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Abstract: The presence of microplastics (MPs) in the environment, and the effects that the ingestion 

of these materials can have on organisms, can be aggravated by the adsorption of harmful sub-

stances on the surface or inside the MPs. Of special relevance are the studies that have been carried 

out on the adsorption and transport of polycyclic aromatic hydrocarbons (PAHs) as well as persis-

tent organic pollutants (POPs) such as dioxins and furans (PCDD/Fs). This review will delve into 

the research carried out to date regarding the adsorption by conventional and biodegradable MPs 

of dangerous organic compounds such as those mentioned. In general, the presence of MPs is con-

sidered a vector for the entry of these contaminants into living beings, since their capacity to adsorb 

contaminants is very high and they are ingested by different organisms that introduce these con-

taminants into the trophic chain. 
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1. Introduction 

Plastics are synthetic organic polymers that are malleable and can be molded into 

solid objects of various kinds. Furthermore, they are strong, light, durable and inexpen-

sive [1], properties that make them suitable for the manufacture of a wide range of prod-

ucts. 

The main reason plastics are hazardous to the marine environment is their resistance 

to degradation. The natural decomposition of plastic objects in the sea occurs over an ex-

tremely long period of time, usually estimated to be between hundreds and thousands of 

years [2], so plastics accumulate in the marine environment and persist for decades [3]. 

During this time, chemical pollutants such as polychlorinated biphenyls (PCBs) and di-

oxins are released into the sea. In addition, these plastics fragment and become smaller 

and smaller pieces, even becoming plastic microparticles (particles with a diameter of less 

than 5 mm) [4], which makes them easily ingested by animals [5,6]. 

Persistent Organic Pollutants (POPs), such as PCBs and organochlorine pesticides, 

are present in aquatic systems around the world because of their widespread use, long-

range transport, and persistence. Individual POPs have characteristic patterns of distri-

bution that depend on regional patterns of use and their physical–chemical properties. 

An international group of research units is attempting to monitor POPs contamination 

around the world, using stranded plastic resin pellets [7]. 

In addition, a series of studies have been carried out that report on the importance of 

the amounts of pollutants present in the different marine environments. In a previous 

study [8], some results of the most relevant studies in this regard were shown. Contami-

nants such as PCBs, hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethane 

(DDTs), and polyaromatic hydrocarbons (PAHs) appear in it, and significant amounts of 

POPs are found in plastic pellets, which can aggravate the effects that their intake pro-

duces in the marine wildlife. The average values found in the literature are approximately 
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45 ng of PCBs/gpellet, 5 ng of HCH/gpellet, 20 ng of DDT/gpellet, and 2500 ng of 

PAHs/gpellet. 

In addition, different studies have been carried out on the ability of plastics to absorb 

hydrophobic organic chemical compounds [9–12], which highlights the need for new pol-

icies that address this important problem. In fact, Kreisz et al. [13] have long proposed the 

use of plastics as PCDD/Fs adsorbents to reduce emissions in industrial facilities. Other 

authors, such as Enyoh et al. [14] also advocate the use of environmental plastics for con-

taminant removal, presenting plastics as low-cost adsorbents. 

This tendency to adsorb dangerous organic compounds is also common in the case 

of microplastics (size less than 5 mm) and nanoplastics (equivalent diameter less than 100 

nm). Countless studies have been described in the literature in which the adsorption of 

harmful compounds on the surface of microplastics is analyzed, indicating many times 

[15–18] that they serve as a vector for the transport of contaminants from the environment 

to living organisms. 

Among the compounds studied, PAHs, dioxins, and furans (PCDD/Fs) stand out. 

These compounds have also been detected in products made from plastics [19] and in 

recycled plastics by different procedures [20]. The rationale for the need for this review is 

therefore the importance of the presence of carcinogenic and mutagenic compounds in 

the different microplastics present in aquatic and terrestrial environments, which will be 

incorporated into the food chain, eventually reaching human beings. 

The importance of the presence of these compounds in microplastics has been shown 

in the literature. Sharma et al. [21] show that the adsorption capacity of carcinogenic PAHs 

on microplastics is between 46 and 236 μg/g, occurring in just 45 min in water. The e-waste 

microplastic-derived leachates were highly hazardous in nature, for example, the sum of 

PAHs was 3.17 mg/L, which is approximately 1000 times higher than the standard for 

benzo[a]pyrene. 

2. Search and Review Procedure 

In a first approach, searching was carried out using the words (“microplastic*” AND 

“pollutant*” AND “adsorp*”) and looking into Title, Abstract and Keywords. This search 

returned a total of 641 papers, excluding reviews and removing duplicates. Figure 1 shows 

the percentages of papers found in the MedLine, Scopus, and Web of Science databases, 

distributed by type of contaminant, by type of polymer, and by the shape of the micro-

plastics mentioned in the article. 

 

Figure 1. Distribution of papers found in literature concerning the search words (“microplastic*” 

AND “pollutant*” AND “adsorp*”). 
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Given that the University of Alicante pollutants laboratory is specialized in the de-

tection and analysis of organic compounds, it was decided to limit the search to two types 

of pollutants: PAHs and PCDD/Fs. 

Following, a new search was carried out focused on the combination of the keywords 

(“microplastic*” AND “absorp*”) with (PAH* OR dioxin* OR PCDD*). The corresponding 

PRISMA [22] diagram is shown in Figure 2. The search offered several review-type articles 

as results that were eliminated. After a manual elimination of some results, a set of 90 

references was obtained, which were then analyzed. The complete list of references is 

found in the References [11,13–18,21,23–104]. The references to studies related to the spa-

tial distribution of pollutants or their occurrence were manually eliminated, and only a 

few of them will be mentioned as they were considered highly relevant. 

There is an added difficulty with the subject of this review, since there are many 

works that have been excluded from the review by mentioning microplastics but were 

actually dealing with conventional plastics. For example, Kedzierski et al. [47] speak of 

the adsorption of compounds in different microplastics, but the fragments with which 

they work cannot really be considered in the range of microplastics. This occurs with 

many other studies that have been excluded. 

 

Figure 2. PRISMA flow diagram of screening process. Number of papers concerning keywords 

(“microplastic*” AND “absorp*”) with (PAH* OR dioxin* OR PCDD*). 

3. MPs as Input Vector of PAHs and POPs in the Food Chain 

Chua et al. [15] were the first authors to reveal the role that MPs play as a vector for 

the assimilation of POPs in organisms. The authors show that the polybrominated diphe-

nyl ethers (PBDEs) present in MPs are assimilated by living organisms, especially the 

more brominated congeners, while the particles are eliminated through the intestinal 

tract. Table 1 shows a summary of the most important data summarized in the present 

review. 
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Table 1. Summary of data found in literature. 

Reference Pollutant Studied Polymer Main Findings 

Abaroa et al. [82] POPs 
PE and PP from 

beaches 
Increase in adsorption with aging 

Abbasi et al. [93] 
Naphthalene and 

phenanthrene 
PET 

MPs adsorb 97% of the naphthalene and 27% of the 

phenanthrene present 

Bakir et al. [23] 
Phenanthrene and 

DDT 
Different types Interaction between phenanthrene and DDT 

Bakir et al. [24] PFOA and DEHP Different types 
Interaction between PFOA and DEHP. The desorption  

in the intestinal tract is much faster than in seawater 

Bao et al. [92] 

Phenanthrene and 

its hydroxy-deriva-

tives 

PVC Pseudo-second-order model for the adsorption process  

Bao et al. [92] 

Phenanthrene and 

its hydroxy-deriva-

tives 

PVC 
Presence of the -OH group inhibits the fixation of the 

compound on the surface 

Černá et al. [29] PAHs PU No significant differences with aging 

Černá et al. [29] PAHs 
Biodegradable and 

conventional PU 
Much faster adsorption in the biodegradable 

Chen et al. [31] 
POPs related to di-

oxins 
Different types 

Aging of MPs increases the presence of compounds re-

lated to dioxins 

Chen et al. [31] PCDD/Fs PS, PE, PVC, PP PS has much more ability to adsorb dioxins 

Chua et al. [15] PBDEs Different types 

PBDEs are assimilated by living organisms, especially 

the more brominated congeners. Particles are elimi-

nated. 

Cormier et al. [32] PFOA Different types 
Rapid desorption under conditions similar to those ex-

isting in the stomach 

Ding et al. [35] HOCs PS Aging increases adsorption capacity 

Gao et al. [41] 
Oil (similar to 

PAHs) 
PE 

Pseudo-second-order adsorption model with internal 

diffusion being a rate-controlling step 

Gui et al. [43] 

PAHs, pesticides, 

benzene-deriva-

tives 

PE and chlorinated PE 
PAHs and chlorobenzene adsorb faster on chlorinated 

PE, hydrophobicity being a key point 

Hanslik et al. [44] 
Benzo(k)fluoran-

thene 
PE and PMMA The potential of MPs as vectors is limited 

Kleinteich et al. 

[16] 
PAHs PE 

Bacteria show decreased bioavailability when MPs are 

present 

Li et al. [78] PAHs and HOCs 3 types of PE Desorption dominated by external diffusion 

Li et al. [105] PAHs PE 
Aging and etching surface area of the plastics produces 

increase in the adsorption of PAHs on polymers  

Li et al. [49] N-O-S PAHs PVC, PS 
Presence of extractable organic matter prevents the ad-

sorption of contaminants 

Lin et al. [50] PAHs and PCBs PS Diffusion in the pores controls the reaction rate 

Liu et al. [52] Phenanthrene Different types Lower presence of pollutants if MPs are present 

Liu et al. [54] Ciprofloxacin  PE, PVC, and PET 
Chlorination of polymer decreases adsorption in PE, 

but not with PVC and PET 

Liu et al. [53] PAHs PS 
Pre-extraction of hydrophobic fraction decreases ad-

sorption 

Liu et al. [51] Bisphenol A PU, PA Hydrogen bonds in MPs improve adsorption capacity 
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Llorca et al. [56] PCBs Different types 

Low-chlorinated compounds show higher adsorption 

in all polymers. PET and PS have higher affinity for 

PCBs than PE 

Lončarsk et al. [57] PAHs PLA 
Second-order modeling indicates chemisorption mech-

anism 

Lončarsk et al. [57] PAHs PLA Very low and insignificant adsorption 

Luo et al. [59] PAHs and HOCs Different types 
Presence of oxygenated groups reduces adsorption of 

organic compounds 

Munoz et al. [62] drugs PS, PET, PP, PE 
Natural organic matter blocks active sites reducing ad-

sorption 

Sharma et al. [21] PAHs Different types 
Adsorption capacity is between 46 and 236 μg/g, in 45 

min 

Sorensen et al. [17] 
Fluorene and phe-

nanthrene 
PE, PS 

MP-adsorbed PAHs do not accumulate in crustaceans. 

Salinity is a very important point in the process 

Yang et al. [90] 
Pyrene and its sub-

stituted derivatives 
PS 

Rate is second order with respect to the amount of con-

taminant 

Yang et al. [90] 
Pyrene and its sub-

stituted derivatives 
Different types 

CH3- substituted pollutant increases adsorption, NH2-, 

OH-, and COOH- decrease 

Yu et al. [91] Naphthalene 
PS, modified with -

COOH 
No differences when introducing functional groups 

Yu et al. [91] 

Naphthalene and 

NH2-, OH-, and 

COOH- derivatives 

PS 
The presence of these groups causes adsorption to oc-

cur faster 

Zhang et al. [18] PAHs Agricultural MPs 
Aging decreases the affinity of MPs with organic pollu-

tant, by increasing oxygenated surface 

Zhang et al. [18] PAHs 
PU, polyurea, and 

urea-formaldehyde  

Negative charges on the surface of polymers allows 

PAHs to be easily adsorbed 

Zhang et al. [18]  Phenanthrene 
PU, polyurea, urea-

formaldehyde 

Increase in the salinity produces an increase in the ad-

sorption capacity  

Zhang et al. [106] Nitro-anthracene PS, PP, PE Presence of salts decrease adsorption rate 

Zhao et al. [98] 

Phenanthrene, py-

rene and deriva-

tives 

Different types Pseudo-second-order model for the adsorption process  

Zhao et al. [98] 

Phenanthrene and 

pyrene and polar 

derivatives 

PBS, PCL, PU, PS 
Adsorption in polar polymers is much faster than in 

conventional ones 

Zhu et al. [100] Phenanthrene Different types 
Presence of MPs delays the leaching of phenanthrene in 

soil 

Zhu et al. [100] Phenanthrene PS, PVC, PE Adsorption capacity: PS > PE > PVC 

Kleinteich et al. [16] studied the toxicity of PAHs in contact with polyethylene micro-

plastics in tests with bacteria. The authors show that MPs are an efficient transport vehicle 

for hydrophobic contaminants, but at the same time, the bioavailability of these contami-

nants in the environment is decreased, because of the adsorption that occurs quite rapidly. 

For example, the authors show that the presence of phenanthrene and anthracene has less 

effect when they are loaded on microplastics than without them. 

Sorensen et al. [17] studied the kinetics of the adsorption process at 10 and 20 °C of 

fluorene and phenanthrene in polyethylene (PE) and polystyrene (PS) microbeads. The 

authors distinguish the ingestible (10 μm) and non-ingestible (200 μm) fraction by cope-

pods. They show that MP-adsorbed PAHs do not accumulate in crustaceans, since only 

dissolved free PAHs are available to copepods. They also show that salinity is a very 
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important point in the process. Similarly, Zhang et al. [18] indicated that an increase in the 

salinity of the water increases the zeta potential of the surface of MPs, and this produces 

an increase in the adsorption capacity of phenanthrene on polyurethane, polyurea, and 

urea-formaldehyde resin particles. 

Zhu et al. [100] also showed that the presence of MPs delays the leaching of phenan-

threne in the soil and decreases the bioavailability of this noxious. Additionally, Bartonitz 

et al. [25] discovered that the toxicity of phenanthrene is much lower in the presence of 

microplastics, and the presence of sediments is much more dangerous. 

Hanslik et al. [44] evaluated the toxicity of PE and polymethyl metacrilate (PMMA) 

microplastics (less than 100 μm) and insist on the reduced bioavailability of contaminants 

in the presence of microplastics, which means that the potential of MPs as vectors is lim-

ited. Liu et al. [52] also showed that the accumulation of phenanthrene in crops is lower if 

a certain amount of microplastics is present together with the contaminant. 

It is also important to note that not only are the number of contaminants adsorbed 

on the surface of the polymer but also those that are in the central part. Wang et al. [84] 

proposed a method to distinguish the surface and total concentration, which consists of 

the ultrasonic extraction of the compounds on the surface, and the total dissolution of the 

particles prior to determining the total concentration. The authors mainly studied dioxins 

and related compounds, including brominated congeners. The total concentration is 

shown to be approx. 355 times higher than the surface for dioxins and chlorinated furans, 

and this ratio increases to ca. 8100 in the case of brominated congeners. Compounds with 

a higher number of chlorine or bromine are more abundant, and in most cases, they are 

concentrated in the central part of the microplastic. 

4. Kinetics of the Adsorption and Desorption Process 

MPs uptake different potentially toxic elements. According to Igalavithana et al. 

[107], different mechanisms are present, such as physical adsorption, pore filling, surface 

complexation, and electrostatic attraction. The presence of UV radiation, microbes, and 

humidity can influence the pollutant uptake, as well as different environment conditions. 

Many studies have been carried out showing that the kinetics of the adsorption pro-

cess follows a pseudo-second-order equation. A pseudo-first-order model would repre-

sent that the rate-limiting step is a physical process affecting analyte concentrations. On 

the contrary, the pseudo-second-order model suggests the adsorption process involving 

the (chemical) interaction affinity between adsorbents and adsorbates [108]. 

For example, Zhao et al. [98] mentioned such kinetics for the adsorption of phenan-

threne, pyrene, and some derivatives on the surface of different microplastics. Addition-

ally, Bao et al. [92] reached this conclusion when studying the adsorption of phenanthrene 

and its hydroxy-derivatives in polyvinyl chloride (PVC) particles of 134 μm. This would 

indicate that the kinetics are dominated by the hydrophobic interaction. Yang et al. [90] 

used micro PS to determine the adsorption kinetics of pyrene and its substituted deriva-

tives, also concluding that the rate is of second order with respect to the amount of con-

taminant. 

It has also been observed that the presence of some adsorbed compounds interferes 

with the kinetics of the process for other compounds. Thus, Bakir et al. [23] showed, using 

isotopically labeled phenanthrene and DDT, that phenanthrene adsorption is modified by 

the presence of DDT on the particle surface. In another work, Bakir et al. [24] carried out 

a similar study but with perfluorooctanoic acid (PFOA) and di(2-etilhexil) phthalate 

(DEHP), also showing interference. In the same work, the authors measured the kinetics 

of the desorption of these contaminants in the intestinal tract, compared to that which 

occurs in seawater, the former being much faster. This indicates that the desorption that 

would occur after the ingestion of microparticles by different animals would be very fast. 

Cormier et al. [32] also showed a rapid desorption of other contaminants (in this case, 

PFOS) under conditions similar to those existing in the stomach. Comier et al. insisted that 

the diameter of the particles plays a key role, with smaller particles’ desorption being 
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much faster. The same is also indicated in the study by Zhang et al. [95]. Additionally, 

values of distribution coefficient were much higher (62.6 L/kg) for small particles of PE 

(4–6 μm) than for bigger particles (20.9 L/kg for 125–500 μm particles) [36]. 

Li et al. [78] mentioned that the desorption is dominated by the diffusion steps in the 

outer layer. Lin et al. [50] concluded that the external diffusion is fast and it is the diffusion 

in the pores that controls the speed, both for PAHs and for PCBs when studying the phe-

nomenon in PS particles of 100 nanometers. 

Gao et al. [41] studied the adsorption of compounds from oil (structurally similar to 

PAHs) in PE particles between 165 and 500 μm. They carried out a study of the kinetics, 

arriving at a pseudo-second-order adsorption model in which diffusion in the pores is the 

rate-controlling step. Adsorption at 25 °C and at neutral pH was the fastest when they 

studied the variation between 4 and 65 °C and at pHs between 2 and 12. The presence of 

an alkaline environment and the increase in ionic strength (presence of salts) also de-

creased adsorption of nitro-anthracene in various MPs, including PS, PP, and PE [106]. 

Lončarsk et al. [57] used the second-order model to estimate the kinetics of the ad-

sorption process of PAHs on poly lactic acid (PLA), which implies that chemisorption is 

the adsorption mechanism involved. 

5. Effect of Aging 

Abaroa et al. [82] showed an increase in adsorption with aging, and proposed that 

the use of an indicator, the yellowness index (YI), related to the color change that micro-

plastics present over time. This YI is estimated visually based on the color of the MPs and 

is related to the speed at which the POPs are adsorbed on the particles. 

Likewise, Chen et al. [31] showed that the aging of MPs increased the presence of 

compounds related to dioxins in a very original study. 

The presence of oxygenated groups on the surface increases its hydrophilicity, caus-

ing a reduction in the adsorption of organic compounds such as PAHs and other hydro-

phobic organic compounds (HOCs) [59]. Li et al. [105] showed that aging and etching 

(artificial weathering (etching)) of PE particles produces surface oxygenation, but also an 

increase in the specific surface area of the plastics, which ultimately translates into an in-

crease in the adsorption of PAHs on polymers that have been subjected to aging and, par-

ticularly those that have been etched. Zhang et al. [18] indicated that aging decreases the 

affinity of MPs with organic pollutants, by increasing the amount of oxygenated func-

tional groups. 

Other authors, such as Cerná et al. [29] did not show significant differences in the 

adsorption capacity of MPs of polyurethane that had been subjected to aging. This may 

be because polyurethane is already a good adsorbent for PAHs, as will be discussed later. 

The authors indicated that the main driving factor is the flexibility of the polymer. 

Aging is also responsible for the increase in the adsorption capacity of PS particles in 

water, air, and seawater, according to Ding et al. [35]. 

6. Main Findings Related to Different Aspects of Microplastics or Pollutants 

6.1. Modifications of Microplastics 

Several studies have been found that compare the ability of conventional microplas-

tics with that obtained after some structural or surface modification. 

One of the most interesting works is the one recently presented by Gui et al. [43], in 

which conventional polyethylene and chlorinated polyethylene (CPE) are used. Both pol-

ymers are tested on the adsorption of 13 different compounds, including PAHs, pesticides 

and benzene derivatives. It is notable that these authors concluded that PAHs and chlo-

robenzene adsorb faster on CPE than on conventional PE, while the other compounds do 

not show significant changes. The authors showed that the hydrophobicity of compounds 

is a prominent element that affects the partition of organic chemicals between MPs and 

fresh water. 
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However, Liu et al. [54] inhibited the adsorption capacity of other compounds such 

as ciprofloxacin in PE particles with chlorination and exposure to UV light. On the con-

trary, the PVC and PET particles increased the adsorption capacity. 

Liu et al. [53] used nano-polystyrene (70 nm) to perform a pre-extraction of PS parti-

cles with organic solvents, eliminating the most hydrophobic fraction. This translates into 

a significant decrease in the adsorption of PAHs. 

Yu et al. [91] modified the surface of PS microspheres with the introduction of car-

boxyl groups (-COOH). The two polymers showed similar naphthalene adsorption capac-

ity (approx. 10 L/g), perhaps slightly lower in the modified PS. 

Bao et al. [92] showed that the hydroxy-derivatives of phenanthrene exhibit less ad-

sorption than phenanthrene itself, on PVC particles, concluding that the presence of the -

OH group inhibits the fixation of the compound on the surface. 

6.2. Chemical Modifications of the Adsorbate 

The effect of some modifications of PAHs and POPs on adsorption by MPs has also 

been studied. One of the first works of these characteristics was that of Li et al. [49], in 

which PAHs containing N/O/S groups were studied. It was concluded that the lone pair 

of electrons in these compounds was the dominant factor in its contribution to the differ-

ences with other compounds. They also showed the importance of the presence of ex-

tractable organic matter in water (WEOM) since its presence prevents the adsorption of 

contaminants. Something similar was shown by Munoz et al. [62], who used PS, PET, PP, 

and high density PE in the form of microplastics to adsorb some drugs. When natural 

organic matter is present in the medium, it is preferentially adsorbed on the particles, re-

ducing the availability of active sites by blocking. 

Yu et al. [91] studied the modifications of the naphthalene molecule with charged 

groups (-NH2, -OH, -COOH) showing that the presence of these groups causes adsorption 

to occur faster, but the adsorption capacity of these modified naphthalene is much lower 

than unmodified naphthalene. 

On the other hand, Yang et al. [90] showed that there were some substituted deriva-

tives that facilitate adsorption. This is the case of CH3- substituted pyrene. However, as 

indicated by Yu et al. [91], substitutions with -OH, -NH2, and -COOH inhibit the adsorp-

tion of aromatic contaminants. 

6.3. The Different Plastic Polymers 

Abbasi et al. [93] showed the adsorption of naphthalene and phenanthrene in tiny 

poly ethylene terephthalate (PET) particles and showed that this plastic is capable of ad-

sorbing 97% of the naphthalene and 27% of the phenanthrene present in a matrix contain-

ing 18 and 0.1 μm per liter of these compounds, respectively. However, the PET particles 

are capable of desorbing near the roots of the plants, losing between 22 and 29% of the 

adsorbed compounds. 

For their part, Zhao et al. [98] compared three polar microplastics (polybutylene suc-

cinate (PBS), polycaprolactone (PCL), and polyurethane (PU)) with a typical non-polar 

MP, polystyrene (PS). In addition, they studied the adsorption of non-polar PAHs (phe-

nanthrene and pyrene) and other polar derivatives (nitronaphthalene and naphthyla-

mide). The main conclusion of the study was that adsorption in polar polymers is much 

faster than in conventional ones. 

The existence of hydrogen bonds in the structure of polyurethane and polyamide 

make these polymers have a higher adsorption capacity, according to the results of Liu et 

al. [51], using bisphenol A. 

The polyurethane, polyurea, and urea-formaldehyde resin particles studied by 

Zhang et al. [18], have negative charges on the surface, with oxygenated and nitrogenous 

groups, which allows PAHs to be easily adsorbed. 
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Zhu et al. [100] also studied the adsorption capacity of phenanthrene in different mi-

crometric polymers, establishing the order PS > PE > PVC in terms of adsorption capacity. 

Bakir et al. [24] commented that of the POPs/plastic combinations examined, phenan-

threne with PE gave the highest transport potential to organisms. 

Černá et al. [29] studied the differences in the adsorption of PAHs in biodegradable 

and conventional polyurethane, observing a much faster adsorption in the biodegradable. 

In contrast, Lončarsk et al. [57] studied the adsorption of PAHs in PLA (biodegradable), 

this being very slow and of little relevance. 

The adsorption of dioxin-like compounds has not been studied in such depth, per-

haps due to the difficulty of analyzing these compounds. Chen et al. [31] compared the 

presence of PCDD/Fs and related compounds in polystyrene foam and in other plastics 

(PE, PP, PVC), showing that PS has much more ability to adsorb dioxins. Llorca et al. [56] 

worked on the adsorption of PCBs in MPs of different nature. The authors showed that 

compounds with a low chlorination degree show higher adsorption percentages in all 

polymers, surely due to the large dimensions of the more chlorinated molecules. Addi-

tionally, Llorca et al. showed that polymers such as PET and PS showed a higher affinity 

for PCBs than PE. 

7. Conclusions 

The organic compounds studied in this review, PAHs and PCDD/Fs, tend to be ad-

sorbed by microplastic particles when they come into contact, both in aqueous media and 

from soil samples. These MPs can serve as a vector for these harmful compounds to enter 

the food chain, although several investigations indicated that the bioavailability of con-

taminants was reduced in the presence of microplastics. 

An apparent second-order kinetics for the adsorption of the studied compounds has 

been determined, which would indicate that the adsorption takes place by chemical inter-

action between the microplastics and the adsorbed substances. 

MPs have an adsorption capacity that increases over time, due to the effects of aging 

that increases the specific surface of the polymers. 

Any modification made to the polymer or to the compound to be adsorbed, which 

involves an increase in the hydrophobicity of the molecules, will result in an increase in 

adsorption capacity. This is because the main driving force for adsorption is the hydro-

phobicity of the adsorbate, which is generally compatible with the polymers of the MPs 

present. For the same reason, more hydrophobic (or less polar) polymers will less effi-

ciently transport organic contaminant molecules. 
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