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Integration of high-resolution promoter profiling
assays reveals novel, cell type–specific transcription
start sites across 115 human cell and tissue types

Jill E. Moore,1 Xiao-Ou Zhang,1 Shaimae I. Elhajjajy,1 Kaili Fan,1 Henry E. Pratt,1

Fairlie Reese,2 Ali Mortazavi,2 and Zhiping Weng1

1Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
01605, USA; 2Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA

Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in

human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these

annotations are experimentally validated nor do they contain information on cell type–specific usage. Therefore, we sought

to generate a collection of experimentally validated TSSs by integrating RNAAnnotation andMapping of Promoters for the

Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately

50 thousand representative RAMPAGE peaks. These peaks are primarily proximal to GENCODE-annotated TSSs and are

concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks

to transcripts by analyzing the genomic positions of the 3′ ends of read mates. Using this paired-end information, we clas-

sified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of

GENCODE genes. We also found that these updated TSS annotations are supported by epigenomic and other transcriptomic

data sets. To show the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide asso-

ciation study (GWAS) catalog and identified new candidate GWAS genes. Overall, our work shows the importance of inte-

grating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.

[Supplemental material is available for this article.]

Accurate maps of genes and their transcription start sites (TSSs) are
essential for studying gene regulation and determining the impact
of genetic variation. Although gene and transcript annotations
have improved substantially over the years, benefiting from ad-
vances in experimental and computational technologies, accurate,
cell type–specific annotations are far from complete. Efforts such
as the GENCODE project (Frankish et al. 2019) have generated de-
tailed annotations for over 60 thousand genes and 100 thousand
transcripts across the human genome. These widely used annota-
tions combine transcriptomic, proteomic, andhomology evidence
through manual curation and automated computational pipe-
lines. However, these annotations are built in a cell type–agnostic
manner; they represent the collective transcriptomic landscape
across thousands of unique cell and tissue types. Therefore, it is dif-
ficult to knowwhich transcripts are actively transcribed in a partic-
ular cell or tissue type and, by extension, which regulatory
elements and genetic variants may impact gene expression.

Although public RNA-seq data are accumulating across a
wide array of tissues and cells types, many of which are from coor-
dinated efforts such as the Genotype-Tissue Expression (GTEx)
(The GTEx Consortium 2020) and Encyclopedia of DNA
Elements (ENCODE) (The ENCODE Project Consortium et al.
2020) projects, these experiments are not optimal for annotating
specific transcripts and their start sites. Most RNA-seq protocols
perform short-read sequencing, which can accurately quantify
gene expression levels but cannot delineate transcript isoforms ful-

ly nor precisely map the 5′ ends of transcripts. Therefore, assays
that target and preserve 5′ ends, such as the cap analysis gene ex-
pression (CAGE) assay (Kodzius et al. 2006), are preferred for TSS
identification. The FANTOM Consortium generated a TSS catalog
across the human genome by integrating thousands of CAGE ex-
periments (The FANTOM Consortium and the RIKEN PMI and
CLST (DGT) 2014). However, CAGE uses short, single-end reads,
which have low mappability and cannot connect TSSs to their
downstream transcripts. To overcome these limitations, Gingeras
and colleagues developed the RNA Annotation and Mapping of
Promoters for the Analysis of Gene Expression (RAMPAGE) assay
(Batut et al. 2013), which captures the 5′ end of capped RNAs using
paired-end reads to enable more accurate genomic mapping and
transcript characterization. The Gingeras laboratory generated
both RAMPAGE and RNA-seq data for more than 100 human sam-
ples during the ENCODE Project (The ENCODE Project
Consortium et al. 2020).

Here, we integrated 115 high-quality ENCODE RAMPAGE
experiments to identify 52,546 representative RAMPAGE peaks
(rPeaks), a curated collection of TSSs, and their activities across
the 115 human samples. These rPeaks are supported by other tran-
scription assays including CAGE, long-read RNA-seq using the
Pacific Biosciences (PacBio) platform, and high-resolution nuclear
run-on of capped transcripts (GRO-cap) (Core et al. 2014). Using
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paired-end RAMPAGE reads, we linked the majority of rPeaks to
annotated genes and identified TSSs of unannotated spliced tran-
scripts. These verified rPeaks were more enriched for transcrip-
tomic and epigenomic features than GENCODE TSSs for the
same genes not supported by RAMPAGE. Finally, we used this
collection of rPeaks to annotate human variants associated with
genome-wide association studies (GWAS) and identify novel
phenotype-associated genes. Overall, our TSS collection comple-
ments existing gene annotations and shows the utility of cell
type–specific TSS annotations in integrative analyses.

Results

Curation of 52,546 representative RAMPAGE peaks

We curated 115 high-quality RAMPAGE experiments (Supplemen-
tal Table S1A) from ENCODE to generate our collection of repre-
sentative rPeaks (Fig. 1A). These RAMPAGE experiments spanned
87 tissues and 28 cell types from a variety of biological contexts.

We called peaks using the 5′ ends of RAMPAGE reads in individual
experiments as previously described (Zhang et al. 2019), identify-
ing three components for each peak: (1) a full peak; (2) a high-den-
sity region in the peak that accounts for 80% of the peak’s total
RAMPAGE signal; and (3) a summit, which is the genomic position
with the highest signal. Given that the RAMPAGE assay enriched
for reads at the 5′ ends of transcripts, we filtered out the small sub-
set of RAMPAGE peaks that had higher RNA-seq signals than RAM-
PAGE signals in the matched biosample, which may be owing to
fragmentation, degradation, and cytosolic recapping of the tran-
scripts (seeMethods; Supplemental Fig. S1A; Trotman and Schoen-
berg 2019), retaining about ten thousand peaks per experiment
(Supplemental Table S1A). We then clustered overlapping peaks
across the 115 experiments for two genomic strands separately
and selected a representative peak (rPeak) for each cluster with
the highest reads per kilobase per million mapped reads (RPKM)
(Fig. 1A). Additional filtering was performed to remove low-signal,
single-experiment rPeaks that were likely false positives; in total,
we arrived at 52,546 rPeaks (Supplemental Table S1B). The full
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Figure 1. Curating a collection of representative RAMPAGE peaks (rPeaks) across 115 biosamples. (A) Workflow for curating RAMPAGE rPeaks. First, we
called peaks in individual RAMPAGE data sets across 115 cell types and tissues. We then pooled these peaks (N=1,147,456) and separated them by ge-
nomic strand. We clustered overlapping peaks on the same strand, selected the peak with the highest RAMPAGE signal (i.e., the rPeak) to represent each
cluster, removed all the peaks overlapping the rPeak from the pool, and performed clustering on the remaining peaks. We repeated this process iteratively
until all peaks were accounted for by rPeaks. We performed additional filtering using RNA-seq data, removing peaks that had a higher RNA-seq signal than
RAMPAGE signal, finally arriving at 52,546 rPeaks. (B) Bar plots showing the number of RAMPAGE rPeaks stratified into distinct sets by genome context:
overlapping GENCODE V31 TSSs (red), proximal (±500 bp) to TSSs (pink), overlapping exons (dark green), overlapping introns (light green), and inter-
genic (gray). (C) Bar plots showing the fold enrichment for the number of genomic positions covered by rPeaks over the footprints of the genomic contexts
in B. (D) Bar plots showing the percentage of rPeaks in each genomic context as in B that are on the same strand as their overlapping TSS, gene (exon and
intron), or nearest gene (TSS-proximal and intergenic). (E) Box plots displaying the variation in the positions of rPeak summits (left), high-density region
boundaries (middle), and full peak boundaries (right), stratified by the genomic contexts as in B. (F ) An example TSS-overlapping rPeak ZH38T000123 from
K562 cells and the RAMPAGE peaks it represents in 113 other biosamples. For each peak, the full width is denoted in light blue, high-density regions in blue,
and summit in black. (G) Scatterplot displaying a two-dimensional UniformManifold Approximation and Projection (UMAP) embedding of 87 tissue sam-
ples using RAMPAGE signal across all rPeaks as input features. Circles denote adult tissues, and triangles denote fetal tissues. Markers are colored by tissue of
origin as defined in the legend.
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rPeaks and their high-density regions occupy 0.23% and 0.09% of
the human genome, having median widths of 121 and 43 nucleo-
tides (nt), respectively (Supplemental Fig. S1B,C).

The majority (59%) of rPeaks either overlapped or were prox-
imal to (±500 bp but did not overlap) a GENCODE-annotated TSS
(GENCODE 31 basic TSSs) (Fig. 1B). As an assessment for the
extent of divergent transcription at TSSs, we detected an rPeak up-
stream on the opposite strand within 2 kb for the 6666 TSS-over-
lapping rPeaks (31%); this percentage is comparable to the
FANTOM5 Consortium’s CAGE peak collection, for which 8601
(34%) TSS-overlapping peaks have a peak upstream on the oppo-
site strand within 2 kb. The remaining rPeaks overlapped exonic,
intronic, or intergenic regions (14%, 18%, and 9% of rPeaks, re-
spectively). We used these genomic contexts (TSS, TSS-proximal,
exon, intron, and intergenic) throughout our analyses. As expect-
ed, RAMPAGE rPeaks were highly enriched for annotated TSSs and
depleted in intergenic regions compared with the genomic foot-
prints of these contexts (Chi-square test, P<1× 10−300) (Fig. 1C).
Additionally, TSS, TSS-proximal, exonic, and intronic rPeaks had
higher strand concordance than intergenic rPeaks, meaning they
were more likely to fall on the same strand as their overlapping
or closest gene (Fig. 1D). This finding suggests that intergenic
rPeaks could result from misannotated or novel TSSs or from tran-
scription at regulatory elements such as enhancer RNAs (eRNAs).

Next, we analyzed the ability of each rPeak to accurately rep-
resent their underlying clusters. When we analyzed the range of
biosample activities of the RAMPAGE peak clusters, we observed
a bimodal distribution (Supplemental Fig. S1D; Supplemental Ta-
ble S1B), indicating that some rPeaks represent peaks from many
RAMPAGE experiments, whereas others represent only a few, re-
flecting varying levels of cell and tissue type specificity of the
TSS usage. The rPeaks in different genomic contexts differ greatly
in this regard. TSS rPeaks represent peaks from 26 experiments
on average, much higher than other rPeaks (pairwise Fisher’s exact
test, P<1× 10−300) (Supplemental Fig. S1E), indicating that anno-
tated TSSs tend to be active in multiple cell and tissue types. For
the vast majority of rPeaks, their summits were at nearly identical
positions to the RAMPAGE peaks in individual experiments that
they represented (we excluded the peak that was chosen as the
rPeak for this analysis), with a difference in median of 0 bp across
experiments (Fig. 1E). We note that although the RAMPAGE tech-
nique is of single–base pair resolution and annotated TSSs are
assigned single–base pair genomic locations, RAMPAGE peaks
reflect the firing patterns of RNA polymerases, which can vary
across the genome. Polymerase firing originates predominantly
from one genomic position at some loci but is more dispersed at
other loci, corresponding to narrow, broad, and dispersed TSS
shapes (Carninci et al. 2006; Fan et al. 2021). Although themedian
width of the high-density region of the rPeaks is 43 nt, the high-
density region of 3984 rPeaks is a single base pair. Thus, RAMPAGE
is capable of determining the resolution of TSSs down to a single
base pair. We observed more variability in the boundaries of the
high-density regions and full RAMPAGE peaks, with a difference
inmedian of 8 and 18 nt, respectively, which is still relatively small
on a genome-wide scale. As an illustrative example, the rPeak
(ZH38T0001231) that overlapped a TSS of the PPIE gene represent-
ed RAMPAGE peaks from 114 experiments precisely at their sum-
mits and high-density regions (Fig. 1F; Supplemental Table S1C).

To assess the biological spectrum of rPeak activity, we per-
formed dimensionality reductionwithUMAP for all tissue samples
(N=87), using RAMPAGE signal profiles across the rPeaks in these
samples (Fig. 1G). Similar tissues were generally clustered together,

for example, brain, heart and leg muscle, and gastrointestinal
tissues, respectively. Some fetal tissues were clustered with their
corresponding adult tissues, including heart, liver, and lung. How-
ever, fetal thyroid and stomach tissues clustered exclusively with
other fetal tissue samples, suggesting that these fetal samples share
developmental transcriptional patterns at the surveyed life stages.
We observed similar patterns using all 115 biosamples, albeit with
tissues clustering separately from primary cells and cell lines (Sup-
plemental Fig. S1F). Overall, these results indicate that our RAM-
PAGE rPeaks are a unified set of transcriptional sites that enables
systematic investigations into the transcriptional landscape across
multiple biosamples.

RAMPAGE rPeaks are concordant with other TSS annotations

To evaluate the accuracy and comprehensiveness of our RAMPAGE
rPeaks collection, we compared it with other collections of TSS an-
notations. The largest andmost biologically diverse of these collec-
tions is the atlas of CAGE peaks generated by the FANTOM5
Consortium, which comprises 209,911 peaks annotated across
1816 experiments (The FANTOM Consortium and the RIKEN
PMI and CLST (DGT) 2014; Abugessaisa et al. 2017). Approximate-
ly two-thirds of our rPeaks overlapped a CAGE peak, whereas only
one-third of the CAGE peaks overlapped an rPeak (Fig. 2A). Strati-
fied by genomic context, the CAGE-overlapping rPeaks were more
likely to be at GENCODE TSSs or TSS-proximal loci and less likely
to be at exonic, intergenic, or intronic loci (Chi-square test, P<1.0
×10−300) (Fig. 2B). Additionally, we intersected our rPeaks with
FANTOM enhancers, and only 4% of our rPeaks (N=2195) and
3% FANTOM enhancers (N=1977) overlapped. These two results
suggest that the RAMPAGE assay preferentially identifies TSSs of
genes rather than transcription at regulatory elements.

We also observed that although the majority (65%) of RAM-
PAGE rPeaks overlapped one or no CAGE peaks, some rPeaks over-
lapped multiple CAGE peaks. We investigated such cases to
determine if we were missing alternative TSSs owing to our wider
peak calls and found that these were generally sites of dispersed
transcription (Supplemental Fig. S2). Using RAMPAGE data, we
previously showed that TSS shape is linked with cell type–specific
activity because narrow TSSs aremore likely to be cell type–specific
compared with broad and disperse TSSs, which are more ubiqui-
tously expressed (Fan et al. 2021). Indeed, RAMPAGE rPeaks that
overlapmultiple CAGE peaks were 2.2 timesmore likely to overlap
ubiquitously active promoters compared with RAMPAGE rPeaks
that only overlapped a single CAGE peak (Fisher’s exact test, P<
1.0 ×10−300). The structure of our rPeaks—full peak width, high
density region, and summit—allows us to detect these types of dis-
persed transcription events.

Though a majority of TSS and TSS-proximal rPeaks were
shared between RAMPAGE and CAGE, we identified sets of genes
with TSSs that were exclusively proximal to CAGE peaks (CAGE-
only genes) (Supplemental Table S2A) or were exclusively proxi-
mal to RAMPAGE rPeaks (RAMPAGE-only genes) (Supplemental
Table S2B). Gene Ontology analysis revealed that the 6932
CAGE-only genes were enriched in terms such as T-cell receptor
complex and photoreceptor disc membrane (Fig. 2C; Supplemental
Table S2C). Enrichment in these terms is not surprising as the cor-
responding biosamples—T cells and eye tissues—were assayed by
CAGE but not RAMPAGE. Additional enrichment for neuronal
terms such as integral components of postsynaptic density membranes
was unexpected as we integrated RAMPAGE data from seven fetal
brain samples and in vitro–differentiated neurons. Alternatively,

Novel, cell type–specific TSSs
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the 1573 RAMPAGE-only genes were primarily enriched for two
terms, immunoglobulin production and keratinization (Fig. 2C;
Supplemental Table S2D), owing to an abundance of immuno-
globulin kappa (IGK) genes and keratin associated protein

(KRTAP) genes, respectively. Although
we observed genes from these families
in both the RAMPAGE-only and CAGE-
only gene sets, the sequences flank-
ing the TSSs of RAMPAGE-only IGK
and KRTAP genes shared higher se-
quence similarity than the correspond-
ing CAGE-only genes (Wilcoxon tests,
P = 7.1 ×10−7 and 4.7 ×10−5, respective-
ly) (Fig. 2D; Supplemental Fig. S3A). We
hypothesize that the 101-nt, paired-end
RAMPAGE reads can uniquelymap to ge-
nomic regions sharing higher sequence
similarity better than the 36-nt, single-
end CAGE reads, allowing us to identify
rPeaks in more paralogs of these two
gene families. In conclusion, the primary
differences in the gene coverage by
RAMPAGE rPeaks and CAGE peaks large-
ly reflect differences in their biosample
collections and assay read length.

To avoid coverage differences owing
to biosample composition, we directly
compared RAMPAGE rPeaks and CAGE
peaks active in K562 and GM12878 cell
lines—biosamples used in both peak col-
lections—along with GRO-cap (Core
et al. 2014) and PacBio long-read RNA-
seq data (Wyman et al. 2020) in the re-
spective cell lines. Generally, the four
sets of TSS annotations were highly con-
cordant, with the majority of RAMPAGE
rPeaks, CAGE peaks, and PacBio 5′ ends
overlapping one another and containing
high GRO-cap signals (Supplemental
Fig. S3B). In total, 98% of K562 and
GM12878 rPeaks were substantiated by
overlapswith at least one other transcrip-
tome annotation, and a majority of the
rPeaks—65% in K562 and 74% in
GM12878—was supported by all of the
other assays (Fig. 2E; Supplemental Fig.
S3C). These supported rPeaks had higher
RAMPAGE signals (pairwise Wilcoxon
test, P<1.0 ×10−300) (Fig. 2F; Supplemen-
tal Fig. S3D) andweremore likely to over-
lap TSSs (Chi-square test, P=2.5 ×10−259)
(Fig. 2G; Supplemental Fig. S3E) than
rPeaks supported by fewer or no other as-
says. When we analyzed the CAGE, Pac-
Bio, and GRO-cap signals at rPeaks in
K562 and GM12878 cells, we found
that signal was highly enriched directly
at the rPeak summits, showing that our
TSS annotations were supported by these
other assays at base pair resolution (Sup-
plemental Fig. S3F–K). We also analyzed
the number of geneswith TSSs supported

by RAMPAGE, CAGE, or PacBio data and observed that RAMPAGE
rPeaks identified an average of 17% fewer genes than CAGE and
PacBio (Supplemental Fig. S3L,M). On the other hand, 96% of
RAMPAGE genes were supported by another assay compared

E
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Figure 2. RAMPAGE rPeaks are concordant with other transcriptome annotations. (A) Bar graph show-
ing the percentage of RAMPAGE rPeaks that overlap CAGE peaks (purple) and the percentage of CAGE
peaks that overlap RAMPAGE rPeaks (pink). (B) Bar graph showing the percentages of CAGE-overlapping
RAMPAGE peaks in specific genomic contexts as defined in Figure 1B. (C) Venn diagram depicting the
overlap of genes whose TSSs have at least one peak within 500 bp between the sets of CAGE peaks
(pink) and RAMPAGE rPeaks (purple). Below are representative Gene Ontology terms (cellular compo-
nent) enriched in CAGE-only genes (pink) or RAMPAGE-only genes (purple). A full list of enriched terms
can be found in Supplemental Table S2. (D) Density plot showing the distributions of the similarity scores
for sequences surrounding the TSSs of immunoglobulin kappa (IGK) genes supported by only RAMPAGE
peaks (purple) or only CAGE peaks (pink). Sequence similarity was calculated as the maximal score of all
pairwise local alignments. P-value corresponds to a two-sided Wilcoxon test. (E, top) VennPie diagram
with concentric circles displaying K562 RAMPAGE rPeaks that overlap K562 CAGE peaks (pink) or
PacBio 5′ ends (green) or have high GRO-seq signals (orange). The overall percentages are shown in pa-
rentheses. (Bottom) Bar plot with the number of K562 rPeaks stratified by the number of supporting tran-
scriptomic assays in the above VennPie. (F ) Violin-boxplot showing the distributions of the K562
RAMPAGE signal of rPeaks stratified by the number of supporting assays as defined in E. P-values corre-
spond to two-sided pairwise Wilcoxon tests with FDR correction. (G) Stacked bar graphs showing the
percentage of K562 rPeaks belonging to each genomic context (TSS: red, TSS-proximal: pink, exon:
dark green, intron: light green, intergenic: gray) stratified by the number of supporting assays as defined
in E. P-values correspond to Chi-square tests.
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with 90%of CAGE genes and 88%of PacBio genes. Thus, our rPeak
approach slightly compromises recall for better precision.

Our pairwise comparison between the four transcription as-
says (Supplemental Fig. S3B) indicates that the majority of
RAMPAGE, CAGE, and PacBio annotations overlapped one anoth-
er (55%–88%) andwere supported by highGRO-cap signals (80%–

91%). However, when we analyzed GRO-cap peaks, only a small
percentage of the over 100,000 peaks overlapped the other assays.
This is likely either owing to the ability of GRO-cap to detect tran-
scription of unstable transcripts and/or more lenient calling of
GRO-cap peaks.

Stratified by genomic context, TSS rPeaks had the highest lev-
els of GRO-cap signal and overlapped the greatest number of Pac-
Bio 5´-ends, followed by TSS-proximal, intronic, and intergenic
rPeaks (Supplemental Fig. S3N–P). In contrast, exonic rPeaks con-
sistently had the lowest levels of GRO-cap signal, and although
they overlapped a moderate number of PacBio 5´-ends (Supple-
mental Fig. S3O), these PacBio reads were significantly shorter
than those overlapping other rPeak classes (pairwise Wilcoxon
test with FDR correction, P<1.0 ×10−16) (Supplemental Fig. S3P).
These results suggest that many of the exonic rPeaks likely are
not TSSs and may arise from mRNA recapping (Trotman and
Schoenberg 2019).

To evaluate the ability of the RAMPAGE assay to detect low-
abundance and unstable transcripts, we compared our rPeak anno-
tations to TSSs classified by stability through the integration of
GRO-cap and CAGE data (Core et al. 2014). In K562 and
GM12878, 64% and 57%, respectively, of stable TSSs overlapped
RAMPAGE rPeaks annotated in those cell types (Supplemental
Fig. S3Q). In contrast, <1% of unstable TSSs overlapped rPeaks,
showing that the RAMPAGE assay can only detect TSSs of stable
transcripts. This was further highlighted when we compared the
overlap of our rPeaks collection to enhancers identified by the
NET-CAGE assay, which can identify transcription from unstable
transcripts (Hirabayashi et al. 2019). Only 1.5% of NET-CAGE-spe-
cific enhancers (N=315) overlapped an rPeak compared with the
aforementioned 3% of FANTOM CAGE enhancers (Fisher’s exact
test, P=2.0 ×10−33). Therefore, we conclude that our RAMPAGE
rPeak collection preferentially contains TSSs for stable, gene-asso-
ciated transcripts.

Overall, only 2% of K562 and GM12878 RAMPAGE rPeaks
were not supported by one of the other assays (N=301 and 212, re-
spectively). These peaks had the lowest RAMPAGE signals and
were more likely to overlap exons, introns, and intergenic regions
(Fig. 2F,G; Supplemental Fig. S3D,E). These weaker transcription
sites are not as reproducible across assays or may be false positives.
Thus, our set of RAMPAGE rPeaks are highly concordant with oth-
er transcriptome annotations and likely represent a conservative
set of TSSs.

Three-quarters of RAMPAGE rPeaks are assigned to genes

via spliced transcripts

One advantage of the RAMPAGE assay is that it produces paired-
end reads, which not only result in more accurately mapped frag-
ments but also have the ability to assign rPeaks to genes. rPeaks are
derived from the 5′ ends of RAMPAGE read pairs, and by analyzing
the genomic positions of 3′ ends of the read pairs, we can attempt
to link rPeaks to downstream transcripts and consequently assign
rPeaks to genes. Such a process could go down one of two general
paths (Fig. 3A). If the generated transcript is spliced (e.g., mRNAs
and lncRNAs), the 3′ end of the read pair would map to an exon

that is thousands of base pairs downstream from the rPeak, and
we can assign the rPeak to the gene that the exon belongs to.
However, if the generated transcript is unspliced (e.g., pre-
mRNAs, single-exon transcripts, small RNAs, and most eRNAs),
the 3′ end will map <1 kb downstream (the maximum selected
fragment size for the RAMPAGE assay; median=335 nt), and we
cannot confidently assign the rPeak to a specific gene.

To determine the portions of RAMPAGE reads derived from
spliced and unspliced transcripts, we calculated the distance be-
tween the 5′ and 3′ ends of the read pairs that support an rPeak
(i.e., the 5′ end of the read pair overlaps an rPeak). For TSS-overlap-
ping rPeaks, we observed a bimodal distribution,with 83%of reads
from spliced transcripts (distance >1 kb) and 17% from unspliced
transcripts (distance≤1 kb) (Fig. 3B). For other rPeak classes, we
also observed substantial percentages of reads deriving from
spliced transcripts (43%–68%), suggesting that these rPeaks may
correspond to TSSs for misannotated transcripts, novel isoforms,
or novel genes. These results indicated that we can use RAMPAGE
read pairs from spliced transcripts to assign rPeaks to genes.

We developed a computational pipeline to systematically as-
sign rPeaks to genes (Supplemental Fig. S4A). Because of the afore-
mentioned low GRO-cap signal at exonic rPeaks, we excluded all
exonic rPeaks that did not overlap the first exon of an annotated
transcript (N=6709) from this analysis as they likely capture recap-
ping (Trotman and Schoenberg 2019) or degradation events rather
than sites of transcription.We further discarded four rPeaks whose
supporting reads mapped >500 kb away. We classified the remain-
ing 45,833 rPeaks into five general categories depending on
whether an rPeak overlaps a GENCODE-annotated TSS andwheth-
er its supporting reads overlapped a GENCODE-annotated exon,
with the most prominent scenarios summarized as follows (Fig.
3C) and with details provided in Supplemental Table S3A. First,
if an rPeak overlaps a GENCODE-annotated TSS and its supporting
reads overlap a downstream exon of the same gene, the rPeak is
classified as a verified GENCODE TSS. Second, if an rPeak does
not overlap a GENCODE-annotated TSS but its supporting reads
overlap a GENCODE-annotated exon, the rPeak is classified as a
verified unannotated TSS. Third, if an rPeak overlaps a
GENCODE-annotated TSS and its supporting reads overlap the
first exon of the gene and if the gene has only one exon or its first
exon is >500 nt, then the rPeak is classified as a candidate
GENCODE TSS. Fourth, if an rPeak’s supporting reads map to >1
kb downstream from the rPeak and do not overlap a GENCODE-
annotated exon, the rPeak is deemed to be the TSS of an unanno-
tated transcript. Fifth, if an rPeak’s supporting reads arewithin 1 kb
of the rPeak and the rPeak is not a candidate GENCODE TSS (third
category above), then it is deemed to originate from local (i.e.,
unspliced) transcription. Using our pipeline, we assigned 84% of
rPeaks to genes (the first three categories) (Fig. 3D), which is
4641 more genes and 12,466 more transcripts than simply using
overlaps (Fig. 3E). In total, we curated 19,821 verified GENCODE
TSSs, 17,447 verified unannotated TSSs, and 1088 candidate
GENCODE TSSs for 22,801 genes and 4129 TSSs for unannotated
transcripts (Supplemental Table S3A).

The vast majority of TSS-overlapping rPeaks (19,821 of
21,278, 93%) are verified GENCODE TSSs, indicating that our ap-
proach is highly accurate (Fig. 3F; Supplemental Table S3B). These
verified GENCODE TSSs amount to 43% of all rPeaks. The next
largest category of rPeaks is verified unannotated TSS (38%, N=
17,447) (Supplemental Table S3C), and these rPeaks are potentially
novel TSSs of spliced GENCODE-annotated genes revealed by our
collection of RAMPAGE data. Three examples from K562 cells
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are highlighted (Supplemental Fig. S4B–D): exonic rPeak
ZH38T0014149, a verified TSS of ING1, (Supplemental Fig. S4B);
intronic rPeak ZH38T0050003, a verified TSS ofGALNT12 (Supple-
mental Fig. S4C); and intergenic rPeak ZH38T0049993, a verified
TSS of NANS (Supplemental Fig. S4D). These three verified TSSs
and their linked transcripts were also supported by PacBio reads
in K562 cells.

To determine if the verified unannotated TSSs were from mi-
nor or cell type–specific isoforms, we compared the activity levels
for the TSSs of 6161 genes that had at least one verified GENCODE
TSS and one verified unannotated TSS. We found that most veri-
fied TSSs fell into three general classes (Supplemental Fig. S5A):
(1) ubiquitously expressed TSSs that belong to ubiquitously ex-
pressed genes, (2) cell type–specific TSSs that belong to ubiquitous-
ly expressed genes (i.e., TSSs of tissue-specific isoforms), and (3)
cell type–specific TSSs that belong to cell type–specific genes.
Generally, verified GENCODE TSSs fell into the first and third clas-
ses (Supplemental Fig. S5B), whereas verified unannotated TSSs fell
into the second and third classes (Supplemental Fig. S5C).
Furthermore, verified GENCODE TSSs were more likely to corre-
spond to major isoforms compared with verified unannotated
TSSs (Wilcoxon test, P<1.0 ×10−300) (Supplemental Fig. S5D).
When we analyzed the expression profiles of these verified anno-
tated TSSs, we found that they had enriched expression inmale re-
productive tissues (e.g., testis and prostate) (Supplemental Table

S3D), supporting previous findings that alternative transcription
is prevalent in these tissues (Naro et al. 2021).

The candidate GENCODE TSS category of rPeaks (N=452)
constitutes 88% of the TSS-overlapping rPeaks that were not sup-
ported by reads from spliced transcripts (N=511). The GENCODE
genes that overlap these rPeaks either have only one exon or have a
long (>500 nt) first exon (Supplemental Table S3E). We observed a
similar pattern for TSS-proximal and exonic rPeaks not supported
by reads from spliced transcripts, although at lower percentages.
These rPeaks are most likely the TSSs of the overlapping genes, al-
though our paired-end mapping approach is not able to make the
assignment definitively; thus, we assigned them the candidate des-
ignation. Of the 8298 TSS-proximal and 547 exonic rPeaks that we
classified as either candidate GENCODE or verified unannotated
TSSs, 1627 overlap the coding DNA sequence (CDS) of an annotat-
ed GENCODE gene. These alternative TSSs could potentially affect
the open reading frame (ORF) of the annotated gene resulting in a
different translated protein.

The unannotated transcript category includes 4129 rPeaks
(9% of rPeaks), which are likely TSSs of unannotated spliced tran-
scripts. The rPeaks themselves are primarily intergenic, intronic, or
antisense TSS-proximal with respect to GENCODE-annotated
genes (Supplemental Table S3F). Although this category of rPeaks
shows similar levels of evolutionary conservation to the local tran-
scription category of rPeaks, the former category is active in more
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Figure 3. Assigning RAMPAGE rPeaks to genes using paired-end reads. (A) Schematic showing how paired-end RAMPAGE reads (purple) can distinguish
between spliced and unspliced transcripts, unlike single-end CAGE reads (pink). (B) Density plot of the distances between the 5′ and 3′ ends of RAMPAGE
read pairs, stratified by rPeak genomic context. The maximum fragment length (1 kb) is shown by the dashed line. (C) Schematic depicting the paired-end
readmethod for linking RAMPAGE rPeaks with genes and the resulting five categories. (D) Pie chart displaying the percentage of RAMPAGE rPeaks classified
as the five categories in C: verified GENCODE TSSs (red), verified unannotated TSSs (orange), candidate GENCODE TSSs (yellow), unannotated transcript
TSSs (blue), or local transcription (gray). (E) Bar graphs showing the number of GENCODE genes (left) and transcripts (right) that are accounted for by
overlapping RAMPAGE rPeaks (black) versus the paired-end read method illustrated in A and C (colors). Bars for the paired-end method are stratified by
TSS class (as defined in C,D). Genes with multiple TSSs were counted only once with the following priority: verified GENCODE TSSs, verified unannotated
TSSs, and then candidate GENCODE TSSs. (F ) Bar graphs showing the percentage of rPeaks that are classified as verified GENCODE TSSs (red), verified
unannotated TSSs (orange), candidate GENCODE TSSs (yellow), unannotated transcript TSSs (blue), or local transcription (gray), stratified by genomic
context.
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biosamples and more likely to overlap PacBio TSSs (Supplemental
Fig. S5E–H; Supplemental Table S4). Additionally, the PacBio reads
that overlapped the verified unannotated transcript rPeaks had a
similar length distribution to the PacBio reads that overlapped
rPeaks in the verified GENCODE TSS category, suggesting that
the verified unannotated transcript rPeaks may correspond to
lncRNAs missed by GENCODE (Supplemental Fig. S5I,J). To test
this hypothesis, we intersected these rPeaks with lncRNA TSSs cu-
rated by the lncBook database (Ma et al. 2019) and found that 30%
of our verified unannotated transcript rPeaks overlapped the
lncBook lncRNATSSs, a significant enrichment over the local tran-
scription rPeaks and random genomic regions (7% and <1% over-
lap, respectively, Fisher’s exact test, P<8.8 ×10−148) (Supplemental
Table S3F). Using overlapping PacBio reads, we also scanned for po-
tential of ORFs in the resulting transcripts and found that the un-
annotated transcripts had fewer computationally discovered ORFs
compared with GENCODE annotated transcripts (pairwise Wil-
coxon test with FDR correction, P<2.6 ×10−77) (Supplemental
Fig. S5K,L). These results suggest that many of our verified unan-
notated transcript rPeaks are likely lncRNAs and further expands
the growing list of lncRNAs in the human genome.

We built our catalog of RAMPAGE rPeak TSSs using GEN-
CODE V31 basic annotations. Because GENCODE releases new
versions quarterly, we evaluated how our catalog compared to
six different GENCODE builds. We ran our pipeline using GEN-
CODE V24, V31, and V38, evaluating both basic and comprehen-
sive annotations (Supplemental Fig. S5M; Supplemental Table
S3G). As expected, more rPeaks were classified as verified GEN-
CODE TSSs when using the newer, more comprehensive GEN-
CODE builds. For example, 18,000 rPeaks were classified as
verified GENCODE TSSs using GENCODEv24 basic annotations
compared to 25,000 rPeaks with the GENCODE V38 comprehen-
sive annotations. Nevertheless, even with the GENCODE V38
comprehensive annotations, we still identified 13,000 novel TSSs
for annotated GENCODE transcripts and 3700 TSSs for novel tran-
scripts, showing that our rPeak catalog still identifies novel tran-
scriptional events.

RAMPAGE-verified TSSs are enriched for regulatory signatures

We compared our RAMPAGE-verified TSS annotations with
GENCODE-annotated TSSs for enrichment in functional, epige-
nomic, and additional transcriptomic annotations. For these anal-
yses, we only considered genes with both a RAMPAGE-verified
unannotated TSS and a GENCODE TSS that did not overlap each
other (4751 genes) and used a uniform 100-bp region centered at
an rPeak summit or GENCODE TSS to control for gene expression
and provide an unbiased comparison.

RAMPAGE-verified unannotated TSSs were more likely to
overlap ENCODE candidate cis-regulatory elements (cCREs;
1.3-fold enrichment, Fisher’s exact test, P=1.7 ×10−125) (The EN-
CODE Project Consortium et al. 2020) and GTEx expression quan-
titative trait loci (eQTLs; 1.2-fold enrichment, Fisher’s exact test, P
=2.8 ×10−6) (GTEx Consortium 2017) compared with matched
GENOCDE TSSs (Fig. 4A).Whenwe restricted our analysis to RAM-
PAGE-verified unannotated TSSs active in K562 and their matched
GENCODE TSSs (961 genes), we observed that the verified TSSs
weremore likely to overlapK562 cCREs (1.8-fold enrichment, Fish-
er’s exact test, P=8.7 ×10−92) (Fig. 4B) and peaks from the Survey
of Regulatory Elements (SuRE) assay, a massively parallel reporter
assay testing promoter activity (1.9-fold enrichment, Fisher’s exact
tests, P=1.1 × 10−79) (Fig. 4A; van Arensbergen et al. 2017). The

K562 RAMPAGE-verified unannotated TSSs also had higher
H3K4me3 and H3K27ac ChIP-seq signals, which had the canoni-
cal asymmetric pattern corresponding to transcriptional direction,
chromatin accessibility, and Pol II ChIP-seq signals compared with
the matched GENCODE TSSs (Fig. 4C).

We also compared the verified unannotated TSSs with the
K562 and GM12878 PacBio long-read RNA-seq data. RAMPAGE-
verified unannotated TSSs were more likely to overlap the
5′ ends of PacBio reads compared with the GENCODE-matched
controls (median of three supporting reads vs. zero supporting
reads; Wilcoxon test, P=5.1 ×10−121) (Fig. 4D). One example is
highlighted at the INPP1 locus (Fig. 4E). ZH38T0029211 is a RAM-
PAGE-verified TSS located 8844 bp upstream of two GENCODE-
annotated TSSs for the INPP1 gene. The majority of RAMPAGE
reads link ZH38T0029211 to the first coding exon (exon 3), where-
as a minority links it to exon 2; similarly, PacBio reads support
ZH38T0029211 as a TSS of INPP1with the majority also excluding
exon 2. Furthermore, epigenomic signals, such as chromatin acces-
sibility and histone ChIP-seq, also support ZH38T0029211 as a
novel TSS of INPP1.

Despite the enrichment for functional, epigenomic, and tran-
scriptomic annotations, the RAMPAGE-verified unannotated TSSs
were less evolutionarily conserved than their matched GENCODE
TSSs as measured by phastCons (Wilcoxon test, P=2.5 ×10−19)
(Fig. 4F; Supplemental Fig. S5N; Siepel et al. 2005) and liftOver
(Hinrichs et al. 2006) to the mm10 genome (Fisher’s exact test,
P =1.5 ×10−15) (Supplemental Fig. S5O). However, the RAM-
PAGE-verified TSSs were still more conserved than distal enhancer
cCREs (cCREs-dELS; Wilcoxon test, P=7.4 ×10−81; Fisher’s exact
test, P=1.2 ×10−80) (Supplemental Fig. S5N,O) and much more
conserved than random genomic regions (Wilcoxon test, P<1.0
×10−300; Fisher’s exact test, P<1.0 ×10−300) (Supplemental Fig.
S5N,O). These findings suggest that although the RAMPAGE-
verified unannotated TSSs are more biochemically and transcrip-
tionally active in the evaluated cell types, GENCODE TSSs corre-
spond to transcripts expressed in other cell types that have not
been surveyed by the RAMPAGE assay. Therefore, for cell type–ag-
nostic data analyses, we suggest users supplement GENCODE TSS
annotations with RAMPAGE-annotated TSSs, whereas for cell
type–specific analyses, our results show that RAMPAGE TSSs are
a more precise and accurate set of TSSs than the using the entire
set of GENCODE annotations.

RAMPAGE rPeaks identify novel genes that are associated

with GWAS phenotypes

We intersected our RAMPAGE rPeaks with variants reported in the
NHGRI-EBI GWAS catalog to evaluate the utility of our collection
of experimentally derived TSSs (Buniello et al. 2019). Accounting
for population-specific linkage disequilibrium (LD; r2 > 0.7), our
rPeaks overlapped 1345 variants associated with 208 phenotypes
(Supplemental Table S5A). These GWAS SNPs were slightly more
likely to overlap the TSS of a major isoform compared with
matched controls (70.5% vs. 66.5%; Fisher’s exact test, P=0.01)
and were also more likely to be eQTLs (89% vs. 65% of controls;
Fisher’s exact test, P=6.6 ×10−119) with 86% of the eQTLs overlap-
ping the rPeak TSSs of their eGenes. To identify disease-associated
cell and tissue types, we performed biosample enrichment analysis
using our previously published pipeline (The ENCODE Project
Consortium et al. 2020). However, unlike our previous work,
which used nearly onemillion cCREs, covering∼8%of the human
genome, our rPeaks had a much smaller genomic footprint;
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therefore, we only observed enrichments passing our FDR thresh-
olds for three phenotypes: (1) obesity-related traits, (2) intelli-
gence, and (3) general cognitive ability (see Methods;
Supplemental Table S5B). Generally, enriched cell types were relat-
ed to disease etiology. For example, intelligence and cognitive abil-
ity variants were enriched at rPeaks active in the neuroblastoma
cell line SK-N-DZ, whereas obesity variants were enriched in
rPeaks active in a variety of gastrointestinal and thyroid tissues.
This result suggests that although we do not have the power to
determine phenotype-relevant cell types for most studies using
only RAMPAGE rPeaks, they can still capture biologically relevant
enrichments to aid downstream variant interpretation.

Among the 1345 variants that overlapped RAMPAGE rPeaks,
76% overlapped verified TSSs (50% GENCODE-annotated TSSs
and 26% unannotated TSSs) and were therefore linked with an an-
notated gene by paired-end reads. Of these verified TSS-overlap-
ping variants, 52% were linked with a gene that was not
previously reported by the original GWAS and 37% were linked
with a gene that was not reported by any GWAS, giving new in-
sights into disease risk (Supplemental Table S5C). Of particular in-
terest were RAMPAGE-verified unannotated transcript TSSs that
were originally classified as intergenic using GENCODE annota-

tions; these novel TSSs enabled us to assign 41 intergenic SNPs,
which were associated with 68 phenotypes, to genes. Figure 5A
highlights rs2620666, which is in high LD with two lead SNPs,
rs750472 and rs13251458, reported to be associated with several
cognitive traits (Supplemental Table S5D). The original studies re-
ported FOXH1 and CYHR1 as possible candidate genes owing to
their close proximity to the lead SNPs. Although rs2620666 lies
only 1694 bp upstream of a GENCODE-annotated FOXH1 TSS, it
overlaps a RAMPAGE-verified unannotated TSS of PPP1R16A
(ZH38T0048822) (Fig. 5B), which encodes a protein phosphatase
regulatory subunit. This novel TSS is 11,915 bp upstream of the
nearest GENCODE-annotated TSS for PPP1R16A, and this gene as-
signment is also supported by PacBio reads (Fig. 5B; Supplemental
Table S5E). The novel TSS has high RAMPAGE signal in neural
cells, brain tissues, and blood cells; moreover, the GTEx Consor-
tium identified rs2620666 as an eQTL for several genes (Supple-
mental Table S5F), the most significant of which is PPP1R16A in
whole-blood samples, suggesting that this variant may influence
PPP1R16A expression. This PPP1R16A TSS has been reported by
other gene annotation collections and, recently (May 2021), was
included as part of the GENCODE V38 basic annotations. This ex-
ample highlights the importance of having a comprehensive
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Figure 4. RAMPAGE-verified rPeaks are enriched for regulatory signatures. (A) Bar plots display the percentage of RAMPAGE-verified TSSs (purple) and
matched GENCODE-annotated TSSs (gray) that overlap cell type–agnostic cCREs and the full compendium of GTEx eQTLs. P-values are from Fisher’s exact
test. (B) Bar plots display the percentage of RAMPAGE-verified TSSs expressed in K562 (purple) and matching GENCODE-annotated TSSs (gray) that over-
lap K562 cCREs and SuRE assay peaks. P-values are from Fisher’s exact test. (C) Aggregation plots of epigenomic signals, DNase I (teal), H3K4me3 (red),
H3K27ac (yellow), and Pol II (blue), at K562 RAMPAGE-verified TSSs (colors) and matched GENCODE-annotated TSSs across a ±2-kb window centered on
the summits and TSSs, respectively. (D) Nested violin boxplots showing the number of PacBio 5′ read ends that overlap K562 RAMPAGE-verified TSSs (pur-
ple) and matched GENCODE-annotated TSSs (gray). P-value is from a Wilcoxon rank-sum test. (E) Genome browser view of INPP1 locus in K562.
RAMPAGE-verified TSS, ZH38T0029211, is linked to the INPP1 gene by paired-end RAMPAGE reads (purple), whereas the GENCODE-annotated TSSs
are not supported by RAMPAGE reads. PacBio reads (green) also support ZH38T0029211 as a verified TSS of INPP1 and epigenomic signals, DNase I
(teal), H3K4me3 (red), and H3K27ac (yellow), support promoter activity at ZH38T0029211 and not at the annotated GENCODE TSSs. RAMPAGE
rPeaks with RPM>2 in K562 are shown in purple, and those with RPM≤2 are shown in gray. (F ) Nested violin boxplots of average phastCons conservation
scores across RAMPAGE-verified TSSs (purple) and matched GENCODE-annotated TSSs (gray). P-value is from a Wilcoxon rank-sum test.
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collection of annotated TSSs so that variants are assigned correctly
to the linked genes.

Finally,we investigated the34GWASvariants that overlapped
TSSs of RAMPAGE-verified unannotated transcripts (Supplemental
Table S5A). Of particular interest was rs10930089, an intergenic
SNP in high LD with rs6759626 and rs9287826, two lead SNPs as-
sociated with general cognitive ability (Davies et al. 2018).
Rs10930089 overlaps ZH38T0028803, the TSS of a RAMPAGE-ver-
ified unannotated transcript that has high RAMPAGE signal in
SK-N-DZ (a neuronal cell line), cardiac tissues, and male reproduc-
tive tissues (Fig. 5C; Supplemental Table S5G). ZH38T0028803
overlaps the TSSs of two lncRNA transcripts annotated in lncBook,
both of which are consistent with the RAMPAGE reads pairs (Fig.
5D). In the other direction of the genome, ZH38T0028803 lies
282,766 bp upstream of KCNH7, which encodes a potassium volt-
age channel that has known roles in neurons and the heart (https
://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNH7; accessed
September 4, 2020). Variants in KCNH7 have also been previously
associated with bipolar disorder (Strauss et al. 2014) and treatment
response in schizophrenia (Wang et al. 2019), suggesting it may
play an important role in neuronal pathways. We found that 3D

chromatin contact data linked ZH38T0028803with KCNH7 in car-
diac myocytes (Fig. 5C; Montefiori et al. 2018) but not in iPSC-de-
rivedneurons (Rajarajanet al. 2018; Songet al. 2019). Furthermore,
ZH38T0028803 has high chromatin accessibility in SK-N-DZ, car-
diac cells, and heart tissues, but low chromatin accessibility in fetal
brain and iPSC-derived neurons (Supplemental Table S5H). Taken
together, these results suggest that rs10930089 may modulate the
function of ZH38T0028803, the TSS of a lncRNA expressed in neu-
ronal and cardiac cells, and this TSS may also acts as an enhancer
for KCNH7 in both of these two types of cells, with the caveat
that the 3D connection is in neuronal cell types other than iPSC-
derived neurons.

Discussion

We annotated 52,546 RAMPAGE rPeaks by integrating 115
RAMPAGE experiments, uniformly curating sites of transcription
in hundreds of human cell and tissue types. Using paired-end
RAMPAGE reads, we assigned the majority of these rPeaks as
TSSs of annotated genes and additionally identified TSSs of over
4000 novel transcripts. We then showed that the TSSs in our

B

A C

D

Figure 5. Disease-associated SNPs are linked with new candidate genes using the RAMPAGE rPeak catalog. (A) Genome browser view of the CYHR1–
PPP1R16A locus. Rs2620666 is in high LD (shown as r2 values) with GWAS SNPs rs13251458 and rs750472, and overlaps RAMPAGE rPeak
ZH38T0048822 (dashed box). RAMPAGE rPeaks with RPM>2 in neural cells are shown in purple, and those with RPM≤2 are shown in gray;
RAMPAGE signal is shown in purple. Supporting epigenomic signals from neural cells, H3K4me and H3K27ac, are shown in red and yellow, respectively.
The region shaded in gray ismagnified in B. (B) Zoomed-in genome browser view (gray highlight in A) displaying RAMPAGE reads (purple) and PacBio reads
(green) supporting RAMPAGE peak ZH38T0048822 (dashed box), which is a verified unannotated TSS of PPP1R16A and overlaps GWAS SNP rs2620666.
RAMPAGE peaks are colored as in A, and a magnified image of ZH38T0048822 is shown in a larger dashed box with white background. (C) Genome
browser view of the KCNH7 locus. Rs10930089 is in high LD with GWAS SNPs rs6759626 and rs9287826 and overlaps RAMPAGE rPeak
ZH38T0028803 (dashed box). RAMPAGE peaks are colored as described in A for cardiac muscle and SK-N-DZ cells. Supporting epigenomic signals
from cardiac muscle cells and SK-N-DZ are shown with DNase I in teal and H3K27ac in yellow. CHi-C links for cardiac cells are shown in black. The region
shaded in gray is magnified in D. (D) Zoomed-in genome browser view (gray highlight in C) displaying RAMPAGE reads (purple) from cardiac muscle and
SK-N-DZ cells supporting RAMPAGE peak ZH38T0028803 (in dashed box), which overlaps two transcripts of the lncBook lncRNA HSALNG0020057 and
GWAS SNP rs10930089. RAMPAGE peaks shown in purple have RPM>2 in both cardiac muscle and SK-N-DZ cells.
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catalog were enriched for various regulatory signatures defined us-
ing epigenetic and functional data and that our catalog comple-
ments existing TSS annotations such as those by GENCODE.
Through systematic comparisons with CAGE, GRO-cap, and
PacBio long-read data, we also determined that our catalog of
RAMPAGE rPeaks was highly precise and accurate. In particular,
PacBio and RAMPAGE had the highest overlap in both GM1878
and K562 cells. PacBio long reads not only supported our
RAMPAGE TSS annotations but also supported our assignments
of these TSSs to genes (Figs. 4E, 5B; Supplemental Fig. S3B–D).
PacBio long-read data are particularly advantageous as they allow
us to identify novel isoforms and annotate the 3′ ends of tran-
scripts in addition to annotating TSSs. As these data continue to
be produced for a wide variety of biosamples by the ENCODE
Consortium, they will be very useful for further expanding our
TSS catalog and enriching transcript annotations.

In both K562 and GM12878 cells, CAGE peaks tended to be
the least concordant with the RAMPAGE rPeaks and PacBio 5′

ends (Supplemental Fig. S3B). We also noted that CAGE-specific
peaks were much more likely to be intronic and intergenic than
RAMPAGE rPeaks. However, CAGE peaks were supported by GRO-
cap signals at a comparable level as RAMPAGE rPeaks, suggesting
that CAGE-specific peaks contain true TSSs (Supplemental Fig.
S3B). We hypothesize that the CAGE assay can identify a subclass
of intergenic and intronic transcription sites, likely eRNAs, that
are not detected by RAMPAGE or PacBio long-read RNA-seq. This
ability can be used to annotate TSS-distal regulatory elements.
Thus, additional comparisons need to be performed with transcrip-
tion assays that have high rates of eRNA detection, such as BruUV-
seq (Magnuson et al. 2016) and PRO-seq/cap (Kwak et al. 2013).

When we compared our catalog of RAMPAGE rPeaks to the
FANTOM Consortium’s CAGE peak collection, we found that
loci missed by RAMPAGE were primarily owing to differences in
surveyed biosamples (Fig. 2C). This result indicates that there is
high variability in the transcriptional landscapes among different
cell types, and a more comprehensive TSS collection can be
achieved by surveying a larger collection of biosamples; however,
there are additional considerations regarding the composition of a
sample collection. Although we currently include over 100 bio-
samples in our RAMPAGE rPeak catalog, the majority of these bio-
samples are bulk tissue samples that comprise many different cell
types. We found that tissue samples generally clustered separately
from primary and in vitro–differentiated cell samples despite some
sharing similar biological profiles (Supplemental Fig. S1F), possibly
owing to the technical differences in assaying tissues versus cells.
The impact of biosample composition on TSS annotation was
also apparent when we observed an enrichment of neuron-related
GeneOntology terms for CAGE-only genes despite the presence of
fetal brain tissues and iPSC-derived neurons in our RAMPAGE sam-
ple collection. This result suggests that these early developmental
brain tissues may be dominated by precursor cells such as imma-
ture neuronal progenitors or radial glia and that the iPSC-derived
neuronsmay represent alternative cell states frommature neurons.
On a genome-wide scale, SK-N-DZhas a transcriptional profile that
ismore similar to iPSC-derived neurons than tomature neurons, as
is evident from UMAP embedding (Supplemental Fig. S1F). The
discrepancy among the different types of neuronal cells was fur-
ther highlighted by our GWAS analysis in which we observed
that the cognitive phenotype-related SNPs overlapped a novel
TSS active in SK-N-DZ cells but not in iPSC-derived neurons.
Therefore, although SK-N-DZ cells overall share similar transcrip-
tomic signatures to iPSC-derived neurons, there are subtle differ-

ences in cellular state that may have important impacts on
variant and disease interpretation. With further developments of
single-cell transcriptomic technologies to capture the 5′ end of
transcripts, it will be important to expand our TSS identification
methods to build a comprehensive catalog by cell type, particular-
ly in heterogeneous tissues such as the brain.

Even though we observed enrichments in some tissues for
GWAS variants associated with three phenotypes, our compari-
sons were underpowered compared with our previous work (The
ENCODE Project Consortium et al. 2020) owing to the small geno-
mic footprint of RAMPAGE rPeaks. Despite this, we showed that
accurate TSS annotations, particularly those TSSs linked with
known transcripts, are important for interpreting variants reported
by GWAS. Additionally, we anticipate that such collections will
also be important for the detection and interpretation of rare
and de novo variants uncovered by whole-genome sequencing ef-
forts, as these variants have larger effect sizes andmay bemore like-
ly to fall within promoter regions than in distal regulatory
elements. For example, a recent study found an enrichment of
de novo variants associated with autism spectrum disorder in pro-
moters (An et al. 2018). Therefore, accurate, cell type–specific TSS
annotations can improve our power for interpreting the impact of
de novo genetic variation across cell types.

Finally, we identified 4129 TSSs for unannotated transcripts,
many of which we hypothesize to be lncRNAs although we could
not test this hypothesis with only the beginning portion of these
transcripts. It is also unclear if these transcripts carry out any cellu-
lar functions. A wide range of functional mechanisms have been
reported for lncRNAs, varying from transcriptional regulation of
other genes via epigenetic or antisense means to simply being
the byproducts of strong enhancers (Fang and Fullwood 2016;
Quinn and Chang 2016). With development of antisense oligonu-
cleotide (ASO) and CRISPR perturbation technologies, it is now
possible to perform screens to identify functional lncRNAs in a
high-throughput manner (Joung et al. 2017; Liu et al. 2017; Ram-
ilowski et al. 2020). As these collections of functionally validated
lncRNAs become available across diverse cellular contexts, we
plan to further refine our TSS catalog to include such functional
information.

There are some limitations to our catalog of RAMPAGE rPeaks,
which should be considered as theymay bias results toward highly
expressed, stable transcripts. One caveat to our catalog is that it pri-
marily contains TSSs for stable transcripts, as comparisons with
NET-CAGE and GRO-cap data showed that the RAMPAGE assay
is generally unable to detect TSSs of unstable transcripts such as
eRNAs. Additionally, using RAMPAGE rPeaks, we identified 17%
fewer genes compared with CAGE and PacBio data in the same
cell types. Thus, although we showed that our collection likely
has a lower false-discovery rate, we may be underreporting tran-
scriptional events. Finally, the 5′ ends of some RAMPAGE read
pairs may be imprecise owing to fragmentation and degradation.
However, aggregation analysis of other transcription assays re-
vealed a sharp peak of signal centered on RAMPAGE rPeaks
(Supplemental Fig. S3F–K), suggesting that only a very small per-
centage of sites may be impacted by such technical artifacts.
Overall, our rPeak catalog is highly concordant with other assays
even at the base pair level. In the future, we hope to expand this
catalog using transcription annotations from more assays as they
become available in a wider variety of cell and tissue types.

In summary, our catalog of RAMPAGE rPeaks expands the hu-
man transcriptional landscape across over 100 cell and tissue
types. The catalog provides a valuable resource to the biological
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community by improving annotations for studying gene regula-
tion and aiding in the interpretation of genetic variants associated
with human diseases.

Methods

Detailed methods can be found in the Supplemental Methods.

Generating a collection of RAMPAGE rPeaks

We downloaded RAMPAGE BAM alignment files that contained
readsmapped to theGRCh38/hg38 reference genome.We then re-
moved redundant reads as previously described (Zhang et al. 2019)
and pooled read pairs from biological replicates. We created signal
files of the 5′ ends of R1 reads that we used for all subsequent signal
quantifications. Finally, we excluded all experiments with a non-
redundancy fraction of less than 0.25, which resulted in a final col-
lection of 115 high-quality RAMPAGE experiments (Supplemental
Table S1). We then called RAMPAGE peaks as previously described
(Zhang et al. 2019). For each peak, we identified a high-density re-
gion, which contained 80% of the reads in each original peak, and
a summit, which was the genomic position with the highest num-
ber of 5′ read ends. For each RAMPAGE experiment, the Gingeras
laboratory also performed a matching total RNA-seq experiment
on the same biosample, which we used to filter RAMPAGE peaks.
We excluded peaks whose RNA-seq signals were greater than their
RAMPAGE signals (i.e., peaks that fell below the x=y line)
(Supplemental Fig. S1). Finally, to further select for high-quality
annotations, we only retained peaks with reads per million
(RPM)>2 (Supplemental Table S1).

To generate RAMPAGE rPeaks, we adapted the representative
DNase I hypersensitivity site (rDHS) pipeline as previousy de-
scribed (The ENCODE Project Consortium et al. 2020). First, to re-
tain strand-specific information,we separated peaks based onDNA
strand and then clustered the strand-specific peaks across all 115
experiments. For each cluster, we selected the peak with the high-
est reads per kilobase per million (RPKM) signal as the rPeak.
All peaks that overlapped this rPeak were then removed. We itera-
tively repeated this process until all 1.1 M RAMPAGE peaks were
represented by a collection of 80,157 nonoverlapping rPeaks.
To reduce false positives, we discarded all singleton rPeaks
(i.e., rPeaks that represented only one experiment) unless they
had an RPM>5, resulting in a final set of 52,546 rPeaks.

Genomic context and enrichment

We used the following hierarchical approach to assign genomic
context to annotations (including RAMPAGE rPeaks and
FANTOM CAGE peaks).

1. TSS-overlapping: rPeak overlapped an annotated TSS from
GENCODEv31 basic annotations.

2. TSS-Proximal: rPeak fell within ±500 bp of an annotated TSS
from GENCODEv31 basic; required at least 50% of the
RAMPAGE rPeak to overlap region.

3. Exon: rPeak overlapped “exon” annotation fromGENCODEv31
basic that include coding exons (CDSs), exons of noncoding
genes, and untranslated regions (UTRs); required at least 50%
of the RAMPAGE rPeak to overlap exon.

4. Intron: rPeak overlapped an annotated gene from
GENCODEv31 basic but not an exon; required at least 50% of
the RAMPAGE rPeak to overlap gene.

5. Intergenic: all remaining rPeaks.

We annotated each rPeak with strand information by assign-
ing the strand of the overlapping transcript for TSS-overlapping,

exon, and intron rPeaks or closest gene for TSS-proximal and inter-
genic rPeaks. To determine the genomic background, we calculat-
ed the percentage of the GRCh38 genome comprising each of the
annotations. We then determined the percentage of total rPeaks
falling in each annotation and calculated fold enrichment.

Boundary and summit analysis

For each rPeak, we calculated the median peak boundary, high-
density boundary, and summit variation for each peak that was
represented. We did not include peaks that were selected as the
rPeaks in this analysis.

UMAP

We performed two separate UMAP analyses: one using all 115 bio-
samples (Supplemental Fig. S1F) and one using the subset of all 87
tissue samples (Fig. 1G). For each biosample, we calculated the
RPKMat each rPeak.We then took the Log10 and normalized these
values before implementing the UMAP algorithm.

Comparisons with other transcription annotations

Comparison with CAGE peaks

We downloaded CAGE peaks and quantifications from the
FANTOM Consortium (Abugessaisa et al. 2017). To compare the
overall concordance of peak collections, we intersected the entire
collection of CAGE peaks with the entire collection of RAMPAGE
peaks, requiring at least 25% of the CAGE peak to overlap the
RAMPAGEpeak and the peaks to fall on the same strand. To extract
peaks active in K562 and GM12878, we selected all peaks with an
average transcripts per million (TPM)>2 across the three surveyed
replicates. We intersected these peaks with RAMPAGE rPeaks with
RPM>2 in K562 and GM12878, respectively, requiring overlap-
ping peaks to be on the same strand and an overlap of a minimum
of 25% of the CAGE peak.

Comparison with CAGE and NET-CAGE enhancers

We downloaded CAGE & NET-CAGE enhancers from Hirabayashi
et al. (2019). We lifted the enhancers to the hg38 genome and in-
tersected them with RAMPAGE rPeaks. We then stratified the en-
hancer annotations as to whether they were detected by CAGE
(N=65,423) or only NET-CAGE (N=20,363) and calculated the to-
tal percent overlap with the RAMPAGE rPeaks.

Comparison with PacBio long-read RNA-seq data

We downloaded the PacBio BAM files from the ENCODE project
data portal and merged replicates. We then intersected PacBio
5′ read ends with RAMPAGE and CAGE peaks and only considered
strand matching intersections.

Comparison with GRO-cap signal

We downloaded GRO-cap signal files from Core et al. (2014). To
calculate average signal at RAMPAGE rPeaks, CAGE peaks, and
PacBio 5′ ends, we lifted down the 1-bp summits or read ends to
the hg19 genome. We then set region width to a uniform 50 bp
centered on the peak summits or 5′ ends and calculated the average
signal across each region. To determine a signal threshold for high
GRO-cap signal, we first randomly selected 500,000 50-bp geno-
mic regions and calculated their average GRO-cap signal. We
then selected the 99.5th percentile as the threshold for high signal,
which was 0.06 in K562 and 0.08 in GM12878.
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Comparison with GRO-cap peaks

WedownloadedGRO-cap peak calls fromCore et al. (2014).We in-
tersected these GRO-cap peaks with RAMPAGE rPeaks, CAGE
peaks, and RAMPAGE PacBio reads, requiring annotations to be
on the same strand. From the same study, we also obtained sets
of paired GRO-cap peaks in GM12878 and K562 that were classi-
fied by stability. We lifted these peaks to the hg38 genome and in-
tersected themwith RAMPAGE rPeaks, requiring annotations to be
on the same strand. We then calculated the overall percentage of
each category that overlapped the rPeaks.

Comparison of GENCODE-covered genes

We first set peak width to a uniform 100 bp centered around each
peak summit or 5′ read end and then intersected these regionswith
annotated TSSs of GENCODE V31 genes, requiring annotations to
be on the same strand. We performed Gene Ontology analysis us-
ing PantherDB’s online database (Mi et al. 2017). We first per-
formed this analysis for the entire sets of RAMPAGE and CAGE
peaks and then for peaks and PacBio 5′ read ends in K562 and
GM12878 cells.

Aggregate transcriptomic signals at RAMPAGE rPeaks

Using 1-bp bins, we calculated the average CAGE, PacBio, and
GRO-cap signals along a 4-kb window centered across the summits
of RAMPAGE rPeaks active in either K562 or GM12878 cells. In all
three assays, we calculated strand-specific signal for each rPeak.

Assigning RAMPAGE rPeaks to Genes

Curating verified GENCODE TSSs, verified unannotated TSSs, unannotated

transcript TSSs, and local transcription rPeaks

We developed the following computational workflow to link
RAMPAGE rPeaks with genes, which is detailed in Supplemental
Figure S3A. Briefly, based on the genomic context of the rPeak
and the location of its supporting 3′ reads, we assigned the rPeak
into one of six categories.

1. Verified GENCODE TSS: rPeak overlaps an annotated GENCODE
TSS and its 3′ read ends overlap a downstream exon.

2. Verified unannotated TSS: rPeak does not overlap an annotated
GENCODE TSS (i.e., rPeak is either TSS-proximal, exonic,
intronic, or intergenic), and its 3′ read ends overlap a down-
stream exon.

3. Candidate GENCODE TSS: rPeak overlaps a TSS or first exon or is
TSS-proximal to either a single exon transcript or to a transcript
with a first exon >500 nt.

4. Unannotated transcript TSS: rPeak is supported by reads with 3′

ends that do not overlap an annotated GENCODE exon.
5. Local transcription: rPeak is supported by reads that span <1 kb or

map to the first exon of the transcript.
6. Discard: We discarded all rPeaks that overlapped exons that

were not the first exon of a transcript or only supported by reads
that spanned >500 kb.

Overlap of novel transcripts with lncRNAs

We downloaded lncRNA annotations from lncBook (Ma et al.
2019) and extracted annotated TSSs. Then, we intersected
RAMPAGE rPeaks, requiring annotations to be on the same strand.
We also calculated the overlap of lncBook TSSs with 500,000 100-
bp random genomic regions.

Scanning transcripts for open reading frames

We intersected our RAMPAGE rPeaks with PacBio reads to delin-
eate produced transcripts and then scanned these transcripts using
NCBI’s ORFfinder tool (Wheeler et al. 2003). Stratifying by our
rPeak TSS assignment, we calculated the number of uniquely iden-
tified ORFs for each rPeak.

Characterizing biosample profiles of RAMPAGE TSSs

We selected all GENCODE genes with at least one linked
RAMPAGE rPeak (either verified GENCODE or verified unannotat-
ed). For each gene, we calculated two metrics:

1. The total number of biosamples in which the gene was
expressed.

2. The total biosample space, which was a concatenated list of all
biosamples for which any linked RAMPAGE rPeak was
expressed.

To evaluate the cell type specificity of gene and transcript expres-
sion, we compared the number of active biosamples (RPM>2) for
each RAMPAGE rPeak and its linked gene. To determine whether
the transcripts resulting from rPeak TSSs correspond to major or
minor isoforms, we calculated the total number of biosamples
for which the rPeak has an RPM>2 and then divided this by the
total biosample space of its linked gene.

Comparison of GENCODE and verified TSSs

Generating sets of matched GENCODE TSSs

We first selected all GENCODE genes that did not have a single
annotated TSS overlapping a RAMPAGE rPeak. Of these, we
then selected all genes with a RAMPAGE-verified TSS. Because of
the no overlapping requirement, these RAMPAGE-verified TSSs
were either TSS-proximal, exonic, intronic, or intergenic. The
GENCODE-annotated TSSs of these genes served as the matched
GENCODE TSS set. We also curated K562-specific annotations by
selecting all RAMPAGE-verified TSSs with an RPM>2 in K562
and their matched GENCODE TSSs. Unlike the RAMPAGE-verified
TSSs, GENCODE TSSs were only 1 bp in width; therefore, to elim-
inate biases owing to region width, we generated uniform 100-bp
regions centered on either RAMPAGE-verified TSS summits or
GENCODE TSSs, respectively.

Overlap of RAMPAGE-verified and matched GENCODE TSSs with ENCODE

cCREs, GTEx eQTLs, and SuRE peaks

We intersected the uniform 100-bp-sized TSS regions with geno-
mic annotations as follows. We downloaded cell type–agnostic
cCREs and K562-specific cCREs from the ENCODE SCREEN data-
base (https://screen.encodeproject.org). For the K562 cCREs, we
filtered out “low-DNase” cCREs, which are regulatory regions
deemed inactive in the cell type. We downloaded version 8
eQTLs from the GTEx database and reformatted them into BED
format. We downloaded SuRE peaks from van Arensbergen et al.
(2017) and lifted the regions to the hg38 genome.

Aggregate epigenomic signals at RAMPAGE-verified and matched

GENCODE TSSs

We calculated the average DNase-seq and H3K4me3, H3K27ac,
and Pol II ChIP-seq signals along a 4-kb window centered across
the RAMPAGE-verified rPeak summit or matched GENCODE
TSS, respectively, accounting for strand orientation. We used the
following signal files from the ENCODE portal: ENCFF971AHO,
ENCFF847JMY, ENCFF779QTH, and ENCFF321FZQ.
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Conservation of RAMPAGE-verified and -matched GENCODE TSSs

We calculated the average 100-way vertebrate phastCons conser-
vation across the uniform 100-bp TSS regions. We also lifted the
uniform 100-bp-sized TSS regions to themm10 genome and calcu-
lated the percentage of total regions that successfully lifted over.
We also compared the lift over rates of ENCODE cCREs-dELS—
extracted from the cell type–agnostic set of cCREs—and 500,000
random regions of the genome. For comparison, both these sets
of regions were resized to 100 bp around the region center.

Interpreting GWAS variants with the RAMPAGE rPeak catalog

Overlap of GWAS variants

We curated SNPs reported by the NHGRI-EBI GWAS catalog as of
January 2019 and using population-specific LD, incorporating all
SNPs in high LD (r2 > 0.7) with this collection, as previously de-
scribed (The ENCODE Project Consortium et al. 2020). We inter-
sected this collection with our RAMPAGE rPeak catalog. To
compare gene assignments, we extracted reported and mapped
genes from the original studies and determined if our rPeak linked
genes (from read pair analysis) were represented in the list.

Comparison with eQTLs

As previously mentioned, we downloaded eQTLs from the GTEx
database. We then compared the overlap between GWAS SNPs
and matched controls as previously defined (The ENCODE
Project Consortium et al. 2020) and calculated the number of
SNPs in each group that was linked to the same gene by both
RAMPAGE reads and expression changes (eQTL).

Cell type enrichment

We tested whether sets of GWAS SNPs were enriched in RAMPAGE
rPeaks activity in specific biosamples using the same GWAS en-
richment pipeline as previously described (The ENCODE Project
Consortium et al. 2020). Because RAMPAGE rPeaks have a much
smaller genomic footprint than other collections of genomic re-
gions (e.g., cCREs), we only included studies for which at least
15 LD blocks contained a SNP that overlapped a RAMPAGE
rPeak. We reported all enrichments with an FDR corrected P-value
less than 0.05 (Supplemental Table S5B).

3D chromatin interactions between ZH38T0028803 and KCNH7

We downloaded the cardiomyocyte promoter capture Hi-C data
from Montefiori et al. (2018) and iPSC neuron promoter capture
Hi-C data from Song et al. (2019). We also requested iPSC neuron
Hi-C loop calls directly from Rajarajan et al. (2018), who generous-
ly provided these annotations. We intersected links with the
KCNH7 locus, requiring one of the KCNH7 GENCODE TSSs to
overlap one anchor and ZH38T0028803 to overlap the other
anchor.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the ENCODE Project Data Portal (https://www
.encodeproject.org/) under the data collection https://www
.encodeproject.org/carts/2ac8b407-bee2-4ed3-ac2e-
d284cdc48e41/. A UCSC Genome Browser track hub for the hg38
genome build is available at http://users.wenglab.org/moorej3/
RAMPAGE/hub.txt. Code for computational analysis is available
at GitHub (https://github.com/weng-lab/RAMPAGE-Analysis)
and as Supplemental Code.
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