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Preserving maritime ecosystems is a major concern for governments and administrations. additionally, 
improving fishing industry processes, as well as that of fish markets, to have a more precise evaluation 
of the captures, will lead to a better control on the fish stocks. Many automated fish species 
classification and size estimation proposals have appeared in recent years, however, they require data 
to train and evaluate their performance. Furthermore, this data needs to be organized and labelled. 
This paper presents a dataset of images of fish trays from a local wholesale fish market. It includes pixel-
wise (mask) labelled specimens, along with species information, and different size measurements. A 
total of 1,291 labelled images were collected, including 7,339 specimens of 59 different species (in 60 
different class labels). This dataset can be of interest to evaluate the performance of novel fish instance 
segmentation and/or size estimation methods, which are key for systems aimed at the automated 
control of stocks exploitation, and therefore have a beneficial impact on fish populations in the long run.

Background & Summary
Fisheries overexploitation is a problem in all oceans and seas globally. Authorities and administrations in charge 
of assigning quotas have very little fine-grained information on the fish captures, and instead use large-scale, 
coarse data to assess the health level of fisheries. Thus, being able to cross-match fish species and sizes, to the sea 
regions they were captured from, can be helpful in this regard, providing finer-grained information.

Previous attempts at assembling datasets for fish detection and classification exist, ranging from fish detec-
tion or counting in underwater images and video streams1–3, to counting on belts on trawler ships4, to classifica-
tion in laboratory conditions5,6, or in underwater preprocessed images of single fish7–9, or single fish in free-form 
pictures10, as well as simultaneous detection and classification of several fish11,12. However, none of the works 
found in the literature addresses the topic of simultaneous instance segmentation and species classification, 
along with fish size estimation, in a fish market environment, as is the aim of this paper. Instance segmentation 
refers to the extraction of pixel-level masks for each individual object (in this case fish specimens), rather than 
bounding boxes (object detection), or class label masks (e.g. a single mask for all fish specimens of the same 
species, also referred to as semantic segmentation). Moreover, works in the literature use pictures taken in labo-
ratory conditions (with a single fish per image, shown from the side), or in underwater conditions. Only French 
et al.4 uses pictures of fish catches on a belt, for counting purposes. Table 1 shows a summary of the datasets 
identified in the literature, along with their characteristics, including how the proposed dataset compares.

The DeepFish project (website: http://deepfish.dtic.ua.es/) is aimed at providing fish species classification and 
size estimation for fish specimens arriving at fish markets, both for the automation of fish sales, and the retrieval 
of fine-grained information about the health of fisheries. For a period of six months (April to September 2021), 
images have been captured at the fish market in El Campello (Alicante, Spain). Images of market trays show a 
variety of fish species, including targeted as well as accidental captures from the ‘Cabo de la Huerta’, an important 
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site for protection and preservation of marine habitats and biodiversity as defined by the European Comission 
Habitats Directive (92/43/EEC). From the pictures, a total of 59 different species are identified with 12 species 
having more than 100 specimens and 25 with more than 10 specimens, as shown in Table 2. There is a high 
imbalance of species captured due to the natural variation in fish species populations according to seasonality 
and other ecological factors (rarity of the species, i.e. total population count, etc). Due to some species showing 
sexual dimorphism (i.e. Symphodus tinca), this species is split into two separate class labels, leading to a differ-
ent number of species, and class labels (59 species, but 60 class labels). The dataset presents a high temporal 
imbalance too. As shown in Fig. 1, the capture of new fish tray images was not evenly distributed during the six 
month study period. Several factors contributed to this: wholesale fish market operating days (e.g. no weekend 
data, holidays and stop periods, etc.), fish species variability (one of the aims was to be able to capture at least 100 
specimens from several species, and seasonality meant some could not be available for capture in later months), 
as well as the time availability of research group members to attend the fish arrival, tray preparation and auc-
tioning in the evenings.

The resulting DeepFish dataset introduced here contains annotated images from 1,291 fish market trays, 
with a total of 7,339 specimens (individual fish instances) which were labelled (species and mask) using a 
specially-adapted version of the Django labeller instance segmentation labelling tool13. Subsequently, another 
JSON file is generated, following the Microsoft Common Objects in Context (MS COCO) dataset format14, 
which can be directly fed to a neural network. This is done via a script that is also provided15. Figure 2 shows the 
distribution of individuals for the selected species within the dataset. Furthermore, Fig. 3 shows examples of the 
trays, with instance segmentation (ground truth silhouette, i.e. as an interpolation from human-provided points) 
along with species labelling (different colour shading).

Dataset Images (instances) Categories Aim of dataset

Spampinato et al.5 360 (360) 10 classification

Ogunlana et al.6 150 (150) 2 classification

Cutter et al.1 929 (1,005) — detection (underwater)

French et al.4 443 (–) — counting (on trawler belts)

Sung et al.2 video data — detection (underwater)

fish4Knowledge11 2.5·106 to 16·106 fish 24 detection, classification (underwater)

NCFM10 — 8 classification

Chhabra et al.8 435 (435) 8 classification (underwater)

Alsmadi et al.9 400 (400) 24 classification

Fish-Pak7 915 (915) 6 classification

Zhang et al.3 1,501 (150k) — detection, counting

Brackish dataset12 89 videos 6 detection, classification

URPC18 5,543 (41,441) 5 classification (underwater)

DeepFish (Proposed) 1,291 (7,339) 59 instance segmentation, classification, 
size estimation (at fish market)

Table 1. Summary of previous datasets found in the literature, and comparison to proposed dataset. The 
ground truth available for each is limited by the ‘aim of the dataset’ (i.e. classification datasets do not provide 
pixel-wise masks).

Species (scientific name) Count Species (scientific name) Count

Mullus surmuletus 1245 Dentex dentex 88

Serranus scriba 1104 Merlucius merlucius 56

Pagellus acarne 901 Diplodus vulgaris 42

Diplodus annularis 793 Sardinella aurita 36

Pagellus erythrinus 637 Serranus cabrilla 28

Spicara mæna 636 Sparus aurata 22

Pagrus pagrus 585 Sarda sarda 21

Mullus barbatus 546 Scorpæna notata 18

Symphodus tinca (335, 211) 546 Symphodus mediterraneus 16

Sepia officinalis 265 Muræna helena 14

Scorpæna porcus 263 Lithognathus mormyrus 11

Sphyræna sphyræna 126 Raja radula 11

Diplodus sargus 95 Other 34 species (≤10 each) 140

Table 2. Distribution of fish species in the dataset. A total of 7,339 fish specimens were labelled from 59 
different species. Since Symphodus tinca shows sexual dimorphism, 60 different class labels are considered,  
with additional classes for male (♂) and female (♀) specimens. Only species above 10 specimens are listed  
here (25 species; in 26 labels). All other 34 species have 10 or fewer specimens and are shown grouped here.
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From the point of view of research, this data is important for the classification of fish species, instance seg-
mentation, as well as specimen size estimation (e.g. as a regression problem, or otherwise). From an end-results 
perspective, data automatically labelled with fish instance segmentation accompanied by species name and esti-
mated size is useful to different stakeholders, namely: fishing authorities (to understand how much of each 
species is being caught per zone), maritime conservation (to calculate depletion of fisheries), but also managers 
of the markets themselves, as well as clients (digitized sales, e-commerce), etc.

The usage of the provided data can be manifold, as it can be used for several problems, namely: object detec-
tion and classification, which involves finding objects (in this case fish specimens) providing a bounding box, and 
a class for each of these boxes; additionally, the data can also be used for semantic segmentation, which can provide 
a pixel-wise segmentation of the image providing labels (in this case species labels) to different pixel regions of the 
image; furthermore, also instance segmentation is possible, in which not just a single label for all instances of the same 
species is provided, but each specimen is provided with a mask (specimen segmentation), as well as a label (species). 
Furthermore, several measurements of each fish are provided, which can also be used to estimate their size, since 
they have been shown to be correlated with each other16. These are estimated from the calculated homography (given 
the tray size is known), given the burden of measuring each fish due to the large amount of specimens in the dataset.

Methods
Data acquisition was performed on a mobile phone without modifications, specifically an iPhone 8 model, from 
Apple Inc. The requirement was that the image had to be captured horizontally, with the phone as parallel to 
the tray as possible (i.e. shot perpendicular to the fish tray), and with a fully visible tray. Furthermore, another 
requirement was to aim for a minimum of 1,200 images as the target to have enough data for any subsequent 
model training.

A time frame of 6 months was considered, to account for species variability due to seasonality of fish cap-
tures. This led to the 60 class labels mentioned before, on a total of 1,320 pictures of trays containing at least 
one species of interest. The species were selected based on their frequency of appearance in the trays at the fish 
market (total counts) as well as their commercial interest (fish species that are common in artisanal fishing 
culture and cuisine locally). Of all the images collected, 29 were left unannotated, but are provided nonetheless. 
The main reason is that the images were of lower quality (e.g. out of focus; too tilted, i.e. causing bad perspective 
view, and similar issues).

Fig. 1 Temporal distribution of fish tray images captured. It can be observed that April (04) and May (05) were 
much more active than the rest of months. This is due to several contributing factors.

Fig. 2 Graphical view of the distribution of fish species in the DeepFish dataset for species above 10 specimens. 
Note, Symphodus tinca is considered separately due to sexual dimorphism (211 male; 335 female samples).
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Django labeller13 was then used to label the images, by adapting it to the specifics of the problem, that is, by 
including a list of species labels and allowing for four different size specification (eye diameter, width at waist, 
length to tail, and total length) all provided to millimetre accuracy, per instance. These four measurements 
have been taken considering several factors: 1) eye diameter of fish has been correlated16 with total fish length, 
therefore, if at least the eye is visible in full, even in the presence of partial body occlusions, the total size of the 
fish specimen can still be inferred; 2) as in the previous case, the width at the waist can also be correlated to the 
total length when the fish body length is not fully visible, but the widest part is; 3) in many species, specially in 
the Thunnus genus, the tail is fragile and can easily bruise and break, therefore a measurement to the tail base 
is common, this is often referred to as ‘standard measure’, when compared to the ‘total measure’ when the tail is 
intact and accounted for. From the manual human expert labelling, a JSON file for each tray is generated, includ-
ing pixel-level instance segmentation for each fish; its species; and its different size parameters, as just explained. 

Fig. 3 Examples of ground truth fish instance masks with class labelling, showing the 12 species (13 labels) with 
more than 100 specimens (in bold in Table 2).

Tray, specimen
Specimen 
size (cm)

Estimated 
size (cm)

Error 
(cm)

Relative 
Error (%)

B.1, Symphodus tinca 25.3 25.64 0.34 1.33%

B.8, Merlucius merlucius 25.0 24.29 0.71 2.85%

B.50, Pagrus pagrus 24.0 23.05 0.95 4.00%

Mean error 0.66 2.73%

Table 3. Samples of fish specimens with their actual size, and inferred size using homography estimation. 
Errors are provided in centimetres and as a relative error (in percentage).
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Finally, a Python script15 is used to convert between Django labeller JSON format, and MS COCO JSON format, 
which is widely accepted by many neural networks for training.

Data Records
The data is openly available to the public, in a Zenodo repository17. The files that make up the dataset are the 
1,320 JPEG images of fish trays; and, additionally, the 1,291 JSON files that accompany most of the images, as 
annotations (in Django labeller format). All files follow a naming convention, as follows:

•	 JPEG images: <DD>_<MM>_<YY>-B(.) <NN>.jpg , for instance: 7_06_21-B7.jpg or 
13_04_21-B.18.jpg, and

•	 JSON annotations: <DD>_<MM>_<YY>-B(.) <NN>__labels.json, for instance: 7_06_21-B7__
labels.json or 13_04_21-B.18__labels.json,

where <DD> stands for the day, <MM> month, and year <YY>, respectively; and the letter ‘B’ stands for batch (i.e. 
each tray), accompanied by <NN> tray number within that date. Please note, that an optional dot can follow the 
‘B’ in the name (i.e. ‘B.’), in some files.

technical Validation
With regard to the technical validation of the data, a team of two marine biologist experts was in charge of spe-
cies labelling. First, each biologist would assess the species of fishes present in a tray, and label them accordingly; 
then, the data was cross-checked by the other expert. A similar procedure was taken for fish measurements. 
However, due to the large volume of fish specimens to label, individual sizes were automatically derived from the 
calculated image homography, using the size of the tray (which is known). To validate this approach, a small sub-
set of specimens was taken and physically measured by the expert team using an ictiometer (a fish-measuring 
device). When compared to the actual measurements, the homography-derived sizes show an average error 
of around 2 to 3%. This is shown in Table 3, that presents some samples for illustration, along with total and 
relative errors. Figure 4 shows the ground truth size of fish specimens used as samples in Table 3. Furthermore, 
as explained, four different measurements were annotated for each specimen: eye diameter, width at the waist, 
length to the tail base (a.k.a. ‘standard’ length), and total length. The eye diameter and width at the waist can be 

Fig. 4 Images from the trays showing the specimens used as samples in Table 3. The ground truth ‘total size’ 
used for size estimation from homography is shown as green line segments.

Fig. 5 Example of provided instance segmentation ground truth, including species labelling. Different 
measurements of fish size are provided too (as depicted): diameter of the eye, width at the waist, and two 
different length measurements (including, or excluding the tail).
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used to derive standard and total lengths, in case of partial occlusion by another fish, as explained by Richardson 
et al.16. Figure 5 shows examples of the size labelling provided (all four measurements).

Usage Notes
For faster, more convenient download, all image files are provided bundled in several compressed ZIP files 
named as fish_tray_images_<YYYY>_<MM>_<DD>.zip. Similarly, individual JSON files are also bun-
dled into a single compressed ZIP file named fish_tray_json_labels.zip.

Once the files are downloaded, and in case the user wants to use them in a deep neural network, or other 
machine learning model that accepts the MS COCO format, the accompanying script15 can be used, to gen-
erate train and validation sets, as required. However, for convenience, the labelling JSON files are also offered 
pre-converted to the COCO format, in which all previous files are aggregated into a single additional file named 
coco_format_fish_data.json in the repository.

Code availability
The images and Django labeller annotation files (JSON) are available on the mentioned Zenodo repository17. 
Furthermore, the code to obtain JSON files in the MS COCO format is published alongside this dataset, and is 
made available online15.
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