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Abstract
This paper studies properties of a subdifferential defined using a generalized conjugation 
scheme. We relate this subdifferential together with the domain of an appropriate conjugate 
function and the ε-directional derivative. In addition, we also present necessary conditions 
for ε-optimality and global optimality in optimization problems involving the difference of 
two convex functions. These conditions will be written via this generalized notion of sub-
differential studied in the first sections of the paper.

Keywords Evenly convex function · Generalized convex conjugation and 
subdifferentiability · DC problems · Optimality conditions · Locally convex space

1 Introduction

Among the huge variety of optimization problems that can be found in real life, those 
whose objective function is expressed as the difference of two convex functions have 
attained a lot of attention since decades in the optimization community. These problems 
are called DC problems where DC means difference of convex functions. For an in-depth 
introduction as well as some applications of DC programming, we recommend the reader 
[1–4] and the references therein.

Given a general DC problem, there exist different approaches to study conditions for 
optimality. Just to mention a few, we start with the renewed paper [5], where the authors 
deal with optimality conditions which are necessary and sufficient for DC semi-infinite 
programming using subdifferentials. In [6] new global conditions for non-smooth DC 
optimization problems via affine support sets are developed, [7] works with DC problems 
under convex inequality constraints and [8] explores DC programming in reflexive Banach 
spaces. The works of [9] and [10] develop conditions in terms of epigraphs with infinite 
constraints, while [11] focuses on polynomial constraints and [12, 13] on DC programs 

 * M.D. Fajardo 
 md.fajardo@ua.es

 J. Vidal 
 j.vidal@uah.es

1 Department of Mathematics, University of Alicante, Alicante, Spain
2 Department of Physics and Mathematics, University of Alcalá, Madrid, Spain

http://orcid.org/0000-0001-8405-7589
http://crossmark.crossref.org/dialog/?doi=10.1007/s11228-022-00644-1&domain=pdf


 M. Fajardo, J. Vidal 

1 3

involving composite functions and canonical DC problems, respectively. We also mention 
[14] where a group of global optimality conditions is compared using a generalized conju-
gation theory as framework.

Concerning optimality conditions for global maximum of a general function in Euclid-
ean spaces, we mention [15] and [16]. While the former paper introduces a useful char-
acterization of global optimality using the subdifferential and the normal cone, the latter 
goes beyond that. More precisely, it compares the characterization coming from [15] with 
some other necessary and sufficient conditions named Strekalovski, Singer-Toland and 
Canonical-dc-programming passing through their necessary assumptions to hold and their 
relationships.

In the current paper we will not be motivated directly by any of these conditions, but by 
another from [17] written in terms of just subdifferentials: if f and g are proper convex and 
lower semicontinuous functions, x is a global minimizer of f = g − h if and only if

This subdifferential notion is linked to Fenchel conjugation scheme, in fact it is called 
Fenchel subdifferential in [18]. An evidence of this connection is the following equivalence 
between the subdifferential of a convex and lower semicontinuous function and the subdif-
ferential of its Fenchel conjugate

Equivalence (1) holds thanks to Fenchel-Moreau theorem, which establishes the equal-
ity between a proper convex lower semicontinuous function and its Fenchel biconjugate. 
Nevertheless, Fenchel conjugation scheme is not suitable (in the sense that Fenchel-
Moreau theorem does not hold with them) for a class of functions which generalizes the 
class of convex and lower semicontinuous functions, namely the evenly convex functions 
(see [19]). These functions have epigraphs which are evenly convex sets, i.e., intersections 
of arbitrary families (possibly empty) of open half-spaces. This kind of sets was initially 
defined by Fenchel [20] in the Euclidean space, trying to extend the polarity theory to 
nonclosed convex sets. Later, they were applied in linear inequality systems (see [21] and 
[22]), because evenly convex sets are the solution sets of linear systems containing strict 
inequalities. In addition, [23] contains basic properties of evenly convex sets expressed in 
terms of their sections and projections.

In [24] it is provided a conjugation scheme for extended real functions, called c-con-
jugation, and a subdifferential notion associated with it, which would allow to obtain a 
counterpart of (1) for proper evenly convex functions; see [25]. Another interesting appli-
cation of c-conjugation developed in the last years has been the building of different dual 
problems for a primal convex one, in which strong duality property is related to the even 
convexity of the functions in the primal problem. A very recent monograph presents the 
state of the art in Even Convexity and Optimization; see [26].

Our commitment in this paper is to develop basic, on one hand, and interesting, on the 
other hand, properties of the subdifferential concept associated with c-conjugation, and to 
obtain optimality conditions for DC problems via this operator.

Concerning the organization, Section  2 summarizes the necessary results throughout 
the paper. In Section 3 we introduce the formal definition of the subdifferential of interest 
in this paper and its main properties showing its connection with a generalized notion of 
conjugate function. Section 4 is devoted to the analysis of deeper properties of this subdif-
ferential. In particular, we will present its relationship with the domain of the conjugate 

𝜕𝜀h(x) ⊆ 𝜕𝜀g(x), for all 𝜀 ≥ 0.

(1)x∗ ∈ ��f (x) if and only if x ∈ ��f
∗(x∗), for all � ≥ 0.
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function and the subdifferential of its ε-directional derivative. Section 5 develops necessary 
optimality conditions for DC problems when the involved functions are proper and evenly 
convex. Finally, Section 6 summarizes the most important achievements of this paper as 
well as points out related open problems for future research.

2  Preliminaries

We denote by X a nontrivial separated locally convex space, lcs in short, equipped with 
the σ(X,X*) topology induced by X*. Here, X* represents the continuous dual space of X 
endowed with the σ(X*,X) topology. Given a continuous linear functional x*∈ X*, ⟨x, x∗⟩ 
represents its value at x ∈ X. If D ⊆ X , convD and clD stand for its convex hull and closure, 
respectively.

As we said in the previous section, Fenchel [20] defined an evenly convex set (e-convex 
set, in brief) as an intersection of an arbitrary family (possibly empty) of open half-spaces. 
The following equivalent definition provides a very useful tool in order to identify e-con-
vex sets.

Definition 1 ([27, Def. 1]) A set C ⊆ X is e-convex if for every point x0∉C, there exists x*∈ 
X* such that ⟨x − x0, x

∗⟩ < 0 , for all x ∈ C.

Given C ⊆ X , we represent the smallest e-convex set in X containing C, i.e., its e-convex 
hull, by e − convC. If C ⊆ X is convex, the inclusions C ⊆ e − convC ⊆ clC are fulfilled. 
It is worthwhile adding that due to the fact that the class of e-convex sets is closed under 
arbitrary intersections, this operator is well defined. By hypothesis X is a separated lcs, so 
X*≠{0}. Furthermore, Hahn-Banach theorem implies not only that X is e-convex, but also 
the fact that every closed or open convex set is e-convex, too.

If f ∶ X → ℝ , the set domf = {x ∈ X ∶ f (x) < +∞} represents its effective domain 
while epif = {(x, r) ∈ X ×ℝ ∶ f (x) ≤ r} stands for its epigraph. The function f is proper 
if f (x) > −∞ for all x ∈ X and domf≠∅. With clf we mean the lower semicontinuous hull 
of f, i.e., the function verifying the equality epi(clf) = cl(epif). We say that f is lower semi-
continuous, or lsc, if f(x) = clf(x) for all x ∈ X, and e-convex if epif is e-convex in the prod-
uct space X ×ℝ . It is immediate to observe that the class of lsc convex functions is con-
tained in the class of e-convex functions. Nevertheless, this inclusion fails to be an equality 
between sets.

Example 1 ([28, Ex. 2.1]) Let f ∶ ℝ → ℝ be the function

It is straightforward to see that

 is not closed but convex. However, it is e-convex, since for any point (0, α) with non-
negative α, the hyperplane H =

{
(x, y) ∈ ℝ

2 ∶ x = 0
}
 passes through the point with empty 

intersection with epif; recall Definition 1.

f (x) =

{
x, if x > 0,

+∞, otherwise.

epif = {(x, 𝛼) ∈ ℝ
2 ∶ x > 0, 𝛼 ≥ x}
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We continue defining the e-convex hull of a given function f ∶ X → ℝ as the larg-
est e-convex minorant of f and we denote it by e − convf. Using the generalized convex 
conjugation theory presented in Moreau [29], a conjugation scheme appropriated for 
e-convex functions is given in [24]. Let W ∶= X∗ × X∗ ×ℝ and the coupling functions 
c ∶ X ×W → ℝ and c� ∶ W × X → ℝ defined by

If f ∶ X → ℝ and g ∶ W → ℝ are two given functions, the c-conjugate of f, 
f c ∶ W → ℝ , and the c′-conjugate of g, gc� ∶ X → ℝ , are as follows

with the sign conventions (+∞) + (−∞) = (−∞) + (+∞) = (+∞) − (+∞) = (−∞) − (−∞) = −∞

.
In [24] it is shown that the family of pointwise suprema of sets of c-elementary func-

tions, that is, functions x ∈ X → c(x, (x∗, u∗, �)) − � ∈ ℝ , with (x*,u*,α) ∈ W and � ∈ ℝ , 
is indeed, the family of proper e-convex functions from X to ℝ along with the function f 
≡ +∞.

In [30] it is defined the notion of e ′-convex function as that function g ∶ W → ℝ 
which is the pointwise supremum of sets of c′-elementary functions, that is, functions 
(x∗, u∗, �) ∈ W → c(x, (x∗, u∗, �)) − � ∈ ℝ with x ∈ X and � ∈ ℝ . Moreover, the e ′-convex 
hull of any function g ∶ W → ℝ , e� − convg , is its largest e ′-convex minorant. The epi-
graphs of e ′-convex functions are called e ′-convex sets, and for any set D ⊂ W ×ℝ , its 
e′-convex hull, denoted by e� − convD , is the smallest e ′-convex set that contains D. We 
recommend the reader [31] for characterizations of e′-convex sets and additional properties 
of e′-convex functions.

We close this preliminary section with a result that shows the suitability of the c-con-
jugation scheme for e-convex functions and represents the counterpart of Fenchel-Moreau 
theorem for them.

Theorem 1 ([32, Prop. 6.1, Prop. 6.2, Cor. 6.1]) Let f ∶ X → ℝ ∪ {+∞} and g ∶ W → ℝ 
be two functions. Then

i)  fc is e ′-convex; gc′ is e-convex.
ii)  e − convf = f cc

� and e� − convg = gc
�c.

iii)  f is e-convex if and only if f cc� = f  ; g is e ′-convex if and only if gc�c = g.
iv)  f cc′ ≤ f  ; gc′c ≤ g.

3  First Properties of the c‑subdifferential

Given a function, its subdifferentiability at a point associated with the c-conjugation 
scheme was considered in [24] as a particularization of the c-subdifferentiability intro-
duced first in [33].

(2)c(x, (x∗, u∗, 𝛼)) = c�((x∗, u∗, 𝛼), x) ∶=

�
⟨x, x∗⟩ if ⟨x, u∗⟩ < 𝛼,

+∞ otherwise.

f c(x∗, u∗, �) ∶= supx∈X {c(x, (x
∗, u∗, �)) − f (x)},

gc
�

(x) ∶= sup(x∗ ,u∗,�)∈W
{
c�((x∗, u∗, �), x) − g(x∗, u∗, �)

}
,
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Definition 2 ([24, Def. 44]) Let f ∶ X → ℝ be a proper function. A vector (x*,u*,α) ∈ W is 
a c-subgradient of f at x0 ∈ X if f (x0) ∈ ℝ, ⟨x0, u∗⟩ < 𝛼 and, for all x ∈ X,

The set of all c-subgradients of f at x0 is denoted by ∂cf(x0) and is called the c-subdiffer-
ential set of f at x0. In the case f (x0) ∉ ℝ , it is set ∂cf(x0) = ∅.

In [25] it was introduced the notion of c′-subdifferentiability, following [33] too.

Definition 3 ([25, Def. 4.2]) Let g ∶ W → ℝ be a proper function. Then, x ∈ X is a c′-sub-
gradient of g at (x∗

0
, u∗

0
, �0) ∈ W if g(x∗

0
, u∗

0
, 𝛼0) ∈ ℝ, ⟨x, u∗

0
⟩ < 𝛼0 and, for all (x*,u*,α) ∈ W,

The set of all c′-subgradients of g at (x∗
0
, u∗

0
, �0) is denoted by �c�g(x∗0, u

∗
0
, �0) and it is 

called the c′-subdifferential set of g at (x∗
0
, u∗

0
, �0) . In the case g(x∗

0
, u∗

0
, �0) ∉ ℝ , it is set 

�c�g(x
∗
0
, u∗

0
, �0) = �.

The following standard notation will be used throughout the paper. Given fix points 
u*∈ X* ( (x, u, �) ∈ X × X ×ℝ , resp.) and � ∈ ℝ , we denote an open hyperplane in X (in W, 
resp.) by

 and

 respectively. According to [24], given f ∶ X → ℝ , its c-subdifferential at x0 ∈ domf can be 
written as

where ∂f stands for the classical (Fenchel) subdifferential. This relation between the 
standard subdifferential of f, ∂f, and its c-subdifferential, ∂cf, will play a fundamental role 
throughout next sections.

The following results are proved in [25]. Lemmas 1 and 2 state the counterparts of [34, 
Prop. 5.1, Ch. I] for c-subdifferentials and c′-subdifferentials, respectively, whereas Propo-
sition 1 extends [35, Cor. 23.5.1] to the c-conjugation scheme.

Lemma 1 ([25, Lem. 4.3]) Let f ∶ X → ℝ be a proper function and x0 ∈ domf. Then 
(x*,u*,α) ∈ ∂cf(x0) if and only if 〈x0,u*〉 < α and f(x0) + fc(x*,u*,α) = c(x0,(x*,u*,α)).

Lemma 2 ([25, Lem. 4.4]) Let g∶ W → ℝ be a proper function and (x∗
0
, u∗

0
, �0) ∈ domg . 

Then x ∈ �c�g(x
∗
0
, u∗

0
, �0) if and only if 

⟨
x, u∗

0

⟩
< 𝛼0 and

Proposition 2 ([25, Prop. 4.5]) Let f ∶ X → ℝ be a proper function and x0 ∈ domf. If 
(x*,u*,α) ∈ ∂cf(x0), then x0 ∈ �c� f

c(x∗, u∗, �) . The converse statement holds if f is e-convex.

f (x) − f (x0) ≥ c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)).

g(x∗, u∗, �) − g(x∗
0
, u∗

0
, �0) ≥ c�((x∗, u∗, �), x) − c�((x∗

0
, u∗

0
, �0), x).

H<

u∗,𝛾
= {x ∈ X ∶ ⟨x, u∗⟩ < 𝛾}

H<

(x,u,𝛽),𝛾
= {(x∗, u∗, 𝛼) ∈ W ∶ ⟨x, x∗⟩ + ⟨u, u∗⟩ + 𝛼𝛽 < 𝛾},

(3)𝜕cf (x0) = 𝜕f (x0) ×
{
(u∗, 𝛼) ∈ X∗ ×ℝ ∶ domf ⊆ H<

u∗,𝛼

}
,

(4)g(x∗
0
, u∗

0
, �0) + gc

�

(x) = c�((x∗
0
, u∗

0
, �0), x).
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Now we present the counterparts of some well-known results in classical subdifferen-
tial theory. The next theorem sums up some basic properties involving c-subdifferential 
and c′-subdifferential sets.

Theorem  3 Let f ∶ X → ℝ and g∶ W → ℝ be proper functions, x0 ∈ X and 
(x∗

0
, u∗

0
, �0) ∈ W . Then:

i)  𝜕cf (x0) ⊆ W  and 𝜕c�g(x∗0, u
∗
0
, 𝛼0) ⊆ X are e-convex sets.

ii)  If ∂cf(x0)≠∅, then e − convf(x0) = f(x0) and, moreover,

iii)  If �c�g(x∗0, u
∗
0
, �0) ≠ � , then (e� − convg)(x∗

0
, u∗

0
, �0) = g(x∗

0
, u∗

0
, �0) and, moreover,

iv) If x0 ∈ �c�g(x
∗
0
, u∗

0
, �0) and domg ⊆ H<

(0,x0,−1),0
 , then (x0, 0, 0) ∈ �g(x∗

0
, u∗

0
, �0).

Proof i) We can assume that x0 ∈ domf and (x∗
0
, u∗

0
, �0) ∈ domg . From (3) and [18, 

Th. 2.4.1], ∂f(x0) is convex and w*-closed in X*, which is a locally convex space, 
hence ∂f(x0) is e-convex. Now, name V ∶=

{
(u∗, 𝛼) ∈ X∗ ×ℝ ∶ domf ⊆ H<

u∗,𝛼

}
 . We 

will show, in first place, that V is e-convex according to Definition 1. Take a point 
(v∗, �) ∈ X∗ ×ℝ not belonging to V. Then, there exists x ∈ domf such that ⟨x, v∗⟩ ≥ � . Take 
(x,−1) ∈ X ×ℝ ⊂ (X∗ ×ℝ)∗ , and we will have that the hyperplane

 passes through the point (v*,β), and for all (u*,α) ∈ V,

 and V ∩ H = ∅. We obtain that V is e-convex and, recalling (3), 𝜕cf (x̄) = 𝜕f (x̄) × V  is 
e-convex, too 1.

Again using Definition 1, take x ∉ �c�g(x
∗
0
, u∗

0
, �0) . Then, either 

⟨
x, u∗

0

⟩
≥ �0 or ⟨

x, u∗
0

⟩
< 𝛼0 and a point (x*,u*,α) ∈ W can be found verifying

In the first case, take (u∗
0
, �0) ∈ X∗ ×ℝ , and we have

 for all y ∈ �c�g(x
∗
0
, u∗

0
, �0) . The hyperplane 

{
z ∈ X ∶

⟨
z, u∗

0

⟩
=
⟨
x, u∗

0

⟩}
 verifies that it 

contains the point x and has empty intersection with �c�g(x∗0, u
∗
0
, �0) , allowing us to con-

clude that this set is e-convex. In the second case, if moreover ⟨x, u∗⟩ < 𝛼 , we can take 
(x∗ − x∗

0
, �0) ∈ X∗ ×ℝ , where

�c(e − convf )(x0) = �cf (x0).

�c� (e
� − convg)(x∗

0
, u∗

0
, �0) = �c�g(x

∗
0
, u∗

0
, �0).

H = {(y∗, �) ∈ X∗ ×ℝ ∶ ⟨x, y∗⟩ − � = ⟨x, v∗⟩ − �}

⟨x, u∗⟩ − 𝛼 < 0 ≤ ⟨x, v∗⟩ − 𝛽

(5)g(x∗, u∗, 𝛼) < g(x∗
0
, u∗

0
, 𝛼0) + c�((x∗, u∗, 𝛼), x) − c�((x∗

0
, u∗

0
, 𝛼0), x).

⟨
y, u∗

0

⟩
< 𝛼0,

1 In [19] it is established that C ⊂ ℝ
n and D ⊂ ℝ

m are e-convex if and only if C × D is e-convex, and it can 
be easily extended to the framework of locally convex spaces.
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Since (5) holds, 
⟨
x, x∗ − x∗

0

⟩
> 𝛽0 and, for all y ∈ �c�g(x

∗
0
, u∗

0
, �0),

Naming �0 =
⟨
x, x∗ − x∗

0

⟩
 and taking the hyperplane 

{
z ∈ X ∶

⟨
z, x∗ − x∗

0

⟩
= �0

}
 , we 

have

 for all y ∈ �c�g(x
∗
0
, u∗

0
, �0) , and 

⟨
x, x∗ − x∗

0

⟩
= �0 . Finally, still in the second case, but 

⟨x, u∗⟩ ≥ � , take (u∗, �) ∈ X∗ ×ℝ , which verifies that ⟨y, u∗⟩ < 𝛼 , for all y ∈ �c�g(x
∗
0
, u∗

0
, �0) . 

We conclude that also in the second case �c�g(x∗0, u
∗
0
, �0) is e-convex.

ii) We set � ∶ X → ℝ the following c-elementary and, consequently, e-convex function

 where (x*,u*,α) ∈ ∂cf(x0). Then, for all x ∈ X, φ(x) ≤ f(x), and since e − convf is the largest 
e-convex minorant of f by definition, we have

 but φ(x0) = f(x0), hence e − convf(x0) = f(x0). Now, according to Lemma 1, (x*,u*,α) ∈ 
∂cf(x0) if and only if ⟨x0, u∗⟩ < 𝛼 and

On the other hand, as it is proved in [24, Prop. 40], e − convf = f cc
� and then, 

(e − convf )c = (f cc
�

)c = (f c)c
�
c = f

c , due to the fact that fc is e ′-convex and Theorem 1 is 
applied. Hence the above equality reads now

 and applying again Lemma 1, we have (x*,u*,α) ∈ ∂c(e − convf)(x0). Therefore 
𝜕cf (x0) ⊆ 𝜕c(e − convf )(x0) . The opposite inclusion follows in an analogous way.

iii) We set, for each x ∈ �c�g(x
∗
0
, u∗

0
, �0) , the c′-elementary and therefore e′-convex func-

tion ��
x
∶ W → ℝ,

Then, for all (x*,u*,α) ∈ W, ��
x
(x∗, u∗, �) ≤ g(x∗, u∗, �) , and

 because �′
x
 is e′-convex, but ��

x
(x∗

0
, u∗

0
, �0) = g(x∗

0
, u∗

0
, �0) , so 

e� − convg(x∗
0
, u∗

0
, �0) = g(x∗

0
, u∗

0
, �0) . The second equality follows the same steps than the 

case of c-subdifferentiability in item ii).
iv) If x0 ∈ �c�g(x

∗
0
, u∗

0
, �0) , we have 

⟨
x0, u

∗
0

⟩
< 𝛼0 and

for all (x*,u*,α) ∈ domg. Since domg ⊆ H<

(0,x0,−1)
 , for all (x*,u*,α) ∈ domg, ⟨x0, u∗⟩ < 𝛼 , 

then we can rewrite (6) as

�0 = g(x∗, u∗, �) − g(x∗
0
, u∗

0
, �0) ∈ ℝ.

⟨
y, x∗ − x∗

0

⟩
≤ �0.

⟨
y, x∗ − x∗

0

⟩
≤ 𝛽0 < 𝛿0,

�(x) = c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)) + f (x0),

�(x) ≤ e − convf (x) ≤ f (x), for all x ∈ X,

f (x0) + f c(x∗, u∗, �) = c(x0, (x
∗, u∗, �)).

e − convf (x0) + (e − convf )c(x∗, u∗, �) = c(x0, (x
∗, u∗, �)),

��
x
(x∗, u∗, �) = c�((x∗, u∗, �), x) − c�((x∗

0
, u∗

0
, �0), x) + g(x∗

0
, u∗

0
, �0).

��
x
(x∗, u∗, �) ≤ e� − convg(x∗, u∗, �) ≤ g(x∗, u∗, �),

(6)g(x∗, u∗, �) ≥ g(x∗
0
, u∗

0
, �0) + c�((x∗, u∗, �), x0) −

⟨
x0, x

∗
0

⟩
,
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 and (x0, 0, 0) ∈ �g(x∗
0
, u∗

0
, �0).

Remark 1 Statement iv) in the previous theorem establishes a relationship between subdif-
ferential and c′-subdifferential sets, as it occurs in the case of c-subdifferentiability; recall 
(3).

The notion of ε-c-subgradient appears firstly in [30] allowing a characterization of the 
epigraph of the c-conjugate (see [30, Lem. 9]). Moreover, it is used to build an alternative 
formulation for a general regularity condition in evenly convex optimization in [25, Th. 
4.9].

Definition 4 ([30, Def. 4]) Let f ∶ X → ℝ be a proper function and ε ≥ 0. A vector (x*,u*,α) 
∈ W is a ε-c-subgradient of f at x0 ∈ X if f (x0) ∈ ℝ, ⟨x0, u∗⟩ < 𝛼 and, for all x ∈ X,

The set of all ε-c-subgradients of f at x0 is denoted by ∂c,εf(x0) and is called the ε-c-
subdifferential set of f at x0. In the case f (x0) ∉ ℝ , it is set ∂c,εf(x0) = ∅.

Regarding the relationship between the notion of ε-c-subdifferentiability and the classi-
cal ε-subdifferentiability, it is easy to see that, for all x0 ∈ domf,

Moreover, we also have that, if 0 ≤ 𝜀1 ≤ 𝜀2 < ∞ , then

 and

In a similar way, we can define the ε-c′-subdifferential set of a function g∶ W → ℝ at 
(x∗

0
, u∗

0
, �0) ∈ W.

Theorem 4 Let f , g∶ X → ℝ be proper functions, x0 ∈ X and ε ≥ 0. Then:

i)  𝜕c,𝜀f (x0) ⊆ W  is e-convex.
ii) (x*,u*,α) ∈ ∂c,εf(x0) if and only if 〈x0,u*〉 < α and

  Moreover, x0 ∈ �c� ,�f
c(x∗, u∗, �).

iii) If x0 ∈ domf ∩ domg, then

g(x∗, u∗, �) ≥ g(x∗
0
, u∗

0
, �0) + ⟨x0, x∗⟩ −

�
x0, x

∗
0

�
,

f (x) − f (x0) ≥ c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)) − �.

(7)𝜕c,𝜀f (x0) = 𝜕𝜀f (x0) ×
{
(u∗, 𝛼) ∈ X∗ ×ℝ ∶ domf ⊂ H<

u∗ ,𝛼

}
.

𝜕cf (x0) = 𝜕c,0f (x0) ⊆ 𝜕c,𝜀1 f (x0) ⊆ 𝜕c,𝜀2 f (x0),

𝜕c,𝜀f (x0) =
⋂

𝜂>𝜀

𝜕c,𝜂f (x0).

f (x0) + f c(x∗, u∗, �) ≤ c(x0, (x
∗, u∗, �)) + �.

⋃

𝜂∈[0,𝜀]

(
𝜕c,𝜂f (x0) + 𝜕c,𝜀−𝜂g(x0)

)
⊆ 𝜕c,𝜀(f + g)(x0).
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Proof i) Similar to the proof of item i) in Theorem 3.
ii) (x*,u*,α) ∈ ∂c,εf(x0) if and only if 〈x0,u*〉 < α and, for all x ∈ X,

 equivalently, 〈x0,u*〉 < α and

Analogously, x0 ∈ �c� ,�f
c(x∗, u∗, �) if and only if

 and taking into account that, according to Theorem 1, f (x0) ≥ f cc
�

(x0) , we obtain that, if 
(x*, u*,α) ∈ ∂c,εf(x0), then x0 ∈ �c� ,�f

c(x∗, u∗, �).
iii) Let η ∈ [0,ε]. Then (x∗

1
, u∗

1
, �1) ∈ �c,�f (x0) and (x∗

2
, u∗

2
, �2) ∈ �c,�−�g(x0) if and only if 

⟨x0, u∗1⟩ < 𝛼1 , ⟨x0, u∗2⟩ < 𝛼2,

Then ⟨x0, u∗1 + u∗
2
⟩ < 𝛼1 + 𝛼2 and, adding both inequalities and considering the additiv-

ity property of the coupling function in its second component, which can be applied in this 
case, we obtain

However, it yields

thus, we conclude

and, consequently, (x∗
1
+ x∗

2
, u∗

1
+ u∗

2
, �1 + �2) ∈ �c,�(f + g)(x0).

4  Further Properties of the c‑subdifferential

We continue developing additional properties of the c-subdifferential extending them from 
[18]. Next proposition establishes the relationship between the c-subdifferential of a proper 
function and the domain of its c-conjugate.

Proposition 5 Let f ∶ X → ℝ be a proper function and x0 ∈ domf. Then 𝜕cf (x0) ⊆ domf c.

Proof Take (x*,u*,α) ∈ ∂cf(x0). Then, by definition it holds

f (x0) + c(x, (x∗, u∗, �)) − f (x) ≤ c(x0, (x
∗, u∗, �)) + �,

f (x0) + f c(x∗, u∗, �) ≤ c(x0, (x
∗, u∗, �)) + �.

⟨x0, u∗⟩ < 𝛼 and f c(x∗, u∗, 𝛼) + f cc
�

(x0) ≤ c�((x∗, u∗, 𝛼), x0) + 𝜀,

f (x0) + f c(x∗
1
, u∗

1
, �1) ≤ c(x0, (x

∗
1
, u∗

1
, �1)) + �, and

g(x0) + gc(x∗
2
, u∗

2
, �2) ≤ c(x0, (x

∗
2
, u∗

2
, �2)) + � − �.

(f + g)(x0) + f c(x∗
1
, u∗

1
, �1) + gc(x∗

2
, u∗

2
, �2) ≤ c(x0, (x

∗
1
+ x∗

2
, u∗

1
+ u∗

2
, �1 + �2)) + �.

f c(x∗
1
, u∗

1
, �1) + gc(x∗

2
, u∗

2
, �2)

≥ supx∈X
{
c(x, (x∗

1
, u∗

1
, �1)) + c(x, (x∗

2
, u∗

2
, �2)) − (f + g)(x)

}

≥ supx∈X
{
c(x, (x∗

1
+ x∗

2
, u∗

1
+ u∗

2
, �1 + �2)) − (f + g)(x)

}

= (f + g)c(x∗
1
+ x∗

2
, u∗

1
+ u∗

2
, �1 + �2),

(f + g)(x0) +(f + g)c(x∗
1
+ x∗

2
, u∗

1
+ u∗

2
, �1 + �2)

≤ c(x0, (x
∗
1
+ x∗

2
, u∗

1
+ u∗

2
, �1 + �2)) + �,
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 together with ⟨x0, u∗⟩ < 𝛼 . Rearranging, this means that

 with ⟨x0, u∗⟩ < 𝛼 , which, after taking supremum on the right-hand-side, can be rewritten 
as

Since ⟨x0, u∗⟩ < 𝛼 , the coupling function is finite and due to the fact that x0 ∈ domf by 
hypothesis, we conclude that (x*,u*,α) ∈ domfc.

Remark 2 In a similar way, it can be proved that 𝜕c�g(x∗, u∗, 𝛼) ⊆ domgc
� , for a proper func-

tion g∶ W → ℝ and (x*,u*,α) ∈ domg.

According to Lemma 1, for any proper function f it holds that a point (x*,u*,α) ∈ 
domfc belongs to ∂cf(x0) if and only if fc(x*,u*,α) = c(x0,(x*,u*,α)) − f(x0), which means 
that supX {c(x, (x∗, u∗, �)) − f (x)} must be attained at x0. This is not necessarily true, so 
the inclusion in Proposition 5 may be strict.

Example 2 Let f ∶ ℝ → ℝ,

Let us observe that (3,0,1) ∈ domfc, since f c(3, 0, 1) = supx>0{3x − x2} =
9

4
 , and it is 

attained at x = 3

2
 , hence (3,0,1)∉∂cf(x0) for all x0 ≠

3

2
 . Anyway, a matter of computation 

shows

 whereas, for all x0 > 0,

For any proper function f ∶ X → ℝ , any point x0 ∈ domf and (x*, u*, α) ∈ ∂cf(x0), we 
can infer that, since for all x ∈ X,

 then,

 for all x ∈ X. Next proposition shows that equality between domfc and ∂cf(x0) is a sufficient 
condition for the above inequality to be an equality, if f is e-convex.

Proposition 6 Let f ∶ X → ℝ be a proper e-convex function with x0 ∈ domf and ∂cf(x0) = 
domfc. Then, for all x ∈ X,

f (x) − f (x0) ≥ c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)), ∀x ∈ X,

c(x0, (x
∗, u∗, �)) − f (x0) ≥ c(x, (x∗, u∗, �)) − f (x), ∀x ∈ X,

c(x0, (x
∗, u∗, �)) − f (x0) ≥ f c(x∗, u∗, �).

f (x) =

{
x2, if x > 0,

+∞, otherwise.

domf c = ℝ × ( ℝ− ×ℝ+�{(0, 0)}),

�cf (x0) = {2x0} × ( ℝ− ×ℝ+�{(0, 0)}).

f (x) ≥ f (x0) + c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)),

f (x) ≥ f (x0) + sup
(x∗ ,u∗,�)∈�cf (x0)

{
c(x, (x∗, u∗, �)) − c(x0, (x

∗, u∗, �))
}
,
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Proof Due to Lemma 1, for any (x*,u*,α) ∈ ∂cf(x0) we have that

 so multiplying by − 1 and adding c(x,(x*, u*, α)) we get

 being this equality true for all x ∈ X and (x*, u*, α) ∈ ∂cf(x0). Taking supremum over domfc 
= ∂cf(x0) in both sides of the previous equality, we have, for all x ∈ X,

Since f is e-convex by hypothesis, according to Theorem 1, f = f cc
� , and the proof ends.

The goal now is to relate the ε-directional derivative with the ε-c-subdifferential of f. 
We recall the definition of the ε-directional derivative of a function f at a point x along the 
direction u, i.e.,

 see [18, Th. 2.1.14]. Observe that [18, Th. 2.4.4] states the relationship between 
�f �

�
(x0, ⋅)(0) and ∂εf(x0) for a proper function and x0 ∈ domf. The following theorem deals 

with this relation when c-subdifferentiability is used. First, we recall the definition of the 
normal cone of a convex set C ⊂ X at a point x0 ∈ C,

Theorem 7 Let f ∶ X → ℝ be a proper function, x0 ∈ domf and ε ≥ 0. Then

Proof Take (x∗, u∗, �) ∈ �cf
�
�
(x0, ⋅)(0) such that ⟨x0, u∗⟩ < 𝛼 . Then α > 0 and

By the definition of f ′
�
,

Let x := x0 + tu. Hence, for all x ∈ X and t > 0 it holds

In particular, for t = 1, we get

f (x) = f (x0) + sup
(x∗ ,u∗,�)∈�cf (x0)

{
c(x, (x∗, u∗, �)) − c(x0, (x

∗, u∗, �))
}
.

f (x0) + f c(x∗, u∗, �) = c(x0, (x
∗, u∗, �)),

−f (x0) + c(x, (x∗, u∗, �)) − f c(x∗, u∗, �) = c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)),

−f (x0) + f cc
�

(x) = sup
(x∗ ,u∗,�)∈�cf (x0)

{
c(x, (x∗, u∗, �)) − c(x0, (x

∗, u∗, �))
}
.

f �
𝜀
(x, u) ∶= inf

t>0

f (x + tu) − f (x) + 𝜀

t
,

N(C, x0) =
�
u∗ ∈ X∗ ∶ ⟨x − x0, u

∗⟩ ≤ 0, for all x ∈ C
�
.

𝜕cf
�
𝜀
(x0, ⋅)(0) ∩ (X∗ ×

�
(u∗, 𝛼) ∶ ⟨x0, u∗⟩ < 𝛼

�
) = 𝜕c,𝜀f (x0) ∩ (X∗ ×N(domf , x0) ×ℝ++).

f �
�
(x0, u) − f �

�
(x0, 0) ≥ c(u, (x∗, u∗, �)), for all u ∈ X.

f (x0 + tu) − f (x0) + 𝜀

t
≥ c(u, (x∗, u∗, 𝛼)), for all u ∈ X, t > 0.

(8)
f (x) − f (x0) + �

t
≥ c

(x − x0

t
, (x∗, u∗, �)

)
.

f (x) − f (x0) ≥ c(x − x0, (x
∗, u∗, �)) − �, for all x ∈ X,
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 then, due to the subadditivity of the coupling function

Since x0 ∈ domf and ⟨x0, u∗⟩ < 𝛼 , we have that (x*, u*, α) ∈ ∂c,εf(x0). Having in mind that 
α > 0, from (8), we have, for all x ∈ domf and t > 0

 so ⟨x − x0, u
∗⟩ < 𝛼t for all t > 0, which means that ⟨x − x0, u

∗⟩ ≤ 0 for all x ∈ domf and we 
get that u∗ ∈ N(domf , x0).

For the reverse inclusion, take (x*, u*, α) ∈ ∂c,εf(x0) with α > 0 and u∗ ∈ N(domf , x0) . 
We will prove that

 for all u ∈ X, or, equivalently,

By hypothesis, ⟨x0, u∗⟩ < 𝛼 and

Take x = x0 + tu, for all u ∈ X and t > 0, then

 which gives us

for all u ∈ X and t > 0. Hence, for each u ∈ X,

 where

In case ⟨u, u∗⟩ ≥ 0 , for all t > 0 we will have ⟨−tu, u∗⟩ ≤ 0 < 𝛼 . If ⟨u, u∗⟩ < 0 , we can 
take t small enough, since t ↓  0+, such that ⟨−tu, u∗⟩ < 𝛼 . Hence,

 and

f (x) − f (x0) ≥ c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)) − �, for all x ∈ X.

x − x0

t
∈ H<

u∗,𝛼
,

f �
�
(x0, u) − f �

�
(x0, 0) ≥ c(u, (x∗, u∗, �)) − c(0, (x∗, u∗, �)),

f �
�
(x0, u) ≥ c(u, (x∗, u∗, �)).

f (x) − f (x0) ≥ c(x, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)) − �, for all x ∈ X.

f (x0 + tu) − f (x0) ≥ c(x0 + tu, (x∗, u∗, �)) − c(x0, (x
∗, u∗, �)) − �,

f (x0+tu)−f (x0)+�

t
≥

1

t
c(x0 + tu, (x∗, u∗, �)) −

1

t
c(x0, (x

∗, u∗, �))

≥
1

t
c(tu, (x∗, u∗, �)),

inf
t>0

f (x0 + tu) − f (x0) + 𝜀

t
≥ sup

t>0

h(t),

h(t) = −
1

t
c(−tu, (x∗, u∗, 𝛼)) =

�⟨u, x∗⟩ if ⟨−tu, u∗⟩ < 𝛼,

−∞ otherwise.

sup
t>0

h(t) = ⟨u, x∗⟩

(9)f �
�
(x0, u) ≥ ⟨u, x∗⟩.
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Taking into account that u∗ ∈ N(domf , x0) , for all y ∈ domf it holds ⟨y − x0, u
∗⟩ ≤ 0 < 𝛼 . 

Then, for all t > 0 we get ⟨t(y − x0), u
∗⟩ < 𝛼 and

 which, according to [18, Th.2.1.14], means that domf �
𝜀
(x0, ⋅) ⊂ H<

u∗ ,𝛼
 and, hence, in (9) we 

can write

 concluding the proof.

Due to Theorem 7, we pursue the counterpart of [18, Th. 2.4.11], which establishes 
that if f is proper convex and lsc, x0 ∈ domf and ε > 0, then

Next result comes immediately from Theorem 7.

Corollary 1 Let f ∶ X → ℝ be a proper function with x0 ∈ domf and ε > 0. Then, for all u 
∈ X it holds

Remark 3 It is not an easy task to find sufficient conditions for Corollary 1 to hold with an 
equality, maybe a separation theorem for e-convex sets needs to be studied, in some way, 
besides asking the function f to be e-convex, for instance. Hence, we have decided to leave 
this problem to work on it in a near future.

5  Optimality Conditions via c‑subdifferentials

In [17], Hiriart-Urruty established ε-optimality and global optimality conditions for DC 
programs, which are, recall, optimization problems of the type infX{f (x) − g(x)} , where 
f and g are convex functions. To avoid ambiguity, we will use the usual convention 
+∞− (+∞) = +∞ when minimizing DC problems. Recall that, for any ε ≥ 0, a point a 
∈ X is said to be an ε-minimizer of a function h ∶ X → ℝ if h(a) is finite and

 for all x ∈ X. Those optimality conditions are obtained via subdifferential and 
ε-subdifferential sets of the involved functions in the problem.

Theorem 8 ([17, Th. 4.4]) Let f , g∶ X → ℝ be proper convex and lsc functions. A neces-
sary and sufficient condition for the point a to be an ε-minimizer of f − g is that

In particular, a ∈ X is a global minimizer of f − g if and only if

cone(domf − x0) ⊂ H<

u∗ ,𝛼

f �
�
(x0, u) ≥ c(u, (x∗, u∗, �)), for all u ∈ X,

f �
�
(x0, u) = sup

�
⟨u, x∗⟩ ∶ u∗ ∈ ��f (x0)

�
, for all u ∈ X.

f
�
�
(x0, u) ≥ sup {c(u, (x∗, u∗, �)) ∶ (x∗, u∗, �) ∈ �

c,�f (x0) ∩ (X∗ ×N(domf , x0) ×ℝ++)
}
.

h(a) − � ≤ h(x),

𝜕𝜆g(a) ⊆ 𝜕𝜀+𝜆f (a), for all 𝜆 ≥ 0.
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Remark 4 An alternative proof of Theorem 8 is given in [36], where it is pointed out that 
the convexity and lower semicontinuity of f are not essential assumptions.

In this section, our purpose is to provide a counterpart of Theorem 8, expressed in 
terms of even convexity and c-subdifferentiability. We will use the following definition 
of the difference of two sets in W.

Definition 5 (37) Given A,B ⊆ W , the star-difference between A and B is

 involving the Minkowski addition of two sets.

Remark 5 In case B = ∅, for all A ⊆ W , A ∗
− B = A . Moreover, the difference � ∗

− B only 
has meaning (and it is ∅) whenever B = ∅.

Next lemma can be derived from [38, Th. 3.1], which is stated in the generalized con-
jugation theory framework. We include the proof for the sake of completeness.

Lemma 3 Let f ∶ X → ℝ be a proper function and g∶ X → ℝ be a proper e-convex func-
tion. Then

Proof From Theorem 1, it yields

 and applying the definition of c′-conjugate,

where in the last equality we have used the definition of c-conjugate function.

The following theorem is stated with equality when f and g are as in Theorem 8 and 
ε-subdifferential sets are used; see Theorem 1 in [36].

Theorem 9 Let f , g∶ X → ℝ be proper functions with g e-convex, and ε ≥ 0. Then, for all 
x ∈ X, it holds

Proof Assume that ∂c,ε(f − g)(x0)≠∅, for some x0 ∈ X, and take any (x*, u*, α) ∈ ∂c,ε(f − g)
(x0) and λ ≥ 0. We will show the inclusion

𝜕𝜀g(a) ⊆ 𝜕𝜀f (a), for all 𝜀 ≥ 0.

A
∗
− B = {(x∗, u∗, 𝛼) ∈ W ∶ {(x∗, u∗, 𝛼)} + B ⊂ A},

sup
x∈X

{g(x) − f (x)} = sup
(x∗ ,u∗,�)∈W

{f c(x∗, u∗, �) − gc(x∗, u∗, �)}.

sup
x∈X

{g(x) − f (x)} = sup
x∈X

{
gcc

�

(x) − f (x)
}

supx∈X {g(x) − f (x)} = supx∈X
{
sup(x∗ ,u∗,�)∈W

{
c�((x∗, u∗, �), x) − gc(x∗, u∗, �)

}
− f (x)

}

= sup(x∗ ,u∗,�)∈W
{
supx∈X {c(x, (x

∗, u∗, �)) − f (x)} − gc(x∗, u∗, �)
}

= sup(x∗ ,u∗,�)∈W {f c(x∗, u∗, �) − gc(x∗, u∗, �)},

𝜕c,𝜀(f − g)(x) ⊆
⋂

𝜆≥0

{
𝜕c,𝜀+𝜆f (x)

∗
− 𝜕c,𝜆g(x)

}
.
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By Theorem 4 ii), (x*, u*, α) ∈ ∂c,ε(f − g)(x0) if and only if 〈x0, u*〉 < α and

Now, denoting h = g + c(⋅,(x*, u*, α)), which is e-convex2, we have

Rewriting (11), (x*, u*, α) ∈ ∂c,ε(f − g)(x0) if and only if 〈x0, u*〉 < α and

 or, equivalently, according to Lemma 3, 〈x0, u*〉 < α and

 for all (y*, v*, β) ∈ W. In virtue of Theorem 4 ii), we conclude that, if (x*, u*, α) ∈ ∂c,ε(f − 
g)(x0), then

To prove (10), take (y*, v*, β) ∈ ∂c,λg(x0). We will see that (x* + y*, u* + v*, α + β) ∈ 
∂c,λh(x0), and applying (12), we will obtain (10). We have

Taking into account that ⟨x0, u∗⟩ < 𝛼 and ⟨x0, v∗⟩ < 𝛽 , which implies that

 we obtain, by (13) and moreover by Theorem 4 ii) applied to the fact that (y*, v*, β) ∈ 
∂c,λg(x0),

and, again by Theorem 4 ii), (x* + y*,u* + v*,α + β) ∈ ∂c,λh(x0).

Now we present a necessary and sufficient condition for ε-minimality with a global opti-
mality characterization as a particular case.

Theorem 10 Let f , g∶ X → ℝ be proper functions with g e-convex and ε ≥ 0. Then a ∈ 
domg is an ε-minimizer of f − g if and only if

(10)(x∗, u∗, 𝛼) + 𝜕c,𝜆g(x0) ⊆ 𝜕c,𝜀+𝜆f (x0).

(11)(f − g)(x0) + (f − g)c(x∗, u∗, �) ≤ c(x0, (x
∗, u∗, �)) + �.

(f − g)c(x∗, u∗, �) = supx∈X {c(x, (x
∗, u∗, �)) − f (x) + g(x)}

= supx∈X {h(x) − f (x)}.

sup
x∈X

{h(x) − f (x)} ≤ h(x0) − f (x0) + �,

f c(y∗, v∗, �) + f (x0) ≤ hc(y∗, v∗, �) + h(x0) + �,

(12)𝜕c,𝜆h(x0) ⊆ 𝜕c,𝜆+𝜀f (x0).

(13)
hc(x∗ + y∗, u∗ + v∗, � + �) = supx∈X {c(x, (x

∗ + y∗, u∗ + v∗, � + �)) − h(x)}

≤ supx∈X {c(x, (y
∗, v∗, �)) − g(x)} = gc(y∗, v∗, �).

c(x0, (x
∗ + y∗, u∗ + v∗, � + �)) = c(x0, (x

∗, u∗, �)) + c(x0, (y
∗, v∗, �)),

h(x0) + hc(x∗ + y∗, u∗ + v∗, � + �) ≤ g(x0) + c(x0, (x
∗, u∗, �)) + gc(y∗, v∗, �)

≤ c(x0, (x
∗, u∗, �)) + c(x0, (y

∗, v∗, �)) + �

= c(x0, (x
∗ + y∗, u∗ + v∗, � + �)) + �,

2 In [19] is established on functions defined on ℝn , and it can be easily extended to the framework of 
locally convex spaces.
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 for all λ ≥ 0. In particular, a ∈ domg is a global minimizer of f − g if and only if

 for all λ ≥ 0.

Proof Let us assume, firstly, that a ∈ domg is an ε-minimizer of f − g. It implies, clearly, 
that domf ⊆ domg , since (f − g)(a) is finite. It is straightforward that for a proper func-
tion h∶ X → ℝ , a point a ∈ X is an ε-minimizer of h if and only h(a) is finite and 
(0X∗ , 0X∗ , �) ∈ �c,�h(a) , for all β > 0. Hence, a ∈ X is an ε-minimizer of the problem 
infX{f (x) − g(x)} if and only if (f − g)(a) is finite and (0X∗ , 0X∗ , �) ∈ �c,�(f − g)(a) , for all β 
> 0. According to Theorem 9, it implies that

 for all λ ≥ 0, hence (0X∗ , 0X∗ , 𝛽) + 𝜕c,𝜆g(a) ⊆ 𝜕c,𝜀+𝜆f (a) . Due to identity (7), this inclusion 
implies that 𝜕𝜆g(a) ⊆ 𝜕𝜀+𝜆f (a) , for all λ ≥ 0. Moreover, since domf ⊆ domg , we will have 
𝜕c,𝜆g(a) ⊆ 𝜕c,𝜀+𝜆f (a) . Conversely, if 𝜕c,𝜆g(a) ⊆ 𝜕c,𝜀+𝜆f (a) for all λ ≥ 0, we will have, by The-
orem 4 ii),

for all λ ≥ 0. This relationship between the level sets of two nonnegative functions is equiv-
alent to saying that, for all (x*,u*,α) ∈ W, 〈a,u*〉 < α,

 and

Since in the case 〈a,u*〉≥ α, gc(x∗, u∗, �) = +∞ , because a ∈ domg, we can write that

According to Lemma 3,

 and a is an ε-minimizer of f − g.

The following result comes directly from the previous theorem, showing that Theorem 8 
remains true (with an additional hypothesis) if g is e-convex instead of convex and lsc.

Corollary 2 Let f , g∶ X → ℝ be proper functions with g e-convex, domf ⊆ domg and ε ≥ 0. 
Then a ∈ domg is an ε-minimizer of f − g if and only if

 for all λ ≥ 0. In particular, a ∈ domg is a global minimizer of f − g if and only if

𝜕c,𝜆g(a) ⊆ 𝜕c,𝜀+𝜆f (a),

𝜕c,𝜆g(a) ⊆ 𝜕c,𝜆f (a),

(0X∗ , 0X∗ , �) ∈ �c,�+�f (a)
∗
− �c,�g(a),

{(x∗, u∗, 𝛼) ∈ W ∶ ⟨a, u∗⟩ < 𝛼, g(a) + gc(x∗, u∗, 𝛼) − c(a, (x∗, u∗, 𝛼)) ≤ 𝜆} ⊆

{(x∗, u∗, 𝛼) ∈ W ∶ ⟨a, u∗⟩ < 𝛼, f (a) + f c(x∗, u∗, 𝛼) − c(a, (x∗, u∗, 𝛼)) ≤ 𝜀 + 𝜆},

g(a) + gc(x∗, u∗, �) ≥ f (a) + f c(x∗, u∗, �) − �,

gc(x∗, u∗, �) − f c(x∗, u∗, �) ≥ f (a) − g(a) − �.

inf
(x∗ ,u∗,�)∈W

{gc(x∗, u∗, �) − f c(x∗, u∗, �)} ≥ f (a) − g(a) − �.

inf
x∈X

{f (x) − g(x)} ≥ f (a) − g(a) − �,

𝜕𝜆g(a) ⊆ 𝜕𝜀+𝜆f (a),
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 for all λ ≥ 0.

Remark 6 The reason why a is asked to be in domg in the Theorem 10 is that, in other 
case, ∂c,λg(a) = ∅, for all λ ≥ 0, whereas a may not be an ε-minimizer of f − g, for instance 
(f − g)(a) = +∞ if a∉domf.

Remark 7 Local optimality necessary or sufficient conditions for DC problems where both 
functions are proper and convex (although convexity for f is not essential) can be found in 
[17] and [39]. Again they are expressed in terms of ε-subdifferential sets.

A characterization of local optimality in the finite dimensional context given in [40, Th. 
4.3], assumes that the functions f and g are convex and lsc, and it is

 where B(x, ν) stands for the ball of radius ν > 0 centered at x ∈ ℝ
n , and η > 0 is any scalar 

for which a is an optimum in the ball B(a, η). It could also have its counterpart for e-convex 
functions and ε-c-subdifferential sets. Nevertheless, as it can be observed in [40, Th. 4.3 
Proof]), some further constraint qualifications are needed to split the ε-c-subdifferential of 
the sum of two e-convex functions. For more information on this, we encourage the reader 
to check [30, Th. 11].

6  Conclusions and Future Research

Throughout this manuscript we have exploited the main properties that a subdifferential 
defined via a generalized conjugation scheme satisfies. With the purpose of generalizing 
some results from [18], we have investigated the role of the ε-directional derivative and we 
have taken an insight on how the support function of the c-subdifferential may be derived.

As a theoretical application of the c-subdifferential, we have focused on the development 
of global optimality and ε-optimality conditions for DC problems. For problems whose 
objective function reads as the difference of two e-convex functions, which can be denoted 
by eDC problems, we have adapted well-known results from J.B. Hiriart-Hurruty in [17], 
which turns out to give necessary but not sufficient conditions via c-subdifferentials.

Throughout the manuscript we have pointed out some open issues that, from our per-
spective, go beyond the scope of the paper and deserve to be studied thoroughly as a future 
research. We conclude the paper mentioning the application of the c-subdifferential in the 
study of Toland-Singer duality. This type of duality has become quite popular in the com-
munity of DC programming when the involved functions are proper convex and lsc, so we 
expect the c-subdifferential to lead the duality theory of eDC problems.
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𝜕𝜆g(a) ⊆ 𝜕𝜆f (a),

𝜕𝜀g(a) ⊆
⋃

𝜎∈[0,𝜀]

{
𝜕𝜀f (a) + B

(
0n,

𝜀 − 𝜎

𝜂

)}
, for all 𝜀 > 0,
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