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1. Introduction

Multiwell potentials are of great interest in classical and quantum
dynamics. One of the applications of these systems, that has focused
the efforts of many research groups, is the analysis of the problem of
transitions of particles from one local minimum to another, as Hamilto-
nian systems with multiwell potentials represent a realistic model
which describes the dynamics of transition between different states of
equilibrium (see e.g., [1–22]).

In fact, the main characteristic of multiwell potentials is the exis-
tence of a mixed state: for the same energy, there are different dynam-
ical regimes in different local minima, either regular or chaotic. This
means that a particle with a particular value of the energy shows a dif-
ferent regime ofmotion depending on if the particle moves in the vicin-
ity of one local minimum or the other.

In a recent paper, Zotos [22] carries out a classification of the types of
motion in a Hamiltonian system associated with the two-well umbilical
catastrophe potential D5. In his study, the author performs a numerical
exploration of the system for distinguishing between bounded
(ordered and chaotic) and escaping orbits, determining the basins of
escape through the different openings of the potential, and also
k.papadakis@upatras.gr
physics.auth.gr (E.E. Zotos).
calculating the percentage of escaping orbits and its dependence on
the energy of the system.

In a companion paper, Alrebdi and co-workers [1] determine how
the free parameter of the two-well potential described by Zotos in
[22] affects the equilibrium dynamics of the system by computing
their coordinates on the configuration plane, alongwith their linear sta-
bility and type. Additionally, they discuss the influence of the same free
parameter on the orbital dynamics of the system by performing a sys-
tematic and thorough orbit classification that reveals the bounded or es-
caping motion of the test particle.

The aim of this paper is, on the one hand, to clarify the geometry of
the structures which determines if a particle escapes from the multi-
well potential or remains trapped in the system associated with the
two-well umbilical catastrophe potential D5. On the other hand, we
present the systems's families of the periodic solutions (PSs) through
sets of numerical results containing the initial conditions (ICs), the
time periods, as well as the stability indices of the periodic orbits
inside the energetically allowed region of motion.

2. Dynamics of manifolds

In this paper, we analyze the multiwell potential

VD5 x, yð Þ ¼ 2αy2 � x2 þ xy2 þ 1
4
x4,

which is the lower umbilical catastropheD5, in terms of the parameterα
∈ [ − 1, + 1].
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The zero-velocity curves (ZVCs) of the system are defined by

2αy2 � x2 þ xy2 þ 1
4
x4 ¼ E,

where through all this analysis, α=1. These curves are represented in
Fig. 1, showing in gray the regions where the motion cannot happen.
When E > Ec, the ZVC opens, and particles may escape from the system
through one of the two openings of these curves. When the ZVCs are
open, there exist two unstable periodic orbits, called Lyapunov orbits
(LOs), located at the openings of the potential. If a particle crosses one
of these orbits pointing outwards, it escapes from the system and goes
to infinity. In Fig. 1, the LOs are the almost straight lines colored in red
barring the openings of the ZVCs of the system.

In the following, we analyze the geometry of the regions of fast es-
cape of the system. To do this, we determine the ICs of the LOs located
at the openings of the ZVCs of the system. Next, we calculate the stable
and unstablemanifolds for each of them in order to study the successive
intersections of these manifolds with a suitable section surface. If the
initial condition of an orbit is located inside the region enclosed by the
hyper-surface defined by the stable manifold of any of the LOs, the par-
ticle will leave the potential well through the corresponding opening.

To carry out this analysis, we have fixed the value of α=1 and cho-
sen two energy levels: E=0.1 and E=0.5. These values of the energy
allow us to describe two different types of structures in the first inter-
sections of the manifolds to the LOs with the surface of section (SoS)
in which we will carry out this study. We have used the SoS defined
by y=0 to study the intersections of the manifolds to the LOs.

We denote by ϕU to the upper LO, and by ϕL to the lower periodic
orbit. For these orbits, we have computed the sets of the ingoing and
outgoing asymptotic trajectories following the procedure described by
Deprit and Henrard [23]. We denote here by Ws(ϕ) and Wu(ϕ) to the
sets of ingoing and outgoing asymptotic trajectories to the LO ϕ. Ws, n

(ϕ) denotes the n-th intersection of the stable manifold to the LO ϕ
with the SoS y=0 for any n ∈ N, and Wu, 1(ϕ) denotes the first
intersection of the unstable manifold to ϕ with the SoS y=0. Finally,
we denote by Ws,n ϕð Þ and Wu,n ϕð Þ to the region delimited by the sets
Ws, n(ϕ) and Ws, n(ϕ), respectively, for any n ∈ N. Our computations
unveil the following symmetry in the sets of ingoing asymptotic
trajectories to ϕU and ϕL: x, y, y

:� �
∈ Ws,n ϕUð Þ if, and only if,

x, y, � y
:� �

∈ Ws,n ϕLð Þ. We have also found the same type of
symmetry in the sets of outgoing asymptotic trajectories to ϕU and ϕL:
x, y, y

:� �
∈ Wu,n ϕUð Þ if, and only if, x, y, � y

:� �
∈ Wu,n ϕLð Þ. In Fig. 2, we
Fig. 1. ZVCs for α=1 and E=0.1 (left panel) and E=0.5 (right panel). The Lyapunov orbits ϕ
interpretation of the references to colour in this figure legend, the reader is referred to the we
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represent a set of orbits belonging to the inner part of Ws(ϕU) and Wu

(ϕL) until they intersect the SoS defined by y=0, y
:
>0, for values of

the energy given by E=0.1 (left panel) and E=0.5 (right panel).
Now, we focus on the analysis of the regions of fast escape through

the upper opening of the potential. For this purpose, we calculate the
three first intersections of the stable manifold to ϕU and the SoS y=0.
The ICs belonging to Ws,1 ϕUð Þ leave the potential well through the
upper opening without intersecting the SoS y=0. In general, an initial
condition belonging to Ws,ν ϕUð Þ corresponds to an orbit that escapes
from the system through the upper opening of the potential after ν −
1 crossings with the SoS defined by y=0. This is the reason why we
analyze the geometry of Ws, 1(ϕU), Ws, 2(ϕU) and Ws, 3(ϕU) in order to
describe the shape, size, and location of the regions of fast escape
through the upper opening.

In Fig. 3, we show the first intersection of the stable manifold to ϕU,
together with the first intersection of the unstable manifold to ϕL, with
the SoS y=0, y

:
>0, that is, Ws, 1(ϕU) and Wu, 1(ϕL), for α=1 and two

values of the energy: E=0.1 (left panel) and E=0.5 (right panel). Let
us stress at this point that, in both sets, y

:
>0. We can observe that, for

E=0.1, the sets Ws, 1(ϕU) and Wu, 1(ϕL) do not intersect. However, for
E=0.5, these sets intersect and there exists a set of ICs belonging to
the region delimited by both sets,

A1,1 ¼ Ws,1 ϕUð Þ∩Wu,1 ϕLð Þ≠ �0:

The ICs belonging to A1, 1 correspond to orbits entering the potential
through the lower opening and escaping through the upper opening,
after intersecting at one point the of section y=0. We have colored in
blue this set in the right panel of Fig. 3. The ICs belonging to the set B1,
1 are defined by

B1,1 ¼ Ws,1 ϕUð Þ∖A1,1

have an antecedent in the SoS. Thus, we can integrate backward the ICs
in B1, 1 to obtain the second intersection of the set of ingoing asymptotic
trajectories to ϕU with the SoS. In order to clarify the origin of this
second intersection, we have colored in green the set B1, 1 for the two
values of the energy we have considered. We conclude that B1, 1 =
Ws, 1(ϕU) for E=0.1 and B1, 1 ⊊ Ws, 1(ϕU) for E=0.5. One of the
consequences of this difference in B1, 1 is that Ws, 2(ϕU) has a different
structure for E=0.1 and E=0.5. In the following, we will analyze in
detail the origin of this difference.
U and ϕL are the red and almost straight lines barring the openings of the potential. (For
b version of this article.)



Fig. 2. Some orbits belonging to Ws(ϕU) and Wu(ϕL) for α=1 and E=0.1 (left panel) and E=0.5 (right panel).
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In Fig. 4, we show the second intersection of the stable manifold to
ϕU, together with the first intersection of the unstable manifold to ϕU

and the first intersection of the stable manifold to ϕL, with the SoS
defined by y=0, y

:
< 0, for α=1 and two values of the energy: E=

0.1 (left panel) and E=0.5 (right panel). As done before, we must
remark that the points belonging to Ws, 2(ϕU), Ws, 1(ϕL) and Wu, 1(ϕU)
have y

:
< 0. Let us define the sets

A2,1 ¼ Ws,2 ϕUð Þ∖Wu,1 ϕUð Þ

and

B2,1 ¼ Ws,2 ϕUð Þ∖A2,1:

The left panel of Fig. 4 shows that the second intersection of the set of
ingoing asymptotic trajectories to ϕU is a simple closed curve, for
E=0.1. We have colored Ws, 2(ϕU) in three different tones of green:
medium green for A2, 1 and light and dark green for the two tongue-
shaped parts of B2, 1. The ICs in A2, 1, the medium green colored
Fig. 3.Ws, 1(ϕU) and Wu, 1(ϕL) for α=1 and E=
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region, enter the potential well through the upper opening of the
potential and, after intersecting two times the SoS y=0, leave the
potential by the same opening, guarded by ϕU. The ICs in B2, 1 can be
integrated backward in order to compute the Ws, 3(ϕU).

The right panel of Fig. 4 shows that the second intersection of the set
of ingoing asymptotic trajectories to ϕU is an infinite tongue infinitely
spiraling around Ws, 1(ϕL). The origin of this tongue is in the
intersection between Ws, 1(ϕU) and Wu, 1(ϕL). The set B1, 1, which has
a tongue shape, is transformed into an infinite tongue spiraling
around Ws, 1(ϕL). This infinite tongue can be decomposed into an
infinite sequence of parts. Depending on the nature of these parts, we
have colored them in a different tone of green. We have used medium
green for the set A2, 1, dark green for the tip of the infinite tongue
belonging to B2, 1, and light green for each of the bridges that connect
Wu, 1(ϕL) to itself. These bridges compose an infinite sequence of
bridges connecting Wu, 1(ϕL) with itself. The ICs in A2, 1 enter the
potential well through the upper opening of the potential and, after
intersecting two times the SoS y=0, leave the potential by the same
opening, guarded by ϕU. The ICs in B2, 1 can be integrated backward in
order to compute the Ws, 3(ϕU).
0.1 (left panel) and E=0.5 (right panel).



Fig. 4.Ws, 2(ϕU),Ws, 1(ϕL) and Wu, 1(ϕU) for α=1 and E=0.1 (left panel) and E=0.5 (right panel).
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Fig. 5 shows the third intersection of the stable manifold to ϕU,
together with the first intersection of the stable manifold to ϕU

(colored in light blue) and the second intersection of the stable
manifold to ϕL (colored in red), with the SoS' defined by y=0, y

:
>0,

for α=1 and two values of the energy: E=0.1 (left panel) and E=0.5
(right panel). The different parts of Ws, 3(ϕU) are colored in the same
tone of green than its correspondent antecedent in Ws, 2(ϕU).

In the left panel of Fig. 5, we show the second intersection of the set
of ingoing asymptotic trajectories to ϕU, for E=0.1. We can observe that
Ws, 3(ϕU) ismade up of two parts. Each of these parts has the shape of an
infinite tongue spiraling around Ws, 1(ϕU). We have colored each of
these infinite tongues in the same colour as its antecedent in B2, 1 (left
panel of Fig. 4). The infinite spiraling of these tongues around Ws, 1

(ϕU) is due to the fact that Ws, 2(ϕU) intersects Wu, 1(ϕL) in the way
we have described in the left panel of Fig. 4.

The structure ofWs, 3(ϕU) for E=0.5 ismore complicated. On the one
hand, the antecedent of the dark green structure that infinitely spirals
around Ws, 1(ϕU) is the dark green tongue belonging to B2, 1. On the
other hand, the infinite sequence of bridges colored in light green in
the right panel of Fig. 4 is transformed in a sequence of infinite
tongues spiraling aroundWs, 1(ϕU).
Fig. 5.Ws, 3(ϕU),Ws, 1(ϕL) and Ws, 2(ϕU) for α=1 a
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3. Periodic solutions of the system

In this section, we shall present the families of PSs of the dynamical
system through sets of numerical results containing the ICs, the timepe-
riods, as well as the stability indices of the periodic orbits (POs) inside
the energetically allowed region of motion. All the ICs will be presented
on the (x, E)-plane, where x is the initial value of the x coordinate of the
trajectory for T=0, while E is the corresponding energy level. The PSs
are grouped into one-parametric families that form curves in the (x,
E)-plane, known as the characteristic curves of the PSs. Without loss
of the generality, all the PSs on the (x, E)-plane have a positive value
of the initial velocity y

:
>0.

3.1. Simple symmetric periodic solutions

At a first stage, we will investigate the simple symmetric (with re-
spect to the horizontal x-axis) PSs of the system. As simple PSs, we call
the simplest trajectories of the problem forwhich thefirst vertical inter-
section with the horizontal x-axis happens at T/2. These simple PSs are
of paramount importance since they control the configuration and
also the distribution of all the other (with higher multiplicity) PSs of
nd E=0.1 (left panel) and E=0.5 (right panel).
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the system. For this reason, we will provide an extensive analysis re-
garding the simple PSs of the system.

The first step for finding the simple periodic families of the system is
to apply the so-called “grid-search”method [24]. According to this pro-
cedure, we approximately find the ICs of the symmetric POs, after one or
more intersectionswith the x-axis. In our analysis,we defined awindow
of search in which x ∈ [ − 4,4] and E ∈ [ − 1,12].

The second step is to filter the approximate ICs we have already
found during the first step. This is done by using a corrector-predictor
convergence procedure that provides the ICs of the simple symmetric
PSs with sufficient accuracy. During the numerical integration of the
equations of motion as well as of the variational equations we require
accuracy of at least 12 decimal digits for the ICs and at least 8 decimal
digits for the periodicity of the solutions. At the same time, we also com-
pute the horizontal linear stability for each periodic solution, using
Hénon's stability indices ah, bh, ch, and dh [25,26] which are defined
through the variational matrix

Δx
Δ x

:

� �
¼ ah bh

ch dh

� � Δx0
Δx

:

0

 !
, ð1Þ

where Δx and Δ x
:
are considered to maintain the energy value E, while

ah ¼ ∂x
∂x0

, bh ¼ ∂x
∂ x

:

00

, ð2Þ

ch ¼ ∂ x
:

∂x0
, dh ¼ ∂ x

:

∂x
:

0

, ð3Þ

A simple periodic solution is linearly stable only if ∣ah∣<1, while if ah =
± 1 we have the case of a critical periodic solution.

Our analysis suggests that the system has nine families containing
symmetric and simple POs. In Fig. 6 we present on the (x, E)-plane the
characteristic curves of the nine families of simple PSs. Green and red
arcs denote linearly stable and unstable solutions, respectively. The
inset diagram provides a magnification of the region around the peri-
odic families f7, f8, and f9. The gray-shaded region denotes the energeti-
cally forbidden region of motion, as it is delimited by the ZVC (black
Fig. 6. The characteristic curves of the symmetric, simple periodic trajectories of the
system.
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curve). Moreover, small red circles pinpoint the positions of the three
collinear equilibrium points Li, i=1,2,3 of the system.

The nine families of simple symmetric PSs can be categorized
into two types. For the first type of symmetric orbits, at T/2 we have x

(T/2) = x(T= 0)= x0, y(T/2) = y0 = 0, xð _T=2Þ ¼ _x0 ¼ 0, and yð _T=2Þ ¼
− _y0, while for the second typewehave that x(T/2) ≠ x0, y(T/2)= y0=0,

xð _T=2Þ ¼ _x0 ¼ 0 , and yð _T=2Þ≠ _y0 . We shall call the first type of PSs
“open-path” PSs (see e.g., Fig. 7a), and the second type as “closed-
path” trajectories (see Fig. 7c).

The family f1 emerges through the collinear point of equilibrium L1
and it is composed of open-path periodic trajectories (see Fig. 7a). The
corresponding characteristic curve during its time-evolution reaches a
maximum energy E ≈ 5.65 and then it reduces and finally it collides
with the other point of equilibrium L2 (see the diagram of Fig. 6).
Initially (as the characteristic curve moves away from L1), all the PSs
of family f1 are unstable, while as the characteristic curve reaches its
maximum and starts heading toward L2 the linear stability of the
simple PSs changes. The corresponding diagrams with the evolution of
the stability indices are given in panel (a) of Fig. 8. In all these stability
diagrams, we denote the locations of critical PSs using white open
circles, while white open squares indicate bh=0. We decided to
present also the parametric evolution of the stability index bh because
later on, it will help us determine the asymmetric PSs of the system.

Orbital family f2 also contains open-path orbits (see Fig. 7b), while
the corresponding characteristic curve evolves from Emin ≈ − 0.673,
up to very high energy levels that go beyond the window of our study.
The orbital family f2 contains two branches. The right branch contains
entirely unstable trajectories, while the left branch that starts
from Emin also contains unstable solutions up to about E = − 0.265
where it intersects with family f3 and the stability changes. The
corresponding stability diagrams are presented in panel (b) of Fig. 8.

The family f3 is composed of closed-path trajectories (see Fig. 7c)
and as we have already discussed it intersects with the orbital family
f2. The common critical periodic solution is of open-path type. The
branch of f3 at the right-hand side of the critical solution contains direct
periodic trajectories (black and green orbits in Fig. 7c), while the branch
at the left-hand side of the same critical orbit contains retrograde trajec-
tories (blue orbit in Fig. 7c). According to the stability diagram of Fig. 8c,
the family f3 has only one small stability arc near the vicinity of the
critical solution, which remains linearly stable up to about E ≈
− 0.209 for both branches.

The orbital family f4 begins from the collinear point of
equilibrium L3 and contains open-path periodic trajectories (see
Fig. 7d). This family is composed of only one branch that extends
beyond the limit of our study (E=12). As we can see in the stability
diagram of Fig. 8d, the family starts with linearly stable solutions
up to the critical solution at E ≈ 0.0626, while for higher values of
the energy the stability changes. The specific critical periodic solu-
tion (red orbit in Fig. 7d) is very important. This is true because the
values of the stability indices suggest that a new periodic family
with asymmetric orbits bifurcates from it.

The families f5 and f6 havemany common features since they both
emerge through the ZVCs at about E≈− 0.16 and contain open-path
trajectories (see Fig. 7e and f). The main difference is that the trajec-
tories of family f5 are direct, while those of family f6 are retrograde.
As one can see in Fig. 8e and f, both families start with linearly
stable solutions. The stability of the orbits remains as long as the
value of the total orbital energy is negative, while when E>0 the
trajectories become unstable. Our conclusion is that both families f5
and f6 are in reality the two branches of the same family for
which the respective characteristic curve has been “interrupted” by
the ZVC.

Orbital family f7 contains two branches with open-path PSs (see
Fig. 7g). The inset diagram of Fig. 6 reveals that the family f7 intersects
family f8 and that happens exactly at the position of their mutual



Fig. 7. Collection of all the types of symmetric, simple periodic trajectories of the system.
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critical solution at E≈ 0.097. The periodic trajectories of the family f7 are
mainly unstable, apart from a small stability arc in the energy interval
0.095<E<0.097.

According to the examples shown in Fig. 7h, the family f8 contains
closed-path trajectories. The characteristic curve of this family has two
branches withminimum energy at E≈ 0.0971. The left branch contains
direct trajectories (black and green orbits in Fig. 7h), while the right
branch contains retrograde solutions (blue orbit in Fig. 7h). The stability
diagram of Fig. 8h suggests that there is a small stability arc between
0.0971<E<0.0975.
6

Finally, the orbital family f9 is composed of open-path periodic trajec-
tories, according to the three typical examples shown in Fig. 7i. This fam-
ily has two branches and minimum energy at about E ≈ 0.137154. The
vast majority of the solutions of this family are unstable, while there is
a small stability arc at the energy interval 0.137154<E<0.137174.

The main conclusions regarding the dynamics of the symmetric,
simple PSs of the system are the following:

1. The system has eight (8) families of symmetric, simple PSs since
the orbital families f5 and f6 are in fact the two branches of the same
family.



Fig. 8. Collection of the diagramswith the parametric evolution of the stability indices ah and bh for all families of symmetric, simple POs.White open circles andwhite open squares denote
the positions of critical PSs for which ah = ± 1 and bh=0, respectively.
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2. The simple symmetric PSs are of two types: (i) open-path and
(ii) closed-path.

3. There are five families containing open-path PSs (the families f1,
f2, f4, f7, and f9) and three families with closed-path solutions (the fam-
ilies f3, f5, 6, and f8).

4. The three families with closed-path trajectories have character-
istic curves composed of two branches. For the families f3 and f8 the left
branch contains retrograde POs and the right one direct solutions. On
the other hand, for the family f5, 6 the left branch has direct solutions
and the right one retrograde periodic trajectories.

5. There are four orbital families for which the corresponding char-
acteristic curves intersect each other (f2 with f3 and f7 with f8). Always,
7

one of these families contains open-path solutions and the other one
closed-path solutions. This implies that there are no intersections with
orbital families of the same type (open or closed).

6. All orbital families contain stability arcs. In most of the cases, the
majority of the PSs are unstable, apart from the family f1 for which the
linearly stable arc is larger than the unstable one.

3.2. Simple asymmetric periodic solutions

In this subsection, we shall numerically investigate the existence or
not of simple asymmetric PSs. By the term “asymmetric periodic solu-
tion” we refer to a trajectory with a shape that is asymmetric at least



Fig. 9. The family of simple asymmetric solutions (blue curve) that bifurcates through the
critical solution of the family f4 of symmetric orbits. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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with respect to the horizontal x-axis. The method we will use has been
developed by Hénon [25–27] and it is briefly described as follows: To
begin with, we choose a family of symmetric PSs and for that family,
we compute the linear stability indices ah and bh. Then we check if a
periodic solution exists with ah=1, bh=0, and ch ≠ 0, simultaneously.
If so, then this specific periodic solution is a critical solution and a
new family of planar asymmetric POs bifurcates from it. After
finding one asymmetric periodic solution, we continue by computing
the entire corresponding one-parametric family. Here, it should be
noted that in the case of symmetric PSs the ICs of the trajectories are
ðx0; y0 ¼ 0; _x0 ¼ 0; _y0ðEÞÞ , while in the case of asymmetric solutions
we have ðx0; y0 ¼ 0; _x0; _y0ðEÞÞ. This implies that asymmetric solutions
have three free ICs since now the intersections with the horizontal x-
axis are no longer vertical ð _x0≠0Þ. For the computation of the symmetric
PSs the required time interval of the numerical integration of the
equations of motion is equal to half of the period of the orbits, due to
the symmetry of the solutions. On the other hand, in the case of asym-
metric solutions, the numerical integration must be continued for
the entire period of the orbits, where the conditions of periodicity are
fulfilled.

For all the simple asymmetric PSs we also compute their linear hor-
izontal stability through the index Sh=(ah+ dh)/2, where ah and dh are
the coefficients of the variational matrix. An asymmetric solution is
linearly stable if −1<Sh<1 [27].

Wewould like to point out that in the case of symmetric PSs the pre-
sentation on the (x, E)-plane provides the full information regarding the
ICs of the orbits. However, in the case of asymmetric orbits, the charac-
teristic curves on the (x, E)-plane donot provide anykind of information
regarding the horizontal and the vertical velocities of the test particle.
Nevertheless, for comparison reasons (between symmetric and asym-
metric PSs) we shall also use the presentation on the (x, E)-plane also
for the asymmetric solutions.

Our analysis of the simple symmetric PSs suggests that only family f4
contains a critical solution with ah=1, bh=0, and ch ≠ 0. This directly
implies that only for this family we can compute the evolution of the
new orbital family of asymmetric solution that bifurcates from the
critical solution of f4. Indeed, using a predictor-corrector procedure (as
it is described in detail in [28]), wemanaged to compute the entire fam-
ily of asymmetric solutions. The corresponding characteristic curve in
given in Fig. 4 in blue. This family emerges through the critical solution
of f4 with ICs x0 = − 1.84134515, y0 ¼ _x0 ¼ 0, _y0 ¼ 1:07635243, E =
0.06267596, T = 5.18289597 and terminates as the coordinate x tends
to zero. One of the last solutions of this asymmetric family has ICs
Fig. 10. (a-left): The characteristic curves of the symmetric family f4 (dotted lines) and the asym
with asymmetric solutions.
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x0 = − 0.00163221, y0 = 0, _x0 ¼ 0:62121585, _y0 ¼ 3:31729581, E =
5.69517764, T = 6.38298835.

We computed the linear stability of all the asymmetric PSs and we
found (see Fig. 10b) that this new family starts with stable solutions
as it bifurcates the orbital family f4. Then it becomes unstable, while a
second stability arc appears later on. Both stability arcs of the
asymmetric family are indicated in green in the corresponding
characteristic curve of Fig. 9.

In the diagramof Fig. 10a, we present the characteristic curves (solid
lines) of all the ICs of the familywith asymmetric PSs. The same diagram
contains also the characteristic curves of the symmetric family f4
(dotted lines). The position of the critical periodic solution that acts as
a bifurcation point is indicated using small, open, blue circles.

The new family is composed of open-path asymmetric PSs. Charac-
teristic examples of asymmetric trajectories are given in Fig. 11. It is
metric family (solid lines) that bifurcates from it. (b-right): Stability diagram of the family



Fig. 11. Characteristic examples of simple asymmetric periodic trajectories.
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seen that all the PSs are asymmetric with respect to both the horizontal
x and the vertical y-axis. The starter critical periodic solution (through
which the family of asymmetric solutions is born) is given in red.
3.3. Symmetric periodic solutions of higher multiplicity

In this last subsection, we investigate symmetric PSs of higher
multiplicity N and in particular with 2 ≤ N ≤ 10. A periodic solution is
of multiplicity Nwhen the first vertical intersection with the horizontal
x-axis (at T/2) takes place after N intersections.

The first approach for computing the PSs of higher multiplicity is to
use the grid-search method for obtaining approximate values of the
ICs of the trajectories (note that all the solutionswithN=1have already
Fig. 12. Characteristic curves of symmetric POs with multiplicity N=1,2,...,10.
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been found). We restrict our search by considering only PSs withmulti-
plicity up to 10 so as to obtain a complete view regarding the network of
symmetric periodic trajectories. In Fig. 12we present on the (x, E)-plane
all the characteristic curves of symmetric POswithmultiplicity up to 10.
Different colors indicate trajectorieswith a different number of intersec-
tions with the horizontal x-axis and therefore different values of multi-
plicityN. The characteristic curves of simple symmetric POs (withN=1)
are indicted with thick black curves. These simple solutions have a pro-
found role in the configuration of all the families of higher multiplicity.
In fact, simple solutions form the backbone of the network of symmetric
PSs in which all the solutions of higher multiplicity bifurcate from the
basic characteristic curves of the simple (N=1) solutions.

Indeed, as we see in the diagram of Fig. 12 the orbital families f1 and
f4 that emerge from the equilibrium points L2 and L3, respectively, as
well as the orbital family f2 are the three basic families of the system.
Moreover, all the characteristic curves of orbital families of higher
multiplicity bifurcate from the stable arcs of these three main families
of simple symmetric solutions. In Fig. 13 we provide a magnification
of the area in the vicinity of the libration point L3. Inside this region,
we see that families of higher multiplicity bifurcate also from the
simple orbital families f2 and f3. Thus, we conclude that families with
symmetric PSs of higher multiplicity bifurcate from all the families of
simple solutions with N=1.

The families of simple PSs (with N=1) divide the region of allowed
motion into subregions where the characteristic curves of families
with higher multiplicity evolve by intersecting them. For example, we
see that between f2 and f5, f4 and f6, and f3 and f2 there exist
characteristic curves of families with higher multiplicity that are
trapped between the characteristic curves of the main families of
multiplicity N=1. We also observe that the characteristic curves of the
simple symmetric solutions define the boundaries of energetically
allowed motion between the areas of regular and escaping motion
(white regions).

In the diagram of Fig. 14 we distinguish between linearly stable
(green) and unstable (red) symmetric POs of multiplicity N, with N=
1,2,...,10. One can see, that the vast majority of the symmetric solutions
are unstable, while linearly stable solutions exist mainly inside the re-
gions of regular motion. The regions of linearly stable solutions exist
near the bifurcations of the families with higher multiplicity from the
Fig. 13.Magnification of the network of symmetric POs with multiplicity up to 5, near the
equilibrium point L3.



Fig. 14. The configuration of linearly stable (green) and unstable (red) symmetric POs
with multiplicity N=1,2,...,10. Cyan regions correspond to regular bounded motion,
while yellow regions indicate basins of escape. (For interpretation of the references to col-
our in this figure legend, the reader is referred to the web version of this article.)
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main families with N=1 and this occurs only in the stable arcs of the
characteristic curves. Furthermore, it becomes evident that linearly sta-
ble motion occurs mainly in the regions corresponding to basins of reg-
ular bounded motion (cyan areas). On the other hand, inside the basins
of escape (yellow regions), there is a complete absence of any type of
PSs, while ICs of unstable periodic trajectories lie inside the fractal es-
caping regions.
4. Discussion

Thiswork aimed to shed some light on the dynamical properties and
the geometry of the invariant manifolds of a multiwell potential. These
structures have paramount importance since they control the flow (in-
ward and outward) of particles through the several channels, associated
with the system's points of equilibrium.

Apart from the manifold dynamics, we also presented in detail the
network of the POs of the system, including not only symmetric but
also asymmetric solutions. For these PSs, we numerically computed
their locations, their multiplicity, and also their linear stability.

The results of thiswork alongwith those of [1] form a complete view
regarding the orbital dynamics associated with the two-well umbilical
catastrophe potential D5.
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