lc, it is given by

( )∣ ( )∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )

 

 

x x
l

p x
l

á D ñ =

+

D
+

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

u
q

z x
x L z L

BD

L

q
x L z L

r

2
, ,

ln

4

2
or ,

A.61
z x

B

u
R

L

ux x
B

2
1

0
2 c c

2

c

0
2 c c

2c

where ( )º +R x zD

B
2 2ux . And ∣ ( )∣á D ñu r 2

2 is always given by

∣ ( )∣ ( ) ( ) ( )
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fá D ñ =
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+ +
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⎞
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4
ln 1 , A.62

l

2
2

regardless of whether L Lc or L Lc.We remind the reader thatf is the angle between r and the z-axis ¡, is
a linear function of the noises ( )Dr x z, andDu given by equation (A.57), and the correlation lengths are given by

x =
Dx q

K4 3

u0

, x = p l¢
Dz

B

q

16

u

2

0
4 2 , and x = ¢

Dx
B B K

q

8

u0
2 . Note that x xz x for smallDu.
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A.4. Smectic order parameters, apolar case
Wewill nowdiscuss the implications of these results for the smectic order parameters that wemeasure in our
simulations.

As in equilibrium, smectic order is characterized by an infinite set of local complex smectic order parameters
( )y tr,n defined via [34]

( ) ( ) ( )år r yº + +
=

¥

t tr r, , e c.c., A.63
n

n
nq z

0
1

i 0

where ρ is the number density, r0 itsmean, and pºq a2 l0 , with al the distance between neighboring layers.
To quantify the order in our simulations, we numerically determine the quantities ( )ºS I tq ,n n , where the

‘intensity’ ( ) ∣ ( ) ∣º r
I tq,

q t

N

, 2

2 , with r=N A0 the number of particles in the system, =A L2 is the area of the

system, ˆº nq zqn 0 , and

( ) ( ) ( )·òr r= -t r tq r, d , e . A.64q r2 i

Inwriting the expansion (A.63), we implicitly assume that the ( )y tr,n are slowly varying in space and time (i.e.,
that they onlyhave support in Fourier space at smallwavevectors and frequency). That is, wehave absorbed the
rapid variation of the density in the smectic phase into the complex exponentials e nq zi 0 , while the ( )y tr,n embody
the slow spatial variations of thepositions ( )u tr, of the layers.Given this, thedefinition (A.63) is equivalent to:

( ˆ ) ( ) ( )r y= = =nq z t tq q, 0, , A.65n0

fromwhich it follows fromour definition of the Snʼs that
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The phases of these local order parameters are all proportional to the displacement field u; that is, we can
write ( ) ∣ ( )∣ ( )y y= -t tr r, , en n

nq u tri ,0 . Hence, since the amplitudes ∣ ( )∣y tr,n of the smectic order parameters
are notGoldstonemodes of the system, and are therefore not expected to have large fluctuations, the decay of the
of the correlation function ( ) ( )*y yá ñt tr, 0,n n with r is driven primarily by the fluctuations of the layer
displacement ( )u tr, .Motivated by this, we replace ∣ ( )∣y tr,n with a real positive constant yn

0, and obtain for the
correlation functionwe need:

( ) ( ) ( ) [ ( )] ( )*y y yá ñ = á - D ñt t nq ur r, 0, exp i . A.67n n n
0 2

0

Where ( ) ( ) ( )D º -u u t u tr r, 0, .
This can be related to themean squared real space fluctuations ∣ ( )∣á D ñu r 2 by noting that ( )Du r is a zero-

meanGaussian randomvariable. This follows from the fact that it is a linear function of the Fourier components
( )wu q, , which are in turn linear functions of the Fourier components ( )wf q,u and ( )rf tq, . Since these noises

are themselves, by assumption, zero-meanGaussian randomvariables, so is ( )D - ¢u r r .
Using this fact, we can use thewell-known (and easily derived by anywho do not know it) relation for any

zero-meanGaussian randomvariable x that ( )á ñ = - á ñxe expxi 1

2
2 to obtain

[ ( )] ∣ ( )∣ ( )D Dá - D ñ = - á D ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟nq u r

n q
u rexp i exp

2
. A.680

2
0
2

2

Using this in (A.67), and using (A.67) in (A.66) gives

( )∣ ( )∣
( )

ò ò
=

- á D ñ
S w

x z u

A

rd d exp ,
, A.69n n

L L n q

0 0 2
2

2
0
2

as claimed in themain text (3.6), wherewe have defined

( )y
r

º
⎛
⎝⎜

⎞
⎠⎟w . A.70n

n
0

0

2

9
So-called, because it is proportional to the intensity of scattering of electromagnetic radiation by the smectic when thewavelength of that

radiation is comparable to the smectic layer spacing.
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Using our earlier results (A.60)–(A.62) for ∣ ( )∣á D ñu r 2 in (A.69), we see that, for L Lc,
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For  xL x and L Lc, denoted as region I infigure 5, the exponential factor in this expression is nearly 1 over
the entire region of integration (recall that x xz x), and, as a result, the Snʼs fall off algebraically with L:

µ h-S Ln
n I

2
. For  x xLz x and L Lc, denoted as region II infigure 5, we can ignore the z-dependence of

the exponential factor, but not the x-dependence. The integral is then clearly dominated by  x~z L x and
x~x x , whichmeans x z in this dominant region.We can therefore replace rwith z andfwith 0 in (A.71),

and obtain
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Finally, for  xL z , the integral over x and z in this expression converges as  ¥L ; hence, in this regime,

denoted region III infigure 5, all of the Sn fall off with system size like = -L
A

1 2. (Note that this regimemust also
have L Lc). For L Lc in the stable regime >D 0ux , denoted as region IV infigure 5, both contributions

∣ ( )∣á D ñu r 2
1 and ∣ ( )∣á D ñu r 2

2 to ∣ ( )∣á D ñu r 2 grow like ( )ln r

al
for large r, and hence, like region I, this regionwill

also exhibit algebraic decay of the Snʼs: µ h-S Ln
n IV

2
, albeit with hIV now taking on a different value:

( )h
p p
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¡

+
DCq q

BD8 8
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u
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0
2

0
2

However, sinceDu is expected to be small, as discussed in appendix A.2, the numerical values of hIV and hI are
very close to each other, as shown in the simulation.

For L Lc in the unstable regime <D 0ux , denoted as regionV infigure 5, the system is unstable, andwe
expect dislocations to proliferate, cutting off order parameter correlations at Lc, and causing Sn to again decay
like -L 2.

Appendix B.Hydrodynamic theory predictions for the polar active smectic P phase

B.1. Linearized eigenfrequencies and Instability threshold
Fourier transforming equations (3.9) and (3.10) in themain text and only keeping terms to linear order in u and
dr, we obtain

[ ( ) ( )] ( )w dr- - + G - =gq u Cq fqi i , B.1
x u z u
3

[ ( ) ( )] ( )w dr+ - + + G =r r rv q q u v q fqi , B.2x z x2

with ( )G qu and ( )Gr q having exactly the same expressions as in the apolar case.
Guessing that one of the eigenmodes has eigenfrequency

( ) ( )w a= - +rv q q B.3x1

with ( ) ( )a = qq 2 , and inserting this guess into equation (B.1)with fu set to zeroon the right-hand side,we see that,
to leadingorder in q, dr=

r
u

Cq

v q
z

x

. Inserting this into equation (B.2)with fρ set to zeroon the right-hand side gives

( ) ( ) ( )a = - Grq qi , B.42

wherewe have defined

( ) ( ) ( )G º G +r r
r

C
v

v
qq q . B.5

z2
2 2

Thus

( ) ( )w = - - Gr rv q qi . B.6x1 2
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Now looking for a secondmodewith eigenfrequency ( )w = q2
2 , equation (B.2)with fρ set to zero on the right-

hand side, we see that, to leading order in q, dr = -
r

q uv

v z
i 2 . Inserting this into equation (B.1) gives

( ) ( )w = - Ggq qi , B.7
x u2
3

2

wherewe have defined

( ) ( ) ( )G º G - = ¢¢¢ + +
r

C
v

v
q B q D q Kqq q , B.8u u z z ux x x2

2 2 2 2 4

with ¢¢¢ º - rB B Cv v2 . For q qx c, where the Dux term is negligible relative to theK term, ( )G qu2 again looks
like an inverse smectic propagator, scaling like q1 z

2 for  lq qz x
2, and like q1 x

4 for  lq qz x
2.

Note that only w2 involves the active tension Dux . Hence, only this eigenfrequency can acquire a positive
imaginary part, signaling an instability, when the active tension Dux goes negative. And since the imaginary part
of w2 ismanifestly an increasing function of qz

2, it is obvious that this instabilitymustfirst set in at

=q 0z , = = -q q D Kx uxc .

B.2. Linearized u–u correlation functions
With these eigenfrequencies in hand, we can now compute the spatiotemporally Fourier transformed u–u
correlation function in the linearized approximation precisely as we did in the apolar case. This gives

( )
(( ) ( )) ( )

( )( )( )( )
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* *
w

w

w w w w w w w w
=

D + + G + D + D

- - - -
r r r r
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v q q q C q
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, . B.9uu
u x x x z z z

2 2 2 2 2 2

1 2 1 2

This can again be integrated by parts to obtain the equal-time u–u correlation function, albeit not as neatly as in
the apolar case.Wefind, after considerablymore algebra
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Note that once again, as in the apolar case, the first termwillmake a contribution to ∣ ( )∣á ñu r 2 that isµ L
(for L Lc). Unlike the apolar case, however, the second termnowonlymakes a finite contribution to
∣ ( )∣á ñu r 2 . This can be seen by noting that formost directions of wavevector q, the second term is independent of
themagnitude q of q, since both the numerator and denominator of the second term scale like q6 for such
generic directions of q.

This scaling does not hold, however, for q qx z
2. In this regime, the second term is readily seen to beµ q1 2.

However, there is not enough phase space in the regime q qx z
2 for this divergence to lead to any divergent

fluctuations in real space; that is

( )ò ò
L

q q
q

d d
1

, B.11
L

z

q

x
1 0 2

z
2

does not diverge as  ¥L .
The convergence of this second termmeans that its contribution to the real space u–u correlations can be

dropped.We are thus left with only the first term in (B.10), which has exactly the same structure as the
corresponding term in the apolar case. Amomentʼs reflection reveals that thismustmean that all of the scaling
regimes found in the apolar case also exist in the polar case, in the linear approximation to the latter. The only
difference is in region I, where the algebraic decay of order that was induced by the second term in the apolar case
is absent in the polar one.

AppendixC.Nonlinear effects for polar smectic P phases

Going beyond the linearized approximation, the polar case has symmetry-allowed nonlinear terms in its
equation ofmotion (i.e., those explicitly displayed in the equations ofmotion (3.9) and (3.10) in themain text).
These become important only at the extremely large length scale LNL discussed in themain text, and lead to the
appearance of regionVI infigure 5 for the polar case.We have not been able to determine the behavior of the
smectic order parameters in this regime, but strongly suspect, as discussed in themain text, that they fall off as
-L 2 with increasing system size L in this regime, which includes the  ¥L limit for the stable case.

The discussion in appendices B.1 andB.2was based entirely on the linear approximation to the full
equations ofmotion (i.e., equations (3.9) and (3.10) in themain text). Asmentioned earlier, in the polar case the
nonlinearities in these equations are relevant (technically, ‘marginal’) in d=2. These terms give rise to
fluctuation-induced departures from the linearized theory that are proportional to the square of the noise
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strengthσ (note that our hydrodynamic parametersD r ru x z, , are all proportional to the square of the noise
strengthσ, as that noise strength is defined in equation (2.2). To see this, note that, since the speed of the particles
isfixed, and the angular noise in (2.2) is proportional toσ, then the velocitynoise fwill be of order sv0, and,
hence, also proportional toσ. Hence, themean-squared forces, which are proportional to the variousΔʼs, are
proportional to s2.) Furthermore, in d=2, they grow logarithmically with system size L. Hence, for small noise
strengthsσ, the systemmust be larger than a nonlinear length scale LNLwhich grows very rapidly with decreasing
noise strength: ( )s~L exp constantNL

2 before the linear theory just described becomes invalid.
What happens beyond this long length scale LNL remains an open question, which can only be answered by a

full renormalization group analysis. Due to the large number ofmarginal nonlinearities (six) in our problem,
such an analysis is quite formidable, andwe have not attempted it. Herewewill restrict ourselves to plausible
speculation.

One possibility is that the nonlinearities eventually induce the unbinding of dislocations, therebymaking the
smectic order parameter fall off farmore rapidly than algebraically (presumably exponentially) for longer length
scales. This would be consistent with our observation that, in the largest systemswe study, dislocations do
appear, and the smectic order parameter does fall off exponentially with increasing system size.

Independent of the question of dislocations, however, one thing thatwill certainly happen for L LNL is
that the scaling law predicted by the linear theory relating higher harmonic smectic order parameters Sn to the

lowest harmonic order parameter S1, namely µS Sn
n

1

2

, will break down, since that scaling lawwas derived in the
linear approximation, inwhich thefluctuations of the layer displacement ( )u tr, areGaussian. Once
nonlinearities become important (which, by definition, happens for L LNL), all of thefluctuationswill
become non-Gaussian, and this scaling lawwill break down.

Therefore, the hydrodynamic theory predicts that the µS Sn
n

1

2

for L LNL, and that this lawwill break
down for L LNL. Since, in light of above discussion, we also expect correlations to fall offmore rapidly for

L LNL, thismeanswe expect both a breakdownof scaling law µS Sn
n

1

2

relating the smectic order parameters,
and the power law scaling ( ) µ h-S L L1 I to fail at same system size L (namely, ~L LNL). And this is exactly what
we see in the simulations, as illustrated infigure 1(g) of themain text, wherewe again plot ( )S L1 , ( )S L2

1 4, and
( )S L3

1 9 versus system size L. These lie on top of each other at small distances, consistent with the linear theory,
but depart from each other at longer length scales, signaling the onset of important nonlinear effects at large
distances. And at the system size Lwhere this happens, the order parameters (particularly S1), begin to depart
frompower law scalingwith system size L (see again figure 1(g) of themain text). This is entirely consistent with
our argument above about the impact of the relevant nonlinearities on the order parameter correlations.We
therefore interpret the system size at which both these phenomena happen as LNL for our system.

It would be a very dramatic illustration of this fundamental difference between the apolar and the polar case
to show that equation (3.8) in themain text holds out to arbitrarily long length scales in the apolar case, which
the theory says it should, since there are no relevant nonlinearities allowed by symmetry in that case. However,
this can only be tested in systems inwhich the apolar case is actually stable (so one can explore region IV in
figure 3). Alas, as discussed earlier, all of the apolar systemswe have investigated appear to be unstable.

AppendixD.Orientational order parameters

At low enough noise, the particles orientationally order inways that reflect the symmetry of their aligning
interactions: for the the polarmodel, the global polarity: ∣ ∣= á ñq-P e j

i j becomes non-zero. For the apolarmodel,

it is : ∣ ∣= á ñq-Q e j
i 2 j that does so. In the polarmodel, the angleΦ denotes the orientation of the order, where the

unit vector along the average direction ofmotion reads ( )á ñ = F Fu cos , sini
T . In the apolarmodel, an

analogous angle can be defined for the nematic director; however, due to the up–down symmetry in this case, its
range is restricted to [ ]pF Î 0, .

Appendix E.Numerical determination of smectic order parameters

The smectic phase corresponds to a periodicmodulation of the density field in one direction of space; it is
therefore useful to compute its Fourier transform.Numerically, we define a coarse grained number density field
by binning the particles into a regular, rectangular grid ofM2 cells of sizeD =r L M , centered on the positions

( )º D Di r i rr ,x y , where the integers ( ) [ ] [ ]Î ´i i M M, 0, 0,x y .We nowdefine ( )r tr, as the number of

particles in each cell divided by ( )Dr 2. The normalized spatial Fourier transform can then bewritten in the
compact form
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ˆ ( ) ( ) ( )·åår r=
D -t

r

N
tq r, , e , E.1

i i

q r
2

i

x y

whereN is the total number of particles. For ‘perfect’ smectic order [34], themean intensity
( ) ∣ ˆ ( )∣r= á ñI t tq q, , 2 would display in Fourier space a series of equally spaced sharp Bragg peaks situated at

wavevectors ( )= F Fpq cos , sinn
n

a

2
S S

T
l

, where al is themean layer spacing, the integer [ ]Î -¥ ¥n , is the

peak index, and the angle FS gives the orientation of themean normal to the layers. The trivial central peak at
=q 0 is normalized to onewith our definition (E.1); the average height of the next peak defines the smectic

order parameter: ( )ºS I tq ,1 1 .More generally, we can define an infinite series of smectic order parameters
( )ºS I tq ,n n . For perfect smectic order, =S 1n for all n, whereas the Sn decreasewith increasing n in the

presence offluctuations.
The value of Sn depends on the coarse-graining scale Dr used to define the density field.We note that,

decreasingDr , ( )DS rn converges to some well-defined limit: ( )D » - D -S r S k rn n n
0 2. In practice, we used

a sufficiently small, fixed D =r 0.2. We have also testedmore elaborate techniques to estimate Sn—e.g.,
using kernel density estimators or interpolations from different values of Dr—to obtain Sn in the limit
D r 0, to confirm that our main results on scaling relationships do not depend on these technical
details.

Infigure E1, we plot the first smectic order parameter S1 for small systems as a function of the repulsion
strengthβ and noise intensityσ, which identifies regionswith significant (local) smectic order.

Figure E1.The smectic order parameter S1 for small system sizes and differentmodel variants plotted versus repulsion strengthβ and
angular noiseσ. (a)Apolarmodel with nematic interactions and isotropic repulsion exhibiting smectic P configurations (parameters:
L=20, r = 8, =v 0.3). (b)Polarmodel with polar interactions and isotropic repulsion exhibiting smectic P configurations
(parameters: L=24, r = 10, =v 0.2). (c)Polarmodel with polar interactions and anisotropic repulsionwith g p= 2 (stronger
repulsion to the sides) exhibiting smectic P configurations (parameters: L=24, r = 10, =v 0.2). (d)Polarmodel with polar
interactions and anisotropic repulsionwith g = 0 (stronger repulsion to front and back) exhibiting smectic A (transient C)
configurations (parameters: L=24, r = 10, =v 0.2). Initial condition: orientationally ordered systemwith no spatial order; total
simulation time: = ´T 2 106.
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Appendix F. Numerical simulations:matching layer spacing to system size

It is well known from studies of equilibrium smectics that smectic order can be violently disturbed by even small
departures of the system size from an integralmultiple of the layer spacing [34]. Indeed, in some cases
(specifically, when l pº <K B a 4l , where al is the layer spacing) such amismatch can lead, in
equilibrium, to an ‘undulation instability’ [34]. In order tominimize such effects, we have adjusted our
numerical parameters whenever necessary to ensure that the observed smectic pattern in our simulationswith
periodic boundaries corresponds to the bulk behavior of active smectics. For numerical convenience, we have
accomplished this by adjusting the interaction range rint while keeping the system size fixed, until the average
layer spacing a converged to unity. Only in the case of isotropic repulsionwas this necessary, as only in that case
was the average layer spacing significantly lower than the interaction range (specifically, we found »a r0.95l int).
Themodified values for the interaction range needed to increase al back to 1 for isotropic repulsionwere

=r 1.05int for the F-model and =r 1.06int for the apolarmodel. In order to keep the speed of individual particles
comparable across different repulsion types, the speed (displacement per time step)was alwaysmeasured in
units of the interaction range. In simulations, this choice of =a 1l made it desirable, for the reasons just
discussed, to alwaysworkwith systems of integer size L. This not onlyminimized potentialmismatch between
the layer spacing and the system size, as discussed above, but also ensured that the spatial subdivision algorithm
employed by us for efficient calculation of local interactions in large systems functioned correctly.

AppendixG.Winding number

Periodic boundary conditionsmake layered patterns with different integer ‘winding numbers’w possible:w=0
means each layer connects to itself at the periodic boundary, while forw=1 each layer connects to the one
above it,w=2 implies connecting to the layer two above it, etc. Tominimize this artifact of periodic boundary
conditions, we restrict our simulations of smectic patterns to ‘flat’ (i.e.,w=0) configurations. However, it
should be noted that in the apolar system, the undulation instability at large length scales breaks the smectic
layers, whichmay lead to the emergence of a smectic patternwith different winding numbers.
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